MUNI NED

MUNI MED

9

Vision I

2 Vision I

Light

 \checkmark Electromagnetic radiation with wavelengths in range of 400 – 700 nm

Color mixing

MUNI MED

Photoreceptive organ

✓ Light detection

✓ Image formation

Light detection

- Circadian activity
 - Both prokaryotes and eukaryotes
 - Day/night cycle is the most influential and the most stable biorhythm

https://www.pointsdevue.com/article/good-blue-and-chronobiology-light-and-non-visual-functions

Light detection

- Circadian activity
 - Both prokaryotes and eukaryotes
 - Day/night cycle is the most influential and the most stable biorhythm

https://www.pointsdevue.com/article/good-blue-and-chronobiology-light-and-non-visual-functions

Light detection

- Circadian activity
 - Both prokaryotes and eukaryotes
 - Day/night cycle is the most influential and the most stable biorhythm
 - Oscillation with a period of aprox. 24 hours even without signals from environment
 - Environmental signals synchronize circadian activity
- Light/dark "warm/cold" Cognitive performances Mood Autonomic nervous system Motor Thalamus activity Sleep Memory LIGHT Pineal gland -Hypothalamus Hormones Brain **PVN** Cell cycle BIOLOGICAL Peripheral clocks CLOCK
 - https://www.pointsdevue.com/article/good-blue-and-chronobiology-light-and-non-visual-functions

Seasonal activity

•

Circadian activity

https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/Biological_clock_human.svg/2000px-Biological_clock_human.svg.png

- Cellular level
 - Group of proteins rhythmically expressed creating interconnected feedback loops (about 24hours)
 - Peripheral Clock protein expression

- Cellular level
 - Group of proteins rhythmically expressed creating interconnected feedback loops (about 24hours)
 - Peripheral Clock protein expression
- Tissue level
 - Peripheral oscillators
 - Adrenal gland, lung, liver, pancreas, skin
 - Influenced by neurohumoral factors and also by light

- Cellular level
 - Group of proteins rhythmically expressed creating interconnected feedback loops (about 24hours)
 - Peripheral Clock protein expression
- Tissue level
 - Peripheral oscillators
 - Adrenal gland, lung, liver, pancreas, skin
 - Influenced by neurohumoral factors and also by light
- Central pacemaker
 - Hypothalamus (nucleus suprachiasmaticus)
 - Central clock protein expression
 - Information about illumination from retina (specialized ganglion cells) synchronization of central pacemaker
 - Pineal gland melatonin
 - Autonomnic nervous system adreanl gland cortisol

- Cellular level
 - Group of proteins rhythmically expressed creating interconnected feedback loops (about 24hours)
 - Peripheral Clock protein expression
- Tissue level
 - Peripheral oscillators
 - Adrenal gland, lung, liver, pancreas, skin
 - Influenced by neurohumoral factors and also by light
- Central pacemaker
 - Hypothalamus (nucleus suprachiasmaticus)
 - Central clock protein expression
 - Information about illumination from retina (specialized ganglion cells) synchronization of central pacemaker
 - Pineal gland melatonin
 - Autonomnic nervous system adreanl gland cortisol

http://slideplayer.com/slide/7013288/

Central pacemaker synchronization

Wahl S, Engelhardt M, Schaupp P, Lappe C, Ivanov IV. The inner clock-Blue light sets the human rhythm. *J Biophotonics*. 2019; e201900102.

Pineal Gland

MUNI MED

https://www.fotoskoda.cz/images/manufacturers/camera_obscura.png

MUNI MED

- Shape
- Color
- Localization
- Movement
- Image interpretation CNS

MUNI

MED

Rods	Cones
High sensitivity to light, specialized for night vision	Lower sensitivity, specialized for day vision
More photopigment, capture more light	Less photopigment
High amplification, single photon detection	Lower amplification
Low temporal resolution: slow response, long integration time	High temporal resolution: fast response, short integration time
More sensitive to scattered light	Most sensitive to direct axial rays
Rod system	Cone system
Low acuity: not present in central fovea, highly convergent retinal	High acuity: concentrated in fovea, dispersed retinal pathways
pathways	
Achromatic: one type of rod pigment	Chromatic: three types of cones, each with a distinct pigment

spectrum

that is most sensitive to a different part of the visible light

MUNI MED

20 Vision I

MUNI

MED

Photopigment of rods Rhodopsin

- Opsin
- G protein

- Retinal
- Retinol aldehyde (vit. A)

MUNI

MED

Photopigments of cones

- 3 types of cones 3 types of photopigment
 - Blue(420nm)
 - Green (530nm)
 - Red (560nm)

http://www.slideshare.net/CsillaEgri/presentations

Photopigments of cones

- 3 types of cones 3 types of photopigment
 - Blue(420nm)
 - Green (530nm)
 - Red (560nm)
- Color is interpreted by ratio of cone stimulation
 - Orange (580nm)
 - Blue: 0%
 - Green: 42%
 - Red:99%

http://www.slideshare.net/CsillaEgri/presentations

Phototransduction

- Photoreceptors continuously release neurotransmitter (glutamate) in darkness
- In response to the light, the membrane hyperpolarizes and release less neurotransmitter

http://www.slideshare.net/drpsdeb/presentations

Phototransduction - darkness

- Guanylate cyklase
 - cGMP
- cGMP-gated Na⁺ channels
 - Na⁺ influx
- Voltage gated Ca²⁺ channels
 - Release of glutamate
- The balance is kept by
 - K⁺ efflux
 - Na⁺/K⁺ exchanger
- Resting membrane potential: – 40mV

Phototransduction - light

- Photon is absorbed by photopigment
- Isomerization of retinal
- Cascade of reactions result in cGMP phosphodiesterase
 - cGMP levels decreased
- Deactivation of cGMP gated Na⁺ channels
- K⁺ efflux continues
- Membrane hyperpolarization
 - Deactivation of voltage Ca²⁺ channels
 - Decrease in glutamate release

Adaptation to the light/darkness

- Optic adaptation
 - Constriction of pupils
- Photoreceptor adaptation
 - Ca²⁺ inhibits guanylate cyclase
 - cGMP gated Na⁺ channels...
 - Darkness
 - Higher Ca²⁺ levels → cGMP decreased → membrane more hyperpolarized → "higher sensitivity to light"
 - Light
 - Lower Ca²⁺ levels → cGMP increased → membrane more depolraized → "lower senzitivity to light"

http://www.slidesare.net/drpsdeb/presentations

MUNI Med

MUNI MED

77. The basic physiology of visual system – light detection vs. image formation, circadian rhythms

- Brief characterization of light
- Light detection (LD) vs. image formation (IF)
- LD almost all the living organisms
 - one of the oldest functions
 - mainly for circadian activity synchronization
- IF Functional overview of eye anatomy (camera obscura with a lens)

- Circadian rhythms
 - Definition + importance
 - Biological clock (cellular level, tissue level, central pacemaker)
 - Brief overview of circadian rhytms in humans ("active"hours, "rest" hours, physiological changes, associated hormone oscilations...)

MUNI MED

78. The basic physiology of visual system – rods and cones function, on/off receptive field, nervus opticus vs. tractus opticus

- Rods and cons function
 - Characterization and comparison
 - Phototransduction mechanism and adaptation
- Brief overview of retina organization (retina process receptor potential – analog, AP is generated in ganglion cells)

- Receptive field organization
 - On/off receptive fields
 - Magnocellular system (BW)
 - Parvocellular system (Color)
- Nervus opticus vs. tractus opticus
- Projections from tractus opticus (Main centers in the brain involved in visual signals processing)

MUNI NED