MUNI MED

Lékařská fakulta Masarykovy univerzity

HYPERTENSION

CIRCULATORY SYSTEM

- × Left atrium, left ventricle
- × Arteries, arterioles
- × Systemic capillaries
- × Portal circulation
- × Venules, venes
- × Right atrium, right ventricle
- × Pulmonary arteries
- × Pulmonary capillaries
- × Pulmonary venes
- × Lymphatic vessels

ARTERIAL BLOOD PRESSURE - DEFINITION

- \times P = Q \times R
- × Analogous to Ohm's law defining voltage
- × Tensor in moving viscous fluid
- Vessel wall is challenged by its radial member (i.e. pointing towards the endothelium)
 - + Systolic on the top of the pulse curve
 - Diastolic on the bottom of the pulse curve
 - + Pulse pulse curve amplitude
 - + Mean average pressure during the cycle

SHEAR STRESS

× Dimension: N.m⁻² (Pa) – same as in blood pressure, axial vector

 Sites with low and/or variable shear stress (sharp turns, bifurcations) are especially prone to the onset of atherosclerosis

CARDIAC OUTPUT

X Q: is equal to cardiac output (CO) – anatomic shunts
 CO = SV (stroke volume) × f
 SV = EDV (enddiastolic volume) – ESV (endsystolic volume)
 EF [%] = SV/EDV

- CO is physiologically equal to venous return (depends on circulating volume)
- In very high HR the CO paradoxically decreases (the ventricles are not filled efectively)

CARDIAC AND VENOUS FUNCTION CURVE

RENAL FUNCTION CURVE

 Provided the renal functions are untouched, the increase in CO or resistance can be compensated by lowering of circulating volume

 This can be disturbed under pathological conditions hypervolemia

CIRCULATING VOLUME

Part of circulatory system	%	ml
Pulmonary circulation	9 %	450
Heart	7 %	350
Arteries	13 %	650
Arterioles and capillaries	7 %	350
Venules, venes and venous sinuses	64 %	3200

RESISTANCE

x R [kg.s⁻¹.m⁻⁴]: can be obtained from Hagen-Poiseuill law:

R = 8 × η × d / π × r⁴,where:

 η = viscosity

d = lenght of the segment

r = radius

PERIPHERAL RESISTANCE

- The resistance increases inversely to the radius at the power of 4
- × The decrease in radius is most evident in arterioles
- The smooth muscle tone in the wall of arterioles changes depending on many factors – this controls peripheral resistance ("peripheral arterioles")

VASCULAR SMOOTH MUSCLE TONE

× Vasodilatation

- NO produced in the endothelium by constitutive (eNOS) and inducible (iNOS) synthase
- + prostacyclins
- + histamine
- + bradykinin
- + pO₂, pCO₂, pH
- + adenosine
- + catecholamines
- + cGMP, cAMP

× Vasoconstriction

- + endothelin
- + ATII
- + ADH
- + catecholamines
- + thromboxane A2
- + Ca²⁺

ARTERIAL WALL ELASTICITY (ELASTIC ARTERIES)

- × Worsens with age
- Loss of elasticity (arterial stiffness) leads to isolated systolic hypertension

BLOOD PRESSURE REGULATION

- × Several interconnected systems
- **×** Regulation of:
 - + heart rate
 - + cardiac contractility
 - + peripheral resistance
 - + circulating volume

VEGETATIVE REGULATION OF THE BLOOD PRESSURE

× fastest regulation

- afferentation baroreceptors in glomus caroticum, arcus aortae; central and peripheral chemoreceptors
- centre nucleus tractus solitarii (NTS), area postrema, rostral ventrolateral medulla (RVLM) with imidazolin receptors
- Efferentation heart (esp. β1 and M2 receptors), vessels (esp. α1 receptors), kidney (α1, α2, β1)
- × Circulating catecholamines

JUXTAGLOMERULAR APPARATUS

Three inputs:

- NaCl in distal tubule
- Stretching of afferent artery
- Sympathetic nervous system

RENIN-ANGIOTENSIN-ALDOSTERONE

- Renin (and prorenin) binds the (pro)renin receptor (PRR)
- The binding increases the enzymatic activity of renin and leads to receptor activation (involved in central BP regulation)
- Renin also cleaves angiotensin I (dekapetide) from angiotensinogen

ACE AND ACE 2

- Angiotensin I (Ang I) can be then transformed into several products
- Through ACE action, Ang II and Ang III with vasoconstriction effects are formed
- ACE also degrades bradykinin (pharmacologic inhibition of ACE leads to angioedema)
- Through the action of ACE 2, angiotensin 1-7 is formed, having vasodilatation and antiproliferation effect on vessel wall (contributing to the decrease of peripheral resistance – Mas receptors

ANGIOTENSIN II RECEPTORS AND SYSTEMIC EFFECTS OF ALDOSTERONE

- × AT 2 receptors are mostly involved in fetal development
- Ang III is mostly involved in aldosterone secretion and in the CNS

CIRCADIAN RHYTHMICITY OF THE BP

- BP drops by ~10-20% at night ("dipping")
- Hypertonics "non-dippers" have approx. 2,5x higher odds of cardiovascular events than "dippers"
- Exaggerated dipping may lead into tissue ischemia, including brain
- In some "non-dippers" there may be disturbed melatonin secretion (shift work...), often, the absence of the drop results from sleep apnea or secondary hypertension
- Exsessive dipping: vegetative dysbalance, drugs

CARDIOVASCULAR EVENTS DURING 24-H CYCLE

- The incidence of myocardial infarctions and cerebral strokes peaks before noon
- The patients with sleep apnea syndrom make an exception

OBSTRUCTIVE SLEEP APNEA

- Intermittent apnea (up to 60 s) with hypoxia leading into SNS activation at night
- Caused by the loss of muscle tone in upper airways (soft palate) – associated with snoring
- 4-30% of men (underdiagnosed), up to 9% of women
- Risk factors: obesity, high neck circumference, alcohol intake (having central myorelaxant properties)
- Effects: higher BP and risk of cardiovascular events at night, chronic stress, cognitive disorders (memory), sleepiness, headache

NTRAL SLEEP APNEA

- **x** Respiratory activity alternates with appoeic pauses with no respiratory effort
 - + Technically, a result of high hysteresis and high inertia ("wrongly set thermostat")
 - + Hypercapnia \rightarrow hyperventilation \rightarrow hypocapnia \rightarrow apnea \rightarrow hypercapnia
- Causes:
 - + respiratory centre diseases
 - + drugs (e.g. opiates)

same as in central hypoventilation

- + heart failure (stimulation of respiratory centre mediated by pulmonary Jreceptors vs. inhibition by hypocapnia
- Cheyne-Stokes breathing
 - + Microawakening occurs at the top of crescendo phase \rightarrow decrescendo
 - + Aside of CSA, this also occur in altitude sickness, alkalosis
- Prevalence: approximately 1 %

SLEEP APNEA SYNDROMES

× OSA

- + more likely during REM phase
- + chest movements during apnoeic pauses
- + BP is very variable
 - sympathetic activation vs. lower left ventricle output in Müller manoeuvre
- treatment: continuous
 overpressure ventilation (CPAP)

× CSA

- + more likely during NREM phase
- no chest movements during apnoeic pauses
- + BP not much variable
- treatment: adaptive overpressure ventilation (ASV), recently phrenic nerve stimulation

NORMAL BLOOD PRESSURE AND HYPERTENSION

A. veškerá populace

B. zdravá populace

BP is continuous parameter with characteristic population distribution

- Setting the border of "normality" is always arbitrary → "reference interval" (contains 95% of healthy population, excluding outlying 5%)
 - + In parameters with normal (Gaussian) distribution mean \pm 2SD
 - + In other parameters generally median [2.5% 97.5% quantile]
- general population does not to have optimal values of the parameter!
 - Value-associated mortality is often taken into account
- Reference interval may be adjusted based on prospective studies

HYPERTENSION

- + BP ≥ 140/90 mmHg (during day) in an adult regardless the age after >10min of rest repeatedly min. 2× out of 3 measurements in several days
 - × In diabetes and in chronic renal failure, the BP should be <130/80mmHg
 - × Ideal BP in an adult SBP<120 and DBP<80mmHg
- + stage of hypertension
 - × mild 140 179/90 104
 - × moderate 180 199/105 114
 - × high \geq 200/115
 - × isolated systolic hypertension SBP >160 with DBP <90 mmHg
 - × resistant \geq 140/90 with the combination of 3 antihypertensives
- + stage of end-organ damage
 - × I increased BP without affecting the end-organ
 - × II organ involvement LV hypertrophy, microalbumin-/proteinuria, aortic calcification
 - × III organ failure: heart failure, renal insufficiency, cerebral stroke

PATHOGENESIS

- × essential 90-95%
 - Concommitant dysregulation of several mechanisms

× secondary – 5-10%

- + renal
 - × renovascular
 - × renoparenchymatous
- + endocrine
 - × adrenal gland
 - * prim. hyperaldosteronism
 - Cushing syndrome
 - * pheochromocytoma
 - × others
 - * Acromegaly
 - * Hyperthyroidism
- + Other causes
 - * Aortic coarctation

PATHOGENESIS OF ESSENTIAL HYPERTENSION

SNS activation increased CO NaCl income

RAAS activation >vasoconstriction

» Disturbed renal function curve – hypervolemia

× Arterial stiffness

arterial resistance

Hypertension

HEART AND VESSEL REMODELATION

- Consequence of long-term hypertension
- × In fact a compensatory mechanism
 - heart reacts to increased preload in hypervolemia or afterload in peripheral resistance
 - + vessels compensate higher CO, arterial stiffness and/or hypervolemia by higher resistance
- RAAS components (pro)renin, angiotensin, aldosterone – play an important role

CONSEQUENCES OF HYPERTENSION

- × Heart
 - + hypertrophy
- × Kidney
 - + nephrosclerosis
- × Brain
 - + encephalopathy
 - + dementia
 - + hemorrhagic stroke
- Vessel wall
 - + atherosclerosis (esp. of heart and brain)

Thickening in → walls of ventricles

METABOLIC SYNDROME

- × Hypertension
- × Dyslipidemia
- × Insulin resistance
- × Central obesity
 - + Often accompanied by:
 - × hyperuricemia
 - × long-term increase of HR
 - × ↑ fibrinogen
 - × long-term ↑ CRP
 - ×↑ oestrogens

GENETICS OF ESSENTIAL HYPERTENSION

- × Usually polygenic
- Ratio of heritable vs. all factors in overall variability 20-70% (most studies approx. 40%)
 - + Only small proportion (several percents) is identified
 - + Usually variants in: SNS

RAAS

sodium transport mechanisms

vasodilatory mechanism

- + Most of total heritability is unidentified ("missing heritability")
- + Rare monogenic forms (mineralocorticoid overproduction, Liddle syndrome)

THERAPEUTIC STRATEGIES

- Lowering of SNS activity
- × Lowering of CO
- Lowering of vascular resistance
- Adjustment of renal function curve

MEASURING THE BP - METHODS

- × Invasive (veins, pulmonary circulation, heart chambers)
 - + Catheter with a fluid

- × Non-invasive
 - + Occasional
 - + Ambulatory
 - + Continual (digital fotoplethysmography)

BLOOD PRESSURE - OSCILLOMETRIC METHOD

By oscillometry, the mean blood pressure is measured accurately, SBP and DBP are estimated

BLOOD PRESSURE - RIVA-ROCCI METHOD

• SBP and DBP are exact, mean blood pressure is estimated

AMBULATORY BLOOD PRESSURE MONITORING

- ABPM ("blood pressure Holter")
- × Intermittent monitoring
- Measurements by oscillometric method in approx. 15 min interval (30-60 min at night)
- Alternative: continual BP monitoring using digital fotoplethysmography (Peňáz method)
 - + A detector measures the intensity of light passing through the finger, uses negative feedback loop
 - A change in blood flow in digital arteries leads into the change in light intensity; change of cuff pressure needed for correction = change of blood pressure
 - + Cannot be used in peripheral vasoconstriction

ABPM INDICATIONS

- Diagnostics of collapses (together with Holter ECG)
- × Pharmacoresistant hypertension
- Paroxysmal hypertension (often in pheochromocytoma)
- × White coat hypertension

- values in home environment are typically lower than in clinical environment

- therefore, the limits are stricter: $<\!135/85$ during the day, $<\!120/70$ at night

- more than 40% of values above those limits point to arterial hypertension

- according to prospective studies, the ABPM has better prognostic ability to predict cardiovascular events than occasional measurement

CHANGES IN BP DURING 24 HOURS

1200 1500 1800 2100 0000 0300 0600 0900 1200

Nocturnal hypertension

1200 1500 1800 2100 0000 0300 0600 0900 1200

Isolated diastolic hypertension

