MUNI MED

Stress response and protein folding

Petr Müller

Molecular and Cellular Pathophysiology

At the environmental conditions (temperature, solvent concentration and composition, etc.) at which folding occurs, the native structure is a unique, stable and kinetically accessible minimum of the free energy

The native structure is determined only by the protein's amino acid sequence

Christian Boehmer Anfinsen, Jr. (March 26, 1916 – May 14, 1995)

Nobel Prize in Chemistry (1972)

Folding is entropy driven process

Protein homeostasis / proteostasis

Journal of

Cell Science

Stress proteins / Chaperones

Holdases bind folding intermediates to prevent their aggregation

Crystalins, p23, Hsp40...

Foldases are chaperones that accompany other proteins to help them to overcome the energy barriers during folding to native conformation (ATP dependent)

Hsp70, Hsp90, GroEL...

Stress proteins

Proteins induced by increased temperature, mainly represented by chaperones

Dinitrophenol-mitochondrialní uncoupler

1962 by Ferruccio Ritossa

Approximate <u>molecular</u> <u>weight(kDa</u>)	Prokaryotic proteins	<u>Eukaryotic</u> proteins	Function
<u>10 kDa</u>	GroES	Hsp10	
20-30 kDa	GrpE	The HspB group of Hsp. Eleven members in mammals including <u>Hsp27</u> , <u>HSPB6</u> or HspB1 ^[28]	
<u>40 kDa</u>	DnaJ	Hsp40	Co-factor of Hsp70
<u>60 kDa</u>	GroEL, 60kDa antigen	Hsp60 GroEL	Involved in protein folding after its post-translational import to the mitochondrion/chloroplast
<u>70 kDa</u>	DnaK	The HspA group of Hsp including Hsp71, <u>Hsp70</u> , <u>Hsp72</u> , Grp78 (BiP), Hsx70 found only in primates	Protein folding and unfolding, provides thermotolerance to cell on exposure to heat stress. Also prevents protein folding during post-translational import into the mitochondria/chloroplast.
<u>90 kDa</u>	HtpG, C62.5	The HspC group of Hsp including Hsp90, Grp94	Maintenance of steroid receptors and transcription factors
100 kDa	ClpB, ClpA, ClpX	Hsp104, Hsp110	Tolerance of extreme temperature

HspB group/ small chaperones

Small Hsps

Ubiquitin-like

Crystallins

Prevent aggregation Thermotolerance

	Gene	Protein	Old names	Human gene	Mouse ortholog
	name	name		ID	ID
1	HSPB1	HSPB1	CMT2F; HMN2B; HSP27; HSP28; HSP25; HS.76067; DKFZp586P1322	3315	15507
2	HSPB2	HSPB2	MKBP; HSP27; Hs.78846; LOH11CR1K; MGC133245	3316	69253
3	HSPB3	HSPB3	HSPL27	8988	56534
4	HSPB4 ^a	HSPB4	crystallin alpha A; CRYAA, CRYA1	1409	12954
5	HSPB5 ^a	HSPB5	crystallin alpha B, CRYAB; CRYA2	1410	12955
6	HSPB6	HSPB6	HSP20; FLJ32389	126393	243912
7	HSPB7	HSPB7	cvHSP; FLJ32733; DKFZp779D0968	27129	29818
8	HSPB8	HSPB8	H11; HMN2; CMT2L; DHMN2; E2IG1; HMN2A; HSP22	26353	80888
9	HSPB9	HSPB9	FLJ27437	94086	75482
10	HSPB10 ^a	HSPB10	ODF1; ODF; RT7; ODF2; ODFP; SODF; ODF27; ODFPG; ODFPGA; ODFPGB; MGC129928; MGC129929	4956	18285
11	HSPB11	HSPB11	HSP16.2; C1orf41; PP25	51668	72938

Hsp70 (DnaK, Grp78,..) chaperone machinery

Hsp40

DnaJ J-proteins

Chaperonins (GroEL-GroES, Hsp60, CCT-TRiC)

Folding of cytoskeletal proteins (tubulin) Protein transport Hsp104 (ClpB, ClpX,..)

Thermotolerance Aggregate refolding Prion folding (yeast Psi+/-) Hsp104

AAA+ proteases

Proteasome

AAA+ ATPases

Converts ATP to "mechanical" energy (molecular motors)

Nature Reviews | Molecular Cell Biology

Hsp90 chaperone machinery

- Conserved from procarytes to mammals
- ATPase aktivity (like gyrase)
- Mitochndrial, ER, cytoplasmic
- Redundant isoformes

 $\overline{}$

Stress proteins/ Chaperones/Hsp90

Hsp90 as a capacitor for morphological evolution

Suzanne L. Rutherford*† & Susan Lindquist* *Howard Hughes Medical Institute, University of Chicago, 5841 South Maryland Avenue MC1028, Chicago, Illinois 60637, USA NATURE | VOL 396 | 26 NOVEMBER 1998 | www.nature.com

The tumor cells demand high quality and amount of protein

Hanahan D, Weinberg RA.: Cell. 2000 Jan 7;100(1):57-70.

Enhanced proteosynthesis Production of mutated, conformational instable protins

Genetic instability

Activity of Hsp90 is essential for expression of cancer phenotype

Specific inhibitors Hsp90

Isolation of Geldanamycin (1970)

Geldanamycin binds ATP cavity of Hsp90 (1997)

Clinical trials with Geldanamycin(2000)

	inhibitor	No of studies	phase	Company
1	tanespimycin (17AAAG)	36	Ш	Bristol-Myers Squibb, Kosan
2	retaspimycin (IPI-504)	11	/ *	Infinity Pharmaceuticals
3	alvespimycin (17DMAG)	7	II	Bristol-Myers Squibb, Kosan
4	STA-9090	14	II	Synta Pharmaceuticals Corp.
5	AUY922	11	II	Novartis Pharmaceuticals
6	CNF2024 (BIIB021)	7	II	Biogen Idec
7	SNX-5422	4	I	Pfizer, Serenex, Inc.
8	AT13387	3	I	Astex Therapeutics
9	KW-2478	2	1/11	Kyowa Hakko Kirin Pharma, Inc.
10	IPI-493	2	I	Infinity Pharmaceuticals
11	HSP990	2	I	Novartis Pharmaceuticals
12	MPC-3100	1	I	Myrexis Inc.
13	Debio 0932	1	I	Debiopharm S.A.
15	BIIB028	1	I	Biogen Idec

Hsp90 is unique therapeutic target for anti-cancer therapy

more than 17 different molecules in clinical trials

Variable response need for predictive markers

What does kill the cells:

 apoptosis, aggregation,

Different assembly of Hsp90 machinery ?

- posttranlational modifications
- expression pattern of co-chaperones

Client spectrum ?

Sensors of proteotoxic stress

Metabolic stress

HSF1 is the main regulator of gene expression responsible for maintaining protein homeostasis

Regulation of chaperone gene expression

Analysis of HSF1 activation

HSF1-mCherry in A375 and H1299

Nuclear stress bodies

Cell fractionation

•

WB Crosslinkink

- Fractionation
- phosphorylation

HSF1-mCherry + SBP-HSF1

Native gel, detection of trimers

Measurement of DNA binding capacity

FAM-HSE binding to HSF1 150· trimer = 255 nM monomer + HS (mP) HD = 273 nM monomer - HS Fluorescence K_D = 19.2 μM polarization 10 100 1000 10000 HSF1 monomer concentration (nM) heat shock + heat shock trimer dettan detrai MAGE OF ENOBOD ENOB 100 M (CO) ST

Mechanisms of HSF1 activation

HSF1 is essential for carcinogenesis and tumour progression

Heat Shock Factor 1 Is a Powerful Multifaceted Modifier of Carcinogenesis

Cell

Chengkai Dai,¹ Luke Whitesell,¹ Arlin B. Rogers,³ and Susan Lindquist^{1,2,*} ¹Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA ²Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA ³Divison of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ^{*}Correspondence: lindquist_admin@wi.mit.edu DOI 10.1016/j.cell.2007.07.020

Mutation in HSF4 leads to decreased expression of crystalline genes in the lens, resulting in congenital cataracts

Crystalline alpha/beta (CRYAB, CRYAA)

A Homozygous Splice Mutation in the HSF4 Gene Is Associated with an Autosomal Recessive Congenital Cataract

Congenital Cataract in Australian Shepard

Unfolded protein response and autophagy

ATF6

- ATF6 is an endoplasmic reticulum (ER) stress-regulated transmembrane transcription factor that activates the transcription of ER molecules.
- Accumulation of misfolded proteins in the Endoplasmic Reticulum results in the proteolytic cleavage of ATF6.
- The cytosolic portion of ATF6 will move to the nucleus and act as a transcription factor to cause the transcription of ER chaperones.

NRF2 is a transcription factor that regulates the expression of antioxidant proteins that protect against oxidative damage triggered by injury and inflammation

NRF2

