Atopic dermatitis

- strongly pruritic chronic or chronically relapsing non-infectious dermatitis with variable morphology and clinical course, usually starting during early childhood
- often associated with positive personal or family history of allergic rhinitis, conjunctivitis and bronchial asthma.
- genetic predisposition
- In about 80% associated with IgE levels

Atopic dermatitis - epidemiology

Incidence in population: 0,5 - 5%

(higher incidence – scandinavian countries)

infants	20-30%
children under 2 y	15-20%
children under 14 y	15%
adults	2-10%

Atopic dermatitis usually starts early in life

Infancy¹

Onset usually between 3 and 6 months, 60% in the first year of life

Early onset form

Childhood^{2,3}

85% of childhood onset occurs before 5 years of age

70% of childhood AD does not persist by 8 years of age

M

Adolescence³⁻⁵

Risk factors for persistence: later onset, gender (female), severity, atopic comorbidities, family history of atopy

Sometimes AD occurs in adulthood

Late onset form

Atopic dermatitis

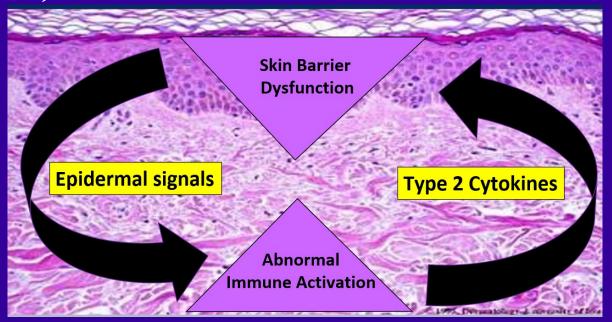
two forms, same clinical picture

extrinsic 80%

elevated IgE

sensitization to airborne and/or food allergens (sIgE)

- association with allergic rhinoconjunctivitis and/or allergic asthma


intrinsic 20%

normal levels of IgE skin barrier disturbace

Etiopathogenesis of AD:

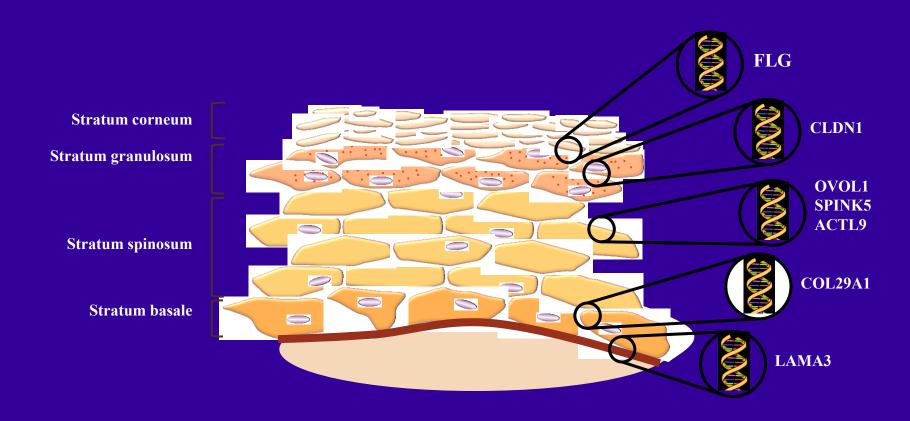
genetic predisposition

- 1) skin barrier dysfunction
- 2) abnormal immune activation

environmental triggers:

- 1) irritant substances, allergens
- 2) stress
- 3) many others

I. skin barrier dysfunction

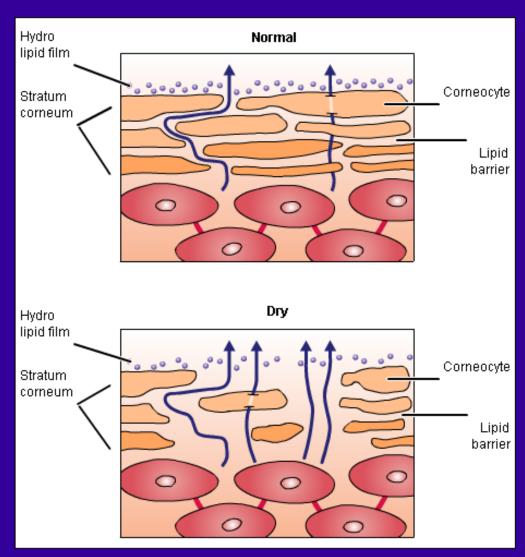

Genetically conditioned:

Filaggrin: null mutation of FLG R501X and 2282del4 alleles lead to increased permeability of skin barrier and they are

associated with AD (in about 50% cases), as well as with ichtyosis vulgaris

Claudin - 1, corneodesmosin, loricrin, involucrin Increased activity of serin proteases

Mutation of key genes for structural epidermal proteins


skin barrier disturbance

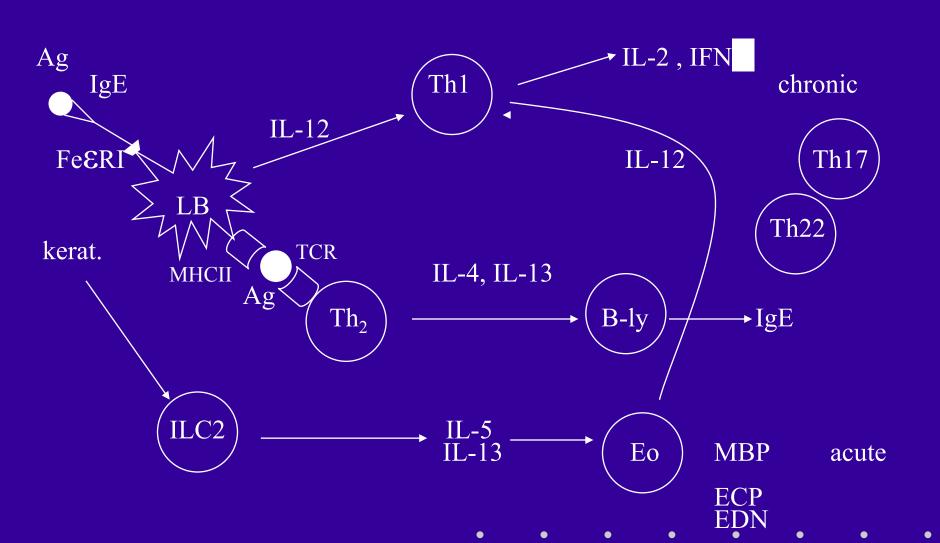
defective synthesis of ceramides

(in lamellar bodies in granular layer of epidermis)

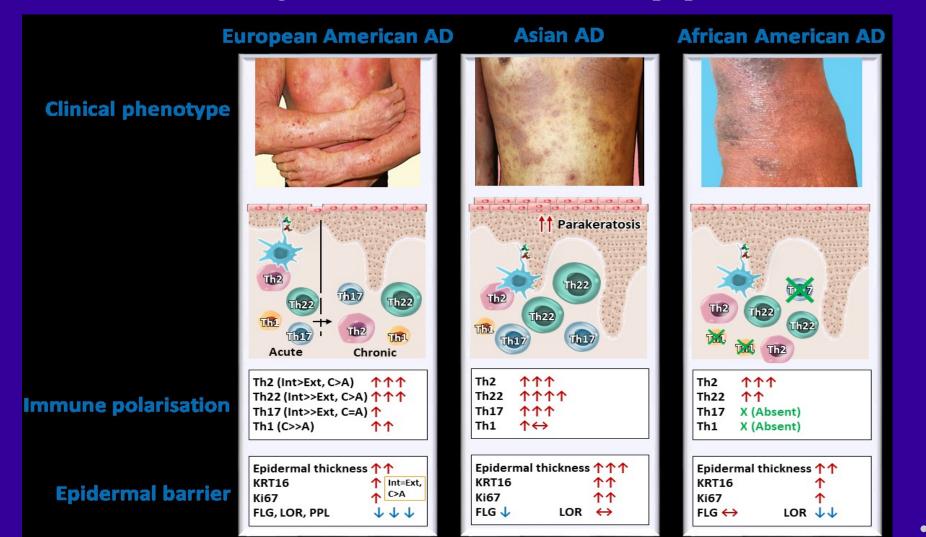
decreased ability to bind water in the skin

AD and skin barrier

Defective structure and function of skin barrier


nsufficient hydration (TEWL 1)

dryness - xerosis


increased irritability of the skin possibility of contact sensitization

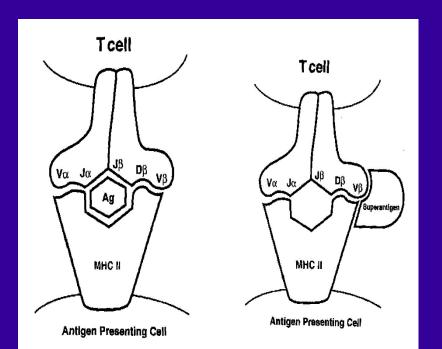
II. Immune dysregulation

Phenotypes of AD

according to the activiation of Th cell populations

III. Staphyloccus aureus and AD

• colonization of AD lesions in 74 - 96% atopic patients, 30 - 56% even on "healthy" skin


Mechanisms:

- Defective skin barrier with "naked" laminin and fibronectin enables SA binding the skin
- Decreased defensive mechanisms: defective signallization via TLR 2

defensine a kathelicidine roduction of IFN

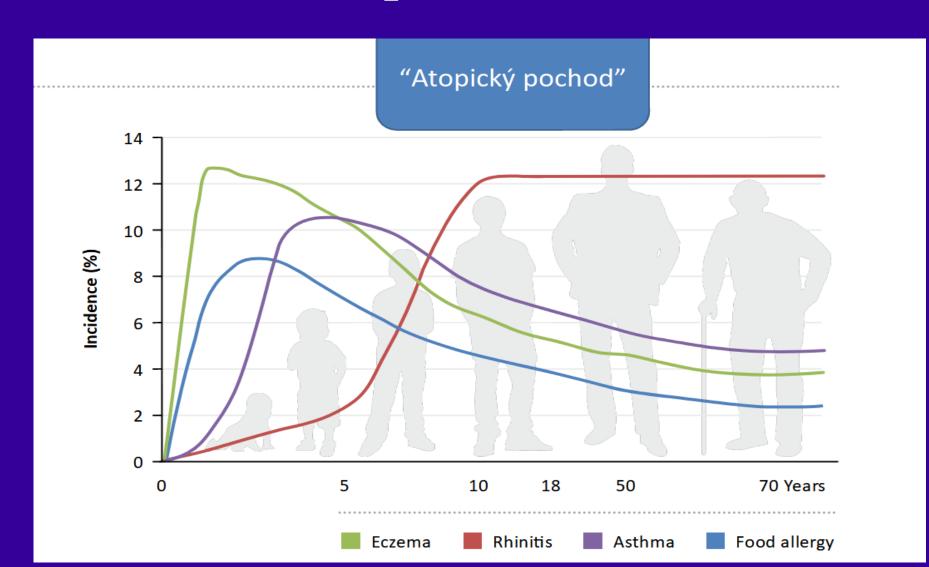
Staphyloccus aureus and AD

- 1) Toxic effect: staphylococcal exfoliatine
- 2) Stimulation of sIgE production (sIgE > stimulation of basophils > histamine)
- 3) superantigens: SEA- SEE a TSST-1

- without previous processing by LC
- able to bridge V hain of TC Receptor,
- not necessary exact conformity of all 5 subunits of the receptor
 - 1000x stimulation
- non-specific but huge stimulation of Tly (1 SA even 20% of circulating lymph.)

Triggering and mainaining factors of AD

Allergy (house dust mites, pollen, pets, molds, foods — milk, eggs, wheat, soya, nutts, fish)


Microbes – Staphylococcus aureus

Irritant substances (water, detergents etc.)

- climatic (temperature, wind, low humidity ..)

Psychological stress

Atopic march

Clinical picture of AD

AD in infants

Exudative form – acute eczema (oozing, crusting)

ocation

- periorally
- periorbitally

ossibility of spreading - erythroderma

Atopic dermatitis – Infant AD

Infant AD

Clinical picture of AD

AD in children and adolescents

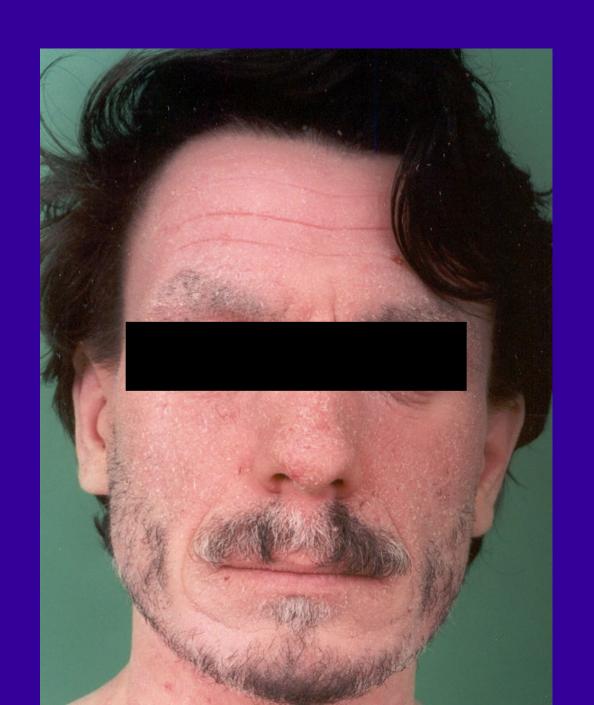
Decrease of exudation - lichenification

nost often – flexural eczema

- facial eczema

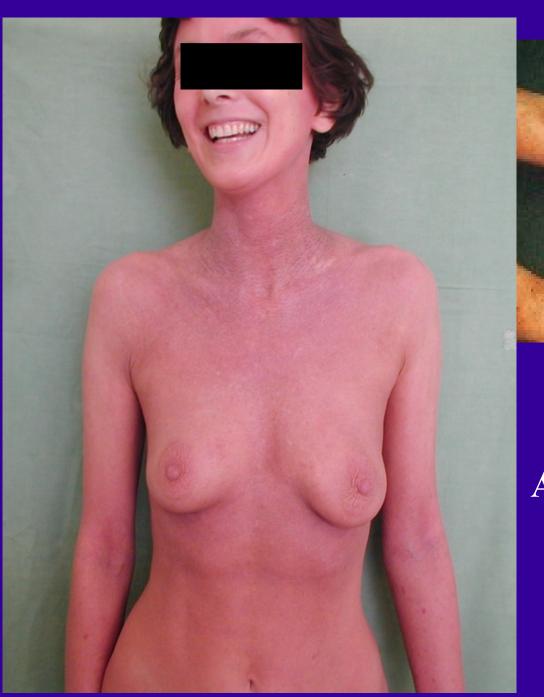
ess often - erythroderma

Atopic dermatitis — flexural eczema


Clinical picture of AD

AD in adults

(about 15% of cases appear after puberty)


- · head& neck
- flexural
- prurigininous
- neurodermitic
- erythrodermic

chronic acute course flares possible

Adult AD – erythrodermic form

AD in adults

atypical forms - nummular, dyshidrotic, hyperkeratotic forms

minimal forms - cheilitis sicca, stomatitis angularis, pulpitis sicca, intertrigo retroauricularis, aj.

Adult AD - dyshidrotic form

Eczema atopicum hyperkeratoticum

AD retroauricular dermatitis

Diagnosis according to Hanifin and Rajka (1980)

Atopic dermatitis diagnosis = ≥3 basic features + ≥3 minor features

Requires the presence of at least 3 basic features:

- Pruritus
- Typical morphology and distribution
 - Flexural lichenification or linearity in adults
 - Facial and extensor involvement in children
- Chronic or chronically relapsing course
- Personal or family history of atopy (asthma, allergic rhinitis, atopic dermatitis)

Requires the presence of at least 3 minor features:

- Xerosis
- Ichthyosis/palmar hyperlinearity/ keratosis pilaris
- Immediate (type 1) skin test reactivity
- Elevated serum IgE
- Early age of onset
- Tendency towards cutaneous infections (especially Staphylococcus aureus or herpes simplex)
- Nonspecific hand or foot dermatitis
- Nipple eczema
- Cheilitis
- Recurrent conjunctivitis
- Dennie–Morgan infraorbital fold

- Keratoconus
- Anterior subcapsular cataracts
- Orbital darkening
- Facial pallor/erythema
- Pityriasis alba
- Anterior neck folds
- Itch when sweating
- Intolerance to wool and lipid solvents
- Perifollicular accentuation
- Food intolerance
- Course from environmental/emotional factors
- White dermographism/delayed blanching

Differential diagnoses to consider in adult patients with suspected severe AD

Condition	Clinical features
Contact dermatitis	Atypical or localized distribution
Severe, suberythrodermic psoriasis	Less pruritus and lack of eczematous change such as oozing/crusting
Severe seborrheic dermatitis	Lack of pruritus with greasy scale in scalp
Scabies infestation	Inguinal, axillary, and genital papules
Widespread tinea corporis	Annular papulosquamous lesions without eczematous change
Cutaneous T-cell lymphoma	Lack of classic eczematous skin changes such as oozing and crusting

Complications of AD

bacterial - impetiginization (St. aureus)
viral - herpetication-HSV, warts, mollusca
fungal (Tr. rubrum, Pityrosporum ovale)
contact sensitization (nickel, fragrances, KS...)

association:

- alopecia areata
- ichtyosis vulgaris
- vitiligo

Eczema atopicum herpeticatum

Treatment of AD

mild form of AD (30-40% of patients): education of pacient (or parents) identification of triggering factor and their elimination emmolients and baths topical corticosteroids pimecrolimus antihistamines during flares

Benefits vs. risks of topical corticosteroids in atopic dermatitis

BENEFIT

Large body of evidence on efficacy¹:

- Decreases acute and chronic signs of AD
- Decrease in pruritus

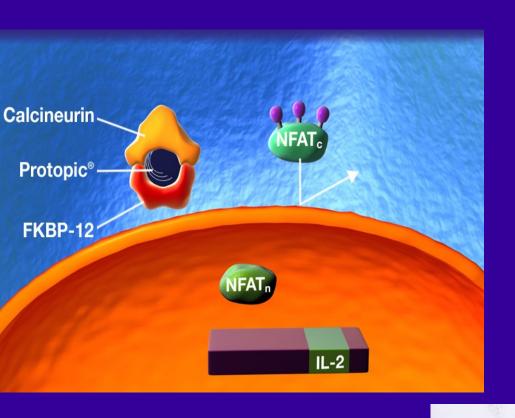
RISK

Adverse events:

- Skin atrophy
- Telangiectasias (spider veins)
- Ecchymosis (bruising)
- Stretch marks
- Hypertrichosis (excessive hair growth)
- Rosacea-like dermatitis
- Systemic effects (adrenal suppression)

Treatment of AD

mid-severe form of AD (40-50% of patients):
 treatment similar as in mild form
 + tacrolimus


or

hospitalization – lab. and clinical tests (triggers) traditional topical treatment /tar/

or

phototherapy (UVB 311nm, UVA-1)

Tacrolimus (PROTOPIC oinment)

- Topical Immunomodulator
- Blocks calcineurin
- antiinflammatory
- antipruritic
- Long term treatment
- No skin atrophy

•

Benefits vs. risks of topical calcineurin inhibitors in atopic dermatitis

RENEEL

Demonstrated efficacy in short-term trials and up to 12 months:

- •Decreases in physician's global evaluation scores
- Decrease in percentage BSA involved
- Decrease in patient-reported signs and symptoms of AD
- No risk of skin atrophy

RISK

Adverse events:

- Transient burning sensation at site of application
- Their onset of action is slower than in TCS
- •Generalized cases of viral infections (eczema herpeticum and molluscatum)
- *Black box warning of rare case of malignancy (skin cancer and lymphoma not proven later)

Treatment of AD

• severe form of AD (5-10% patients)

phototherapy (PUVA, UVA-1)

systemic corticosteroids (short courses)

imunosupressives: cyclosporine A, MMF, AZT, MTX

new therapies: i.v. Ig

JAK, PDE ihibitors

biologicals (dupilumab....)

European treatment recommendations for adults with atopic dermatitis

Severe

SCORAD >50 or persistent AD

Hospitalization, PUVA,^a systemic immunosuppression: cyclosporine A,^b short course of oral corticosteroids,^b dupilumab,^{a,b} MTX,^c AZA,^c MMF^c; alitretinoin^{a,c}

Moderate

SCORAD 25–50 or recurrent AD

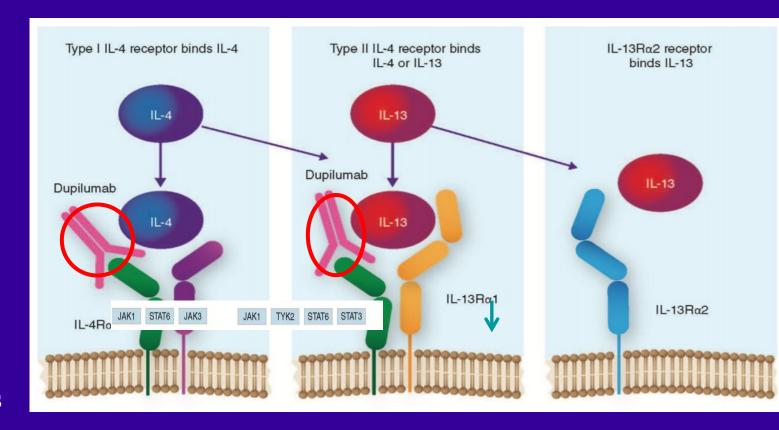
Proactive therapy with topical tacrolimus^b or TCS (class II or class III^c), wet wrap therapy, UV therapy (UVB 311 nm,^d medium-dose UVA1), psychosomatic counselling, climate therapy

Mild

SCORAD <25 or transient AD

Reactive therapy with TCS (class II^b) or TCI,^{b,e} antiseptics including silver^{b,e} and silver-coated textiles^{a,e}

BaselineBasic therapy

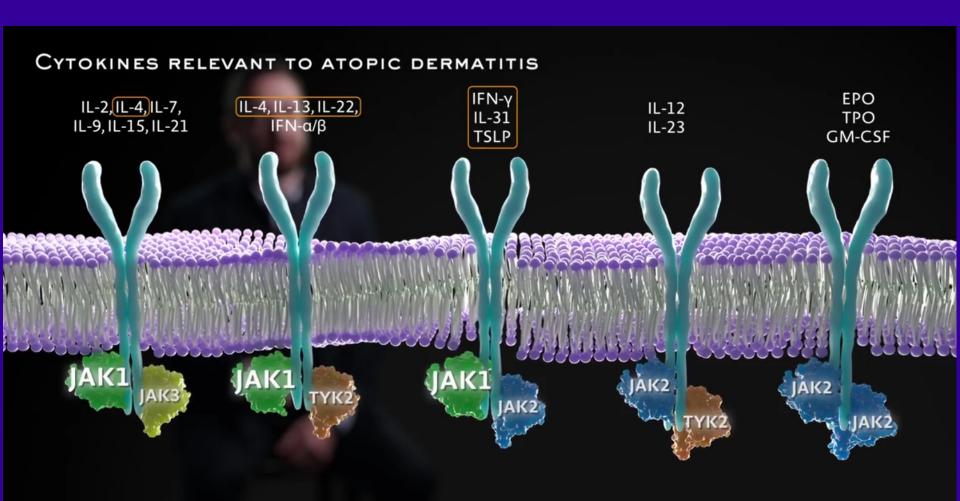

Education, emollients, bath oils, avoidance of clinically relevant allergens (encasings, if diagnosed by allergy tests)

New treatments of AD

		PHASE 1		PHASE 2		PHASE 3	Annroved
	Interleukin Inhibitors	ARGX-1121-3 IL-22R1	Bermekimab6,7 IL-1α	Secukinumab8 IL-17A	Risankizumab9,10	Tralokinumab11 IL-13	Dupilumab12 IL-4Rα
		PF-06817024 4,5 IL-33-related	Benralizumab13,1 IL-5Rα	MOR10615 IL-17C	REGN350016,17 IL-33	Nemolizumab18 IL-31RA	Dupilumab 300 mg q2v
			Lebrikizumab19 IL-13	Fezakinumab20 IL-22	Etokimab21,22 IL-33		is licensed for treating moderate-to
				Spesolimab23,24 IL-36	LY337588025,26 IL-33		severe AD in adult patients12
						Upadacitinib28 JAK1	
	JAK/SYK Inhibitors			ASN00227 SYK/JAK		Abrocitinib 29 JAK1	
						Baricitinib30 JAK1/JAK2	
	Other Inhibitors	EDP106631					
		Undisclosed EDP181531 Undisclosed	DS107 32,33 CD40	Tezepelumab34,	35 KY 1005 36 OX40L	Serlopitant37,38 NK-1R	
		LOU 06439-41 BTK	Adriforant41 H4R	GBR 83042 OX40	KHK408343,44 OX40	Tradipitant45 NK-1R	

Dupilumab - mechanism of action

human IgG4 class monoclonal antibody that specifically binds to the α subunit of the IL-4 and 13 receptors, thereby blocking the activation of protein kinases JAK 1 or 3 or TYK2



Effect of dupilumab treatment

JAK pathway in AD

Oral JAK Inhibitor Development in Atopic Dermatitis

DRUG	TARGET	PHASE 3 STUDIES COMPLETED	PHASE 3 STUDIES ONGOING
Baricitinib (Lilly)	JAK 1/2	 Monotherapy Ex-US (BREEZE AD1) Monotherapy Ex-US (BREEZE AD2) Monotherapy- US (BREEZE AD5) Combo with TCS (BREEZE AD7) 	Pediatric studies Cyclosporine failures Long-term extension
Abrocitinib (Pfizer)	JAK 1	 Monotherapy Global (MONO-1) Monotherapy Global (MONO-2) 	Abro vs Dupi (COMPARE) MOA study Combo with TCS Long-term extension
Upadacitinib (Abbvie)	JAK 1	None, but +P2 monotherapy	Monotherapy X 2 Combo with TCS Lon-term extension Upa vs. Dupi
Gusacitinib (Asana)	Pan JAK + SYK	None, but +P2b	None

JAK Inhibitors: Adverse Events of Interest

- Major adverse cardiac events (MACE)^{13,5}
- Venous thromboembolism (VTE)¹⁴
- Malignancy¹⁴
- Acne/folliculitis⁴
- Laboratory abnormalities^{5,15,16}
 - Anemia, neutropenia, lymphopenia
 - Elevated creatine phosphokinase (CPK)
 - Increased serum lipid levels

These adverse events appear to be a class effect of JAK inhibitors^{4,5,13-16}; however, long-term safety data on these are limited,¹⁷ and current studies in AD show low incidence of serious AEs¹⁸⁻²⁰