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Brief History of Cell Death Research

1842 - Karl Vogt noticed dying cells in toads (formation of
vertebrae). The first scientific observation of regulated cell death
(RCD).

1965 - Lockshin and Williams - specific cells die during the
metamorphosis of the silkworm, this type of cell death is
'programmed' because these cells were destined to die according
to a 'construction manual' for the insect.

1972 - Kerr et al. - specific type of cell death in human tissues in
which the cells and nuclei became condensed and fragmented,
and they called this cell death process 'apoptosis'. They proposed
that apoptosis is crucial for regulating cell populations during
tissue development and turnover

1973 - Schweichel and Merker originally described three forms of
programmed cell death which they called types | (apoptosis), Il
(autophagy) and Il (necrosis).

2005 — present, NCCD (Nomenclature Committee on Cell
Death) publication (Guido Kroemer et.al.).
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Types of cell death papers: a timeline

Look, my cells
die

rLook, my cells

look this

funny when
they die

Ceramide does
it all and
even more

[?he Australians
are wrong

The Americans
are the ones
who are wrong

That French
dude is defi-
nitively wrong

‘Inhibition of
this protein
sensizes to
TRAIL

Drugoptosis: a
life dependent
form of cell
death

RIPK1 is
phosphorylated
there too

I crossed 27
mouse strains
and now the
mouse is normal

Ferroptosis is

regulated by
my metabolic
pathway

Recommendations
of the Nomencla-
ture Committee on
Cell Death 2047:
the 37854 forms
of cell death




Accidental vs. Regulated Cell Death

Galluzzi, L., Bravo-San Pedro, J., Vitale, I. et al. Essential versus accessory aspects of cell death:
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* Cell death plays a central role in all aspects of life. It is involved in the development of PERTURBATION ]
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Regulated Cell Death
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* Apoptosis is the first described form of programmed cell death, and it plays a critical role in tissue
homeostasis.

|t contributes to cell turnover, the proper functioning of the immune system, and embryonic development.
* There are several key characteristics of apoptosis:

cellular, organelle, and DNA fragmentation and formation of apoptotic bodies

active, energy consuming process executed by a subset of cellular proteins

Even though, in general, this process is immunological silent, apoptosis has been shown to be involved in
inflammatory pathologies as well.

Pre-Apoptotic Cell Early Apoptotic Cell Late Apoptotic Cell
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There are two (or 3) major pathways that mediate apoptosis: intrinsic and extrinsic pathways.

During extrinsic apoptosis, TNF (tumor necrosis factor) superfamily (TNFSF)
can induce cell death by binding to their cell surface receptors and
activating a deathly signaling cascade causing extrinsic apoptosis. Aciacentco

EXTRINSIC APOPTOSIS

FASL Release by immune cells

Intrinsic apoptosis is controlled by the equilibrium
of the different Bcl-2 (B-cell ymphoma 2) family
members which can be disrupted by various stimuli
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Caspases

Caspases (cysteine-aspartate proteases) are proteolytic
enzymes generally known for their role in controlling cell
death and inflammation.

Their role in cell death was described more than 20 years ago
with the discovery of ced-3 as a trigger for cell death during
the development of Caenorhabditis elegans.

Caspases are involved in cell death by apoptosis, necroptosis
and pyroptosis. Caspase function is not just about cell death.

Non-apoptotic roles of caspases include proliferation, tumor
suppression, differentiation, nervous system development
and axon navigation, aging and angiogenesis.

1. The altered huntingtin protein is too big
to be able to easily cross the envelope
into the nucleus.

altered huntingtin
nuclear envelope 3 2. Caspases play a big role in
¢ cutting up altered huntingtin
into small fragments that can
. » move into the nucleus.

caspase

, . nucleus
pores in nuclear <

envelope 3. The fragments can easily

move into the nucleus and
cause nerve cell death

https://hopes.stanford.edu/caspase-6-inhibition/

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death & Differentiation. 2015;22(4):526-539.



Caspases

Caspases Species specificity Domain Structure
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Domain structure and functional
classification of placental mammalian
caspases.

Caspase-1, -4, -5, -11 and -12 are
Inflammatory caspases.

Apoptotic caspase-2, -8, -9 and -10 are
Initiators

Caspase-3, -6 and -7 are key
executioner caspases.

CARD, caspase recruitment domain;
DED, death effector domain;

L, large subunit;

S, small subunit;

S*, short form;

L*, long form

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death & Differentiation. 2015;22(4):526-539.



Intrinsic Apoptosis

* Involves increases in the expression or activity of pro- La_lIntrinsic apoptosis _J
. . . . . . . Growth factor deprivation

apoptotic BH3-only proteins that bind with high affinity to Cellular stress

members of the pro-survival BCL-2 protein family, which in healthy T?Qjﬁ?@?‘;{;i}jﬁj Pro-sunival

cells keep the effectors of apoptosis, BAX, and BAK, in inactive D Nt
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Extrinsic Apoptosis

e Triggered by TNF family ligand-receptor interactions, most T T
prominently by TNF family ligands: TNF, FasL, TRAIL, and TL1A. Eiileendchivetion
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Apoptosis sensitivity during development

Apoptosis is differently and dynamically regulated across the mammalian lifespan.

Tissues that are highly proliferative (developing tissues, adult haematopoietic system) are typically primed for apoptosis (red).
High apoptotic priming in these tissues makes them highly sensitive to various insults .

Tissues that are largely postmitotic are apoptosis refractory (green), whereas tissues that are characterized as unprimed (yellow)
contain highly heterogeneous cell types that differ in apoptosis sensitivity.

The level of priming within cells or tissues is dependent on the expression of BCL-2 family proteins BAX and/or BAK.
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Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology. 2019;20(3):175-193.



Regulated Necrosis vs Apoptosis - Lytic vs Non-lytic cell death

* Non-lytic cell death, apoptosis
(the integrity of plasma
membrane is sustained).

* Plasma membrane rupture
(PMR) is the final cataclysmic
event in lytic cell death
(regulated or accidental
necrosis).

* PMR releases intracellular
molecules known as damage-
associated molecular patterns
(DAMPs) that propagate the
inflammatory response.
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Pyroptosis

Pyroptosis is a potent inflammatory mode of lytic cell death triggered by diverse infectious and sterile insults.
It is driven by the pore-forming fragment of gasdermin D (GSDMD) and releases two exemplar proteins:
pro-inflammatory cytokine IL-1B, and LDH, a standard marker of PMR and lytic cell death.

Two sequential steps for pyroptosis:

* initial formation of a small plasma membrane pore that causes the release of IL-1B and non-selective ionic fluxes
* subsequent PMR attributable to oncotic cell swelling with final PMR by NINJ1 protein.

Caspase 1 and caspase 11 (caspase 4 and
caspase 5 are the human homologues of
mouse caspase 11) have important roles
in pyroptosis, that is widely considered to
be involved in defending the organism
against pathogens

%@
— IGSDMD

IL- 1[3
IL-18

Bedoui, S., Herold, M.J. & Strasser, A. Emerging connectivity of programmed cell
death pathways and its physiological implications. Nat Rev Mol Cell Biol 21, 678—
695 (2020). https://doi.org/10.1038/s41580-020-0270-8
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Necroptosis

Necroptosis is a pathway for genetically programmed lytic cell death that is thought to have a role in the killing of pathogen-
infected cells and/or damaged cells during certain degenerative or inflammatory disorders.

Necroptosis can be induced by multiple innate immune signaling pathways.

These pathways all lead to the phosphorylation and activation of the necroptotic kinase RIPK3, which in the case of death-
receptor-induced necroptosis also requires RIPK1 activity. RIPK3 activates MLKL through phosphorylation and allows
trafficking of MLKL to the plasma membrane, where it induces membrane permeabilization.

MLKL-mediated
membrane
permeabilization
(pore?)
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cFLIP long > N E - - cell swelling Bedoui, S., Herold, M.J. & Strasser, A.
e Disruption of Emerging connectivity of programmed cell
(lg ,ED MLKL membrane death pathways and its physiological
) potential implications. Nat Rev Mol Cell Biol 21, 678—
% Active caspase 8 * Cell lysis 695 (2020). https://doi.org/10.1038/s41580-
020-0270-8



The role of cell death in host responses to infection.
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https://www.nature.com/articles/s41580-020-0270-8#Glos21

The role of cell death in host responses to infection.

Pathogen Disease Characteristics Host cell Experimental condition Pathogen strategy Cell death Ref
death Recognition by host  outcome
Chiamydiae spp. ~ Chlamydia STD O, G-, cocci, non-motile | Apoptosis  Infection of HeLa and U937 cells. Chlamydiae protected ~ Inhibition at the level Pathogen
cells from apoptosis by ditferent apoptotic stimuli of cytochrome ¢ survival
release
R. rickettsii Rocky Mountain O, G-, z-proteobacteria, | Apoptosis Infection of endothetial cells. Cells survived unless 1 NF-xB Pathogen 12
spotted fever cocci and bacilli, NF-kB was inhibited survival
non-motile
B. pertussis Pertussis or Fl, G-, f-proteobacteria, Apoptosis?  Infection of J774A.1 and alveolar macrophages. DNA 7 Pathogen
whooping cough  coccobacilli, motile and nuclear observed survival
B. pseudomallei Meloidosis Fl, G-, f-protecbacteria, Pyroptosis Infection of THP-1 cells. Oncosis phenotype observed 7 ? 51
bacilli, motile Caspasel ' PEMs are resistant to cytotoxicity at
low MOls
L L 4 Fl, G-, g teria, Pyrop! Ipal " and caspase-1 ' mice are susceptible to Flagellin recognition Pathogen 464084
disease bacilli, motile infection® by the IPAF clearance®
inflammasome.
Role of Naip5 in cid
restriction of bacterial
growth
Autophagy Pathogen
survival
P. aeruginosa Infection of the Fl, G-, y-proteobacteria, Apoplosis Mice deficient in CD95 signaling were more ? Pathogen »
respiratory tract  bacilli, motile susceptible to P. aeruginosa-induced sepsis. In WT clearance
(Cystic Fibrosis mice, infection led 10 lung epithelial cell apoptosis
patients)
Pyroptosis In response to strains not expressing ExoU Recogpnition by the Pathogen 46.81.06
Ipaf " mice are susceptible to infection® Ipaf inflammasome, clearance”
not completely
dependent on flagelin
Caspase-1- I response to strains expressing ExoU ExoU induces cell Pathogen %
independent death and caspase-1- survival
death dependent inflammation
S. Fl, G-, Yroptos yroptosis, rather than apoptosis, is the main death Flagellin recognition Pathogen 34+
gastroenteritis bacilli, motile mode since caspase-1 ' macrophages are resistant by the IPAF clearance® 7¢-7%
to cell death. Caspase-1 '~ mice are susceptible inflammasome
to infection”
Apoptosis  Infection of HeLa cells. Apoptosis detected by AVIA | NF-xB ?

nnexin V staining

Y. postis Y. Bubonic plague Fl, G-, ;-protecbacteria, Apoplosis Infection of macrophages inhibit NF-kB and MAPK YopJ NF-kB and MAPK  Pathogen 222
pseudoluberculosis bacilli, motility is signaling in a YopJ-dependent manner signaling survival
temperature-dependent
Pyroptosis  TLR stimulation switches the death mode from YopJ-independent Pathogen
apoptosis to pyroptosis clearance
H. pylon Gastric ulcers, E, G-, ¢e-protecbacteria, Gastnc EC Infection of Fas-deficient mice resulted in a more ? Mider 2
gasinc cancer hehcal, motile apoplosis severe disease. In WT mice, infection led 1o gastric disease
epithelial cell apoptosis

S. pneumoniae Pneumonia, otitis  E, G+, capsulated, cocci, Apoplosis Macrophages expressing Mcl-1 as a transgene Induction of a BH3-only  Pathogen <3
media, meningitits non-motile exhibit a delay in apoptosss and bactenal killing Mcl-1 splice variant clearance
L. monocytogenes Listenosis FI, G+, bacilli, motile at  Pyroptosis  Bacterial killing was delayed in caspase-1-deficient Listeria is detected by Pathogen 4576
gastroenteritis lower temperatures mice. Caspase-1 ' mice are susceptible to infection®  the Nalp3 inflammasome clearance”
Autophagy Pathogen  '04
clearance
B. anthracis Anthrax Fl, G+, capsulated, Apoplosis Treatment of LPS-activated BMDM or J774A.1 LF processes MKKG ? 24
bacilli, form endospores with LF induces apoptosis and p38 signaing
Pyroptosis LT recognition by the
Nalp1b inflammasome

2 80

v ormmon vons rra s ey Auopryy rauogen
single-stranded positive- survival
sense ANA genome

intraceBular: PEM, peritoneal exudates EC, opithes BMOM BCG, Bacillus Cal
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The role of cell death in host responses to infection.

Pyroptosis
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Although necrosis and pyroptosis are important barriers against microbial pathogens, disruption of their regulation
causes numerous autoimmune and inflammatory conditions leading to various diseases.



Regulated Cell Death
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Necroptosis, pyroptosis, ferroptosis, and NETosis are types of
programmed necrosis where lytic cell death is mediated by an
activatable genetic program.

Accidental and programmed necrosis share morphological
features: Swelling of the cell and permeabilization of the cell
membrane associated with the release of potentially
dangerous contents of the dying cell (DAMPs) - induction of
inflammation.

Inflammation associated with necrosis is caused by
inflammatory cytokines and DAMPs (cell molecules released
into the environment with loss of membrane integrity) from
cells subject to necrotic cell death.

Defects
associated with the development of
autoimmune diseases.

in  programmed necrosis and efferocytosis are
inflammation and

Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Molecular Oncology. 2020;14(12):2994-3006.



Other forms of regulated cell death

AUTOPHAGY DEPENDENT CELL DEATH
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Autophagy

The process of recycling cellular material, adaptation and maintenance of homeostasis of the internal environment of the cell.

Under physiological conditions, it contributes to genome stability by regulating damaged proteins and organelles.

An important process in the differentiation of cells of the immune system and other tissues.

An important role in the adaptation of the newborn to oral food.

Disruption of this process is associated with many human pathologies: Neurodegenerative diseases (Alzheimer, Parkinson,...) -
insufficient degradation of proteins by autophagy (eg. beta amyloid in the plaques of NS cells) is the cause of these diseases.

Cancer diseases: Induction Phagophore Autophagosome formation Fusion Degradation and recycling
An important mechanism of T~ Lysosome

resistance (including MDR) and —_ e /. = @ 23

tumor cell metastasis (testing of  [yoe ¢ Lo Lo® o T

inhibitors and inducers of b Mol 08 [ 1@ — < 0 ||

autophagy in clinical trials). e e AN o ol & LN RAB?

LC3-Il Autophagosome Autolysosome O _ O Recycled
[®) O o products
O

Key
Mitochondria Intracellular components QC Protein aggregates q Hydrolases

https://www.youtube.com/watch?v=Hqs1WzTwBEU&ab channel=WallStreet)Journal



https://www.youtube.com/watch?v=Hqs1WzTwBEU&ab_channel=WallStreetJournal

Autophagy-dependent cell death (ADCD)

Autophagy-dependent cell death (ADCD) relies exclusively on the autophagic pathway components, which is an important
distinction given that autophagy can also coincide with other forms of cell death.

ADCD can proceed by two different pathways:
* Cell death induced by extensive degradation of organelles which is dependent on the autophagic flux.
e Autosis, does not depend on the fusion of autophagosomes and lysosomes.

In both cases, vacuole formation in the cytoplasm can be detected. Treatment of cancer cells with resveratrol triggers the
autophagic flux-dependent ADCD, without activating apoptosis or necroptosis.

The massive degradation by lysosome fusion leads to a breakdown of the cytoplasmic organization with loss of organelles such
as endoplasmic reticulum or mitochondria.

Autosis can be induced by starvation or hypoxia, which leads to cell swelling and eventually rupture of the plasma membrane.
Autotic cells were also identified in samples of patients with severe anorexia nervosa.

ADCD has been shown in association with physiological process as well as various pathologies including reperfusion injuries
and various forms of cancer.



Other forms of regulated cell death

Mitochondrial permeability transition pore (MPTP)-mediated necrosis

MPTP can mediate necrosis based on changes in the intracellular microenvironment. Two factors that can induce opening of
the pores are oxidative stress and cytosolic/ mitochondrial Ca?* accumulation. The pores allow the flux of molecules leading
to breakdown of the H* gradient and subsequently halting the ATP synthesis.

Parthanatos

Parthanatos is a form of regulated cell death dependent on poly(ADP) ribose polymerase 1 (PARP1). PARP1 is part of the
DNA repair machinery which binds DNA. Severe DNA damage by prolonged generation of reactive oxygen species or reactive
nitrogen species (RNS) induces recruitment and activation of PARP1 to the leading to the formation of PAR polymers and
depletion of NAD* and ATP, which might be fatal for the cell.

NETosis

Neutrophils are part of the innate immune system, and their main task is to neutralize pathogens by phagocytosis or
degranulation. Another form of host defense is the formation of NET (neutrophil extracellular traps). NETosis describes the
process of neutrophil DNA release into the extracellular space. The release of neutrophil DNA containing different proteins
with anti-pathogenic activity can be associated with cell death but can be independent of it as well.

Ferroptosis
Ferroptosis is a form of regulated cell death that depends on iron (Fe?*)-mediated lipid peroxidation induced by ROS.

Entosis and Cannibalism
Digestion of engulfed homotypic or heterotypic cell.



Holographic Microscopy and Quantitative Phase Imaging (QPI)
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* Long-term monitoring of the cell population
* Analysis of morphological and dynamic
parameters in time



Holographic Microscopy and Quantitative Phase Imaging (QPI)
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QPI

Time-lapse imaging
of untreated PC-3 cells

PC-3 metastatic prostate cancer cell line

Time-lapse quantitative phase imaging
using Tescan Q-PHASE microscope
with objectives 10x/0.30

Used grayscale:

-0.6 [pg/um?

Time-lapse imaging
of cannibalism with cell fusion
(digestion of engulfed cell)

PC-3 metastatic prostate cancer cell line
2 uM plumbagin treatment

Time-lapse quantitative phase imaging

using Tescan Q-PHASE microscope
with objectives 10x/0.30

Used grayscale:

Time-lapse imaging
of entosis and oncosis

PC-3 metastatic prostate cancer cell line
2 uM plumbagin treatment
Time-lapse quantitative phase imaging

using Tescan Q-PHASE microscope
with objectives 10x/0.30

Used grayscale:

Time-lapse imaging

of reverse oncosis

PC-3 metastatic prostate cancer cell line
2 uM plumbagin treatment

Time-lapse quantitative phase imaging

using Tescan Q-PHASE microscope
with objectives 10x/0.30

Used grayscale:




Cell death detection using QPI

As a dead cell can be considered:
Cell whose membrane has lost its barrier function.

Cell which has disintegrated into separate bodies, often referred to
as apoptotic bodies.

Cell which was engulfed by professional phagocytes or surrounding
cells.

All these processes are associated with changes in cell mass!

@ Cell Death and Differentiation (2015) 22, 58-73
© 2015 Macmillan Publishers Limited All rights resen 715
www.nature.comfcdd

OPEN

Review

Essential versus accessory aspects of cell death:
recommendations of the NCCD 2015

L Galluzzi*'#%1% M Bravo-San Pedro'**, | Vitale®, SA Aaronson®, JM Abrams’, D Adam?®, ES Alnemri®, L Altucci'®, D Andrews'",
M Annicchiarico-Petruzzelli'?, EH Baehrecke'®, NG Bazan', MJ Bertrand'>"®, K Bianchi'”'®, MV Blagosklonny'®, K Blomgren®®,




Detekce bunécné smrti pomoci QPI
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RozliSeni mezi apoptdzou a nekrdzou
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RozliSeni mezi apoptdzou a nekrdzou

Apoptotic cells Necrotic cells
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Based on morphological and dynamic parameters, we are able to automatically distinguish two distinct populations
of cells. Without the use of dyes, only on the basis of a light microscopic method.



RozliSeni mezi apoptdzou a nekrdzou
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RozliSeni mezi apoptdzou a nekrdzou
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Rozliseni mezi apoptdzou a nekrdzou
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Rozliseni mezi apoptdzou a nekrdzou
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