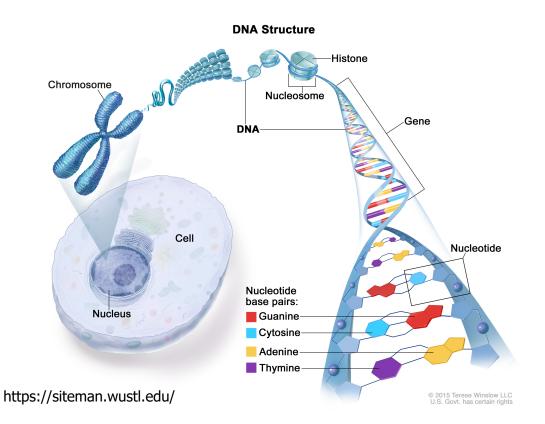


Cytogenetics and molecular genetics in oncology

Karla Plevova, MSc, PhD


Outline of the presentation

- 1. Differences in molecular genetics and cytogenetics of congenital disorders vs cancer
- 2. Application of molecular-genetic and cytogenetic findings in oncology
- 3. Material sources and material used
- 4. Methods used and practical examples

MG: molecular genetics CG: cytogenetics

Cancer as a genetic disease

Two levels:Cancer hereditary syndromes – germline mutationsGenetic alterations gained during a lifetime - somatic

3

Why molecular genetics and cytogenetics in oncology can be interesting for a dentist?

Acute myeloid leukemia (AML) manifesting by blast infiltration in gums.

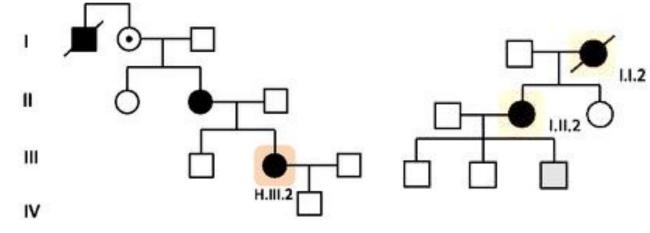
1. Differences in MG and CG of congenital disorders vs cancer

Characteristics	Congenital disorders	Cancer
Prevailing origin of genetic defects	Germline	Somatic
Extent of genetic abnormalities	Single or small number of changes	Variable, typically higher
Type of abnormalities	One/two types present per case	Combination of all types
Mosaicism	Rare	Common

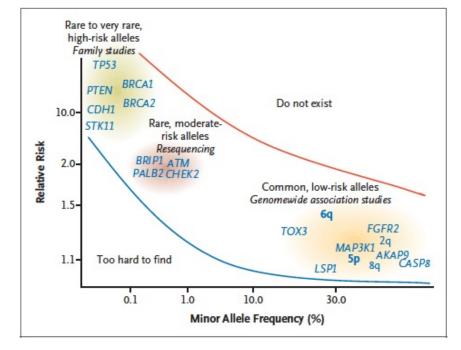
2. Application of MG and CG findings in oncology

- a. Hereditary predisposition assessment
- b. Establishing and refining diagnosis
- c. Disease prognostication
- d. Treatment optimization
- e. Disease activity monitoring
- f. Disease complication diagnostics

2. Requirements on the techniques


- High specificity and high sensitivity, limit of detection
- Fast processing range of few hour to few days
- Tools for data analysis (bioinformatics for NGS)
- Standardization and validation
- Availability of reference material (positive/negative controls), reference sequences
- Regular quality assessment
- Compliance with legislation regulations

a. Hereditary predisposition assessment


- Cases of cancer accumulated in families
- Autosomal dominant and recessive inheritance
- Typical onset at young age
- Genetic counseling

8

Screening for causative variants

Breast-Cancer Susceptibility Loci and Genes.

Foulkes, NEJM 2008

a. Hereditary predisposition assessment

	WHO classification
lassification [*]	
Myeloid neoplasms with ge	m line predisposition without a preexisting disorder or organ dysfunction
AML with germ line CE	PA mutation
Myeloid neoplasms with	germ line $DDX41$ mutation [†]
Myeloid neoplasms with ge	m line predisposition and preexisting platelet disorders
Myeloid neoplasms with	germ line <i>RUNX1</i> mutation [†]
Myeloid neoplasms with	germ line ANKRD26 mutation ^{1}
Myeloid neoplasms with	germ line <i>ETV6</i> mutation ^{\ddagger}
Myeloid neoplasms with ge	m line predisposition and other organ dysfunction
Myeloid neoplasms with	germ line GATA2 mutation
Myeloid neoplasms assoc	iated with bone marrow failure syndromes
Juvenile myelomonocytic	leukemia associated with neurofibromatosis, Noonan syndrome, or Noonan syndrome-like disorders
Myeloid neoplasms assoc	iated with Noonan syndrome
Myeloid neoplasms assoc	iated with Down syndrome [‡]

Table 2 - ACMG list of hereditary cancer syndromes, most with childhoodonset, for reporting incidental findings.

Syndrome	Gene	Inheritance	
Li-Fraumeni	<i>TP53</i>	AD	
Peutz-Jeghers	STK11	AD	
Familial adenomatous polyposis	APC	AD	
Von-Hippel Lindau	VHL	AD	
Multiple endocrine neoplasia	MEN1 (type 1); RET (type 2)	AD	
Hamartomatosis	PTEN	AD	
Retinoblastoma	RB	AD	
Paraganglioma-pheochromocytoma	SDHAF2, SDHB, SDHC, SDHD	AD	
Tuberous sclerosis complex	TSC1, TSC2	AD	
Neurofibromatosis type 2	NF2	AD	
WT1-related Wilms tumor	WT1	AD	

AD, autosomal dominant.

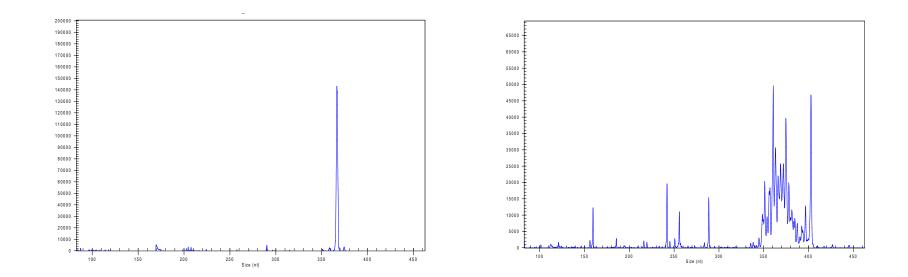
Gomy & Diz, Genet Mol Biol 2016

MUNI MED

Döhner et al, Blood 2017

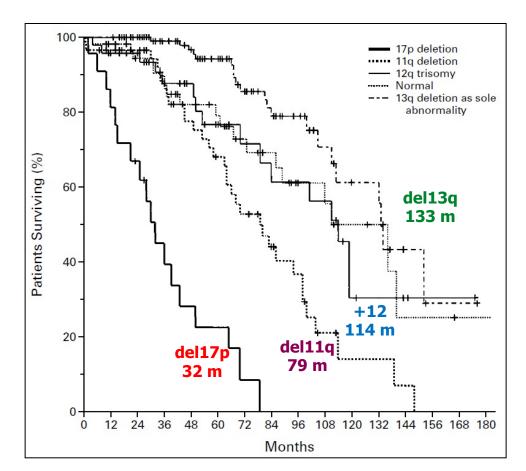
9

b. Establishing and refining diagnosis

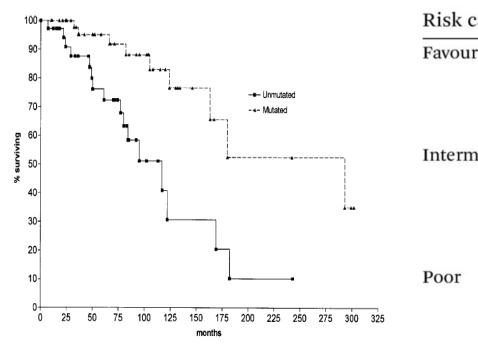

- Diagnosis confirmation based on detection of specific (marker) gene or chromosomal abnormalities
- Incorporation of genetic/cytogenetic markers in WHO classification
- Resolving ambiguous cases
- Markers specific for the whole diagnostic entity or only for a subset of a disease (implications for treatment)
- Examples
 - Mantle cell lymphoma translocation t(11;14)
 - Hairy cell leukemia BRAF V600E mutation

b. Establishing and refining diagnosis

Clonality


11

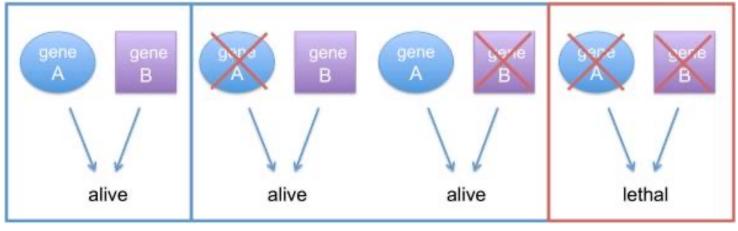
- Typical characteristics of lymphoid (but also other) malignancies
- Analysis of antigen receptor rearrangements, translocations and gene mutations
- Monoclonal vs polyclonal picture distiguishing of malignant vs reactive conditions
- Quantification of tumor load


c. Disease prognostication

- Genetic and cytogenetic markers associated with certain disease features
- Risk assessment at time of diagnosis
- Genetic markers of various types gene mutations, chromosomal abnormalities, a type of antigen receptor rearrangement, ...
- Prognostic vs predictive markers

c. Disease prognostication

CLL:

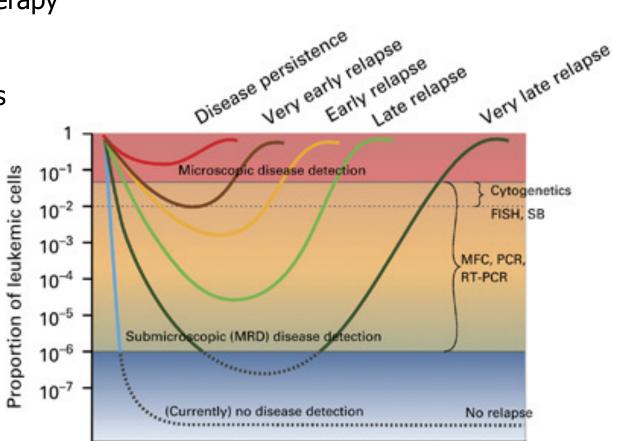

Hamblin et al, Blood 1999

Δ	Μ	1		•
	1.		L	•

category	Cytogenetic or molecular genetic abnormality
ırable	t(8,21)(q22;q22); <i>RUNX1–RUNX1T1</i> inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); <i>CBFB–MYH11</i> t(15;17)(q24;q21) <i>PM–RARA</i>
	Mutated <i>NPM1</i> without <i>FLT3–ITD</i> (normal karyotype) Biallelic mutated <i>CEBPA</i> (normal karyotype)
mediate	Mutated <i>NPM1</i> and <i>FLT3–ITD</i> (normal karyotype) Wildtype <i>NPM1</i> and <i>FLT3–ITD</i> (normal karyotype)
	Wildtype NPM1 without FLT3-ITD (normal karyotype)
	Normal karyotype not classified as favourable. t(9;11)(p22;q23); <i>MLLT3–KMT2A</i>
	Cytogenetic abnormalities not classified as favourable or poor inv(3)(q21q26.2) or t(3;3)(q21;q26.2); <i>GATA2–MECOM</i> (<i>EVI1</i>)
	t(6;9)(p23;q34); <i>DEK–NUP214</i> t(v;11)(v;q23); KMT2A rearranged
	t(9;22)(q34.1;q11.2); <i>BCR–ABL1</i> -5 or del(5q); -7; -17/abn(17p)
	Complex karyotype (>3), monosomal karyotype
	Wild type <i>NPM1</i> and <i>FLT3–ITD</i> Mutated <i>RUNX1</i>
	Mutated ASXL1 Mutated TP53

d. Treatment optimization

- Concept of personalized treatment tailored for individual patients
- Treatment response related to genetic abnormalities detected in cancer cells
- Targeted treatment blocking the growth and spread of cancer by interfering with specific molecules ("molecular targets")
- Synthetic lethality blocking or inactivation of two genes leads to cell death



d. Treatment optimization - examples

Diagnosis	Genetic defect	Treatment option
Chronic myeloid leukemia	BCR/ABL fusion gene	Tyrosine kinase inhibitors (imatinib, dasatinib etc.)
Breast cancer	BRCA1 mutations	PARP inhibitor olaparib
Non-small cell lung cancer	EGFR mutations	EGFR inhibitors (erlotinib, afatinib etc.)
Non-small cell lung cancer	ALK gene rearrangements	ALK inhibitors (crizotinib, ceritinib etc.)
Melanoma R/R hairy-cell leukemia	BRAF mutations	BRAF inhibitors (dabrafenib, vemurafenib etc.)
Colorectal cancer	KRAS mutations	Contraindication for targeting EGFR by cetuximab and panitumumab
Chronic lymphocytic leukemia	BTK mutations	Contraindication for ibrutinib administration

e. Disease activity monitoring

- Minimal residual disease (MRD) cancer cells remaining after therapy
- Need for MRD marker identification before therapy
- Monitoring of MRD markers after therapy
- Design of patient-specific and sensitive assays
- Typical markers:
 - Gene rearrangements
 - Fusion genes
 - Gene mutations

Buckley SA, et al. Bone Marrow Transpl. 2013.

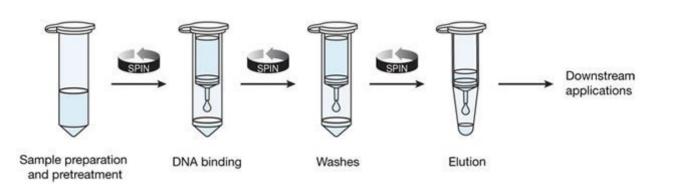
f. Disease complication diagnostics

Infection complications related to cancer treatment

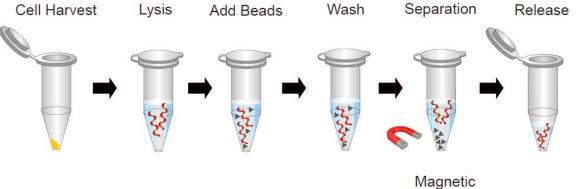
- Opportunistic infections otherwise common pathogen causing severe symptoms
- Related to bone marrow (BM) and peripheral blood stem cell (PBSC) transplantation and other cancerspecific treatment (e.g. alemtuzumab)
 Molecular diagnostics – typing of pathogens according to their DNA/RNA sequence
- (multiplex) PCR, real-time PCR, NGS
- Quantification and monitoring of pathogen load

Table 2. Pathogen Frequency by Treatment Arm

Organism	BM	PBSC	
Bacterial infections			
Staphylococcus (coagulase negative)	123 (82)	101 (67)	
Enterococcus (all species)	54 (42)	49 <mark>(</mark> 40)	
Clostridium difficile	69 (52)	54 (41)	
Staphylococcus (coagulase positive)	10 (9)	30 (20)	
Escherichia (also E. coli)	16 (15)	23 (19)	
Viral infections			
CMV	78 (61)	81 (57)	
Polyomavirus	27 (25)	27 (24)	
Herpes simplex (HSV1, HSV2)	16 (14)	22 (17)	
EBV	15 (12)	21 (15)	
Influenza	22 (19)	13 (13)	
Fungal/parasitic infections			
Other (suspected) fungus	12 (11)	13 (12)	
Yeast other than Candida albicans	5 (4)	12 (10)	
Candida albicans	6 (6)	10 (8)	
Aspergillus fumigatus	5 (5)	6 (5)	
Mucormycosis (Zygomycetes, Rhizopus)	5 (4)	2 (2)	
Pneumocystis	1 (1)	2 (2)	
Toxoplasma	1 (1)	1 (1)	


HSV indicates herpes simplex virus; CMV, cytomegalovirus; EBV, Epstein Barr virus. Only the top 5 organisms for each infection type are listed.

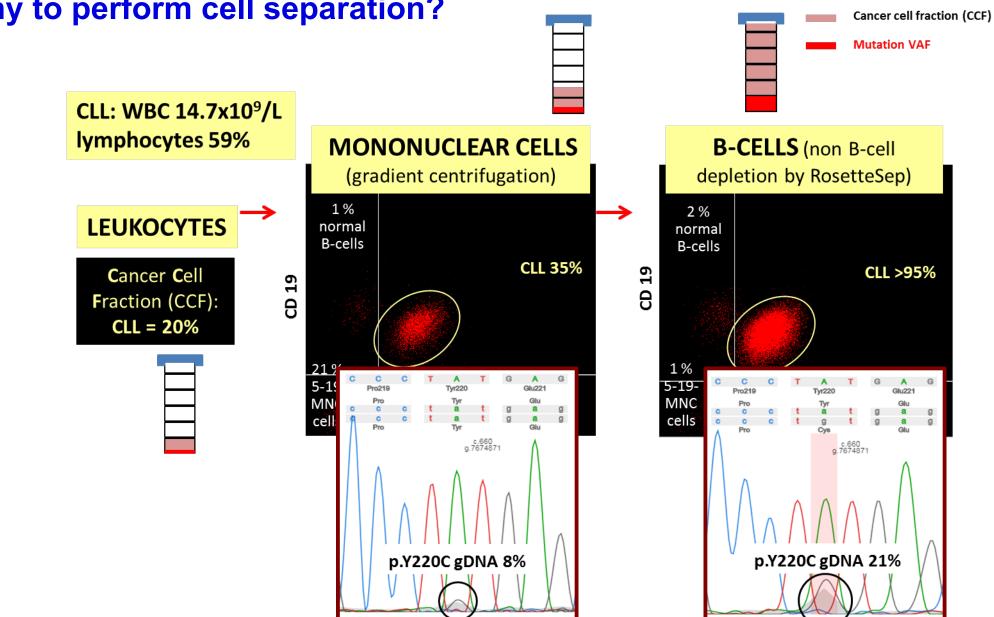
3. Materials used and material sources


- Types of samples
 - Cells
 - DNA
 - RNA
 - cfDNA

18

MUNI

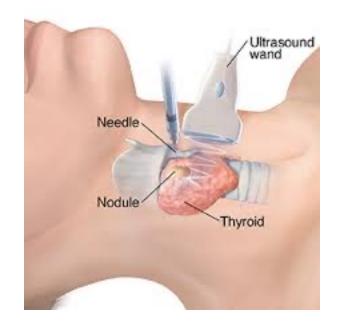

MED


3. Materials used and material sources

- Sampling
 - Peripheral blood
 - Bone marrow
 - Liquid biopsies
 - Aspirates
 - Fine-needle biopsies
 - Fresh tissue
 - Formalin-fixed paraffin-embedded (FFPE) tissue
 - Swabs (buccal, NPh, ...)

Hematooncology – easy access to malignant cells

- Peripheral blood, bone marrow
- EDTA or heparin collection tubes
- Different cell population used according to the application
 - Leukocytes, Mononuclear cells, Granulocytes, Lymphocytes, Specific cell subpopulations
 - Utilization of separation methods



Why to perform cell separation?

Solid tumors – tissues

- Invasive
- Biopsies, fine-needle biopsies
- Fresh frozen vs FFPE tissue
- Decreased DNA and RNA quality (fragmented,

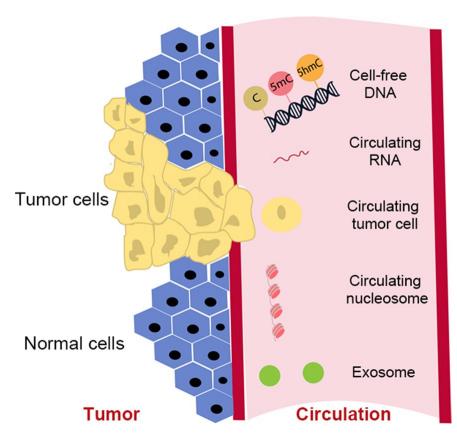
chemically modified in case of FFPE material)

MUNI

MED

Liquid biopsies

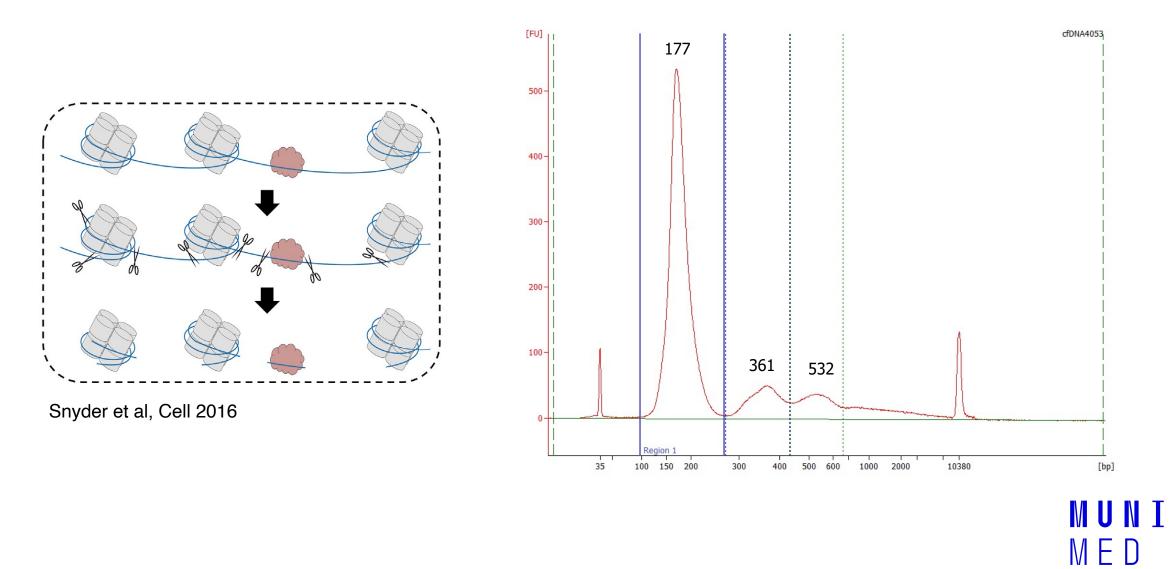
Very low amount of material


Sources:

- Plasma / serum
- Urine

. . .

- Joint fluid
- Cerebrospinal fluid

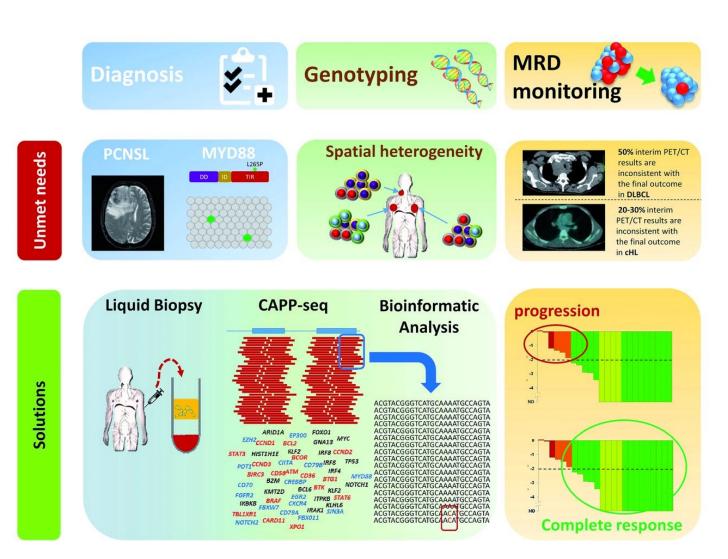


MUNI

MED

Zeng et al, Cancer Comm 2019

cfDNA


cfDNA

Applications

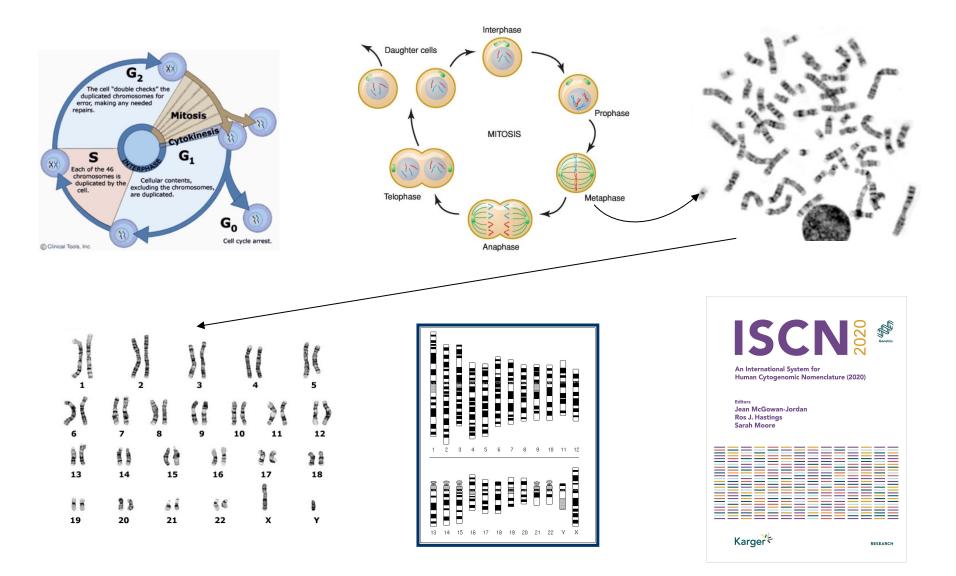
- Diagnosis, early detection
- Genotyping
- Disease risk stratification
- Treatment selection
- Treatment response assessment
- Disease monitoring

FDA approved assays for gene mutation detection

Solid tumors and hematological malignancies

cHL, classical Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; MRD, minimal residual disease; PCNSL, primary nervous system lymphoma.

4. Methods used and practical examples


a. Cytogenomics methods

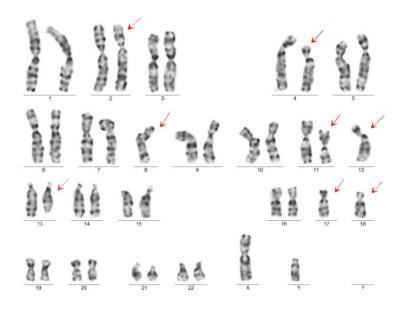
- Chromosome banding techniques
- Fluorescence *in situ* hybridization
- Genomic arrays
- **b.** Amplification-based methods
- PCR and real-time PCR
- Droplet digital PCR

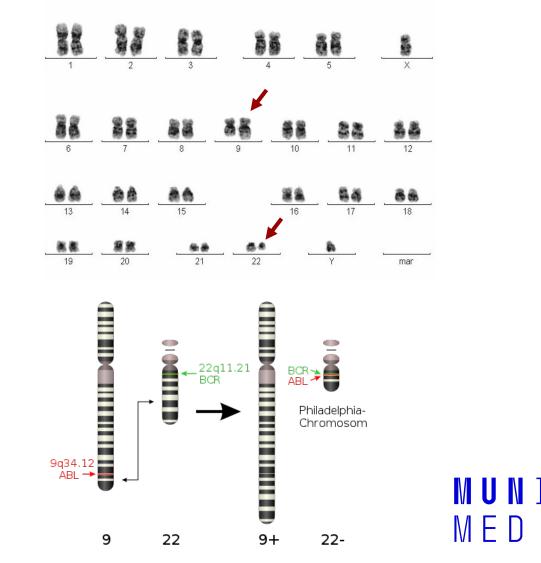
c. Sequencing techniques

- Sanger sequencing
- Next-generation sequencing
 - Amplicon sequencing
 - Panel sequencing
 - Whole exome sequencing
 - Whole genome sequencing

a. Classical cytogenetics – chromosome banding techniques

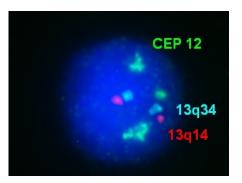
MUNI Med

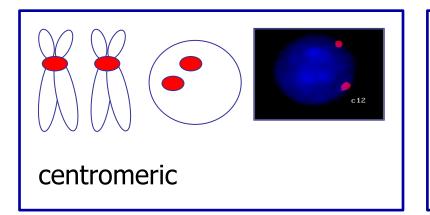

a. Classical cytogenetics – chromosome banding techniques

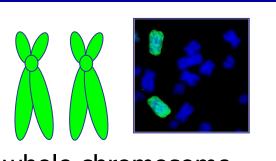

Resolution >10 Mbp

Applications

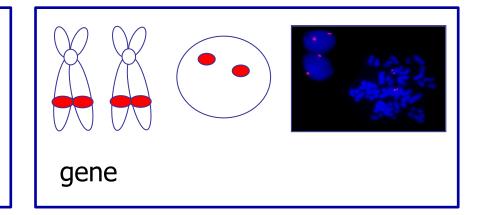
- Detection of typical abnormalities
- Complex karyotype assessment


 $(\geq 3 \text{ or } \geq 5 \text{ abnormalities})$

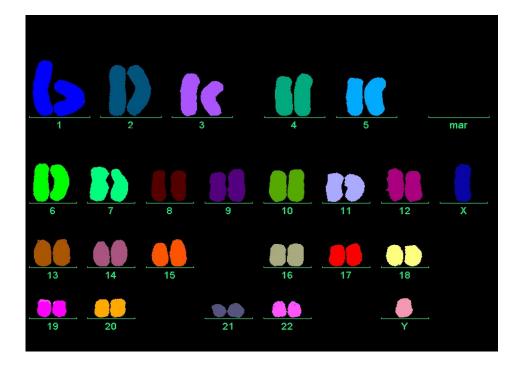



a. Molecular cytogenetics

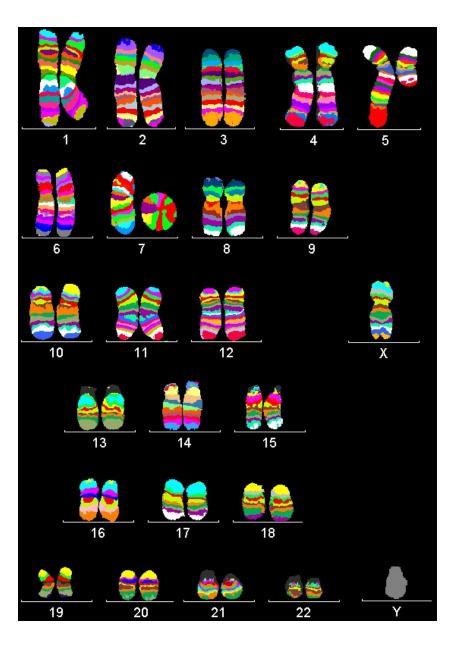
- Fluorescent in situ hybridization (FISH)
- Targets specific regions based on DNA sequence
- Detection of chromosomal abnormalities with diagnostic, prognostic and predictive value



Probe types:



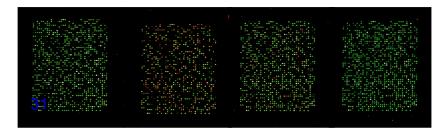
whole chromosome



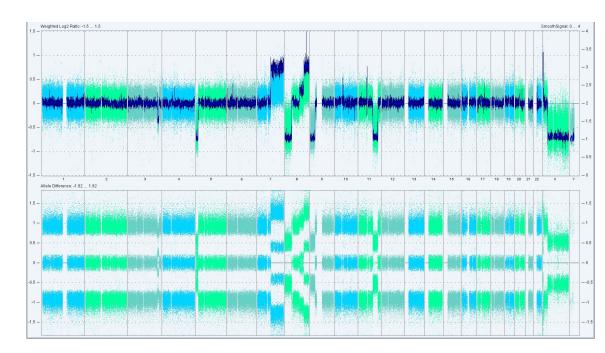
a. Molecular cytogenetics

– FISH methods for genome-wide analysis

mFISH



mBAND


a. Genomic arrays

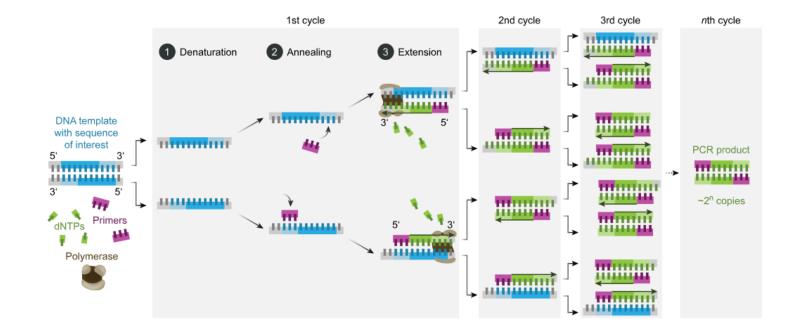
- Molecular cytogenetic technique for detection of genomic gains and losses
- Detection of copy-neutral loss of heterozygosity
- Not possible to detect balanced rearrangements
- Precise breakpoint localization, identification of affected genes
- High resolution, genome-wide
- No need for viable cells

arrayCGH & SNP array

a. Comparison of sensitivity of cytogenetic techniques

	Aneu- ploidy	CNA	Poly- ploidy	Clonal heterogeneity	Focal amplification	Balanced rearrangements	Unbalanced rearrangements	cn-LOH
Classical cytogenetics	+++	+	+++	+++	++	+++	+++	-
Interphase FISH	+++	++	+	+++	+++	+++	++	-
ArrayCGH	+++	++	-	+	+++	-	++	-
CGH+SNP array	+++	+++	+	+	+++	-	++	++
SNP array	+++	+++	++	++	+++	-	++	+++

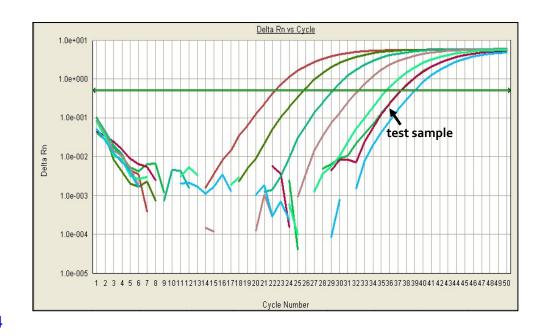
CNA – copy number alteration, gains or lossess of genetic material **cn-LOH** – copy neutral loss of heterozygozity


Schoumans J et al, 2016

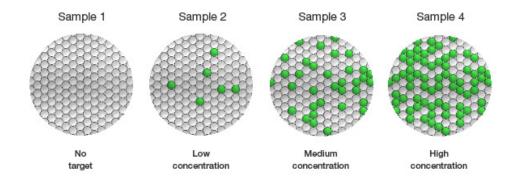
MUNI

MED

b. Polymerase Chain Reaction (PCR)


- Amplification of region of interest using specific primers
- Cycling reaction condition
- Used for marker quantification
- Input for further analyses (restriction, Sanger sequencing, fragment analysis, NGS, ...)

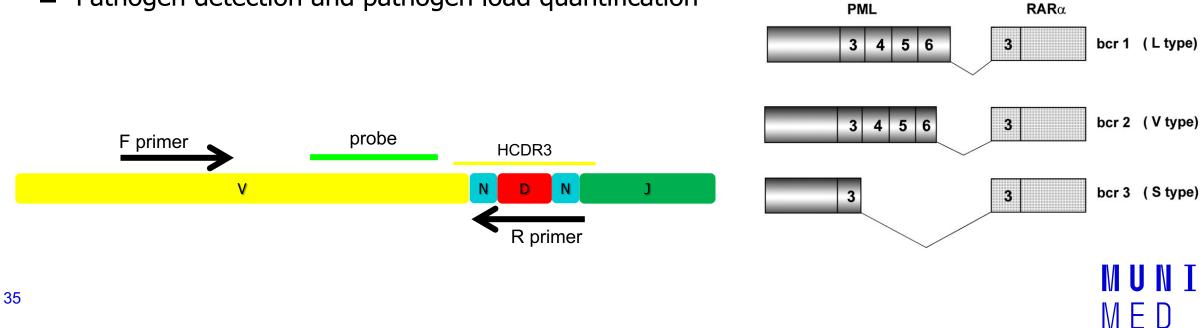
b. PCR-based quantification methods


Real-time PCR

- Quantitative method fluorescent detection of generated products
- Need for specific primers and probes
- Relative vs absolute quantification

Droplet digital PCR (ddPCR)

- Alternative method for marker absolute quantification
- Highly precise
- Need for specific instrumentation


www.bio-rad.com

MUNT

 $M \vdash D$

b. Real-time PCR applications

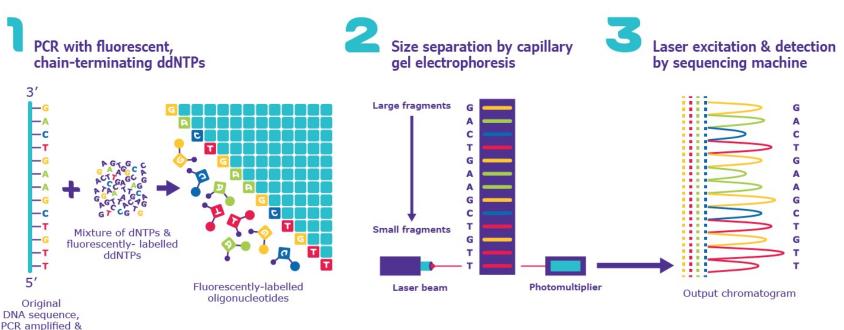
- Quantification of minimal residual disease after therapy detection of tumor specific markers (fusion genes, antigen receptor rearrangements etc.)
- Gene expression analysis
- Pathogen detection and pathogen load quantification

c. Sanger sequencing

Modification of PCR

single primer extension

denatured


Incorporation of dNTPs and ddNTPs

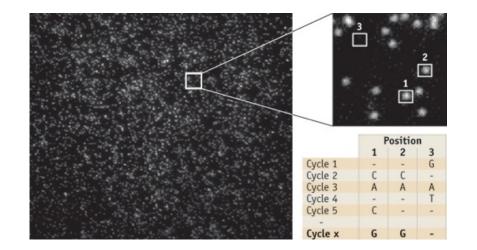
Applications

- Basic method for sequence variant detection (mutations, breakpoint localization)
- Fragment analysis modification of the method for detection of fragment length variation

MUNT

 $M \vdash D$

https://www.sigmaaldrich.com/technicaldocuments/articles/biology/sanger-sequencing.html


c. NGS - principles and targeted regions

Next-generation sequencing (NGS) ~ masively parallel sequencing (MPS)

- PCR amplification of DNA fragments
 - or direct sequencing of individual fragments (single molecule sequencing)
- The most common approach –

sequencing by synthesis (Illumina sequencers)

- Milions of fragments are amplified simultaneously (vs capillary sequencer max 96 reactions)
- Short reads (tens to hundreds basepairs)

c. NGS - principles and targeted regions

Illumina machines and their capacity

c. NGS – regions of interest

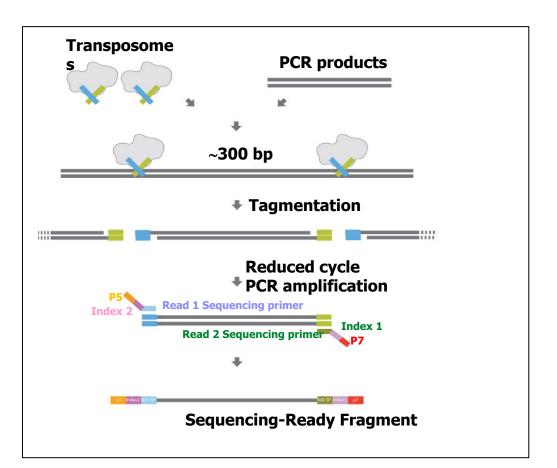
genome



3 200 000 000 bp 30 x read depth

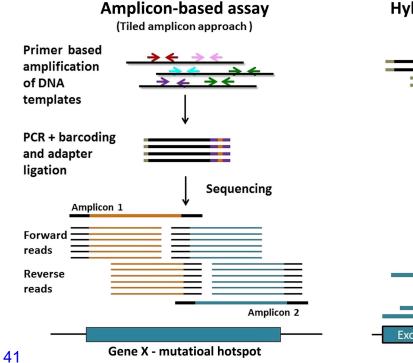
exome

20 000 genes 100 x read depth selected genes or loci

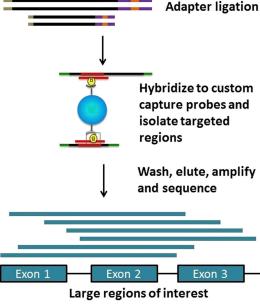


< 100 genes \geq 1000 x read depth

c. Amplicon sequencing

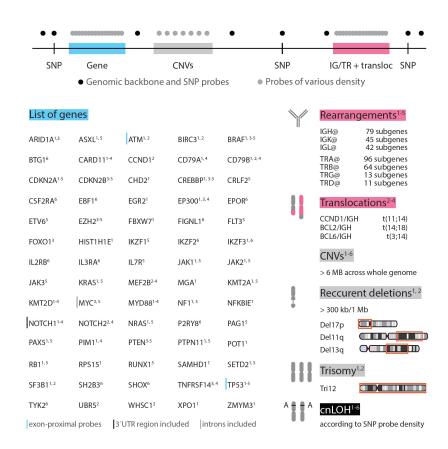

Application: TP53 mutation analysis

- NGS with high coverage (limit of detection 0.1 % of variant allele)
- treatment response prediction



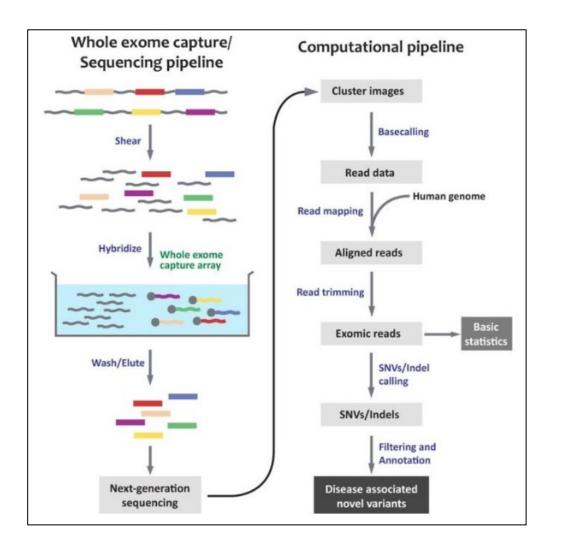
c. Panel sequencing

- Sets of selected regions of interest
- Target enrichment by amplification or hybridization



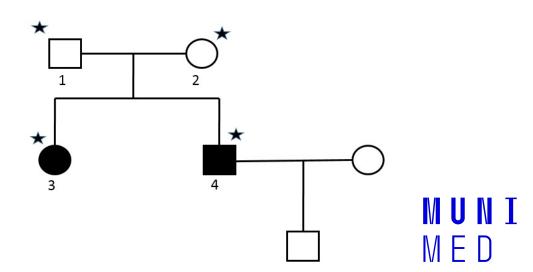
Hybridization capture-based assay

Application: LYNX panel

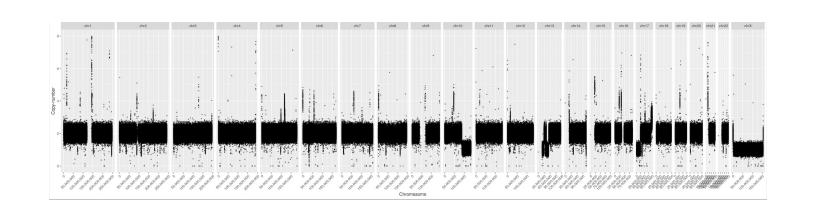

diagnostics of molecular markers
 in lymphoid malignancies

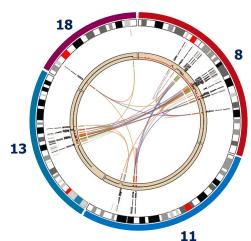
Jennings LJ et al. J Mol Diagn. 2017

c. Whole exome sequencing (WES)


- Mainly experimental approach for exploring unknown variants
- Used in
 - genetic counseling for identification of causative variants
 - discovery of novel genetic markers
 - searching for treatment targets

c. WES – case report of Shwachman-Diamond syndrome


- a multisystem autosomal recessive disorder
- clinical features: pancreatic exocrine
 insufficiency, hematologic dysfunction, and
 skeletal abnormalities
- haematological malignancies (e.g. myelodysplastic syndrome and acute myeloid leukemia) occur in one third of patients
- homozygous or compound heterozygous variations in *SBDS* gene



c. Whole genome sequencing (WGS)

- Mainly experimental method for exploring unknown variants
- Applications similar to WES, additional information about non-coding regions and chromosomal abnormalities
- Typicall sequencing coverage \sim 30–100x detection of clonal or germline mutations
- Shallow sequencing (~ 0.5-10x coverage) genome-wide detection of chromosomal abnormalities, low yield of mutation detection
- In clinical practise a potential benefit of combination of shallow and panel sequencing

The end...

Contact: <u>karla.plevova@mail.muni.cz</u> or <u>plevova.karla@fnbrno.cz</u>

Thank you for your attention!