# MUNI MED

## Physiology of blood. Blood types. Immune system.

Budínská Xenie

1 Define footer – presentation title / department

## **Final exame questions**

- 76. Blood composition values
- 77. Red blood cell. Haemolysis.
- 78. Haemoglobin and its derivatives
- 79. Suspension stability of RBC (sedimentation rate)
- 80. Mechanism of innate immunity
- 81. Acquired immunity
- 82. Blood groups antigens
- 83. Function of platelets
- 84. Hemocoagulation
- 85. Anticlotting mechanism

# **Functions of the blood**

#### homeostatic function

- buffering
- thermoregulation (transport of heat)
- transport of substances
  - blood gases
  - nutrients
  - metabolites
  - vitamins
  - electrolytes
- humoral control of organism (hormones)
- defence of organism (immune functions)
- blood clotting

### **Basic characteristics**

- Suspension character
- 6 8% total body mass
- 55% fluid phase (plasma)
- 45% formed phase (blood cells)



~58% plasma

42% packed red cell volume

100%

<1% white cells

|                                                                                                                                                                            | MALES                     | FEMALES                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|
| Hematocrit                                                                                                                                                                 |                           |                           |
| Hematocrit is the percentage of total blood volume that is occupied by packed (centrifuged) red blood cells.                                                               | 40-54%                    | 37-47%                    |
| Hemoglobin (g Hb/dL* whole blood)                                                                                                                                          |                           |                           |
| The hemoglobin value reflects the oxygen-carrying<br>capacity of red blood cells. ('1 deciliter (dL) = 100 mL)                                                             | 14-17                     | 12-16                     |
| Red cell count (cells/µL)                                                                                                                                                  |                           |                           |
| A machine counts erythrocytes as they stream through<br>a beam of light.                                                                                                   | 4.5-6.5 × 10 <sup>3</sup> | 3.9-5.6 x 10 <sup>3</sup> |
| Total white count (cells/µL)                                                                                                                                               |                           |                           |
| A total white cell count includes all types of<br>leukocytes but does not distinguish between them.                                                                        | 4-11 x 10 <sup>3</sup>    | 4-11 x 10 <sup>3</sup>    |
| Differential white cell count                                                                                                                                              |                           |                           |
| The differential white cell count presents estimates of the<br>relative proportions of the five types of leukocytes in a<br>thin blood smear stained with biological dyes. |                           |                           |
| Neutrophiis                                                                                                                                                                | 50-70%                    | 50-70%                    |
| Eosinophils                                                                                                                                                                | 1-4%                      | 1-4%                      |
| Basophils                                                                                                                                                                  | <1%                       | <1%                       |
| Lymphocytes                                                                                                                                                                | 20-40%                    | 20-40%                    |
| Monocytes                                                                                                                                                                  | 2-8%                      | 2-8%                      |
| Platelets (per µL)                                                                                                                                                         |                           |                           |
| Platelet count is suggestive of the blood's ability<br>to clot.                                                                                                            | 150–450 × 10 <sup>3</sup> | 150-450 × 103             |

MUNI MED

### **Blood plasma. Inorganic substances**

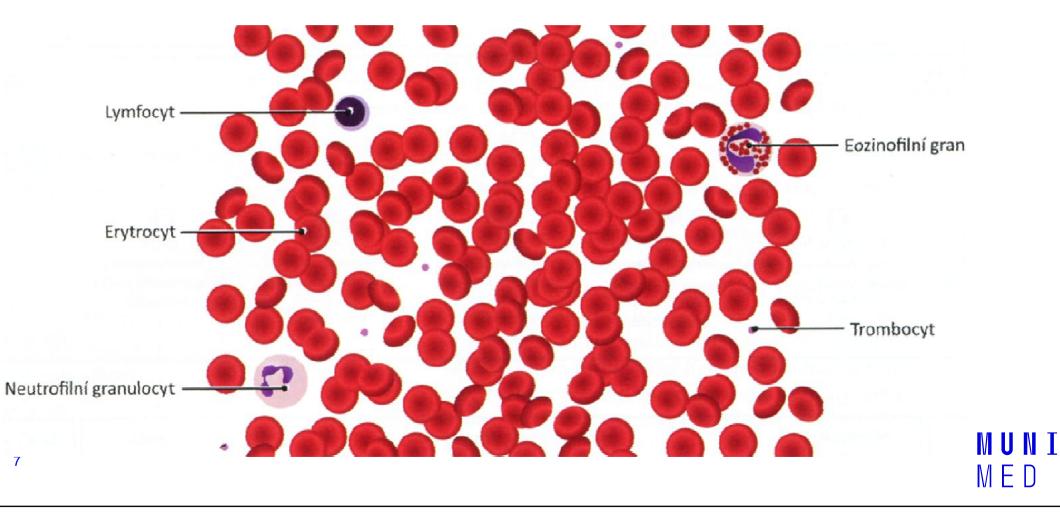
- Na<sup>+</sup> (137-147 mmol/l): osmotic pressure, volume, pH
- Cl<sup>-</sup> (98-106 mmol/l): osmotic pressure, volume, pH
- K<sup>+</sup> (3,8-5,1 mmol/l): muscle aktivity
- Ca<sup>2+</sup> (2,1-2,7mmol/l): nerve excitability, muscle aktivity, blood clotting, membrane permeability, bone mineralization
- P (0,65-1,62 mmol/I): pH regulation, bone mineralisation
- Mg<sup>2+</sup> (0,75-1,25 mmol/l): enzyme activity, nerve excitability
- HCO<sub>3<sup>-</sup></sub> (25-34 mmol/I): CO2 transport, pH maintenance
- Fe (16-25 µmol/l): part of haemoglobin gas transport
- I (275-630 nmol/I): thyroid hormone production

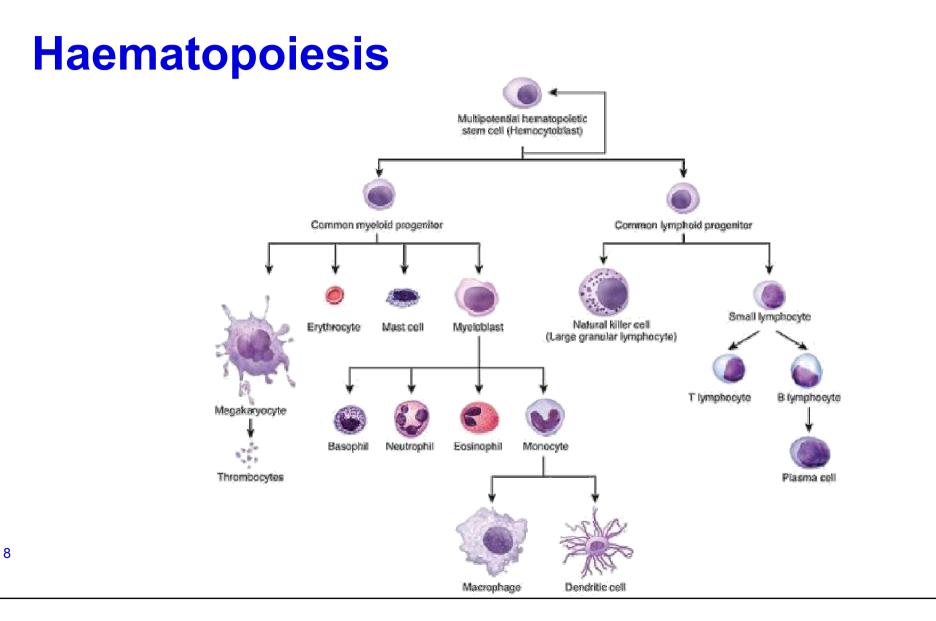
## Blood plasma. Organic substances.

#### Plasma proteins 60-80 g/l

- Albumins (40-48 g/l): oncotic pressure, transport of ions, fatty acids, hormones

- Globulins (18-30 g/l)

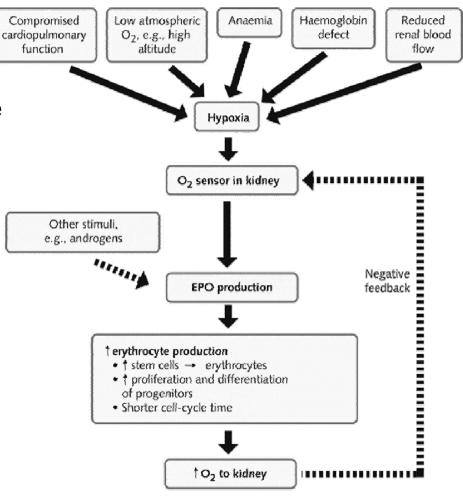

 $\alpha$ -globulins: transport of hormones, metals, vitamins


 $\beta$ - globulins: heme binding, vit. B12, iron, cholesterol transport

γ- globulins: antibodies, specific immunity

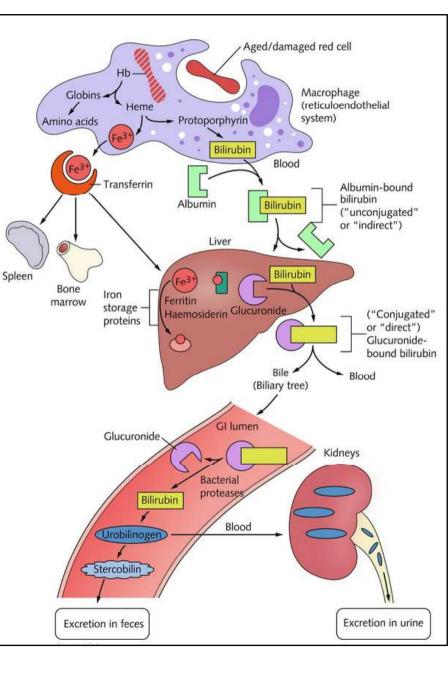
- Fibrinogen (3 g/l): blood clotting
- Lipids (4-10 g/l)
- Glucose (4-5,5 mmol/l)
- Nitrogen substances (0,2-0,4 g/l): urea, bilirubin, amino acids
- Hormones, vitamins, enzymes, drugs

#### **Formed blood elements**



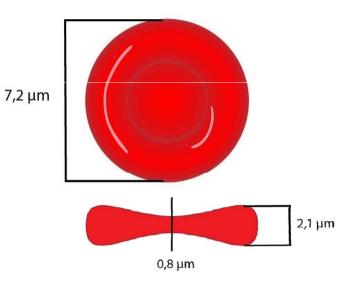



#### MUNI MED


# **Erythropoiesis**

- Erythropoietin formation in the kidneys
  - acts on sensitive determinate progenitor cells in the bone marrow
  - stimulates nucleic acid synthesis
  - activates genes required for haemoglobin synthesis
  - increases Fe intake
- Substances needed for erythrocyte production
  - amino acids: the protein part of haemoglobin
  - iron: binding of oxygen to haemoglobin and myoglobin
  - vitamin B12: essential for DNA synthesis
  - Folic acid: essential for DNA synthesis




#### **Extinction of red blood cel**

- Spleen: phagocytosis of old and damaged erythrocytes
- Hemoglobin=globin+hem
- Globin amino acids
- Hem=CO2+Fe+biliverdin
- Fe synthesis of additional hemoglobin

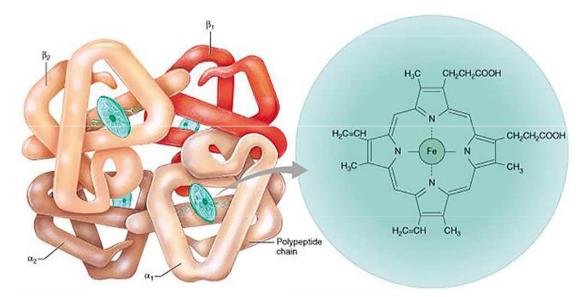


### **Red blood cell**

|                                                 |                                             | Men                        | Women                   |
|-------------------------------------------------|---------------------------------------------|----------------------------|-------------------------|
| Hematocrit (Hct)<br>(%)                         |                                             | 47                         | 42                      |
| Erythrocytes (RBC)<br>(10 <sup>6</sup> /µl)     |                                             | 4,5 - 6,3 x10 <sup>6</sup> | 4,2–5,4x10 <sup>6</sup> |
| Haemoglobin (Hb)<br>(g/l)                       |                                             | 140 - 180                  | 120 - 160               |
| Mean volume of ery<br>(MCV) (fl)                | = Hct x 10 / RBC ( $10^{6}/\mu l$ )         | 82 - 97                    | 82 - 97                 |
| Mean content of Hb<br>in ery (MCH) (pg)         | = Hb x 10 / RBC (10 <sup>6</sup> / $\mu$ l) | 27 - 33                    | 27 - 33                 |
| Mean concentration<br>of Hb<br>in ery (g/100ml) | = Hb x 100 / Hct                            | 32 - 36                    | 32 - 36                 |
| Mean diameter of<br>ery<br>(MCD) (μm)           |                                             | 7,5                        | 7,5                     |

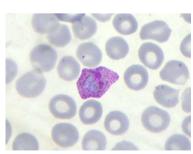


- biconcave disc the shape increases the surface by 30%
- shape is ensured by the protein *spectrin*
- shape plasticity important for penetration through narrow capillaries
  M U N I
  M E D


## **Functions of the RBC**

- Transport of respiratory gases
- Buffering system
- Maintaining blood viscosity

## Haemoglobin


- Red pigment transporting oxygen.
- Protein, 64 450, 4 subunits.
- Hem derivative of porphyrine containing iron, conjugated with polypeptides (globin)
- Types of hemoglobin:
  - Embryonic haemoglobin (t2e2, a2e2)
  - Fetal haemoglobin: Hb F, b2g2
  - Adult haemoglobin: Hb A, a2b2
- Hemoglobin derivative:
  - oxyhaemoglobin O<sub>2</sub>

- carbaminohaemoglobin CO<sub>2</sub>
- methaemoglobin Fe<sup>3+</sup> in hem
- carboxyhaemoglobin CO



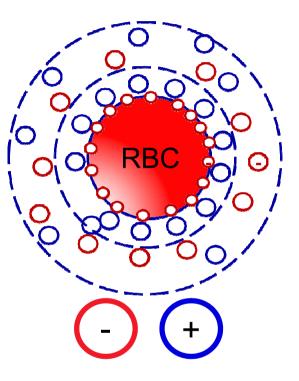
# Hemolysis

- Breakdown of RBC due to disintegration of its membrane hemoglobin and intracellular fluid are spilt into the solution
- Physical (mechanical damage):
  - shaking, ultrasound, extreme temperature changes, UV radiation
- Osmotic (hypotonic solution)
- Chemical
  - strong acids and bases, fat solvents, surfactants (detergents)
- Toxic
  - bacterial toxins, poisons (plant, snake, insect, spider), parasites
- Immunological
  - transfusion of incompatible blood



Malaria *(Plasmodium spp.)* 

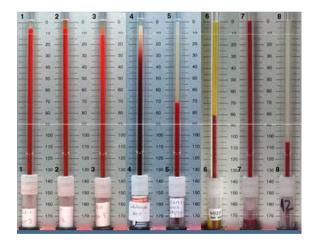



MFD

# **Suspension stability of blood**

- Helmholtz electrical double-layer:
  - negative charge on the membrane of RBC (sialic acid)
  - 1st layer: positively charged ions (primarily Na+)
  - 2nd layer: negatively charged ions (Cl-)
- RBCs repel each other => suspension stability
- Sedimentation rate indirectly corresponds to suspension stability of blood
- Fahraeus-Westergren (FW) direct method
  - A glass tube in vertical position
  - Measured after 1 hour (2 hours)
- Wintrobe

15


- 100 mm long, thin glass tube in oblique position (45°)
- Measured after 15 minutes



MUNI MED

#### **Sedimentation rate**

- Men: 2-8 mm/h
- Women: 7-12 mm/h
- Newborns: 2 mm/h
- Infants: 4-8 mm/h



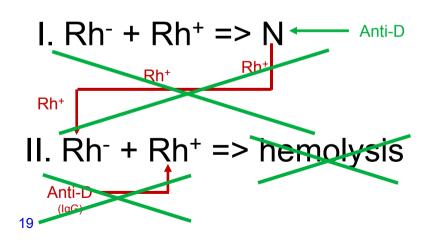
| Effect on ESR  | ↑ value     | ↓ value     |  |
|----------------|-------------|-------------|--|
| Erythrocytes   |             |             |  |
| Number of RBCs | decelerates | accelerates |  |
| Size of RBCs   | accelerates | decelerates |  |
| Plasma         |             |             |  |
| Albumin        | decelerates | accelerates |  |
| Imunoglobulins | accelerates | decelerates |  |
| Fibrinogen     | accelerates | decelerates |  |
| Lipids         | accelerates | decelerates |  |

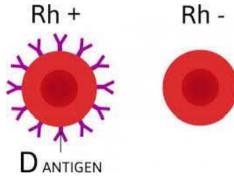
# **Blood groups**

- is a classification of blood, based on the presence and absence of antigenic substances on the surface of red blood cells
- antigens (depending on the blood group system):
  - proteins
  - carbohydrates
  - glycoproteins
  - glycolipids
- some of these antigens are also present on the surface of other types of cells of various tissues

## **AB0 system**

Antigens on the surface of RBCs (agglutinogens): A, B
 Antibodies in the blood (agglutinins): anti-A, anti-B (IgM)


| Blood groups            | Group A | Group B | Group AB   | Group 0         |
|-------------------------|---------|---------|------------|-----------------|
| Prevalence in CZ        | 41%     | 18%     | 9%         | 32%             |
| RBCs                    |         | •       |            |                 |
| Antigens on<br>RBCs     | A 📍     | B ∳     | AaB<br>↑ ₱ | none            |
| Antibodies in the blood | anti-B  | anti-A  | none       | anti-A + anti-B |


Immunization against A and B happens during the first months of life (these antigens are also in the diet) – agglutinins are then in the blood for the rest of the life

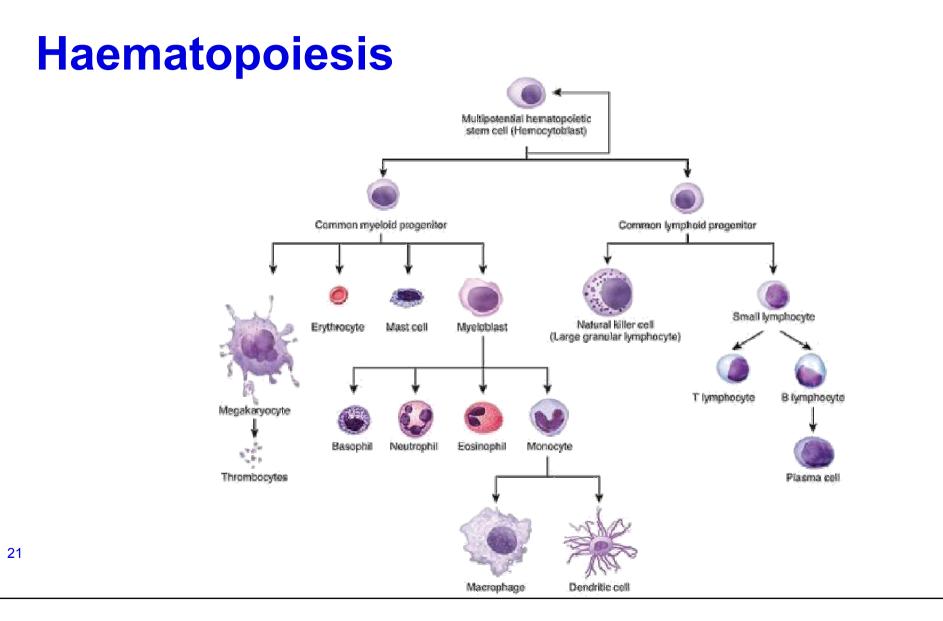
### **Rh factor**

- Antigens D, d (also C,c, E, e, which are weaker) are only on RBCs

- The strongest one is an antigen D if present  $\rightarrow$  Rh+ blood group
- In recessive homozygotes (dd)  $\rightarrow$  blood group Rh- (17% in Europe, <1% elsewhere)
- in Rh- blood, antibodies (anti-D, IgG) develop only after immunization
  - The first reaction is weaker, the next encounter with Rh+ blood will trigger a stronger immune response → hemolysis
    Rh +
    Rh -



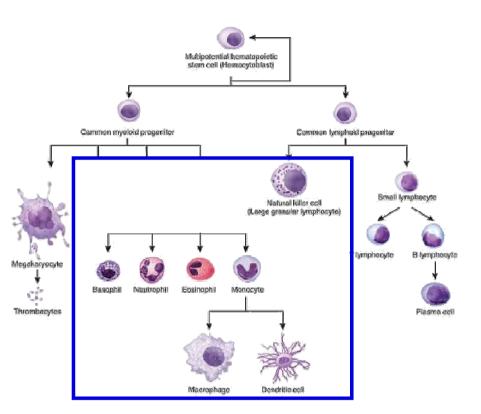



MED

#### **Blood groups**

The most common blood types in the world by region




MUNI MED

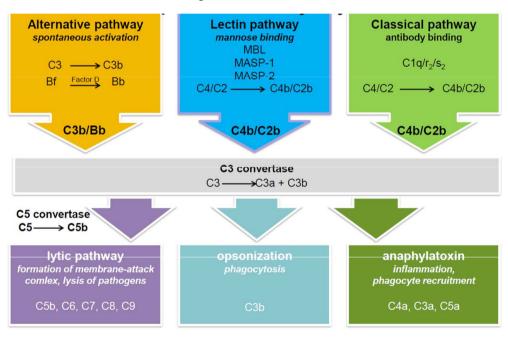


#### MUNI MED

### Innate immune system

- already in place
- rapid response
- non-specific pattern response
- functions:
  - physical barriers
  - leukocyte recruitment (inflammation)
  - antiviral defenses
- Parts:
  - physical/chemical barriers
  - phagocytes (neutrophils, macrophages, dendritic cells, mast cells, NKCs)
  - complement



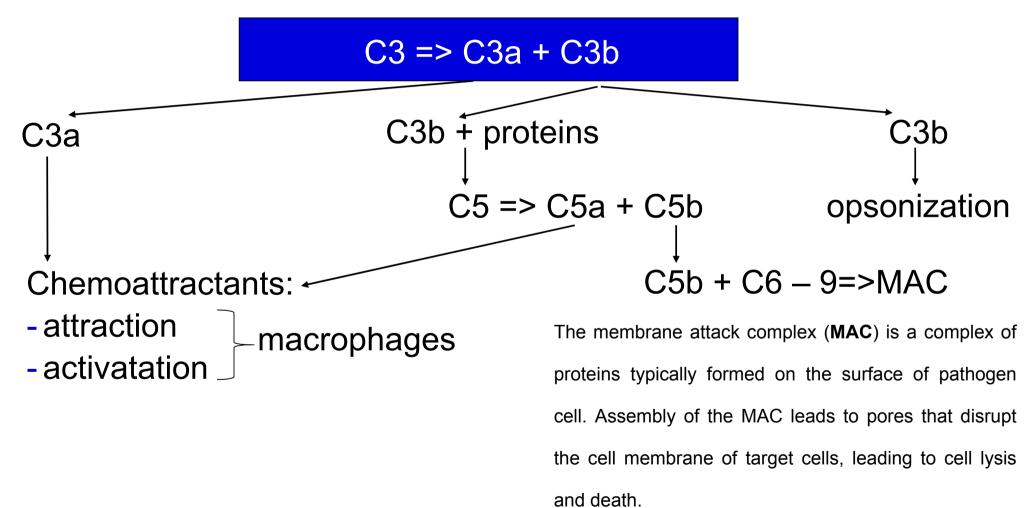

MED

# **Recognizing invaders**

- Pathogen-associated molecular patterns (PAMPs):
  - common molecular patterns typically found on pathogens (ex. Bacterial lipopolysaccharides, mannose, viral nucleic acids)
- Damage-associated molecular proteins (DAMPs):
  - common molecular patterns found on the surface of injured or dead host cells (ex. Heat shock proteins)
- Pattern recognition receptors:
  - receptors on cells of the immune system that recognize PAMPs and DAMPs
  - when the pattern recognition receptor binds a ligand (PAMP or DAMP) this triggers signal pathway activation → transcription factors → gene expression of inflammatory and antiviral products → recruitment/activation of immune cells

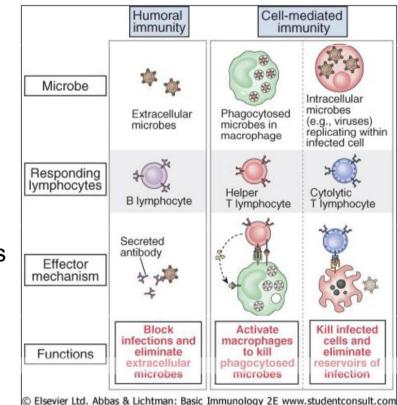
#### **Complement cascade**

- system of proteins; part of the innate immune system
- functions:
  - cell lysis (membrane attack complex MAC)
  - opsonize
  - attract other immunological cells
- complement activation pathways:
  - classical activation pathway
  - alternative activation pathway
  - lectin activation pathway




MED

#### **Complement activation pathways**

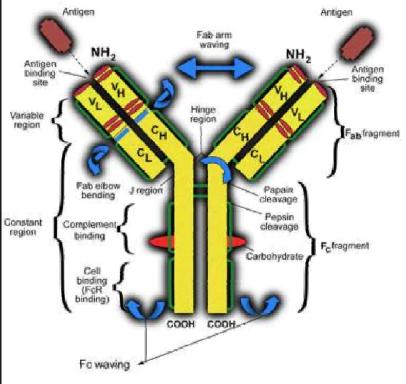

- classical (Ab dependent) complement activation pathway:
  - IgM/IgG brings together multiple C1 complexes
  - inhibitor falls off C1
  - C1 starts cascade that cleaves C3
- alternative (Ab INdependent) complement activation pathway:
  - spontaneous cleavage of C3
- lectin complement activation pathway:
  - mannose binding lectin (MBL) binds mannose on pathogen surface
  - activates MASP
  - MASP cleaves C3

#### **Common pathway**



## **Adaptive immune system**

- develops in response to pathogen (antigen)
- specific (responds to Ag)
- diverse (recognizes a lot of Ags)
- immunological memory
- humoral immunity:
  - targets extracellular pathogens in blood + mucosal secretions
  - B-cells  $\rightarrow$  make Ab
- cell-mediated immunity:
  - targets intracellular pathogens
  - T-cells (Cytotoxic T-cells (CD8+), Helper T-cells (CD4+)




MFD

## Major histocompatibility complex

- MHC I expressed on all nucleated cells
- what's happening inside cell (endogenous peptides)
- MHC class I recognized by CD8+ T cells
- MHC II expressed on APCs
- shows what's happening outside cell (exogenous peptides)
- MHC II recognized by CD4+ T cells

#### Immunoglobulin structure



2 identical heavy chains

- 2 identical light chains
- constant region (Fc) remains the same among all antibodies in a class
- Fab fragments (fragment antigen-binding region) are responsible for antigen recognition and binding; form the "arms" of the Y;
- The variable region (**Fv**) is the top part of the Fab fragment; this area varies between antibodies; contains the paratope (antigen binding site)

#### – IgM:

- is the first antibody produced by activated naive B-cells
- first response to early infection
- can be attached to cell surface or secreted into blood & lymph
- can activate classical complement pathway

#### – IgG

- is the most abundant ab in blood
- can pass from parent to fetus via the placenta
- tags antigens so phagocytes can eat them (opsonization)
- capable of antibody-dependent cellular cytotoxicity

#### – IgA:

- is responsible for mucosal immunity
- secreted in GI, respiratory, and genitourinary tracts and found in saliva, tears, & milk

MED

#### – IgE:

- provides helminth protection
- is responsible for mast cell degranulation

#### – IgD

- co-expressed with IgM
  - least understood