General principles of endocrine functions

Integration systems of the organism

- Hormonal system
- Nervous system
- Immune system

Hormones

Neurohormones

Neurotransmitters

Paracrine (autocrine) effectors

How do cells communicate?

- Intracrine
- Autocrine
- Paracrine
- Neurocrine
- Endocrine
- Neuroendocrine

source

source

gland

- synthesis/secretion
- no influence on specificity of effect

environment

blood

- universal environment
- dilution and interactions

target cell

- receptor = specificity
- cell response
 - number of receptors
 - signaling pathways
 - other ligands
 - metabolisation of

ligand/receptor

cell

- synthesis/secretion
- main determinant of target cell (determined by localization)

matrix/interstitial fluid

- diffusion
- binding proteins
- proteases
- components of extracellular matrix

- specificity and sensitivity
- diffusion barrier
- determinants of gradient
- inhibition signaling pathways
- effect of other ligands
- binding proteins

Hormones

- Starling 1905 secretin
- Glandotropic hormones
- Aglandotropic hormones
- Target cells
- Limited time of effect

Chemical nature of hormones

DERIVED FROM AMINOACIDS

- -Adrenaline
- -Noradrenaline H₃C Q
- -Dopamine
- -Melatonine
- -T3/T4

STEROID

- -Cortisol
- -Aldosterone
- -Testosterone
- -Progesterone
- -Estradiol
- -Calcitriol

PEPTIDES AND PROTEINS

- -Hypothalamic hormones
- -Adenohypophyseal hormones
- -Insulin, glucagon, somatostatin
- -Gastrin, cholecystokinin, secretin
- -Natriuretic peptides
- -Erythropoietin, thrombopoietin
- -PTH, PHrP

Chemical nature of hormones

Hormone – characteristics	Peptides – proteins	Catecholamines	Steroid hormones	Thyroid hormones	
Ph-CH properties	hydrophilic	hydrophilic	lipophilic	lipophilic	
synthesis	proteosynthesis	Tyr modification	CH precursors	Tyr modifications	
storage	secretory granules	secretory granules	not present	colloid	
secretion	controlled exocytosis	controlled exocytosis	diffusion	diffusion	
transport	free	free/weakly bound	bound	bound	
elimination half-life	short	very short	moderate	long	
	(4 – 40 – 170 min)	(2 – 3 min)	(up to 180 min)	(20 hours – 7 days)	
receptors	membrane	membrane	cytosol nuclear		
effect	short-term	very short-term	long-term long-term		
cell response	quick	very quick	slow slow		

CHEMICAL STRUCTURE OF HORMONES DETERMINES THEIR BIOSYNTHESIS, STORAGE, RELEASE, TRANSPORTATION, ELIMINATION HALF-LIFE, WAY OF ELIMINATION AND THE MECHANISM OF EFFECT ON TARGET CELLS

Hormones

- Pleiotropic effects
- Multiplicity
- Permissive effect

Endocrine organs

- specialised cells specialised organs ("endocrine")
- "secretory" cells organs with endocrine function
- cells without specialised secretory function
- cells converting hormone precursors

Factors of

angiogenesis, blood vessels and

coagulation

Complement

Clinical aspects

Production of hormones by tumors – PARANEOPLASTIC SYNDROMES

Lung tumors

- ADH (hyponatremia)
- ACTH (Cushing syndrome)
- PTHrP (hypercalcaemia)

Liver and kidney tumors

– erythropoietin(polycythemia)

GIT tumors

– ACTH (Cushing syndrome)

Secretion of hormones and its regulation

- Neuronal control
 - hypothalamus
 - sympathetic/parasympathetic nervous system
- Hormonal control

Regulation od secretion by ions or substrates (Glu, AA)

Hormone secretion is controlled by feedback system

Feedback negative X positive simple X complex

Taken from Kittnar et al. Lékařská fyziologie. 1st edition. Grada 2011.

Cyclic changes in hormone secretion

SCN:

Afferent – retina

Hormone transport

- Chemical properties of hormone
- Transport protein(s) bond and its significance
 - Albumin
 - Globulins
 - Specific proteins TBG, SHBG, CBG
- Bond strength
- "Alternative" binding TBG versus transthyretin

- Protection
- Reservoir
- Ubiquitous distribution
- Transport across plasmatic membrane (SHBG – megalin)

DYNAMIC BALANCE BETWEEN HORMONE AND TRANSPORT PROTEIN

Hormone elimination

- Different length of time in circulation
- Metabolisation by
 - Target cells
 - · Enzymatic systems in blood
 - Organs mainly liver
- Elimination
 - Liver
 - Kidneys

PHASE I

- Hydroxylation, decarboxylation
- Oxidation, reduction

PHASE II

- Glucuronidation
- Sulphatation
- **Methylation**
- Conjugation with glutathione

Vascular system

bile urine

Hormones and cell response

- Target cells
- Specificity
- High affinity
- Selectivity

MECHANISMS

Conformation changes

Phosphorylation/dephosphorylation +

protein recruitment

GTP binding (G proteins)

cAMP binding (efector proteins)

Precursor molecule generation in PM

Non-covalent Ca²⁺ bond

% of occupied receptors conformation change

synergy antagonism possible loss of sensitivity feedback-loop regulation

CELL RESPONSE IS MEDIATED BY RELEVANT RECEPTORS

Receptor level of cell response

regulation

- Downregulation
- Upregulation
- Homologous desensitization
- Heterologous desensitization

Phosphorylation (specific kinases)

Dephosphorylation (specific phosphatases)

Modification by proteins of inhibited signaling pathway

O KOAAKO KOAAKO KOAAKO KOA

(a) Receptor inactivation

(b) Receptor internalization

(c) Receptor down-regulation

Figure 13.10. Major mechanisms for the termination of receptor-dependent signal transduction.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.

Hormones – proteins and peptids

Hormones

Paracrine/autocrine peptides

preprohormone – prohormone – hormone (+ fragments)

G protein-coupled receptors (GPCR)

 $G_s - G_s$, G_{olf} – activation of AC

G_i – inhibition of AC

- •G₀ (2, brain)
- •G_t (2, photorec. cAMP-PDE)
- •G_z (inhibition of K⁺ channels)

 $G_{q/11}$ – activation of PLC β

G_{12/13} – inhibition and activation of RhoGEF

Receptor tyrosinkinases

- 58 RTKs/20 subfamilies
- Usually dimerisation after ligand binding
- ATP as a source of P for phosphorylation of intracellular domains/associated proteins
- Insulin
- IGF-1/2

Receptors associated with cytosolic TK

- GH, prolactin, leptin, erythropoietin
- Dimeric receptor without TK activity
- Association with JAK kinase
- After ligand binding dimerisation, transphosphorylation, activation

signal transducers and activators of transcription

Receptor serin/threonin kinases

- Anti-Müllerian hormone, inhibitin
- Form of dissociated heterodimer
- SMAD = "latent transcription factors"

Receptor guanylate cyklases

- Natriuretic peptides
- ANP, BNP, CNP

Signal transduction – system of second messengers

HORMONE = FIRST MESSENGER

INTRACELLULAR SIGNALING MOLECULE GENERATED AFTER HORMONE-RECEPTOR BONDING = SECOND MESSENGER

- cAMP
 - TSH, glucagon, ACTH, hypothalamic hormones, ADH etc.
 - Proteinkinase A
- Modulation of signaling pathways by compartmentalization (A-kinase anchoring proteins (AKAPs))

- cGMP
 - ANP, BNP, CNP
 - NO as a signaling molecule
 - Proteinkinase G

- DAG and IP₃
 - PIP₂ phospholipase C system
- Ca²⁺
 - Ca²⁺/Ca²⁺- calmodulin

EXTRACELLULAR SIGNAL MUST BE CONVERTED TO INTRACELLULAR RESPONSE

AC – cAMP system

- PKA
- CREB (cAMP-responsive element-binding protein)
- Epac (E) as an another effector molecule (exchange protein activated by cAMP)
- cyclic nucleotide gated (CNG) channels
- hyperpolarization-activated cyclic nucleotide modulated (HCN) channels
- phosphodiesterases

PLC - DAG and IP₃ system

Ca²⁺ - calmodulin system

Extracellular Messenger fluid Calcium channel Channel Calcium enters cell closed through open channel messenger Change in Muscle Secretion Calmodulin electrical contraction properties of cell Ca-calmodulin **Activates** Ca²⁺ enzymes Protein kinase **ER** Protein-P Response in cell (muscle contraction, altered metabolism, Cytosol altered transport) **Extracellular signals** (hormones, neurotransmitters)

NO as a signalling molecule - cGMP

Donald JA, Forgan LG, Cameron MS: The evolution of nitric oxide signalling in vertebrate blood vessels. *J Comp Physiol B-Biochem Syst Environ Physiol* 2015, 185(2):153-171.

Clinical aspects

- Syndromes of resistance to hormones (i.e. IR, IGF-1, TR β)
- Syndromes caused by CPCRs and G proteins mutations
 - ADH nephrogenic diabetes insipidus
 - ACTH familiar ACTH resistance
 - GnRH hypogonadotrophic hypogonadism
 - FSH hypergonadotrophic ovarial dysgenesis
 - LH male pseudohermaphroditism
 - Melanocortin 4 obesity
 - PTH/PTHrP Blomstrand lethal chondrodysplasia

Hormones acting through nuclear receptors

HORMONES $-Thyroid \ hormones - TR\alpha/\beta \qquad heterodimers \\ -Estrogens - ER\alpha/\beta \\ -Testosterone - AR \\ -Progesterone - PR \\ -Aldosterone - MR \\ homodimers$

PRODUCTS OF METABOLISM AND XENOBIOTICS

- -Fatty acids PPAR α , β , γ
- -Oxysterols liver X receptor LXR α , β
- -Bile acids BAR
- -Hem RevErb α , β
- -Phospholipids homologue of liver receptor LRH-1, SF-1
- -Xenobiotics pregnane X receptor PXR
 - constitutive androstane receptor CAR

VITAMINS

-Cortisol - GR

- -1,25-[OH]2D3 VDR
- -All-trans-retinoic acid RA receptors α , β , γ
- -9-cis-retinoic acid retinoid X receptor RXR α , β , γ

-Orphan receptors

-Variable receptors

Explanation of some effects and pathologies

General mechanism of effect of hormones acting through nuclear receptors

- -High affinity of ligand bond = due to R structure
- -Recognition of specific promotor region
- -Dimerisation of receptors (homodimers, heterodimers)
- -Remodelation of chromatin for gene expression (HDAC)
- -Gene expression at the end decreased or increased

WHY ONLY NUCLEAR RECEPTORS?

- -Synthesis in cytoplasm
- -Stay until ligand binding or until transport to nucleus

- -Regulation mechanism modification, count of receptors -Important parameter – selectivity of target cells
- -Tissue-specific factors, coactivators and corepressors

Nuclear receptors

ATD

(amino terminus domain)

DBD (DNA binding domain)

LBD (ligand binding domain)

- -Coregulatory proteins binding (independent on ligand)
- Phosphorylation sites

- -DNA binding (zinc fingers)
- -Dimerisation
- -ERE, PRE, GRE, MRE, ARE

- -Ligand binding (agonist, antagonist)
- -Coregulatory proteins binding (dependent on ligand)
- -Dimerisation
- -Nuclear translocation
- -Chaperone association (HSP)

Example – steroid hormones X thyroid hormones

Termination of hormone action

Receptor-mediated endocytosis and subsequent lysosome degradation

Phosphorylation/
dephosphorylation of receptor or proteins of signaling pathway

Ubiquitination and proteosomal degradation

Binding of regulatory factor on corresponding protein (enzyme)

Inner enzymatic activity and its regulation

Clinical aspects

- Hormone overproduction
- Hormone underproduction
- Changes in sensitivity of target tissues and/or change in cellresponse
- Higher rate of inactivation or degradation of hormones
- Insufficient production or higher degradation of transport proteins
- Changes of transport hormones production during physiological conditions (pregnancy)

Clinical aspects

A. Decreased hormone responsiveness

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- **Decreased number of receptors**
- **Decreased concentration of hormone-activating** enzyme(s)
- Increased concentration of non-competitive inhibitor
- **Decreased number of target cells**

Source: Molina PE: Endocrine Physiology, 4th Edition: www.accessmedicine.com Source: Molina PE: Endocrine Physiology, 4th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Decreased affinity of hormone to receptor
- **Decreased number of receptors**
- Increased rate of hormone degradation
- Increased concentration of antagonists/competitive inhibitors

Determination of hormone levels in blood

- -HIGH SENSITIVITY DEMANDS
- -WIDE CONCENTRATION RANGE

Antigen-antibody interaction-based methods

- -Anibody requirements (poly- X monoclonal)
- -Monoclonal antibodies = specific epitopes
- -Radioactive labeled antibodies
- -Necessity of quantification!
- -RIA, ELISA

Methods based on HPLC-MS

Nucleic acid-based methods

- -hybridization techniques
- -restriction fragmentation, electrophoresis, sequencing

Separation techniques – free X bound hormones

- dialysis

EXTREMELY LOW LEVELS OF HORMONES IN BLOOD

RIA = radioimmunoassay

Competitive binding

Calibration of standards

Ab	+ Ag*	+ Ag ⁰	Ab • Ag*+ Ab • Ag0 +		- Ag* +	$Ag^* + Ag^0$	
8	16	0	8	0	8	0	
8	16	4	6	2	10	2	
8	16	12	4	4	12	8	
8	16	36	2	6	14	30	
Con	stant	Variable	Bou	ınd	Fre	ee	

Α

