Overview

Two-thirds of earth's surface covered with water, more so for island countries

Ocean energy can be harnessed as

- Mechanical (waves, tides and currents)
- Chemical (salinity gradients, biomass)
- Thermal (temperature gradients)

Wave Power

• The power in the waves, P is given as

P = (ρ g² H² T) / 32 π H = amplitude of the waves, T = period

P is directly proportional to H and T.

Tidal Power

Tides due to gravitational field due to sun and moon.

For semi-diurnal tidal regime

 $E = 7.09 \ A \ r^2$

E = gross energy production (TJ) A = area of the basin (km²) r = average tidal range (m)

OTEC

- OTEC system is essentially a heat engine operating between the 'cold' temperature T_c of the water at some substantial depth, and the hot temperature T_h of the surface water.
- Temperature difference of 20°C between warm, solar absorbing surface water and cooler 'bottom' water can occur.

There are 3 types of OTEC systems:

- 1. Closed cycle this uses working fluid such as ammonia which is pumped a closed loop.
- 2. Open cycle uses warm sea water as the working fluid.
- Hybrid uses both closed and open cycle system, produces electricity and desalinated water.

- Surface Seawater around 25 degrees
- Bottom seawater around 4 degrees

Rankine Cycle

Require a gas that boils at about 20 degrees

Principle of Ocean Thermal Energy Conversion (OTEC)

$$\eta = \frac{T_H - T_C}{T_H} \times 100$$

Problem

- As the temperature difference between the hot end and cold end gets smaller, the efficiency decreases
- Diesel engine $\Delta T = 500$ degrees
- OTEC $\Delta T = 20$ degrees
- Diesel Engine Efficiency is about 25%
- OTEC Efficiency is at most 7%
- Submarine Cable
- Moorings
- Extreme environment (Salt Water)

ELECTRICITY

Figure 1. Schematic of a closed-cycle ocean thermal energy conversion (OTEC) system.

Consider 1000 MWatt plant

- Assume 3% efficiency
- Require 1000 cubic meters/sec flow rate
- Pipe of radius of 10 m with flow rate of 3 m/s
- Approximately the same flow rate as the Tully River in moderate flood
- Energy loss is relatively small as pumping head is equivalent about 6 m. Perhaps 60 MW