

LF aVLMB031 Imaging and Analytical Methods (Autumn 2023): Methods for nucleic Acid Analysis

Ioanna Papatheodorou

email: 554123@mail.muni.cz

PLAN OF THE LECTURE

- Introduction
- Isolation of nucleic acids
 - Isolation with high salt concentrations
 - Isolation with phenol chloroform

- Techniques for nucleic acid analysis
 - o DNA analysis
 - o RNA analysis

"Omics" technologies and nucleic acids

- Understand why it is useful to be able to analyze nucleic acids
- ✓ How nucleic acid analysis can be used in research and clinical practice
- ✓ What the most common methods for nucleic acid analysis are
- ✓ How the "omics" technologies contribute to nucleic acid analysis

The central dogma of molecular biology

What are the nucleic acids? Let's revise!

T G A G T G G A A G T A C T C A C C T T C A

✓ double stranded

- \checkmark more stable \rightarrow can be preserved for thousands of years in fossils
- \checkmark contains all genetic information and regulatory elements
- $\checkmark\,$ genes are only a small part of the DNA regions
- ✓ coding <u>and</u> non-coding regions can offer valuable information

What are the nucleic acids? Let's revise!

- ✓ single stranded
- ✓ U instead of T
- ✓ less stable
- ✓ more "flexible"
- \checkmark can be transported
- ✓ create secondary structures
- \checkmark can provide information about the coding regions of DNA
- \checkmark can have regulatory roles itself (!) \rightarrow rRNA, tRNA, miRs

secondary structure with loops

Why is it useful to be able to analyze nucleic acids?

- Biomedical research: investigation of molecular mechanisms (that can lead to novel therapies)
- Translational research: determination of off-target effects of medicine
- *Basic research*: production of new knowledge \rightarrow deeper understanding of how the world works
- Forensics: DNA fingerprinting
- Agriculture: species barcoding \rightarrow detection of adulterated products

...and what about the clinical practice?

- Identification of foreign DNA/RNA (e.g. virus DNA) or mutated genes (e.g. oncogenes, hereditary diseases)
- Paternity tests
- Karyotypes and prenatal testing
- Diagnostics: determination of biomarker levels / risk assessment

Usage of nucleic acid analysis in research and clinic

MUNI

Genotyping → telling apart wild type (WT – "healthy") animals from animals that are genetically modified

Species DNA Barcode

Barcoding \rightarrow determining the origin of products and the presence of foreign / dangerous elements in them

Determination of the expression levels of biomarkers in patients \rightarrow prediction of risk / severity of disease (prognostics / diagnostics)

Determination of the presence / absence of specific gene or SNP \rightarrow diagnostics

What is the workflow we need to follow in order to study the nucleic acids?

ISOLATION OF NUCLEIC ACIDS (I)

High salt concentration

High salt concentration \rightarrow makes the proteins and debris precipitate \rightarrow nucleic acids stay in the supernatant SDS, EDTA \rightarrow denature proteins and destroy membranes \rightarrow help precipitation of proteins / separation of nucleic acids Isopropanol \rightarrow organic solvent (nucleic acids can't be diluted in it) \rightarrow precipitation of nucleic acids

ISOLATION OF NUCLEIC ACIDS (II)

Phenol - Chloroform

Lysis with phenolic reagent (e.g. TriZOL, ExtraZOL)

centrifugation

QUALITY AND QUANTITY CONTROL

1. Assessment of quantity and purity

- ✓ Done with Nanodrop or Bioanalyzer instruments
- ✓ Produces ratios indicative of purity (260/280 & 260/230)
- $\checkmark\,$ Determines RNA quantity (ng of RNA per $\mu l)$

MUNI

2. Assessment of integrity

- ✓ Done with electrophoresis
- ✓ Determines intact of degraded RNA
- Intact RNA shows two big bands that correspond to the two ribosomal subunits

SNP / chromosomal analysis – FISH (fluorescent in-situ hybridization)

Microarrays – use for gene expression

Labeling of samples with fluorescent dyes

control treated Lazer hits at hybridization specific wavelength to microarray Calculation of intensity

of each color

Red = "up-regulation"

Black = constitutive

Green = "down-regulation"

expression

- ✓ Detection of SNPs
- ✓ Investigation of both
 - alleles (in case the
 - input material is DNA)
- ✓ Investigation of RNA transcripts or patient samples at once

ICRC INTERNATIONAL CLINICAL RESEARCH CENTER

Southern / Northen blot

qPCR

- ✓ Proper conditions: pH, co-factors
- ✓ Enzyme
- ✓ Random primers
- ✓ dNTPs

- ✓ Proper conditions: pH, co-factors
- ✓ Enzyme
- ✓ Specific primers / probes
- ✓ Fluorescent agent

qPCR

╋

- ✓ Practical, easy to use and optimize
- ✓ Realtively fast and reproducible results
- ✓ Extremely sensitive and more specific than serological tests
- \checkmark Wide applicability

-

From a clinical perspective:

- Speed depends on laboratory so it may miss the relevant time frame
- Resources available in the clinic for urgent cases or (equipment, trained staff)
- Diagnosis of infectious disease false positives/false negatives

From a biomedical research perspective:

- -Primers: sequence must be known, primers must be well designed
- -Sensitivity/Contamination

"OMICS" TECHNOLOGIES AND NUCLEIC ACIDS (I)

ST. ANNE'S UNIVERSITY HOSPITAL

MUNI

MED

What are the "omics" technologies?

Investigation of the "totality"

Collective characterization of the DNA, RNA, proteins or metabolites of samples / patients

"OMICS" TECHNOLOGIES AND NUCLEIC ACIDS (II)

What is DNA / RNA sequencing?

- ✓ Determination of the nucleotide sequence of the whole genome / transcriptome of a patient
- \checkmark Detection of mutations in the genomic DNA or of alteration in the expression of all genes
- ✓ Production of the "genomic profile" or "transcriptomic profile" of the patient

MUNI

- ✓ Nucleic acids can offer valuable information regarding:
 - \circ The expression of various genes
 - The presence / absence of polymorphisms connected to diseases
 - \circ The origin of products
- ✓ Research and clinical practice can benefit from nucleic acid analysis via:
 - ✓ Determination of the expression profile of genes
 - ✓ Construction of karyotypes
 - ✓ Hybridization of fragments in microarrays
- \checkmark Some common methods for nucleic acid analysis are
 - ✓ <u>DNA</u>: SNP determination through FISH, Genotyping, Genetic barcoding, qPCR
 - ✓ <u>RNA</u>: RT-PCR, microarrays, Northen blot
- $\checkmark~$ The "omics" technologies allow
 - ✓ Scaling-up of the analyses
 - $\checkmark~$ Production of the information much quicker
 - ✓ Multiple analysis of many DNA/RNA regions

Thank you for your attention!

See you at 27th of October in the lab \bigcirc