MUNI NED

3

Intracranial compartment, Cellular base of nervous system

2 Intracranial compartment, Cellular base of nervous system

Compartmentalization

- Cellular specialization leads to compartmentalization on several levels
 - Tissue level
 - Organ level
 - Organ system level
- There are barriers in between compartments
- Properties/content may vary among different compartments

Compartmentalization

els

 $M \in D$

- Tissue level
- Organ level —
- a narrow range thanks to hematoencephalic barrier and astrocyte activity Organ
- There are ullet

•

ong different compartments Properties/c

Compartmentalization

 $M \in D$

5 Intracranial compartment, Cellular base of nervous system

Intracranial compartment

sinus

space

- ✓ "Very specific region"
- ✓ Brain
- ✓ Cerebrospinal fluid
- ✓ Blood (intravasculary)
- Barriers \checkmark
 - Meningeal ٠
 - Hematoliquor ٠
 - Hematoencephalic ٠

Meningeal and hematoliquor barrier

Adopted from: M.H.Ross and W. Pawlina. Histology: a text and atlas, Lippincott Williams & Wilkins, 2011

https://sisu.ut.ee/histology/meninges

https://sisu.ut.ee/histology/meninges

MUNI

MED

7

Hematoencephalic barrier

- Highly organised structure
 - Endothelial cells (low permeability thanks to zonlua occludens)
 - Basal membrane
 - Astrocytes
 - Pericytes

https://upload.wikimedia.org/wikipedia/commons/1/12/Blood_vessels_brain_english.jpg

MUNI MED

Hematoencephalic barrier

9 Intracranial compartment, Cellular base of nervous system

MUNI MED

Circumventricular organs

- Rich vascularisation
- Modified hematoencephalic barrier
- Sensors
- Secretion

The circumventricular organs

http://www.neuros.org/index.php?option=com_photos&view=photos&oid=hafizbilal

MUNI

MED

Cerebrospinal fluid

- Content
 - ✓ High levels of Mg^+ and Na^+
 - ✓ Low levels of K^+ and Ca^{2+}
 - ✓ Almost no cells (max 5/ml)
- Function
 - \checkmark Protection
 - ✓ Microenvironment of neurons and glia
 - Metabolic functions
 - Immunologic functions
 - Transport functions and so on

http://www.control.tfe.umu.se

MUNI MED

Cerebrospinal fluid

- Clear fluid produced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml

http://www.control.tfe.umu.se

MUNI

MED

Cerebrospinal fluid

- Clear fluid produced by active secretion
- Liquor space
 - lined by ependymal cells
 - ≻ 150-250 ml
- Production
 - ✓ Plexus choroideus (PCh) -70%
 - ✓ Cell metabolism
 - ✓ Cappilary filtration
 - ➢ 450-750 ml/day
- Resorbtion
 - ✓ Archnoid granulations (AG)

http://www.control.tfe.umu.se

MUNI MED

New insight into the production and resorbtion of CSF

Ducros A, Biousse V. Headache arising from idiopathic changes in CSF pressure. *The Lancet Neurology*. 2015;14:655–668.

- CSF cerebrospinal fluid
- ISF interstitial fluid
- VRS Virchow Robin space (space between the pia mater and an artery or a vein, but not capillaries)

http://visnu528.blogspot.cz/2014/09/glymphatics-and-virchow-robin-space.html

MUNI Med

CNS lymphatic drainage

- Cervical lymph nodes
 - Nasal lymphatics
 - Dural lymphatics
 - Alongside nerves
 - Alongside vessels (no
- Lumbal lymph nodes

15

• Alongside nerve roots

Fig. 1 Drainage pathways for CSF and interstitial fluid (ISF) to cervical lymph nodes. CSF and ISF drain to lymph nodes by different and distinct pathways. In humans, CSF drains into the blood of venous sinuses through well-developed arachnoid villi and granulations (AG). Lymphatic drainage of CSF occurs via nasal and dural lymphatics and along cranial and spinal nerve roots (outlined in green). Channels that pass from the subarachnoid space through the cribriform plate allow passage of CSF (green line) T cells and antigen-presenting cells (APC) into nasal lymphatics (NL) and cervical lymph nodes (CLN). CSF from the lumbar subarachnoid space drains to lumbar lymph nodes. ISF from the brain parenchyma drains along basement membranes in the walls of cerebral capillaries and arteries (blue arrows) to cervical lymph nodes adjacent to the internal carotid artery just below the base of the skull. This narrow intramural perivascular drainage pathway does not allow the traffic of APC. There is interchange between CSF and ISF (convective influx/glymphatic system), as CSF enters the surface of the brain alongside penetrating arteries

CNS lymphatic drainage

- Cervical lymph nodes ullet
 - **Nasal lymphatics**
 - **Dural lymphatics**
 - Alongside nerves
 - Alongside vessels (not APC)
- Lumbal lymph nodes
 - Alongside nerve roots

Engelhardt, B., Carare, R. O., Bechmann, I., Flügel, A., Laman, J. D., & Weller, R. O. (2016). Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta *Neuropathologica*, *132*, *317–338*. https://doi.org/10.1007/s00401-016-1606-5

CSF/ISF CSF into dural AG interchange lymphatics **ISF drains along** walls of capillaries and arteries Cribriform A Not plate APCs CSF + APC Carotid Artery CLN-

Routes for drainage of CSF and ISF to cervical and lumbar lymph nodes

> CSF to lumbar lymph nodes

Fig. 1 Drainage pathways for CSF and interstitial fluid (ISF) to cervical lymph nodes. CSF and ISF drain to lymph nodes by different and distinct pathways. In humans, CSF drains into the blood of venous sinuses through well-developed arachnoid villi and granulations (AG). Lymphatic drainage of CSF occurs via nasal and dural lymphatics and along cranial and spinal nerve roots (outlined in green). Channels that pass from the subarachnoid space through the cribriform plate allow passage of CSF (green line) T cells and antigen-presenting cells (APC) into nasal lymphatics (NL) and cervical lymph nodes (CLN). CSF from the lumbar subarachnoid space drains to lumbar lymph nodes. ISF from the brain parenchyma drains along basement membranes in the walls of cerebral capillaries and arteries (blue arrows) to cervical lymph nodes adjacent to the internal carotid artery just below the base of the skull. This narrow intramural perivascular drainage pathway does not allow the traffic of APC. There is interchange between CSF and ISF (convective influx/glymphatic system), as CSF enters the surface of the brain alongside penetrating arteries

Intracranial compartment

- Brain
- Cerebrospinal fluid
- Blood (intravasculary)
- Intracranial pressure (ICP)
 - Critical determinant of cerebral perfusion
- Cerebral perfusion pressure (CPP) pressure gradient driving blood flow intracranialy

Cerebral perfusion pressure Intracranial pressure Mean arterial pressure

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable

Cellular base of nervous system

- Neuronal cells
 - Reception, integration and propagation of information
 - Unique, irreplaceable
- Neuroglial cells
 - Support for neuronal cells
 - Easily replacable
- The total amount of neuronal cells 100 billions (10¹¹)
- Neruon/glia ratio
 - 1/10 50 (Principles of Neural Science, 4th ed., 2000)
 - 1/2 10 (Principles of Neural Science, 5th ed., 2012)
 - 1/1 (Nolte's Human Brain, 7th ed., 2015)

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune function
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 23 Intracranial compartment, Cellular base of nervous system

MUNI Med

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 24 Intracranial compartment, Cellular base of nervous system

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor barrier)
 - Ventricular lining
 - (liquro-encephalic barrier)
- 25 Intracranial compartment, Cellular base of nervous system

Peripheral nervous system

- Satelite cells
 - Support functions in PNS

- Schwan cells
 - Myelin sheat

https://en.wikipedia.org/wiki/Oligodendrocyte#/media/

File:Oligodendrocyte_illustration.png

Central nervous system

- Astrocytes
 - Hematoencephalic b.
 - Homeostasis maintaining
 - Metabolism of neurotransmitters
 - Important during brain development
- Oligodendrocytes
 - Myelin sheat
- Microglia
 - Immune funtion
- Ependymal cells
 - Choroid plexus
 - (hemato-liquor l
 - Ventricular lining (liquro-encephalid
- Intracranial compartment, Cellular base of nervous system 26

- Satelite cells
 - Support functions in PNS ____

MUNI

MED

Neuron

http://www.slideshare.net/drpsdeb/presentations

http://www.slideshare.net/drpsdeb/presentations

Background Activity

https://upload.wikimedia.org/wikipedia/commons/e/ed/Neuron_Cell_Body.png

Background Activity

MUNI MED

Background Activity

Fast axonal transport

- bidirectional
- ATP dependant
- associated with microtubules:

dynein and kinesin

Fast axonal transport

31

Golgi derived vesicles lysosmes, mitochondria structural elements of endoplasmic reticulum

Slow axonal transport

- unidirectional,
- ATP independant
- conducted by sliding, polimerizing and protein interacting

Slow axonal transport

microfilaments, microtubules neurofilaments cytosolic protein complexes

http://www.oapublishinglondon.com/images/article/pdf/1397255957.pdf

Membrane potential

• Due to differences in the concentrations of ions on opposite sides of a cellular membrane

http://www.slideshare.net/drpsdeb/presentations

MED

Resting membrane potential of a neuron

- Highly instable state of membrane
- Why? Speed!
- High energetical demands
 - ✓ Oxygen 20% of total body consumption
 - ✓ Glucose 25% of total body consumption

MED

Action potential

- Quick voltage change on the membrane •
- Spreads along the axon •
- All or nothing principle ۲

MUNT MED

Action potential spreading

http://www.slideshare.net/drpsdeb/presentations

MUNI MED

Saltatory conduction

- Myelin sheat
- Nodes of ranvier
- Economy
- Speed of conduction
- Speed of conduction also dependent of nerve fibre diameter
 - the electrical resistance is inversly proportional to area of crosssection

 $M \vdash D$

Classification of nerve fibers

- In humans mostly myelinated
- All fibers are myelinated in CNS
- Non-myelinated are evolutionary old ones

http://neuroscience.uth.tmc.edu/s2/chapter04.html

Neuronal classification

Basis for classification	Example	Functional implication	Structure
3. Number of processes One process exits the cell body	Unipolar neuron (dorsal root ganglion cell)	Small area for receiving synaptic input: highly specialized function	Unipolar
Two processes exit the cell body	Bipolar neuron (retinal bipolar cell)	Small area for receiving synaptic input: highly specialized function	Bipolar Multipolar
Many processes exit the cell body	Multipolar neuron (spinal motor neuron)	Large area for receiving synaptic input; determines the pattern of incoming axons that can interact with the cell	Multipolar

MUNI

MED

Neuronal classification

Basis for classification	Example	Functional implication	Structure
2. Dendritic pattern Pyramid-shaped spread	Pyramidal cell	Large area for receiving	Pyramidal cell
of dendrites	(hippocampal pyramidal neuron)	synaptic input; determines the pattern of incoming axons that can interact with the cell (i.e., pyramid-shaped)	thry.vvv.slideshare.net/CoslineEgri/presentations
Radial-shaped spread of dendrites	Stellate cell (cortical stellate cell)	Large area for receiving synaptic input; determines pattern of incoming axons that can interact with the cell (i.e., star-shaped)	Stellate cell

Neuronal classification

Basis for classification	Example	Functional implication	Structure
1. Axonal projection Goes to a distant brain area	Projection neuron or Principal neuron or Golgi type I cell (cortical motor neuron)	Affects different brain areas	Dorsal root ganglion cell
Stays in a local brain area	Intrinsic neuron or Interneuron or Golgi type II cell (cortical inhibitory neuron)	Affects only nearby neurons	Retinal bipolar cell

68. Cellular base of nervous system

- ✓ Neuroglial cells
 - Classification and functional overview
- ✓ Neuronal cells
 - Characterization, classification, anatomy
 - Functions of neurons
 - Background activity (cytoplasm)
 - Synhtesis (soma)
 - Transport (categorization, characterization)
 - Information processing and transmission (membrane)
 - Main points of question No. 70

69. Intracranial compartment, intracranial pressure

✓ Content of intracranial compartment (brain, blood, CSF)

- ✓ Barriers among compartments (meningeal, hematoencephalic, hematoliquor)
 - HEB description
 - Circumventricular organs
- ✓ CSF
 - Function
 - Production, circulation, absorption
- ✓ Intracranial pressure
 - Definition, equation, implications

70. Membrane voltage, action potential – generation and propagation through nerve fibers

- ✓ Membrane potentials
 - General characteristics and ionic mechanisms description
- ✓ Resting potential in neuron (characteristics)
- \checkmark Action potential
 - Characteristics
 - Ionic mechanisms
 - Signal conduction
 - Role of myelin, saltatory conduction
- ✓ Classification of nerve fibres
- 43 Intracranial compartment, Cellular base of nervous system

MUNI NED