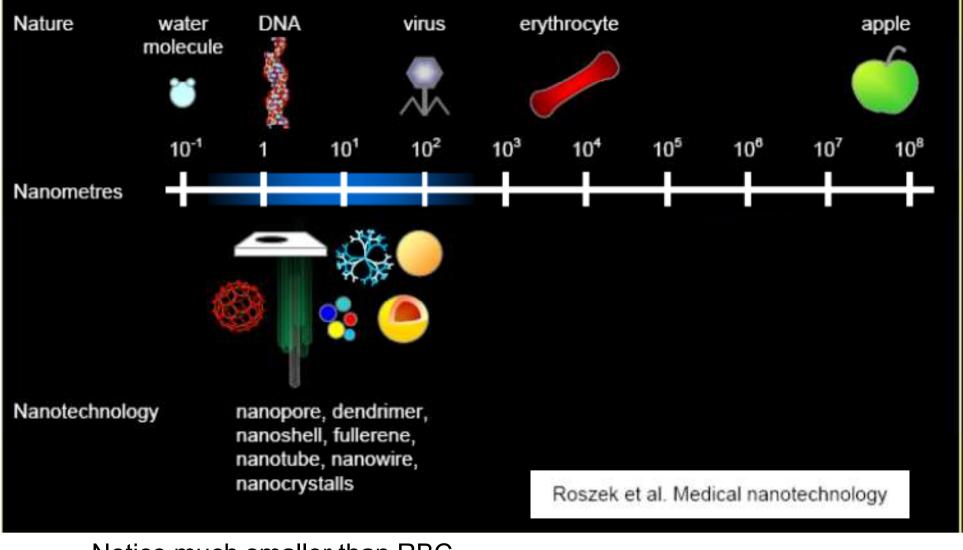

Lectures on Medical

Biophysics

Department of Biophysics, Medical Faculty, Masaryk University in Brno

Nanomedical Devices

(a lecture for future)



Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU

Basics

- Nanomedical devices definition: biomedical devices at the scale 1 100 nm
- Very multidisciplinary issues
- Promise of nanomedical devices (why we develope it?):
 - New methods for prevention, diagnosis, therapy
 - Daily screening of health (very fast devices for monitoring of patient Point Of Care POC testing)
 - Therapy targeted to the individual patient
- 1959 R. Feynman "There's plenty of room at the bottom" – first reference obout "nano" phenomena
- dynamic evolution

How much is a nanometer?

Notice much smaller than RBC

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nano ... in the world, web, science and articles

Number of references to (articles, books) in ScienceDirect database published in 2011 x 2013 x 2014 x 2015 (part) with the phrase:

Nano - 151 000 x 244 000 x 294 995 x 251 000 links Nano material - 132 000 x 184 000 x 264 558 x 280 000links Brain - 1.148 000 x 1.378 000 x 1.485 125 x 1.380 000 links

Google to date 2010, 2011, 2012, 2013, 2014, 2015 (part):

Nanomaterials - 2 580 000, 3 850 000, 5 230 000, 4 720 000, 5 490 000, 4 990 000 Nanoparticles - 5 670 000, 8 440 000, 12 500 000, 11 600 000, 13 500 000, 12 800 000 Brain - 264 000 000, 121 000 000, 649 000 000, 605 000 000, 557 000 000, 509 000

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

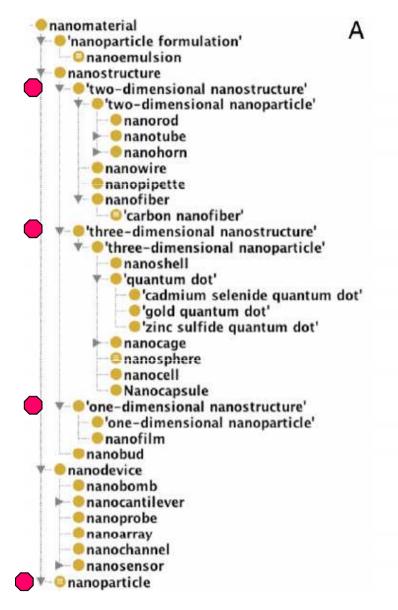
Definition of nanotechnology

Nanotechnology is the applied science dealing with the production and using of materials and particles, whose origin is to be targeted at the manipulation of individual atoms or relatively small groups of atoms.

Nanotechnology (sometimes shortened to "**nanotech**") is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanomethers. Quantum mechanical effects are important at this quantum-realm scale.

The criteria of nanotechnology

- Focus on the objects smaller than 100 nm (in one diameter)
- Ability to handle and active use these objects and their functions
- The different behavior of nano-technology compared to macrotechnology (quantum phenomena, atomic forces, chemical bonds, ...)


Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanomedicine definition

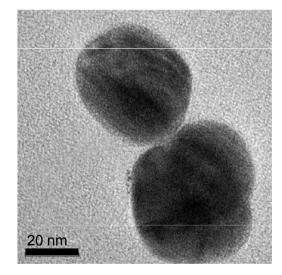
- is currently inconsistent
- According to the **US National Initiative:** Nanomedicine is the application of nanotechnology in medicine
- Definitions by Europe Science Foundation is more explicit. It says that "the field of scope of nanomedicine are science and technology, diagnostic, treatment and prevention of diseases and injuries leading to pain relief, preserving and improving human health, using tools and molecular level knowledge of the human body."

Nanomedicine can be generally defined as a comprehensive monitoring, management, repair, protection and improvement of all human biological systems, operating at the molecular level - and this purposefully created by using nanodevices and nanostructures, ultimately leading to improved health status of individuals.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Categorization of nanomaterials which is used in medicine and "bio-sciences," by D.G. Thomas et al. / Journal of Biomedical Informatics 44 (2011) 59–74

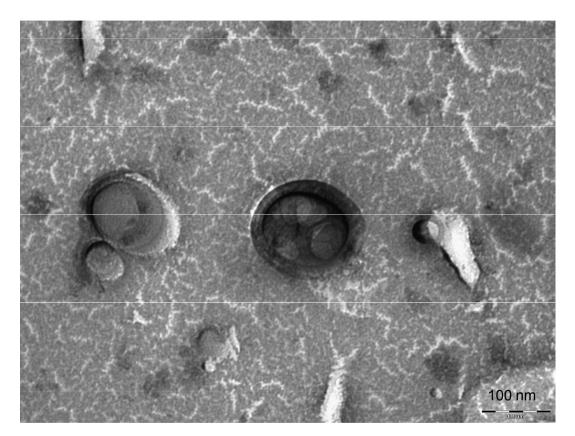
> Inanoparticle 'methotrexate-loaded nanoparticle' lipid-coated nanoparticle' O'magnetic nanoparticle' Silica nanoparticle Opolymeric nanoparticle 'fluorescent nanoparticle' 'hydrogel nanoparticle' 'metal nanoparticle' doxorubicin-loaded nanoparticle' 'titanium oxide nanoparticle' 'inorganic nanoparticle' Superparamagnetic nanoparticle' 'metal oxide nanoparticle' 'zinc oxide nanoparticle' 'copper oxide nanoparticle' 'spherical nanoparticle' 'lipid nanoparticle' 'gelatin nanoparticle' 'PLGA nanoparticle' hydroxyapatite nanoparticle' gadolinium-loaded nanoparticle' Iong circulating nanoparticle polymer-coated nanoparticle' Chitosan nanoparticle 'drug-loaded nanoparticle'


Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanoemulsions

- Nanoemulsions are known as dispersion systems consisting of a liquid dispersion medium and liquid dispersive fraction (inmixible) with the size of dispersion droplets below 100 nm.
- nanodroplets (usually fats, oils), forming a nanoemulsion system can serve as carriers of drugs or other substances (e.g. vitamins). Advantages - targeted delivery, increased absorption of the drug
- Preparation of nanoemulsions is done particularly by an ultrasonic field (e.g. by ultrasonic desintegrator) or "by extrusion" dispersion through the thin piezoelectric layers with pores

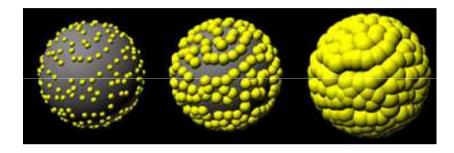
Usability:


Many contemporary publications present the possibility of using nanoemulsions as carriers of anticancer drugs with targeted delivery (subject to the existence of an increased uptake of lipid droplets in tumor tissue).

S. Swarnalatha, Nanoemulsion drug delivery by ketene based polyester synthesized using electron rich carbon/silica composite surface, Colloids and Surfaces B: Biointerfaces 65 (2008) 292–299

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

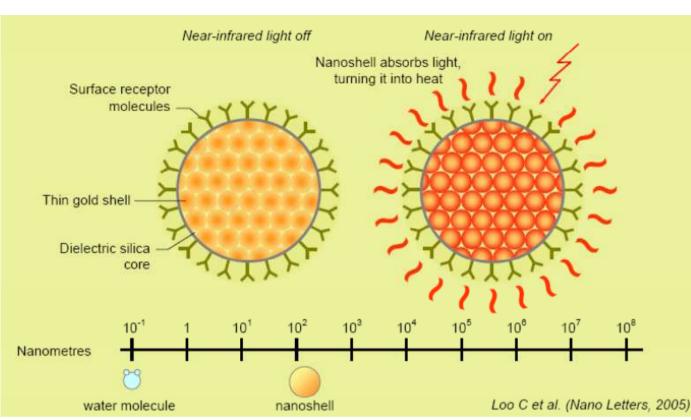
Nanoemulsions


N. Vaškovicová, 2010, Department of Biophysics Lf MU

Nanoemulsion consisting of: dispersion medium - distilled water, dispersed fraction - lipids and cholesterol + immunosuppressive agents, emulsifier - alcohol.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU

Nanoshell


- A nanoshell is composed of a spherical hollow shell of insulator surrounded by a conducting shell of a few nanometer in thickness (gold).
- By varying the thickness of the conducting shell one can precisely tune the electric and optical properties of nanoshells e.g., make them absorb a certain wavelength of light

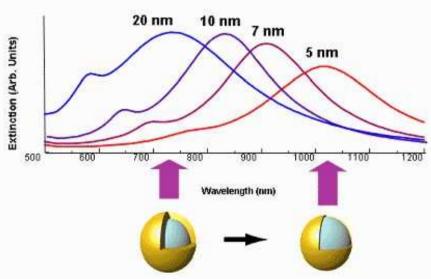
Computer simulation depicts growth of gold nanoshell: a silica (glass) spherical core covered with a layer of gold. Gold is a biocompatible compound, making it a useful material for medical applications.

Courtesy N. Halas

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta


Nanoshells: Medical Applications -Photothermal Tumor Ablation

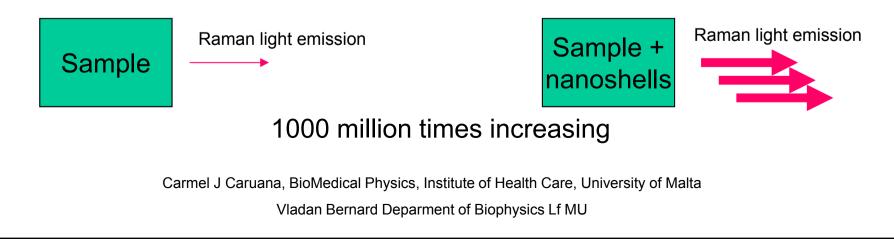
The nanoshells are coated with receptors that bind to tumor cells and are simply injected into the bloodstream. Once delivered to a tumor, near infrared light is shone through the skin (near IR is not attenuated much by tissue). The nanoshells absorb the IR and convert it to heat with incredible efficiency. This raises the temperature of the local environment of the tumor cells by 10-20 degrees and the cells die. Advantage: zero toxic effects (unlike chemotherapy) no ionizing radiation (like radiotherapy).


Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanoshell...

Studies with photo thermal ablation of the tumor were performed by a team of researchers Jennifer West, Houston. The core of the used nanoshell was large 110 nm and gold coating of thickness 10 nm. By application of nanoshells on the suspension of tumor cells and subsequent laser irradiation of IR light, temperature increased to 55 ° C and subsequently the viability of the cell suspension decreasied. Attempts were also done with modified nanoshells, whose surface was modified by antibodies that allow specific binding of nanoshell only to cancer cells anywhere in the body.

Direction of external laser


Two tumors in the mouse body "saturated" by specially made "nanoshells" under the influence of laser light are heated (blue denotes places with higher temperature) and tumor cells die.

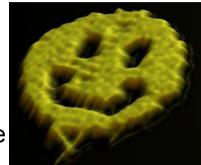
Thickness of the gold coating determines sensitivity of nanoshells to different wavelengths. The picture shows the results of theoretical calculations.

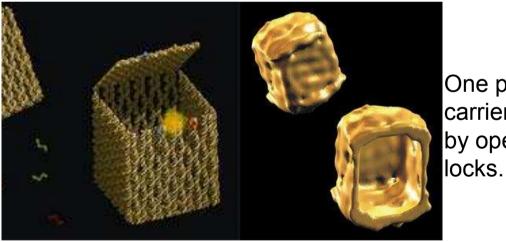
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanoshells: Medical Applications - Single Molecule Raman Spectroscopy

- Scientists have long known that they could boost the Raman light emissions from a sample by the addition of colloidal particles to a sample. Nanoshells are colloids and can increase the Raman signal by 1000 million times. In this way it is possible to characterize single molecules (such as environmental contaminants, chemical or biological toxins and even viruses).
- Advantages: very high sensitivity, high levels of multiplexing (simultaneous measurement of many biomolecules), ability to perform detection in blood and other biological matrices.

Nanoshells: Medical Applications -Delivering Insulin

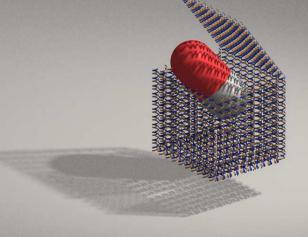

 Nanoshells loaded with insulin would be injected under the skin, where they would stay for months. To release the drug, patients would use a pen-sized IR laser over the skin at the injection site.



Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU

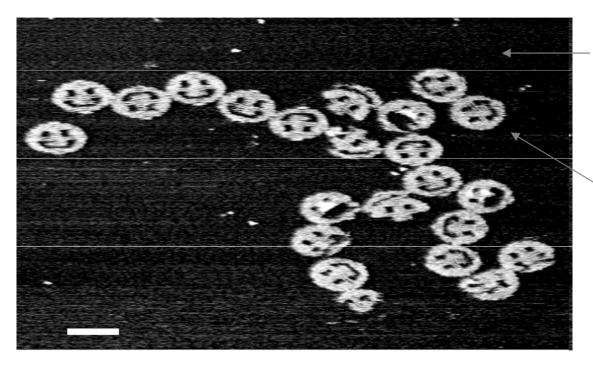
DNA nanocage, nanoorigam

- The basis of these structures are two-dimensional "surfaces" formed by chain molecules of DNA. Another layer of complementary DNA strands can be attached to this matrix thus forming a relief structure.
- The horizontal structure (appropriate combination of complementary DNA strands) can be "put together" as a cube with an internal cavity (a cage).



3D model of the structure and its real cryoelectron microscopic image (author of image: Andersen EC)

Relief created by a horizontal structure of the DNA layer height of 2-4 nm (Nick Papadakis, P.W.K.R)


One possibility is to use these structures as carriers of drugs and their targeted delivery by opening of nanocage through enzymatic

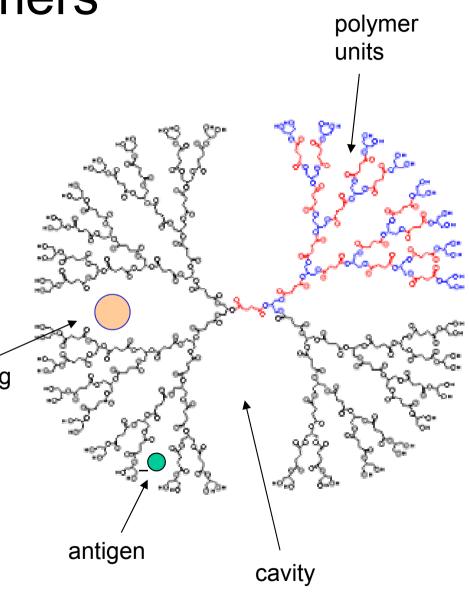
Carmel J Caruana, BioMedical Physics, Institute of Health C

DNA nanocage, nanoorigam

... when a scientist has a free time ...

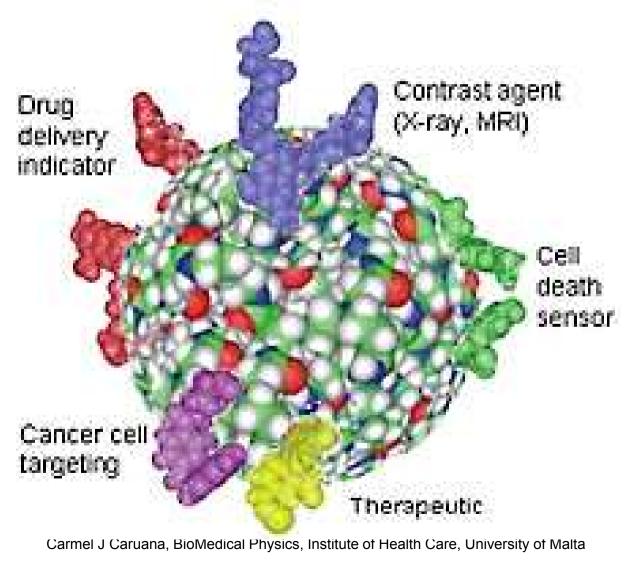
flat structure consisting of chain molecules of DNA

complementary chain of molecule DNA, formed to "smile"

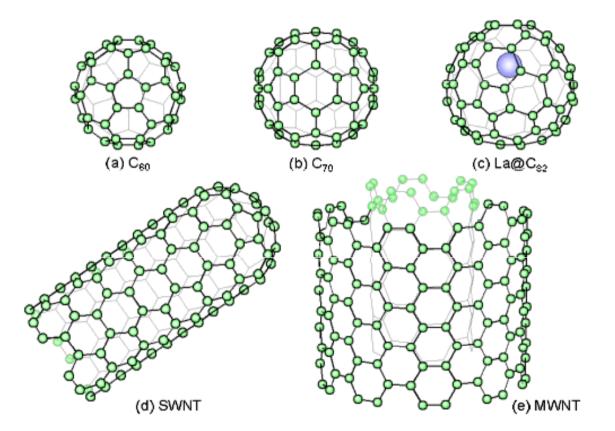

Paul W. K. Rothemund

Map of Americas formed by DNA flat structure (secundary coloured)

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU


Dendrimers

- Dendrimers are globularly shaped polymers composed of branched repeating units leading off a central core (like a tree, snowflake).
- Biodendrimers are dendrimers made of repeating units known to be biocompatible or biodegradable in vivo to natural metabolites.
- The cavities present in dendrimers can be used as binding sites for smaller molecules - effectively the dendrite becomes a nanosized 'container' for various molecules.

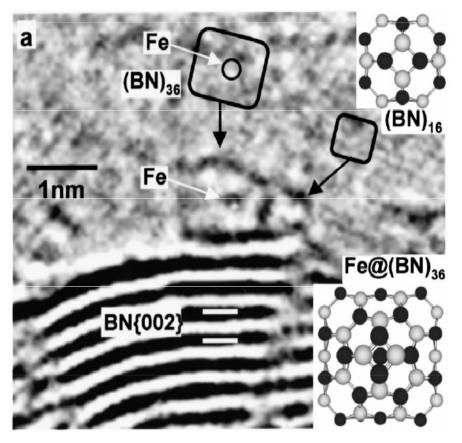

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Dendrimers: Medical Applications – Multifunctional nanosized containers ('Platforms')

Fullerenes (and nanotubes)

- Carbon molecules in the shape of a hollow sphere, ellipsoid, tube or ring.
- Cylindrical fullerenes are often called nanotubes.
- The smallest fullerene is C₆₀ (i.e., 60 C atoms)
- Other atoms can be trapped inside fullerenes e.g., La@C₈₂ (lanthanum)
- SWNT single walled nanotubes
- MWNT multiwall carbon nanotube

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta


Fullerenes and nanotubes

- The first fullerene molecule was discovered and prepared in 1985 by Richard Smalley et al.
- Nanotubes are cylindrical fullerenes. These tubes of carbon are usually only a few nanometres wide, but they can range from less than a micrometer to several millimeters in length. They often have closed ends, but can be open-ended as well. There are also cases in which the tube reduces in diameter before closing off. Their unique molecular structure results in extraordinary properties, including high tensile strength, high electrical conductivity, high ductility, high heat conductivity, and relative chemical inactivity
- Fullerenes can be made to be absorbed by HeLa cells. The C60 derivatives can be delivered to the cells by using the functional groups L-phenylalanine, folic acid, and L-arginine among others. The purpose for functionalizing the fullerenes is to increase the solubility of the molecule by the cancer cells. Cancer cells take up these molecules at an increased rate because of an upregulation of transporters in the cancer cell, in this case amino acid transporters will bring in the L-arginine and L-phenylalanine functional groups of the fullerenes. Once absorbed by the cells, the C60 derivatives would react to light radiation by turning molecular oxygen into reactive oxygen which triggers apoptosis This research shows that a reactive substance can target cancer cells and then be triggered by light radiation, minimizing damage to surrounding tissues while undergoing treatment.

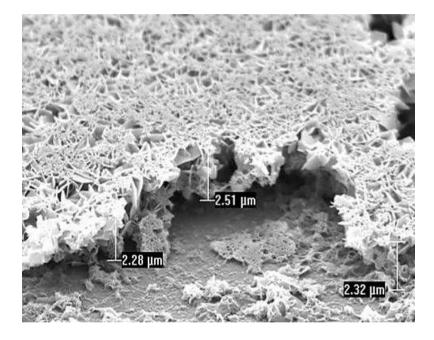
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Fullerenes (and nanotubes)

Creating three-dimensional nanounits is not just the property of carbon, this ability have other atoms too, e.g. molecules such as boron nitride (BN). This material also produces similar formations such as carbon tubes, rings or fullerenes, including the possible closure of an atom of another element into the created "cage" (in this case the atom of Fe).

T. Oku et al. / International Journal of Inorganic Materials 3 (2001) 597 –612

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta


Nanotubes – aplication (future???)

Bone tissue

Utilization of nanotubes in medicine is experimentally demonstrated in experiments with bone tissue substitutes. In this case the nanotubes (with modified surface compounds of phosphorus and sulfur) are a substitute of collagen, which binds to crystalline hydroxyapatite and so creates a very strong and compact bone tissue.

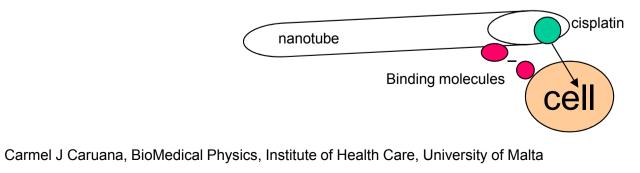
The benefit of this technology is far **greater strength** of the structures.

A possible disadvantage is the potential toxicity of fullerens and derived compounds (R E. Oberdörster, Southern Methodist University, Dallas, New Scientist, March 2004), but it can be avoided by the re-modification of surfaces (eg, by atoms of Fe).

Crystallized hydroxyapatite on the surface of modified nanotubes (University of California, osel.cz)

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanotubes – aplication (future???)

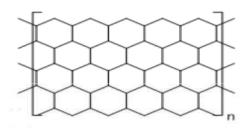

Antibacterial effects

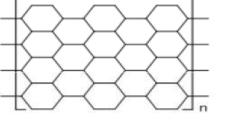
Results of studies show that surfaces treated with carbon nanostructures (fullerens, graphens) themselves exhibit antibacterial properties.

Another use of carbon nanostructures is reatment of surfaces (eg, surgical instruments, equipment of hospital rooms, ...) in conjunction with enzymes. By attaching nanotubes enriched with enzymes on surfaces various medical instruments its own surface will increase, which corresponds to the increasing interaction of the enzyme and subsequent enzymatic degradation of bacteria.

Cytostatic therapy

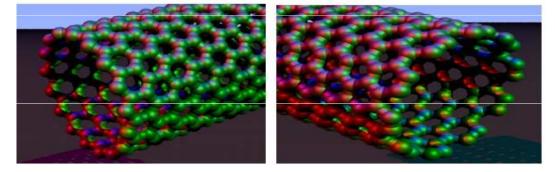
Bhirde et al., In *Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery*, ACS Nano 3 (2009) describes the use of multiple wall nanotubes for targeted cytostatic treatment. The principle is the linking of cisplatin with epidermal growth factor by using nanotubes and subsequent binding of this complex to the receptors of growth factor on tumor cells.




Fullerenes: Medical Uses

- Carbon nanotube involving catheters (nanotubes have Young's modulus 5 times greater that of steel!)
- Nanotube-based "cold" cathodes (emit electrons freely without need of thermionic emission). It will change conventional x-ray tube technology because of no need of a high power source and are exceptionally durable. Nanotube based small X-ray tubes for radiation therapy inside the body (brachytherapy) can be expected.
- Fullerenes with gadolinium are 5 times better **MRI** contrast agents than those used presently.
- Multifunctional platforms: binding specific antibiotics to the fullerene to target resistant bacteria and cancer cells. Fullerenes are not very reactive and are insoluble in many solvents.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

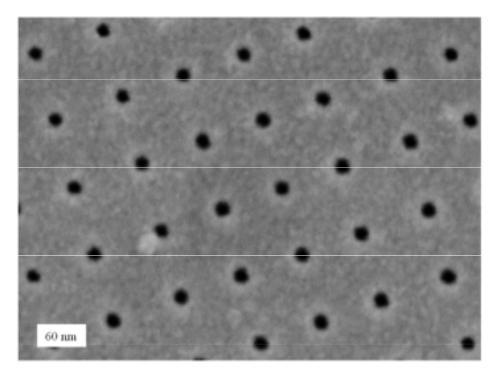

Nanotubes as wires

zigzag

armchair

Depending on the structure of carbon nanotubes, the nanotube behaves as a metal or as a semiconductor (or even a superconductor!). See so called "Armchair Quantum Wire,, elsewhere.

They can be also used (as superconductors) for generation of strong magnetic field, i.e. for MRI

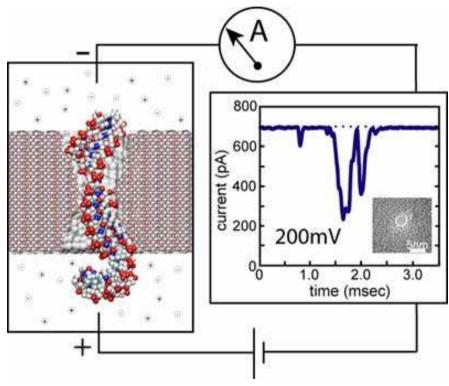

Nanotubes are currently the strongest material. The diameter of Single Wall Carbon Nanotubes (SWCNT) is from 1 nm to 50 nm. Electrical properties are different according to the arrangement of atoms C in the tube (the molecular structure influences the orientation of bonds). Depending on the structure of bonds between carbons we can have Z (zigzag) or a A (armchair) configuration. "Z" acts as a metal, "Armchair" as a semiconductor.

Rice University - http://www.ece.rice.edu/~irlabs/aqw.htm

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanopores

- The pores of nanometer diameter become exploited in biology.
- They are used to regulate the flow of ions or molecules through the otherwise impermeable membranes.

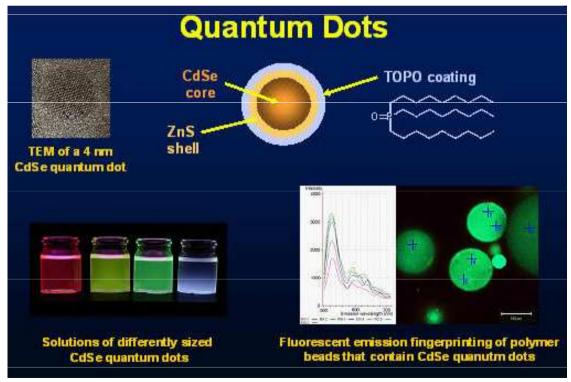

Nanopores drilled by a focused-ion-beam in a 10 nm thick silicon nitride membrane. The scale bar is 60 nm.

Ref: H.D. Tong, H.V. Jansen, V.J. Gadgil, C.G. Bostan, J.W. Berenschot, C.J.M. van Rijn, and M. Elwenspoek, Nano Lett. 4, 283, (2004).

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanopores: Medical Applications: DNA sequencing

- As the DNA molecule passes through the nanopore, different bases lead to different drops in the current and hence can be identified.
- Such sequencing, could revolutionize the field of genomics, as sequencing could be carried out in a matter of seconds – very fast
- Other applications of this technique include separation of single stranded and double stranded DNA in solution, and the determination of length of biopolymers.

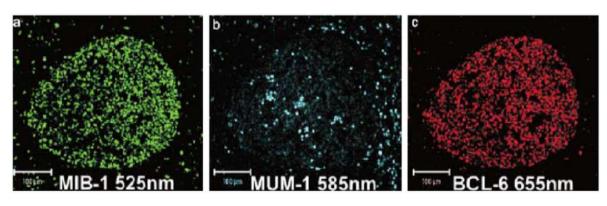


http://www.ks.uiuc.edu/Research/nanopore/

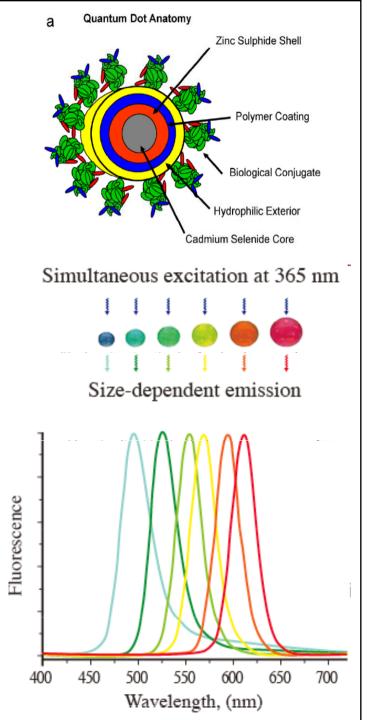
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanocrystal

- A nanocrystal is a crystalline particle with at least one dimension less than 100 nm.
- Semiconductor nanocrystals in the sub-10nm size range are often referred to as 'quantum dots'. A quantum dot has a discrete quantized energy spectrum.

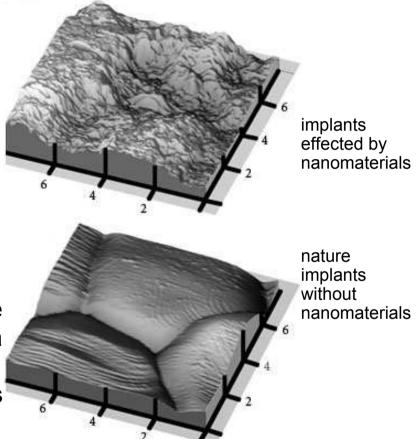


http://www.elec-intro.com


Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanocrystal – Quantum dots

- Clusters of atoms forming the regular monocrystalline structures
- As quantum dots can be also called clusters of atoms created on suitable ground (use in electronics, communication technologies, ...)
- They have discrete energy levels
- Fluorescence properties wavelength of the excitation radiation is chosen according to the size of core of quantum dots.
- Use cell mapping, immunomapping, MRI contrast


Triple immunofluorescence using the quantum dots, Fountaine *et al*, Mod Pathol 2006, 19, 1181-1191

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanocrystals : antibacterial effects

According to Thomas J. Webster from Brown University, USA, it is possible to use nanocrystals of titanium and zinc oxides to modify the surface of implants nanostructuring method. Its nature lies in multiple magnification of the surface of material by applying layers of nanocrystals (proces of roughening), such as in the case orthopaedic implants. It helps to increase adhesion of the tissue cells and accelerate the "healing". Another important function of such a modified surface is the antimicrobial function, where the presence of zinc oxide nanocrystals suppresses the formation of microbial films.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanocrystals: liquid glass

- Liquid glass the source material in this case is ordinary silica sand (silicon oxide) nanoparticles, which are added to the mixture with water or ethanol - according to the surface on which liquid glass is applied (using spray). Nothing other is needed, the liquid glass at the site sticks by physical forces (which are ubiquitous in nanoworlds).
- Sprayed liquid glass creates a waterproof layer with thickness of about 100 nanometers, which represents only 15-30 molecules. Liquid glass has a very durable antibacterial effects. It is antimicrobial, because liquid glass reduced adhesion of microbes on the treated surface.
- Liquid glass was been tested in a hospital in Lancashire, where the staff used surgical equipment, implants, catheters, ... all threated by this interesting nanomaterial. The result of the tests was an increase in antibacterial protection

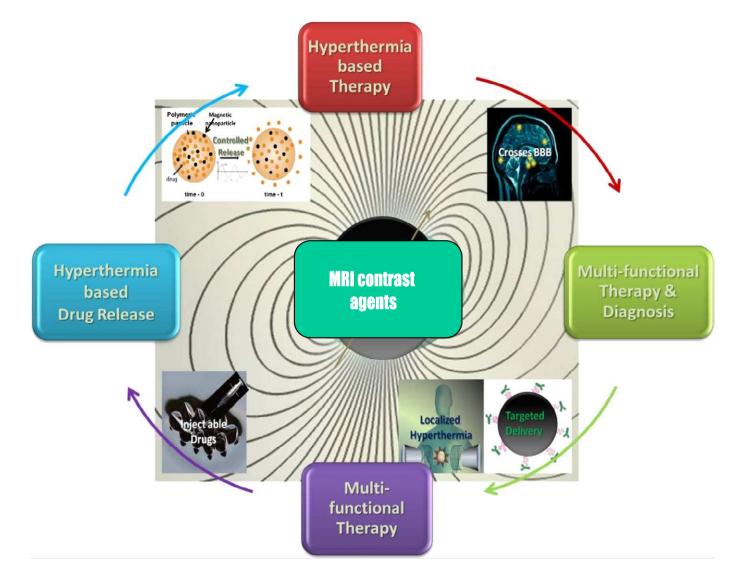
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Magnetic nanoparticles

 Magnetic nanoparticles - characterized by magnetic moment µ and by interaction with the external magnetic field H

500 nm

 The natural incidence of magnetic nanoparticles in nature

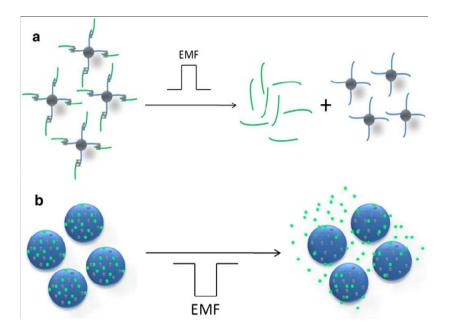

 Magnetospirillum magnetotacticum - magnetite (organelle magnetosom) bee, termite, pigeon, dolphin

The use in medicine, biomedicine:

- transport / separation / immobilisation of magnetic nanoparticles or molecules conjugated with the nanoparticles by an external magnetic field - the separation of DNA / RNA, targeted drug delivery
- **heating** (energy transfer from the external magnetic field on magnetic nanoparticles) eg magnetic intercellular hyperthermia for cancer treatment
- **increasing** MRI contrast signal as a contrast agent Resovist ® (iron oxide coated karboxydextranem) for examination of the liver

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Magnetic nanoparticles



Schematic representation of the use of magnetic nanoparticles in medicine (Kumar and Mohammad, 2011)

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Magnetic nanoparticles :

Temperature-controlled transport of drugs

Kumar, Mohammad, Magnetic nanomaterials for hyperthermiabased therapy and controlled drug delivery, Adv. Drug Deliv. Rev. (2011)

- Temperature-controlled transport of drugs by using heating of magnetic nanoparticles by action of external magnetic field (hysteresis during heating).
- a) mobilization of substances (drugs) bound to the nanoparticle through thermolabile bond (by changing the temperature of nanoparticles due to applications of magnetic field
- b) mobilisation of substances (drugs) from the polymer envelope which also contains magnetic nanoparticles. The release of substances is enabled by the presence of micro-cracks that occur during heating of the nanoparticles present in the polymer by exposure to changing magnetic field

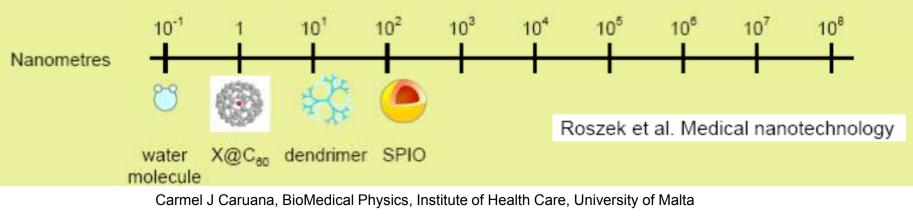
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Magnetic nanoparticles

Table 1

List of magnetic nanoparticles reported for application in hyperthermia-based therapy and controlled drug delivery.

S. no	Type of magnetic nanoparticle	Application	
1.	Fe doped Au NPs	Hyperthermia-based therapy	
2.	γ-Fe ₂ O ₃	Hyperthermia-based therapy	
	Cobalt ferrite		
3.	Fe ₃ O ₄	Hyperthermia-based therapy	
	Fe ₃ O ₄ -poly vinyl alcohol		
4.	NiFe ₂ O ₄	Hyperthermia-based therapy	
5.	γ-Fe ₂ O ₃	Hyperthermia-based therapy	
7.	Fe ₃ O ₄ @chitosan	Hyperthermia-based therapy	
8.	Fe ₃ O ₄ @block copolymers	Hyperthermia-based therapy	
9.	Fe ₃ O ₄ -dextran stabilized	Hyperthermia-based therapy	Overview of meanatic personarticles
	Fe ₃ O ₄ @Aminosilan		Overview of magnetic nanoparticles
10.	Ferrite-Dextran stabilized	Hyperthermia-based therapy	5
11.	Fe ₃ O ₄ -dextran (mono and bilayer) stabilized	Hyperthermia-based therapy	and their needblo use
12.	Fe ₃ O ₄ -lauric acid stabilized	Hyperthermia-based therapy	and their possible use
13.	Fe ₃ O ₄ -lauric acid stabilized	Hyperthermia-based therapy	
	MnFe ₂ O ₄ lauric acid stabilized	copper concernance concept	
	CoFe ₃ O ₄ -lauric acid stabilized		
14.	Fe@biscarboxyl-terminated poly(ethylene glycol)(cPEG)	Hyperthermia-based therapy	
15	γ -Mn _x Fe _{2-x} O ₃ coated Acrypol 934 polymer	Hyperthermia-based therapy	
16.	FeCo@Au	Hyperthermia-based therapy	
17.	Fe@MgO	Hyperthermia-based therapy	
18.	Fe ₃ O ₄ @Si	Hyperthermia-based therapy	
19.	Fe ₂ O ₂ @SiO ₂	Hyperthermia-based therapy	
20.	FeNi@Au microdiscs	Hyperthermia-based therapy	
21.	Fe@Fe3O4	Hyperthermia-based therapy	
22.	La _{0.56} (CaSr) _{0.22} MnO ₃ @SiO ₂	Hyperthermia-based therapy	
23.	Fe ₃ O ₄ @Au	Hyperthermia-based therapy	
24.	Magnetite cationic liposomes (MCL)	Hyperthermia-based therapy	
25.	Fe ₃ O ₄ -lauric acid stabilized	Hyperthermia-based therapy	
26.	Fe ₂ O ₂ @SiO ₂ bound LHRH	Hyperthermia-based therapy	
27.	SPIONs bound fluorophore bimane	Hyperthermia-based Controlled	drug delivery
28.	Porous Fe ₃ O ₄ /Fe/SiO ₂	Hyperthermia-based Controlled	
29.	Fe@SiO ₂	Hyperthermia-based Controlled	
30.	poly-(N-vinyl-2-pyrrolidone) (PVP)-modified silica core@iron oxide shell	Hyperthermia-based Controlled	
31.	Mg-Al layered double hydroxides (LDH) coated magnesium ferrite NPs	Hyperthermia-based Controlled	
32.	Yolk-shell type nanospheres with movable cores of Au, SiO ₂ , Fe ₃ O ₄ .	Hyperthermia-based Controlled	
33.	γ -Mn _s Fe ₂ - $_{2}O_{3}$ coated Acrypol 934 polymer	Hyperthermia-based therapy and	
34.	Fe_3O_4 @lipid membrane (MCL, magnetite cationic liposome)	Hyperthermia-based therapy and Hyperthermia-based therapy and	
35.	Fe@carbon nanoparticles bound polymer	Hyperthermia-based therapy and	
35.	Co@Au@ poly(sodium styrene sulfonate)/poly(allylamine hydrochloride)	Hyperthermia-based therapy and	
36.	SPIONs@ sensitive poly (N-isopropylacrylamide) hydrogels	Hyperthermia-based therapy and Hyperthermia-based therapy and	
38.	Fe@Fe ₃ O ₄ loaded 4-tetracarboxy phenyl porphyrin	Hyperthermia-based therapy and	
39.	Carboplatin-Fe@C-loaded chitosan	Hyperthermia-based therapy and Hyperthermia-based therapy and	
40.	Zinc doped iron oxide nanocrystals encapsulated mesoporous silica	Hyperthermia-based therapy and	
41.	MCL loaded 4-S-Cysteaminylphenol	Hyperthermia-based therapy and Hyperthermia-based therapy and	
46	те выса ч.э.сужевникуриеног	rispermermia-based therapy and	consolid diag sciencity

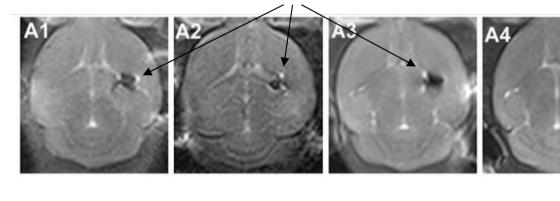

Kumar, Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. (2011)

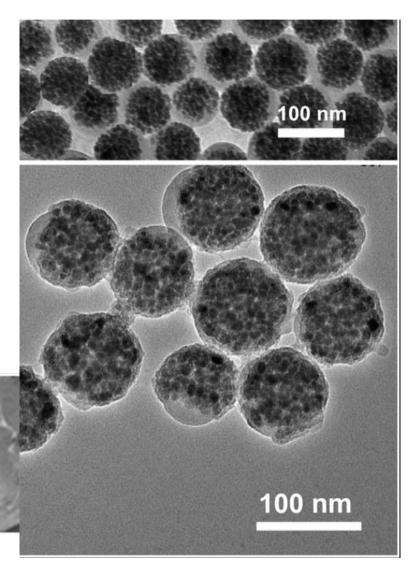
Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanocrystal: Medical applications: Contrast Media for MRI Imaging

Magnetic resonance imaging

 Superparamagnetic nanocrystalls (dark contrast effect in images)
 Superparamagnetic iron oxide (SPIO) nanoparticles (50-500 nm) – on the market Lumirem® and Endorem[™], Advanced Magnetics Inc, USA
 Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (<50nm) – clin. investigation Supravist[™], Schering AG, Germany Sinerem®, Guerbet SA, France

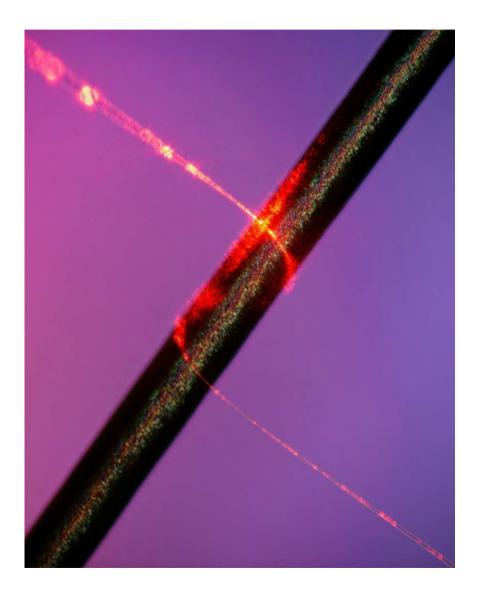

Magnetic nanoparticle: Contrast Media for MRI Imaging


TEM microscopy - magnetite nanoclusters consisting of magnetite nanoparticles

The use of magnetic nanoparticles as contrast agents for MRI views, in this case, monitoring the distribution of stem cells (containing these nanoclusters) in mouse brain.

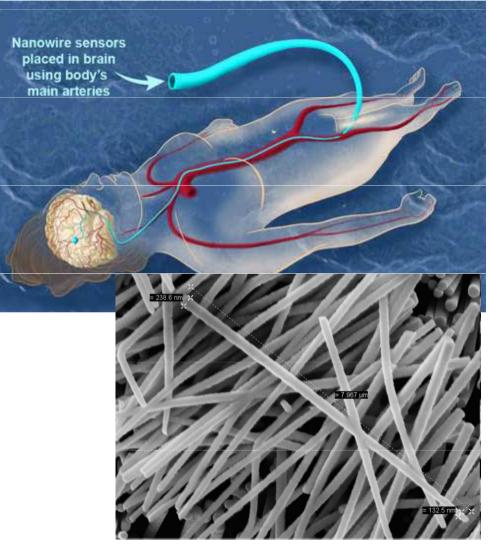
Chunfu Zhang et al., High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain, *Nanomedicine: Nanotechnology, Biology and Medicine, Available online 8 April 2011*

MRI signal of magnetic nanoparticle



Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU

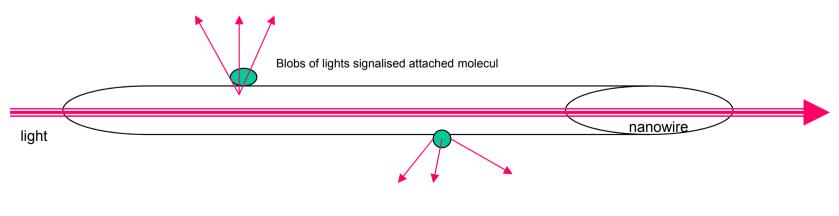
- A nanowire is a wire of diameter of the order of nm.
- Photo: A light-conducting silica nanowire wraps a beam of light around a strand of human hair. The nanowires are flexible and can be as slender as 50 nanometers in width, about one-thousandth the width of a hair.
- This is far smaller than the smallest capillary in the body! That means nanowires could, in principle, be threaded through the circulatory system to any point in the body without blocking the normal flow of blood or interfering with the exchange of gases and nutrients through the blood-vessel walls


Nanowires

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

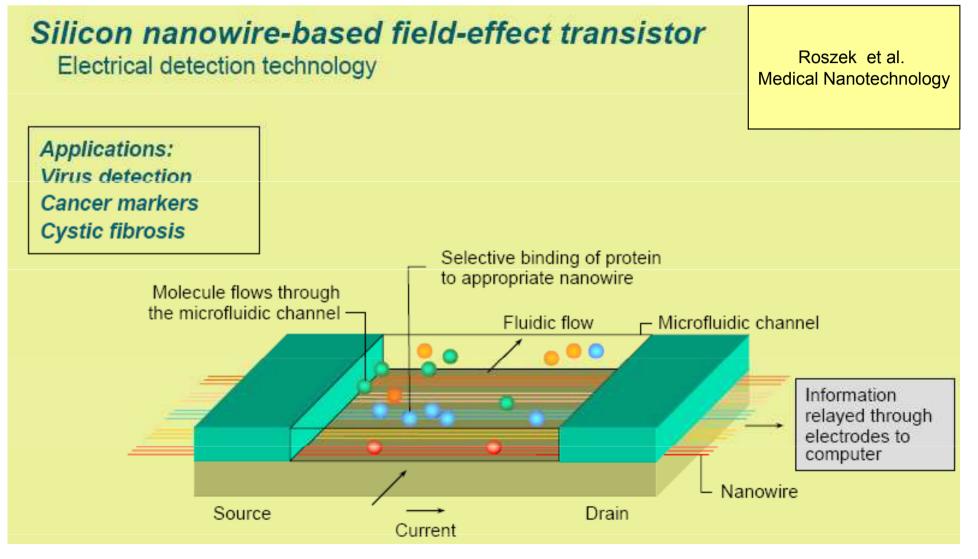
Nanowires: Medical Applications – Brain studies and therapy - fantasy

Bunch of nanowires being guided through the circulatory system to the brain. Once there, ٠ the nanowires would spread out branching into tinier and tinier blood vessels. Each nanowire would then be used to record the electrical activity of a single nerve cell, or small groups of nerve cells (better than PET or fMRI!) giving the ability to pinpoint damage from injury and stroke, localize the cause of seizures, and other brain abnormalities. It's long been known that people with Parkinson's disease can experience significant improvement from direct stimulation of the affected area of the brain with electrical pulses. Indeed, that is now a common treatment for patients who do not respond to medication. But the stimulation is currently carried out by inserting wires through the skull and into the brain, a process that causes scarring of brain tissue. The hope is, by stimulating the brain with nanowires threaded through pre-existing blood vessels, doctors could give patients the benefits of the treatment without the damaging side effects.



Prof. Bernard NYSTEN , Université catholique de Louvain

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta catholique de

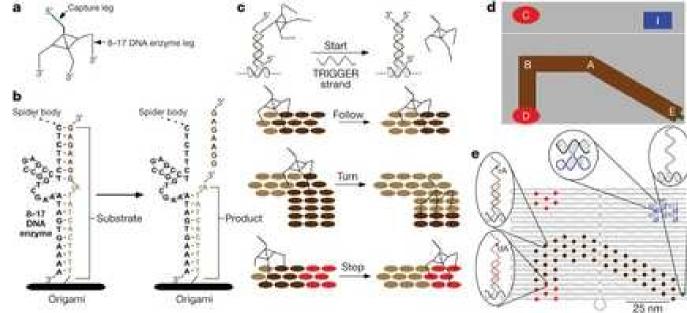

Nanowires: Medical Applications – Environmental Molecular Sensors

- Compared to ordinary fiber optic cable, which appears to the naked eye as a uniform glowing line, nanowires have a beaded appearance when viewed under magnification. That's because unlike a normal fiber, which confines light within its walls, minuscule particles of dust along the nanowires' surface can scatter the light beam. This sensitivity to surface contaminants could lead to use of the nanowires as molecular sensors.
- One could fit the surface of the wire with receptors for environmental molecules. If those target molecules are present, they'll attach to the receptors and blobs of tiny lights will be seen when the wires are illuminated.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Nanowires: Medical Applications: Biomolecular Sensors

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

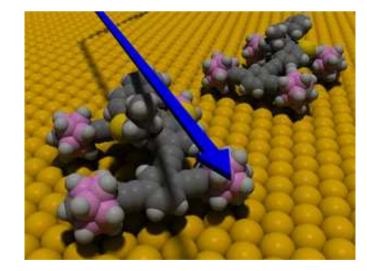

Robotic nanoworld

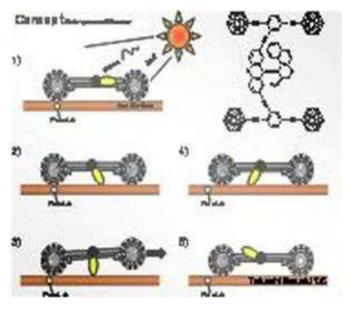
DNA-based nanorobotics

Nature 2010 - Molecular robots guided by prescriptive landscapes – Lund et al.

Nature 2010 - Molecular robots guided by prescriptive landscapes - Lund et al.

The authors of this paper presented "nano-spider" which is consist of protein and DNA and that can move along the trajectory by using pre-programmed short ss DNA chains. Nano-spider has the body formed by the protein streptavidin. Despite biotin (vitamin H) are linked to him four short stretches of single-stranded DNA / enzyme. The total size of nano-spider is 4 nm. The trajectory is given by compatibility ss DNA chains that are on pads and ss DNA chains forming the "legs". It is controlled by the commands "start", "change the direction" and "stop_m.


Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta


Robotic nanoworld

nano-robotics based on organic molecules

The size of molecules of "nanocar" are less than 4 nm, "wheels" are formed by molecules of p-carborane, "engine" of combination of aromatic rings. After iradiation by electromagnetic wave, it is absorbed by central molecule, and this begins to rotate on the gold surface and move the whole "nanocar". The highest speed is 2 nm per minute.

www.newscientist.com

Princip of moving of "nanocar" (Rice University)

http://www.youtube.com/watch?v=IA SdcW-BtiU

http://www.youtube.com/watch?NR=1& v=57GYz69GFbl

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Health Risks

- Nanoparticles are able to cross biological membranes and access cells, tissues and organs that larger-sized particles normally cannot. They can gain access to the blood stream after inhalation or ingestion. At least some can penetrate the skin. Once in the blood stream, they can be transported around the body and are taken up by organs and tissues including the brain, heart, liver, kidneys, spleen, bone marrow and nervous system. Unlike larger particles, they may be taken up by cell mitochondria and the cell nucleus. Studies demonstrate the potential for DNA mutation and induce major structural damage to mitochondria, even resulting in cell death.
- Hundreds of consumer products incorporating nanoparticles are now on the market, including cosmetics, sunscreens, sporting goods, clothing, electronics, baby and infant products, and food and food packaging.

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

Current status and future prospects of nanotechnology in cosmetics

Albert Mihranyan*, Natalia Ferraz, Maria Strømme*

Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala, Sweden

Table 2

Examples of nanomaterials currently marketed as cosmetic products.

Class	Material	Action	Product example
Active	Arbutin	Whitening	Nano Bright TM
Metals and metal oxides	ZnO	Suncreen	ZinClear-IM [™]
	Ag	Antibacterial	GNS Nanogist; Susie-K Nano Beauty Soap
	Fe _x O _y	Concealer	Mineral foundation
	Au	Conjugated silk microfiber	Chantecaille Nano Gold Energizing Cream; Nanorama
	Pt/Ag	Absorptive NP	Platinum Silver Nanocolloid Milky Essence
	ZnO/Ti _x O _y	Concealer	Face Brushes TM After Glow Brush and Brush Colores; Sunforgettable TM
	Ti _x O _y	Sunscreen	Soltan®
	Al/Al ₂ O ₃	Concealer	Alusion TM
	Ag/Ti/Ti _x O _y	Hair care	Nano Weight Pro 1800
Carbon	Fullerenes	Free radical inhibition	Zelens [®] ; Radical Sponge [®]
	Fullerosomes	Free radical inhibition	Sircuit®
Nanoclays and silica	SiO ₂	Tightens skin, delivery of active ingredients	LEOREX [®] ; Rénergie [®]
	SiO_2/Me_xO_y	Sunscreen	Eusolex [®] UV Pearls
	Mica/ZnO/ Ti _x O _y		Dual Finish Pressed Compacts
Vesicular lipid nanocarriers	Liposomes, ceramides, nanoemulsions	Delivery of active ingredients	Revitalift [®] ; Lyphazome [®] ; Celazome [®] ; Psorinel Lotion;Hydra Zen [®]
		Ethosomes	anti-cellulite
Solid lipid nanopartciles	Solid lipids	Delivery of active ingredients	Lipopearl TM ; Nanopearl TM
	Wax	Hair styling	Pureology [®]
	Solid lipids	Delivery of active ingredients	Swiss Cellular [™] White Illuminating Eye Essence; Olivenöl [™] Anti Falten Pflege; IOPE [™] Super Vital Cream; SURMER [™] Creme Legere
Native and modified polymers	Modified polyaminoacids	Skincare	Collamin_G™
1	Hyaluronic acid Collagene	Moisturiser Skincare	PowerMoist [™] Nano Hyaluronic acid bĭm·ə·nē ®
Synthetic polymers	Nanocapsules	Delivery of active ingredients	Primordiale Intense; Hydra Flash® Bronzer

Progress in Materials Science 57 (2012) 875-910

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta

nanomaterials are everywhere around us

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta Vladan Bernard Department of Biophysics Lf MU Author: Vladan Bernard Carmel J. Caruana

Content collaboration: Vojtěch Mornstein

Last revision: September 2015

Carmel J Caruana, BioMedical Physics, Institute of Health Care, University of Malta