Hematopoietic Cell Transplantation basal findings

Miroslav Tomíška Internal Medicine, Block 4 5th year students

Interní hematologická a onkologická klinika FN Brno a LF MU

Terminology

of hematopoietic cell transplantation

Originally Bone Marrow Transplantation, BMT

the source of hematopoietic cells was bone marrow
 BMT has remained the title of scientific journal

Hematopoietic cell transplantation, HCT

reflects the availability of peripheral blood stem cells
 HCT covers other sources of stem cells
 hematopoietic stem cell transplantation, HSCT

Autologous stem cell transplantation

 autologous peripheral blood stem cell transplantation, auto-PBSCT

History of HCT

- Research to treat radiation sickness in 1950s
 potential of total body irradiation to treat leukemia
- Discovery of HLA-system 1960s
- Discovery of cyclosporin A 1970s
- First publication of 100 transplanted patients from Seattle 1977 (Edward Donnall Thomas)
- Allogeneic HCT routinly used from 1980s
- Autologous PBSCT from 1990s

Main features of autologous and allogeneic HCT

Autologous	Allogeneic		
donor and recipient is the same person	donor is another person, related or unrelated		
no immune problem no immunosupression	immune difference immunosupresion necessary		
high-dose chemotherapy is the main effect	immune treatment effect graft versus tumor efect, GvT		
	risk of GvHD higher risk of infection		
frozen graft	mostly native graft		

Other types of HCT

Syngeneic transplantation (allogeneic)

- from identical twin
- no GvT, higher risk of relaps

Haploidentical transplantation

- family donor, identical in only 1 haplotype
- mainly if no other donor is available
- requires specific immunosupression

Cord blood transplantation

low number of hematopoietic cells for adult transplantation

Collection of hematopoietic cells

preparation of the graft

Bone marrow collection (from illiac bones)

- no stimulation, general anesthesia, 1 night hospital stay
- 1000 mL of bloody marrow: centrifugation
- collection of buffy coat (between red cells and plasma)
- return of red cell mass to the donor

Peripheral blood stem cell collection

- bone marrow stimulation necessary (several days)
 - G-CSF (healthy donors for allogeneic HCT)
 - cytotoxic regimenn + G-CSF (for autologous SCT)
- blood cell separation (extracorporal centrifugation)
- buffy coat removal (CD34+ cells), plasma and RC return

Different types of allogeneic HCT

Various combinations
for transplant treatment

related family donor	unrelated donor		
typically sibling	from a register		
HLA identical donor	HLA non-identical donor		
5/5 identity	1 or 2 missmatches		
myeloablative conditioning	non-myeloblative needs more immunosupression		
peripheral blood stem cells	bone marrow cells		

Total Body Irradiation, TBI

as part of conditioning prior HCT

Effects of TBI in conditioning prior to alloHCT

- cytotoxic effect (anticancer tratment effect)
- imunosupression
- spacing effect in bone marrow

Doses of TBI in HCT

- myeloablative dose 12-15 Gy, 8-12 fractions, 4 days
- low-dose TBI 2-8 Gy, 1-4 fractions

Regimens currently used in this dept

- myeloablative 10 Gy (5 fractions by 2 Gy)
- non-myeloablative 4 Gy or only 2 Gy
- Conditioning need not contain TBI

Immunosupression in alloHCT

starts as prophylaxis since conditioning

Anti-thymocyte globulin, ATG

- rabbit globulin, halflife 20 days
- inhibition of human T-lymfocytes
- i.v. infusion, risk of reaction requires prophylaxis
- part of conditioning

Cyclosporin A (CsA) i.v. or capsules

- calcineurin inhibitor, inhibits T-lymphocyte activation
- starts prior to transfusion of the graft
- continues for several months

CsA is usually combined (2-drug regimen)

- methotrexate (MTX) Day +1, +3, +6, +11
- mycophenolate mofetil

Immune effect of the graft

is mediated by cytotoxic T-lymfocytes

Arrangement of allogeneic HCT model situation

Combined immunosupression (6 months)

Conditio ning 6-12 days	Graft transfusion Day 0	BM depression Neutropenia 14-20 days	Engraft ment	Dis charge
-12 -1	0	+1 +14	+21 +2	5 +30

Main reasons for allogeneic HCT

Acute leukemia (AML, ALL)

after prior induction and consolidation chemotherapy

Myelodysplastic syndrome

sometimes as first-line treatment

Chronic lymphoproliferation

- malignant lymphoma, CLL
- mostly after failure of prior treatment

CML

- □ after failure of targeted therapy with TKIs
- Aplastic anemia (nonmalignant disease)

Non-myeloablative regimens, NMR

characteristics and advantages

Lower total dose of cytotoxic drugs/TBI

- □ lower side effects, lower toxicity
- myeloablative regimens are suitable up to 40 yr

NMRs are good options for

- patients > 40 yr, up to 65 yr
 - decreased organ function reserves compared to young pts.
- comorbidity (chronic disease)

Specific complications after allo HCT

may be lifethreatening and may cause death

Mucositis (mucosal toxicity of conditioning)
 oropharyngeal
 gastrointestial (both can be severe)

Veno-Occlusive Disease, VOD
 Sinusiodal Obstructive Syndrome, SOS

Infections owing to prolonged neutropenia and immunosuoression

- bacterial, including sepsis
- deep fungal (tissue) infection (invasive)
- viral

Acute Graft versus Host Disease, GvHD

Principals of autologous PBSCT

High-dose chemotherapy (HD chemo)

- brings all treatment effect
- qualitatively higher as compared to conventional dose
- overcomes heterogeneity od tumor tissue
 - areas/cells with lower chemosensitivity
- high dose of cytotoxic agents kill much more cancer cells
- alkylating agents are suitable for HD treatment

Transfusion of stem cells (graft) is supportive

- enables to overcome myelotoxicity of HD chemo
- auto PBSCT is only suitable for chemosensitive tumors

Arrangement of autologous HCT model situation

Main reasons for autologous PBSCT

transplantation is not the option for advanced disease

Malignant lymphoma

- only after failure of 1st line treatment
- requires to use salvage regimen prior to autoPBSCT
- reduction of tumor burden confirms chemosensitivity

Multiple myeloma

- used routinely after several cycles of 1st line treatment
- up to 70 yr in good biological age
- High Dose (HD) melphalan for conditioning
- prolongs life, but is not curative

Exceptionally acute leukemia

- if unsuitable for allo HCT

Antimicrobial therapy in HCT

Prophylaxis in HCT

- pneumocystis jiroveci (carinii):
- herpes viral infections:
- fungal infections: fluconazole or posaconazole

Preemptive treatment

PCR confirmation of CMV reactivation
 positive laboratory tests with no clinical signs

Empirical treatment due to clinical sings

- antibacterial: from diagnosis of FN / sepsis
 antifungal: Day 5-7 in persistent fever/signs
- Treatment of proved infection

co-trimoxazole

aciclovir

Invasive Fungal Infections, IFIs

Invasive Fungal Disease IFD

Possible IFD

□ host factors and clinical signs (without mycological evidence)

Probable IFD

host factors identifying the patient at risk

- clinical signs/symptoms consistent with IFD halo sign/air-crescent sign/cavity on pulmonary HRCT scan
- mycological evidence

culture or microscopic analysis

indirect tests: antigen detection (galactomannan, glucan)

Proven IFD

- histological analysis
- $\hfill\square$ culture of a tissue specimen from the site of disease

Oropharyngeal mucositis in HCT

presentation and treatment

Symptoms/signs: mouth pain, stomatitis, mucosal ulceration, dysphagia, salivation, acumulation of mucus, aspiration

Pain management

- opioids, continuously
- □ NSAIDs, short infusions (prior to meals), around the clock

Rinses of the mouth

- benzydamin (locally acting NSAID)
- antiseptics (chlorhexidine, povidon iodine)
- calcium phosphate precipitating formulation

Nutritional support

- ONS for sipping
- parenteral nutrition

Gastrointestinal mucositis in HCT

presentation and treatment

Symptoms/signs: diarrhea, flatulence, abdominal pain, crampi, nausea, vomiting

Treatment of diarrhea

- Ioperamide, diphenoxylate
- octreotide (somatostatin analgue)
- fidaxomycin in Clostridium difficile infection

Pain management

peripheral analgetics, spasmolytics
 opioids

Nutritional support

total parenteral nutrition

The End

