Control of calcium metabolism

Calcium and phosphorus homeostasis

Primary elements of blood tissue are calcium (Ca) and phosphorus (P).

- up to 65 % of bone weight
- almost all Ca and P supply, half of supply of Mg in human body
- Essential role of these elements in physiological processes

Bone tissue

- 99 % of overall Ca, of it 99 % in mineral component
- 1 % quickly mobilizable and convertible (ICF - ECF)

	Calcium ions	Phosphate ions
Extracellular		
Concentration total, in serum free	$2.5 imes10^{-3}\mathrm{M}$ $1.2 imes10^{-3}\mathrm{M}$	$1.00 imes 10^{-3} \text{M}$ $0.85 imes 10^{-3} \text{M}$
Functions	Bone mineral Blood coagulation Membrane excitability	Bone mineral
Intracellular		
Concentration	10 ⁻⁷ M	$1{-}2 imes10^{-3}\mathrm{M}$
Functions	Signal for: • Neuron activation • Hormone secretion • Muscle contraction	 Structural role High energy bonds Regulation of proteins by phosphorylation

Extra- and intracellular calcium

Extracellular calcium

- Cartilage and bone mineralization
- Cofactor of enzymes including proteins of coagulation cascade
- "Source" of intracellular calcium
- Excitable tissues

Intracellular calcium

- Signaling role
- Contractility
- Excitability
- Neurosecretion
- Endocrine and exocrine secretion
- Cell differentiation and proliferation
- Cell death and its regulation

Calcium and its intake

Calcium absorption

- 25 60 %
- Age
- Dietary habits and calcium content in diet
- Bone tissue requirements
- Vitamin D

Stomach

- Gastric juice and role of HCl
- Signalization connected to HCl production

Small intestine

- Duodenum a jejunum 90 %
- Adaptive intake duodenum and ileum

Bone tissue is crucial calcium and phosphorus storage tissue. Age-related negative calcium balance is an osteoporosis risk factor.

Mechanisms of calcium absorption

Paracellular

Vitamin

- Luminal electrochemical gradient
- Integrity of intercellular connections
- Claudins and their role in paracellular transport

Transcellular

- TRPV6 and associated proteins
- Recyclation of TRPV6
- Alternative mechanisms?

Calcium on blood (calcemia)

Calcium excretion

- 98 % of filtered Ca is reabsorbed
- 70 % proximal tubule
- 20 % thick ascending limb of HL
- 5 % collecting duct
- 2% urine
- CaSR (TALH)
- Paracellin-1
- PTH

Phosphorus

Kidneys

Reabsorption - proximal tubule (85 %) – Npt1-3

- Bones cca 45 % Ca₁₀(PO₄)₆(OH)₂
- Organic and inorganic form in ICF and ECF
- Age, sex, growth

Blood

- Concentration 1 mM (serum)
- Ionized form (HPO₄²⁻, H₂PO₄⁻)
- 12 % protein complexes
- Intracellular concentration approximately same as extracellular
- Cotransport with sodium

Functions

- Structural NA, phospholipids
- Modified saccharides, phosphoproteins, cofactors, G proteins
- Macroergic compounds (ATP)
- Regulatory role signaling cascade, energetic processes

Collagen type I = most important protein of bone matrix

Bone matrix and bone mineral

Collagen and its synthesis

Bone tissue and its remodeling

Bone tissue and its remodeling

Osteocytes (OC)

- Metabolic activity
- PTH receptors
- Communication with bone surface
- Mechanic sensing
- RANKL production
- Direct degradation of bone tissue (osteocytic osteolysis)
- Adaptive remodeling

Osteoblasts (OB)

- Bone matrix production
- Production of collagen and noncollagen peptides + their orientation
- Regulation by hormones, local factors and cytokines
- Differentiation and further fate apotosis, osteocytes, lining cells
- "recruitment" of other cells IGF-1, IGF-2, TGF- β

Lining cells

- Stimulation of OB differentiation
- OC communication
- Differentiation to OB stimulated by PTH

Osteoclasts (OK) - Bone tissue reabsorption

Osteoclasts

RANKL-OPG

Bone tissue resorption by osteoclasts

Role of compartmentalization in bone resorption - *podosomes*

Resorption and secretion of bone resorption products - transcytosis

Essential role of pH for bone tissue resorption

Factors affecting bone tissue remodeling

Local signals Systemic signals 국 눈 Resorption takes approx. 2 weeks Mineralization and formation approx. 12 weeks In pathophysiologic conditions is disrupted the continuity of bone Remodeling of bone tissue tissue resorption and formation. Cytokines - IL-1 α , IL-1 β , Cytokines - IL-4, IL-13, IL-TNF- α , TNF- β , 10, IL-18 proinflammatory IL (7, **Prostaglandins** 15, 17) **Osteoblasts** Osteoclasts Lining cells VEGFA, HIF-1 α (+/-) TGF- α and EGF, FGF21, FGF23 IGF-1 (endo-/paracrine) **Prostaglandins** BMPs (OB, autocrine) Immediate calcium need - homeostasis **PDGF** Ensuring mechanical requirements

Trabecular bone

Endocrine regulation of bone tissue

Hormone	Effect	Target cells
РТН	 Stimulation of resorption (long-term effect) Stimulation of bone formation (pulsatile effect) Stimulation of local secretion of IL-1 and IL-6 	Osteoblasts, lining cells, osteocytes
Vitamin D	 Stimulation of resorption (higher concentration) Inhibition of mineralization (higher concentration) Stimulation of bone formation (low concentrations, with PTH) 	Osteoblasts (primarily)
Calcitonin	 Inhibition of resorption Regulation of bone tissue remodeling 	Osteoclasts
Growth hormone IGF-1	 Stimulation of bone turnover Stimulation of osteoblast proliferation and differentiation Increased synthesis of collagen and other proteins 	Osteoblasts – primarily GH Osteoblasts and osteoclasts – IGF-1
Glucocorticoids	 Decreased absorption of Ca in GIT Induction of osteoclastogenesis Increased bone resorption (+ RANKL) Suppressed remodeling of bone tissue Induction of apoptosis in osteoblasts and osteocytes Inhibition of IGF-1 synthesis 	Osteoblasts, osteocytes, osteoclasts
Thyroid hormones	 Children – Stimulation of mineralization and epiphyseal maturation Adults – increased resorption Chondrocyte growth and proliferation (permissive effect on growth hormone) Increased transcription of collagenase and gelatinase 	Osteoblasts, osteoclasts (also indirect through TSH)
Insulin	 Stimulation of bone tissue formation and mineralization Increased collagen synthesis Stimulation of IGF-1 secretion 	Primarily osteoblasts
Sex hormones	 Epiphyseal closure (E) Inhibition of RANKL secretion Changes in speed of bone resorption and formation (stimulation of formation and mineralization) 	Primarily osteoblasts, also other bone cells
Prolactin	- Indirect effect	

Insulin – osteocalcin axis

Clinical relevance

- Osteogenesis imperfecta
- Osteopetrosis
- Osteomalacia
- Rachitis
- Osteopenia T score -1 -2.5
- Osteoporosis T score under -2.5

Parathormone

Characteristics

- Parathyroid glands chief cells
 - Synthesis and storage of PTH
 - Very quick secretion of PTH
 - Ability to proliferate during long-term stimulation

PTH

- Synthetized as pre-pro-PTH
- Several types of secretion granules (PTH; PTH+cathepsin B, H)
- Very quick metabolization (70 % liver, 20 % kidneys) 2 min
- Presence of several types of fragments
- PTHR1, PTHR2, PTHR3 G prot.

PTH secretion

Cell proliferation of chief cells is an important adaptive mechanism for:

- Hypocalcemia
- Low levels of vitamin D(1,25(OH)₂D₃)
- Hyperphosphatemia (uremia)
- Neoplastic growth

Level of ionized calcium in blood is a key parameter for PTH secretion.

During sudden decrease of ionized calcium is PTH secretion increased.

Vitamin D decreases PTH secretion (inhibits expression and production of PTH), NOT during chronic hypocalcemia

Phosphates stimulate production and secretion of PTH with delay.

Calcium sensing receptors - CaSR - and PTH secretion

CaSR – G-protein coupled receptor

- Activation of PLC
- Inhibition of cAMP production

Various distribution in tissues – all tissues participating in calcium homeostasis

- Parathyroid glands
- Kidneys
- Skin
- GIT epithelium, enterocytes
- G cells of stomach
- CNS

Clinical aspects

- Mutation inactivation/activation
- familial hypocalciuric hypercalcemia (in.)
- Familial hypoparathyroidism with hypercalciuria (ac.)
- Calcimimetics inhibition of PTH secretion

Main effects of PTH

(+) calcium resorption

- cTAHL, **DT**
- transcellular and paracellular transport
- TRPV5 and TRPV6 Ca²⁺ inhibition
- Calbindin-D28K
- NCX1 and PMCA
- (+) phosphate excretion
- PT and DT
- Inhibition of resorption
- NaPi cotransporters internalization, degradation

(+) activity of 1α -hydroxylase - PT

- (-) resorption of Na, water and bicarbonate PT
- (-) Na⁺/K⁺-APTase (basolateral membrane)
- (+) gluconeogenesis PT
- (-) GFR podocytes

Proximal Tubule

PTH and bone tissue physiology

Effect of PTH on osteoclasts is indirect. Pulsatile secretion stimulates osteoblasts, chronic continual osteoclasts.

Calcitonin

Characteristics

- C cells of thyroid gland
- Family of peptides (amylin, CGRPs, adrenomedulin)
- Different distribution in various tissues
- Secretion is determined by level of ionized calcium (CaSR)
- Stimulation of secretion:
 - Glucocorticoids
 - CGRP
 - Glucagon
 - Enteroglucagon
 - Gastrin
 - Pentagastrin
 - Pancreozymin
 - β-sympatomimetics
- Inhibition of secretion somatostatin

Functions

- Bone tissue
 - Inhibition of osteoclast motility and differentiation
 - Inhibition of osteoclast secretion
 - ATPase inhibition
- Kidneys
 - Increased excretion of Ca inhibition of resorption (Ca²⁺ ion channels – LS, Na⁺/Ca²⁺ - BM)
- Skeleton development?
- Skeleton protection during pregnancy?

Clinical relevance

Function unclear

- Osteoporosis therapy
- Paget disease therapy
- Treatment of pain (bones metastases)
- ! Increased risk of cancer

Vitamin D....hormone?...vitamin?

Physiological effects of vitamin D

 VDR High affinity to 1,25(OH)₂D Level of circulating 1,25(OH)₂D Heterodimer with RXR – coactivators, corepressors 	 Parathyroid glands Gene expression regulation Cell proliferation regulation (-) PTH gene transcription
 Non-genomic effects Rapid increase of intracellular Ca concentration PLC activation Opening of some Ca ion channels Required VDR presence 	 Bones and bone tissue (-) collagen synthesis (+) osteocalcin synthesis (+) osteoclasts differentiation – osteoclastogenesis (+) RANKL
Vitamin D and Ca absorption/reabsorption - (+) CBP, AP, Ca ²⁺ /Mg ²⁺ -ATPase - (+) TRPV6 – absorption (GIT)	 Main function – ensuring the stability of the bone microenvironment for mineralization by the standard intake and availability of Ca and phosphates
 (+/-) TRPV5 – reabsorption (kidneys) Calbindin-9K 1,25(OH)₂D-inducible ATP-dependent Ca²⁺ pump Na⁺/Ca²⁺ exchanger 	Muscle tissue - (+) uptake AAs - (+) troponin C

- Phospholipids metabolism

FGF23 – fibroblast growth factor 23

Characteristics

- New hormone?
- Overexpression = hypophosphatemia and decrease of $1\alpha 25(OH)D$ hydroxylation

Functions

- maintaining normophosphatemia and regulation of vitamin D metabolism
- IncrDecreased expression of IIa, IIb, and IIc (NPT) phosphate transport
- eased expression of 24-hydroxylase inactive form
- Klotho = co-receptor

Regulation

- Phosphorus availability in diet (-)
- Serum phosphorus
- 1,25(OH)₂D
- iron

Clinical relevance:

- Autosomal dominant hypophosphatemic rickets (ADHR)
- Tumor-induced osteomalacia (TIO)
- Klotho mutation

-

Prediction of chronic kidney failure prognosis

Calcium homeostasis – still just a simplified model

