MUNI MED

Preclinical dentistry I.

Permanent filling materials

1 Definujte zápatí – název prezentace nebo pracoviště

Permanent filling materials

Amalgam

Composites

Glassionomers

MUNI MED ◀§

MUNI MED

Amalgam

Amalgam

Metal-like restorative material composed of silver-tin-copper alloy and mercury.

Particles of the alloy

Irregulary shaped (filings - lathe cut)

✓Microsphers

✓ Combination of the two.

MUNI MED ◀€

Particles shape

<u>High – Copper Amalgam</u>

Microsphers of the same composition

(unicompositional)

Mixture of irregular and spherical particles of

different or the same composition (admixed)

MUNI MED

Production of irregular particles

Metal ingrediences heated, protected from oxidation, melted and poured into a mold to form an ingot. Phases of the alloy: (intermetallic compounds) Ag₃Sn - γ Cu₃Sn - ϵ Cu₆Sn₅ - η Ag₄Sn - β

Production of irregular particles

cooled slowly

Ingot heated at 400°C (6 – 8 hours) (homogeneous distribution of Ag_3Sn)

Ingot cut on the lathe, particles passed trough a fine sieve and ball milled to form the proper particle size.

Aging of particles (60 - 100° C, 6 - 8 hours)

Particle size: $60 - 120 \ \mu m$ in length $10 - 70 \ \mu m$ in width $10 - 35 \ \mu m$ in thickness

MUNI MED 📢

Production of irregular particles

Molten alloy is spraying into water under

high pressue

Irregulary shaped high-copper particles

MUNI MED ◀§

Production of spherical particles

Molten alloy is spraying under high pressue of inert gas through a fine crack in a crucible into a large chamber

Diameter of the spheres: $2 - 43 \mu m$

MUNI MED 🔹

Amalgamation processes

alloy is mixed with pure mercury

Trituration

MUNI MED ◀€

Low – Copper Amalgam (5% or less copper) conventional amalgam Composition – wt%

Silver	63 - 70 %
Tin	26 – 28 %
Copper	2 - 5%
Zinc	0 - 2%

Amalgamation processes

Intermetallic compounds

Amalgamation processes low copper amalgam

The mercury disolves the particles of the alloy Sn – Hg: gamma 2 phase γ_2

43

 $Ag_{3}Sn - \gamma$ $Cu_{3}Sn - \epsilon$

 $Sn_7Hg - \gamma_2$

► $Ag_2Hg_3 - \gamma_1$

Setting of low copper (conventional) amalgam

Principle of setting is crystallization

Structure of the amalgam filling

Ag-Hg: gamma 1

These phases crystallized –

Sn-Hg: gamma 2

- become hard
- Gamma phase (Ag-Sn) that did not dissolve

completely – remains in the structure

Risks of the gamma 2 phase

- Non stable
- Tin is released due to electrogalvanism in oral cavity and mercury from this phase reacts with remaining gamma phase.
- This is external electrochemical corrosion.

Low copper amalgam has worse mechanical and corrosion resistance than high copper amalgam

High copper amalgam

Content of copper increased: 12 – 13%

(Less tin)

- Or up to 25% up to 40% (Less tin and silver)

Better mechanical and corrosion resistance

MUNI MED 📢

Amalgamation processes – high copper amalgam

Ao

High copper amalgam – copper dissolved in mercury has high reaction afinity to tin that is also dissolved in mercury. It reacts with tin in gamma2 phase γ_2 and eta phase - η comes into existence.

The gamma 2 phase disappears. In amalgams with high content of copper (25% and more) the gamma 2 phase γ_2 does not occur.

 $Ag_{3}Sn - \gamma$ $Cu_{3}Sn - \epsilon$

►Cu₆Sn₅ - η ►Sn₇Hg – γ₂

 $Ag_2Hg_3 - \gamma_1$

High – Copper Amalgam (13% - 40%)

Admixed regular: Irregular particles: Ag 40 - 70 Sn 26 - 30 Cu 2-30 Zn 0-2 Spherical particles Ag 46 - 65 Sn 0 - 30 Cu 20 - 40

MED

Unicompositional - Spherical Ag 40 - 60Sn 22 - 30Cu 13 - 30

Amalgamation processes

MUNI MED

Amalgam - properties

Amalgam

Wear and pressure resistance (2mm thickness ast least)- brittleness

Easy handling

- >Low price
- Thermal and electrical conductivity
- Corrosion
- Bad aesthetics

Flow (deformation of not completely set amalgam if the filling is loaded)

Creep – completely set amalgam can be deformed due to bite forces. The filing is principly hammered.

MUNI MED ◀§

Biocompatibility

- More than 160 years, more than 200 millions Ag fillings every year in USA.
- Allergy rare
- Precautions in children and in pregnancy.

AMALGAM IS STILL A MATERIAL OF CHOICE

Toxicity and environmental risks

- Organic compounds
- Vapours, aerosol
- Precautions
- Ventilation
- Rests of amalgam in water
- Amalgam separators
- Dangerous waste (180 110)

MUNI MED 📢

Amalgam indications

- Posterior area
- I. a II. class : moderate or large cavities,
- V. class

Other factores for consideration

When oral hygiene is not excellent

When patient wants low cost filling.

MUNI MED 📲

Indications and contraindications of amalgam

Indications

Moderate and large cavities in posterior area (class I., II. V)

Contraindications

Fillings in frontal area

Pregnancy, children till the age of 15

Allergy

Other factores for consideration

When oral hygiene is not excellent

When patient wants low cost filling.

MUNI MED ◀§

Mixing of amalgam

> Hand mixing (obsolete)

Power driven trituration

Amalgamators

MUNI MED ◀€

3

Power driven condensation

handpiece condensor

3

Instruments

Preparation instruments

Filling instruments

≻Carvers

≻Burnishers

MUNI MED ◀€

Instruments

Preparation instruments - power driven

Burs

Diamonds

MED

43

Instruments

Preparation instruments - hand

Amalgam carrier

Condensor with flat front

MUNI

MED 48

Condensor and burnisher - spatula combined

Burnisher - spatula Angular- trough edge trough face

Carver - Sapin

Carver - Sapin

MUNI

∎ŝ.

MED

Burnisher – spatula, angular three face

Ball condensor – used as a burnisher at most

Principle of the retention of amalgam

- Macromechanical retention
 - Undercuts
 - Grooves
 - Cavities for retention

Undercut

Amalgam step by step procedure

- Preparation of the cavity
- Base protection of dentin wound
- Mixing
- Application portion by portion, condensation
- Carving
- Burnishing
- Finishing and polishing

