MUNI MED

Drug Interactions

Alena Máchalová

Agenda

- Drug interactions (DDI) terminology
- Pharmacokinetic DDI examples
 - Absorption
 - Distribution
 - Metabolism
 - Elimination
- Pharmacodynamic DDI examples
- Pharmaceutical DDI examples
- Drug interactions with food, beverages, herbs
- Recommendation

Definitions and Terms

Drug Interactions: "The pharmacologic or clinical response to the administration of a drug combination different from that anticipated from the known effects of the two agents when given alone "

Positive?

Negative?

Clinically significant

Definition of drug-drug interaction

Interactions of two or more different drugs that affect the action and effects of at least one of them

– One-sided

- combination of levodopa and carbidopa
 combination of 5-fluorouracil and leucovorin
- combination of glucocorticoids and setrons

– Double-sided

4

- combination of sulfamethoxazole and trimethoprim

Definition of drug-drug interaction

- Antagonism is the opposite effect of two or more drugs administered (NSAIDs and ACEIs, methotrexate and leucovorin, heparine and protamine)
- Receptor antagonism naloxone with fentanyl
- Synergism The effects are magnified many times over (opioids and benzodiazepines, sulfamethoxazole with trimethoprim, amoxiciline and gentamicine)
- Addition the resulting effect corresponds to the sum of the effects of both substances (summation) (amoxicillin and clavulanic acid)
- Potentiation one drug has an effect, the other one not, but enhances effect of the first one (probenecid + penicillin).
- 5 Drug interactions / Department of Pharmacology

Drug interactions

Drug interactions

MUN MED

Why are the drug interactions so important?

- The side effects of the drugs are 4.-6. the most common cause of death (analysis of national registers of ARs, Lazaru J., JAMA, 1998)
- Two-thirds of side effects are caused by drug interactions (US National Register Analysis, Philips KA, JAMA, 2001)
- Behind most serious interactions is the background of polymorphism in the metabolism of several dozen
 "problematic" drugs (analysis of serious emergencies, McNamara, Circulation, 2001)
- The risk of drug interactions increases with the number of drugs
- Frequent polypharmacy in gerontological practice

The risk of polypharmacy

Polypharmacy - unjustified and irrational overuse of pharmacotherapy
 Drugs with a narrow therapeutic index and therapeutic range. Drugs
 that are metabolised via CYP3A4

9

Cresswell, Kathrin & Fernando, Bernard & Mckinstry, Brian & Sheikh, Aziz. (2007). Adverse drug event in the elderly. British medical bulletin. 83. 259-74. 10.1093/bmb/ldm016.

Classifying drug interactions

	Risk rating	Description	Action
Non-relevant	A	Data have not demonstrated either pharmacodynamic or pharmacokinetic interactions between the specified agents	No interaction
Minor	В	Data demonstrate that the specific agents may interact which each other, but there is little to no evidence of clinical concern resulting from their concomitant use	No action needed
Moderate (use with caution)	С	Data demonstrate that the specific agents may interact which each other in a clinically significant manner. The benefits of concomitant use of these two medications usually outweigh the risk	Monitor therapy
Major (should be avoided)	D	A patient-specific assessment must be conducted to determine whether the benefits of concomitant therapy outweigh the risks	Modify regimen
Contraindicated (prohibited)	x	The risks associated with concomitant use of these agents usually outweigh the benefits	Avoid combination

Significance of drug interactions

- **Desirable** (beneficial for the patient) drug combination

potentiating drug effect and decreasing the toxicity

combination of:
 cytostatics
 analgesics
 antihypertensives
 ATBs
 drugs for asthma...

Significance of drug interactions

Desirable (beneficial for the patient) combination of the active substance
 suppressing/inhibiting the effect of
 another drug in the treatment of
 intoxication/poisoning organism

12 Drug interactions / Department of Pharmacology

ANTIDOTES

Coumadin	Vitamin K
Benzodiazepines	Romazicon (Flumazenil)
Magnesium Sulfate	Calcium Gluconate
Heparin	
Tylenol	Mucomyst
OpiatesNarcotic analge	sics, heroin morphine, Narcan
Cholinergic Meds	tropine, pralidoxime (2-PAM)
Digoxin	Digiband
Acetaminophen	n-Acetylcysteine
Iron	Deferoxamine
Alcohol Withdrawal	Librium
Anticholinergics	Physostigmine
Beta Blockers	Glucagon
Methotrexate	Leucovorin
Anticoagulants	
Aspirin	Sodium bicarbonate
ССВ	Calcium, glucagon, insulin
CyanideTydroxyc	obalamin, sodium thiosulfate
Hydrofluoric acid	Calcium Gluconate
Insulin	Glucose
Isoniazid	Deferoxamine
Methanol	Ethanol
Ethylene glycol	Fomepizole, ethanol
Methemoglobin	Methylene blue
Tricyclic antidepressa	ntSodium bicarbonate

Significance of drug interactions

- Undesirable (for the patient harmful, potentially dangerous)
- This may result in:
 - increase or decrease (loss) effect
 - increasing or reducing the incidence of side effects
 - other changes in effect
 - injury or even death

Always evaluate clinical significance

2. Pharmacokinetic DDIs

Pharmacokinetic interactions - Absorption

- 1. altered pH
- 2. altered bacterial flora
- 3. formation of drug chelates or complexes
- 4. drug induced mucosal damage
- 5. altered GIT motility

1. Altered pH

 The non-ionized form of a drug is more lipid soluble and more readily absorbed from GIT than the ionized form does.

1765-1771.

¹⁶ Drug interactions / Department of Pharmacology

2. Altered intestinal bacterial flora

– 40 % or more of the administered digoxin dose is under physiological conditions metabolized by the intestinal flora. Antibiotics kill a large number of the normal flora of the intestine

Increase digoxin concentration and increase its toxicity

MUNI VED

3. Formation of drug chelates or complexes

DDIs Can Occur in the GI Tract

- Sucralfate, some milk products, antacids, and oral iron preparations
- Medical coal (charcoal) •
- Didanosine (given as a buffered • tablet)
- Cholestyramine

Drug interactions / Department of Pharmacology 18

Binds raloxifene, thyroid hormone, and digoxin

Block absorption of quinolones, tetracycline, and azithromycin

Reduces ketoconazole absorption

Reduces absorption of p.o. drugs

(e.g. Metoprolole, delavirdine...)

Complexation or chelation

 Tetracyclines, Quinolones interact with iron, calcium, magnesium, aluminium preparations (antacid - aluminum or magnesium hydroxide)

4. Drug-induced mucosal damage

Antineoplastic agents cyclophosphamide, vincristine, procarbazin

5. Altered motility

Increased motility (diarrhea)

Prokinetic drugs - metoclopramide,
 domperidone, itopride

Decreased motility (ileus, constipation)

• Opioids, diphenoxylate, loperamide

Increase in AUC of drugs, toxicity

Pharmacokinetic interactions - Distribution

The major plasma proteins to which most drugs bind are albumin - typically binds acidic, anionic drugs a1-acid glycoprotein - typically favors basic drugs

Competitive protein binding by another drug will result in increase **concentration of free drug**, and that will yield more drug response

Maximum Fraction Bound in Plasma	Fraction of Total Drug Bound in	Maximum Possible Increase in Pharmacodynamic Effect Due to Complete Binding		
(B _{max})	the Body	Displacement		
50%	10%	10%		
90%	49.6%	~ two-fold		
99%	91.5%	~ 12-fold		

Displaced protein binding

Depends on the affinity of the drug to plasma protein. The most likely bound drugs are capable to displace others. It is clinically important if displaced drug is highly PP binding, with LONG T ¹/₂, small Vd, narrow therapeutic range.

- Aspirin, Phenylbutazone, Clofibrate displace:

Table

Examples of medications that are >90% protein-bound (not inclusive)

Category	Medication(s)
Antibiotics	Ceftriaxone, doxycycline, ertapenem
Antidepressants	Duloxetine, fluoxetine, nortriptyline, sertraline
Antipsychotics	Chlorpromazine, clozapine, haloperidol
Anxiolytics	Chlordiazepoxide, diazepam, lorazepam
Cardiac	Amiodarone, bumetanide, furosemide, nicardipine, verapamil, warfarin
Chemotherapy	Paclitaxel, tamoxifen
Diabetes	Glipizide
Pain	Bupivacaine, buprenorphine, ibuprofen
Seizure	Phenytoin, valproic acid
Source: Reference 1	

Distribution

- glycoprotein P - most important - works in tandem with CYP3A4

(mutual substrates, inductors and inhibitors)

reduced activity of P-gp (present in a quarter of the population)

Increased absorption of drugs

 OATP (organic anion transport protein) significant system ensuring the transfer of org. anions - risk of inhibition or competition or induction

Distribution

Useful mnemonics:

P glycoprotein

Increase Quantitative Absorption Very Effectively

- Itraconazole
- Quinidine
- Amiodarone
- Verapamil most potent Pg inhibitor
- Erythromycin

MUNE MED

Distribution of drugs in relation to P-glycoprotein

ubstrate	Inhibitors	Inducers
closporine	Amiloride	Aspirin
Dipyridamole	Amiodarone	Cyclosporine
Digoxin	Atorvastatin	Paclitaxel
Diltiazem	Carvedilol	Reserpine
Losartan	Cyclosporine	
Quinidine	Digoxin	
Tacrolimus	Diltiazem	
	Dipyridamole	
	Doxazosin	
	Felodipine	
	Lidocaine	
	Lovastatin	
	Nifedipine	
	Propafenone	
	Propranolol	
	Quinidine	
	Simvastatin	
	Spiroanlactone	
	Verapmil	

27 Drug interactions / Depart

MUNI MED

Influence of enterohepatic recirculation

Copyre 9 The Modeward Copprese. Inc. Remeasure reported the restration of a dataset.	
Small intestine	
interactions / Department of Pharmacology	

28 Drug

Effect of Interruption of Enterohepatic Cycling on Drug Elimination		
Condition	Half-life	
Digitoxin	6 days	
Digitoxin + cholestyramine	4.5 days	
Dapsone	20.5 hr	
Dapsone + charcoal	10.8 hr	

EXAMPLES OF XENOBIOTICS EXCRETED INTO BILE AND SUBJECT TO ENTEROHEPATIC RECIRCULATION

Species in bile
unknown
conjugates
glucuronide
glucuronide
conjugates
metabolites
parent and desmethyl

Pharmacokinetic interactions - Metabolism

- The effect of one drug on the metabolism of the other is well documented. The liver is the major site of drug metabolism but other organs can also do e.g., WBC, skin, lung, and GIT.
- CYP450 family is the major metabolizing enzyme in phase I (oxidation process). Therefore, the effect of drugs on the rate of metabolism of others can involve the following examples

CYP P450

 a key enzyme in the metabolism of xenobiotics mainly responsible for Phase I biotransformation processes occurring in the liver, lungs, kidneys, brain, skin, small intestine and other organs

MUN

MFĪ

Polymorphism of enzymes

- **slow** metabolizer all defective alleles
- medium metabolizer an intact allele
- rapid metabolizer all intact allele (wild type)
- ultrarapid metabolizer multiplication of a gene or a higher enzyme activity

 It may take seconds up to weeks in case of enzyme induction (weeks for protein synthesis), while enzyme inhibition occurs rapidly.

ΜE

Basic mechanisms - inhibition

Mnemonics

Barb's: PheNOBarbitol Funny: Phenytoin Mom: Modafinil

Refuses: Rifampin Greasy: Griseofulvin Carb: Carbamazepine Shakes: St. John's wort Liver P450 INDUCERS

P450 Inhibitors

SICKFACES.COM Group

Sodium valproate Isoniazid Cimetidine Ketoconazole Fluconazole Alcohol..binge drinking Chloramphenicol Erythromycin Sulfonamides Ciprofloxacin Omeprazole Metronidazole Grapefruit juice

P450 Inducers

CRAP GPS induce me to madness!!

Carbemazepines Rifampicin Alcohol (chronic) Phenytoin

Griseofulvin Phenobarbitone Sulphonylureas

CYP450 inducers

BullShit CRAP GPS induces my rage!

Barbituates St. John's wort Carbamazepine Rifampin Alcohol (chronic) Phenytoin Griseofulvin Phenobarbital Sulfonylureas

CYP450 inhibitors

VICK'S FACE All Over GQ stops ladies in their tracks. Valproate Isoniazid Cimetidine Ketoconazole Sulfonamides Fluconazole Alcohol (acute) Chloramphenicol Erythromycin (macrolides) Amiodarone Omeprazole Grapefruit juice Quinidine

MED

		Enzyme	Becomes active at	Substrates	Inhibitors	Inducers
		CYP 1A2	1–3 months	Caffeine	Ciprofloxacin	Tobacco
				Paracetamol		Insulin
						Omeprazole
		CYP 2D6	Hours, days	Amphetamines	Cocaine	Phenobarbitone
	T			Codeine	Methadone	Phenytoin
Lliah				Flecainide	Ranitidine	
High				Lignocaine		
interindividual				Metoclopramide		
variability		CYP 2C9	First weeks	Ibuprofen	Fluconazole	Rifampicin
				Phenytoin	Sulfamethoxazole	
		CYP 2C19	First weeks	Omeprazole	Omeprazole	Carbamazepine
				Phenytoin	Indomethacin	Prednisone
				Indomethacin		
		CYP 3A4	First weeks	Steroids	Fluconazole	Phenobarbitone
				Clarithromycin	Grapefruit Juice	Phenytoin
				Midazolam		
35 Drug interactions / Department of Pharmacology		CYP 2E1	Hours	Ethanol	disulfiram	Ethanol
				Paracetamol		Isoniazid

Elimination

- glomerular filtration has only a limited effect on protein-bound substances
- active tubular secretion active transport of strong acids and bases in the proximal tubule
- passive tubular resorption is possible only for non-ionized forms
- competition reduction of the capacity for excretion of drugs eliminated exclusively by the kidneys
- urine pH alcalinisation / acidification

Hepatic clearance - Enterohepatic recirculation Elimination by lungs, breast milk, sweat...

Elimination

Example:

co-administering methotrexate and

nonsteroidal anti-inflammatory drugs (NSAIDs), probenecid (Probalan, generics), penicillins, proton pump

inhibitors, vitamin C, sulfa, and some other antibiotics

Toxicity (nausea, vomiting, diarrhea, mucositis, stomatitis, esophagitis, elevated hepatic enzymes, renal failure, rash, myelosuppression (leukopenia, pancytopenia, thrombocytopenia), acute lung injury, tachycardia, hypotension, and neurologic dysfunction (depression, headache, seizures, motor dysfunction, stroke-like symptoms, encephalopathy, coma)

Why?

Renal excretion is the major route of elimination for methotrexate (\sim 80%); the drug being actively secreted in the renal tubule by the general organic acid transport system. The renal clearance of methotrexate is decreased by the co- administration of (organic) acids.

Solution?

With high dose methotrexate, routine administration of fluid and/or bicarbonate is recommended to prevent intratubular precipitation of the drug.

The renal clearance of methotrexate is correlated with endogenous creatinine clearance which may provide a guideline to dosage adjustments according to renal function and age.

	Pharmacokinetic property	Example changes with age	Drug effects	Example pharmacodynamic complication
Summary of PK		Decreased gastric blood flow		Chronic salicylate toxicity (aspirin
DDIs	Absorption	Decreased gastric acid secretion, increased gastric pH	Decreased bioavailability	requires acidic gastric pH; decreased absorption may lead
		Prolonged gastric emptying (e.g. due to anticholinergic drugs)		to delayed drug accumulation with daily dosing)
		Decreased muscle mass	Volume of distribution (Vd) of	Benzodiazepine accumulation in
	Distribution	Increased body fat	fat-soluble drugs increases; Vd of water-soluble drugs	tissues with chronic use (fat-soluble); increased bleeding
		Decreased protein binding	decreases; increased free (non-protein bound) drug levels	with warfarin use (highly protein bound)
		Decreased hepatic mass	Decreased clearance of drugs that undergo	
	Metabolism	Decreased hepatic blood flow	considerable first- pass metabolism	Beta blocker toxicity (e.g. metoprolol, propranolol)
		Reduced cytochrome P450 enzyme activity	(leading to increased bioavailability)	PP
		Decreased renal blood flow		Dispyin toxisity
emDOCs.net – Emergency Medicine EducationCommon ED	Excretion	Decreased glomerular filtration rate (GFR)	Reduced drug clearance	Digoxin toxicity (narrow therapeutic index, primarily
<u>Medication Errors: Polypharmacy - emDOCs.net -</u> Emergency Medicine Education		Decreased tubular secretion		renally excreted)

38 Drug interactions / Department of Pharmacology

MUNI Med

Pharmacodynamics drug interactions

alteration of the drug action without change in its serum concentration by pharmacokinetic factors.

Additive effect : 1 + 1 = 2Synergistic effect : 1 + 1 > 2Potentiation effect : 1 + 0 = 2Antagonism : 1 - 1 = 0

Receptor antagonism

Opioids x naloxone

BDZ x flumazenil

Tubocurarium x neostygmine

Agonists and Antagonists

Opposing or antagonistic interactions

Drug affected	Interacting drugs	Results of interaction
Anticoagulants	Vitamin K	Anticoagulant effects opposed
Carbenoxolone	Spironolactone	Ulcer-healing effects opposed
Hypoglycaemic agents	Glucocorticoids	Hypoglycaemic effects opposed
Hypnotic drugs	Caffeine	Hypnosis opposed
Levodopa	Antipsychotics (those with Parkinsonian side effects)	Antiparkinsonian effects opposed

Pharmacodynamics drug interactions

Drugs	Result of interaction
parkinsonian agents, butyrophenones,	Increased anticholinergic effects; heat stroke in hot and humid conditions; adynamic ileus; toxic psychoses
Antihypertensives + drugs causing hypotension	Increased antihypertensive effects; orthostasis
emetics, antihistamines, hypnosedatives, etc.)	Impaired psychomotor skills, reduced alertness, drowsiness, stupor, respiratory depression, coma, death
	Additive prolongation of QT interval, increased risk of torsade de pointes
Methotrexate + co-trimoxazole	Bone marrow megaloblastosis due to folic acid antagonism
Nephrotoxic drugs + nephrotoxic drugs (genta- micin or tobramycin with cefalotin (cephalothin)	Increased nephrotoxicity
neuromuscular blocking effects (e.g.	Increased neuromuscular blockade; delayed recovery, prolonged apnoea
a ^{re} fores/Department of Planmanology potassium-sparing diuretics (triamterene)	Marked hyperkalaemia

Important Drug Interactions in the Elderly

		Example	Mechanism of action	Outcome
	Drug–drug, PK	Gatifloxacin+calcium and antacid	Decrease in absorption of gatifloxacin	Treatment failure ²⁶
		Ciprofloxacin+olanzapine	Ciprofloxacin inhibits CYP1A2 leading to an increase in Cp of olanzapine	Rigidity, falls
	Drug-drug, PD	Ciprofloxacin+glibenclamide	Synergy (hypoglycaemic effect)	Profound hypoglycaemia ²⁷
		Anticholinergic drug+donepezil	Antagonism	Decreased effect of donepezil
	Drug-nutritional status	Low albumin+phenytoin	Increase in free phenytoin concentration	Confusion, somnolence, ataxia ²⁸
	Drug-herbal product	Gingko+aspirin	Decrease in platelet function and adhesion	Increased risk of bleeding ²⁹
	Drug-alcohol	Alcohol+chronic use of bromazepam	Synergy	Increased risk of falls
Louise Mallet, Anne Spinewine, Allen Huang, The challenge of managing drug interactions in elderly people, The Lancet, Volume 370, Issue 9582, 2007	Drug–disease or drug–patient	Metoclopramide for gastric dysmotility in a patient with Parkinson's disease	Increase in dopamine receptor blockade	Worsening Parkinson's disease ³⁰
44 Drug interactions / Department of	of Pharmacology	ation. CYP=cytochrome P450. PD	=pharmacodynamic. PK=pharmacok	inetic.

Penicillins

Do not administer concomitantly with other **penicillins**

Digoxin - is metabolized by the intestinal microflora - TDM

Oral contraceptives - inform about the use of other contraceptive methods

Metronidazole

Alcohol - disulfiram reaction

Warfarin - risk of bleeding, INR

control, dose adjustment

Lithium - toxicity, do not

administer simultaneously

Clarithromycine

Theophylline - risk of TDM toxicity, dose adjustment

Carbamazepine - choice of another ATB

Digoxin - TDM, dose adjustment

Cyclosporine - TDM, dose adjustment

Statins - choice of another ATB or replacement with lovastatin, pravastatin

Oral contraceptives - informing about the use of other contraceptives

Warfarin - risk of bleeding

Midazolam - increased sedation

Fluoroquinolones

Antacids, minerals - ↓ absorption of ATB, do not administer together

Caffeine - ↑ toxicity of caffeine

Clindamycine

Azole antifungals

Neuromuscular blockers

prolongation of their effect, toxicity

Acetylsalicylic acid and NSAIDs Warfarin - increased risk of bleeding

ACE inhibitors, beta-blockers, sartans - reduction of antihypertensive effect

Furosemide - reduction of diuretic effect

Paracetamol

Alcohol

Phenytoin, carbamazepine,

isoniazid - increased risk of

hepatotoxicity

- St. John's wort X immunosuppresants (tacrolimus, sirolimus, cyclosporine)
- Tyramine X MAOI
- Grapefruit juice X statins

Drugs – food interactions

Common Food-Drug Interactions

	Food	Drug	What happens?
	Kale, broccoli (vitamin K)	blood thinners such as warfarin	Foods that are rich in vitamin K can reduce the effectiveness of blood thinners.
-	Grapefruit	statins such as atorvastatin, lovastatin, simvastatin	Grapefruit can increase statin levels in your body, thereby increasing statin-related side effects.
S	Bananas (potassium)	ACE inhibitors such as captopril, enalapril and lisinopril	ACE inhibitors increase potassium in your body. Too much potassium can cause an irregular heartbeat and heart palpitations.
00	Walnuts, soybean flour (high fiber)	thyroid medications such as levothyroxine	High-fiber foods can prevent the body from absorbing thyroid medications.
17	Dairy products (calcium)	quinolone antibiotics such as ciprofloxacin and levofloxacin	Calcium reduces the level of these antibiotics in your blood. Avoid eating dairy and calcium- fortified products alone.
	Salami, aged cheese (tyramine)	oxazolidinone antibiotics (such as linezolid) and MAOI-type antidepressants (such as phenelzine)	Eating a tyramine-rich diet while taking certain meds can cause a sudden, dangerous increase in blood pressure.

50 Drug interactions / Department of Pharmacology

www.nolnet.org www.fda.gov/drugs MUNI

MED

Drugs – food interactions

Drug-Food interactions

- A drug-food interaction happens when the food you eat affects the ingredients in a medicine you are taking so the medicine cannot work the way it should.
- Bisphosphonates+ Any drug Reduced effectiveness of drug' E. Inhabit enzymes involved in drug Benzodiazepines + grapefruit 2 metabolism Digoxin + Oatmeal Decreased adsorption of drug 3 Aspirin + Milk Upset stomach 4 Acetaminophen + Alcohol Liver damage 5. MAO Inhibitors + food(tyramine) Severe headache fi. Tetracycline's + calcium food Reduced absorption of drug 7 Warfarin + Vitamin K Reduced effect of drug 8 Celecoxib + Milk Upset stomach 4 Naproxen + fatty food Upset stomach Oxycodon + Alcohol Coma, asthma
- 12. Caffeine + food Rapid heart beat

51 Drug interactions / Department of Pharmacology

MUNI MED

Pharmaceutical drug interactions

Incompatibility

Administration of aminoglycosides and beta-lactams meeting in one of the lumens -

inactivation of the free -NH2 in the free aminoglycosides and -COOH in beta-lactams

 Amiodarone diluted in 5% glucose solution meets Norepinephrine reconstituted in saline solution - precipitation of amiodarone

dilute NE in 5% glucose solution

do not mix in one fluid, split the route of administration, do not give in at the same time

- Octreotide meets in one lumen with parenteral nutrition, octreotide is inactivated

separate pathways for parenteral nutrition and octreotide

										V	D	ſU	g	С	O ľ	m	Sa	ti	bi	lit	y	С	ha	art	t									
	Acyclovir	Adrenaline	Amiodarone	Amphotericin B	Azithromycin	Calcium Gluconate	Cefepime	Cefuroxime	Dopamine	Fentanyl	Fluconazole	Furosemide	Heparin	Imipenem-Cilastatin	Insulin	Lidocaine	Linezolid	Magnesium Sulfate	Mannitol	Meropenem	Methyl Prednisolone	Metoclopramide	Midazolam	Morphine	Noradrenaline	Ondansetron	Pantoprazole	Phenytoin	Piperacillin - Tazobactum	Potassium Chloride	Sodium Bicarbonate	Vancomycin	Vasopressin	Vecuronium
Acyclovir				С			1	С	1		С		С	С			С	С		1	С	С		1		1	1		1	С	С	С		
Adrenaline			С			С			С	С		С	С										С	С	С		С		_	С	1		С	0
Amiodarone		С		С		С		С	С	С	С	1	1	1	С	С		1			С		С	С	С				1	С	1	С	С	. (
Amphotericin B	С		С			1	1		1	С	1	С	1	1		1	1	1	С	1	С	1	1	1		1	T	I.	1	1	1	1		
Azithromycin								1		1		1		1										1		С			1	1				Г
Calcium Gluconate		С	С	1			С				1		С				С			1			С			j.	1		С	С				
Cefepime	1			1		С			1		С	С		С	C			1	1		С	1	1	1		1		1	С		С	1		
Cefuroxime	С	-	С		1						1						С						1	С	1	С	1					1	-	(
Dopamine	1	С	С	1			1			С	С	1	С		1	С	С				C		С	С	С	С	С	_	С	С			С	(
Fentanyl		С	С	С	1				С			С	С				С					C	С	С	C			1		С				(
Fluconazole	С		С	1		1	С	1	С			1	С	1			С			С		С	С	С		С		С	С			С	С	1
Furosemide		С	1	С	1		С		1	С	1		С				С			C		1	1	1	C	1	С		С	С			1	
Heparin	С	С	1	1		С			С	С	С	С			С	С	С	С		С	С	С	С	С	С	С		1	С	С	С	1	С	
Imipenem-Cilastatin	C		1	1	1		С								С		С						1			C					1		С	Г
Insulin			С				C		I.				С	С				С		С			С	С	I.		С			С	C	С	С	
Lidocaine			С	1					С				С	-			С							С						С			С	
Linezolid	С			1		С		С	С	С	С	С	С	С		С		С	С	С	С	С	С	С		С		1	С	С	C	С	С	(
Magnesium Sulfate	С		1	1			1						С		С		С							С		С			С	С		С		
Mannitol				С			1										С									C	1		C	1				
Meropenem	1			1		1					С	C	C		C		C					С		С	С	1	1			С	·	С	С	
Methyl Prednisolone	С		С	С			С		C				1				С						С	С		1			С	1	C			
Metoclopramide	С			1			1			С	С	1	С				С			С				С		С			C					Γ
Midazolam		С	С	1		С	1	1	С	С	C	1	С	1	C		С				С			С	С		11			С	1	С		(
Morphine		С	С	1	1		1	С	С	С	С	1	С		C	С	С	С		С	С	C	С		C	С	С	1	С	С	С	С		(
Noradrenaline		С	С						С	С		С	С		I.					С			С	С			1			С			С	(
Ondansetron	1			1	1		1	С	С		С	1	С	С			С	С	С	1	1.	С		С					С	С	1	С		
Pantoprazole		С							C			С			С				1				1	С	1					С			С	Г
Phenytoin				1			1			1	С		1				1							1						NI.			1	
Piperacillin - Tazobactum			1		1	C	C		С		C	С	С				С	C	С		С	С		С		С				С	С	1	С	
Potassium Chloride	С	С	С	1	1	С			С	С		С	С		С	С	С	С		С	1		С	С	C	С	С	1	С		С	-		
Sodium Bicarbonate	С		1	1			С						С	1	С		С				С		1	С		1			С	С		С	С	Г
Vancomycin 54 Drug interactions / Vasopressin	De	par	me	nt'o	f Pr	arm	acc	log;	С		C C		l C	С	C C	С	C C	С		C C			C	С	С	С	С		l C		C C			4
Vecuronium		c	c			+	-	С	c	С	C		č				C						С	С	c	_		. MC				С		-

-

C Compatible Drugs
I Incompatible Drugs
No Information Available

Note:

This table can be used for Y-site compatibility at the usual manufacturer's concentration. This table gives information for two drug combinations only. If any drug combination is found to be incompatible then, administer through different IV access site or clarify with the clinical pharmacist.

www.ijccm.org

Things to remember

- ✓ Interactions are easily forgotten when prescribing
- ✓ Interactions are difficult to remember
- ✓ PD interactions can often be predicted across drug classes
- ✓ PK often cannot be predicted experiments needed
- ✓ Many interactions probably remain undescribed
- The chances of interaction are 60 times higher in a patient taking 5 drugs than in a patient taking 2

References:

- SmPCs Stockley's Drug Interactions -
- Micromedex https://pubmed.ncbi.nlm.nih.gov/ –
- https://www.drugs.com/drug_interactions.html –
- https://www.webmd.com/interaction-checker/default.htm -
- https://reference.medscape.com/drug-interactionchecker -
- www.arizonacert.org (drug interactions) -
- www.drug-interactions.com (P450-mediated drug interactions) -
- http://www.drugwatch.com/drug-interactions/ -
- http://www.uspharmacist.com -
- www.QTdrugs.org (drug-induced arrhythmia) -
- www.C-Path.org (drug development
- 56 Drug interactions / Department of Pharmacology

MUNI MED

Thanks for your attention

