EXAMPLE 1 Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
-4.0 & 4.0 \tag{16}\\
-1.6 & 1.2
\end{array}\right]
$$

Solution. The characteristic equation is the quadratic equation

$$
\operatorname{det}[\mathbf{A}-\lambda \mathbf{I}]=\left|\begin{array}{cc}
-4-\lambda & 4 \\
-1.6 & 1.2-\lambda
\end{array}\right|=\lambda^{2}+2.8 \lambda+1.6=0
$$

It has the solutions $\lambda_{1}=-2$ and $\lambda_{2}=-0.8$. These are the eigenvalues of \mathbf{A}.
Eigenvectors are obtained from (14*). For $\lambda=\lambda_{1}=-2$ we have from (14*)

$$
\begin{aligned}
(-4.0+2.0) x_{1}+4.0 x_{2} & =0 \\
-1.6 x_{1}+(1.2+2.0) x_{2} & =0
\end{aligned}
$$

A solution of the first equation is $x_{1}=2, x_{2}=1$. This also satisfies the second equation. (Why?). Hence an eigenvector of \mathbf{A} corresponding to $\lambda_{1}=-2.0$ is

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \tag{17}\\
1
\end{array}\right] . \quad \text { Similarly, } \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
1 \\
0.8
\end{array}\right]
$$

is an eigenvector of \mathbf{A} corresponding to $\lambda_{2}=-0.8$, as obtained from (14^{*}) with $\lambda=\lambda_{2}$. Verify this.

4.1 Systems of ODEs as Models

We first illustrate with a few typical examples that systems of ODEs can serve as models in various applications. We further show that a higher order ODE (with the highest derivative standing alone on one side) can be reduced to a first-order system. Both facts account for the practical importance of these systems.

EXAMPLE 1 Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The model will be a system of two first-order ODEs.
Tank T_{1} and T_{2} in Fig. 77 contain initially 100 gal of water each. In T_{1} the water is pure, whereas 150 lb of fertilizer are dissolved in T_{2}. By circulating liquid at a rate of $2 \mathrm{gal} / \mathrm{min}$ and stirring (to keep the mixture uniform) the amounts of fertilizer $y_{1}(t)$ in T_{1} and $y_{2}(t)$ in T_{2} change with time t. How long should we let the liquid circulate so that T_{1} will contain at least half as much fertilizer as there will be left in T_{2} ?

Solution. Step 1. Setting up the model. As for a single tank, the time rate of change $y_{1}^{\prime}(t)$ of $y_{1}(t)$ equals inflow minus outflow. Similarly for tank T_{2}. From Fig. 77 we see that

$$
\begin{aligned}
& y_{1}^{\prime}=\text { Inflow/min }- \text { Outflow/min }=\frac{2}{100} y_{2}-\frac{2}{100} y_{1} \\
& y_{2}^{\prime}=\text { Inflow/min }- \text { Outflow/min }=\frac{2}{100} y_{1}-\frac{2}{100} y_{2}
\end{aligned}
$$

(Tank $\left.T_{1}\right)$
(Tank T_{2}).

Hence the mathematical model of our mixture problem is the system of first-order ODEs

$$
\begin{align*}
& y_{1}^{\prime}=-0.02 y_{1}+0.02 y_{2} \tag{Tank}\\
& y_{2}^{\prime}=0.02 y_{1}-0.02 y_{2}
\end{align*}
$$

System of tanks

Fig. 77. Fertilizer content in Tanks T_{1} (lower curve) and T_{2}

As a vector equation with column vector $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ and matrix \mathbf{A} this becomes

$$
\mathbf{y}^{\prime}=\mathbf{A y}, \quad \text { where } \quad \mathbf{A}=\left[\begin{array}{rr}
-0.02 & 0.02 \\
0.02 & -0.02
\end{array}\right]
$$

Step 2. General solution. As for a single equation, we try an exponential function of t,

$$
\begin{equation*}
\mathbf{y}=\mathbf{x} e^{\lambda t} . \quad \text { Then } \quad \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}=\mathbf{A} \mathbf{x} e^{\lambda t} . \tag{1}
\end{equation*}
$$

Dividing the last equation $\lambda \mathbf{x} e^{\lambda t}=\mathbf{A} \mathbf{x} e^{\lambda t}$ by $e^{\lambda t}$ and interchanging the left and right sides, we obtain

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues and eigenvectors of \mathbf{A}. The eigenvalues are the solutions of the characteristic equation
(2) $\quad \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}-0.02-\lambda & 0.02 \\ 0.02 & -0.02-\lambda\end{array}\right|=(-0.02-\lambda)^{2}-0.02^{2}=\lambda(\lambda+0.04)=0$.

We see that $\lambda_{1}=0$ (which can very well happen-don't get mixed up-it is eigenvectors that must not be zero) and $\lambda_{2}=-0.04$. Eigenvectors are obtained from (14*) in Sec. 4.0 with $\lambda=0$ and $\lambda=-0.04$. For our present A this gives [we need only the first equation in (14*)]

$$
-0.02 x_{1}+0.02 x_{2}=0 \quad \text { and } \quad(-0.02+0.04) x_{1}+0.02 x_{2}=0
$$

respectively. Hence $x_{1}=x_{2}$ and $x_{1}=-x_{2}$, respectively, and we can take $x_{1}=x_{2}=1$ and $x_{1}=-x_{2}=1$. This gives two eigenvectors corresponding to $\lambda_{1}=0$ and $\lambda_{2}=-0.04$, respectively, namely,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{x}^{(2)}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs) we thus obtain a solution

$$
\mathbf{y}=c_{1} \mathbf{x}^{(1)} e^{\lambda_{1} t}+c_{2} \mathbf{x}^{(2)} e^{\lambda_{2} t}=c_{1}\left[\begin{array}{l}
1 \tag{3}\\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] e^{-0.04 t}
$$

where c_{1} and c_{2} are arbitrary constants. Later we shall call this a general solution.
Step 3. Use of initial conditions. The initial conditions are $y_{1}(0)=0$ (no fertilizer in tank T_{1}) and $y_{2}(0)=150$. From this and (3) with $t=0$ we obtain

$$
\mathbf{y}(0)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
c_{1}+c_{2} \\
c_{1}-c_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
150
\end{array}\right] .
$$

In components this is $c_{1}+c_{2}=0, c_{1}-c_{2}=150$. The solution is $c_{1}=75, c_{2}=-75$. This gives the answer

$$
\mathbf{y}=75 \mathbf{x}^{(1)}-75 \mathbf{x}^{(2)} e^{-0.04 t}=75\left[\begin{array}{l}
1 \\
1
\end{array}\right]-75\left[\begin{array}{r}
1 \\
-1
\end{array}\right] e^{-0.04 t}
$$

In components,

$$
\begin{array}{ll}
y_{1}=75-75 e^{-0.04 t} & \left(\text { Tank } T_{1},\right. \text { lower curve) } \\
y_{2}=75+75 e^{-0.04 t} & \left(\text { Tank } T_{2}, \text { upper curve }\right) .
\end{array}
$$

Figure 77 shows the exponential increase of y_{1} and the exponential decrease of y_{2} to the common limit 75 lb . Did you expect this for physical reasons? Can you physically explain why the curves look "symmetric"? Would the limit change if T_{1} initially contained 100 lb of fertilizer and T_{2} contained 50 lb ?
Step 4. Answer. T_{1} contains half the fertilizer amount of T_{2} if it contains $1 / 3$ of the total amount, that is, 50 lb . Thus

$$
y_{1}=75-75 e^{-0.04 t}=50, \quad e^{-0.04 t}=\frac{1}{3}, \quad t=(\ln 3) / 0.04=27.5
$$

Hence the fluid should circulate for at least about half an hour.

EXAMPLE 2 Electrical Network

Find the currents $I_{1}(t)$ and $I_{2}(t)$ in the network in Fig. 78. Assume all currents and charges to be zero at $t=0$, the instant when the switch is closed.

Fig. 78. Electrical network in Example 2

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from Kirchhoff's voltage law, as in Sec. 2.9 (where we considered single circuits). Let $I_{1}(t)$ and $I_{2}(t)$ be the currents in the left and right loops, respectively. In the left loop the voltage drops are $L I_{1}^{\prime}=I_{1}^{\prime}[\mathrm{V}]$ over the inductor and $R_{1}\left(I_{1}-I_{2}\right)=4\left(I_{1}-I_{2}\right)[\mathrm{V}]$ over the resistor, the difference because I_{1} and I_{2} flow through the resistor in opposite directions. By Kirchhoff's voltage law the sum of these drops equals the voltage of the battery; that is, $I_{1}^{\prime}+4\left(I_{1}-I_{2}\right)=12$, hence
(4a)

$$
I_{1}^{\prime}=-4 I_{1}+4 I_{2}+12
$$

In the right loop the voltage drops are $R_{2} I_{2}=6 I_{2}[\mathrm{~V}]$ and $R_{1}\left(I_{2}-I_{1}\right)=4\left(I_{2}-I_{1}\right)$ [V] over the resistors and $(1 / C) \int I_{2} d t=4 \int I_{2} d t[\mathrm{~V}]$ over the capacitor, and their sum is zero,

$$
6 I_{2}+4\left(I_{2}-I_{1}\right)+4 \int I_{2} d t=0 \quad \text { or } \quad 10 I_{2}-4 I_{1}+4 \int I_{2} d t=0
$$

Division by 10 and differentiation gives $I_{2}^{\prime}-0.4 I_{1}^{\prime}+0.4 I_{2}=0$.
To simplify the solution process, we first get rid of $0.4 I_{1}^{\prime}$, which by (4a) equals $0.4\left(-4 I_{1}+4 I_{2}+12\right)$. Substitution into the present ODE gives

$$
I_{2}^{\prime}=0.4 I_{1}^{\prime}-0.4 I_{2}=0.4\left(-4 I_{1}+4 I_{2}+12\right)-0.4 I_{2}
$$

