3 Strahler, Strahler: Introducing Physical Geography, 4th Edition - Student Companion Site - Microsoft Internet Explorer Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda Q Zpět - Q \jt\ g] fJjI^P Hledat ^Oblíbené <*) 0~ ^ G T □ Adresa £lfcené 0^ 6 ' □ £1 & Adresa |^/) htrp://wwv\:riey.com/college/5riahler/W^ v 0 Přejít Odkazy }> The History of the Energy Balance Model Outer space The energy balance model was developed separately by two different scientists within just a few months of each other. In 1969, M. I. Budyko a Russian, demonstrated a simple climate model based on the principles of the Earth's energy balance. Around the same time, W. D. Sellers, a US scientist, published a paper outlining his model based on the same principles. These two scientists had not collaborated on their models, and indeed this happened during the Cold War when there was little in the way of communication between the Soviet Union (USSR) and the USA. Their models also depended on the rudimentary and cumbersome computers of the era. Today these models are often referred to as Budyko-Sellers models, and although there are many more complex and realistic models, the energy balance model is a useful tool to teach us about the Earth's climate. d Back Continue J Help j Hotovo Internet ä Energy Balance Model Interactivity. - Microsoft Internet Explorer EME Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda r* QZP* '0 H \Ě ft |P Hledat S^Oblfoené ^ 0'^ g ' Q jj ti Adresa iE?] http://*11*11*1, wiley. com/college/strahler/ti47166969 5/interactivities/flash/eartti_sun/eartti_sun, htm v Q Přejít Odkazy H d Energy Balance Model ■ Terms to understand Roll over the terms to view their definitions. Schematic diagram of the energy balance model (j Help ) Š] Hotovo 'S Energy Balance Model Interactivity. - Microsoft Internet Explorer 0©® Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda 1 JE 'w Z * ' 0 @ [£) 4l pHleto S^Cbítané ^ &' & & 'JI 1 -'4 Adresa ^ http://www,'Ailey.com/college/strahler/0471669695/intEractivities/flash/earth v Q přejít Odkazy IJ ±1 Energy Balance Model - How the model is used The model generates temperatures and albedos for 9 latitude zones from the equator to the pole. You can choose different simulations to see the effect of changing certain variables. For example, the simulation you can see here shows what happens if we increase the solar constant from today's average on Earth (taken to have a value of 1.0) to 2.58 which is what it would be at the location of the planet Mercury. Each graph also shows the albedos of the surface. 0.6 is the "norm" for the simulation although that can be changed. The "norm" for the land surface is 0.3, although that too can be changed and represents the global average." When you look at these simulations, ask yourself the following questions: 1. How do temperatures compare to the normal? 2. How do changes at the equator differ from those at the pole? 3. How have the albedos changed? 70° 60° 50° 40° 30° 20° Latitude o° Start model experiments , Help vi Hotovo "SJŤ Strahler [Režim kômp,,. Dokument! - Microsof,,. -^j Strahler,. Strahler: In ■^j Energy Balance Mode... Internet ■Ü Energy Balance Model Interactivity. - Microsoft Internet Explorer QBE Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda ŕ* & 0 S ĚI ái PHledat ^^Ifcené ^ 0^ g - Q | Adresa ^] http://ww^wiley,com/college/strahler/0471Ě^^ v Q Přejít Odkazy 1 The Energy Balance Model - Experiments u o O i— 15 -t—* CQ l_ O Cl h- 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° Latitude • Experiment 1: Cool Sun j>Experiment 2: Warming up the Earth (•Experiment 3: Land Surface Albedo • Experiment 4: The Goldilocks Planet? • Experiment 5: Areas of Ice and Snow (•Experiment 6: Heat Transport (♦Experiment 7: Ice Albedo • Experiment 8: Ice Formation 'S Energy Balance Model Interactivity. - Microsoft Internet Explorer SE Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda 0 * - Ô - 0 \ě íi PHledat ůMh™ € 0- % & - □ 1 Adresa í^] http: //www, wiley, corn/college/strahler/047166969 5^nteractivities/flash/eartri_sun/earth_sun, htm v 3 Přejít Odkazy The Energy Balance Model Experiment 2: Warming up the Earth Imagine that the Earth was covered in ice from pole to equator. Change the albedos of all of the latitude zones to simulate ice coverage Choose a simulation to see what this may have looked like under these conditions with today's current solar luminosity. Solar Constant ■ 1.1 Solar Constant = 1.4 90° 80° 70° 60° 50° 40° 30° 20c 10° 0G Latitude Back_) View a s i mulati oi £ Help j ■H Energy Balance Model Interactivity. - Microsoft Internet Explorer 0® Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda Qzpet • ® ' [k| l*] 4 P Hledat S^Oblfoené 0 1% Adresa ^ http: //www, wiley. corn/college/stTahler/047166969 5/interactivities/flash/eartti_sun/earth_sun, htm v 0 přejít Odkazy The Energy Balance Model Experiment 3: Land Surface Albedo The albedo prescribed for the land surface in this model, where it is not covered by ice and snow is 0.3. Of course, this is an average and worldwide the albedos of different land surfaces vary a great deal. One area of the world where we see albedo change is on the margins of desert regions where, if vegetation is removed, we see a corresponding increase in the albedo. Take a look at these simulations to see what effects changing the albedo can have on our model. Start by increasing the albedo a little, then increase it over a larger area, 30 Ü □ O i— =s ca E h- 90° 80° 70° 60° 50° 40° 30° 20c 10° 0C Latitude Land surface albedo = 0.40 at latitude 20-40 degrees Land surface albedo = 0.35 at latitude 20-40 degrees Land surface albedo = 0,40 at latitude 20-30 degrees Land surface albedo = 0.35 at latitude 20-30 degrees ( Back j View a simulatio (| Help ^ Ü Energy Balance Model Interactivity, - Microsoft Internet Explorer BE Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda Qzper -00^ ý, pHledat S^Oblbené © ß' ^ G ' □ | 1 S Adresa ^) http://www, wiley.com/cüllege/strahler/04716S9S95/intEractivities/flash/earth_sun/earth_sun,htrn v Q Přejít Odk The Energy Balance Model Experiment 4: The Goldilocks Planet? One of the questions that arises from looking at changes in the Sun and their impact on the climate concerns the state of other planets in our solar system. Planets that are closer to the Sun receive more radiation than those further away. Click on the "Help" button to see the equivalent solar constants for the different planets in the solar system. View simulations from the the E.B.M. for some other planets to identify why the Earth is sometimes called "The Goldilocks Planet". Solar Constant at Venus =1.38 Solar Constant at Mars =0.66 Solar Constant at Jupiter =0.19 Solar Constant at Mercury =2.58 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° Latitude C Back View a simulator ( Help ^ 3 Energy Balance Model Interactivity. - Microsoft Internet Explorer f—][r? Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda ©zpět Adresa http: //www, wiley, corn/college/strahler/0-17166969 5/interactivities/flash/eartti_sun/earth_sun, htm v 3 Přejít Odkazy The Energy Balance Model Experiment 5: Areas of Ice and Snow As we have seen, ice and snow has a strong influence on the global albedo. The ice albedo feedback, which is a positive feedback, could potentially lead to a global glacier should the area of ice and snow become large enough. Examine simulations showing different areas covered by ice and snow. Consider when the feedback could trigger a global glaciation. 30 O o O i— => CO l_ ■3 Energy Balance Model Interactivity. - Microsoft Internet Explorer EM) Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda 0^ ' © ' @ [á] 4 p Hledat S^Oblbeně ^ 0'^ ^ 'JI ťsřč íSi] http: //www, wiley. corn/college/strahler/047166969 5/interactivities/flash/eartti_sun/earth_sun, htun H Přejít Odkazy The Energy Balance Model Experiment 6: Heat Transport Poleward heat transfer is driven by the imbalances in net radiation between the equator and the pole. By transferring heat polewards, this transfer prevents a much more extreme temperature gradient. The very simple term used to describe this feature is referred to as "k", the transport coefficient Take a look at some simulations to show what happens if we reduce the heat transport. Transport Coefficient K= 3.70 Transport Coefficient K= 3.30 90° 80° 70° 60° 50° 40° 30° 20c 10° 0C Latitude (j Back j View a sim r Help 3 'S Energy Balance Model Interactivity. - Microsoft Internet Explorer SE Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda 0 * - Ô - 0 \ě íi PHledat ůMh™ € 0- % & - □ 1 Adresa í^] http: //www, wiley, corn/college/strahler/047166969 5^nteractJvities/flash/eartri_sun/earth_sun, htm v 3 Přejít Odkazy The Energy Balance Model Experiment 7: Ice Albedo To this point, we have been running the model assuming that ice and snow covered areas have an albedo of 0-6. Ice and snow generally have a high albedo of anywhere between 40% for old snow to 80% for new, fresh snow. View some simulations here to identify the effect of changing the albedo of ice and snow. Albedo of the ice = 0.7 Albedo of the ice = 0.8 90° 80° 70° 60° 50° 40° 30° 20c 10° 0G Latitude Back_) View a s i mulati oi £ Help j '3 Energy Balance Model Interactivity. - Microsoft Internet Explorer Soubor Úpravy Zobrazit Oblíbené Nástroje Nápověda Qzpět Q B @ á) p Hledat ^Oblbené