Total hip arthroplasty

J. Emmer, Z. Rozkydal

Hip joint

Enarthrosis

Pelvis

Femur

Muscles

Femoral nerve

Sciatic nerve

THR indications

- Painfull hip joint condition
- Poor effect of conservative therapy
- Life comfort deteriorated
- No salvage surgeries indicated

Indications

Primary osteoarthrosis

Secondary osteoarthrosis: congenital, posttraumatic, after infection

Rheumatoid arthritis Psoriatic arthropathy

Avascular necrosis of the femoral head

Primary osteoarthritis

THR indications

- OA primary
- OA secundary
- Psoriatic arthropathy
- Aseptic femoral head necrosis
- Rheumatoid arthropathy
- Tumors
- Intracapsular femoral neck fracture, no indication for OS or conservative therapy (vital indication!)

THR contraindications

- Poor general condition, poor physical status (ASA IV)
- Persistent infection
- Severe comorbidity with poor prognosis
- Extreme obesity
- No compliance

Contraindication

- Active infection of the hip
- Infection in the body
- General condition not good
- Neurogenic arthropathy
- Extreme low bone quality
- No cooperation of the patient elevated ESR, CRP

History

Sir John Charnley Low friction arthroplasty Acrylic dental cement

Polymethylmetacrylate – bone cement

Low friction arthroplasty

1962

Prof. M. E. Müller

1964 -1965 Setzholzprothese

1966 Banana - shaped

1977 Geradschaftprothese

Stems Poldi- Čech

Prof. MUDR.Oldřich Čech, DrSc.

THR fixation options

- Cemented
 - Both components fixed with bony cement
 - Older patients > 70 y.o.
 - Poor bone quality osteoporosis

THR fixation options

- Hybrid
 - One component fixed with bone cemer (femoral)
 - 65-70 y.
 - Better implant survival

THR fixation options

Cementless

- Both components fixed without cement
- age bellow 65 y.o.
- Good bone quality
- Contraindication for bone ceme (alergy, right ventricle function)
- Best implant survival
- The most expensive

Fixation in the bone Types of THA

Hybrid

Uncemented

Primary THA

Polyethylene cup

Head Neck

Stem

Revision THA

For tumors

Femoral head prosthesis Thompson

Steel

 Cobalt - chromiummolybdenum alloys

Titanium alloys

Bone cement

- Polymethyl methacrylate (metylesther metacrylic acid)
- Powder polymer, liquid monomer
- Exotermic response
- Stabilisation of the implant in 10 minutes
- Cytotoxic effect
- Protein coagulation (termical + chemical)
- Microembolisation

Cemented THA

Cementing technique

- Interdigitation into bone trabeculae
- Regular layer: under the cup 3 mm around the stem 2-7 mm

Polyethylen

• UHMWPE :

ultra- high- molecularweight- polyethylen

- Polyethylen
 - Longest used material for cup
 - Viscoelastic
 - Plastic deformation (cold flow)
 - Higer wear rate
 - Oxidative degradation

Polyethylen

- UHLMWH Ultra high molecular weight polyethylen
- HXLPE cross linked
- PE + vit E
- Aim:
 - Wear reduction
 - Oxidative degradation reduction
 - Keeping elasticity modulus

Polyethylen

- Linear wear 0,1 0,2 mm / year
- Volumetric wear 0,3 10 mg / year
- Cold flow plastic deformation
- Abrasion and delamination
- Oxidative degradation
- Modern trends: highly crosslinked polyethylen
- with vitamin E

XPE- highly-cross-linked polyethylen + vitamin E

Antioxidant

Increases mechanical properties of PE

Ceramic

- Corundum or Zirconium AL₂O₃
- Smooth surface
- Less wear: 0,005 0,15 mm / year

Materials – ceramic

- Pure aluminium oxide AL₂O₃ corundum
- ZrO₂ zirkonium oxide
- Extremely smooth surface, minimal friction ratio
- An order of r rate comapa
- Fragile
- Expensive

Materials – ceramic

- Biolox forte

 Pure AL₂O₃ (yellow)
- Biolox delta
 - Stronger
 - Lower grain size even more
 - More homogenic
 - Pink
 - $-AL_2O_3$
 - ZrO₂
 - Zirconium oxides stabilized by

Materials – Oxinium

- Zirconium oxides
- Combines properties of alloy and ceramic
- 2x harder than ceramic
- Abrasion and scratch resistant
- Fracture resistance
- Trace amount of Ni only (hypoallergenic)
- 20% lighter than CoCr

Contact : head - cup

- Metal- polyethylen
- Ceramic- polyethylen
- Ceramic -ceramic

Diameter of the head

22, 28, 32, 36, 38, 40 mm

Advantage of 36 mm head:

Higher stability Greater range of motion Less impingement neck- edge of the cup

Acetabular component

• Cemented: polyethylen

Noncemented: metal- backed

with PE insert

with ceramic insert

Materials

- Cementless implants requirements bone adjacent surface
 - Trabecular titan
 - Trabecular tantal
 - Hydroxyapatite surface

Hydroxyapatite surface

Bioactive

Osteoconductive

Chemical bonds bone- hydroxyapatite

Surface of cementless implant

Macroporosity

Microporosity

Pores on the surface 50µm - 600 µm

Pores above 800 µm- fibrous tissue

Adhesive surfaces: Trabecular Metal Trabecular Titan Pores 300 µm High initial stabilty

Uncemented cup

Press - fit

Threaded

Primary fixation: mechanical anchorage in the bone

Uncemented cup

Secondary fixation: osteointegration of the implant on the surface of bone

Bicon – Zweyműller cup

Femoral component

- High polished surface for cementing fixation
- Porous surface for cementless fixation

Cemented

Cementless

Morscher, Spotorno MS – 30 stem cemented

Uncemented stem

- Primary fixation:
- Mechanical anchorage in the bone
- Secondary fixation of the implant on the bone surface

Uncemented stems

Proximal fixed

Distal fixed

Approaches

MIS- mini invasive surgery

Physiotherapy

Day: 1. Sitting, drainage ex 2. - 5. walking 6. + stairs 7-21 – in physiotherapy dpt. 3 months- spa resort

Full weight bearing. Cemented THA after one month Uncemented after 12 weeks

Fast track physiotherapy, discharge 3-4 days, home care

Post op. management

- ITU one day
- Hospitalisation at orthopedic ward for 5 days
- Verticalisation the first post op. day
- Complex rehabilitation protocol, rehabitalitation nurse obligatory
- 6. day transfer to rehabilitation ward
- Spa resort in CZ covered by public health insurance in 3 post op. months
- DVT prevention 6 weeks
- Prevention of dislocation of THR- no adduction, no deep flection, no axial extremity traction!
- Modern trends: Shortening of inpatients period (risc of nosocomial infection, economic aspects)
- Fast track physiotherapy
- Outpatient surgery?

Follow up

- Standardized
- First check up: by orthopedical surgeon in 6 weeks (X ray included)
- Second check up: in 3 months, then 6 month
- Every 2 years (X ray included) if no problem present
- EDUCATION
 - Activity, limitation and régime with THR
 - PJI prevention
 - Urgent check up if suspected PJI

Complications

- Peri and early post op. morbidity and mortality
 - Nervous and vascular injury
 - Blood loss
 - Perioperative fracture
 - Hip displacement (luxation)
 - Pulmonary embolism
 - IM
 - General decompensation
 - Development of delirium

Complications

- THR dislocation
 - Shortening and (extra)rotation of extremity, pain, no active hip flexion
 - No active walking and no weight bearing
 - Therapy:
 - Close hip redduction attempt. Hip orthesis with reduced ROM obligatory
 - Revision, identification of cause, solution
 - Longer head, stabilisation elements
 - Replantation

Aseptic loosening - therapy

R 75.0 kV 320.0 mA 27.2 mAs Velikost pixelu: 0.192 mm NORMAL (Data) [C:+0.00% B:+0.00

Aseptic loosening - therapy

- Revision, replantation
- Revision systems, augments, spongioplasty (alografts)...
- Double ATB combination higer infection risk
- Higher complication rate
- Inferior outcome
- Lower ROM
- Longer no full weight bearing period (3M)
- Higher mortality
- Higher displacement risk ratio

Revision THA

Revision of the acetabulum

Revision THA

Periprosthetic fracture

- Relatively frequent complication
- Femur in the most cases, acetabulum rarely
- Older patients, worse general condition
- Osteoporosis, poor implant retention
- High mortality and morbidity rate
- High complication rate
- Demanding surgeries (experienced surgeon)

Periprosthetic femoral fracture classification

Peritrochanteric fractures

AG: greater trochanter

AL: lesser trochanter

the femoral stem B1: stable stem

B2: loose stem

implant

B3: loose implant with substantial bone loss

fractures occur well below the

Around or just below the tip of

Vancouver classification of hip periprosthetic fractures

Vancouver classification relies on:

- 1. The level of the fracture
- 2. If the prosthesis is stable or not
- 3. the quality of the bone

Periprosthetic femoral fracture - therapy

Periprosthetic femoral fracture - therapy • OS (LCP, control cable)

Periprosthetic infection

- St. aureus St. coagulase negative Streptococci Enterococci, others MRSA, MRSE Polyresistant G- bacteria
- Sessile form and planctonic Race for surface They produce glycocalyx- mucose substance of glycoproteins It leads to high resistence to antibodies and antibiotics

Biofilm

Biofilm

Adhesion of bacteria - reversible

Exopolymers

glycolalyxextracelular matrixirreversible

Releas to surrounding tissue

Periprostetic infection- diagnostics

Clinicly Labor: CRP, leu, ESR aspiration of pus X-ray- osteolysis, loosening USG (abscesus) **Scintigraphy** Sonication of the implant **Bacteriological** examination Long cultivation

Periprostetic infection- PPI

Acute PPI

Chronic PPI

Late haematogenic PPI

Management

To start treatment as soon as possible: 10-14 days from the onset of symptoms

Prerequisity: cooperation of the patient

informed physician

Periprosthetic infection-treatment

Debridement One stage surgery Two stage surgery Resection artroplasty Antibiotic suppresion

Two stage surgery Better ROM Better walking Revision is easier Local concentration of antibiotics - Gentamycin a Vancomycin - Cover 90 % of all pathogens

Prerequisity for good result

Choise of the patient **Preop.** examination **Prevention of infection** Choise of the implant **Operative technique** Postop. management Activity of the patient **Regular follow- up Prevetion of infection Prevention of aseptic loosening** Long term results National registries

Daily activity after THA

- No lifting and wearing of heavy objects No strenuous manual labor Limited running and jumping No contact sports
- Recommeded sports: swimming, bicycle, tennis tourism, skiing?

