MUNI MED

ANTIDIABETICS

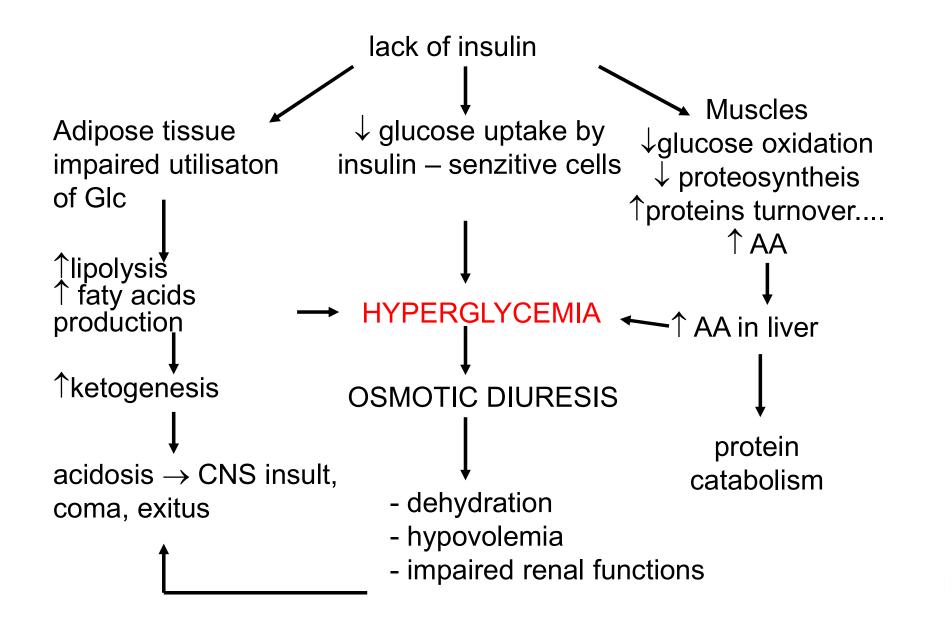
Alena Máchalová

1 Define footer – presentation title / Department of Pharmacology

Diabetes Mellitus

Chronic, metabolic, etiopathogenetically heterogeneous disease, the underlying feature is hyperglycemia:

- ≤ 5.6 mmol/L
- IFG 5.6 (6,1) -6.9 mmol/L
- IGT 2hPG ≥7.8 <11.1 mmol/L after oGTT


Due to the insufficient effect of insulin or its absolute or relative deficiency

The genetic predisposition of both forms of DM

Statistics

- In 20 years there is a 10% increase in number of patients with diabetes
- 31.12.2006 there is about 750 000 of diabetics
- From this number 91,5 % is II. type, 6,7 % I.type, other forms are rare
- Absolute number of 2. type diabetics is constantly increasing
- Therapy of 2.type diabetes represents 5–10 % expenses in healthcare

Acute diabetic syndrome

- hyperglycemia
- glycosuria, osmotic dehydration
- intracelular lack of Glu \rightarrow catabolism, lipolysis
- metabolic acidosis
- deep breathing
- ketoacidotic coma

Chronic diabetic syndrome

- protein glycation, autooxidation, peroxidation of lipids, lipoproteins
- micro / macro angiopaties
- late complications of DM
 - Nefropathy
 - Diabetic foot
 - Infections
 - Retinopathy

DM I.type

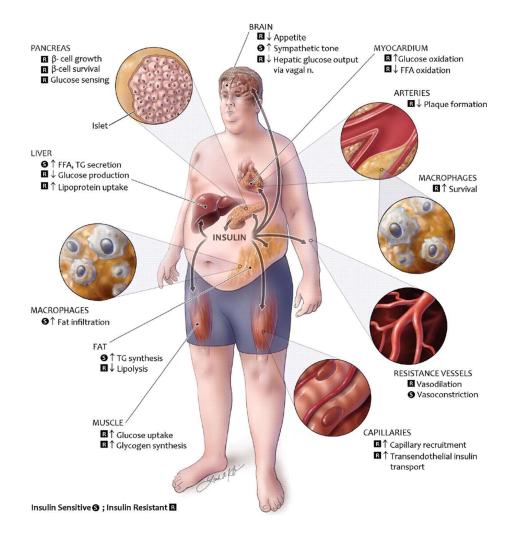
• absolute lack of insulin

peak between 13 and 15 years, high mortality if not treated

A - autoimmune form with antibodies

B - idiopatic form

no antibodies


DM II. type

- (cca 90 %)
- Relative lack of insulin due to
 - damaged production in beta cells
 - insulin resistance in peripheral tissues
- both conditions are mutually potentiating
- genetic and exogenous factors obesity, stress, low physical activity
- peak between 45-65 years, 60-90 % with obesity

Metabolic syndrome

- Insulin resistance
- Hypertension
- Hypertriglyceridaemia
- Disorders of glucose tolerance or diabetes
- Obesity type of apple (male type of obesity)

Clinical symptoms

- **1.type** – more pronounced symptoms, fast onset (weeks)

- polyuria, polydypsia, nycturia, loss of bodyweight when eating normally, tiredness, weakness, loss of consciousness or coma (in children)

- **2.type** – less apparent symptoms, slow onset (months, years)

 others – organ complications – itching, impairs in vision, pain or formication*, neuralgias, problems with healing wounds, skin affections, bad teeth, loss of teeth, loss of erection, low libido...

* Formication is the sensation resembling that of small insects crawling on (or under) the skin when nothing is actually there

Gestational DM

- (3-5 % pregnant women) → in 20 % non-obese and 60 % obese women develope DM type 2 in 15 - 20 years
- peak between 24.-28.week anti-insulinary effects of placental hormones
- risks for foetus diabetic foetopathy large organs, high birth weight, hypoglycaemia after delivery, hyperbilirubinemia, hypocalcemia

big \neq developed!

OGTT

75 g of glucose in 200 ml of water

2 hours later sample collection and determination of glycemia in venous plasma

Interpretation

- \leq 7.8 mmol /L DM excluded
- 7.8 11 mmol / L Impaired glucose tolerance
- > 11.1 mmol / L Diabetes mellitus

In pregnancy is cut-off value more strict: 8,5 mmol/l after 2 hours

Secondary DM

- DM accompanying
 - pancreatic diseases
 - tumors of adrenal gland
 - hyperthyreosis
 - chronic renal insuficience
- Drug induced DM glucocorticoids, thiazide diuretics, MAb (Pd-L, PD-1L, CTLA4)
- Toxins (streptozotocin)

Rare subtypes of diabetes

LADA - latent autoimunne diabetes of adults DM I. type manifesting in adults > 35 yrs, with normal weight and insulin sensitivity

MODY - maturity onset diabetes of the young DM II. type, < 25 yrs, more than 5 yrs treated by OAD/non-insulin

monogenous forms of diabetes (insulin transporter or insulin synthesis)

Treatment of diabetes

mmol/L	mg/dL	Interpretation
2.0	35	Extremely low
3.0	55	Low
4.0	75	Slightly low
4.4	80	Normal
5.5	100	Normal
5 to 6	90-110	Normal before meal in nondiabetics
8.0	150	Normal After meal in nondiabetics
10.0	180	Maximum After meal in nondiabetics
15.0	270	A little high to very high depending on patient
20.0	360	Very high

- Lifestyle and regimen, diet, exercise
- Pharmacotherapy with insulin or GLDs
- Concomitant metabolic and CV disorders

HbA1c

Insulin

16 Define footer – presentation title / Department of Pharmacology

History

- 1869 medicine student Paul Langerhans (Berlin) discovered unknown inslets of tissue
- 1889 Minkowski connection between panceras and diabetes in dog


Further work was interruped by the 1st world war (Paulescu – Budapest)

- 1921 Banting + Best + Marjorie, Toronto
- Leonard Thompson 14 ys, the 1st injection of insulin to a human patient 11.1.1922, died at 27
- Elizabeth Hughes Gosset the first US pacient, 14 ys, 23,5 kg; died in 1981
- The first producer Eli Lilly and Company

C. H. Best and F. G. Banting ca. 1924

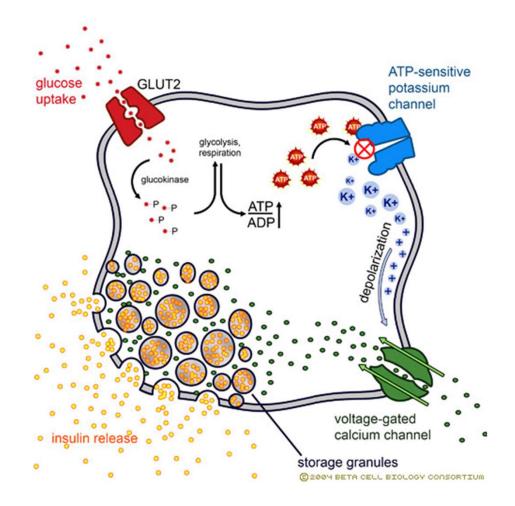
1921 – Banting + Best + Marjorie, Toronto

Insulin - physiology

20 Define footer – presentation title / Department of Pharmacology

Regulation of blood glucose

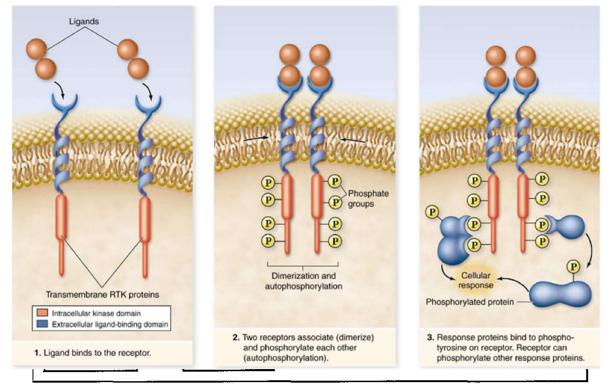
1. hormonal - antagonism with glucagon in the liver, cortisol muscle tissue, aldosterone and growth hormone


2. autoregulation - glycaemia works back to secretion – Glc penetrates into B cells and opens Ca channel, signal for insulin release

3. nervous system - PS has a hypoglycemizing effect, S hyper.

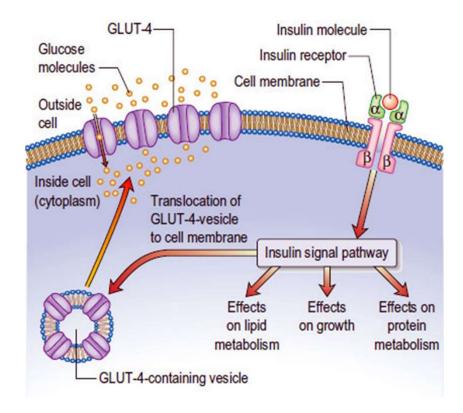
Insulin is produced at a dose of 20-40 IU / day - 1/2 continuous, 1/2 pulse

Insulin is rapidly metabolised by proteases and glutathione insulin transhydrogenases (plasma half-life of 3-5 min)


Insulin secretagogues

glucose glucagon fatty acids GLDs Amplifiers of glucose-induced insulin secretion gastrin, secretin, cholecystokinin GLP1 beta-adrenergic stimulation (β_2 , β_1) AA (Lys, Arg, Leu)

Factors decreasing insulin secretion somatostatin insulin (negative feedback) α -activation of sympathetic n. s. (adrenalin) galanin (neuropeptide)


Insulin receptor

Lincová a kol. 2002

Insulin receptor

Insulin

lowmolecular protein, 2 chains (A 21 AA, B 30 AA), 2 S-S bonds, 5808 Da Peptide C COOH NH₂ Synthesis - preproinsulin (107 AA) \rightarrow 20 \rightarrow proinsulin (82 A + B + C-peptide) \rightarrow insulin marker of endogenous secretion of insulin + signalling activity

Pharmacokinetic parameters

- A: inter- and intra-individual variability in absorption (25-50 % after *s.c., i.m.*) application site, vascularity, temperature, massage, sunbathing, vasodilatators
- D: no binding to plasmatic proteins, Vd = EC water
- M: fast metabolisation by proteases and transhydrogenases, in diabetics also degradation in kidneys

T _{1/2} 7-10 min.

Therapeutical use of insulin

- must be administered in
 - IDDM (DM I. Type)
 - ketosis, ketonuria nebo ketoacidosis
- patients with serious infection/gangrene
- patients younger than 30 years
- DM II where blood Glc. not normalized with POAD, diet
- DM II patients, corticosteroids use, liver or kidney impairment

Types and origin of insulin

a) animal insulins

- from porcine or bovine pancreas
- different primary structure
- purified but immunogenic
- monocomponent
- used till the 1980s, today only AUV

Insulins produced by **recombinant techonology** (since 1980s): **b) human insulin**

• designation HM, identical structure

c) insulin analogues

 the primary structure of the protein is specifically altered to modify the pharmacokinetics

Classification of insulins

Short or rapid acting

- clear solutions without adjuvants or modifications slowing absorption
- possible i.v. application (the only type)

Neutral aqueous solutions of HM insulins (crystalline insulin, soluble insulin) **disadvantage** – formation of hexameres in site of application

onset 30 min. maximum 1 - 3 h lenght 4 – 6 h

Insulin analogues: insuliny lispro, aspart, glulisin

more rapid action **disadvantage** – in monotherapy is neccessary often administration

onset 10 - 20 min. aspart, 15-30 lispro maximum 1 - 2 h lenght 2 – 5 hod. (according to the dose)

Classification of insulins

Intermediate – acting insulins

- modifications of physical and chemical characteristics of preparation decrease its solubility and slow absorption
- only for s.c., i.m. admin

onset 1 - 2,5 h maximum 4 - 8 h lenght 12 - 24 h

Isophan (NPH*) – mixture insulin + protamin + zinc – cloudy solution due to crystals of protamin with insulin Semilente, Lente (mixture of semilente + ultralente** in 30:70 ratio) – cloudy zinc suspensions of insulin

Disadvantages

- when used on night, maximum of the effect is at 4-6 am, risk of hypoglycaemia
- absorption may interindividually vary

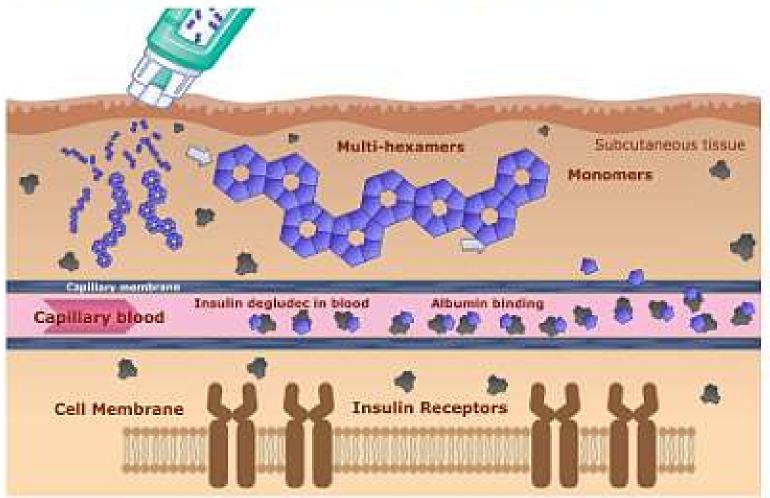
*Neutral Protamine Hagedorn **slow onset and prolonged duration, poorly soluble crystalised insulin

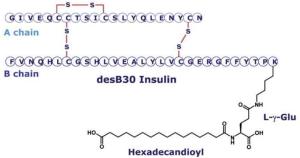
Classification of insulins

Long – acting insulins Cloudy suspensions of large zinc-insulin crystals with very slow absorption, s.c. administration ultralente - poorly soluble crystalline insulin with slow onset and prolonged duration of action

onset 2 – 3 h maximum 10-18 h lenght 24 – 36 h

Analogues – clear appearance, less AE, lower weight gain detemir (Levemir) = "predictable insulin" – small interindividual variability

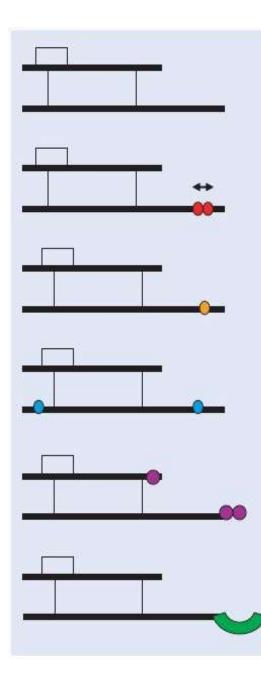

glargin (Lantus, Abasaglar) = "peakless insulin" - even longer effect, flat curve action/time


degludec (Tresiba) = ultralong acting

onset 1-2 h maximum 6 – 8 h detemir, no peak for glargin lenght up to 24 h, 42 h for degludec

Protraction mechanism for Degludec

Insulin preparations


Aqeous solutions – only short acting i.v.

Suspensions of insulin, suspensions of "zinc-insulin", suspensions "protaminzinc-insulin" – never i.v.

Powder for inhalation

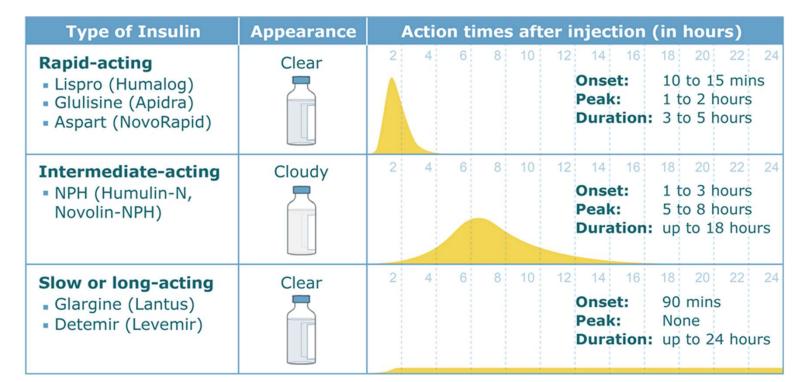
stabilised mixtures of insulin in different ratios

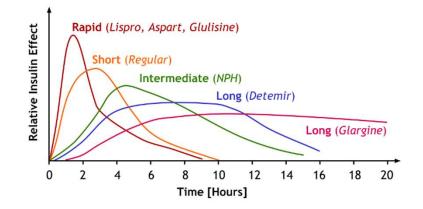
humánní inzulín

lispro (výměna pořadí B28 a B29)

aspart (B28 kys. asparagová)

glulisin (B28 kys. glutamová, B3 lysin)


glargin (adice 2 argininů k B řetězci + A21 glycin)


detemir (B29 kys. myristová, B30 odstraněn)

INZULÍN A NOVINKY V LÉČBĚ INZULÍNEM, MUDr. Pavlína Piťhová, 4 / 2006 INTERNI MEDICINA PRO PRAXI

Types of insulin analouges

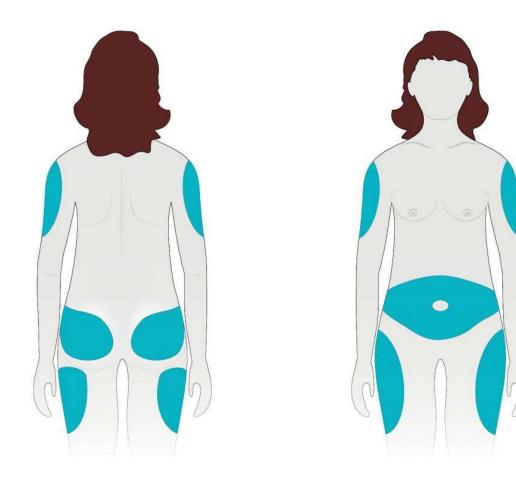
Insulin RMP labeling

"PUR" - chromatophically purified "monocomponent" - highly purified without contaminating impurities (proinsulin, ins. fractions) - animal / human "HM" - human

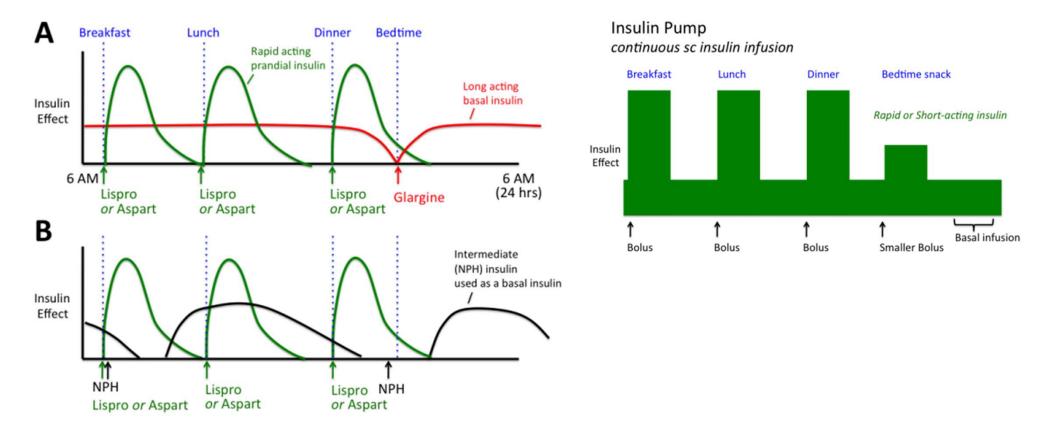
Lenght of action:

short acting - "rapid"
 intermediate - acting - "Dep" (D) - semilente
 intermediate - acting with prolonged duration of action - "interdep" (ID) - lente
 long - acting - "superdep" (SD) - ultralente

Delivery systems (self-administration)


- 1) Insulin injections calibrated by IU
- 2) Insulin pens pen-sized injectors, + blood glucose detectors
- 3) **Insulin pumps** automated administration of insulin (s.c. / i.v.) according to glycemia
- 4) Nasal insulin delivery, insulin inhalations

Insulin injection sites



Treatment strategies

- the lowest total daily dose
- monitoring of glycaemia
- intensified regimens = more doses → lower total dose and tighter compensation
- insulin pump

Examples of physiologic insulin delivery. **A)** Once-daily glargine serves as a basal insulin that is typically given at bedtime. Rapidly acting insulin are used as prandial insulins. This allows patients to change meal times at will. **B)** Intermediateacting NPH, given twice daily, can be used as a basal insulin, and can be combined with a rapid-acting "prandial" insulin. This regimen (shown as a 50:50 dosage ratio) is more difficult to adjust because NPH has a 2 hour delay, limited duration of action, and a time course that gives it "prandial-like" properties. Figure adapted from DeWitt & Hirsch (2003)

https://tmedweb.tulane.edu/pharmwiki/doku.php/insulin_regimens

Complications of insulin therapy

- hypoglycaemia
- allergy
- lipodystrophy
- insulin resistance spec. antibodies
- weight gain

Hypoglycaemia

Plasma glucose under 2,8 mmol/l

Causes

- Insulin overdose
- Vomiting, diarrhoea, delayed eating
- Physical strain
- Concomitant liver, heart or kidney insufficency

Symptoms – fast onset

- Agitation
- Tremor, sweating
- Hunger
- EEG changes, loss of conscousness, coma, death

Therapy:

- fast intake of sacharides/glucose i.v. (40% glukose 30-50 ml or more)
- glucagon + following glucose

Glucagon

Increases glycaemia, heart contractility and heart rate

Decreases gastric and pancreatic secretion and smooth muscle tone

Therapeutical use

- Hypoglycaemia in DM (condition of glycogen reserves) pen (s.c./i.m. or transanasal)
- Diagnostics in endrocrinology

AE – rare

- Nausea, vomiting
- Allergic reactions

Antidiabetics = GLD (glucose lowering drugs)

MUNI MED (Oral) antidiabetics (OAD, GLD)

The effect of most GLDs is bound to preserved insulin secretion

Most GLDs are contraindicated in pregnancy (metformin may be used)

Indications:

- T2DM if not properly compensated with diet
- T1DM with a high insulin resistance, when insulin does not lead to a sufficient decrease in blood glucose

Classical approach in type 2 DM

- 1. Regimen changes : diet + exercise
- 2. GLD monotherapy
- 3. Combined GLD or GLD + insulin
- 4. Insulin

Drugs do not replace changes in lifestyle!!!

- age, weight, blood insulin level
- glycemia (fasting and postprandial)
- comorbidities, metabolic syndrome

GLDs

- 1. Biguanides (metformin)
- 2. Sulphonylurea derivatives
- 3. Thiazolidindiones
- 4. Inhibitors of intestinal glucosidases
- 5. Meglitinides
- 6. GLP1 (incretine) analoges
- 7. Inhibitors of DPP IV
- 8. SGLT2 (sodium-glucose cotransporter) inhibitors

1. Biguanides = metformin metformin - buformin, fenformin

MoA:

- increase sensitivity of peripheral tissues to insulin
- increase insulin binding to its receptor

Do not affect insulin secretion, functions of B cells \rightarrow no hypoglycemia

They need preserved insulin secretion for their effect

Other effects:

- reduce hepatic gluconeogenesis
- decrease glucose absorption from GIT
- decrease LDL, VLDL, FFA, TAG
- increase fibrinolytic activity (inhibition PAI-1)

AE

lactic acidosis in renal insufficiency (excreted by the kidneys as the active compound)

- nausea, GIT problems cca 20 % patients
- anemia (absorption of B12)
- reduction of bodyweight
- disulfiram effect

KI:

- Kidney diseases (GF under 60 ml/min/1,73 m2)
- alcoholism
- liver diseases

Therapeutic use

- DM type 2 1st choice drug in obese patients
- In all combinations (+ insulin, glitazones, SU, incretines...)
- Off-label PCOS, anticancer effect (AMPK / mTOR)

KI:

- Kidney diseases (G
- alcoholism
- liver diseases

Therapeutic use

- DM type 2 1st cho
- In all combinations
- Off-label PCOS, a

Home Journals Specia	alties The Lancet	Clinic Global Hea	lth Multimedia	Campaigns
THE LANC <mark>Oncology</mark>	ET			
Online First Current Issue	All Issues Multin	nedia ~ About the Jo	umal	
	All Content	▼ Search	Advanced Searc	h
< Previous Article	Volume 17, I	No. 4, p407–409, April 20)16	Next Article >
Comment				
Metformin for ca Andrew T Chan Published: 02 March 2016 Altmetric 3	ncer preven	tion: a reasor	ı for o <mark>pt</mark> imi	sm
DOI: http://dx.doi.org/10.1016/S1	470-2045(16)00006-1			M f 🔽 🖬 🔁
Summary Full Text	Tables and Figures	References		

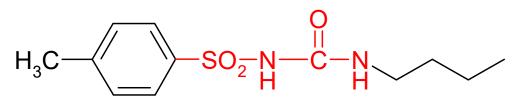
COVID-19 is an emerging, rapidly evolving situation. Get the latest public health information from CDC: <u>https://www.coronavirus.gov</u> . Get the latest research information from NIH: <u>https://www.nih.gov/coronavirus</u> .					angličtina čeština Google Translate	: ×			
	J.S. National Library		Find Studies ▼	About Studies 🔻	Submit Studies 🔻	Resources ▼	About Site 🔻	PRS Log	jin
Home >	Search Results >	Study Record Detail						Save this st	udy

A Phase III Randomized Trial of Metformin vs Placebo in Early Stage Breast Cancer

The safety and scientific validity of this study is the
 responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S.
 Federal Government. Read our <u>disclaimer</u> for details.

ClinicalTrials.gov Identifier: NCT01101438

Recruitment Status () : Active, not recruiting First Posted () : April 12, 2010 Last Update Posted () : April 2, 2020

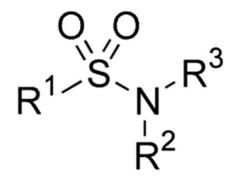

Sponsor:

Canadian Cancer Trials Group

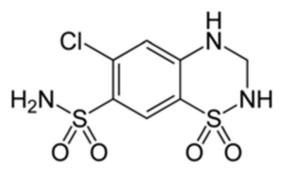
Collaborators:

Matianal Canaan Institute (MOI)

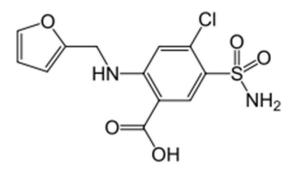
2. Sulfonylurea derivatives (SU)

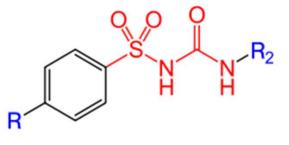

MoA:

1) pancreatic – increase insulin release, but NOT synthesis


2) <u>extrapancreatic</u>

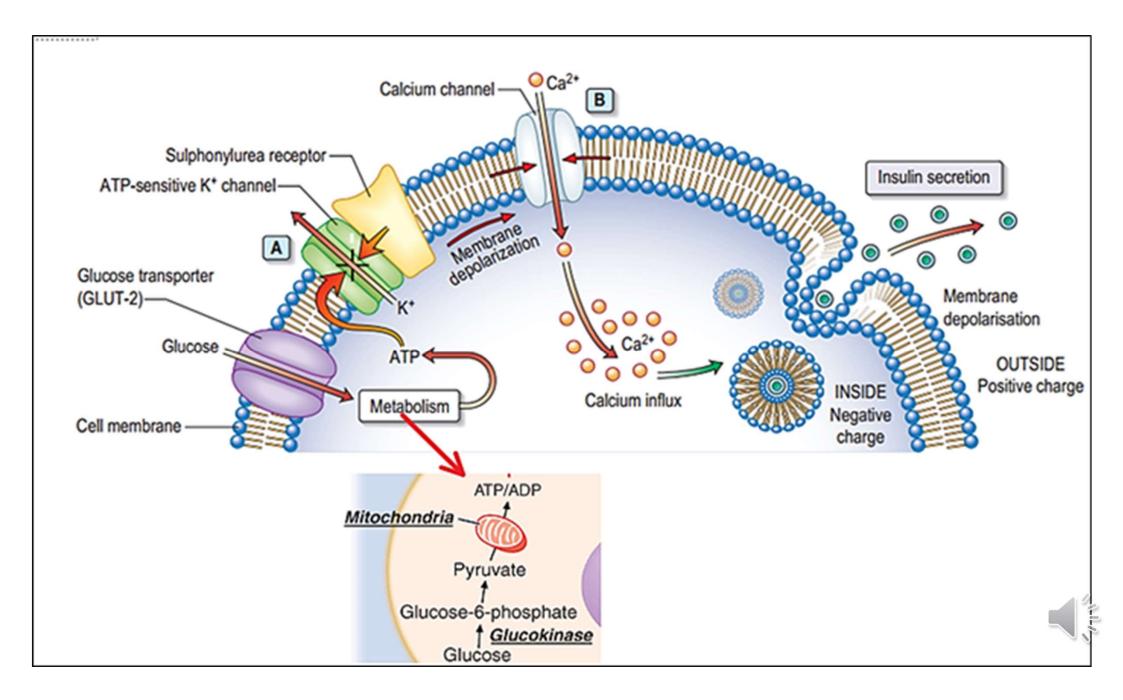
- potentiation of endogenous insulin effect on the target tissue
- reduction of hepatal glucose production
- reduction of hepatal insulin degradation
- reduction of serum glucagon levels
- increase the number of insulin receptor on ERYS, adipocytes, monocytes





Sulfonamide functional group

Hydrochlorthiazide



Sulfonylurea

Furosemid

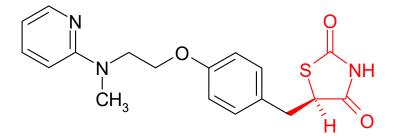
2. Sulfonylurea derivatives (SU)

I. generation -	chlorpropamid		
	tolbutamid		
II. generation -	glibenklamid		
	glipizid		
	gliklazid		
	glikvidon		
III. generation -	glimepirid		

2nd line of treatment, only exceptionally 1st choice in thin patients

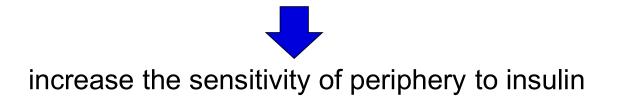
2. Sulfonylurea derivatives (SU)

Adverse effects


Contraindications

- hypoglycemia
- increased appetite
- metal taste in mouth
- headaches
- nausea (5 %)
- fluids retention
- allergy, fotosensitivity

- hypoglycemia
- ketoacidosis
- renal/hepatal impairment
- pregnancy
- age
- hypersensitivity


Drugs: rosiglitazon troglitazon pioglitazon

MoA

ligands of PPARγ (part of the steroid and thyroid superfamily of nuclear receptors)

modulate the expression of the genes involved in the metabolism of lipids and glucose

- decrease glycemia by positive effect on insulin resistance, important in prediabetic state
- some positive metabolic effects
 - \downarrow production of FFA, TAG, peroxidation of LDL, \uparrow HDL
 - \downarrow TNF α , resistin (causes IR in peripheral tissues)
 - \downarrow gluconeogenesis in liver
 - ↑ glucose oxidation and lipogenesis in adipose tissue
- CVS AE (rosiglitazone, 2010) !!!

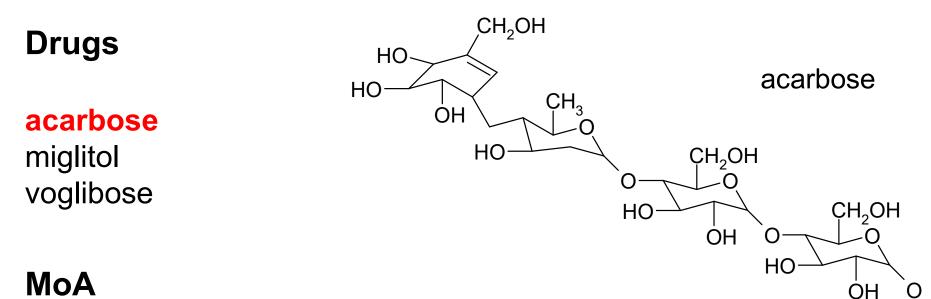
Therapeutic use

- sensitizers of insulin receptors
- the onset of effect in 4 weeks
- not 1st line, used in combinations (metformin, SU)

Side effects

- Rosiglitazone increased risk of heart attack and stroke
- Troglitazone was withdrawn for hepatotoxicity
- Fluid retention
- Osteoporosis
- Weight gain

"euglycemic drugs" - do not act

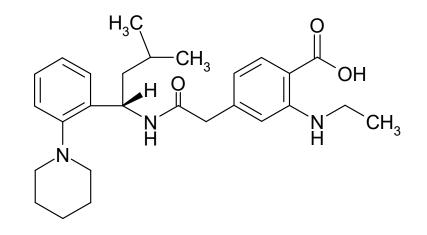

hypoglycemic on euglycemic individuals

Contraindications

- Hypersensitivity
- Predisposition to heart failure
- Liver damage
- Pregnancy, lactation

4. Inhibitors of intestinal glucosidases

- reduce sacharides absorption from GIT
 - competitive inhibition of the gut α glucosidases (inhibits the cleavage of the polysacharides from the meal)
 - Suitable for monotherapy and combinations



4. Inhibitors of intestinal glucosidases

- decrease postprandial glycemia
- do not affect monosacharides absorption
- acarbosis does not reach the systemic blood, miglitol does
- "educative drugs"- consequences in bad compliance

In case of hypoglycemia sucrose can not be administered orally (necessary are monosacharides - Glu, Fru) / or Glucagon

Drugs: repaglinid nateglinid (STARLIX, TRAZEC) meglitinid

MoA

similar to SU-derivatives (bind to SUR, but different receptor site), fast onset

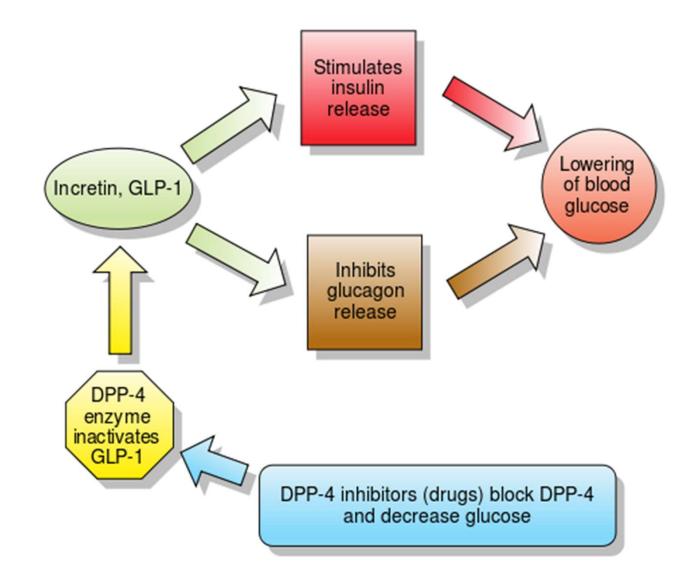
- through different receptor at K⁺ channel
- block ATP- sensitive K⁺ channel in membrane of beta-cells → depolarisation of membrane → activation of voltage-gated Ca²⁺ channel → influx Ca²⁺ → insulin release

Pharmacokinetics:

- good bioavailibility, fast effect!! no meal, no tablet
- extensive protein binding (up to 98 %)
- metabolized inactive compounds
- excreted mainly in faeces

Clinical use:

- 2nd line, often combined with metformin esp. if patient not sufficiently compensed
- alternative of the SU medication in patients with renal impairment (excreted into bile)
- administration before meals rapid onset and fading effect for 4 hours
- skipping a meal = skipping a dose (risk of hypoglycaemia if taken)


AE:

- hypoglycemia
- nausea
- diarrhea
- joint pain

Contraindications:

- hypersensitivity
- DM I. type
- diabetic ketoacidosis
- pregnancy, lactation

6. GLP1 – Glucagon-like peptide 1 analogues

exenatide, liraglutide

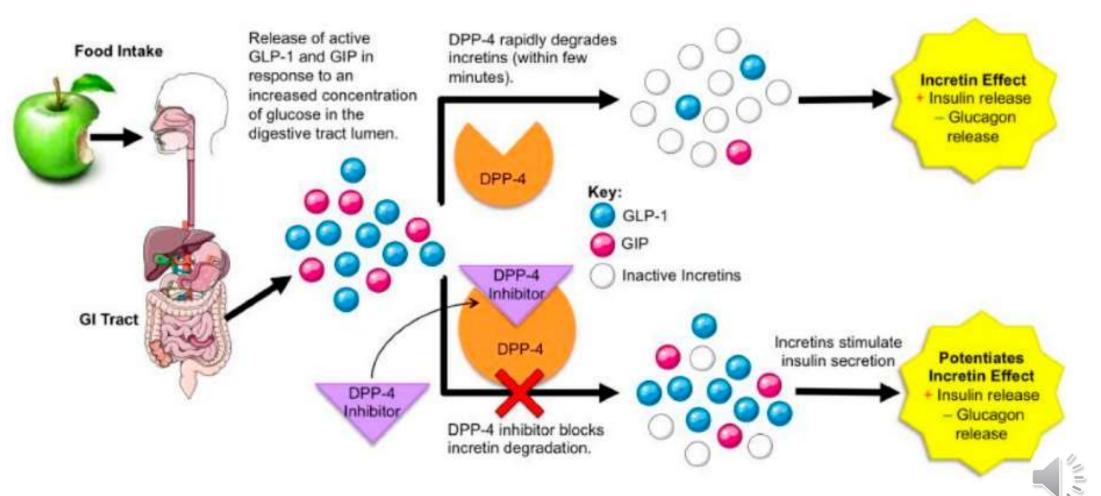
lixisenatid, semaglutide, albiglutide

s.c. administration !!!

GLP1 is physiologically secreted postprandially, in DM2 not sufficient levels

MoA:

- ↓ glucagon secretion,
- prolong stomach content evacuation



Heloderma suspectum, Gila Monster

Registered also as antiobesitics (liraglutide, semaglutide)

dipeptidyl peptidase 4

7. DPP-IV inhibitors = Gliptins

7. DPP-IV inhibitors = Gliptins

MoA:

- inhibition of degradation of incretins (GLP1)
- effect lasts for 24 hod 2-3x higher levels of GLP1

Advantages:

- no hypoglycemia
- stop progress of DM
- protection of B-cells
- better glycemic control than conventional drugs

7. DPP-IV inhibitors = Gliptins

dipeptidyl peptidase 4

Therapeutic use:

- DM 2 in combinatin with other GLDs
 - + metformin 1st choice in insufficient compensation
 - + sulfonylurea derivate in KI of metformin
 - + thizolidindione in KI of metformin
 - + statin

linagliptin sitagliptin vildagliptin aloglitpin

AE:

pancreatitis, hypoglycaemia (in combination with Insulin/SU)

8. SGLT2 inhibitors = glycosuric drugs

sodium-glucose co-transporter

- SGLT2 is
 - selectively exprimed in kidneys
 - responsible for reabsorption of Glc from the filtrate back to circulation (even in hyperglycaemia)
- glykosuric effect is apparent after a single dose and lasts for 24 hours
- size of glycosuric effect depends on Glc concentration and GFR, NOT levels of insulin
- glycosuria leads to
 - loss of energy \rightarrow reduced bodyweight
 - mild increase of diuresis and natriuresis
 - Hb1Ac decrease by 0.8%

8. SGLT2 inhibitors = glycosuric drugs

Therapeutic use:

- Suitable for monotherapy as well as combinations CAVE hypoglyceamia in combination with insulin / SU
- Cardioprotective (AIM, stroke, renoprotective !! Convincing data from large studies

CI, caveats:

- over 75 years,
- kidney dysfunctions, concurrent loop diuretics,
- hypotension,
- electrolyte dysbalance

dapa**gliflozin** cana**gliflozin** empa**gliflozin** ertu**gliflozin**

AE:

- thirst
- genital infections
- risk of lower limb amputations (mainly of the toe)
- hypoglycemia in monotherapy the risk is minimal; in combination with insulin / der. SU risk high

Start with Monotherapy unless:

A1C is greater than or equal to 9%, consider Dual Therapy.

A1C is greater than or equal to 10%, blood glucose is greater than or equal to 300 mg/dL, or patient is markedly symptomatic, **consider Combination Injectable Therapy** (See Figure 8.2).

Monotherapy	Metformin	Lifestyle Management				
EFFICACY*	high					
HYPO RISK	low risk					
WEIGHT	neutral/loss					
SIDE EFFECTS	GI/lactic acidosis					
COSTS*	low					
If A1C target not achie	ved after approximately 3 months of monotherapy, proceed to 2-drug combination (order not					

meant to denote any specific preference - choice dependent on a variety of patient- & disease-specific factors):

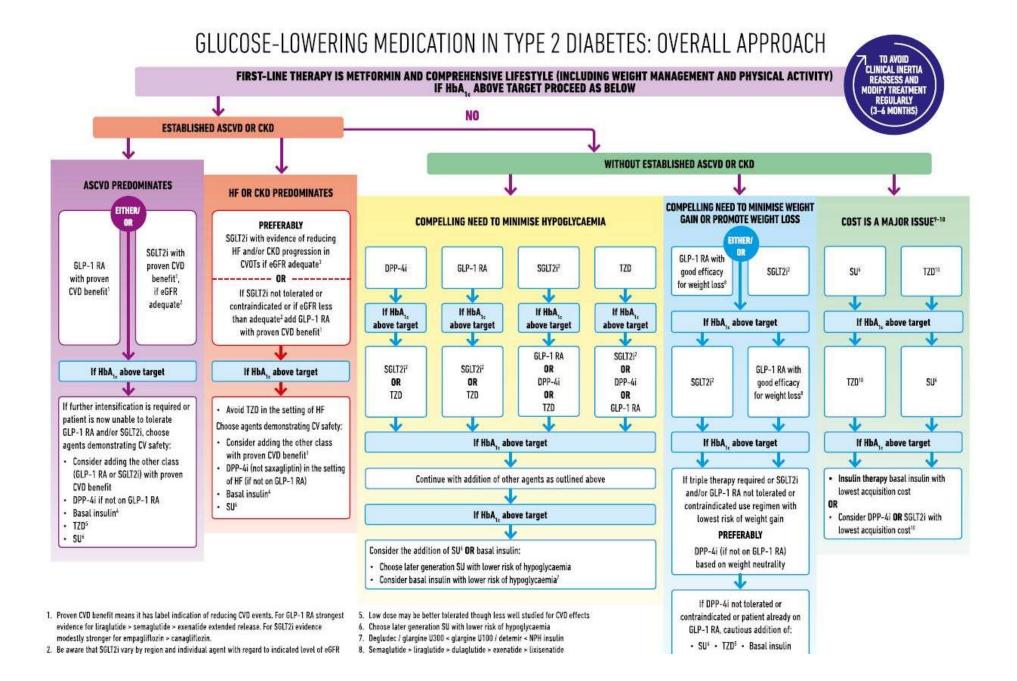
Dual Therapy Metformin +

177

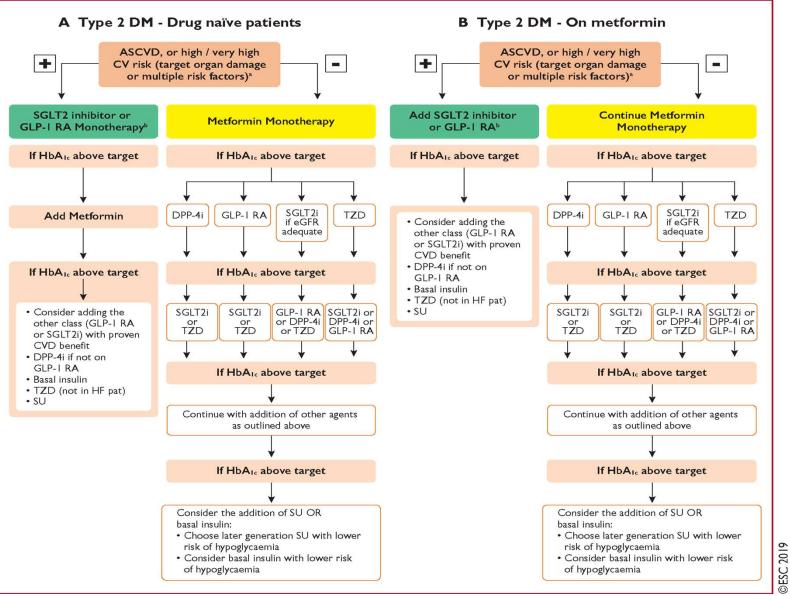
Lifestyle Management

	Sulfonylurea	Thiazolidinedione	DPP-4 inhibitor	SGLT2 inhibitor	GLP-1 receptor agonist	Insulin (basal)
EFFICACY*	high	high	intermediate	intermediate	high	highest
HYPO RISK	moderate risk	low risk	low risk	low risk	low risk	high risk
WEIGHT	gain	gain	neutral	loss	loss	gain
SIDE EFFECTS	hypoglycemia	edema, HF, fxs	rare	GU, dehydration, fxs	GI	hypoglycemia
COSTS*	low	low	high	high	high	high

If A1C target not achieved after approximately 3 months of dual therapy, proceed to 3-drug combination (order not meant to denote any specific preference — choice dependent on a variety of patient- & disease-specific factors):


riple Therapy	A	Metformin + Lifestyle Managem								nagement		
	S	ulfonylurea +	Thia	zolidinedione +	DPF	-4 inhibitor +	SG	LT2 inhibitor +	GLP-1	receptor agonist +		Insulin (basal) +
		TZD		SU		SU		SU		SU	-	TZD
i	or	DPP-4-i	or	DPP-4-i	or	TZD	or	TZD	or	TZD	or	DPP-4-i
i	or 📕	SGLT2-i	or	SGLT2-i	or	SGLT2-i	or	DPP-4-i	or	SGLT2-i	or	SGLT2-i
	or	GLP-1-RA	or	GLP-1-RA	or	Insulin ^e	or	GLP-1-RA	or	Insulin [®]	or	GLP-1-RA
	or 📘	Insulin [®]	or	Insulin®			or	Insulin®				

If A1C target not achieved after approximately 3 months of triple therapy and patient (1) on oral combination, move to basal insulin or GLP-1 RA, (2) on GLP-1 RA, add basal insulin, or (3) on optimally titrated basal insulin, add GLP-1 RA or mealtime insulin. Metformin therapy should be maintained, while other oral agents may be discontinued on an individual basis to avoid unnecessarily complex or costly regimens (i.e., adding a fourth antihyperglycemic agent).

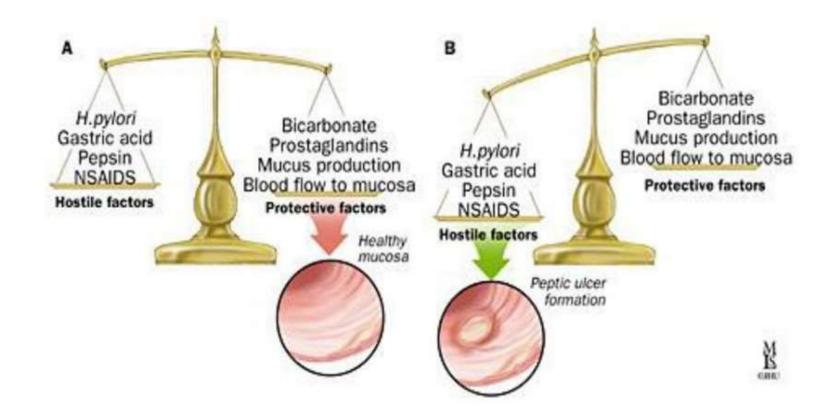


Combination Injectable Therapy

(See Figure 8.2)

Patients with high CV risk

Useful links

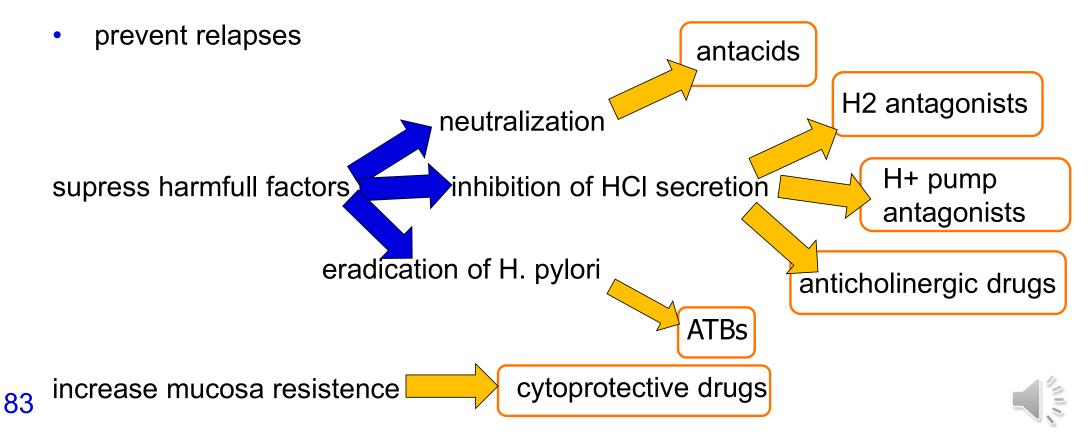

American Diabetes Association

http://www.diabetes.org/

Drugs used in gastric ulcer disease

Gastric ulcer disease

Peptic ulcers – result of dysbalance between protective and harmfull factors



Main goals of the treatment

- supress pain
- improve healing (mucosa reparation)

Antacids

- symptomatic therapy to reduce pain ٠
- HCI neutralisation in stomach = increase in pH \rightarrow ٠

decrease in pepsin activity (pH optimum 2)

- NaHCO₃ (strong, rapid relief from pain) ٠
- $CaCO_3$ (strong, rapid relief from pain, not for chronic treatment absorption of Ca²⁺) ٠
- MgO / Mg(OH)₂ (laxative) • - May be used in mixture $Mg(OH)_2 + Al_2O_3$
- Mg $[AIO_2(OH)]$ •
 - Al_2O_3 (gel, long-lasting eff., constipation)
- $Bi(OH)_2NO_3$ (weak eff., supress H. pylori) ٠

٠

Antacids

Indications:

- dyspepsia, hyperacidity, pyrosis
- reflux oesophagitis
- symptomatic treatment of GIT disorders
- begining of antiulcerous therapy
- rapid relief from pain

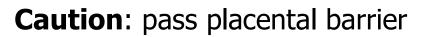
AE:

- absorption of Ca, Mg (cardiac complications)
- **AI** constipation
- **Mg** laxative effect
- decreased absorption of other drugs

H2 antihistamines

- competitive H2 receptor antagonisms
- selective supression of HIS-induced secretion
- inhibition of intrinsic factor secretion (B12)

Indications:


- ulcer disease (primary and secondary, prevention of relapse)
- Zollinger-Ellison syndrome (†gastrin)
- reflux oesophagitis
- prophylaxis of gastrotoxicity in NSAIDs treatment

Adverse effects:

ranitidine

famotidine

- myalgia, diarrhoea, constipation
- CNS confusion, glossolalia, headache
- endocrine antiandrogenic efect (cimetidine) - impotence, gynekomastia
- blood granulocytopenia, trombocytopenia, neutropenia..aplastic anemia (ranitidine)
- hepatotoxicity ALT, AST

Proton pump inhibitors

MoA:

irreversible inhibition of PP and

supression of HCl secretion

regardless the origin of the stimulus (re-synthesis needed for regeneration of activity)

- administered as a pro-drugs
- acidic environment in the parietal cells → active metabolites
- enterosolvent coating, parenteral

Indications:

- H. pylori eradication in ulcer disease
- ulcer disease
- reflux oesophagitis
- Zollinger-Ellison syndrome (†gastrin)
- prophylaxis of stress-induced ulcer
- prophylaxis of NSAIDs- induced gastropathy
- in risk groups of patients (e.g. LMWH, warfarin)

omeprazole, esomeprazole pantoprazole, lansoprazole rabeprazole

Proton pump inhibitors

AE:

- dyspepsia,
- headache
- rarely cytopenia
- P450 inhibition

Proton pump inhibitor (PPI)	Cytochrome P450 metabolism	Interaction potential*
Omeprazole	Major: CYP2C19 Minor: CYP3A4	High
Esomeprazole	Major: CYP2C19 Minor: CYP3A4	Moderate
Pantoprazole	Major: CYP2C19 Minor: CYP3A4	Low
Lansoprazole	CYP2C19 CYP3A4	Moderate
Rabeprazole	Major: Non-enzymatic Minor: CYP2C19 Minor: CYP3A4	Low

Proton Pump Inhibitor	Drug Interaction
Omeprazole Esomeprazole	 Clopidogrel (Plavix/Clopilet/Ceruvin) Diazepam (Valium) Warfarin (Coumadin) Phenytoin (Dilantin) Citolopram (Celexa)
Ompreazole Esomeprazole Lansoprazole Rabeprazole Pantoprazole Dexlansoprazole Zegerid	 Viracept (Nelfinavir) Harvoni (Ledipasvir) Edurant (Rilpirvine) Digoxin (Lanoxin) Ketoconazole (Nizoral) Methotrexate (Trexall)

Selective parasympatolytics

pirenzepine

OBSOLETE

Mechanism of action:

- acetylcholine antagonism in M1/3 receptors
- convenient is selective inhibition
- supress CO2- 3 and mucus secretion
- similar action as H2 antagonists

Indications:

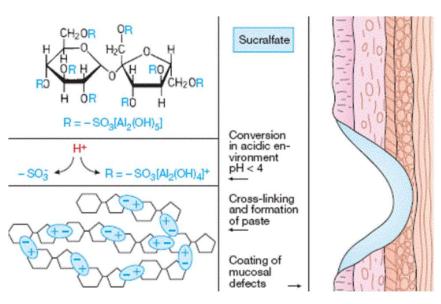
- peptic ulcer disease
- dyspepsia after NSAIDs treatment
- stress ulcer prevention

CI:

- glaucoma
- prostate hypertrophy
- urination disorders

Cytoprotectives

protective effect on the stomach mucosa


sucralfate bismuth salts alginic acid

Sucralfate = octasulfate of sucrose + aluminium hydroxide

- strong mucoprotective eff.
- needs acidic pH!!
- binds pepsin and bile acids
- incr. prostaglandins synthesis

AE:

- not absorbed
- dyspepsia, Al- constipation
- decrease bioavailability of other drugs tetracyclines, phenytoin, digoxine, cimetidine...

Sucralfate mechanism of action

90

Cytoprotectives

Bismuth salts = basic salts of bismuth and citric acid

- chelatation of proteins on ulcer surface \rightarrow protective barrier
- PG secretion stimulation
- antibacterial action (eradication of H. pylori)

Eicosanoids PGE1, PGI2 = main natural protective factors synthetised in gastric mucosa

- increase mucus and HCO3 production, perfusion
- unstable, only derrivatives administered as prevention of harmfull effects of NSAID
- Misoprostol PGE1 abortions!!!!

Eradication of H. pylori

- G-bacteria, over 80 % are asymptomatic
- eradication decrease frequency of relapses to 0-10 %
- complex therapy combination of 2 antibiotics with H+ pump inhibitors for 1 – 2 weeks

Tripple therapy:

PPI + amoxicilin (2x 1000 mg) + claritromycin/azithromycin (2x 500 mg)

or metronidazole (2x 500 mg)

ev. sequential In resistant pathogen + **tetracyclin or bismuth salts**

Thank you for your attention

