# Cytogenetics and molecular genetics in oncology

Karla Plevová

### Outline of the presentation

- 1. Differences in molecular genetics and cytogenetics of congenital disorders vs cancer
- 2. Application of molecular-genetic and cytogenetic findings in oncology
- 3. Material sources and material used
- 4. Methods used and practical examples

MG: molecular genetics CG: cytogenetics

#### Cancer as a genetic disease

Two levels: Cancer hereditary syndromes - germline mutations Genetic alterations gained during a lifetime - somatic



# Why molecular genetics and cytogenetics in oncology can be interesting for a dentist?



Acute myeloid leukemia (AML) manifesting by blast infiltration in gums.

### **1. Differences in MG and CG of congenital disorders vs cancer**

| Characteristics                      | Congenital<br>disorders              | Cancer                        |
|--------------------------------------|--------------------------------------|-------------------------------|
| Prevailing origin of genetic defects | Germline                             | Somatic                       |
| Extent of genetic abnormalities      | Single or small<br>number of changes | Variable, typically<br>higher |
| Type of abnormalities                | One/two types<br>present per case    | Combination of all types      |
| Mosaicism                            | Rare                                 | Common                        |

# 2. Application of MG and CG findings in oncology

- Hereditary predisposition assessment
- Establishing and refining diagnosis
- Disease prognostication
- Treatment optimization
- Disease activity monitoring
- Disease complication diagnostics

#### Requirements on the techniques

- High specificity and high sensitivity, limit of detection
- Fast processing range of few hour to few days
- Tools for data analysis (bioinformatics for NGS)
- Standardization and validation
- Availability of reference material (positive/negative controls), reference sequences
- Regular quality assessment
- Compliance with legislation regulations

### Hereditary predisposition assessment

- Cases of cancer accumulated in families
- Autosomal dominant and recessive inheritance
- Typical onset at young age
- Genetic counseling
- Screening for causative variants



#### Breast-Cancer Susceptibility Loci and Genes.



Foulkes, NEJM 2008

Tawana et al, Blood 2015

#### Hereditary predisposition assessment

| WHO classification                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------|
| Classification <sup>*</sup>                                                                                          |
| Myeloid neoplasms with germ line predisposition without a preexisting disorder or organ dysfunction                  |
| AML with germ line CEBPA mutation                                                                                    |
| Myeloid neoplasms with germ line $DDX41$ mutation <sup>†</sup>                                                       |
| Myeloid neoplasms with germ line predisposition and preexisting platelet disorders                                   |
| Myeloid neoplasms with germ line $RUNXI$ mutation <sup>†</sup>                                                       |
| Myeloid neoplasms with germ line ANKRD26 mutation $^{\ddagger}$                                                      |
| Myeloid neoplasms with germ line <i>ETV6</i> mutation <sup><math>\uparrow</math></sup>                               |
| Myeloid neoplasms with germ line predisposition and other organ dysfunction                                          |
| Myeloid neoplasms with germ line GATA2 mutation                                                                      |
| Myeloid neoplasms associated with bone marrow failure syndromes                                                      |
| Juvenile myelomonocytic leukemia associated with neurofibromatosis, Noonan syndrome, or Noonan syndrome-like disorde |
| Myeloid neoplasms associated with Noonan syndrome                                                                    |
| Myeloid neoplasms associated with Down syndrome $^{\ddagger}$                                                        |
|                                                                                                                      |

 
 Table 2 - ACMG list of hereditary cancer syndromes, most with childhood
 onset, for reporting incidental findings.

| Syndrome                       | Gene                           | Inheritance |
|--------------------------------|--------------------------------|-------------|
| Li-Fraumeni                    | <i>TP53</i>                    | AD          |
| Peutz-Jeghers                  | STK11                          | AD          |
| Familial adenomatous polyposis | APC                            | AD          |
| Von-Hippel Lindau              | VHL                            | AD          |
| Multiple endocrine neoplasia   | MEN1 (type 1);<br>RET (type 2) | AD          |
| Hamartomatosis                 | PTEN                           | AD          |
| Retinoblastoma                 | RB                             | AD          |
| Paraganglioma-pheochromocytoma | SDHAF2, SDHB,<br>SDHC, SDHD    | AD          |
| Tuberous sclerosis complex     | TSC1, TSC2                     | AD          |
| Neurofibromatosis type 2       | NF2                            | AD          |
| WT1-related Wilms tumor        | WT1                            | AD          |

AD, autosomal dominant.

# Establishing and refining diagnosis

- Diagnosis confirmation based on detection of specific (marker) gene or chromosomal abnormalities
- Incorporation of genetic/cytogenetic markers in WHO classification
- Resolving ambiguous cases
- Markers specific for the whole diagnostic entity or only for a subset of a disease (implications for treatment)
- Examples
  - Mantle cell lymphoma translocation t(11;14)
  - Hairy cell leukemia BRAF V600E mutation

# Establishing and refining diagnosis

Clonality

- Typical characteristics of lymphoid (but also other) malignancies
- Analysis of antigen receptor rearrangements, translocations and gene mutations
- Monoclonal vs polyclonal picture distiguishing of malignant vs reactive conditions
- Quantification of tumor load



#### Disease prognostication

- Genetic and cytogenetic markers associated with certain disease features
- Risk assessment at time of diagnosis
- Genetic markers of various types gene mutations, chromosomal abnormalities, a type of antigen receptor rearrangement, ...
- Prognostic vs predictive markers



Döhner et al, Blood 2000

#### Disease prognostication

CLL:



Hamblin et al, Blood 1999

| category | Cytogenetic or molecular genetic abnormality                                                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rable    | t(8,21)(q22;q22); <i>RUNX1–RUNX1T1</i><br>inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); <i>CBFB–MYH11</i><br>t(15;17)(q24;q21) <i>PM–RARA</i>                                                   |
| 1        | Mutated <i>NPM1</i> without <i>FLT3–ITD</i> (normal karyotype)<br>Biallelic mutated <i>CEBPA</i> (normal karyotype)                                                                          |
| nediate  | Mutated <i>NPM1</i> and <i>FLT3–ITD</i> (normal karyotype)<br>Wildtype <i>NPM1</i> and <i>FLT3–ITD</i> (normal karyotype)<br>Wildtype <i>NPM1</i> without <i>FLT3–ITD</i> (normal karyotype) |
|          | Normal karyotype not classified as favourable.<br>t(9;11)(p22;q23); <i>MLLT3–KMT2A</i>                                                                                                       |
|          | Cytogenetic abnormalities not classified as favourable or poor<br>inv(3)(q21q26.2) or t(3;3)(q21;q26.2); <i>GATA2–MECOM</i> ( <i>EVI1</i> )                                                  |
|          | t(6;9)(p23;q34); <i>DEK–NUP214</i><br>t(v;11)(v;q23); KMT2A rearranged                                                                                                                       |
|          | t(9;22)(q34.1;q11.2); <i>BCR–ABL1</i><br>-5 or del(5q); -7; -17/abn(17p)<br>Complex karyotype (>3), monosomal karyotype                                                                      |
|          | Wild type <i>NPM1</i> and <i>FLT3–ITD</i><br>Mutated <i>RUNX1</i>                                                                                                                            |
|          | Mutated ASXL1<br>Mutated TP53                                                                                                                                                                |

#### Treatment optimization

- Concept of personalized treatment tailored for individual patients
- Treatment response related to genetic abnormalities detected in cancer cells
- Targeted treatment blocking the growth and spread of cancer by interfering with specific molecules ("molecular targets")
- Synthetic lethality blocking or inactivation of two genes leads to cell death



Nijman, FEBS Lett 2011

### Treatment optimization - examples

| Diagnosis                     | Genetic defect             | Treatment option                                                       |
|-------------------------------|----------------------------|------------------------------------------------------------------------|
| Chronic myeloid<br>Ieukemia   | BCR-ABL fusion gene        | Tyrosine kinase inhibitors<br>(imatinib, dasatinib etc.                |
| Breast cancer                 | BRCA1 mutations            | PARP inhibitor olaparib                                                |
| Non-small cell lung<br>cancer | EGFR mutations             | EGFR inhibitors (erlotinib, afatinib etc.)                             |
| Non-small cell lung<br>cancer | ALK gene<br>rearrangements | ALK inhibitors (crizotinib, ceritinib etc.)                            |
| Melanoma                      | BRAF mutations             | BRAF inhibitors (dabrafenib, vemurafenib etc.)                         |
| Colorectal cancer             | KRAS mutations             | Contraindication for<br>targeting EGFR by cetuximab<br>and panitumumab |

#### Disease activity monitoring

- Minimal residual disease (MRD) cancer cells remaining after therapy
- Need for MRD marker identification before therapy
- Monitoring of MRD markers after therapy
- Design of patient-specific and sensitive assays
- Typical markers:
  - Gene rearrangements
  - Fusion genes
  - Gene mutations



Buckley SA, et al. Bone Marrow Transpl. 2013.

#### Disease complication diagnostics

Infection complications related to cancer treatment

- Opportunistic infections otherwise common pathogen causing severe symptoms
- Related to bone marrow (BM) and peripheral blood stem cell (PBSC) transplantation and other cancer-specific treatment (e.g. alemtuzumab)
   Molecular diagnostics - typing of pathogens according to their DNA/RNA sequence
- (multiplex) PCR, real-time PCR, NGS
- Quantification and monitoring of pathogen load

#### Table 2. Pathogen Frequency by Treatment Arm

| Organism                             | BM       | PBSC     |
|--------------------------------------|----------|----------|
| Bacterial infections                 |          |          |
| Staphylococcus (coagulase negative)  | 123 (82) | 101 (67) |
| Enterococcus (all species)           | 54 (42)  | 49 (40)  |
| Clostridium difficile                | 69 (52)  | 54 (41)  |
| Staphylococcus (coagulase positive)  | 10 (9)   | 30 (20)  |
| Escherichia (also E. coli)           | 16 (15)  | 23 (19)  |
| Viral infections                     |          |          |
| CMV                                  | 78 (61)  | 81 (57)  |
| Polyomavirus                         | 27 (25)  | 27 (24)  |
| Herpes simplex (HSV1, HSV2)          | 16 (14)  | 22 (17)  |
| EBV                                  | 15 (12)  | 21 (15)  |
| Influenza                            | 22 (19)  | 13 (13)  |
| Fungal/parasitic infections          |          |          |
| Other (suspected) fungus             | 12 (11)  | 13 (12)  |
| Yeast other than Candida albicans    | 5 (4)    | 12 (10)  |
| Candida albicans                     | 6 (6)    | 10 (8)   |
| Aspergillus fumigatus                | 5 (5)    | 6 (5)    |
| Mucormycosis (Zygomycetes, Rhizopus) | 5 (4)    | 2 (2)    |
| Pneumocystis                         | 1 (1)    | 2 (2)    |
| Toxoplasma                           | 1 (1)    | 1 (1)    |

HSV indicates herpes simplex virus; CMV, cytomegalovirus; EBV, Epstein Barr virus. Only the top 5 organisms for each infection type are listed.

### 3. Materials used and material sources

- Types of samples
  - Cells
  - DNA
  - RNA
  - cfDNA





Sample preparation

and pretreatment

SPIN



Downstream

applications

SPIN

ð

Washes

Elution

SPIN

J

DNA binding

### Materials used and material sources

- Sampling
  - Peripheral blood
  - Bone marrow
  - Liquid biopsies
  - Aspirates
  - Fine-needle biopsies
  - Fresh tissue
  - Formalin-fixed paraffin-embedded (FFPE) tissue
  - Swabs (buccal, NPh, ...)

### Peripheral blood

- EDTA or heparin collection tubes
- Different cell population used according to the application:
  - Leukocytes
  - Mononuclear cells
  - Granulocytes
  - Lymphocytes
  - Specific cell subpopulations





### Liquid biopsies

Very low amount of material

- Plasma / serum
- Urine
- Joint fluid
- Cerebrospinal fluid
- **—** ...



Zeng et al, Cancer Comm 2019

# Liquid biopsies - material collection



#### cfDNA



# cfDNA

#### Applications

- Diagnosis, early detection
- Genotyping
- Disease risk stratification
- Treatment selection
- Treatment response assessment
- Disease monitoring

Solid tumors and hematological malignancies



cHL, classical Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; MRD, minimal residual disease; PCNSL, primary nervous system lymphoma.

Rossi et al, Haematologica 2019

### cfDNA

#### Methods

- NGS targeted amplicons,
   gene panels, WGS
- real-time PCR
- FDA approved assays for gene mutation detection



#### Tissues

- Biopsies, fine-needle biopsies
- Fresh frozen vs FFPE tissue
- Decreased DNA and RNA quality (fragmented, chemically modified in case of FFPE material)
- Mainly used in diagnostics of solid tumors
- Invasive



### Swabs

Different applications

- Collection of germline material buccal swabs
- Pathogen analyses e.g. nasopharyngeal swabs





### 4. Methods used and practical examples

- Chromosome banding techniques
- Fluorescence *in situ* hybridization
- Genomic arrays
- PCR and real-time PCR
- Droplet digital PCR

- Sanger sequencing
- Next-generation sequencing
  - Amplicon sequencing
  - Panel sequencing
  - Whole exome sequencing
  - Whole genome sequencing

#### Classical cytogenetics - chromosome banding techniques



#### Classical cytogenetics - chromosome banding techniques

Resolution >10 Mbp

Applications

- Detection of typical abnormalities
- Complex karyotype assessment

 $(\geq 3 \text{ or } \geq 5 \text{ abnormalities})$ 





### Molecular cytogenetics

- Fluorescent in situ hybridization (FISH)
- Targets specific regions based on DNA sequence
- Detection of chromosomal abnormalities with diagnostic, prognostic and predictive value



#### Probe types:







### Molecular cytogenetics

– FISH methods for genome-wide analysis



mFISH



mBAND

### Genomic arrays

- Molecular cytogenetic technique for detection of genomic gains and losses
- Detection of copy-neutral loss of heterozygosity
- Not possible to detect balanced rearrangements
- Precise breakpoint localization, identification of affected genes
- High resolution, genome-wide
- No need for viable cells

#### arrayCGH & SNP array







#### Comparison of sensitivity of cytogenetic techniques

|                        | Aneu-<br>ploidy | CNA | Poly-<br>ploidy | Clonal<br>heterogeneity | Focal<br>amplification | Balanced<br>rearrangements | Unbalanced rearrangements | cn-LOH |
|------------------------|-----------------|-----|-----------------|-------------------------|------------------------|----------------------------|---------------------------|--------|
| Classical cytogenetics | +++             | +   | +++             | +++                     | ++                     | +++                        | +++                       | -      |
| Interphase FISH        | +++             | ++  | +               | +++                     | +++                    | +++                        | ++                        | -      |
| ArrayCGH               | +++             | ++  | -               | +                       | +++                    | -                          | ++                        | -      |
| CGH+SNP array          | +++             | +++ | +               | +                       | +++                    | -                          | ++                        | ++     |
| SNP array              | +++             | +++ | ++              | ++                      | +++                    | -                          | ++                        | +++    |

**CNA** - copy number alteration, gains or lossess of genetic material **cn-LOH** - copy neutral loss of heterozygozity

Schoumans J et al, 2016

# Polymerase Chain Reaction (PCR) and real-time PCR

#### PCR

- Amplification of region of interest using specific primers
- Cycling reaction condition
- Product of reaction serves as an input for further analyses (Sanger sequencing, fragment analysis, NGS, ...)

 ABI 7300



Real-time PCR

- Quantitative method fluorescent detection of generated products
- Need for specific primers and probes
- Relative vs absolute quantification
## Real-time PCR applications

- Quantification of minimal residual disease after therapy detection of tumor specific markers (fusion genes, antigen receptor rearrangements etc.)
- Gene expression analysis
- Pathogen detection and pathogen load quantification



#### Droplet digital PCR (ddPCR)



- DNA sample with target sequence is partitioned into
- Target and background DNA are randomly distributed among 20,000

Target sequence is amplified by end-point PCR

Positive droplets are counted to give precise quantification of target sequences in sample

- Alternative method for marker absolute quantification
- Highly precise
- Need for specific instrumentation



## Sanger sequencing

Modification of PCR

- single primer extension
- Incorporation of dNTPs and ddNTPs

#### Applications

 Basic method for sequence variant detection (mutations, breakpoint localization)



https://www.sigmaaldrich.com/technicaldocuments/articles/biology/sanger-sequencing.html

## Sanger sequencing



Applied Biosystems<sup>™</sup>3130 Genetic Analyzer

#### Sequencing analysis output



#### Fragment analysis - modification of the method



## NGS - principles and targeted regions

Next-generation sequencing (NGS) ~ masively parallel sequencing (MPS)

- PCR amplification of DNA fragments
  - or direct sequencing of individual fragments (single molecule sequencing)
- The most common approach
  - sequencing by synthesis (Illumina sequencers)
- Milions of fragments are amplified simultaneously (vs capillary sequencer max 96 reactions)
- Short reads (tens to hundreds basepairs)



## NGS - principles and targeted regions

Illumina machines and their capacity



## NGS - regions of interest

genome



3 200 000 000 bp 30 x read depth exome

selected genes or loci



20 000 genes 100 x read depth



< 100 genes ≥ 1000 x read depth

## Amplicon sequencing



https://www.abmgood.com/Amplicon-Sequencing-Service.html

Application: TP53 mutation analysis

- NGS with high coverage (limit of

detection 0.1 % of variant allele)

treatment response prediction



#### Panel sequencing

- Sets of selected regions of interest
- Target enrichment by amplification or hybridization

**Amplicon-based assay** 



Hybridization capture-based assay

Jennings LJ et al. J Mol Diagn. 2017

#### Panel sequencing

LYNX panel - diagnostics of
 molecular markers in lymphoid
 malignancies
 (<sup>1</sup>CLL, <sup>2</sup>MCL, <sup>3</sup>FL, <sup>4</sup>DLBCL, <sup>5</sup>ALL, <sup>6</sup>Ph-like ALL)

| ••                                                          |                       | • •                  |                          | •                        | •           | • • • •                                                  |
|-------------------------------------------------------------|-----------------------|----------------------|--------------------------|--------------------------|-------------|----------------------------------------------------------|
| SNP                                                         | Gene                  |                      | CNVs                     |                          | SNP         | IG/TR + transloc SNP                                     |
|                                                             | • Genomio             | c backbone a         | and SNP prob             | es P                     | robes of va | rious density                                            |
| List of genes                                               |                       |                      |                          |                          |             | Rearrangements <sup>1-5</sup>                            |
| ARID1A <sup>1,3</sup>                                       | ASXL <sup>1,5</sup>   | ATM <sup>1, 2</sup>  | BIRC3 <sup>1,2</sup>     | BRAF <sup>1, 3-5</sup>   |             | IGH@ 79 subgenes<br>IGK@ 45 subgenes<br>IGL@ 42 subgenes |
| BTG1 <sup>6</sup>                                           | CARD11 <sup>1-4</sup> | CCND1 <sup>2</sup>   | CD79A <sup>1, 4</sup>    | CD79B <sup>1, 2, 4</sup> |             | TRA@ 96 subgenes<br>TRB@ 64 subgenes                     |
| CDKN2A <sup>1-5</sup>                                       | CDKN2B <sup>3-5</sup> | CHD2 <sup>1</sup>    | CREBBP <sup>1, 3-5</sup> | CRLF2⁵                   |             | TRG@ 13 subgenes<br>TRD@ 11 subgenes                     |
| CSF2RA <sup>6</sup>                                         | EBF1 <sup>6</sup>     | EGR2 <sup>1</sup>    | EP300 <sup>1, 3, 4</sup> | EPOR <sup>6</sup>        |             | Translocations <sup>2-4</sup>                            |
| ETV6⁵                                                       | EZH2 <sup>3-5</sup>   | FBXW7 <sup>1</sup>   | FIGNL1 <sup>6</sup>      | FLT3⁵                    | ••          | CCND1/IGH t(11;14)<br>BCL2/IGH t(14;18)                  |
| FOXO1 <sup>3</sup>                                          | HIST1H1E <sup>1</sup> | IKZF1⁵               | IKZF2 <sup>6</sup>       | IKZF3 <sup>1,6</sup>     |             | BCL6/IGH t(3;14)                                         |
| IL2RB <sup>6</sup>                                          | IL3RA <sup>6</sup>    | IL7R⁵                | JAK1 <sup>1, 5</sup>     | JAK2 <sup>1, 5</sup>     |             | CNVs <sup>1-6</sup>                                      |
| JAK3⁵                                                       | KRAS <sup>1,5</sup>   | MEF2B <sup>2-4</sup> | MGA <sup>1</sup>         | KMT2A <sup>1, 5</sup>    |             | > 6 MB across whole genome                               |
| KMT2D <sup>1-4</sup>                                        | MYC <sup>3, 5</sup>   | MYD88 <sup>1-4</sup> | NF1 <sup>1, 5</sup>      | NFKBIE <sup>1</sup>      | Ŧ           | Reccurent deletions <sup>1, 2</sup>                      |
| NOTCH1 <sup>1-4</sup>                                       | NOTCH2 <sup>2,4</sup> | NRAS <sup>1, 5</sup> | P2RY8 <sup>6</sup>       | PAG1 <sup>5</sup>        |             | Del17p                                                   |
| PAX5 <sup>1,5</sup>                                         | PIM1 <sup>1, 4</sup>  | PTEN <sup>3-5</sup>  | PTPN11 <sup>1,5</sup>    | POT1 <sup>1</sup>        |             | Del11q                                                   |
| RB1 <sup>1,5</sup>                                          | RPS15 <sup>1</sup>    | RUNX1⁵               | SAMHD1 <sup>1</sup>      | SETD2 <sup>1,5</sup>     |             | Trisomy <sup>1,2</sup>                                   |
| SF3B1 <sup>1,2</sup>                                        | SH2B3 <sup>6</sup>    | SHOX <sup>6</sup>    | TNFRSF14 <sup>3, 4</sup> | TP53 <sup>1-5</sup>      |             | Tri12                                                    |
| TYK2 <sup>6</sup>                                           | UBR5 <sup>2</sup>     | WHSC1 <sup>2</sup>   | XPO1 <sup>1</sup>        | ZMYM3 <sup>1</sup>       | A           | cnLOH <sup>1-6</sup>                                     |
| exon-proximal probes 3'UTR region included introns included |                       |                      |                          |                          |             | according to SNP probe density                           |

# Whole exome sequencing (WES)

- Mainly experimental approach for exploring unknown variants
- Used in
  - genetic counseling
    for identification of
    causative variants
  - discovery of novel genetic markers
  - searching for

treatment targets



## WES - case report of Shwachman-Diamond syndrome

- a multisystem autosomal recessive disorder
- clinical features: pancreatic exocrine
  insufficiency, hematologic dysfunction, and
  skeletal abnormalities
- haematological malignancies (e.g. myelodysplastic syndrome and acute myeloid leukemia) occur in one third of patients
- homozygous or compound heterozygous variations in SBDS gene





## Whole genome sequencing (WGS)

- Mainly experimental method for exploring unknown variants
- Applications similar to WES, additional information about non-coding regions and chromosomal abnormalities
- Typicall sequencing coverage ~ 30-100x detection of clonal or germline mutations
- Shallow sequencing (~ 0.5-10x coverage) genome-wide detection of chromosomal abnormalities, low yield of mutation detection
- In clinical practise a potential benefit of combination of shallow and panel sequencing





#### The end...

Contact: <u>karla.plevova@mail.muni.cz</u> or <u>plevova.karla@fnbrno.cz</u> CEITEC MU A35 Internal Medicine - Hematology and Oncology, University Hospital Brno

Thank you for your attention!