

Diseases of peripheral vessels

Lower limb ischemia

Usually manifests by a pain during physical effort (walk, run) – intermittent claudications

Intermittent claudication distance – can be walked by the patient before stopping due to ischemic pain

In later stages steady pain – critical limb ischemia, skin defects, "marble" skin, necrosis

Smoking and badly compensated DM play important roles in the etiology

Lower limb ischemia – Fontaine classification

- I) asymptomatic
- II) intermittent claudications
- IIa) above 200m
- IIb) below 200m
- III) pain at rest
- IV) skin defects, gangrene

Hemodynamically significant stenosis – narrowing by approx. 50 %

Steal syndromes

•Occur in case when a collateral vessel bypass a stenosis (incl. artificial bypass)

- "Robin Hood" vasodilation in ischemic area redirects the blood supply from healthy part of circulation ("the poor stealing from the rich")
- subclavian steal syndrome arm "steals" from the brain via vertebral artery \rightarrow loss of consciousness
- "Reversed Robin Hood" drug-induced vasodilation in healthy area redirects the blood supply from ischemic area (here, the vasodilatory mechanisms are already at maximum "the rich stealing from the poor")
- coronary steal syndrome strong vasodilators may paradoxically worsen ischemia (e.g. combination of nitrates with sildenafil)

Steal syndromes - examples

Subclavian steal syndrome

Coronary steal syndrome

Other atherosclerotic diseases

Renovascular hypertension (unilateral/bilateral stenosis – Goldblatt model)

Intestinal infarction, renal infarction, abdominal angina...

Treatment of atherosclerosis

Treating risc factors (lifestyle intervention, antihypertenzives, antidiabetics)

Systemic

 Treatment of lipid metabolism disorders Statins (block cholesterol synhesis) Ezetimib (blocks cholesterol absorbtion) PCSK9 inhibitors (upregulate LDL-R) Fibrates (decrease VLDL production) Gene therapy in monogennic dyslipidemia
 Treatment of inflammatory response II-1 blockers

Treatment 2

Local

PTA – percutaneous transluminal angioplasty POBA: plain old baloon angioplasty BMS: bare metal stent DES: drug-eluted stent covered by a cytostatic to prevent neointimal hyperplasia and restenosis BVS: bio-vascular scaffold degradable, lower inflamatory response and risk of thrombosis Bypass

Arterial

Venous graft

Endarterectomy

In-stent restenosis

Result of smooth muscle cells proliferation

But: some degree of proliferation is necessary to cover the stent and stabilize the subendothelial space, otherwise the risk of thrombosis increases

↓ risk of restenosis in DES is accompanied by ↑ risk of thrombosis in early phase, local cytostatics are clinically efficient only in a range of years

Vasospastic disorders

Disorders of small arterioles

- •spasms \leftrightarrow vasodilation
- † sympathetic activity
- Raynaud phenomenon

- White: vasoconstriction, lack of blood, cold skin
- Blue: \uparrow deoxyHb in capillary vasodilation and hypoxia
- Red: blood flow restored, pain
- Can be provoked by stress or cold

Secondary vasospastic disorders

Result from other diseases

- •Atherosclerosis
- Connective tissue diseases
- Vasculitis
- •Frostbites
- Vibrations
- •Treatment: reduction of cod and stress, vasodilators

Vasculitis

- Inflammatory disorders based on immune pathology
 - Often immune complexes IIIrd type in Gell and Coombs classification
- Affects both microcirculation and larger vessels
- Many vascular segments (× atherosclerosis)
- Primary × secondary (rheumatoid arthritis, SLE, Sjögren syndrome)
- Complications:
 - Vasospasms
 - Development of aneurysms
 - Microthrombi

Chronic venous insufficiency

 $\ensuremath{\uparrow}\xspace$ hydrostatic pressure at the venous end of a capillary

Most often caused by venous valves insufficiency

Deep venous thrombosis – asymmetric oedema

Leg ulcers – most often of venous origin Increased filtration \rightarrow increased capillary permeability \rightarrow protein leak \rightarrow "fibrin cuff" \rightarrow tissue ischemia \rightarrow ulcer

CVI classification

Widmer:

1st stage: oedema

2nd stage: stiff oeadema with hyperpigmentation (hemosiderin – degradation product of ferritin)

3. stage: leg ulcer

CEAP (clinical-etiology-anatomypatophysiology) classification - detailed

