Case report

Alagille syndrome

<u>Alagille syndrome</u> is a highly variable, autosomal dominant multisystem disease

- <u>Alagille syndrome 1</u>, ALGS1 (MIM # 118450), which is caused by a mutation in the *JAG1* gene on chromosome 20p12, with an incidence of 1:30,000 live births, 98% of patients with ALGS
- <u>Alagille syndrome 2</u>, ALGS2 (MIM # 610205), which is associated with a mutation in the *NOTCH2* gene on chromosome 1p12 and represents a rarer form of disability (1: 70,000 live births), 1-2% of patients with ALGS

The basic symptom of the syndrome is <u>a reduction of</u> <u>intrahepatic bile ducts</u> in combination with 5 diagnostic features:

- <u>Cholestasis</u> (jaundice with conjugated hyperbilirubinemia, ↑ GGT, ↑ Chol, ↑ TGL, 10-20% of patients with rapid progression of liver disease)
- <u>Congenital heart disease</u> (most often peripheral pulmonary stenosis, Fallot's tetralogy, pulmonary atresia, atrial or ventricular septal defect)
- <u>Skeletal abnormalities (most often butterfly vertebrae, vertebral fusion,</u> spina bifida occulta, hemivertebra, 12th rib anomalies)
- <u>Eye disorders (most often posterior embryotoxon prominence of the</u> Schwalbe's ring at the interface of the iris and cornea)
- <u>Characteristic appearance</u> of a triangular face with a wide forehead, deep set eyes, hypertelorism, lower set ears and a longer onion-shaped nose

• <u>3 of these 5 major characters must be</u> present to confirm the diagnosis

patient with ALGS, typical face

posterior embryotoxon

• bile duct paucity

• butterfly vertebrae

- About 39% of patients suffer from kidney problems, most often renal dysplasia
- Growth retardation
- Pancreatic insufficiency (40%)
- Hypothyroidism
- Recurrent infections
- Mental retardation and learning disabilities usually in patients with deletion 20p12
- Alagille syndrome is a genetically heterogeneous disorder

• We present phenotype of 4 probands with ALGS1, whose involvement was confirmed by molecular genetic examination

 Method: next generation sequencing technique (MiSeq, Illumina) followed by direct sequencing of PCR products on a genetic analyzer. At the genomic DNA level, the coding region of the JAG1 gene, including exon / intron boundaries, was sequenced. The obtained sequences were compared with the reference sequences of the JAG1 gene NG_007496.1 and NM_000214.2. The analysis of the found variants was performed on the basis of the reference database (http://www.ncbi.nlm.nih.gov/projects/SNP).

Phenotype of patients with ALGS1

Table 1 C	linical featu	res present	in carriers	of JAG1 m	utations								
Pacient	Diagnosis	Peculiar face	Cholestasis	Liver biopsy		Heart dise	ase	Ocular	Skeletal	Renal	Others		
	Age							anomalies	anomalies	anomalies			
1	16 month	yes	yes	intrahepatic b	ile duct		pulmonary	no	butterfly	no	learning disat	bility	
				paucity		artery sten	osis		vertebrae				
2	6 years	yes	yes	intrahepatic b	ile duct	peripheral	pulmonary	no	no	no			
				paucity		artery sten	osis						
3	7month	yes	yes	intrahepatic b	ile duct	peripheral	pulmonary	no	no	ren	behavioral dis	orders	
				paucity		artery sten	osis			arcuatus			
4	3 month	yes	yes	intrahepatic b	ile duct	peripheral	pulmonary	embryotoxon	rib	cystic	hypothyroidis	m	
				paucity		artery sten	osis	posterior	anomalies	disease	growth retard	ation	

Results of molecular genetic testing of the JAG1 gene

Table 2 Mutations in JAG1 found in patients with Alagille syndrome											
Pacient	identified sequence variants	Mutation	Exon	cDNA	Protein	Mutation					
		origin				type					
			25		p.Asn1064Glufs*45	frameshift					
1	gene JAG1 (NM_000214.2):c.3189dupG in heterozygous state	not		c.3189dupG							
	novel mutation, duplication	investigated									
			16		p.Gly680Alafs*63	frameshift					
2	gene JAG1(NM_000214.2): c.2039delG in heterozygous state	mother		c.2039delG							
	novel mutation, deletion										
			15		p.Cys638Leufs*105	frameshift					
3	gene JAG1 (NM_000214.2):c.1913delG in heterozygous state	father		c.1913delG							
	novel mutation, deletion										
			18		p.Arg744Ter	nonsense					
4	gene JAG1 (NM_000214.2):c.2230C>T p.(Arg744Ter) in heterozygous state	de novo		c.2230C>T							
	substitution										
the c. nomenclature is based on the cDNA sequence NM_000214.2											

Family screening

- The mother of proband No. 2 was monitored at the Department of Gastroenterology for unexplained hepatitis
- Molecular genetic examination also confirmed ALGS1
- Cardiac examination revealed aortic valve insufficiency
- Another sibling molecular-genetically ALGS1 excluded
- **Importance:** diagnosis and genetic counseling in the family

- The care of these patients is multidisciplinary
- It includes a pediatrician, hepatologist, cardiologist, ophthalmologist, nephrologist, endocrinologist, nutritional therapist, radiologist, geneticist and, in some cases, a transplant team.

- Molecular-genetic examination X classical scoring system
- Genetic testing in <u>unclear cases</u>