
Anticancer drugs

Cancer epidemiology - incidence and mortality in the Czech Republic

Czech Cancer Care in Numbers 2015

🛏 incidence

Complex Cancer Treatment

- Surgery
- Radiotherapy

Pharmacoterapy

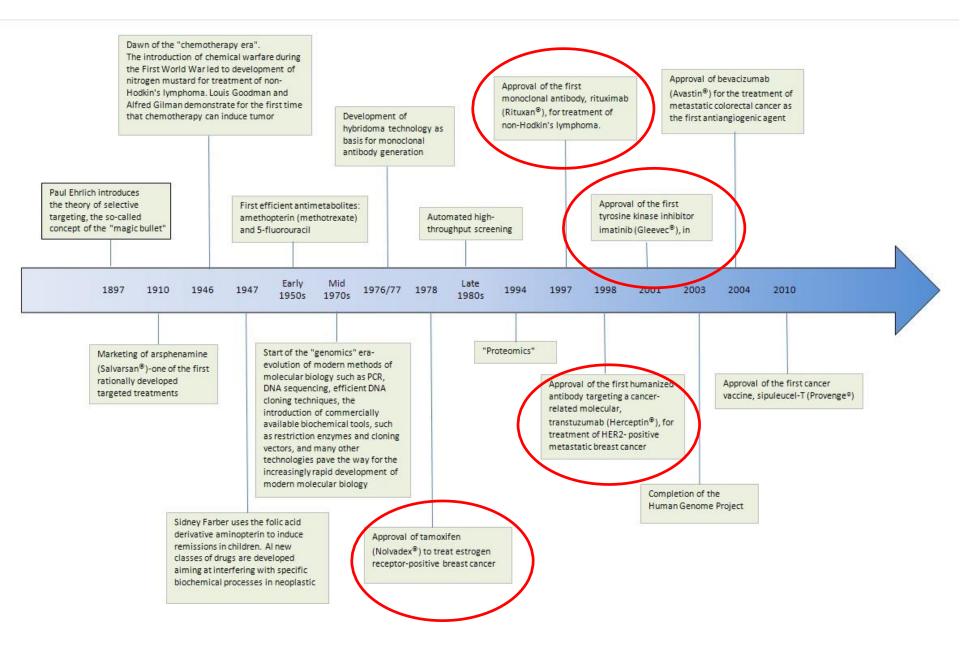
— Psychotherapy, physiotherapy, nutrition care

 $M \vdash I$

Pharmacotherapy

-cytostatic agents

-classification according to the mechanism of action


-endocrine (hormonal) therapy

-targeted therapy

monoclonal antibodies targeting extracellular part of receptors
 tyrosine kinase inhibitors / intracellular signaling cascades inhibitors

-pain management, supportive care

MUNI Med

Cytostatic drugs

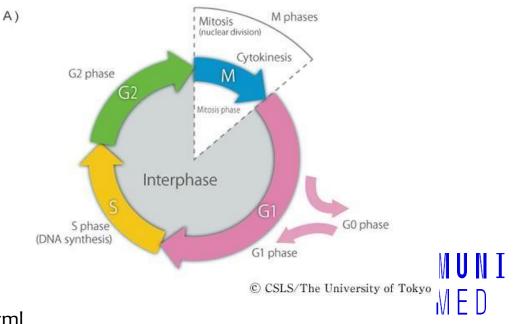
-route of administration:

—parenterally (i.v. bolus, infusion, intrathecally, intravesically...)
—orally

- —posology: dose in mg/m² or mg/kg
- -monotherapy and combination regimens

—repeated administration in cycles pause = patient's recovery, prevention of severe AE + ,,waking" dormant cells in G_o phase

Cytostatic drugs


Different efficacy according to the cell cycle phase:

-Cell cycle non-specific cytostatics (e.g., busulfan)

—Cell cycle specific cytostatics:

-Phase-nonspecific (e.g., some of alkylating agents)

-Phase-specific (e.g., antimetabolites, taxanes)

http://csls-text3.c.u-tokyo.ac.jp/active/13_01.html

Cytostatics according to their MoA

1. Drugs that damage the structure of DNA

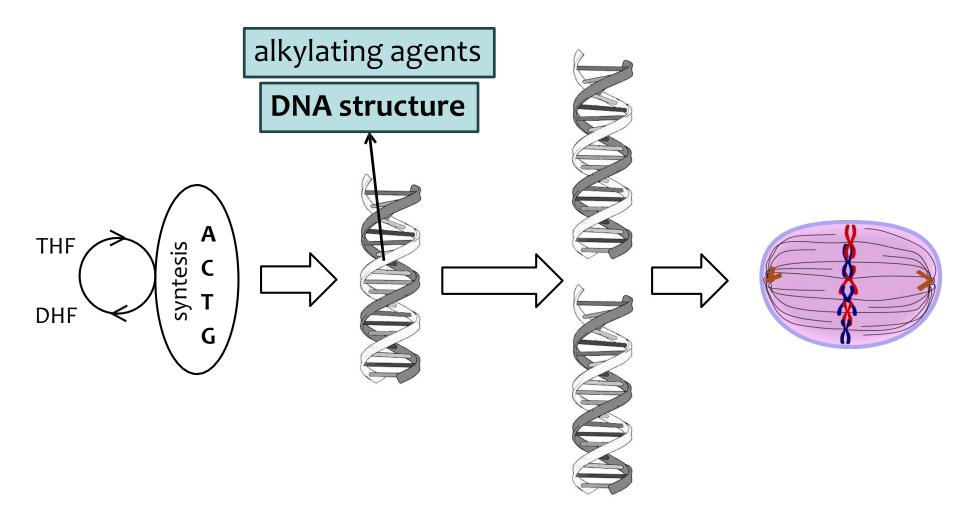
- a) Alkylating agents
- b) Platinum derivatives
- c) Intercalating agents
- d) Bleomycin

2. Drugs that inhibit key enzymes of DNA metabolism

- a) Antimetabolites:
 - i. Purine analogues
 - ii. Pyrimidine analogues
 - iii. Folic acid analogues
 - iv.Hydroxyurea
- b) Topoisomerase inhibitors:
 - i. Inhibitors of topoisomerase I camptothecins
 - ii. Inhibitors of topoisomerase II podophyllotoxins

3. Drugs that alter microtubules

- a) Inhibitors of tubulin polymerization Vinca alkaloids
- b) Inhibitors of tubulin depolymerization taxanes
- 4. Others
 - a) Drugs that inhibit protein synthesis L-asparaginase

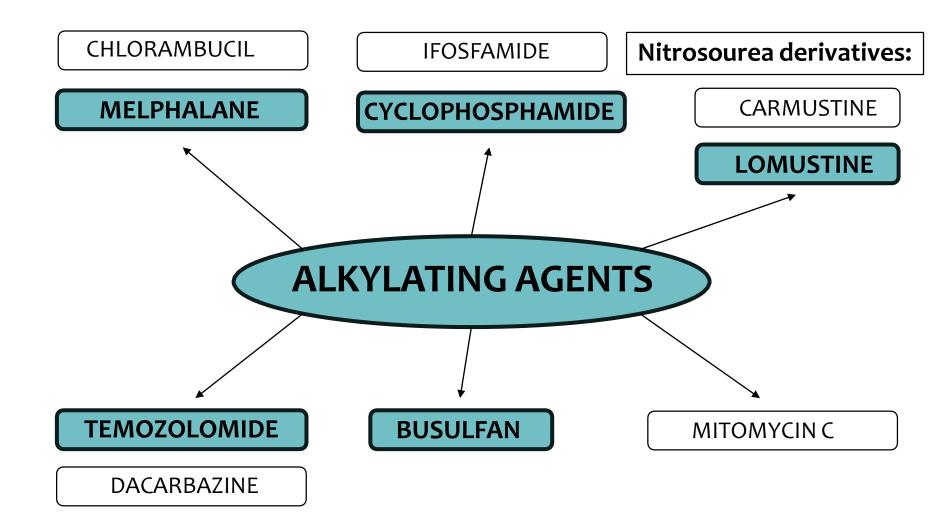

Drug groups overview

Cytostatics according to their MoA

1. Drugs that damage the structure of DNA

- a) Alkylating agents
- b) Platinum derivatives
- c) Intercalating agents
- d) Bleomycin
- 2. Drugs that inhibit key enzymes of DNA metabolism
 - a) Antimetabolites:
 - i. Purine analogues
 - ii. Pyrimidine analogues
 - iii. Folic acid analogues
 - iv.Hydroxyurea
 - b) Topoisomerase inhibitors:
 - i. Inhibitors of topoisomerase I camptothecins
 - ii. Inhibitors of topoisomerase II podophyllotoxins
- 3. Drugs that alter microtubules
 - a) Inhibitors of tubulin polymerization Vinca alkaloids
 - b) Inhibitors of tubulin depolymerization taxanes
- 4. Others
 - a) Drugs that inhibit protein synthesis L-asparaginase

1a) Alkylating agents



1a) Alkylating agents

- MoA: transfer of the alkyl group on nitrogen in nucleobases, covalent bond between two guanines of one or two DNA strands
 - Inhibition of replication, cell cycle arrest
- 50s: first derivatives of sulphur mustard in the clinical practice

1a) Alkylating agents – main drugs

1a) Alkylating agents

Melphalane

- i.v., p.o. administration
- treatment of hematological malignancies and solid tumors

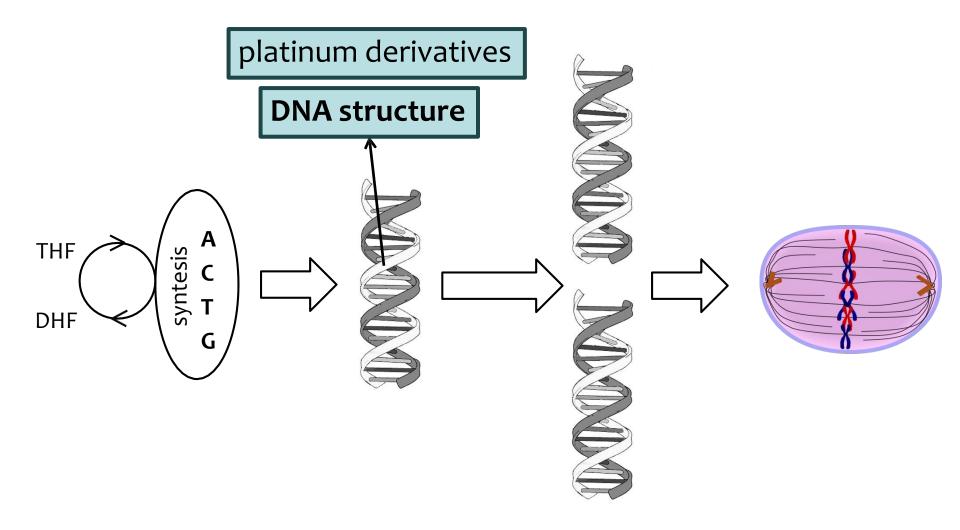
Cyclophosphamide

- i.v., p.o. administration
- prodrugs \rightarrow CYP450 \rightarrow cytotoxic metabolites
- AE: urotoxicity, emetogenity
- low doses immunosuppressant
- hematological malignancies and solid tumors

Lomustine

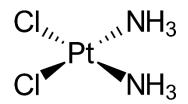
- p.o. administration
- lipophilic, crosses $BBB \rightarrow$ treatment of brain tumors

1a) Alkylating agents

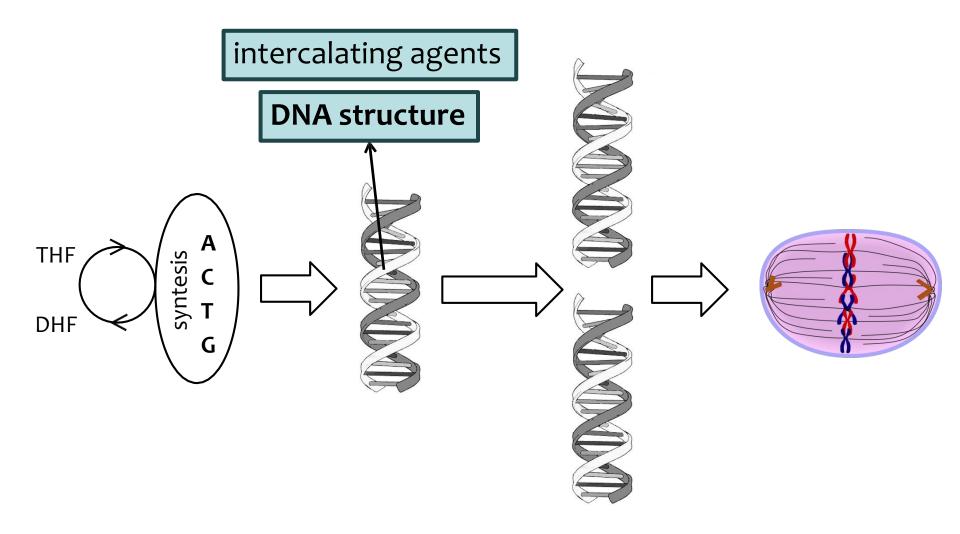

Temozolomide

- 100% bioavailability after oral administration
- crosses BBB \rightarrow treatment of brain tumors

Busulfan


- i.v., p.o. administration
- bone marrow transplantation
- treatment of hematological malignancies

1b) platinum derivates


1b) platinum derivates

- **MoA:** binding on DNA, cross-linking of DNA strands, inhibition of topoisomerases
- AE most important: emetogenity, nephrotoxicity
 - AE are dose-dependent
 - prevention of nephrotoxicity: i.v. hydration, forced diuresis
- **cisplatin** high nephrotoxicity
 - treatment of solid tumors

- others:
 - carboplatin
 - oxaliplatin typical neurotoxicity

1c) intercalating agents

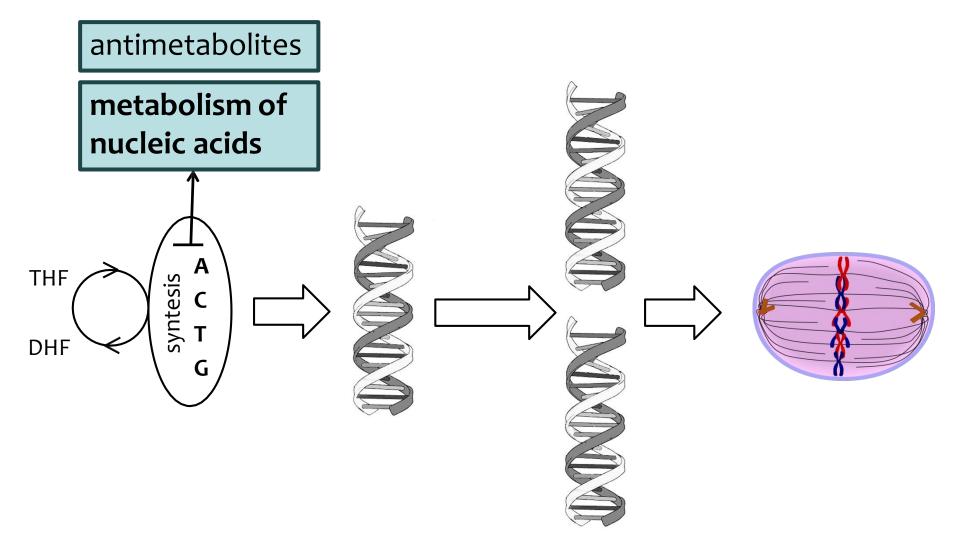
1c) intercalating agents

Anthracyclines

- MoA: intercalation = insertion between base pairs, binding of DNA strands
- AE typical toxicity: acute and chronic cardiotoxicity
- cardioprotective cumulative dose = restraint of therapy (e.g., doxorubicin 550 mg/m²)
- i.v., intravesical administration
- doxorubicin
 - treatment of hematological malignancies and solid tumors
 - modern dosage form (PEGylated liposomes) higher cumulative dose (860 mg/m²)
- others: epirubicin...

1d) bleomycin

- MoA: intercalation between base pairs
 + inhibition of thymine incorporation
 → breaks → DNA fragmentation
 ("radiomimetic" effect)
- i.v. administration
- treatment of solid tumors
- typical AE: fever,
 hyperkeratosis and
 hyperpigmentation of skin
 (flagellate = whip-like)
- risk of anaphylactic reaction


Cytostatics according to their MoA

- 1. Drugs that damage the structure of DNA
 - a) Alkylating agents
 - b) Platinum derivatives
 - c) Intercalating agents
 - d) Bleomycin

2. Drugs that inhibit key enzymes of DNA metabolism

- a) Antimetabolites:
 - i. Purine analogues
 - ii. Pyrimidine analogues
 - iii. Folic acid analogues
 - iv. Hydroxyurea
- b) Topoisomerase inhibitors:
 - i. Inhibitors of topoisomerase I camptothecins
 - ii. Inhibitors of topoisomerase II podophyllotoxins
- 3. Drugs that alter microtubules
 - a) Inhibitors of tubulin polymerization Vinca alkaloids
 - b) Inhibitors of tubulin depolymerization taxanes
- 4. Others
 - a) Drugs that inhibit protein synthesis L-asparaginase

2a. antimetabolites

2a. antimetabolites

- MoA: false substrates = affinity to target structure, loss of endogenous effect \rightarrow blockade of nucleic acid synthesis, inhibition of nucleotides metabolism enzymes, production of *non-sense* DNA sequences
- prodrugs: intracellular activation mostly by phosphorylation
- *a) purine analogues* 6-mercaptopurine, azathioprine, fludarabine...
- **b)** pyrimidine analogues fluorouracil, capecitabine, gemcitabine...
- c) folic acid analogues methotrexate, pemetrexed...

2a. Antimetabolites – i/ purine analogs

6-Mercaptopurin

- MoA: inhibition of purine nucleobases biosynthesis *de* novo, inhibition of mutual conversion of purine nucleotides
- thiopurin methyltransferase (TPMT): MP \rightarrow MeMP
 - genetic polymorphism ^toxicity / Jefficacy
 - available pharmacogenetic testing of TPMT
- p.o. administration, treatment of hematologic malignancies
- azathioprine prodrug of MP, immunosuppressant

2a. Antimetabolites – ii/ pyrimidines analogs 5-Fluorouracil

- MoA: incorporation to RNA + inhibition of thymidylate synthetase
- combined chemotherapeutic regimens of solid cancers (i.v.)
- **AE typical toxicity:** GIT toxicity (mucositis)
- biochemical modulation of effect: leucovorin (folinic acid) enhances binding on thymidylate synthetase, i.v. administered before FU
 - "FUFA" regimen = colorectal carcinoma
- capecitabine prodrug

2a. Antimetabolites – iii/ folic acid analogs Methotrexate

- **MoA:** inhibition of dihydrofolate reductase, thymidylate synthetase and other enzymes
- i.v., intrathecal administration, p.o.
- leucovorin (folinic acid) "rescue therapy", antidote forces free MTX out of healthy cells ; in cancer cells, polyglutamylation is more intensive → more MTXPG → MTXPG cannot be forced out
 TDM – calculation of time interval from MTX administration, frequently in pediatric patients, less frequent in adults
- AE typical toxicity:

nephrotoxicity – precipitation (acute renal failure) prevention: hydration, urine alkalinization (pH 7–7,5) pneumotoxicity

- low-dose MTX = immunosuppressant (p.o.)
- high-dose MTX = hematological malignancies

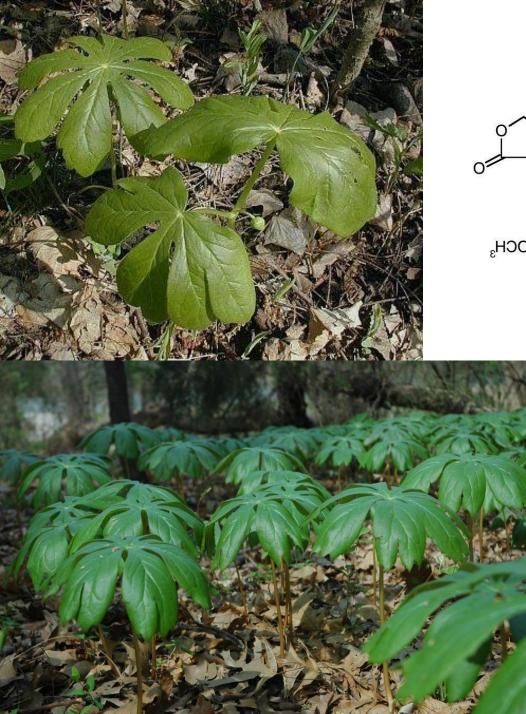
Cytostatics according to their MoA

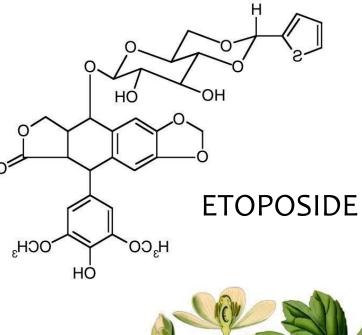
- 1. Drugs that damage the structure of DNA
 - a) Alkylating agents
 - b) Platinum derivatives
 - c) Intercalating agents
 - d) Bleomycin

2. Drugs that inhibit key enzymes of DNA metabolism

- a) Antimetabolites:
 - i. Purine analogues
 - ii. Pyrimidine analogues
 - iii. Folic acid analogues
 - iv.Hydroxyurea
- b) Topoisomerase inhibitors:
 - i. Inhibitors of topoisomerase I camptothecins
 - ii. Inhibitors of topoisomerase II podophyllotoxins
- 3. Drugs that alter microtubules
 - a) Inhibitors of tubulin polymerization Vinca alkaloids
 - b) Inhibitors of tubulin depolymerization taxanes
- 4. Others
 - a) Drugs that inhibit protein synthesis L-asparaginase

2b. Topoisomerase inhibitors Α THF syntesis C Т G DHF **DNA replication** topoisomerase inhibitors


2b. Topoisomerase inhibitors

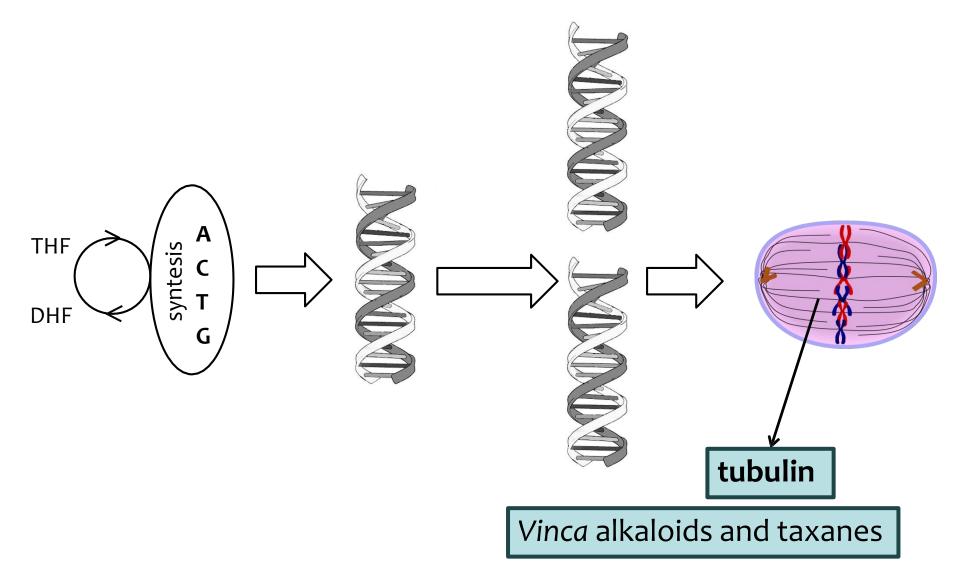

Topoisomerase I inhibitors – camptothecins

- plant-derived drugs identification in bark of the tree *Camptotheca acuminata*
- derivatives: irinotecan, topotecan
 - treatment of solid tumors

Topoisomerase II inhibitors – podophyllotoxins

- plant-derived drugs identification in *Podophyllum peltatum*
- derivatives: etoposide, teniposide
 - treatment of solid tumors (etoposide) and hematological malignancies (teniposid)

Podophyllum peltatum L. Image processed by Thomas Schoepke www.plant-pictures.de


Cytostatics according to their MoA

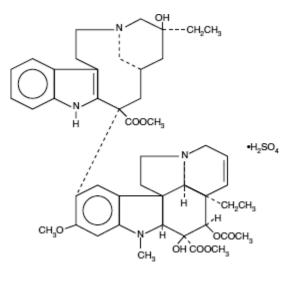
- 1. Drugs that damage the structure of DNA
 - a) Alkylating agents
 - b) Platinum derivatives
 - c) Intercalating agents
 - d) Bleomycin
- 2. Drugs that inhibit key enzymes of DNA metabolism
 - a) Antimetabolites:
 - i. Purine analogues
 - ii. Pyrimidine analogues
 - iii. Folic acid analogues
 - iv.Hydroxyurea
 - b) Topoisomerase inhibitors:
 - i. Inhibitors of topoisomerase I camptothecins
 - ii. Inhibitors of topoisomerase II podophyllotoxins

3. Drugs that alter microtubules

- a) Inhibitors of tubulin polymerization Vinca alkaloids
- b) Inhibitors of tubulin depolymerization taxanes
- 4. Others
 - a) Drugs that inhibit protein synthesis L-asparaginase

3. Tubulin alterating cytostatics

3a. Vinca alkaloids

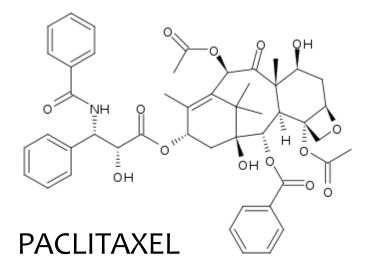

- ant-derived drugs
- MoA: inhibition of tubuline dimers polymerization inhibition of mitotic spindle formation, depolymerization prevails
- i.v. administration, some for p.o. (vinorelbine)
- treatment of hematological malignancies and solid tumors
- AE typical toxicity: peripheral neuropathy
- original alkaloids: vincristine, vinblastine
- semisynthetic derivatives: vinorelbine, vindesin, vinflunine increased affinity to mitotic spindle tubulin, JAE

Vinca alkaloids

- identification:
 lesser periwinkle
 (Vinca minor)
- isolation:
 Cataranthus roseus

VINBLASTINE

3b. taxanes


- plant-based drugs
- MoA: inhibition of tubulin depolymerization
- i.v. administration treatment of solid tumors
- AE typical toxicity: neurotoxicity
- paclitaxel, docetaxel, cabazitaxel

- modern dosage form: paclitaxel conjugated with albumine nanoparticles

- transporter protein for albumine in cancer cells = better distribution from circulation into the tissues
- ↓toxicity, ↑efficacy

Taxanes

 identification and isolation: *Taxus brevifolia* (Pacific yew) a *Taxus baccata* (European yew)

Combination of cytostatics

- monotherapy

- combination regimens – examples:

FUFA FOLFOX ABVD BEACOPP

fluorouracil, folinic acid folinic acid, fluorouracil, oxaliplatin doxorubicin, bleomycin, vinblastine, dacarbazine bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristin, procarbazine, prednisone

"Targeted therapy"in oncology

Targeted therapy in oncology (biological therapy)

- "target" should be on
- A/ tumor cells
- -Cell membrane receptor extracellular part or/ intracellular signalling pathway
- B/ immune system (specific T-cells) cancer immunotherapy
- -Immune check-point inhibitors (anti-CTLA-4 or anti-PD(L)1)