

Ultrasound

- 1) CEUS (contrast enhanced ultrasound)
- 2) Elastography
- 3) Navigation systems

CEUS Principle

Gas bubbles reflect back ultrasound waves

They are strictly intravascular, they do not penetrate into the extravascular space.

They rupture and gas from them is excreted through the lungs

SonoVue®

- Microbubbles stabilized by phospholipids
- It contains Sulfur-hexafluorid (SF₆) inert gas, excreted trough lungs respiration
- Increase in signal intensity for 3-8 min.

Liver

B-mode

- When you could say definite diagnosis:
 - Typical liver cyst

Calcification

- All other focal hepatic lesions are characterized not only by differences in echogenicity, but also due to different vascularization bearings and due to changes in perfusion kinetics.
- Due to the dual blood supply of the liver by portal vein and hepatic artery, we do not judge only according to whether they are hypo- or hypervascular but also saturation depends on the perfusion stage and thus on the histological structure

Dose

Normal liver

■ 1,5ml i.v. bolus + FR

Cirrhotic liver, fat patient, deep lesion

■ 2,0 ml i.v. bolus + FR

Hemangioma

- the most common benign liver tumor
- often an incidental finding
- usually stable, but can vary in time
- can also grow rapidly

Focal nodular hyperplasia

- Second the most common benign liver tumor
- contains hepatocytes, elements of bile ducts, Kupffer cells, fibrous stroma and often "central scar"(50%)
- typically random finding in women

Hepatocellular adenoma

- relatively rare benign tumor is potentially malignant
- Associated with oral contraceptives, 90% young women.
- Frequent cause of pain because of it contains necrosis and hemorrhage
- primarily arise from hepatocytes may contain fat, often contain intracellular glycogen, they tend to have a thin pseudocapsule, lack architectonics, there is a relatively small amount of bile ducts and often degenerative necrosis

HA

inhomogeneity (hyperechoic districts of acute hemorrhage, hypo- to unechogenic in older bleeding)

homogeneous saturation in the arterial phase, zero saturation in portovenose phase poorly distinguishable - coincides with the parenchyma in late (sinusoidal) phase pericapsular vessels.

Liver absces

Symptoms are often non-specific

Findings on nativ US is sometimes nonspecific and difficult to distinguish from tumor necrosis

Content of the gas is a specific finding, but is present less than 20% of cases

Hepatocelullar carcinoma

- The most common primary malignant liver tumors
- associated with cirrhosis, chronic active hepatitis, hemochromatosis
- larger HCC usually hypervascular

HCC

Intensive saturation with a rapid increase (time to peak) in the arterial phase, a relatively rapid wash-out in portal phase

Cholangiocarcinoma

- HCC less frequent and in older patients
- hypovascular tumor

Metastasis

- the liver is the most common site of distant metastasis
- They have great variability, may be cystic, solid, mixed, hypervascular or hypovaskular

Colrectal carcionma metastasis

Hypervascular metastasis (karcinoid)

Kidneys

When we use it

- We can differentiate solid lessions from cystic
- Gradeing of cystic lessions Bosniak classification

Case 2 Onkocytoma

kidney cysts

Standard: CT – Bosniak classification

I, II - benigne

IIF - probably benigne, track

III - 50% maligne

IV - almost 100% maligne

Bosniak I

Bosniak II

thin septs, sometimes you can watch the gentle enhancement of septs

Bosniak IIF

- More septs, and theyr enhancement
- wall thickening without enhancement

T1 k.l.

Bosniak III

thickened wall, or septum, with enhancementh

Multilocular cystic nefroma

Bosniak IV

Solid soft tissue nodul with enhancement

Elastografie

Radiologická klinika FN Brno a LF MU

Basis principles of elastography

- It uses ultrasound to determine the difference in rigidity (elasticity) of the tissues
- Tissue stiffness is generally expressed by Young's modul (unit Pa))

$$E = \frac{S}{e}$$

the ratio between the applied pressure (S) and the induced strain (e)

More stiffness = higher Young model

Type of soft tissue		Young's Modulus (E in kPa)	Density (kg/m³)
Breast	Normal fat	18-24	1000 +/- 8% ~water
	Normal glandular	28-66	
	Fibrous tissue	96-244	
	Carcinoma	22-560	
Prostate	Normal anterior	55-63	
	Normal posterior	62-71	
	BPH	36-41	
	Carcinoma	96-241	
Liver	Normal	0.4-6	
	Cirrhosis	15-100	

Strain elastography

- This method use compression of tissue by own patients movement (breathing, moving of the heart and blood vessels)
- In this method we can only make color maps, but not mesure values of preasure

Shear wave elastography

- With appropriate ultrasound waves, we can generate both longitudinal and transverse waves (shear waves)
- transverse waves (shear waves) formed as a response of elastic tissue resistance to vibrations with low frequency
- source of vibration are pulses of acoustic pressure generated by focused ultrasound
- And we can measure it

$$E = 3\rho c^2$$

E ... elasticity [Pa]

 ρ ... Density of environment [kg.m⁻³]

c ... velocity of propagation [m.s⁻¹]

Shear wave elastografie

One point – static(number)

Dynamic – on line colour map

Where we can use it

- Lover
 - Grade of fibrosis
- Spleen
 - Portal hypertensis
- Thyroid gland
- Brest lessions

Navigation systems

System functions

real-time fusion of US/CEUS with (CT, MR, PET/CT)

- Navigated intervencion with special needles
 - Biopsi
 - Ablacion

Machine

Fusion CT +UZ

redisplay.

Plan.20131015.075451

Use of fusion

Fusion + navigation - planning

Computed tomography

1) VIRTUAL COLONOSCOPY

2) Spectral CT

VIRTUAL COLONOSCOPY Indication

- Examinatio is intended to detect polyps and carcinomas, in case that the optical colonoscopy is:
- incomplete (anatomy, spasm, stenosis, adhesion ..)
- intolerance or rejection by the patient
- contraindicated
- unclear findings at OC increased risk of complications during OC (anticoagulation, age ...)

It is not yet approved for colorectal cancer screening Reliable detection in larger polyps (above 5 mm) and cancers

Advantages VIRTUAL COLONOSCOPY

Low-dose technic (about 7-8 mSv)

Nonivasive, no pain

You can avaluate wall and surroundings of bowl, and i native picture whole abdomen.

You see behind stenosis

Disadvantages – les accurate

No interventions

Arteficial findings(faeces, resiodual intraluminal material)

Examination

Preparation for examination is same as on normal colonoscopy

+

Night before posive contrast peroral for faecaes marking

+ closely before examination:

Hypotony—1ml Buscopan i.v.

Insuflation of CO2 on preasure between 6-25mmHg..

Than CT examination two positions: on the abdomen and back

Examination

Classic 2D CT nativ

Primary software automatic detection of polyps(CAD)
Secundary manual detection in

Computer-aided detection CAD

6 mm měkkotkáňový polyp na colon ascendens – malý tubulární adenom

Submucosal lipoma

MRI – New methods

diffusion-weighted imaging,(DWI)

diffusion tensor imaging, (DTI)

Functinal MRI (fMRI)

Spectral CT

- CT spectral data reconstructed using Compton scattering and photoeffect information is stored in SBI (Spectral Based Image)
- spectral data results can be displayed as normal grayscale
 CT or color map.
- pixel intensity may correspond to:
 - HU
 - concentrations of the material (mg / ml), e.g. iodine
 - effective atomic number (Z_{eff})

Spectral CT usage

- Perfusion maps in diagnosis of a.pulmonalis embolisation
- Spectral analysis of urinal stones
- Detection of hypervascular leasions(e.g. In liver):

Mixed urinary stone

DWI: Diffusion weighted imaging

 Difusion – random motion of water molecules in tissue (Brownův pohyb)

 Alteration of the process of diffusion is characteristic for certain pathological

conditions

Interpretation of DWI

- Restriction od difusion:
 - Hyperintens DWI B1000
 - Hypointens na ADC

-DWI B1000

ADC

Indications and practical use of DWI

- Detection of early ischemia, and differentiation from tumors
- Differential diagnosis of ring lesions
- More accurate differential diagnosis of tumors.

Ischemia on DWI

Ischemia x tumor

■T2 TSE tra.

DWI B1000

-ADC

Dif. dg. of ring lessions

- Absces restriction of diffusion: ↓ADC
- Tumors facilitacion of diffusion necrotic centre: ↑ADC

Dif. dg. Ring lessions

Dif. dg. Ring lessions

Metastasis lung adenokarcinoma

T2 TSE tra.

Dif. dg. of tumors

- DWI image depence on the histological structure of the tumor tissue: diffusion decreases with increasing cellularity, (↓ADC) lymfoma, high-grade glioma
 - High ADC value low-grade glioma low cellularity

Dif. dg. tumors

Lymfoma

T2 TSE tra.

ADC

Dif. dg. tumors

High-grade glioma

DTI – diffusion tensor imaging

- Method based on the principles of DWI
- Diffusion anisotropy in the white matter of the brain and spinal cord: the movement of water molecules occurs more easily along the nerve fibers
- DWI image signal intensity depends on the direction of the magnetic gradient adjunctive
- Repeated measurements with different directions of diffusion can detect the dominant direction of diffusion direction → During nerve pathways for example

DTI

- processing:
- Map of fraction anisotrophy
 - Directionally coded map of vectors of diffusion anisotropy
 - 3D Fibertracking

DTI - usage

- Measurement of fractional anisotropy and ADC evaluation for impairment of white matter:
 - Normal white matter the maximum diffusion along the long axis of the nerve bundles
 - Abnormal white matter an increase of diffusivity of water molecules throughout the nerve tracts → reduce diffusion isotropy
 → DTI has the potential for earlier detection of pathology of white matter than conventional display

3D fibertracking - displaying of neural pathways eg. To assess the relationship to tumor

DTI fibertracking: glioma gr. II Tractus corticospinalis

Fasciculus uncinatus

DTI fibertracking: glioma gr. III

DWI b0 cor.

Radiatio optica

DTI fibertracking: metastasis

DTI fibertracking: spine tumor

■T2 TSE sag.

Fuctional MRI (fMRI)

One of the modern applications of magnetic resonance imaging

Allows direct display of functionally active cortical areas

Totally non-invasive examination, relatively easy for patients

What can be displayed: motor functions, auditory and visual centers, memory, speech and cognitive functions, emotions...

Bold efekt

Blood oxygen level dependency(BOLD):

The basic principle of fMRI
The dependence of the MR signal intensity on the ratio of oxyhemoglobin / deoxyhemoglobin

- Kortical activity:
 - Transient increase in the concentration deoxyHb → decrease in T2 * signal
 - vasodilation with increased blood flow
 → ↓ deoxyHb and increase in T2 * signal

fMRI examination

- Examination of the entire brain
- multiply repeated

 a certain kind of activity (finger movement, speech ..)
 alternating with the rest sections

•Statistical analysis reveals a difference in signal intensity in different areas of the brain by comparing blocks of stillness and blocks of activities

Indication of fMRI

- Preoperative mapping of functional cortical centers
- Assessment of functionally important areas related to tumor

FMR

low-grade glioma

Finger of right hand movement

Sekvence

- •Single shot EPI
- •TR 3000ms, TE 50ms
- •80 dyn. akvizic
- Overlay statistických map na referenční sken T1 true IR

fMRI – visiom kortex

fMRI use in preoperative planning

- Rule of fMRI:
 - determination of lateralization of speech
 - Preoperative view of eloquent cortical areas related to tumor
 - Peroperativ navigation of stimulating electrods

PET/MR

- Hybrid method
- Positron emission tomography
- Magnetic resonance
- 1 device MR + PET

PET

- Tomographic method, three-dimensional mapping of radioactivity
- Principle detection of photons(gama radiation) during annihilation of positrons and electrons
- Positron radiopharmaceutical short half-life beta + decay
- Two 511keV photons two registration at one time
- Detectors ring coincidence connection
- Activity at individual points

Radiopharmaceuticals

- 18FDG aerobic glycolysis
- 18FLT fluorothymidin cell proliferation
- Na18F bone recovery
- 18Fcholin prostate carcionoma
- 18Fflutemetamol brain Alzheimer disiese
- 68Ga DOTA— neuroendocrinal tumors

Indication

- Oncology (staging, control of treatment effectiveness, monitoring after treatment)
- Inflammation (investigation of inflammation origin, vasculitis, sarcoidosis, inflammation of the heart, suspected inflammatory changes around implanted foreign materials
- Rheumatology (eg polymyalgia)
- Cardiology myocardial viability
- Endocrinology (detection of hyperfunctional parathyroid glands)
- Non-tumorous pathology of CNS (Neurodegenerative diseases)

Benefits of PETMR x PETCT

- No radiation load x CT
- PETCT mean dose 5 23 mSv, PET 3-5 mSv
- Excellent tissue contrast MR
- Possibility to combine with more advanced techniques such as perfusion, DWI, angiography, spectroscophy
- Disadvantage the length of the examination and basic MRI contraindications

Metastais in liver
CA of rectum

lymfoma