Imunoglobulins – structure and function Production of immunoglobulins Genetic determination of immunoglobulin production Clonal selection theory

Antigen and epitope

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Distribution of the major human immunoglobulins

The basic chain structure of immunoglobulins

The basic structure of IgG1

Protein domain

 is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional globular structure. Usulally held together by a disulfidic bond.

Enzymic cleavage of human IgG1

lgG

- Proteolytic cleavage (by pepsin or papain) results in formation of two fragments of Ig molecule:
- Fab (antigen binding) associated mainly with antigen specificity
- Fc (crystallizable) associated with various functions of immunoglobulin molecule

H Molecule of IgG

Н

Hypervaribale region of immunoglobulin molecule binds epitope of the antigen

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Variable region of immunoglobulin molecule

Figure 2.7

Hypervariable regions of immunoglobulin molecule

The antibody combining site

Clonal selection theory

Clonal selection theory F.M. Burnet, 1957

- During (mainly fetal) development immunocompetent cells of the immune system develop. Each cell is characterized by its own antigen specific receptor. Each cell reacts only with one concrete specific antigen.
- After exposure to autoantigen during fetal life autoreactive clones are eliminated ("forbidden clones").
- If a concrete cell recognizes its specific antigen, it is stimulated, proliferates and forms a clone = **clonal selection**.
- After repeated divisions the cells become terminally differentiated cells, that does not proliferate and after some time die.
- The cells of the clone that do not differentiate into the terminal stage become a memory cells which will quickly react after the second exposure to the antigen.

From the history of immunology

- 1957: Clonal selection theory: 1957
- 1961: Discovery o the thymus as an organ involved in the immune systém reaction
- 1965 : T and B- lymphocytes determined
- 1969 discovery of the exact function of the thymus, dichotomy of the immune system
- 1975 Positive and negative selection during the thymocytes' development
- 1978-1980 Organization of the immunoglobulin genes

VDJ Recombination

VDJ genes for BCR, and TCR

eavy nain 45	к	α	ß
45			р
	35	45	50
23	0	0	2
6	5	~50	12
V1	D1J1 C	Vn D2J2	с —
~10 ⁶		TCR	:~3×10 ⁶
V1D1J1 emoval of icleotides ~10 ¹¹		C VI DI J Addition of nu (N-region or F	cleotides 2-nucleotides) : ~10 ¹⁶
	23 6 V1D1J1 ~10 ⁶ V1D1J1 ~10 ¹¹ Basic Imn	23 0 6 5 ~10 ⁶ ~10 ¹¹ Basic Immunology 21	23 0 0 6 5 -50 VI DIJI C VI D2J2 ~106 TCR VI DIJI C VI DIJI C VI DIJI C VI DIJI C Addition of nu (N-region or F ~10 ¹¹ TCR Basic Immunology 2E www.student

Somatic hypermutations

- The process occurs in activated B-lymphocytes, takes place in germinal centers of secondary lymphoid organs.
- Key enzyme is AID (activation-induced deaminase).
- Mutation frequency is approx. 10⁶ times higher than in other parts of human genome.
- Antigen presentation by lymphoid dendritic cells to B-cells leads to selection of clones with higher affinity the process is called <u>affinity maturation</u>.

Isotype switching

Isotype switching

Figure 2.26

Activation and differentiation of **B**-lymphocytes (clonal selection theory in B-lymphocyte development)

Primary phase of the antibody response

- Naive or opsonised antigen captured by follicular dendritic cells.
- Primary stimulation of B-cells in lymphoid folicles.
- The antigen also stimulates T cells (after adequate presentation) in T-cell zones. T-cells migrate toward the lymphoid folicles.
- Newly formed plasma cells produce ptredominatly IgM (mainly in bone marrow).

Secondary phase of the antibody response

- Occurs in newly formed germinal centers of lymphoid folicles.
- Th lympocytes stimulate B-lymphocytes to somatic hypermutations and isotype switching.
- This leads to selection of B- cells producing high-affinity antibodies (**affinity maturation**).
- Majority of B-cells producing low-affinty antibodies die.

Development of B-cells in the bone marrow

- **Stem cells**: no B-cell surface markers, no rearrangement of Ig genes.
- **Pro-B lymphocyte** rearrangement of heavy chain , expression of several B-cell surface markers (e.g. CD19).
- **Pre-B-lymphocytes** VDJ of heavy chain has been completed, μ chain can be detected in cytoplasm. Pre-B receptor – composed of μ chain and surrogate chains V-preB and $\lambda 5$ is expressed on the surface of the cell. Signal transduction though this receptor is essential for B- cell development.
- **Imature B-cell** light chain rearrangement (V-J) completed B-cell receptor is composed of monomeric IgM.
- Mature B-lymphocyte has IgM and IgD B-cell receptors.

Development of B-cells in the bone marrow

$\bigcirc \Rightarrow \bigcirc \Rightarrow \bigcirc \Rightarrow \bigcirc \Rightarrow \bigcirc = \bigcirc \bigcirc \textcircled{IgM}$					
	Stem cell	Pro-B	Pre-B	Immature B	Mature B
lg DNA, RNA	Germline DNA	Germline DNA	Recombined H chain gene (VDJ); μ mRNA	Recombined H chain gene, κ or λ genes; μ and κ or λ mRNA	Alternative splicing of primary transcript to form C _μ and C _δ mRNA
lg expression	None	None	Cytoplasmic µ and pre-B receptor- associated µ	Membrane IgM (μ+κ or λ light chain)	Membrane IgM and IgD
© Elsevier Ltd. Abbas & Lichtman: Basic Immunology 2E www.studentconsult.com					

Pre B-cell receptor

Bruton's tyrosine kinase (BTK)

- Key thyrosine kinase in activation, differentiation and development of B-cells.
- Mutations of BTK lead to X-linked (Bruton's) agammaglobulinemia.
- BTK blockers (e.g. ibrutimib) are used for the treatment of B-cell malignancies.

Antibody variants

Isotype

- The class or subclass of an immunoglobulin.
- Antigenic determinats are on constant part of immunoglobulin molecule.

Idiotype

• An antigenic determinant on the variable region of immunoglobulin molecule.

Interaction idiotype-antiidiotype

Characteristics of immunoglobulin classes

Isotype of antibody	Subtypes	H chain	Serum concentr. (mg/mL)	Serum half-life (days)	Secreted form	Functions
IgA	lgA1,2	α(1 or 2)	3.5	6	Monomer,dimer, trimer	Mucosal immunity, neonatal passive immunity
lgD	None	δ	Trace	3	None	Naive B cell antigen receptor
IgE	None	ε	0.05	2	Monomer	Mast cell activation (immediate hypersensitivity)
IgG	lgG1-4	γ(1,2,3 or 4)	13.5	23	Monomer	Opsonization, complement activation, antibody- dependent cell- mediated cytotoxicity, neonatal immunity, feedback inhibition of B cells
lgM	None	μ	1.5	5	Pentamer IgM	Naive B cell antigen receptor, complement activation

lgG

Structure of human IgM

Antibody response after primary and secondary antigen exposure

Weeks

IgM on B-cell membrane

Expression of surface immunoglobulins on B-cells

		→		×	$c \longrightarrow ($	
Stage of maturation	Stem cell	Pre-B cell	Immature B cell	Mature B cell	Activated B cell	Antibody- secreting cell
Pattern of immunoglobulin production	None	Cytoplasmic µ heavy chain	Membrane IgM	Membrane IgM, IgD	Low-rate Ig secretion; heavy chain isotype switching; affinity maturation	High-rate Ig secretion; reduced membrane Ig

Figure 2.29

© 2000 Garland Publishing/Elsevier Science

Formation of Secretory IgA

- Affinity: The strength of the binding between a single site of an antibody (one variable region) and an epitope.
- Avidity: The overall strength of interaction between and antibody and antigen. The avidity depends on affinity and the valency of interactions.

Biological half-life and serum levels of immunoglobulin classes

- IgG: half life approx. 3-4 weeks, serum level approx. 10 g/l.
- IgA, IgM: half life 5-6 days, serum level approx.
 1-3 g/l.
- IgE: half life in plasma approx. 1 day (much more on IgE receptors on mast cells), serum levels very variable, several mg/l (IU/ml are used).

Antibody isotype	Isotype specific effector functions
IgG	Neutralization of microbes and toxins
Ŭ	Opsonization of antigens for phagocytosis by macrophages and neutrophils
	Activation of the classical pathway of complement
	Antibody-dependent cellular cytotoxicity mediated by NK cells
	Neonatal immunity: transfer of maternal antibody across placenta and gut
	Feedback inhibition of B cell activation
IgM	Activation of the classical pathway of complement
IgA	Mucosal immunity: secretion of IgA into lumens of gastrointestinal and respiratory tracts, neutralization of microbes and toxins
IgE	Antibody-dependent cellular cytotoxicity mediated by eosinophils Mast cell degranulation (immediate hypersensitivity reactions)
© Elsevier Ltd. Ab	bas & Lichtman: Basic Immunology 2E www.studentconsult.com

Biological functions of immunoglobulin molecules

- Activation of complement system (IgG, IgM)
- Opsonization (particularly IgG)
- Neutralization of antigens (IgG, IgA, IgM)
- Adherence interference (IgA, IgG)
- Antibody dependent cellular cytotoxicity (ADCC)
- Agglutation, precipitation (IgG, IgM)
- Mast cells degranulation (IgE)
- Transport through placenta (IgG)
- Imunoregulation (mainly IgG)

Antibody dependent cellular cytotoxicity (ADCC)

