Acute heart failure

Martin Radvan

What we will talk about?

- Patophysiology
- Clinical signs
- Diagnosis
- Therapy

Definition

- Acute heart failure (AHF) is generally defined as the rapid development or change of symptoms and signs of heart failure that requires urgent medical attentionis
- No new mediaction for last 30 years

Definition

 Symptoms related to pulmonary congestion due to elevated left ventricle filling pressures with or without low cardiac output

Definition

 De novo x acute decompensation of chronic heart failure

Cardiogenic shock

Epidemiology

- No1 reason for hospitalisation in people older than 65 years
- 65-75% known HF before hospitalisation
- 25-55% preserved ejection fraction (HFpEF)

Diagnosis

- Anamnesis
- Clinical signs
- Examination: perfusion and volume status
- ECG
- Echocardiography
- Labs
- X-ray, CT, coronarography, etc.

Signs and symptoms

- noisy syndrome, rapid developement
- elevated jugular venous pressure
- pulmonary edema
- +S3 (gallop)
- pulmonary crackles
- peripheral oedema
- orthopnoe

Signs and symptoms

A. Linksherzinsuff
Orsproce und O

Noisy syndrome, ra

elevated jugular ver

Pulmonary edema

• +S3 (gallop)

pulmonary crackles

- oedema
- orthopnoe

Dry-warm

Dry-cold

Wet -warm

Wet-cold

Dry-warm

Well perfused, normovolemic

Dry-cold

Hypoperfused, hypovolemic

Wet -warm

Congestion, well perfused

Wet-cold

Congested, hypoperfused

Dry-warm

Well perfused, normovolemic

Dry-cold

Hypoperfused, hypovolemic

Wet -warm

Congestion, well perfused

Wet-cold

Congested, hypoperfused

Dry-warm

Well perfused, normovolemic

Dry-cold

Hypoperfused, hypovolemic

Wet -warm

Congestion, well perfused

Wet-cold

Congested, hypoperfused

Dry-warm

Well perfused, normovolemic

Dry-cold

Hypoperfused, hypovolemic Water challenge, inotropes

Wet -warm

Congestion, well perfused

Duiretics, vasodilatators

Wet-cold

Congested, hypoperfused Inotropes, MCS

Pathopysiology – Forrester classification (PCWP, CI)

Dry-warm

Well perfused, normovolemic

Dry-cold

Hypoperfused, hypovolemic Water challenge, inotropes

Wet -warm

Congestion, well perfused Duiretics, vasodilatators 90-95%

Wet-cold

Congested, hypoperfused Inotropes, MCS 5-10%

PCWP, CI

PCWP

Invasive vs. non-invasive measurment
Pressure in left atrium
Volume status

Cardiac index

Invasive vs. Non-invasive measurment
2,2L/min/m²
Cardiac output
Degree of perfusion

PCWP, CI

sive

PCWP CI **Proximal Port** (30 cm from tip) **Distal Port** (at tip) Proximal Distal **Balloon Inflation** Port Port Port **Thermistor Thermistor**

Balloon

PCWP, CI

PCWP

Invasive vs. non-invasive measurment
Pressure in left atrium
Volume status

Cardiac index

Degree of perfusion

Invasive vs. non-invasive measurment 2,2L/min/m² Cardiac output

Labs

- ECG rarely normal
- X-ray: congestion, normal heart size
- Echocardiography heart, lungs
- BNP, NT-proBNP, troponin

- ECX-ra
- BN

- ECX-r
- BN

Clinical course

Pulmonary aedema

Therapy of pulmonary aedema?

Therapy of pulmonary aedema

- Oxygen
- Morphin
- Vasodilatation (blood presure control)
- Furosemide
- Therapy of the cause

Classifications

INTERMACS level	NYHA Class	Description	Device
I. Cardiogenic shock "Crash and burn"	IV	Haemodynamic instability in spite of increasing doses of catecholamines and/or mechanical circulatory support with critical hypoperfusion of target organs (severe cardiogenic shock).	ECLS, ECMO, percutaneous support device
2. Progressive decline despite inotropic support "Sliding on inotropes"	IV	Intravenous inotropic support with acceptable blood pressure but rapid deterioration of renal function, nutritional state, or signs of congestion.	ECLS, ECMO, LVAD
3. Stable but inotrope dependent "Dependent stability"	IV	Haemodynamic stability with low or intermediate doses of inotropics, but necessary due to hypotension, worsening of symptoms, or progressive renal failure.	LVAD
4. Resting symptoms "Frequent flyer"	IV ambulatory	Temporary cessation of inotropic treatment is possible, but patient presents with frequent symptom recurrences and typically with fluid overload.	LVAD
5. Exertion intolerant "Housebound"	IV ambulatory	Complete cessation of physical activity, stable at rest, but frequently with moderate fluid retention and some level of renal dysfunction.	LVAD
6. Exertion limited "Walking wounded"	III	Minor limitation on physical activity and absence of congestion while at rest. Easily fatigued by light activity.	LVAD / Discuss LVAD as option
7. "Placeholder"	III	Patient in NYHA Class III with no current or recent unstable fluid balance.	Discuss LVAD

as option

Cardiogenic shock

- Acute HF in naive patients
- Myocardial injury
- Arrythmia
- Valvular disease
- Obstructive shock
- Tamponade
- •

Diagnosis

Pharmacotherapy of cardiogenic shock

 Inotropes: noradrenalin, dobutamin, adrenalin, milrinon, levosimendan

- Ultrafiltration
- Furosemide
- Therapy of the cause

MCS

- Intra-aortic balloon counterpulsation
- LVAD
- Total artificial heart
- ECMO
- Impella

- Bridge to recovery/decision/transplantation
- Destinantion therapy

MCS

- Bridge to recovery/decision/transplantation
- Destinantion therapy

IABC

ECMO

ECMO

Impella

LVAD

Transplantation

- Age?
- Life expectancy (except heart)
- Spiroergometry VO₂max

- Imunosupression
- Rejection, infection
- Vasculopathy of the graft

Conclusions

- Acute HF in naive patients
- Acute decompensation of chronic HF
- Fluid and perfusion status
- Cause of HF/decompensation
- Early goal directed echocardiography
- Early therapy
- Early recognition of therapy failure

Your blood pressure

is a little high