

Medical genetics – introduction

Michael Doubek

Learning outcomes

Basic concepts of contemporary genetics will be presented

□ The student will learn principles of heredity

Diagnostics of genetic diseases will be introduced

Lecture content

Basic concepts of genetics

Genome and its analysis

□ Modes of inheritance

□ Example from practice

MUNI Med

Why medical genetics?

Genome role in diagnostics, therapy and prevention

= application in medical practice

It is possible to implement into practice only what I know and what I have in mind

 $M \vdash D$

What you should already know

What is a gene

genes: structural for functional RNAs

- housekeeping genes
- gene expression
- exones, intrones, non-transcribed regions, promotors Informational macromolecules Transcription, alternative splicing, translation Chromosomes

What is a DNA?

cold ethanol + salt + detergent > 1 m DNA

What is a DNA?

Cavendish Laboratory and The Eagle Pub Watson + Crick + Wilkins + Franklin

MUNI

MED

Clinical genetics (aVLKG7X1c)

What is a DNA?

Clinical genetics (aVLKG7X1c)

Chromosomes

MUNI MED

Genetics: study of genes, genetic variation, and heredity in living organism

Genome: complete set of DNA within a single cell of an organism

 $M \vdash 1$

Genomics: focuses on the structure, function, evolution, and mapping of genomes

Terminology

Genetics

Genome

Genomics

Microbiome

Transcriptome

Clinical genetics (aVLKG7X1c)

MUNI Med

Terminology

Epigenetics

Clinical genetics (aVLKG7X1c)

Terminology

Genetics Genome Set of all RNA molecules in one Genomics cell or a population **Microbiome** of cells in certain time **Transcriptome**

Epigenetics

Clinical genetics (aVLKG7X1c)

Genetics

Genome

Genomics

Microbiome

Transcriptome

Epigenetics

Study of heritable changes in gene function that do not involve changes in the DNA sequence

> MUNI MED

male	, female								
39	2	83 3	ŠŠ 4	88 5		2	XX 3	88 4	80
80 6	88 7	36 8	öö 9	88 10	6	ሽ ሽ	XÄ 8	XX 9	10
88	ភ័ត	00	åö	àà	**	ត័ភ	ăă	ด้ดี	កំព័
11	12	13	14	15	11	12	13	14	15
**	**	ää	**	**	**	**	ត់ត	**	**
16	17	18	19	20	16	17	18	19	20
ÄÄ	**	6.			XX	**	**		
21	22	XY			21	22	X	X	

Human genome: 3.2 x 10⁹ bp, ~ 20,000 genes

Clinical genetics (aVLKG7X1c)

MUNT MED

68 66

XX

XX

65 66

Xă

**

Human genome was published in 2001

C. Venter

J. D. Watson

MUNI

MED

Individual sequences of human genomes were published in 2007 and 2008

C. Venter

J. D. Watson

MUNI

MED

Individual sequences of human genomes were published in 2007 and 2008

Difference in 7648 amino acid substitutions

C. Venter

J. D. Watson

MUNI

MED

Individual sequences of human genomes were published in 2007 and 2008

The 1000 genome project published in 2010

MUNI Med

Postgenomic era

Genomes were described

Ongoing genomes annotations

from phenotype to genotype

from genotype to phenotype

MUNI Med

Modern techniques of genome analysis

NGS flexibility

whole genome

exome

targeted genes or hotspots

3 200 000 000 bp 30 x coverage 20 000 genes 100 x coverage < 100 genes ≥ 1000 x coverage

> MUNI MED

Modern techniques of genome analysis

Whole-Genome Sequencing

Genomic DNA

....TATGCGATGCGTATTTCGTAAA...

Generating a Person's Genome Sequence

Break genome into small pieces

Capture library

Generate millions of sequence reads

Align sequence reads to establish reference sequence

Deduce starting sequence and identity differences from reference sequence Whole-Exome Sequencing

.... TATGCGATGCGTATTTCGTAAA....

Reference MUNI MED

- Every 1000th base could be mutated \Rightarrow 3.2 x 10⁶ variants
- One men has approx. 0.5 x 10⁶ variants
- Exome analysis (1.5% of genome) \Rightarrow tens thousands of variants

Which of the found variants is the disease causing one?

- Every 1000th base could be mutated \Rightarrow 3.2 x 10⁶ variants
- One men has approx. 0.5 x 10⁶ variants
- Exome analysis (1.5% of genome) \Rightarrow tens thousands of variants

Mutations: spontaneous vs. induced

gene vs. chromosomal

Mutations: missense nonsense (terminating triplet) same sense frameshift

Single nucleotide polymorphisms (SNPs)

cgcgcggcctcctccttgtggccatcctggtcctcctaaaccacctggac

cgcgcggcctcctccttgtggtcatcctggtcctcctaaaccacctggac

Insertions/deletions (indels)

cgcgcggcctcctccttgtggccatcctggtcctcctaaaccacctggac

cgcgcggcctcctccttgtgg-----ctggtcctcctaaaccacctggac

Microsatelites (STR)

cgcgcggcctcctccttgtggcacacacacacacacatcctggtcctcctaaaccacctgga

cgcgcggcctcctccttgtggcacacacacacacatcctggtcctcctaaaccacctgga

Copy number variants (CNV)

>1 kb – 1MGb

MUNI MED

Sickle-cell anemia

MED

Germline vs. somatic mutations

Germline mutation

Somatic mutation

MUN] Med

The role of genome in the disease onset

Mendelian hereditary diseases 8%

Multifactorial 90%

Other 2%

Inheritance types Mendelian monogenic: one gene \Rightarrow one feature

X-linked and Y-linked (sex-linked disorders)

Polygenic several genes \Rightarrow one feature

Mitochondrial

Environmental factors

What is the procedure of hereditary diseases tracing?

pedigree

disease frequency in population

molecular biology methods

functional tests

MUNI Med

MUNI MED

Pedigree

- □ two common ancestors in previous generation: parents
- □ 4 grandparents, 8 great-grandparents
- \Box the number of ancestors in generation n is 2^n

Mitochondrial inheritance

MUNI MED

Y chromosome inheritance

MUNI MED

Autosomal dominant inheritance

MUNI Med

Autosomal recessive inheritance

MUNI Med

Enviromental factors

Monogenic disorders

Autosomal recessive disorders

hemochromatosis (1:10)

factor V Leiden mutation (1:20)

cystic fibrosis (1:25)

spinál muscular atrophy (1:40)

MUNI Med

Autosomal recessive disorders

Founder effect

Small closed populations:

Ashkenazi Jews franco-Canadiens Iceland surroundings od Maracaibo lake...

Marriages of relatives

Consanguinity

Homozygous mutation BLM gene c.1642C>T, p.(Gln548*)

Syndrome Nijmegen breakage, NBS

NBN gene for nibrin in 8q21 Heterozygotes 1:130-150 Common ancestor

Seemanová, 1985

MED

Autosomal dominant disorders

Achondroplasia

Huntington chorea

Marfan syndrome

Polycystic kidneys

Neurofibromatosis

Gonosomal disordres

Gonosomal dominant

- vitamin D resistant rachitis

Gonosomal recessive

- hemofilia A, B
- Duchenne muscular dystrophy

Clinical case from practice

Clinical case

۰ ـ

11

Functional analysis of *ETV6* :

fluorescence microscopy

....IUNI Med

What are the skills of clinical geneticist?

complex examination

gene/s analysis indication

- exome sequencing
- genome sequencing
- functional tests

results interpretation

(from practitioners to clinical geneticists)

therapeutic and preventive intervenation proposal

- respecting wishes of affected individuals together with ethical aspects

CRISPR/Cas9

Clinical genetics (aVLKG7X1c)

Gene has a new sequence

3'

5

Take home message

- □ The genome is all the DNA in a cell / organism
- Exome is DNA coding sequence
- □We have about 20,000 genes
- □ Modern methods of DNA analysis make it possible to analyze
- whole genomes
- □ Human genome variability what causes disease?
- Genetics skills
- Genome editing

MUNI MED

Lékařská fakulta Masarykovy univerzity 2021