

Pharmacotherapy of cardiovascular diseases

-MUDr. Alena Máchalová, Ph.D., Department of Pharmacology

Tato prezentace je autorským dílem vytvořeným zaměstnanci Masarykovy univerzity. **Studenti předmětu ZLFA0722p** mají právo pořídit si kopii prezentace pro potřeby vlastního studia

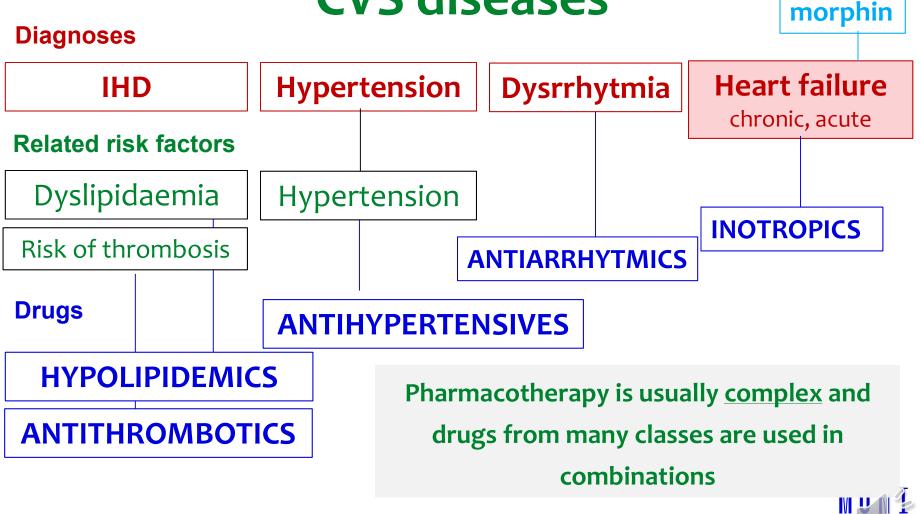
Cardiovascular diseases

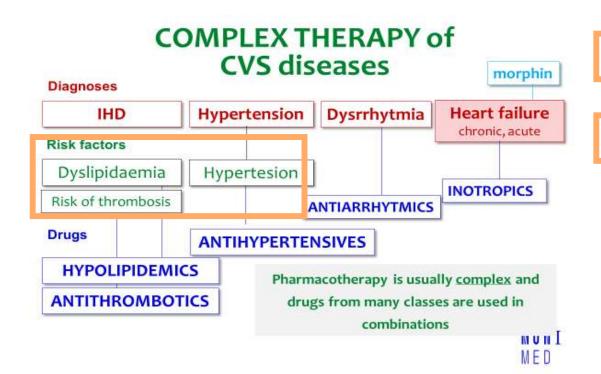
- = diseases of heart and blood vessels!
- Are closely connected to other disorders
 (atherosclerosis, dyslipidaemia, obesity, hypertension...)

Pharmacotherapy is usually complex and drugs from many classes are used in combinations

Risk factors

Given: age, gender, genetic disposition


Changeable: atherosclerosis, hypertension, dyslipidaemia/hyperlipoproteinaemia, smoking, diabetes mellitus, obesity, bad eating habits, stress...


Risky is ↑LDL-concentration, ↓ HDL- concentration

It is important do pay attention to those factors, which can be changed

COMPLEX THERAPY of CVS diseases

DYSLIPIDEMIA

together with

HYPERTENSION

are the main factors in development of

ATHEROSCLEROSIS

Atherosclerotic plaque obstructs the vessel ⇒ IHD

If ruptured, consequenting thrombus may occlude the vessel ⇒

AMI, stroke

RISK OF THROMBOSIS

ANTITHROMBOTICS

Anticoagulants

Thrombus prophylaxis

(usually in venous vessels)

heparin, nadroparin, dabigatran, apixaban warfarin

Antiaggregants

Thrombus prophylaxis

(usually in arteries)

ASA, clopidogrel

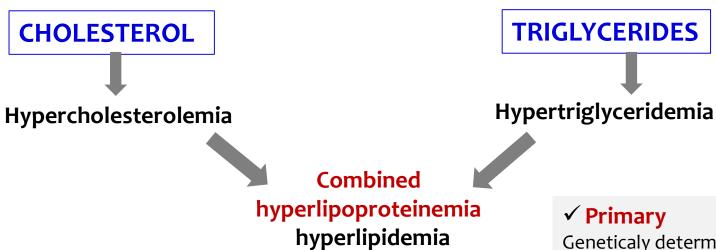
Fibrinolytics

Dissolution of formed thrombus

(arteries and veins)

alteplase, reteplase

Is wore in the lesson.



HYPOLIPIDEMICS

DYSLIPIDEMIAS

Some of the most often metabolic disorders

NON-PHARMACOLOGICAL APPROACH

- Diet regimen with restriction of animal fat
- Healthy life-style (no smoking, regular exercise)

✓ Primary Geneticaly determined

✓ Secondary Result of another disease

HYPOLIPIDEMICS

1. Decreasing plasma CHol (LDL)

- Decrease of intestinal (re)absorption of bile acids/cholesterolu
 RESINS, EZETIMIB
- Inhibition of CH and VLDL synthesis

STATINS

Increase density of membrane LDL receptors
 PCSK9 inhibitors

2. Decrease of plasma TG

- Influence synthesis of VLDL and conversion of plasma lipoproteins
 FIBRATES, STATINS (INDIRECTLY)
- Gene therapy 3 x 1012 genome copies of human lipoprotein lipase in a viral vector to treat hyperlipoproteinemia I
 Glybera

MU112 MES

STATINS

1st choice drugs in atherosclerosis

MoA – competitive <u>inhibitors of HMG-CoA reductase</u> (hydroxy methyl glutaryl CoA reductase) <u>+</u> significant antiinflammatory effect

→ ↑ LDL clearence

- pleiotropic (extralipid) statin effects:
 - antiinflammatory !!!
 - antiaggregant
 - positive effects in endothelial dysfunction

AE: liver disorders: ↑ activity of transaminases and kreatinkinase (monitoring is necessary!)

- Myalgia, rhabdomyositis (0,5% of pacients) can lead to rhabdomyolysis and kidney failure (most often after combination with FIBRATES and CYP3A4 inhibitors)
- interactions!!

- simvastatin, atorvastatin
- lovastatin, fluvastatin, pravastatin, rosuvastatin (long acting)

FIBRATES

MoA: agonists of nuclear PPAR- α rec. (peroxisome proliferator-activated receptors)-

inhibit liver production of VLDL and ↑ catabolism of VLDL

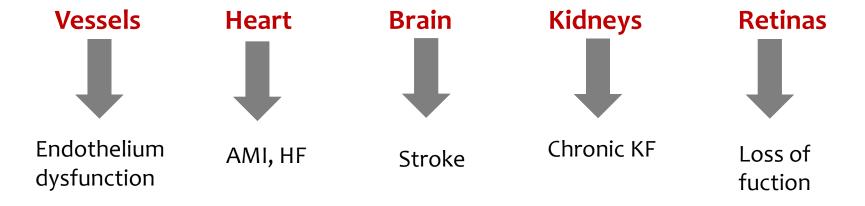
→ decrease export of <u>TG</u> to peripheral tissues

I: isolated hyper TG-emia (when resistant to statin)

AE: nausea, vomiting, risk of bile stones (↑CH in bile), myalgia (dangerous is myositis or rhabdomyolysis)

fenofibrate

MUN1 MEDS


ANTIHYPERTENSIVES

HYPERTENSION

- repeatedly increased blood pressure (BP) 140/90 mm Hg at least at 2 out of 3 measurements taken at least at two separated visits at the doctor
- prevalence in adult population 20-30 %

WHY TREAT HYPERTENSION AS IT IS NOT PAINFUL?

Classification of arterial hypertension according to etiology

 primary (esencial) – about 95 % of all patients with hypertension; multifactorial disease without identified cause

- secondary disease with identified cause
 - nephrogenic most often, kidney diseases
 - renovascular narrowing of renal artery
 - endocrine adrenal or thyroid glands disease
 - drug-associated hypertension chronic therapy by corticoids, NSAID, hormonal contraception
 - hypertension in pregnancy

Therapy of arterial hypertension

Aim: BP under 140/90 mm Hg

in patients with ↑ CV risk DM under 130/85 mm Hg

Non-pharmacological approach:

- Lifestyle changes smoking, alcohol, medications
- Aerobic exercise, no isometric load
- Increase amount of nonsaturated FA, Ca⁺⁺, K⁺
- Body weight

Pathophysiological causes

- P=R.Q
- Change in peripheral resistence (R)
- Q cardiac output
 - Increased circulating volume
 - Increased contractility
 - (Increased heart rate)

Farmacotherapy of hypertension

- **ACE-inhibitors (ACE-I)**
- angiotensin II receptor blockers
- Ca⁺⁺ channel blockers
- diuretics
- betablockers
- renin inhibitors
- drugs acting centrally
- alpha-blockers
- drugs with direct vasodilatant mechanism

Some of these drug classes are used also in therapy of

- **IHD**
- Arrytmias
- Chronic HF

ANTIHYPERTENSIVES

- act on three effector locations (heart, vessels, kidney)
- influence medium and long-term mechanisms of BP regulation

ACE-inhibitory (ACEi)

1st choice drugs

MoA: 1) reversible ACE inhibition

2) bradykinin degradation blockade (vasodilation)

captopril, perindopril

Angiotensin II receptor blockers (sartans)

MoA: Competitive antagonists on AT₁

1st choice drugs

valsartan, losartan

Renin inhibitors (kirens)

2nd choice!

MoA: bind to the active site of renin and inhibit the binding of renin to angiotensinogen, which is the rate-determining step of the RAAS cascade

aliskiren

Common pharmacodynamic effect of ACEi and sartans

- decrease in peripheral vessels resistance
 - (via low AT1 stimulation or ↑ bradykinin)
- decrease intravascular volume
- specific dilatation of vas efferens
- positive glycometabolic effects
- antiproliferative activity

ACEi

Kinetics: liver microsomal metabolisms (enalapril = prodrug)

VARIABILE HALF-LIFE (captopril vs perindopril)

AE: - hypotension, hyperkalemia

 decrease degradation of several small neuropeptides (bradykinin)

→ dry cough

- angiooedema

CI: - pregnancy, breast-feeding

- primary hyperaldosteronism

ACEi

Indications:

- hypertension
- heart insufficiency
- AMI
- → Significant decrease in mortality rate in AMI, CVD

1st choice in:

- state after AMI, CVA
- remodelation of heart and vessels LV hypertrophy, heart failure
- DM

Sartans Angiotensin II receptor blockers

Kinetics: variable

AE, indications, CI: the same as ACEi
BUT NO cough!!

Losartan, valsartan

Renin inhibitors - kirens

AE: 2nd choice!

Hypotension Diarrhoea Angiooedema

aliskiren

We do **not combine** drugs acting on RAAS!

(ACEi+sartans in patients with diabetic nephropathy)

Direct vasodilatants

MoA: specifically block L-channel in heart and vessel muscle cells

Smooth musscle cells

(vessels, bronchi, GIT, uterus)

⇒ decrease in peripheral

resistence

Electrical conduction system of the heart

(SA, AV node) ⇒ negative chronotropic, dromotropic and inotropic effect

Dihydropyridines

affect mostly vessel smooth muscle (= are vasoselective) ⇒ **do not influence myocard, decrease blood pressure**

Antihypertensives

(monotherapy as well as in combinations)

Direct vasodilatants

MoA: specifically block L-channel in heart and vessel muscle cells

Smooth musscle cells

(vessels, bronchi, GIT, uterus)

Electrical conduction system of the heart

(SA, AV node) ⇒ negative chronotropic and inotropic effect

Non-dihydropyridines

strong effect also on <u>electric activity of heart incl</u> <u>coronary vessels</u>

Antiarrhytmics
Angina pectoris (IHD)

Dihydropyridines – affect mostly vessel smooth muscle

1.generation - lower vasoselectivity, shorter effect

nifedipin

2.generation - higher vasoselectivity, longer effect

nitrendipin (fast onset), felodipin, isradipin, nisoldipin, nilvadipin, nimodipin

3.generation - antiatherogenic effects, long effect

amlodipin

CAVE – CCB have negative inotropic effect!

- not in decreased function of LV
- not to be combined with other negatively inotropic drugs (BB)

Non-dihydropyridines – strong effect also on electric activity of heart

diltiazem verapamil

PK: variable bioavailability variable half-life (e.g. nifedipin vs. amlodipin – 2 vs. 40 h) CYP metabolisation

AE: gum hyperplasia oedema, hypotension, headache

bradykardia (Non-DHP), reflexive tachycardia (DH pyridines) negative inotropic effects

constipation

hypertension
angina pectoris
local vasodilation in interventions (i.a. application)
tachyarytmia (non-dihydropyridines)

CI: AV block, heart failure (verapamil, diltiazem) tachykardia (DH pyridines)

Diuretics and aldosterone antagonists

- drugs increasing excresion of water and Na+
- act in **tubular system of kidneys**

Carboanhydrase inhibitors/proximal

acetazolamide

Thiazide diuretics/distal

hydrochlorothiazide, indapamid

Loop diuretics

furosemide

Potassium-sparing diuretics

amiloride

Aldosterone antagonists

spironolaktone, eplerenone

Osmotic diuretics

mannitol

Thiazides

Inhibit resorption of Na and Cl in distal tubulus.

⇒ Inhibition of water resorption ⇒ **increased diuresis**, (up to 12 h) + **vasodilation** Hypotensive effects with delay 3-4 days, full clinical effect (in 3-4 w).

The most often prescribed diuretics (HT, HF).

hydrochlorothiazide, indapamide

Insufficient efficacy when impaired kidney function ⇒ loop diuretics are indicated

Loop diuretics

Inhibit co-transport of Na/K/2Cl in thick ascending loop of Henle

 \rightarrow decrease interstitial osmolarity \rightarrow decrease water reabsoption from lumen \rightarrow increased diuresis

The strongest, short effect + vasodilatant efficacy

Lots of AE: loss of ions (Na, Cl, K, Ca, Mg), possibly hepato-, nephro-, ototoxic I: HT, lung oedema, congestive heart failure, hypercalcemia, chronic renal failure

furosemide

ARE VERY EFFECTIVE (even in kidney insufficiency), BUT BIG LOSS OF IONS

Risk of activation of RAAS

Potassium-sparing diuretics Aldosterone antagonists

Inhibit resorption of Na in collecting ducts

weaker effects, lower loss of K+, suitable for combinations **I:** Rezistant hypertension and hyper-aldosteronismus

amiloride
Potassium-sparing diuretic

Aldosterone antagonist spironolakton

1

Increased diuresis

- Na⁺ goes out
- K⁺ stays in

positive effects on <u>remodelation</u> \rightarrow in heart failure also in monotherapy AE: gynekomastia, menstruation problems

eplerenon (selective for mineralocorticoid rec)

Carboanhydrase inhibitors / proximal diuretics

Act in proximal tubule

MoA: Inhibit carboanhydrase

- ⇒ Increase excretion of Na⁺ and water
- ⇒ Urine is more alcalic
- ⇒ Metabolic acidosis

INDICATIONS:

- glaucoma
- altitude sickness
- metabolic alkalosis
- epilepsy

acetazolamide

Osmotic diuretic

Act in the whole nephron

MoA: cannot be reabsorbed and cause leads to hyperosmolarity of filtrate

INDICATIONS:

- Forced diuresis
- Increased intraocular presuure,
- Acute renal failure

mannitol

Diuretics

General characteristic:

Advantages:

usually possible combination with others AHT potentiation of other AHT effects no influence on CNS cheap

Disadvantages:

metabolic effects low tolerance (in elderly people)

Diuretics

General characteristic:

AE:

potassium depletion (except K⁺ sparing)
hyperurikemia (thiazides, loop diuretics)
weakness, nausea
dysbalance in glycid and lipid metabolism (thiazides)
hypovolemia, hypotension (furosemid)
hyperkalemia, hypomagnezemia (amilorid, spironolakton)

CI:

gout (thiazides) renal failure, hyperkalemia (K+ sparing) Relative: pregnancy, metabolic syndrome

Diuretics

General characteristic:

AE:

potassium de hyperurikemia ⇒ If possible, the lowest effective doses are weakness, na dysbalance ir ⇒ Usually combined with other AHT hypovolemia, hypotension (furosemid) hyperkalemia, hypomagnezemia (amilorid, spironolakton)

CI:

gout (thiazides) renal failure, hyperkalemia (K+ sparing) Relative: pregnancy, metabolic syndrome

Diuretics – INDICATIONS

1. HYPERTENSION

- combined therapy (thiazides, potassium-sparing)
- kidney failure (loop diuretics)
- in resistant hypertension (Aldosterone antag.)

2. HEART FAILURE

- Chronic HF (thiazides, potassium sparing, loop d.)
- 3. FORCED DIURESIS

(loop, osmotic)

- 4. OEDEMAS (loop, osmotic)
- 5. HYPERKALCEMIA (loop)

Betablockers

MoA: block adrenergic reactions provided by activation of β receptors (CV effect mostly by $β_1$). Act as competitive antagonists of noradrenaline, dopamine and adrenaline.

Antihypertensive effects:

- targeting RAAS (inhibitit release of renin) ⇒ decrease of volume
- decrease of HR and cardiac output
- decrease of O2 consumption

antiischemic effects

Final BP levels are reached in 14 days of therapy!!

They have most AE of all 1st choice drugs

(especially in young patients)

Betablockers

- Lipofility /hydrofility
- Selectivity
- Parcial agonistic activity
- Other effects (eg. α -rec blockade, direct vasodilatant eff...)

Bradines (ivabradine)

Alternative to betablockers

MoA: Inhibit Na/K chanell (If current) in SA node.

Negative chronotropic effect.

Classification by selectivity

NON-SELECTIVE $\beta_1 + \beta_2$ rec

W/O sotalol (antiarrytmic)

ISA timolol
antiglaucomatic

WITH carteolol antiglaucomatic

Not used in CV therapy

CARDIOSELECTIVE β_1 rec

W/O metoprolol atenolol esmolol t_{1/2} = 2-10 min.

WITH acebutolol

nebivolol t_{1/2}= 30-50 hod + mild vasodilatant

celiprolol = β_1 , α_1 , α_2 , vasodilatation (β_2 ISA) labetalol, carvedilol = β_1 , β_2 , α_1

Beta blockers with combined effects

Apart from $\beta 1$ and $\beta 2$ act on

- α_1 rec, Ca²⁺ channels
- antioxidant eff.

carvedilol

I: hypertension, IHD, HF

labetalol

I: severe hypertension (i.v.) in pregnancy (from the 2. trimester)

Beta-blockers

: HT CI: asthma

AP AV block

arytmia CHOPD (relat.)

chronic heart failure (cave!) bradycardia

glaucoma, tremor

DM (relat.)

difficult erection (some)

Abused by athletes!

AE:

Negative influence on lipid and glycid metabolism

- bronchospasm (non-selective)
- disrupted peripheral circulation (non-selective)
- bradyarrhytmia (BB without ISA)
- insomnia, sedation, depression (lipofilic BB)

rebound phenomenon

Beta-blockers

Individual choice of drug:

Older patient β_1 or with ISA

Younger patient NS

IHD, AMI not with strong ISA

IHD, AP

BB generally suitable more than others

DM II. low doses β_1 , with ISA

pregnancy β_1 , alpha+beta

bradycardia under 50 withdraw BB (or with ISA)

heart failure carve, bisopr, metopr

IDLE β_1 , with ISA, vasodil.

hyperliproteinemia with ISA

HT during surgery esmolol

Farmacotherapy of hypertension

- 1. ACE-inhibitors (ACE-I)
- 2. angiotensin II receptor blockers
- 3. Ca⁺⁺ channel blockers
- 4. diuretics
- 5. betablockers
- 6. renin inhibitors
- 7. drugs acting centrally
- 8. alpha-blockers
- 9. drugs with direct vasodilatant mechanism

■ Chr

Some of these drug classes are used also in therapy of

- IHD
- Arrytmias
- Chronic HF

ANTIHYPERTENSIVES

- act on three effector locations (heart, vessels, kidney)
- influence medium and long-term mechanisms of BP regulation

Centrally acting antihypertensives

Imidazoline receptor agonists

imidazoline I₁ receptor in medulla oblongata

I₁- in CNS and kidney

I₃- pain modulation, neuroprotection

I₃ - insulin secretion

Unlike central α_2 -agonists

- DO NOT CAUSE sedation
- rebound fenomenon

↓ heart + vessels + kidney stimulation by sympathetic NS
↓ renin and vasopressin secretion
great positive effect on glycaemia and insulin resistance

moxonidine rilmenidine

Centrally acting antihypertensives

Central α_2 agonists

α -metyldopa – false precursor of NA + α₂ stimulation Indicated in pregnancy

clonidine - α2 stimulation, sedation, strong rebound
phenomenon
Indicated in hypertension crisis (ICU)

Central α2 agonist + peripheral α1 antagonist

urapidil – very strong anti HT

Alpha blockers

- selective reversible α₁-lytics
- no effect on α_2 rcp. do not increase NA
- advantageous effects in prostate hyperplasia

AE: postural hypotension especially after 1st dose (prazosin)

→ start with lower dose given in the evening before sleep

I: monotherapy in **BHP** combination in **hypertension**

prazosin

doxazosin terazosin

urapidil

Direct vasodilatators

Calcium channel blockers were discussed earlier

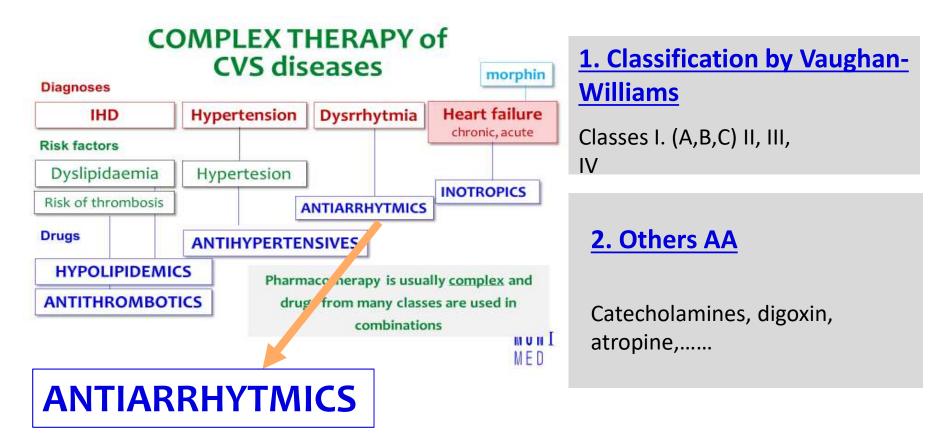
Nitrates

1st choice in angina pectoris, ↓ chronic efficacy

Using free SH- groups (from glutathion) they cause release of NO in endothelium (EDRF)

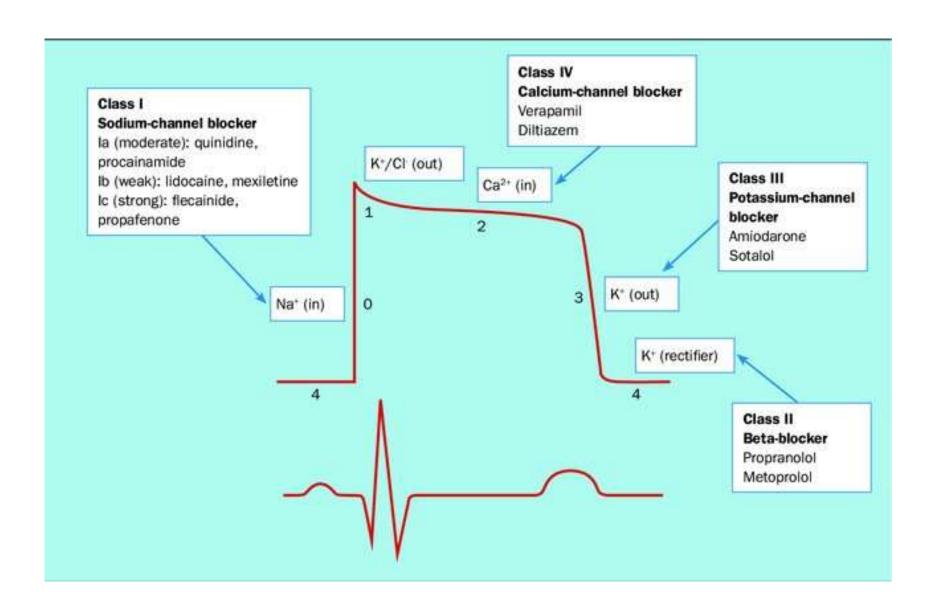
- \rightarrow vasodilation
- → antithrombotic action

AE: Tachyphylaxis!, headaches, orthostatic hypotension


nitroglycerine – for acute attacks
natrium nitroprusside - for acute attacks
isosorbid dinitrate (ISDN) – infusion in HT crisis, prophylaxis
isosorbid 5-mononitrate (ISMN) – active metabolite, chronic AP

molsidomin – different structure, fibrinonolytic minoxidil – vasodilatatory and prevention of hair loss

ANTIARRHYTMICS



Drugs, which DIRECTLY or UNDIRECTLY affect electrophysiological processes on membranes, thus influecing generation and length of action potential.

ANTIARRHYTHMIC DRUG CLASS	DRUG	PRIMARY MECHANISM OF ACTION*
Class IA	Quinidine, procainamide, disopyramide	Na+ channel blocker, prolongs action potential duration (APD)
Class IB	Lidocaine, mexiletine	Na+ channel blocker, rapid dissociation
Class IC	Flecainide, propafenone	Na+ channel blocker, slow dissociation
Class II	Propranolol, sotalol, esmolol	β Adrenergic blocker
Class III	Amiodarone, sotalol, ibutilide, dofetilide, dronedarone	Prolongs APD (primarily by K+ channel blockade)
Class IV	Verapamil, diltiazem	Ca ²⁺ channel blocker (nondihydropyridine)
Miscellaneous	Adenosine	Adenosine receptor agonist
Miscellaneous	Digoxin	Na+, K+-ATPase inhibitor

Amiodarone -

MoA: K⁺ ion channels block

ADVERSE EFFECTS

Dose-depentent frequency

1. MoA

- Imparied trasmission of signal
- negative inotropic eff.

2. Specific AE

- fotosenzitisation (10%)
- irreversible lung fibrosis

3. Effects on thyroid

- HYPOTHYREOSIS (10%)
- THYREOTOXIKOSIS (rare)

INDICATION

- Prophylaxis of fibrilation or flutter of atrium (in CHF)
- Pharmacological cardioversion of fibrilation or flutter of atrium

Highly lipofilic ⇒ accumulates in liver and body fat

Very long half-life

Lots of interactions (P-glp., CYP)

Digoxin – Heart glycoside kardiotonic + antiarrhytmic drug

- Activates parasympaticus via nervus vagus ⇒ antiarrhytmic effects
 ⇒ negative chronotropic eff
- Inotropic effect is caused by inhibition of Na/K ATP-ase pump
 ⇒ positive inotropic eff

INDICATION:

- CHF (positive inotropic eff)
- Arrhytmia (atrial fibrillation with fast response)

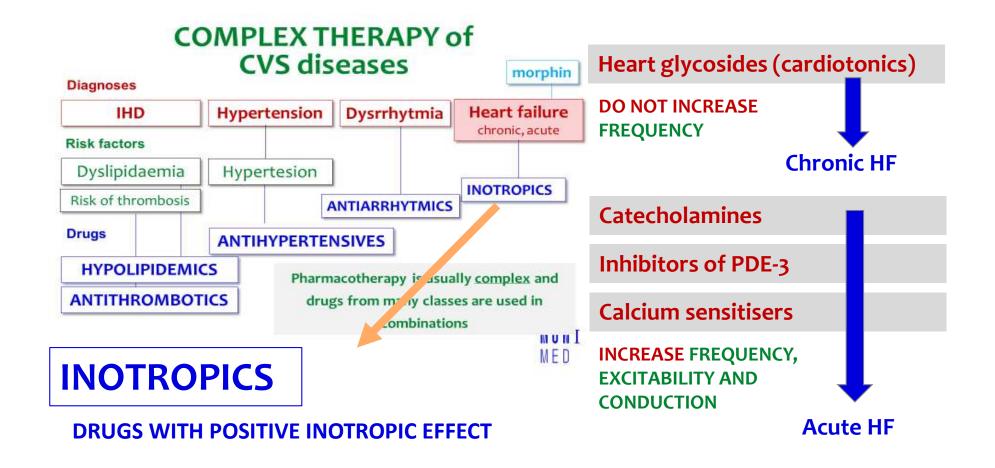
Narrow therapeutic window (TDM)

Large volume of distribution

Renal elimination

Lots of interactions (P-glp.)

AE: inhibiction of Na/K pump in myocardium, CNS and GIT


AV blockades, sinus bradycardia, excitability

Digitalis intoxication

Weakness, depression, halucinations, yellow color perception Nauzea, vomiting, diarrhoea, sweating

INOTROPICS

DRUGS WITH POSITIVE INOTROPIC EFFECT

Heart glycosides (cardiotonics)

digoxin

Catecholamines

adrenaline, dobutamine, noradrenaline, dopamine

Inhibitors of PDE-3

milrinone

Calcium sensitisers

levosimendan

MoA: inhibition of **Na/K ATP-ase pump** ⇒ influx of Ca²⁺ into sarcoplasma

MoA: stimulation of β rcp. \Rightarrow indirect effect on Ca²⁺ influx

MoA: specific blockade of phosphodiesterase -3 in myocardium ⇒ bloc degradation of cAMP ⇒ cardiostimulation

MoA: strogner binding of myofilaments to troponin C ⇒ increased contractility

Conclusions

Pharmacotherapy of hypertension

- 1. Non-pharmacological approach
- 2. Hypertension is often accompanied by other CV diagnoses (combined therapy)
- 3. Antihypertensives of the 1st choice, alone, or in combinations
 - ⇒ RAAS Inhibitors

 - ⇒ Diuretics, betablockers....

Pharmacotherapy of IHD

(dyslipidemia, hypertension, obesity, DM2, thrombosis prevention)

- □ NITRATES and NO donors
- ⇒ **Dihydropyridines** (in case of present hypertension)

Decreasing metabolic demands of the heart

- **decrease of workload** (negative chronotropic, dromotropic ef)
- prolong oxygen delivery to myocardium (longer diastole)

slower frequency

⇒ BETABLOCKERS and conduction

⇒ Non-dihydropyridines

Pharmacotherapy of chronic HF

1. Decrease water retention → DIURETICS

Inhibition of RAAS

2. Decrease myocardium remodelation

3. Increase myocadrium contractility ⇒ digoxin

4. Decrease peripheral resistence ⇒ Vasodilatants

5. Optimalisation of frequency and sympathetic activity ⇒

6. Therapy of arrhytmias

Beta blockers

Pharmacotherapy of acute HF

1. Acute oedemas ⇒

DIURETICS – furosemide i.v.

2. Hypertension crisis ⇒

Vasodilatants – nitroglycerin i.v., ISDN

3. Severe systemic HYPOTENSION ⇒

noradrenaline i.v.

4. Increasing CONTRACTILITY of MYOCARDIUM ⇒

Positively inotropic drugs levosimendan, dopamine, dobutamine

5. ARRHYTMIAS ⇒

Choose of AA according to the type of dysrrhytmia

Often are surgical solutions of acute dysrrhytmias. Important is prevention.

Thank you for your attention

