

Drugs used in diseases characterized by bronchial obstruction

Department of Pharmacology

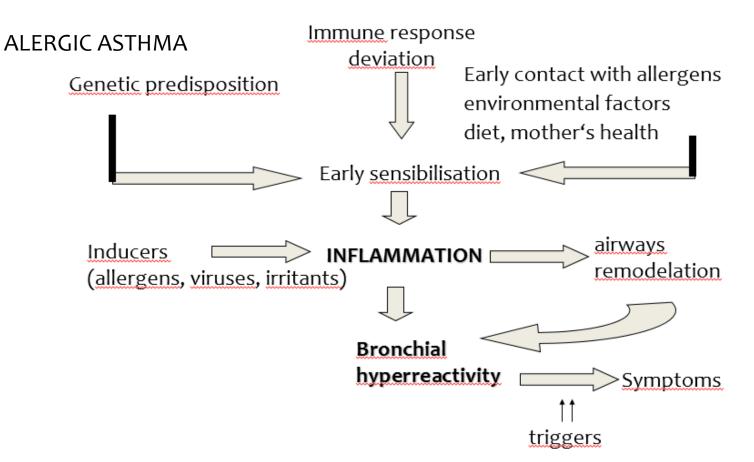
Bronchial asthma

chronic inflammatory disease of airways affecting 300 million people all across the globe prevalence in CZ: 8 %, in children over 10 %

Characteristics:

bronchial hyper-reactivity obstruction (often reversible) inflammation

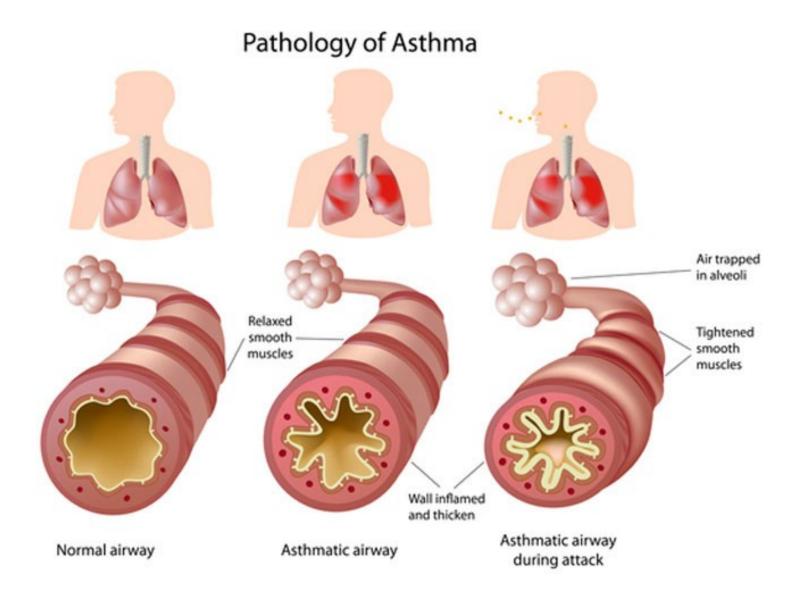
Symptoms:


shortness of breath (bronchoconstriction, mucous plug, oedema, airway remodeling due to the inflammation)

difficult and prolonged **expiration** \rightarrow wheezing, whistling

cough (especially at night or in early morning)

Bronchial asthma



NON-ALERGIC ASTHMA

MFD

- allergy not present
- excercire-induced, aspirin-sesitive, infectious, work-related, endogenous

https://www.canstockphoto.com/anatomy-of-asthma-6231875.html

Diagnose

Anamnesis – personal, familiar

Clinical examinations - auscultation, signs of atopy, eosinophilia, PEF – Peak Expiratory Flow FEV 1 – Forced Expired Volume

Laboratory tests- eosinophilia, IgE

Allergy testing

Classification with regard to seriousness

MFD

Intermittent – sign up to once a week, night symptoms up to twice a month, pulmonary function normal

Mild persistent– signs no more than once daily, night symptoms up to twice a month, PEF at least 80 %

Moderate persistent– signs once a day and are not permanent, night sign no more than once a week, PEF 60-80 %

Severe persistent – permanent signs, daily, obstruction, PEF $\leq 60 \%$

Managment of asthma

 $\mathbb{N} \vdash \mathbb{D}$

the disease itself cannot be fully treated, the goal is to keep asthma under control

Goals:

minimalize both acute and chronic symptoms reduction of exacerbations (lessen SABA administration) improvement of the quality of life (physical activity) avoid adverse effects of the treatment

Chronic obstructive pulmonary disease (COPD)

affecting 600 million people all across the globe prevalence: 8 % risk factors: smoking, polluted air, dust and chemical vapors at workplace, genetic predisposition

Characteristics:

chronic inflammation caused and maintained by long-term exposure to harmful agents (irritating gases and particles) poorly reversible, progressing bronchial obstruction production of mucus

Symptoms:

cough (usually whole day, hardly ever only during night) expectoration shortness of breath

Managment of COPD

MUNI MED

we can only slow the progression reduction of risk factors is necessary (mainly top quit smoking)

Goals: symptom reduction

improvement in physical condition and overall health state

prevention of complications and exacerbations

Administration

oral, parenteral (injections, infusions)

inhalation

- local administration, high drug concentration at the site of action

- fast onset of the effect

- minimal penetration to systemic circulation $\rightarrow \downarrow$ risk of side effects

MUN] MED

Drugs used in diseases characterized by bronchial obstruction

BRONCHODILATATORS

- β_2 sympathomimetics
- parasympatholytics
- glucocorticoids
- methylxanthines
- roflumilast (COPD only)
- antileukotrienes
- imunoprofhylactics

- asthma only
- monoclonal antibodies
- noselective sympathomimetics (epinephrine, life-saving medication)
- adjuvant medication (antitussics, drugs facilitating expectoration)

β_2 sympathomimetics

MoA: selective β_2 stimulants

- inhibition of mediator release from mast cells + stimulation of ciliary beat frequency

- diagnostics – post-bronchodilator test (salbutamol)

- mostly inhaled, may be also given orally (mainly in kids)

 not completely selective in their binding to β receptors long-term use = down-regulation of receptors

β_2 sympathomimetics

Indication: asthma, COPD

AE: nervousness, tremor, cephalgia, palpitation, hypokalemia (mainly when given orally)

Cl: hypertension, dysrhythmia, pregnancy

β_2 sympatomimetics

Short-acting = SABA (also rapid-acting = RABA)

fast onset of effect, which lasts 4 – 6 hours, inhalation

salbutamol

fenoterol

Long-acting = LABA

effect lasts for up to 12 hours, inhaled or administered orally

salmeterol

clenbuterol

formoterol (RABA)

indakaterol (U-LABA)

vilanterol (U-LABA)

Parasympatholytics

MoA: competitive antagonism of M receptors

- in a form of inhalation

- can be combined with β_2 -sympathomimetics or glucocorticoids

Indication: COPD, asthma

AE: if entering the systemic circulation (low risk, they contain quaternary nitrogen in their structure) – anticholinergic effects

Cl: glaucoma, prostate hypertrophy, pregnancy

Parasympatholytics

MFD

ipratropium

- used in asthma as well – in patients resistent to β_2 sympathomimetic treatment (approx. 1/6 of patients) short acting (SAMA)

aclidinium (LAMA)

tiotropium (U-LAMA)

COPD only

glykopyrronium-bromide (U-LAMA)

umeclidinium (U-LAMA)

Glucocorticoids

MoA: inhibition of phospholipase A2 by lipocortin

Effects I:

 \downarrow cytokine, PG a LT secretion

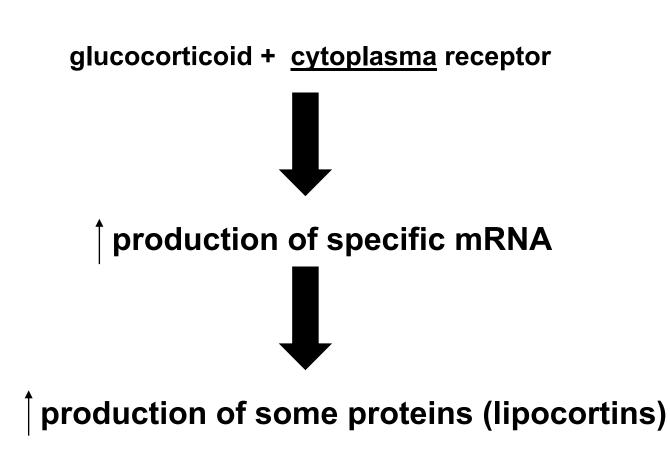
 \downarrow lipolytic and proteolytic enzyme secretion

 \downarrow endothelial permeability

block of cell migration

↓ bronchial hyperreactivity,

Glucocorticoids


Effects II:

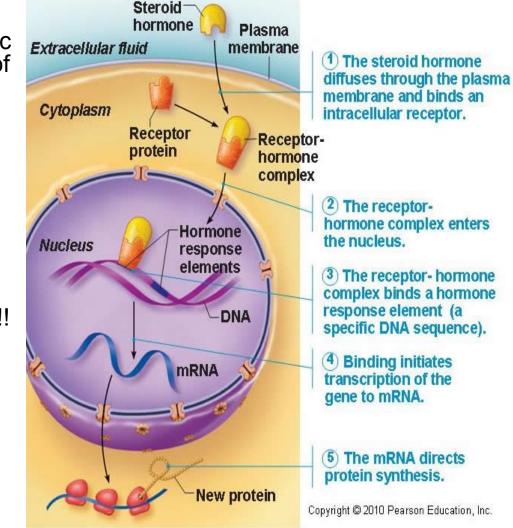
reduction of edema prevention of chronic irreversible changes (hypertrophy and hyperplasia of bronchial smooth muscles, subendothelial fibrosis and thickening of mucous basal membrane)

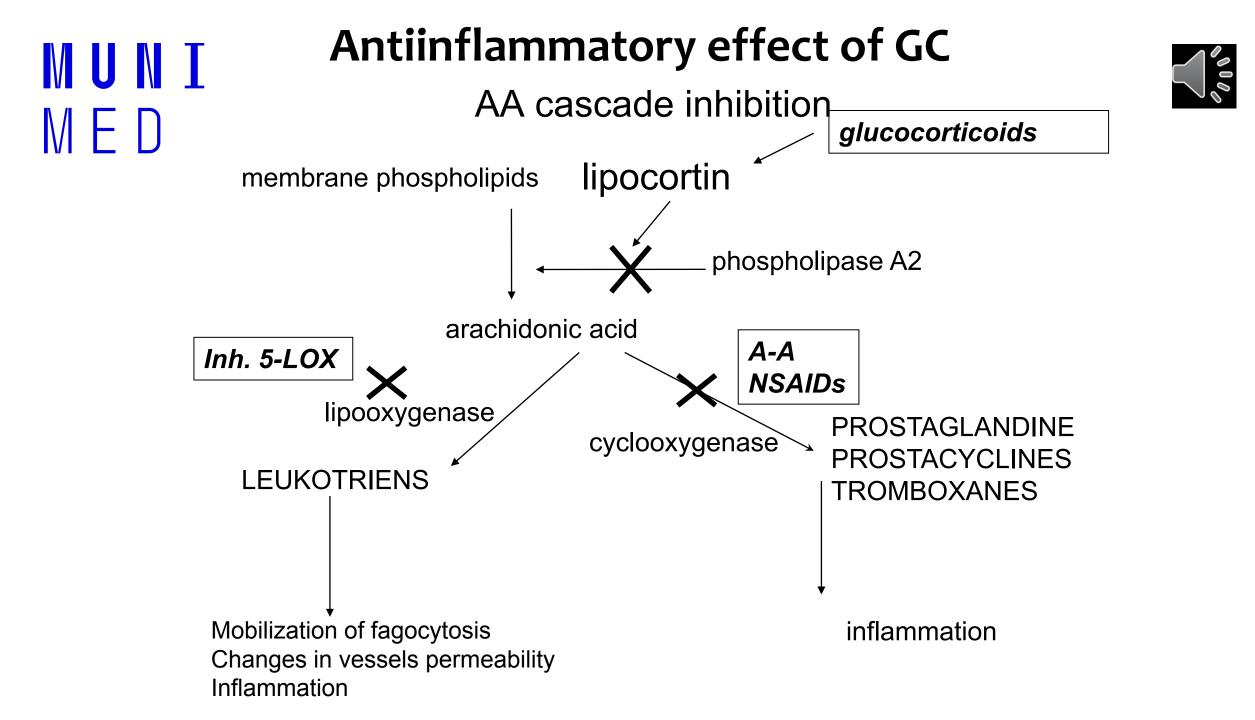
increase in sensitivity of $\beta_{_2}$ adrenergic receptors to $\beta_{_2}$ - SM

MoA at the cellular level

MoA at the cellular level

After entering the cell they bind to specific receptors in cytoplasm causing change of conformation = activation of receptors


MED


Complexes of corticoid + receptor are transported to cell nucleus and bind to DNA elements.

The result is increased transcription of genes either inducing or inhibiting synthesis of other proteins

GLC receptors are present in all tissues!!!

Proteins called **lipocortins** are able to suppress phospholipase A

Glucocorticoids

given by inhalation lower risk of systemic adverse effects AE: affected vocal cords – croaky voice, oral candidiasis (thrush)

beclomethasone budesonide fluticasone ciclesonide mometasone

systemic administration

orally, via injection – acute conditions, doses are gradually decreased, in severe persistent asthma – if nothing else is effective

prednisone triamcinolone hydrocortisone (injection)

Methylxanthines

MoA: phosphodiesterase 1 – 4 inhibitors adenosine receptors antagonists

sustained-release drug forms

Effects:

- bronchodilatation
- cardiostimulation (+chrono, +inotropic eff.)
- diuretic eff.
- CNS and respiratory center stimulation
- stimulation of hydrochloric acid secretion

Methylxanthines

Effects:

- substrates of CYP450 – be cautious if patient is a smoker!

Cl: pregnancy, epilepsy, cardiovascular disease

AE: tachycardia, palpitations, sleeplessness

Methylxanthines

theophylline

- combination therapy with β_2 SM is convenient

- becoming obsolent, therapeutic drug monitoring needed

- variable pharmacokinetics, low therapeutic index

aminophylline - a complex of theophylline and ethylendiamine (better solubility)

- COPD, emphysema

roflumilast

selective long-acting inhibitor of phosphodiesterase 4

reduces the inflammation in bronchi in COPD

Antileukotrienes

MoA: antagonism of LT-receptors / inhibition of lipoxygenase

LT receptor antagonists:

treatment of persisting asthma, allows lowering of glucocorticoid dose 1-2x a day, orally

montelukast

Inhibitors of LOX: need for frequent application not registered in CZ (zileuton – USA)

Imunoprophylactics (mast cells stabilizers)

MoA: stabilisation of mast cell membrane $\rightarrow \downarrow Ca^{2+}$ influx $\rightarrow \downarrow$ degranulation of mast cells and thereby \downarrow histamine release influence on lymphocyte function

prevention of asthma attack, they **do not affect already present bronchospasm**

Use: as preventive, long-term, maintenance therapy – mild and moderate asthma when combined with other antiasthmatics, they allow lowering of their dose

Cl: pregancy (1. trimester)

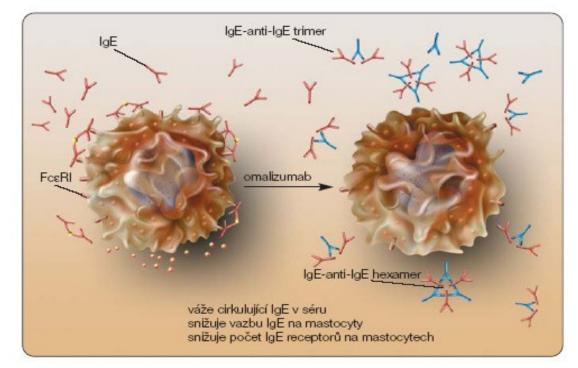
nedokromil, ketotifen (H1 antihistamine), cromoglycate

Monoclonal antibodies

MED

Anti-IgE

omalizumab


antibodies against a part of IgE, which binds to mast cells

Indication: severe persistent allergic asthma, which cannot be otherwise controlled

administered subcutaneously in specialized centers only

Anti-IgE

omalizumab

Obr. 3 Mechanismus působení omalizumabu

http://www.remedia.cz/Okruhy-temat/Respiracni-onemocneni/Omalizumab-terapeuticka-perspektiva-v-lecbe-tezkeho-bronchialniho-astmatu/8-10-gD.magarticle.aspx

Monoclonal antibodies

Anti-IL-5

mepolizumab, reslizumab

add-on treatment for severe refractory eosinophilic asthma in adult patients

Other options

Bronchial thermoplasty

• bronchoskopic procedure, during which a therapeutic radiofrequency energy is delivered to the airway wall, resulting in reduction of smooth mucle cells

Allergen immunotherapy

• induces tolerance to the triggering allergen

Devices for inhaled medications

MDI = metered dose inhalers drugs as solutions, propellants

BAI = breath-actuated inhalers

DPI = dry powder inhalers spinhaler, diskhaler, turbohaler

nebulizers (liquid → aerosol)

Devices for inhaled medications

 \sum_{i00}

spacers for children and elderly

patient must be educated how to use their inhaler \rightarrow up to 41 % of patients use incorrect technique

inhalers often combine two drugs (bronchodilator + glucocorticoid or two bronchodilators)

Adjuvant medication in diseases characterized

by bronchial obstruction and another drugs affecting respiratory system

antitussives

drugs facilitating expectoration

H₁ antihistamines (mainly II. a III. generation)