Preclinical dentistry I. 1.lecture

Doc. MUDr. Lenka Roubalíková, Ph.D. <u>Iroubal@med.muni.cz</u> +420 607 122 064

Restorative dentistry

Diseases of hard dental tisues, dental pulp and periodontal tissues (of pulpal origin) Aethiology, ,pathogenesis,diagnosis,therapy and prevention.

Diseases of hard dental tissues

Congenital – genetic reasons

Postnatal

- Before eruption
- After eruption

Congenital

• Amelogenesis imperfecta

Enamel is affected

Dentinogenesis imperfecta

Dentine is affected

Before eruption

- Hypomineralization (white, brown spots)
- Defects of enamel (hypoplasia)

Reasons

- local (inflammation, traumatic dental injuries)
- systemic (systemic diseases, antibiotics)

After eruption

- Dental caries
- Trauma
- Attrition, abrasion
- Erosion
- V-shaped defects

First observation of microbs in oral cavity

17.century

Antony van Leeuwenhoek

(1632 – 1723)

nizozemský přírodovědec a vynálezce. Obchodník v <u>Amsterdamu</u> a vědec samouk, byl členem královské společnosti. Zhotovil jednoduchý <u>mikroskop</u> s jedinou čočkou, který zvětšoval 300krát. Prostudoval řadu mikroorganismů a popsal jejich způsob života. Mj. objevil <u>krevní kapiláry</u>, jako první podal v roce 1683 přesný popis bakterií a prvoků, popsal příčné pruhování svalů. Popisem buněčné stavby rostlin se stal jedním ze zakladatelů rostlinné <u>anatomie</u>.

Dental caries

• Willoughby Dayton Miller (1853 - 1907)

Explanation – theories

Miller's theory: chemical – bacteriogical explanation

Origin of dental caries

- Dental caries originates as decalcification of hard dental tissues. This decalcification is caused by microbs that are present on tooth surfaces in the dental biofilm. These microbs utilize sugars.
- After this decalcification also the decomposition of organic substances follows due to proteolytic microbs.

Dental biofilm – plaque.

Pelicle

• A layer of proteins from saliva that precipitate on the tooth

Dental biofilm

Adherence

Dental biofilm

• Colonization and coaggregation

Dental biofilm

Maturation

Dental bioífilm

Comunity

More species, Better conditions for survival Higher resistancy Higher virulency

lenka.roubalikova@tiscali.cz

50

Irreversibil: non cavitated lesion

lenka.roubalikova@tiscali.cz

20

Dental caries is multifactorial disease

- Essential factors
- necessary

- Co condition factors
- not necessary but can influence the expansion

Co commitans factoras

- Quality of hard dental tissues and position of teeth
- Food composition and consistency
- Systemic health
- Age
- Heredity (liking of sweetness?)
- Climate

Caries danger areas

- Pits and fissures
- Proximal surfaces below the contact point
- Cervical third of dental crown (area below the maximum convexity)
- Exposed root

= habitually unclean areas

Habitually clean places

- Incisal edges
- Cusps and their slopes
- Areas above the maximal convexity
- Enamel ridges : transverse ridge,

oblique ridge

Classification of dental caries

Acc to topograpoy

- Coronal caries
- Root surface caries

According to affected surfaces - See classification acc to Black According to affected tissues

- Caries in enamel
- Caries in dentin
- Caries in cementum

Classification of dental caries

According to its depth

- Surface caries (caries superficialis)
- Middle caries (caries media)
- Caries next to dental pulp (caries pulpae proxima)
- Caries penetrating into dental pulp (caries ad pulpam penetrans)

Deep caries

Surface caries

Middle caries

Caries next to dental pulp

Caries penetgrating into dental pulp

Classification of dental caries

According to history

- Acute
- Chronic
- Arrested

Classification of dental caries

According to origin

- Primary caries
- Secondary caries
- Recurrent caries

Primary caries

Secondary caries

Recurrent caries

Penetrating caries

Undermining caries

Green Vardiman Black

(1836 - 1915)American professor Established the scientific bases of dentistry Formulated basic rules of preparation of cavities Developed the guidelines for amalgam fillings including the optimal composition of amalgam (balanced alloy)

Preparation

Preparation is an instrumental treatment of the tooth that has been damaged by dental caries

in such a way that

- the reconstruction of this tooth is possible
- the filling does not fall out
- the tooth as well as the filling can face up to occlusal forces
- the risk of the caries on treated surface si minimal

(Black 1914)

Preparation

Preparation is an instrumental treatment of the tooth that has been damaged by dental caries

in such a way that

- the reconstruction of this tooth is possible
- the risk of the caries on treated surface si minimal- <u>extention</u> <u>for prevention</u>
- the filling does not fall out
- <u>retention</u>
- the tooth as well as the filling can face up to occlusal forces
- <u>resistance</u>

(Black 1914)

After we understand the reasons of dental caries we will be able it to heal it

(Black 1900)

• Class I.

Pit and fissure caries

lenka.roubalikova@tisca li.cz

• Class II.

Proximal surfaces in premolars and molars

• Class III.

Proximal surfaces of incisors and canines without Iost an incisal ridge

• Class IV.

Proximal surfaces of incisors and canines with lost an incisal ridge

• Class V. cervical lesions

- VI. Class
- Caries on incisal edges (abraded)

Acces to the cavity

Preparation through the hard dental tissues Removal the undermined enamel Separation of teeth Separation or removal of gingiva

Prepration through hard dental tissues

Breaking the enamel

Removal of the undermined enamel

Separation with wooden wedge

Removal of the old filling

Removal of the ingrown gingiva

Sequence of operations Acces to the cavity Establishment of the cavosurface margin extention for prevention Retention of the filling Resistance of the restored tooth (the filling as well as the restoration) Excavation of carious dentin Protection of dentin wound Finishing of the walls Final control (light, miror, magnification)

Preparation of cavity borders and <u>extention</u> for prevention (Cavosurface margin)

Depends on Dental material Oral hygiene

Precautions of secondary caries

Retention of the filling

Precautions of its lost Macromechanical retention Micromechanical retention Chemical retention

Resistance of the restored tooth

Against occlusal and other forces

Depends on

- Material
- Individual occlusal forces

Excavation of carious dentin

Necessary (risk of recurrent caries)

Ball shaped (spheric) bur - slow speed (3000 rpm) or Excavator (hand instrument)

Finishing of the walls

Depends on the kind of material

- Bevel or without bevel
- Fine diamond bur

Protection of dentin wound

• Filling itself

 Base (below the filling – protection against thermal exposure of toxiccity of dental materials)

Final control

Direct or indirect view Good illumination Magnification

Preparation

• Hand

Excavator, cleaver

- Power driven
- Rotary
- Non standard preparation
 Burs, diamonds

Chisel – for enamel Cleaver

Chisel for enamel

Motors and handpieces

Turbine

Turbine

300.000 - 400.000 rpm

Big force, les control, small torque

Motors – micromotors

Electromotors – maximum 40.000/min

Air motors – maximum 20.000/min

Gear to fast Gear to slow 1: 1 Blocked rotation

Blue coded handpiece 1:1

Red coded handpiece 1:5 to fast

Green coded handpiece – to slow 2,7 :1 7,5 :1

Hendpieces contraangle straight

Cutting instruments

Burs

Steel Tungsten carbide

Diamonds

Cutting instruments

Power driven (powered) instruments for cutting

Burs

Cutting instruments – diamonds head shape

 Ball, pear, cylinder,taper,flame, torpedo, lens and others.....

Cutting instruments – diamonds

Extra coarse – black

Coarse – green

Standard – blue or without any marker

Fine - red

Extra fine - yellow

Ultrafine - white

Blue – standard (90 – 120) ISO 524
Universal

• Extra coarse (150 – 180 h) ISO 544

• Cutting of crowns, old fillings

Removal of old fillings, some preparations in prosthetic

Diamanonds

- Red fine (20 40 h) ISO 514
- Finishing of borders of cavities

Diamanonds

Extrafine (12 – 22 n) ISO 504, finifshig of composite fillings

Ultrafine – polishing of composite fillings (6-12 n) ISO 494

