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Brief History of Cell Death Research

1842 - Karl Vogt noticed dying cells in toads (formation of
vertebrae). The first scientific observation of regulated cell death
(RCD).

1965 - Lockshin and Williams - specific cells die during the
metamorphosis of the silkworm, this type of cell death is
'programmed' because these cells were destined to die according
to a 'construction manual' for the insect.

1972 - Kerr et al. - specific type of cell death in human tissues in
which the cells and nuclei became condensed and fragmented,
and they called this cell death process 'apoptosis'. They proposed
that apoptosis is crucial for regulating cell populations during
tissue development and turnover.

Classification of cell death: recommendations of the
Nomenclature Committee on Cell Death

G Kr'oemerg, W S El-Deiry, P Golstein, M E Peter, D Vaux, P Vandenabeele, B Zhivotovsky, M V

Blagosklonny, W Malorni, R A Knight, M Piacentini, S Nagata & G Melino

Cell Death & Differentiation 12, 1463-1467 (2005) ‘ Cite this article

18k Accesses | 578 Citations ‘9 Altmetric ‘ Metrics

Karl Vogt _.Carroll M. Williams Richard A. Lockshin

Lockshin, R. Programmed cell death 50 (and beyond). Cell Death
Differ 23, 10-17 (2016). https://doi.org/10.1038/cdd.2015.126

Tang, D., Kang, R., Berghe, T.V. et al. The molecular machinery of
regulated cell death. Cell Res 29, 347-364 (2019).
https://doi.org/10.1038/s41422-019-0164-5



Accidental vs. Regulated Cell Death

* Cell death plays a central role in all aspects
of life. It is involved in the development of
multicellular organisms and tissue
homeostasis where cell death depletes
dispensable cells.

* Cells may die from accidental cell death
(ACD) or regulated cell death (RCD).

* ACD is a biologically uncontrolled process,
whereas RCD involves tightly structured
signaling cascades and molecularly defined
effector mechanisms.

* Cell death is critical for fighting off infections
and is associated with multiple diseases that
are caused by deregulated or dysfunctional
cell death signaling.
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* Apoptosis is the first described form of programmed cell death, and it plays a critical role in tissue
homeostasis.

* |t contributes to cell turnover, the proper functioning of the immune system, and embryonic development.
* There are several key characteristics of apoptosis:

cellular, organelle, and DNA fragmentation and formation of apoptotic bodies

active, energy consuming process executed by a subset of cellular proteins

Even though, in general, this process is immunological silent, apoptosis has been shown to be involved in
inflammatory pathologies as well.
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There are two (or 3) major pathways that mediate apoptosis: intrinsic and extrinsic pathways.

During extrinsic apoptosis, TNF (tumor necrosis factor) superfamily (TNFSF)
can induce cell death by binding to their cell surface receptors and
activating a deathly signaling cascade causing extrinsic apoptosis. Aofacat ol

EXTRINSIC APOPTOSIS

Release by immune cells

Intrinsic apoptosis is controlled by the equilibrium
of the different Bcl-2 (B-cell lymphoma 2) family
members which can be disrupted by various stimuli
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Caspases (cysteine-aspartate proteases) are proteolytic
enzymes generally known for their role in controlling cell
death and inflammation.

Their role in cell death was described more than 20
years ago with the discovery of ced-3 as a trigger for
cell death during the development of Caenorhabditis
elegans.

Caspases are involved in cell death by apoptosis,
necroptosis and pyroptosis. Caspase function is not just
about cell death.

Non-apoptotic roles of caspases include proliferation,
tumor suppression, differentiation, nervous system
development and axon navigation, aging and
angiogenesis.

Caspases

1. The altered huntingtin protein is too big
to be able to easily cross the envelope
into the nucleus.

altered huntingtin
nuclear envelope . 2. Caspases play a big role in
§ cutting up altered huntingtin
into small fragments that can
, \ move into the nucleus.

caspase

) N nucleus

pores in nuclear <
envelope 3. The fragments can easily

move into the nucleus and

cause nerve cell death

https://hopes.stanford.edu/caspase-6-inhibition/

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death & Differentiation. 2015;22(4):526-539.



Intrinsic Apoptosis

Involves increases in the expression or activity of pro-
apoptotic BH3-only proteins that bind with high affinity to
members of the pro-survival BCL-2 protein family, which in
healthy cells keep the effectors of apoptosis, BAX, and BAK,
in inactive states.

When all pro-survival BCL-2 proteins within a cell are
functionally neutralized by BH3-only proteins, BAK and BAX
are unleashed in order to oligomerize and assemble into
structures that cause a breach of the outer mitochondrial
membrane, thereby inducing mitochondrial outer membrane
permeabilization (MOMP).

MOMP causes the release of mitochondrial proteins.
Cytochrome c binds to APAF-1 promoting formation of the
apoptosome.

Pro-forms of the initiator caspase 9 are recruited into the
apoptosome, resulting in caspase 9 activation promoting the
downstream proteolytic activation of the effector caspases 3
and 7.

Activation of caspase 3 and 7 cascade can be attenuated by
XIAP, one of the inhibitor of apoptosis proteins (IAPs). MOMP
also causes the release of SMAC (also known as DIABLO)
and HTR2, which both can block XIAP and thereby prevent it
from inhibiting caspases.
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Extrinsic Apoptosis

Triggered by TNF family ligand-receptor interactions, most
prominently by TNF family ligands: TNF, FasL, TRAIL, and TL1A.
The receptor complexes either recruit FADD (Fas-associated protein
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Regulated Necrosis vs Apoptosis - Lytic vs Non-lytic cell death
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Pyroptosis is a potent inflammatory
mode of lytic cell death triggered by
diverse infectious and sterile insults.
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Necroptosis is a pathway for genetically programmed lytic cell death that is thought to have a role in the killing
of pathogen-infected cells and/or damaged cells during certain degenerative or inflammatory disorders.
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The role of cell death in host responses to infection.

Pyroptosis
GSDMD

o \’
HMGB1 IL-33

.,?AMPS,: — pathogens | *°
AP I

Autoimmune/

Although necrosis and pyroptosis are important barriers against microbial pathogens, disruption of their regulation
causes numerous autoimmune and inflammatory conditions leading to various diseases.



Regulated Cell Death

Live Cell Secondery oy Necroptosis, pyroptosis, ferroptosis, and NETosis are types of
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Autophagy

The process of recycling cellular material, adaptation and maintenance of homeostasis of the internal environment of the cell.

Under physiological conditions, it contributes to genome stability by regulating damaged proteins and organelles.

An important process in the differentiation of cells of the immune system and other tissues.

An important role in the adaptation of the newborn to oral food.

Disruption of this process is associated with many human pathologies: Neurodegenerative diseases (Alzheimer, Parkinson,...) -
insufficient degradation of proteins by autophagy (eg. beta amyloid in the plaques of NS cells) is the cause of these diseases.
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Holographic Microscopy and Quantitative Phase Imaging (QPI)
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* Long-term monitoring of the cell population
* Analysis of morphological and dynamic
parameters in time




Holographic Microscopy and Quantitative Phase Imaging (QPI)
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Cell death detection using QPI

As a dead cell can be considered:
Cell whose membrane has lost its barrier function.

Cell which has disintegrated into separate bodies, often referred to
as apoptotic bodies.

Cell which was engulfed by professional phagocytes or surrounding
cells.

All these processes are associated with changes in cell mass!
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Detekce bunécné smrti pomoci QPI
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RozliSeni mezi apoptdzou a nekrdzou

Growth Speed [ pg/h ] Circularity [ % ] Area [ pm? ] Mass [ pg ]

Perimeter [ pm ]

500

400

500

0

0

Caspase-dependent
(apoptosis)

T Ty
T | Ju“u“wr“\q

I [ I I I I [

03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00

Time

Mmmi
M
T MH”\J\MV__LV__,_M' A
I I I I [ I I

03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00

Time

—A MY UWAAAR AN AN A A \
\/w'ﬂ WW'\MUVVW M e F\WW\N Mw

[ [ I I I [ I

03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time
I [ [ I I [ \
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time

——

I [ I I
03:00:00 06:00:00 09:00:00 12:00:00

I [ [
15:00:00 18:00:00 21:00:00

Time

Mass [ pg ]

Growth Speed [ pg/h ] Circularity [ % ]

Perimeter [ pm ]

Caspase-independent
(necrosis/necroptosis)

500
0 T T T T T | T
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time
1000
500
0 | T T I | | T
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time
50
0 I | I | | 1 |
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time
0
-1000
| | I | | I |
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00
Time
100
0 | | | | | | |
03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00

Time



RozliSeni mezi apoptdzou a nekrdzou
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Based on morphological and dynamic parameters, we are able to automatically distinguish two distinct populations
of cells. Without the use of dyes, only on the basis of a light microscopic method.



RozliSeni mezi apoptdzou a nekrdzou
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RozliSeni mezi apoptdzou a nekrdzou
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Thanks for your attention.




