

Preclinical dentistry I.

Permanent filling materials

1 Definujte zápatí – název prezentace nebo pracoviště

Permanent filling materials

Amalgam

Composites

Glassionomers

Amalgam

Amalgam

Metal-like restorative material composed of

silver-tin-copper alloy and mercury.

Particles of the alloy

Irregulary shaped (filings - lathe cut)

✓ Microsphers

✓ Combination of the two.

Particles shape

<u>High – Copper Amalgam</u>

Microsphers of the same composition

(unicompositional)

Mixture of irregular and spherical particles of different or the same composition (admixed)

Production of irregular particles

Metal ingrediences heated, protected from oxidation, melted and poured into a mold to form an ingot. Phases of the alloy: (intermetallic compounds) $Ag_3Sn - \gamma$ Cu₃Sn - ε Cu₆Sn₅- η $Ag_4Sn - \beta$

Production of irregular particles

cooled slowly

Ingot heated at 400° C (6 – 8 hours) (homogeneous distribution of Ag₃Sn)

Ingot cut on the lathe, particles passed trough a fine sieve and ball milled to form the proper particle size.

Aging of particles (60 - 100° C, 6 – 8 hours)

Particle size: $60 - 120 \ \mu m$ in length $10 - 70 \ \mu m$ in width $10 - 35 \ \mu m$ in thickness

Production of irregular particles

Molten alloy is spraying into water under

high pressue

Irregulary shaped high-copper particles

Production of spherical particles

Molten alloy is spraying under high pressue of inert gas through a fine crack in a crucible into a large chamber

Diameter of the spheres: $2 - 43 \mu m$

Amalgamation processes

alloy is mixed with pure mercury

Trituration

Low – Copper Amalgam (5% or less copper) conventional amalgam

 $M \vdash I$

Composition – wt%

Silver	63 - 70 %
Tin	26 – 28 %
Copper	2 - 5%
Zinc	0 - 2%

Amalgamation processes

Intermetallic compounds

Amalgamation processes low copper amalgam

Setting of low copper (conventional) amalgam

Principle of setting is crystallization

Structure of the amalgam filling

Ag-Hg: gamma 1

These phases crystallized –

become hard

Sn-Hg: gamma 2

Gamma phase (Ag-Sn) that did not dissolve

completely – remains in the structure

Risks of the gamma 2 phase

- Non stable
- Tin is released due to electrogalvanism in oral cavity and mercury from this phase reacts with remaining gamma phase.
- This is external electrochemical corrosion.

Low copper amalgam has worse mechanical and corrosion resistance than high copper amalgam

High copper amalgam

Content of copper increased: 12 – 13%
(Less tin)

- Or up to 25% up to 40% (Less tin and silver)

Better mechanical and corrosion resistance

Amalgamation processes – high copper amalgam

High copper amalgam – copper dissolved in mercury has high reaction afinity to tin that is also dissolved in mercury. It reacts with tin in gamma2 phase γ_2 and eta phase - η comes into existence. The gamma 2 phase disappears. In amalgams with high content of copper $Ag_{3}Sn - \gamma$ $Cu_{3}Sn - \varepsilon$ (25% and more) the gamma 2 phase γ_2 does not occur. ∙Cu₆Sn₅ - ղ Sn₇Hg – γ_2 Aq $Ag_2Hg_3 - \gamma_1$ Aa Aa

High – Copper Amalgam (13% - 40%)

Admixed regular: Irregular particles: Ag 40 - 70 Sn 26 - 30 Cu 2-30 Zn 0-2 Spherical particles Ag 46 - 65 Sn 0 - 30 Cu 20 - 40

Unicompositional - Spherical Ag 40 - 60Sn 22 - 30Cu 13 - 30

Amalgamation processes

Gamma two disapears or it does not occur when content of copper is high

Amalgam - properties

Amalgam

Wear and pressure resistance (2mm thickness ast least)- brittleness

Easy handling

>Low price

Thermal and electrical conductivity

≻Corrosion

Bad aesthetics

>Flow (deformation of not completely set amalgam if the filling is loaded)

Creep – completely set amalgam can be deformed due to bite forces. The filing is principly hammered.

Biocompatibility

- More than 160 years, more than 200 millions Ag fillings every year in USA.
- Allergy rare
- Precautions in children and in pregnancy.

AMALGAM IS STILL A MATERIAL OF CHOICE

Toxicity and environmental risks

- Organic compounds
- Vapours, aerosol
- Precautions
- Ventilation
- Rests of amalgam in water
- Amalgam separators
- Dangerous waste (180 110)

Amalgam indications

- Posterior area
- -I. a II. class : moderate or large cavities,
- -V. class
- Other factores for consideration
- When oral hygiene is not excellent
- When patient wants low cost filling.

Indications and contraindications of amalgam

Indications

– Moderate and large cavities in posterior area (class I., II. V)

Contraindications

Fillings in frontal area

Pregnancy, children till the age of 15

Allergy

Other factores for consideration

When oral hygiene is not excellent

When patient wants low cost filling.

Mixing of amalgam

Hand mixing (obsolete)

Power driven trituration

Amalgamators

Power driven condensation

handpiece condensor

Instruments

Preparation instruments

>Filling instruments

≻Carvers

>Burnishers

Instruments

Preparation instruments - power driven

Burs

Diamonds

Instruments

Preparation instruments - hand

Amalgam carrier

Condensor with flat front

Condensor and burnisher - spatula combined

Burnisher - spatula Angular- trough edge trough face

Carver - Frahm

Carver - Sapin

Carver - Sapin

Carver discoid-cleoid

Carver Discoid-cleoid

MUNI Med

Burnisher – spatula, angular three face

Ball condensor – used as a burnisher at most

Principle of the retention of amalgam

- Macromechanical retention
- Undercuts
- Grooves
- Cavities for retention

 $M \vdash D$

Undercut

Amalgam step by step procedure

– Preparation of the cavity

Base – protection of dentin wound

- Mixing

- Application portion by portion, condensation

- Carving

- Burnishing
- Finishing and polishing