

4H 4T H-K, Ca, Mg T-toxiny

Pavel Štětka, MD ARK FNUSA Brno

Resuscitation 95 (2015) 148-201

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/resuscitation

European Resuscitation Council Guidelines for Resuscitation 2015 Section 4. Cardiac arrest in special circumstances

EUROPEAN

COUNCI

RESUSCITATION

Anatolij Truhlář^{a,b,*}, Charles D. Deakin^c, Jasmeet Soar^d, Gamal Eldin Abbas Khalifa^e, Annette Alfonzo^f, Joost J.L.M. Bierens^g, Guttorm Brattebø^h, Hermann Bruggerⁱ, Joel Dunning^j, Silvija Hunyadi-Antičević^k, Rudolph W. Koster¹, David J. Lockey^{m,w}, Carsten Lottⁿ, Peter Paal^{o,p}, Gavin D. Perkins^{q,r}, Claudio Sandroni^s, Karl-Christian Thies^t, David A. Zideman^u, Jerry P. Nolan^{v,w}, on behalf of the Cardiac arrest in special circumstances section Collaborators¹

be identified or excluded during any resuscitation. For improving recall during ALS, these are divided into two groups of four, based upon their initial letter – either H or T – and are called the '4Hs and 4Ts': Hypoxia; Hypo-/hyperkalaemia and other electrolyte disorders; Hypo-/hyperthermia; Hypovolaemia; Tension pneumothorax; Tamponade (cardiac); Thrombosis (coronary and pulmonary); Toxins (poisoning). The second part covers cardiac arrest in special environments, where universal guidelines have to be modified due to specific locations or location-specific causes of cardiac arrest. The third part is focused on patients with spe72year men with DM II typeinsulin depend., CKD on chronic haemodialysis emergency bcs.- dyspnoe, 2 min CPR

- A+B :oti+VCV
- C :PEA
- D : coma

Hyperkalaemia. This is the most common electrolyte disorder associated with cardiac arrest. It is usually caused by impaired excretion by the kidneys, drugs or increased potassium release from cells and metabolic acidosis. Hyperkalaemia occurs in up to 10% of hospitalised patients.^{13–15} Chronic kidney disease (CKD) is common in the general population and the incidence of hyperkalaemia increases from 2 to 42% as glomerular filtration rate (GFR) drops from 60 to 20 mL min⁻¹.¹⁶ Patients with end-stage renal disease are particularly susceptible, particularly following an OHCA.¹⁷ Prolonged hyperkalaemia is an independent risk factor for in-hospital mortality.¹⁸ Acute hyperkalaemia is more likely than chronic hyperkalaemia to cause life-threatening cardiac arrhythmias or cardiac arrest.

Definition. There is no universal definition. We have defined hyperkalaemia as a serum potassium concentration higher than $5.5 \text{ mmol } \text{L}^{-1}$; in practice, hyperkalaemia is a continuum. As the potassium concentration increases above this value the risk of adverse events increases and the need for urgent treatment increases. Severe hyperkalaemia has been defined as a serum potassium concentration higher than $6.5 \text{ mmol } \text{L}^{-1}$.

Causes. The main causes of hyperkalaemia are:

- renal failure (i.e. acute kidney injury or chronic kidney disease);
- drugs (e.g. angiotensin converting enzyme inhibitors (ACE-I), angiotensin II receptor antagonists (ARB), potassium-sparing diuretics, non-steroidal anti-inflammatory drugs, beta-blockers, trimethoprim);
- tissue breakdown (e.g. rhabdomyolysis, tumour lysis, haemolysis);
- metabolic acidosis (e.g. renal failure, diabetic ketoacidosis);
- endocrine disorders (e.g. Addison's disease);
- diet (may be sole cause in patients with advanced chronic kidney disease) and
- spurious pseudo-hyperkalaemia (suspect in cases with normal renal function, normal ECG and/or history of haematological disorder). Pseudo-hyperkalaemia describes the finding of a raised serum (clotted blood) K⁺ value concurrently with a normal plasma (non-clotted blood) potassium value. The clotting process releases K⁺ from cells and platelets, which increases the serum K⁺ concentration by an average of 0.4 mmol/L. The most common cause of pseudo-hyperkalaemia is a prolonged transit time to the laboratory or poor storage conditions.^{19,20}

Fig. 4.1. Emergency treatment of hyperkalaemia. PR per rectum; ECG electrocardiogram; VT ventricular tachycardia. Reproduced with permission from Renal Association and Resuscitation Council (UK). 27 year men , psoriasis emergency bcs.- coma, hypotension, bradycardia

- A+B : spont ventilation-RF 10, spo293%,
- C: BP 75/45 HR sinus.bradycardia 42/min
- D : GCS E1 V2 M5

Glasgow Coma Scale								
	1	2	3	4	5	6		
Eye	Does not open eyes	Opens eyes in response to painful stimuli	Opens eyes in response to voice	Opens eyes spontaneously	N/A	N/A		
Verbal	Makes no sounds	Incomprehensible sounds	Utters incoherent words	Confused, disoriented	Oriented, converses normally	N/A		
Motor	Makes no movements	Extension to painful stimuli (decerebrate response)	Abnormal flexion to painful stimuli (decorticate response)	Flexion / Withdrawal to painful stimuli	Localizes painful stimuli	Obeys commands		

cardiac arrest and intoxication

- Rare cause
- Young people
- Cause of CPR- cardiotoxicity +secondary insult- airway obstruction , aspiration, hypotension
- Prolonged CPR how long?
- Toxicology center in CR

Sodium channel	Tricyclic antidepressants		
blockers	Type 1 anti-arrhythmics		
	Local anaesthetic agents		
	Anti-malarials (e.g. quinine,		
	chloroquine, hydroxychloroquine)		
	Propranolol		
	Carbamazepine		
	Bupropion		
Calcium channel	Diltiazem		
blockers	Verapamil		
β-blockers	Propranolol		
	Sotalol		
	Metoprolol		
Potassium channel	Amiodarone		
blockers	Sotalol		
	Amisulpride		
	Citalopram		
	Phenothiazine antipsychotics		
	Tricyclic antidepressants		
	Venlafaxine		
Other pharmaceuticals	Digoxin		
	Theophylline		
	Potassium chloride		
Chemicals	Organophosphate and carbamate		
	pesticides		
Drugs of abuse	Amphetamines (including MDMA		
	Cocaine		
Natural toxins	Snake venom		
	Funnel-web spider venom		
	Box jellyfish (C. fleckeri) toxin		
	Oleander plant		

Table 1. Agents associated with cardiac toxicity

Antidote/inotrope	Agent/toxin	Indications	
Atropine	Acetylcholinesterase inhibitors (e.g.	Bradycardia	
	organophosphates)	Hypotension	
	β-blockers	Excess secretions	
	Calcium channel blocking agents		
Sodium bicarbonate	Sodium channel blocking agents (e.g. tricyclic antidepressants)	Arrhythmias (usually wide complex tachyarrhythmias)	
		Intractable hypotension	
		Seizures	
Calcium	Calcium channel blocking agents	Hypotension	
		Bradycardia	
High-dose insulin/dextrose	β-blockers	Intractable hypotension	
	Calcium channel blocking agents	Heart block	
Digoxin antibody fragments	Digoxin	Life-threatening arrhythmias	
	Other cardiac glycosides (e.g. oleander)		
Lipid emulsion rescue	Local anaesthetic agents	Cardiac arrest	
Antivenom	Snake, funnel-web spider, box jellyfish venom	Clinical signs of envenoming	

Figure 1. Management flowchart. *Toxin with available antidote, e.g. natural toxin, digoxin, organophosphates. 4-AP, 4-aminopyridine; BB, β-blocker; CCB, calcium channel blocker; ECMO, extra-corporeal membrane oxygenation; HIE, high-dose insulin euglycaemia; IABP, intra-aortic balloon pump; ILE, intravenous lipid emulsion; LA, local anaesthetic; NCBD, sodium channel blocker; WCT, wide complex tachycardia.