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System of units Length Mass Time Force

cgs system centimeter (cm) gram (gm) second (sec) dyne

mks system meter (m) kilogram (kg) second (sec) newton (nt)

Engineering system foot (ft) slug second (sec) pound (lb)

Systems oí Units. Some lmportant Conversion Factors

The most important systems of units are shown in the table below. The mks system is also known as

the International System of Units (abbreviated S1), and the abbreviations s (instead of sec),

g (instead of gm), and N (instead of nt) are also used.

1 inch (in.) : 2.540000 cm

1 yard (yd) : 3 ft : 91,440000 cm

1 nautical mile : 6080 ft : 1.853184 km

1 acre : 4840 yď2 : 4046.8564 m2

1 slug : 14.59390 kg

1 pound (1b; : 4.448444 nt

1 British thermal unit (Btu) : 1054.35 joules

1 calorie (cal) : 4.1840joules

1 newton (nt) : 105 dynes

1 joule : 107 ergs

1 foot (ft) : 12 in.

1 statute mile (mi)

: 30.480000 cm

: 5280 ft : 1 ,609344 km

1 mi2 : 640 acres :2.5899881 km2

1 fluid ounce : IlI28 U.S. gallon: 23lll28 in.3 : 29.573730 cm3

1 U.S. gallon : 4 quarts (liq) : 8 pints (liq) : I28 fl oz : 3785.4118 cm3

1 British Imperial and Canadian gallon : I.2OO949 U.S. gallons : 4546.08J cms

1 kilowatt-hour (kwh) : 3414.4 Btu : 3.6 , 106 joules

1 horsepower (hp) : 2542.48 Btu/h : 178.298 callsec : 0.74570 kW

1 kilowatt (kW) : 1000 watts :3414.43 Btu/h :238.662 callsec

oF:oC,1.8+32 1o : 60' :3600" : 0.017453293 radian

For further details see, for example, D. Halliday, R. Resnick, and J. Walker, Fundamentals of Phlsics. 7th ed.. New York:
Wiley. 2005. See also AN American National Standard, ASTMiIEEE Standard Metric Practice. Institute of Electrical and

Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, N. J. 08854.
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PREFACE
See also http: //www.wiley.com,/colle ge/kreyszig/

Goal of the Book. Arrangement of Material
This new edition continues the tradition of providing instructors and students with a
comprehensive and up-to-date resource for teaching and learning engineering
mathematics, that is, applied mathematics for engineers and physicists, mathematicians
and computer scientists, as well as members of other disciplines. A course in elementary
calculus is the sole prerequisite.

The subject matter is arranged into seven parts A-G:

A Ordinary Differential Equations (ODEs) (Chaps. 1-6)
B Linear Algebra. Vector Calculus (Chaps. 7-9)
C Fourier Analysis. Partia[ Differential Equations (PDEs) (Chaps. 1I-I2)
D Complex Analysis (Chaps. 13-18)
E Numeric Analysis (Chaps. I9-2I)
F Optimization, Graphs (Chaps. 22-23)
G Probability, Statistics (Chaps. 24-25).

This is followed by five appendices:

App. 1 References (ordered by parts)
App. 2 Answers to Odd-Numbered Problems
App. 3 Auxiliary Material (see also inside covers)
App. 4 Additional Proofs
App. 5 Tables of Functions.

This book has helped to pave the way for the present development of engineering
mathematics. By a modern approach to those areas A-G, this new edition will prepare
the student for the tasks of the present and of the future. The latter can be predicted to
some extent by a judicious look at the present trend. Among other features, this trend
shows the appearance of more complex production processes, more extreme physical
conditions (in space travel, high-speed communication, etc.), and new tasks in robotics
and communication systems (e.g., fiber optics and scan statistics on random graphs) and
elsewhere. This requires the refinement of existing methods and the creation of new ones.

It follows that students need solid knowledge of basic principles, methods, and results,
and a clear view of what engineering mathematics is all about, and that it requires
proficiency in all three phases of problem solving:

. Modeling, that is, translating a physical or other problem into a mathematical form,
into a mathematlcal model; this can be an algebraic equation, a differential equation,
a graph, or some other mathematical expression.

. Solving the model by selecting and applying a suitable mathematical method, often
requiring numeric work on a computer.

. lnterpreting the mathematical result in physical or other terms to see what it
practically means and implies.

It would make no sense to overload students with all kinds of little things that might be of
occasional use. Instead they should recognize that mathematics rests on relatively few basic
concepts and involves powerful unifying principles. This should give them a firm grasp on
the interrelations among theory, computing, and (physical or other) experimentation.
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PART A
Chaps. 1-6

Ordinary Differential Equations (ODEs)

Chaps. 1-4
Basic Material

Ý chap.5
series solutions

Chap.6 Ý
Laplace Transforms

PART B
Chaps. 7-1O

Linear Algebra. Vector Calculus

Chap.7
Matrices,

Linear Systems

Chap. 9
vector Differential

Catculus

Ý chap.8
Eigenvalue Problems

Chap. 10 Ý
Vector !ntegral Calculus

PART c
Chaps. 11-12

Fourier Analysis. Partial Differential
Equations (PDEs)

Chap. 11

Fourier Analysis

Chap. 12

Partial Differentia[ Equations

PART D
Chaps. 13-18

Complex Analysis,
Potential Theory

Chaps. 13-17
Basic Material

Ch.pl8
Potential Theory

PART F

Chaps. 22-23
Optimization, Graphs

Chap.22 l Chap.23
Linear Programming I Graphs, Optimization

GUIDES AND MANUALS
Maple Computer Guide

Mathematica Computer Guide

student solutions Manual

Instructor's Manual

l

I

I

PART E

Chaps. 19-21
Numeric Analysis

Chap.'l9
Numerics in

General

Chap.20
Numeric

Linear Algebra

Chap.21
Numerics for

ODEs and PDEs

PART G
Chaps. 24-25

Probabi Iity, Statistics

Chap.24
Data Analysis. Probabitity Theory

Chap. 25
Mathematical statistics
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General Features of the Book lnclude:
. Simplicity of examples, to make the book teachable-why choose complicated

examples when simple ones are as instructive or even better?
. Independence of chapters, to proviďeflexibifu in tailoring courses to special needs.

. Self-contained presentation, except for a few clearly marked places where a proof
would exceed the level of the book and a reference is given instead.

. Modern standard notation, to help students with other courses, modern books, and
mathematical and engineering journals.

Many sections were rewritten in a more detailed fashion, to make it a simpler book. This
also resulted in a better balance between theory and applicati.ons.

Use of Computers
The presentation is adaptable to various levels of technology and use of a computer or
graphing calculator., very little or no use, medium use, or intensive use of a graphing
calculator or of an unspecified CÁS (Computer Algebra System, Maple, Mathematica,
or Matlab being popular examples). In either case texts and problem sets form an entity
without gaps or jumps. And many problems can be solved by hand or with a computer
or both ways. (For software, see the beginnings of Part E on Numeric Analysis and Part G
on Probability and Statistics.)

More specifically, this new edition on the one hand gives more prominence to tasks
the computer c&nnol do, notably, modeling and interpreting results. On the other hand, it
includes CAS projects, CAS problems, and CÁS expeňments, which do require a
computer and show its power in solving problems that are difficult or impossible to access
otherwise. Here our goal is the combination of intelligent computer use with high-quality
mathematics. This has resulted in a change from a formula-centered teaching and learning
of engineering mathematics to a more quantitative, project-oriented, and visual approach.
CAS experiments also exhibit the computer as an instrument for observations and
experimentations that may become the beginnings of new research, for "proving" or
disproving conjectures, or for formalizing empirical relationships that are often quite useful
to the engineer as working guidelines. These changes will also help the student in
discovering the experimental aspect of modern applied mathematics.

Some routine and dňll work is retained as a necessity for keeping firm contact with
the subject matter. In some of it the computer can (but must not) give the student a hand,
but there are plenty of problems that are more suitable for pencil-and-paper work.

Major Changes
1. New Problem Sets. Modern engineering mathematics is mostly teamwork.It usually

combines analytic work in the process of modeling and the use of computer algebra and
numerics in the process of solution, followed by critical evaluation of results. Our
problems-some straightforward, some more challenging, some "thinking problems" not
accessible by a CAS, some open-ended-reflect this modern situation with its increased
emphasis on qualitative methods and applications, and the problem sets take care of this
novel situation by including team projects, CAS projects, and writing projects. The latter
will also help the student in writing general reports, as they are required in engineering
work quite frequently.

2. Computer Experiments, using the computer as an instrument of 'oexperimental
mathematics" for exploration and research (see also above). These are mostly open-ended
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experiments, demonstrating the use of computers in experimentallY finding results, which

máy be provable afterward or may be valuable heuristic qualitative guidelines to the

engineer, in particular in complicated problems.

3. More on modeling and selecting methods, tasks that usually cannot be automated.

4. Student Solutions Manual and Study Guide enlarged, upon exPlicit requests

of the users. This Manual contains worked-out solutions to carefully selected odd-numbered

problems (to which App. 1 gives only the final answers) as well as general comments

and hints on studying the text and working further problems, including exPlanations on

the significance and character of concepts and methods in the various sections of the

book.

Further Chantes, New Features
. Electric circuits moved entirely to Chap. 2, to avoid duplication and rePetition

. Second-order ODEs and Higher Order ODEs placed into two separate chapters

(2 and 3)

. In Chap . 2, app\ications presented before variation of parameters

. series solutions somewhat shortened, without changing the order of sections

. Material on Laplace transforms brought into a better logical order: Partial fractions

used earlier in a more practical approach, unit step and Dirac's delta Put into seParate

subsequent sections, differentiation and integration of transforms (not of functions!)

moved to a later section in favor of practically more important toPics

. second- and third-order determinants made into a separate section for reference

throughout the book

. Complex matrices made optional

. Three sections on curves and their application in mechanics combined in a single section

. First two sections on Fourier series combined to provide a better, more direct start

. Discrete and Fast Fourier Transforms included

. conformal mapping presented in a separate chapter and enlarged

. Numeric analysis updated

. Backward Euler method included

. stiffness of oDEs and systems discussed

. List of software (in Part E) updated; another list for statistics software added (in Pat G)

. References updated, now including about 75 books published or reprinted after 1990

Suggestions for Courses: A Four-Semester Sequence
The material, when taken in sequence, is suitable for four consecutive semester courses,

meeting 3-4 hours a week:

1st Semester. ODEs (Chaps. 1-5 or 6)

2nd Semester. Linear Algebra. Vector Analysis (Chaps. 7_10)

3rd Semester. Complex Analysis (Chaps. 13-18)

4th Semester. Numeric Methods (Chaps. I9-2I)
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Suggestions for lndependent One-Semester Courses
The book is also suitable for various independent one-semester courses meeting 3 hours
a week. For instance:

Introduction to ODEs (Chaps. 1-2, Sec. 2I.I)
Laplace Transforms (Chap. 6)
Matrices and Linear Systems (Chaps. 7-8)
Vector Algebra and Calculus (Chaps. 9-10)
Fourier Series and PDEs (Chaps. 11-12, Secs. 2I.4-21.1)
Introduction to Complex Analysis (Chaps, 13-11)
Numeric Analysis (Chaps. 19,2I)
Numeric Linear Algebra (Chap. 20)
Optimization (Chap s. 22-23)
Graphs and Combinatorial Optimization (Chap. 23)
Probability and Statistics (Chaps. 24-25)
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Ordinary
Differentia1
Equations (ODEs)

First-Order ODEs

Second-Order Linear ODEs

Higher Order Linear ODEs

Systems of ODEs. Phase Plane. Qualitative Methods

Series Solutions of ODEs. Special Functions

Laplace Transforms

Differential equations are of basic importance in engineering mathematics because many
physical laws and relations appear mathematically in the form of a differential equation.
In Part A we shall consider various physical and geometric problems that lead to
differential equations, with emphasis on modeling, that is, the transition from the physical
situation to a "mathematical model." In this chapter the model will be a differential
equation, and as we proceed we shall explain the most important standard methods for
solving such equations.

Part A concerns ordinary differential equations (ODEs), whose unknown functions
depend on a single vartab(e. Partial differential equations (PDEs), involving unknown
functions of several variables, follow in Part C.

ODEs are very well suited for computers. Numeric methods for ODEs can be studied
directly after Chaps. l or 2. See Secs. 2I.I-2I.3, which are independent of the other
sections on numerics.
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First-Order ODEs

In this chapter we begin our program of studying ordinary differential equations (ODEs)
by deriving them from physical or other problems (modeling), solving them by standard
methods, and interpreting solutions and their graphs in terms of a given problem. Questions
of existence and uniqueness of solutions will also be discussed (in Sec. 1.7).

We begin with the simplest ODEs, called ODEs of the first order because they involve
only the first derivative of the unknown function, no higher derivatives. Our usual
notation for the unknown function will be y(x), or y(t) if the independent variable is
time t.

If you wish, use your computer algebra system (CAS) for checking solutions, but make

sure that you gain a conceptual understanding of the basic terms, such as ODE, direction
field, and initial value problem.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 2I.I-2í.2, which are independent of other sections on numerics.

P rere quis ite : Integral calculus.
Sections that may be omitted in a shorter course: 1.6, I.7.
References and Answers to Problems; App. 1 Part A, and App.2

l.] Basic Concepts. Modelint
If we want to solve an engineering problem (usually of a physical nature), we first have
to formulate the problem as a mathematical expression in terms of variables, functions,
equations, and so forth. Such an expression is known as a mathematical model of the

given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or, briefly,
modeling. We shall illustrate this process by various examples and problems because
modeling requires experience. (Your computer may help you in solving but hardly in
setting up models.)

Since many physical concepts, such as velocity and acceleration, are derivatives, a

model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution
(a function that satisfies the equation), explore its properties, graph it, find values of it,
and interpret it in physical terms so that we can understand the behavior of the physical
system in our given problem. However, before we can turn to methods of solution we
must first define basic concepts needed throughout this chapter.
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Falling stone

!" :8 = const.
(Sec.1.1)

Velocity
U

,l,

parachuttst

mu'=mg-buz
(Sec. 1.2)

Outflowing water

h, = -hli
(Sec. 1.3)

water level á

l,
Displacement y

Vibrating mass
on a spring

my"+lzy-O
(Secs. 2,4, 2,8)

Beats of a vibrating
system

y' + @oy = cos (Dí, @O= @

(Sec. 2.8)

current 1 in an
RLC circuit

LI" + RI'* Lt = n'()

(Sec. 2.9)

Deformation of a beam

EIyi' = f(x)
(Sec. 3.3)

-Pendu l u m

L0"+gsin0=0
(Sec.4.5)

Lotka-Volterra
predator-prey model

y'.=ay.-by.y^"I"z
ťr= fu,y r- ly,

(Sec. 4.5)

Fig. t. Some applications of differential equations
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An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call y(x) (or sometimes y(/) if the
independent variable is time r). The equation may also contain y itself, known functions
of x (or t), and constants. For example,

(1) y' : cos.tr,

(2) y" +9y:O,
(3) *'y"'y' + 2e*y" : (x2 + 2)y2

are ordinary differential equations (ODEs). The term ordinary dístinguishes them from
partial dffirential equations (PDEs), which involve partial derivatives of an unknown
function of two or more variables. For instance, a PDE with unknown function u of two
variables .r and y is

E2u ó2u

a*'- 6,,rz 
:0'

PDEs are more complicated than ODEs; 
'rr.v 

rvirr be considered in Chap. t2.
An ODE is said to be of order n tf the nth derivative of the unknown function y is the

highest derivative of y in the equation. The concept of order gives a useful classification
intoODEsof firstorder,secondorder,andsoon.Thus,(1)isof firstorder, (2)of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the,-
first derivative y' and may contain y and any given functions of x. Hence we can write
them as

(4)

or often in the form

F(x, y, y') : 0

y' : f(x, y).

This is called the explicit form, in contrast with the implicit form (4). For instance, the
implicit ODE ,-'y' - 4y' : 0 (wherc x * 0) can be written explicitly as y, - 4r"y,.

Concept of Solution
A function

y : h(x)

iscalledasolutionofagivenODE(4)onsomeopenintervalalxlbifh(x)isdefined
and differentiable throughout the interval and is such that the equation becomes an identity
if yand y'arereplaced withhandh',respectively.Thecurve(thegraph)of hiscalled
a solution curye.

Here, open interval a 1x 1b means that the endpoints a andb are not regarded as

pointsbelongingtotheinterval. Also, alx < Ďincludesinfinite intervals -m ( x 1b,
a 1 x { @, -co < x 1 m (the real line) as special cases.

-
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ExAMPLE I

ExAMPLE 2

verification of solution

y : h(x) : clx (c an arbitrary constant, r * 0) is
y' : h'(x) : -clx2, and multiply by -r to get ry' - -

5

a solution of ry' To verify this, differentiate,

-clx: -y. Thus, ry' : -y, the given ODE. t

solution curves

The ODE y' : dyldx : cos í can be solved directly by integration on both sides. Indeed, using calculus, we

obtain y : I cos x dx : sin.r * c, where c is an arbitrary constant. This is afamily of solutions. Each value

of c, for instance, 2.75 or 0 or -8, gives one of these curves. Figure 2 shows some of them, for c : -3, -2,
-1,0, I,2,3,4.

Fig.2. Solutions y : sinx * c of the oDEyl : cosx

Exponential Growth, Exponential Decay

From calculus we know that y : ,"a 1, any constant) has the derivative (chain rule!)

,':*:3ce3t:3y.

This shows that y is a solution oí y' :3y. Hence this ODE can model exponential growth, for instance, of
animal populations or colonies of bacteria. It also applies to humans for small populations in a large country
(e.g., the United States in early times) and is then known as Malthus's lnw.l We shall say more about this topic
in Sec. 1.5.

Similarly, y' - -0.2y (with a minus on the right!) has the solution y : ce-o'Zt Hence this ODE models

exponential decay, for instance, of a radioactive substance (see Example 5). Figure 3 shows solutions for some
positive c. Can you find what the solutions look like for negative c? t

y
2.5

2

1.5

1

0.5

0-o 2 4 6 8 10 12 14 t

Fig.3. Solutions of yl : -0.2y in Example 3

lNamed after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766-1834).

l

ExAMPLE 3
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We see that each ODE in these examples has a solution that contains an arbitrary constant
c. Such a solution containing an arbitrary constant c is called a general solution of the
oDE.

(We shall see that c is sometimes not completely arbitrary but must be restricted to
some interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniquely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific c (e.g., c : 6.45 or
0 or -2.01) we obtain what is called a particular solution of the ODE. A particular
solution does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary constant
is obtained as a particular solution by assigning a suitable value to c. Exceptions to these
rules occur but are of minor interest in applications; see Prob. 16 in Problem Set 1.1.

lnitial value problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(.ro) : }o, with given values
x9 and y6, that is used to determine a value of the arbitrary constant c. Geometrically
this condition means that the solution curve should pass through the point (xg, y6) in
the xy-plane. An ODE together with an initial condition is called an initial value
problem. Thus, if the ODE is explicit,y' : í(x,y), the initial value problem is of the
form

(5) y' : f (x, y),

EXAMPLE 4 lnitialValue Problem

Solve the initial value problem

,},,(.rro) 
: .}o,

: 3"y, y(0) : 5.7.

SOlUtiOn. The general solution is y(r) - ce3Í; see Example 3. From this solution and the initial condition
we obtain,v(0) : ,uo : c : 5.J. Hence the initial value problem has the solution y(x) : 5.Je3*. This is a

particular solution.

Modeling
The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the typical steps of modeling in detail: Step 1 the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2
the solution by a mathematical method; and Step 3 the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CÁS) may
perhaps give you a hand in Step Z,bllt Steps 1 and 3 are basically your work. And Step 2

,dY
"dx

l
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E XÁ.MPI_ E] 5

requires a solid knowledge and good understanding of solution methods available to you-
you have to choose the method for your work by hand or by the computer. Keep this in
mind, and always check computer results for errors (which may result, for instance, from
false inputs).

Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Infotmation Experiments show that at each instant a radioactive substance decomposes at a íate

proportional to the the amount present.

Step 1. Setting up a mathematical model (a dffirential equation) of the physical process. Denote by y(r) the

amount of substance still present at any time r. By the physical law, the time rate of change y'(t) : dyldt is
proportional to y(r). Denote the constant of proportionality by k. Then

The value of k is known fiom experiments fbr various radioactive substances (e.g., t : _ 7.4, l0-11sec-1,
approximately, for radium uuRu"u). k is negative because y(l) decreases with time. The given initial amount is
0.5 g. Denote the corresponding time by / : 0. Then the initial condition is _y(0) : 0.5. This is the instant at

which the process begins; this motivates the term initial condition (whích, however, is also used more generally
when the independent variable is not time or when you choose a / other than t : 0). Hence the model of the
process is the initial value problem

dy

dt
: ky, y(0) : 0.5.

Step 2. Mathematical solution. As in Example 3 we conclude that the ODE (6) models exponential decay and

has the general solution (with arbitrary constant c but definite given k)

Y(í) : cekt _

We now use the initial condition to determine c. Since }(0) : c from (8), this gives y(0) : c : 0.5. Hence the
particular solution governing this process is

(9) ,y(/) : 0.5ekt (Fig. a).

Always check your result-it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as y(0) : 0.5:

dy

dt
: O.5kekt : k. 0.5ekt : tcy, y(0):0.5eo:0.5.

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time /. It starts from
the correct given initial amount and decreases with time because k (the constant of proportionality, depending
on the kind of substance) is negative. The limit of y as t ---> cn is zero. l

y
0.5
o.4
0.3
o.2
0.1

0
2,5

Fig. 4. Radioactivity (Exponential decay,
y : 0.5 ekt, with k : -].5 as an example)

dy

dt
: ky.(6)

(1)

(8)

1.5U.5
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EXAMPLE 6 A Geometric Application

Geometric problems may also lead to initial value problems. For instance, find the curve through the point
(1, 1) in thexy-plane having at each of its points the slope -ylx.

Solution. The slope y' should equal -ylx. This gives the ODE ,l : -ylx.Its general solution isy : clx
(see Example 1). This is a family of hyperbolas with the coordinate axes as asymptotes.

Now, for the curve to pass through (1, 1), we must have y : l when x : 1. Hence the initial condition is

y(l):1.Fromthisconditionandy:clxwegety(1):cll:1;thatis,c:l.Thisgivestheparticular
solution y : Ilx (drawn somewhat thicker in Fig, 5).

\
_3

l_4

l

Fig. 5. Solutions of yl : -y/x ( las)

/
hyperbo

l
y

l
4
l?

l
2

1

_1

\-r
-Z

Fig. 6. Particular solutions and singular
solution in Problem ]6

I _2-3-4-

cALcULUs
Solve the ODE by integration.

L. y' : - sin n,x 2.

3. y' : *n*2l2 4.

, 
-a-y :e

Y' : corh 4"

E vERlFlcATloN oF soluTloN
State the order of the ODE. Verify that the given function
is a solution. (a, b, c are arbitrary constants.)

5.y':Ily2, y:tan(x+c)
6. y" l r2y : g, y : acos Ťx * b stnrrx
7. y" ,t- 2y' * 10y : 0, ! : 4e-I sin 3x

8. y' l2y:4(x * t)2, !:5e-2* * 2x2 1_ 2x _l I

9.y"':cos.tr, y- -sinxi ax2+bx-lc

@ INITIAL vALuE pRoBLEMs

Verify that y is a solution of the ODE. Determine from y
the particular solution satisfying the given initial condition.
Sketch or graph this solution.

10. y/ : 0.5}, ! : ce0,5*, y(2) : 2

11. y' : I * 4y', y : *tan (2x l c), y(0) : 0

12. y' : y - r, !: ce'* x l l, y(0):3
13, y' * Zxy : 0, y : ce-*', y(I) : Ile
14.y':ytanx, y:c secí, y(D:Žrr

15. (Existence) (A) Does the ODE y'2 - - 1 have a (real)

solution?

(B) Does the ODE |y'| + lyl : 0 have a general

solution?

16. (Singular solution) An ODE may sometimes have an

additional solution that cannot be obtained from the

general solution and is then called a singular solution,

The ODE y'' - xy' + y : 0 is of the kind. Show by
differentiation and substitution that it has the general

solution y : cx - c2 andthe singular solution y : x2l4.

Explain Fig. 6.

@ MoDELlNG,AppLlcATloNs
The following problems will give you a first impression of
modeling. Many more problems on modeling follow
throughout this chapter.

17. (Falling body) If we drop a stone, we can assume air
resistance ("drag") to be negligible. Experiments show

that under that assumption the acceleration y" : d2yldtz
of this motion is constant (equal to the so-called
acceleration of gravity g : 9.80 m/sec2 : 32 ftlsec2),

State this as an ODE for y(r), the distance fallen as a
function of time r. Solve the ODE to get the familiar
law of free fall, y : 8 12.

_ 
-
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18. (Falling body) If in Prob. l] the stone starls at t : 0
from initial position y6 with initial velocity u : ,)n,

show that the solution is y : 8 12 + uot i y6. How
long does a fall of 100 m take if the body falls from
rest? A fall of 200 m? (Guess first.)

19. (Airplane takeoff) If an airplane has a run of 3 km,
starts with a speed 6 m/sec, moves with constant
acceleration, and makes the run in 1 min, with what
speed does it take off?

20. (Subsonic flight) The efficiency of the engines of
subsonic airplanes depends on air pressure and usually
is maximum near about 36 000 ft. Find the air pressure
y(x) at this height without calculation. Physical
information The rate of change y'1"; is proportional
to the pressure, and at 18 000 ft the pressure has
decreased to half its value y6 at sea level.

21. (Half-life) The half-life of a radioactive substance is
the time in which half of the given amount disappears.
Hence it measures the rapidity of the decay. What

9

is the half-life of radium uuRu"u (in years) in
Example 5?

(Interest rates) Show by algebra that the investment y(r)
from a deposit yo after / years at an interest rate r is

y.,!) : y6[1 -F r]t (Interest compounded annually)

ya(/) : }o[1 + (rl365))365t
(Interest compounded daily).

Recall from calculus that

LI + (Iln)ln -> e as n -> ml

hence |I + (rln)lnt ---> ert; thus

y"(t) : yoeň (Interest compounded continuously).

What ODE does the last function satisfy? Let the
initial investment be $1000 and r : 6Vo. Compute the
value of the investment after i year and after 5 years
using each of the three formulas. Is there much
difference?

y' : f(x,y)

Direction Fields
A first-order ODE

(1)

has a simple geometric interpretation. From calculus you know that the derivative y'(x)
of y(x) is the slope of y(x). Hence a solution curve of (1) that passes through a point
(xo, yo) must have at that point the slope y' (x equal to the value of / at that point; that is,

y'(x : í(xo, yo).

Read this paragraph again before you go on, and think about it.
It follows that you can indicate directions of solution curves of (1) by drawing short

straight-line segments (lineal elements) in the xy-plane (as in Fig. 7a) and then fitting
(approximate) solution curves through the direction field (or slope freld) thus obtained.
This method is important for two reasons.

1. You need not solve (1). This is essential because many ODEs have complicated
solution formulas or none at all.

2. The method shows, in graphical form, the whole family of solutions and their typical
properties. The accuracy is somewhat limited, but in most cases this does not matter.

Let us illustrate this method for the ODE

Iy:Xy.(2)
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Direction Fields by a CAS (Computer Algebra System). A CAS plots lineal elements
at the points of a square grid, as in Fig. J a for (2), into which you can fit solution curves.
Decrease the mesh size of the grid in regions where f (x, y) varies rapidly.

Direction Fields by Using Isoclines (the Older Method). Graph the curves

f (x, y) : k : const, called isoclines (meaning curves of equal inclination). For (2) these

are the hyperbolas .f(x, y) : xy : k : const (and the coordinate axes) in Fig. 7b. By (1),

these are the curves along which the derivative y' is constant. These are not yet solution
curves-don't get confused. Along each isocline draw many parallel line elements of the

coíTesponding slope k. This gives the direction field, into which you can now graph

approximate solution curves.
We mention that for the ODE (2) tnFig.7 we would not need the method, because we

shall see in the next section that ODEs such as (2) can easily be solved exactly. For the

time being, let us verify by substitution that (2) has the general solution

y(x) : ,nr2l2 (c arbitrary).

Indeed, by differentiation (chainrule!) we get y' : x(cet2lz\ : xy. Of course, knowing
the solution, we now have the advantage of obtaining a feel for the accuracy of the

method by comparing with the exact solution. The particular solution in Fig.7 through
(x, y): (1, 2) must satisfy y(1) : 2. Thus, 2 : cetl2, c : 2l\/i : L2I3, and the particular

solution is y("r) : I.2I3e"l2.
A famous oDE for which we do need direction fields is

y' : 0.I(I - x2)

(It is related to the van der Pol equation of electronics, which we shall discuss in Sec. 4.5.)
The direction field in Fig. 8 shows lineal elements generated by the computer. We have
also added the isoclines for k: -5, -3,i,1 as well as three typical solution curves, one
that is (almost) a circle and two spirals approaching it from inside and outside.

(a) By a CAS (b) By isoclines

Fig. 7. Direction field of y' : xy

y
(3)

l

\ \\ lll

1 \\ \ \\\\\\\ \ \\\\\\\ \ \\\\\\\\\

-1//,z.zz
/ /,/./,/_
/ / / //
/ / / //
/ / / //
l/ / //
ll/ //
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--\\.-:\\
-\\\

Fig.8. Direction field of y' : o.1t'' - n - ;

On Numerics
Direction fields give"all" solutions, but with limited accuracy. If we need accurate numeric
values of a solution (or of several solutions) for which we have no formula, we can use
a numeric method. If you want to get an idea of how these methods work, go to Sec.
2I.I and study the first two pages on the Euler-Cauchy method, which is typical of
more accurate methods later in that section, notably of the classical Runge-Kutta method.
It would make little sense to intemrpt the present flow of ideas by including such methods
here; indeed, it would be a duplication of the material in Sec. 2I.I. For an excursion to
that section you need no extra prerequisites; Sec. 1.1just discussed is sufficient.

y

:

X

=1

4

k
-,/

r\\

E DlREcTloN FIELDs, soLUTIoN cURvEs
Graph a direction field (by a CAS or by hand). In the field
graph approximate solution curves through the given point
or points (x, y) by hand.

I. y' : * - !, (0, 0), (0, 1)

2. 4yy' * -9x, (2,2)

3. y' : I l y', (Žr, D
4. y' : y - 2y2, (0,0), (0,0.25), (0,0.5), (0, 1)

5. y' : x2 - Lly, (I, -2)
6. y' : 1 -l sin y, (- 1, 0), (I, -4)
7. y' : y3 + x3, (0, 1)

8. y' : Zxy -| 1, (- I,2), (0, 0), (I, -2)
9. y' : y tanh x - 2, (-1, -2), O, O), (I,2)

10. y' - gal', (1, 1), (2,2), (3,3)

EL15l AccuRAcy
Direction fields are very useful because you can see

solutions (as many as you want) without solving the ODE,
which may be difficult or impossible in terms of a formula.
To get a feel for the accuracy of the method, graph a field,
sketch solution curves in it, and compare them with the

exact solutions.

|1. y' : sínlrrx 12. y' : Ilx2
13. y' : -2y (Sol. y : ,r-'*)
14. y' : 3ylx (So1. y : cx3)

15. y' : -In x

E6JE-] MoT!oNs
A body moves on a straight line, with velocity as given,
and y(r) is its distance from a fixed point 0 and r time. Find
a model of the motion (an ODE). Graph a direction field.

1l

R=+

k=I,

h=-5

h=-3

_4
\

at:i
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In it sketch a solution curve corresponding to the given
initial condition.

16. Velocity equal to the reciprocal of the distance, y(1) : 1

17. Product of velocity and distance equal to -t,y(3) : -3
1,8. Velocity plus distance equal to the square of time,

y(0) : 6

19. (Skydiver) Two forces act on a parachutist, the

attraction by the earth mg (n : mass of person plus
equipment, 8 : 9.8 m/sec2 the acceleration of gravity)
and the air resistance, assumed to be proportional to

the square of the velocity u(r). Using Newton's second
law of motion (mass X acceleration : resultant of the
forces), set up a model (an ODE for u(r)). Graph a

direction field (choosing m and the constant of
proporlionality equal to 1). Assume that the parachute

opens when u : 10 m/sec. Graph the corresponding
solution in the field. What is the limiting velocity?

20. CAS PROJECT. Direction Fields. Discuss direction
fields as follows.

(a) Graph a direction field for the ODE y' : I - y
and in it the solution satisfying y(0) : 5 showing
exponential approach. Can you see the limit of any
solution directly from the ODE? For what initial
condition will the solution be increasing? Constant?
Decreasing?

(b) What do the solution curves of y' - -x3ly3 look
like, as concluded from a direction field. How do they
seem to differ from circles? what are the isoclines?
What happens to those curves when you drop the minus
on the right? Do they look similar to familiar curves?
First, guess.

(c) Compare, as best as you can, the old and the

computer methods, their advantages and disadvantages.
Write a short report.

(1)

(2) ' dx: [r-l dx l c.

/rrrl dy : Irn dx l c.(3)

1.3 Separable ODEs. Modelint
Many practically useful ODEs can be reduced to the form

s1)y' : í(x)

by purely algebraic manipulations. Then we can integrate on both sides with respectto x,
obtaining

f s{l) l

On the left we can switch to y as the variable of integration. By calculus, }' dx - dy, so
that

If f and g aíe continuous functions, the integrals in (3) exist, and by evaluating them we

:j;xffi ff 1:T*il::';;.Tíi]Ji::T::i"*;;,:"J;,-,,:":t:.:,ť[i jfi ,:i,""t,::
are now separated: .r appears only on the right and y only on the left.

ExAMPLE, 
:,,"::":'" :o,,The ODE y' : I + y2 is separable because it can be written

I,|y2
:dx. Byintegration, arctany:x+ c or y:tan(x-|c).

dy
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l

ExAMPLE 2

ExAMPLE 3

kt -o.ooo1213,e :e :0.525. ln 0.525
r - 

-----,-- _- - -- 
- JJ l L.

-0.000121 3

It is very important to introduce the constant of integration immediately when the integration is performed.
Ifwewrotearctanj:x,theny:tanx,andthenintroducedc,wewouldhaveobtainedy:tanxlc,which
is not a solution (when c * 0). Verify this.

Modeling
The impoťtance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

Radiocarbon Dating2

In Septembet I99l the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name "Oetzi") in Southern Tyrolia near the Austrian-Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon 6Cla to carbon uC12 in
this mummy is 52.57o of that of a living organism?

Physical Information, In the atmosphere and in living organisms, the ratio of radioactive carbon 6Cla (made

radioactive by cosmic rays) to ordinary carbon uC12 is constant. When an organism dies, its absorption of 6Cla
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon
ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of 6Cla, which is 5715
years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page II-52,line 9).

SOlUtiOn. Modeling. Radioactive decay is governed by the ODE y' : ty (see Sec. 1.1, Example 5).By
separation and integration (where r is time and y6 is the initial ratio of ucla to uC121

: kdt, lnlyl :kt+c, kt
!:loe

Next we use the half-life H: 5715 to determine k. When t - H, half of the original substance is still present.

Thus,

yo"kH : 0.5yo, ekH : 0.5,
ln 0.5 0.693

H 5715

Finally, we use the ratio 52.5Va for determining the time / when Oetzi died (actually, was killed),

dy

y

Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is
due to a variation in that carbon ratio because of industrial pollution and other factors, such as nuclear testing. l

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 9 contains 1000 gal of water in which initially 100 lb of salt is dissolved.
Brine runs in at a rate of 10 gallmin, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gallmin. Find the amount of salt in the tank at any time r.

SOlUtiOn. Sfup 1. Setting up a model. Let y(r) denote the amount of salt in the tank at time r. IB time rate
of change is

y' : Salt inflow rate - Salt outflow rate "Balanc law".

5lb times 10 gal gives an inflow of 50lb of salt. Now, the outflow is 10 gal of brine. This is 10/1000 : 0.0l
(: 17o) of the total brine content in the tank, hence 0.01 of the salt content y(r), that is, 0.0ly(l). Thus the model
is the ODE

y' : 50 - 0.01y : -0.01(y - 5000).

2Method by WILLAR.D FRANK LIBBY (1908-1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.

(4)
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Step 2. Solution of the model. The ODE (4) is separable. Separation, integration. and taking exponents on both

sides gives

y - 5000
: -0.01 dt. ln .y - 5000| : -0.01/ + c" y-5000:ce-o,olt

Initially the tank contains 100 lb of salt. Hence y(0) : l00 is the initial condition that will give the unique

solution.Substitutingy:l00andr:Ointhelastequationgives100-5000:rno-c.Hencec:-4900.
Hence the amount of salt in the tank at time r is

(5) _v(r) 
: 5000 - 490Oe-o'oÍt.

This function shows an exponential approach to the limit 5000 lb; see Fig. 9. Can you explain physically that

y(r) should increase with time? That its limit is 5000 lb? Can you see the limit directly from the ODE?
The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob.

27) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and

the flow rates (in and out) may be different and known only very roughly. l

d1"

y
5000

4000

3000

2000

1000
..----.>

100

ExAMP,LE 4

100 2oo 300 400

Salt content y(l)

500

Tank

Fig. 9. Mixing problem in Example 3

Heating an Office Building (Newton's Law of Cooling3)

Suppose that in Winter the daytime temperature in a certain office building is maintained at 70"F. The heating

is shut off at 10 p.v. and turned on again at 6 A.M. On a certain day the temperature inside the building at

2 e.v. was found to be 65'F. The outside temperature was 50"F at l0 p.lt. and had dropped to 40'F by 6 e.v.
What was the temperature inside the building when the heat was turned on at 6 R.na.?

Physical infonnaíion. Experiments show that the time rate of change of the temperature Z of a body B (which

conducts heat well, as, for example, a copper ball does) is proportional to the difference between 7 and the

temperature of the surrounding medium (Newton's law of cooling).

Solution. Sfup l. Setting up a model. Let T(r) be the temperature inside the building anď T6 the outside

temperature (assumed to be constant in Newton's law). Then by Newton's law,

- Ti.

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may stil1 give valuable qualitative information.

To see how good a model is, the engineer will collect experimental data and compare them with calculations

from the model.

3Si. ISAAC NEWTON (1642-112'7), great English physicist and mathematician, became a professor at

Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher

GOTTFRIED WILHELM LEIBNIZ (1646-I'1|6) invented (independently) the differential and integral calculus.

Newton discovered many basic physical laws and created the method of investigating physical problems by

means of calculus. His Philosophiae naturalis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both

mathematics and physics.

dT
á:Kr(6)

-
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Step 2. General solution. We cannot solve (6) because we do not know Ia, just that it varied between 50oF
and 40'F, so we follow the Golden Rule: If vou cannot solve your problem, try to solve a simpler one.'We
solve (6) with the unknown function Za replaced with the average of the two known values, or 45oF. For physical
reasons we may expect that this will give us a reasonable approximate value of Z in the building at 6 a.na.

For constant Ta : 45 (or any oíher constlnt yalue) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

T-45
: kdt, h|r-45|:ftt 1r* r@: 45 -| cekt , c,(c:e ).

Step 3. Particular solution. We choose 10 p.v. to be r : 0. Then the given initial condition is Z(0) : 70 and
yields a particular solution, call lt To. By substitution,

(0) : 45 -| ceo : J0, c:10 - 45 :25. TeG) : 45 -l 25ekt.

Step 4. Determination of k. We use rG) : 65, where t : 4 is 2 e.v. Solving algebraically for k and inserting
k inío To(t) gives (Fig. 10)

Te(4) : 45 -l 25eak : 65, e4k : 0.B, k: ltn0.8 : -0.056, TeG): 45 + 25e-O'O56t.

Step 5. Answer and interpretation.6 a.v. is r : 8 (namely, 8 hours after l0 e.v.), and

Ze(B): 45 + 25e-o'o56'8:6l["F].

Hence the temperature in the building dropped 9oF, a result that looks reasonable. l

y

7o

68

66
65
64

60 o 2 4 6 8t
Fig. 10. Particular solution (temperature) in Example 4

Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 1 1). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

(7) u(r) : 0,6o0Ýklt(t\ (Torricelli's tawa),

where h(.t) is the height of the water above the hole at time t, and q : 980 cmlsec2 : 32.11 ftlsec2 is the
acceleration of gravity at the surface of the earth.

Solution. Sfup 1. Setting up the model. To get an equation, we relate the decrease in water level /z(r) to the
outflow. The volume AV of the outflow during a short time Ar is

LV: Au Ll (Á : Area of hole).

apvlxGBLISTA TORRICELLI (l608-1647), Italian physicist, pupil and Successor of GALILEo GALILEI
(1564-1642) at Florence. The "contraction factor" 0.600 was introduced by J. C. BORDA in 1166 because the
stream has a smaller cross section than the area of the hole.

dT
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AV must equal the change AVx of the volume of the water in the tank. Now

LV* : -B 
^h

(B : Cross-sectional area of tank)

where 
^h 

(> 0) is the decrease of the height h(t) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV* gives

-B 
^h: 

Au Lt.

We now express u according to Tonicelli's law and then let A/ (the length of the time interval considered)

approach O-this is a standard way of obtaining an ODE as a model. That is, we have

lhAA

^, 

: - E u : - B 0.600\/2sh(t).

and by letting At --+ 0 we obtain the ODE

dt -"'"" B

where 26.56 :0.600 \,e , 980. This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. AlB is constant. Separation and integration gives

and 2\/i: c* -

Dividing by 2 anďsquaring gives h: (c - l3.2BAtlB)2.Inserting I3.28A|B :
yields the general solution

h(t):(c-0.00O332t)2.

Step 3. Particular solution. The initial height (the initial condition) is á(0) : 225 cm. Substitution of r : 0

andh:225 givesfrom the general solution c2 :225, c : 15.00 and thus the particular solution (Fig. 11)

hp(t): (15.00 * 0.00O332t)2.

Step 4. Tank empty. he(t) : 0 if / : 15.00/0.000332: 45 181 [sec] : 12.6 [hours].
Here you see distinctly the importance of the choice of units-we have been working with the Cgs system,

in which time is measured in seconds! We used g : 98O cm,/sec2.

Step 5. Checking. Check the result.

I
25m

]_

h(t

__l

Fig. ll. Example 5. Outflow from a cylindricaltank ("leaking tank"). Torricelli's law

Extended Method: Reduction to Separable Form
Certain nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of practical

dhA
th:-26.56 udt

A
26,56 - t.

B

13.28, 0.52 rlIOO2 n : 0.000332

I

water level
at time l

h
25o

20o

150

100

50

0

2.

Outf lowing
water

Tank

0 10000 30000

Water level h(t) in tank

_- -
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(10)

importance, namely, for equations

(8) ),, : íía )\í/

17

Here, / is any (differentiable) function of ylx, such as sin(y/r), (yl*)n, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set ylx : z; thus,

(9) y : ux and by product differentiation y' : u'x * u.

Substitution into y' : f(ylx) then gives u'x + u: f(u) or u'x: f(u) - u.We see that
this can be separated:

du dx:-
f(u)-u x

EXAMPLE 6 Reduction to Separable Form

Solve
^l22zxyy - x

SOlUtiOn. To get the usual explicit form, divide the given equation by 2ry,

22

2xy 2x 2y'

Now substitutey andy'from (9) and then simplify by subtractinguonboth sides,

l , u I I u 7 -u2-IuxTu:r- 2u, uX:-r- 2r: 2,

You see that in the last equation you can now separate the variables,

2udu dx ltl
I_"r: -;. Byintegration, ln(1 + u2): -ln|x| +cx:h|]l+.*.

|"I
Take exponents on both sides to get 1 + u2 : clx or I + (ylx)2 : clx. Multiply the last equation by x2 to
obtain (Fig. 12)

..2 , ..2 _ _.. Thus (_ _ :\' * .., : 
"x -Ťy:cx. 

\ 
') 

*r-: 
4

This general solution represents a family of circles passing through the origin with centers on the x-axis. l

Fig. 12. General solution (family of circles) in Example 6
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1,. (Constant of integration) An arbitrary constant of
integration must be introduced immediately when the

integration is performed. Why is this important? Give
an example of your own.

@ GENERAL soluTloN
Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.y'+(x*2)y2:g
3. y' : 2 sec}y
4. y' : (y + 9x)2 (y -l 9x : u)

5.yy'*36x:0
6. y' : (4x2 + yz)l@y)
7. y' sin lrx : y cos nrx

8.ry':iy'*y
9. y'rn' : y2 * I

Eo-tr l lNlTlAL vALuE pRoBLEMs

Find the particular solution. Show the steps of derivation,

beginning with the general solution. (L, R, Ď are constants.)

10. yy' ]- 4x: 0, y(0) : 3

1,1,. drldt - -Ztr, r(0) : 16

12. 2xyy' : 3y2 * x', y(I) : 2

13. L dlldt + RI : 0, 1(0) : 16

14. y' : ylx
15. e2*y' :

+ (2x3ly) cos(xz), y6/rrD) : {,
2(x + 2)y", y(0) : Il\/5 : 0,45

l 4x5 coszly/x;, y(2) : 0

: y, }(3) : ln 81

of individuals present, what is the population as a
function of time? Figure out the limiting situation for
increasing time and interpret it.

25. (Radiocarbon dating) If a fossilized tree is claimed to

be 4000 years old, what should be its 6Cla content

expressed as a percent of the ratio of uCla to uC12 in a
living organism?

26. (Gompertz growth in tumors) The Gomperlz model

is y' : -Ay |ny (A > 0), where y(r) is the mass of
tumor cells at time r. The model agrees well with

clinical observations. The declining growth rate with

increasing y > 1 corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients. Use the ODE to discuss the

growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

27. (Dryer) If wet laundry loses half of its moisture
during the first 5 minutes of drying in a dryer and if
the rate of loss of moisture is proportional to the

moisture content, when will the laundry be practically
dry, say, when will it have lost 957o of its moisture?
First guess.

28. (Alibi?) Jack, arrested when leaving abar, claims that

he has been inside for at least half an hour (which

would provide him with an alibi). The police check the

water temperature of his car (parked near the entfance

of the bar) at the instant of arrest and again 30 minutes
later, obtaining the values 190'F and 110'F,
respectively. Do these results give Jack an alibi? (Solve

by inspection.)

29. (Law of cooling) A thermometer, reading 10oC, is
brought into a room whose temperature is 23'C. Two
minutes later the thermometer reading is 18"C. How
long will it take until the reading is practically 23"C,
say, 22.8"C? First guess.

30. (Torricelli's law) How does the answef in Example 5

(the time when the tank is empty) change if the

diameter of the hole is doubled? First guess.

31. (Torricelli's law) Show that (7) looks reasonable
inasmuch u, ÝZgh(Ď is the speed a body gains if it
falls a distance h (and air resistance is neglected).

32. (Rope) To tie a boat in a harbor, how many times must

a rope be wound around a bollard (a vertical rough
cylindrical post fixed on the ground) so that a man

holding one end of the rope can resist a force exerted

by the boat one thousand times greater than the man

can exert? First guess. Experiments show that the

change AS of the force S in a small portion of the rope

is proportional to ^ and to the small angle A@ in Fig.
13. Take the proportionality constant 0.15.

16.

17.

18.

19.

Xy:y
y'x In x

dr/d0 :
0<b<
yy' : (x

b[(drld0) cos 0 f
1

- I)e-U2, y(0) :

r sin 0] , r(irr) : Ť)

1

20. (Particular solution) Introduce limits of integration in
(3) such that y obtained from (3) satisfies the initial
condition y(xo) : yo. Try the formula out on Prob, 19.

lzt-:o I AppLlcATloNs, MoDELING

21. (Curves) Find all curves in the lry-plane whose

tangents all pass through a given point (a, b).

22. (Curves) Show that any (nonvertical) straight line
through the origin of the xy-plane intersects all solution
curves of y' - s}lx) at the same angle.

23. (Exponential growth) If the growth rate of the amount

of yeast at any time r is proportional to the amount

present at that time and doubles in 1 week, how much
yeast can be expected after 2 weeks? After 4 weeks?

24. (Population model) If in a population of bacteria the

birth rate and death rate are proportional to the number
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Fig. 13. Problem 32

33. (Mixing) A tank contains 800 gal of water in which
200lb of salt is dissolved. Two gallons of fresh water
runs in per minute, and2 gal of the mixture in the tank,
kept uniform by stirring, runs out per minute. How
much salt is left in the tank after 5 hours?

34. WRITING PROJECT. Exponential Increase, Decay,
Approach. Collect, order, and present all the information
On the ODE y' : lql and its applications from the text
and the problems. Add examples of your own.

35. CAS EXPERIMENT. Graphing Solutions. A CAS
can usually graph solutions even if they are given by
integrals that cannot be evaluated by the usual methods
of calculus. Show this as follows.

19

(A) Graph the curves for the seven initial value
problems !' - r-"l',y(0):0, *1, +2,*3,common
axes. Are these curves congruent? Why?

(B) Experiment with approximate curves of nthpartial
sums of the Maclaurin series obtained by termwise
integration of that of y in (A); graph them and describe
qualitatively the accuracy for a fixed interval
0 < x < b and increasing n, and then for fixed n and
increasing á.

(C) Experiment with y' : cos (x2) as in (B).

(D) Find an initial value problem with solution

y : e" |* n-" clt andexperiment with it as in (B).JI
"o

36. TEAM PROJECT. Torricelli's Law. Suppose that
the tank in Example 5 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm2 cross-
sectional aíea at the bottom. (Make a sketch.) Set up
the model for outflow. Indicate what portion of your
work in Example 5 you can use (so that it can become
part of the general method independent of the shape of
the tank). Find the time / to empty the tank (a) for any
R, (b) for R : 1 m. Plot / as function of R. Find the
time when h : Rl2 (a) for any R, (b) for R : 1 m.

,dY
'dx

(1)

1.4 Exact ODEs. Integratin8 Factors
We remember from calculus that if a function u(x, y) has continuous partial derivatives,
its differential (also called its total dffirential) is

cJu:*O**!ay.dx 0y

FrOm this it follows that if u(x, y) : c : const, tben du : 0.

For example, if LI : x l *'y' : c, then

du: (I * 2xy3) dx + 3r'y'dy :0

I * 2xy3

3x2Ý '

an ODE that we can solve by going backward. This idea leads to a powerful solution
method as follows.

Afirst-orderODE M(x,y) f N(x, y)y' :0,writtenas(use dy:y'dxasinSec. 1.3)

M(x, y) dx -| N(x, y) dy : 0
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is called an exact differential equation if the differential form M(x, y) dx * N(x, y) dy

is exact, that is, this form is the differential

0wdu:-dx-|
dx

of some function u(x, y).Then (1) can be written

du: 0.

By integration we immediately obtain the general solution of (1) in the form

u(x, y) : c.

This is called an implicit solution, in contrast with a solution y : h(x) as defined in Sec.

1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution

can be converted to explicit form. (Do this for x2 * y' : 1.) If this is not possible, your

CAS may graph a figure of the contour lines (3) of the function u(x, y) and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some

function u(x, y) such that

-N.

From this we can derive a formula for checking whether (1) is exact or not, as follows.
Let M and N be continuous and have continuous first partial derivatives in a region in

the _lry-plane whose boundary is a closed curve without self-intersections. Then by partial

differentiation of (4) (see App. 3.2 for notation),

(2)
Eu

-dyóy

(3)

(4)
0u óu(a) ^ :M, (b) 

^dx dy

^,d'uaM
6y

óN

6y 6x

62u

(5)

0x 3x 3y

By the assumption of continuity the two second partial derivatives are equal. Thus

This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g.,

Ref. [GR11] also contain a proof.)
If (1) is exact, the function u(x, y) can be found by inspection or in the following

systematic way. From (4a) we have by integration with respect to x

ó1\/aM
3x6y

_.I
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(6) u: I'dx + k(y);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a "constant"
of integration. To determine k(y), we derive 6ul6y from (6), use (4b) to get dkldy, and
integrate dkldy to get k.

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).

Then instead of (6) we first have by integration with respect to y

u : I* dy + l(x).(6*)

To determine l(x), we derive \ul\x from (6*), use (4a) to get dlldx, and integrate. We
illustrate all this by the following typical examples.

EXAMPLE l AnExactODE

Solve

(7) cos (; + y) dx + (3y2 -l 2y -| cos (x + y)) dy : O.

Solution. Sfup 1. Test for exactness. Our equation is of the form (1) with

M:cos(x+y),

N:3y2*2y-|cos(x*y).

Thus

aM
a, 

: -sin (x + y),

óN

* 
: -sin (r + y).

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration

(8) r: I Mdx -| ktry: /.orr, + y)dx+ kty) : sin(-r+y) +k(y).

To find t(y), we differentiate this formula with respect to y and use formula (4b), obtaining

+ :cos(x + y) + + : N : 3y2 -l 2y *cos(x *y).óy dy

Hence dkldy : 3y' + 2y.By integration, k : y3 + y2 + cx. Inserting this result into (8) and observing (3),

we obtain the answer
u(x,y): sin (x + y) + y3 + y2 : r.

Step3. Checkinganimplicitsolution.'V,Iecancheckbydifferentiatingtheimplicitsolutionu(x,y):cimplicitly
and see whether this leads to the given ODE (7):

(9) d": *Or* *dy:cos(x+y)drf (cos("r+y)-l 3y2+2y)dy:O.

This completes the check. l
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EXAMPLE 2 An lnitialValue Problem

Solve the initial value problem

(10) (cosy sinh,r + 1) dx - siny cosh x dy :0, y(I) - 2.

Solution. You may verify that the given ODE is exact. We find u. For a change, let us use (6x),

r
J siny coshx dy + l(x): cosy cosh.r + l(x).

From this, í)ullx: cosy sinhx * dlldx: M : cosy sinh"r -l 1. Hence dlldx: 1. By integration,
l(x') : x * c*. This gives the general solution u(x, y) : cosy cosh x l x: c. From the initial condition,
cos2cosh1+1:0.358:c.Hencetheansweriscosycoshx+x:0.358.Figure14showstheparticular
solutions for c : 0,0.358 (thicker curve), 1,2,3. Check that the answer satisfies the ODE. (Proceed as in
Example 1.) Also check that the initial condition is satisfied.

y

2.5

2.o

1.5

1n

0.5

0.5 1.0 1.5 2,0 2,5 3.0 x

Fig. l4. Particular soIu.ions in Example 2

EXAMPLE 3 WARNING! Breakdown in the Case of Nonexactness

The equation-ydx,l xdy:0 is notexactbecause M: -| andN: J, so thatin (5),3Ml6y: -l but
6Nlóx : 1. Let us show that in such a case the present method does not work. From (6),

r,,- )Mhi k(r,) - r,r,+k(_y), hence

Now, óllóy should equal 1y' : J, by (4b). However, this is impossible because k(_v) can depend only on y. Try
(6*); it will also fail. Solve the equation by another method that we have discussed. l

l

óu dk
--l 

-óy"dy

Reduction to Exact Form. lntegrating
The ODE in Example 3 is -y dx -l x dy : 0. It is not exact.
by llxz, we get an exact equation [check exactness by (5)!],

(1l) -Ydx!xdY:-+dx-|!or,:rt(
X-X-X\

Factors
However, if we multiply it

i) :o

Integration of (11) then gives the general solution y/x : c : const
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This example gives the idea. All we did was multiply a given nonexact equation, say,

(12) P(x, y) dx * Q@, y) dy : 0,

by a function F that, in general, will be a function of both x and y. The result was an equation

(13) FP dx + FQdy :0

that is exact, so we can solve it as just discussed. Such a function F(x, y) is then called
an integrating factor of (l2).

EXA M P LE 4 lntegrating Factor

The integrating factor in (11) is F : 1/x2. Hence in this case the exact equation (13) is

FPtlx I FQcty_ -ydx-lrdy:r1l\_T:'l,;/ :0

ydx t xdy /x\ -\,dx-xd\,

VSolution L : c.
X

These are straight lines y : c; through the origin.
It is remarkable that we can readily find other integrating factors for the equation -y dx i x dy : 0, namely,

tly2,ll(x , and ll(xz -| y'), because

-ydx*xdy,,x Ťy

How to Find lntegrating Factors
In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For Mdx * Ndy:0 the exactness condition (4) is 0Ml6y : 6NlOx. Hence for (13),

FP dx + FQ dy : 0, the exactness condition is

(15)

: -, (,";) ,
: a (...o" r) . l

^ (FP): . (FQl.óv 3x

By the product rule, with subscripts denoting partial derivatives, this gives

FaP+FPo:F"QtFQ".

In the general case, this would be complicated and useless. So we follow the GoWen Rule:
If you cannot solve your problem, try to solve a simpler one-the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable; fortunately, in many practical cases, there are such factors, as we shall
see. Thus, Iet F : F(x). Then Fr:0, and F*: F' : dFldx, so that (15) becomes

Fpr:F'Q+FQ*.

Dividing by FQ and reshuffling terms, we have

1dF(16) _ _ - R.F dx

This proves the following theorem.

where R:; (# #)

23
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THEoREM I

THEoREM 2

ExAM PLE 5

Similarly, if F8 : F*(y), then

I dF*(18) : R*.\--l F* dy

and we have the companion

instead of (16) we get

where R* -

CHAP. l First-Order ODEs

Integrating Factor F(x)

Ií (l2) is such that the right side R of (16), depends only on x, then (I2) has an
integrating factor F : F(x), which is obtained by integrating (16) and taking
exponents on both sides,

(17\ F(x) : ,*p Jn{n a*.

| (ro _ r")p \a, ay)

SOlatiOn, Sfup 1. Nonexactness. The exactness check fails:

aP 6 ,lr, 1l r+1] 1! lt 1 aQ ó 7l

, 
: 

; k'*o * yea) : e'*a + ea l yeu but a 
: 

* 6ea - l) : ea.

Application of Theorems l and 2. lnitial Value Problem

Using Theorem 1 or 2, fínďan integrating factor and solve the initial value problem

(20) (er+a + yeu\ dx * (xea - I) dy: g, y(0) : -1

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the l

both r and y,

l lap áo\ | ,,,, u, uR:a \e- *): _ea_|(e""+e"*yeu

Try Theorem 2. The right side of (18) is

E

right side of (16)] depends on

1,1 .

- e").

R*_] (d9 _ť\ : l 1,a_ í-tl .u ..u,_
F \' - r, ) 

: 
"-* - Ý 

(eU - e'' o - eu - yeo): -|,

Hence (19) gives the integrating factor F*(y) : e-a.From this result and (20) you get the exact equation

("* + y) dx -l (x - e-a) dy : 0.

Test for exactness] you will get 1 on both sides of the exactness condition. By integration, using (4a),

r
u : ] k]c + dx: e* + xy + k(i.

lntegrating Factor F*(yl

If (l2) is such that the right side R* oí (I8) depends only on y, then (I2) has an

integrating factor F* : F*(y), which is obtained from (I8) in the form

(19) F*(y) : exp Ío*rr' or.

-
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Differentiate this with respect to y and use (4b) to get

N:x-e-a

7/l
1/

6u dk
^-T - -0y dy

dk
-1l

dy
t-U,+K:e "Ťc^

Hence the general solution is

u(x, :e*+xyle-U:g.

Step3.Particularsolution.Theinitialcondition}(0):1givesu(0,-1):1+0+e:3.72.Hencethe
answerise*+xyle-a:l+e:3.72.Figure15showsseveralparticularsolutionsobtainedaslevelcurves
of u(x, y) : c, obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the
condition.

Fig. 15. Particular solutions in Example 5

initial
l

1
2

EXACT ODEs. INTEGRATING FACTORS
Test for exactness. If exact, solve. If not, use an integrating
factor as given or find it by inspection or from the theorems
in the text. Also, if an initial condition is given, determine
the corresponding particular solution.

1. x3 dx 1- y3 dy : 0 2. (x _ y)(dx - dy) : 0

3. - rr sin zrx sinh y dx * cos rrí cosh y dy : 0

4. (eo - ye*) dx * (xea - e') dy : 0

5.9xdx-l 4ydy:0
6. e"(cos y dx - sin y dy) : 0

7. e-20 dr - 2re-2u d0 : 0

8. (2x + í/y - ylxz) dx + (2y -f llx - xly2) dy : 0

9. (-ylx2 i 2 cos 2x) dx + (Llx - 2 sin 2y) dy : O

10. - Zxy sin (x2) dx i cos (x2) dy : g

11. -ydx,lxdy:0
12. 1e*+u - y) dx * (xe,+a + I) dy : Q

13. -3y dx * 2x dy : 0, F(x, y) : y/xa

14. (xa ]- y') dx - xy dy : 0, y(2) : I

15. e2*12 cos y dx - sin y dy) : 0, y(0) : 0

16. -sin ry (y dx l x dy) : 0, y(I) : n
1,7. (cos tox * ro sin iuox) dx l e" dy : 0, y(0) : 1

18. (cos xy -l xly) dx + (I + (xly) cos xy) dy : 0

19, e-a dx * e-r(_e-a -l I) dy:0, F: e**U

20. (sinycos y + x coszy) dx -t xdy: O

21. Under what conditions for the constants Á, B, C, D is
(Ax + By) dx + (Cx + Dy) dy : 0 exact? Solve
the exact equation,
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22. CAS PROJECT. Graphing Particular Solutions
Graph particular solutions of the following ODE,
proceeding as explained.

1(2I) ycosxdx-|ib:O

(a) Test for exactness. If necessary, find an integrating
factor. Find the general solution u(x, y) : c.

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph contours u(x, y) : c by your CAS. (Cf. Fig.
16.)

(d) In another graph show the solution curves
satisfying y(0) : tl, t2, *3, +4. Compare the

quality of (c) and (d) and comment.

(e) Do the same steps for another nonexact ODE of
your choice.

23. WRITING PROJECT. Working Backward. Start
from solutions z(x, !) : c of your choice, find a

corresponding exact ODE, destroy exactness by a

multiplication or division. This should give you a feel
for the form of ODEs you can reach by the method of
integrating factors. (Working backward is useful in
other areas, too; Euler and other great mastels
frequently did it.)

24. 'IF,^M PROJECT. Solution by Several Methods.
Show this as indicated. Compare the amount of work.

(A) eU(sinh x dx * cosh x dy) : 0 as an exact ODE
and by separation.

(B) (1 + 2x) cosy dx -f dylcos y: 0 byTheorem
2 and by separation.

(C) ("' -| y') dx - 2xy dy : O by Theorem I or 2
and by separation with u : y/x.

(D) 3x2 y dx * 4x3 dy : 0 by Theorems I and 2

and by separation.

(E) Search the text and the problems for further ODEs
that can be solved by more than one of the methods

discussed so far. Make a list of these ODEs. Find
further cases of your own.Fig. 16. Particular solutions in CAS Project 22

].5 Linear ODEs. Bernoulli Equation.
Population Dynamics

Linear oDEs or oDEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be written

y' + p(x)y: r(x).

The defining feature of this equation is that it is linear in both the unknown function y
and its derivative !' : d,yldx, whereas p anď r may be any given functions of x. If in an

application the independent variable is time, we write / instead of x.

If the first term is f (x)y' (instead of y'), divide the equation by í(x) to get the "standard
form" (1), with y' as the first term, which is practical.

For instance, y' cos x -l y sin x -- x is a linear ODE, and its standard form is
y'-|ytanx:xsecx.

The function r(x) on the right may be a force, and the solution y(x) a displacement in
a motion or an electrical current or some other physical quantity. In engineering, r(x) is
frequently called the input, and y(x) is called the output or the response to the input (and,

if given, to the initial condition).

(1)
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Homogeneous Linear ODE. We want to solve (1) in some interval a 1 x 1 b, caII it
J, and we begin with the simpler special case that r(x) is zero for all x in "/. (This is
sometimes written r(x) = 0.) Then the ODE (1) becomes

y'+p(x)y:0

27

(2)

and is called homogeneous. By separating variables and integrating we then obtain

dv
-:- : -p(x) dx, thus
y

ln lyl : - [ r{rl dx -l c*.

Taking exponents on both sides, we obtain the general solution of the homogeneous
oDE (2),

(3) _y(x) : ,n-In{,r) dr (,6 : -l gc''' when y ž 0);

here we may also choose c : 0 and obtain the trivial solution y(x) : 0 for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that r(x) in (1) is not
everywhere zeío in the interval .I considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating
factor depending only on x. We can find this factor F(x) by Theorem 1 in the last section.
For this purpose we write (1) as

(py-r)dxl-dy:g,
Thisis Pdx -| Qdy: O,where P: py - rand Q:L Hencetherightsideof (16)in
Sec. 1.4 is simply I(p - 0) : p, so that (16) becomes

ldF
F d_ 

: p(X),

Separation and integration gives

#:rO, and h|r'| :fubr.

Taking exponents on both sides, we obtain the desired integrating factor F(x),

F(x) : elp d,.

We now multiply (1) on both sides by this F. Then by the product rule,

uíoo*(y' + py): 7gIpo"y)' - gIPdrr.

By integrating the second and third of these three expressions with respect to x we get

,ío o*y : 
fďo 

d* r dx + c.

Dividing this equation by nÍn dr and denoting the exponent Ip drby h, we obtain

(4) y(x) : r-' (Íďr dx + c), h : [r@) d.x.
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(The constant of integrationin h does not matter; see Prob. 2.) Formula (4) is the general

solution of (1) in the form of an integral. Solving (1) is now reduced to the evaluation
of an integral. In cases in which this cannot be done by the usual methods of calculus,
one may have to use a numeric method for integrals (Sec. 19.5) or for the ODE itself
(Sec. 2I.1).

The structure of (4) is interesting. The only quantity depending on a given initial
condition is c. Accordingly, writing (4) as a sum of two terms,

y(x) : n-' jr', dx l ce-h

Response to the Input r -l Response to the Initial Data.

(4*)

we see the following:

(5) Total Output :

EX A M P L E l First-Order ODE, General Solution

Solve the linear ODE

Solution. Here,

ye-* : e* + c, hence y: e2í + cer

EXAMPLE 2 First-Order ODE, lnitial Value Problem

Solve the initial value problem

y' -| y taíx : s\n2x, y(0) : i.

SOlution. Here p : íaflx, r : sin 2x : 2 sinx cos x, and

rr
Jn a* : J tan x d-u : ln |sec x|.

From this we see that in (4),

,h : 
""" 

*, ,-h : Qor r,

and the general solution of our equation is

,h, : (secx)(2 sin x cos x) : 2 sin x,

input sin 2r.

|2íy -y:e

p:-I, r:e2í, ': I, dx: -x

and from (4) we obtain the general solution

y(x): ,'(["-""'* dx + r) : "',"" l c,): ce* + e2*.

From (4x) and (5) we see that the response to the input ts e2*.

In simpler cases, such as the present, we may not need the general formula (4), but may wish to proceed

directly, multiplying the given equation by eh : e-". This gives

(y' - y)r-' : 1ye-*)' : e2'e-* : "'.
Integrating on both sides, we obtain the same result as before:

y("r) : ror, (r|sinx dx-' .) : c cosx - 2 cos2 x.
\J l

From this and the initial condition, 1 : c . I - 2 . 12; thus c : 3 and the solution of our initial value problem

is y : 3 cos x - 2 cos2 x. Here 3 cos x is the response to the initial data, and -2 "or2 " 
is the response to the

E

l
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ExAMPLE 3 Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate

of change is the difference between a sinusoidal input of a 24-hov period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution. Step 1. Setting up a model. Let y(t) be the hormone level at time r. Then the removal rate is Ky(t).
TheinputrateisÁ i Bcos (2ttl24), whereA is the averageinputrate, andA > Bto maketheinputnonnegative.
(The constants A, B, and K can be determined by measurements.) Hence the model is

y'(t): In - Out: A + Bcos($rr) - Ky(t) or y'+Ky:A*Bcos($nfl.

The initial condition for a particular solution lporl is lport(O) : y6 with r : 0 suitably chosen, e.g., 6:00 a.v.

Step2.Generalsolution.In(4)wehavep:K:const,h:Kt,andr:A*Bcost$ttl.Hence(4)gives
the general solution

29

A
K

_Kt Kt
e

B
n,l44K *c:0,

144Ko l ro

B/rt
' 

^or4 
* l,l++/(CoS |2

, _Kt
-Ť ce

AB
(,--,l++n-K I44K" + 7T"

- i^_, _ *-L ('.O".o,
-.\l2zrsin 
'"'| 

- ro-n'
12 l

y(t): ,-xt[rxt(o - u 
"o, ff) r, n ,"-K'

,r\l-l l2rr,'" , /_]t+

Ťt
12

Ťrí

12

The last term decreases to 0 as / increases, practically after a short time and regardless of c (that is, of the initial
condition). The other part of y(t) is called the steady-state solution because it consists of constant and periodic

terms. The entire solution is called the transient-state solution because it models the transition from rest to the

steady state, These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3. Particular solution. Setting / : 0 in y(t) and choosing yo : 0, we have

],(0)
A

--l I

K

A
--l I

K

thus

Inserting this result into y(t), we obtain the particular solution

!eort(t)

with the steady-state paft as before. To plot !pa6 we must specify values for the constants, say, Á : B : 1 and

K : 0.05. Figure 17 shows this solution. Notice that the transition period is relatively short (although K is small),
and the curve soon looks sinusoidal; this is the response to the input Á -| B cos ($n1 : 1 * cos (bril. l

y
25

20

15

10

5

00 100 2oo t

Fig. 17. Particular solution in Example 3

Bl
A4K, + ", 

(l++rcos 12rrsin#) - (+ - #_ "---),-"'
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Reduction to Linear Form. Bernoul[i Equation
I.{umerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation5

y' + p(x)y : g(x)y" (a any real number).

If a : 0 or a : 1, Equation (6) is linear. Otherwise it is nonlinear. Then we set

u(,x) : [y(")]'-".

We differentiate this and substitute y' from (6), obtaining

u' : (I - a)y-oy' : (1 - a)y-"(gy" - py).

Simplification gives

u,:(I-a)(s-pyl-"),

where.}1-o : u on the right, so that we get the linear ODE

u' + 1I - a)pu: 11 - a)g.

For further ODEs reducible to linear from, see Ince's classic tA1l] listed in App. 1.

See also Team Project 44 tn Problem Set 1.5.

EXAMPLE 4 Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation6):

y':Ay-By'

Solution. Write (B) in the form (6), that is,

y' - Ay: -ur'

to see that cL:2, so that tt: y|-o: ),-'. Differentiate this u and substitutey' from (B),

,/ : -y-ry, -- -y-r(Ay - ay1 - B - Ay-r.

The last term is -Ay-' : -Au. Hence we have obtained the linear ODE

5JAron BERNOULLI (1654-1705), Swiss mathematician, professor at Basel, also known for his contribution

to elasticity theory and mathematical probability. The method for solving Bernoulli's equation was discovered by

the Leibniz in l696. Jakob Bernoulli's students included his nephew NIKLAUS BERNOULLI (1681-1159), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI(1667-I'748),
who had profound influence on the development of calculus, became Jakob's successor at Basel, and had among

his students GABRIEL CRAMER (see Sec. ].1) anď LEONHARD EULER (see Sec, 2.5). His son DANIEL
BERNOULLI (1700-1782) is known for his basic work in fluid flow and the kinetic theory of gases.

GpIERRB-FRANQOIS VERHULST, Belgian statistician, who introduced Eq. (B) as a model for human

population growth in 183B.

(6)

(7)

(8)
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The general solution is tby (a)]

u' + Au: B.

,,:rn-At+BlA.

Since u : lly,this gives the general solution of (8), \

Directly from (8) we see that.y = 0 (_l(r) : 0 for all r) is also a solution.

(Fig. 18).

l

0 1 2 3 4 Timet

Fig. 18. Logistic population model. Curves (9) in Example 4 with A/B : 4

Population Dynamics
The logistic equation (8) plays an important role in population dynamics, a field that
models the evolution of populations of plants, animals, or humans over time r. If B : 0,
then (8) i, y' - dylctt : Ay.In this case its solution (9) is y : (Ilc)eAt andgives exponential
growth, as for a small population in a large country (the United States in early times!).
This is called Malthus's law. (See also Example 3 in Sec. 1.1.)

The term -By'in (8) is a "braking term" that prevents the population from growing
without bound. Indeed, if we write y' : Áyt1 - (.BlA)yl, we see that if y 1AlB,then
y' > 0, so that an initially small population keeps growing as long as y { AlB. But if
y ž AlB, then y' ( 0 and the population is decreasing as long as y > AlB. The limit is
the same in both cases, namely, Á/B. See Fig. 1B.

We see that in the logistic equation (8) the independent variable / does not occur
explicitly. An ODE y' : í(t, y) in which r does not occur explicitly is of the form

y' : í(y)

and is called an autonomous ODE. Thus the logistic equation (8) is autonomous.
Equation (10) has constant solutions, called equilibrium solutions or equilibrium

points. These are determined by the zeros of /(y), because í(y) :0 gives y' : 0 by (10);

hence y : consr. These zeros are known as critical points of (10). An equilibrium
solution is called stable if solutions close to it for some / remain close to it for all further
/. It is called unstable if solutions initially close to it do not remain close to it as r

increases. For instance, } : 0 in Fig. 18 is an unstable equilibrium solution, and y : 4
is a stable one.
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6

A^
B

2

(10)

Population y
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ExAMPLE 5

CHAP. l First-Order ODEs

Stable and Unstable Equilibrium Solutions. "Phase Line Plot"

The oDE y' : (y - 1Xy - 2) has the stable equilibrium solution yr : 1 and the unstable jz : 2, as the

direction field in Fig. 19 suggests. The values y1 and yzare the zeros of the parabola /(y) : (y - I)(y - 2)

in the figure. Now, since the ODE is autonomous, we can "condense" the direction field to a "phase line plot"

giving }1 and !z, andthe direction (upward or downward; of thnarrows in the field, and thus giving information

about the stability or instability of the equilibrium solutions. \ l

llíííl/l/í////////////////////
1
y2

l
Vr

t

/////////
!z-

(A) (B) (C)

Fig. 19. Example 5. (A) Direction field. (B) "Phase line". (C) Parabola /(y)

A few further population models will be discussed in the problem set. For some more

details of population dynamics, see C. W. Clark, Mathematical Bioeconomics, New York,
Wiley, 1976.

Further important applications of linear ODEs follow in the next section.

í í l / / / / í1.//////////////////
/ / / / / / / //.
.r'./././ / ///./
,ž-ž.).r'.?/..).ž,ž

./././ ./,r'.r' ,r'.r' ./.r'
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1. (CAUTION!) Show that e

,-ln(sec ,) : cos ,.
: Ilx (not -x) and

2. (Integration constant) Give a reason why in (4) you

;1:..n""re 
the constant of integration in Jp dx tobe

E GENERAL soLuTloN. lNlTlAL vALuE
PRoBLEMS
Find the general solution. If an initial condition is given,
find also the corresponding particular solution and graph or
sketch it. (Show the details of your work.)

3. y' + 3.5y : 2.3

4.y':4y*x
5. y' + L25y : 5, y(0) : 6.6

6. ,'y' + 3xy : I/x, }(1) : _1

7. y' + ky : 
"'o*

8. y' + 2y : 4 cos 2x, y(iň : 2

9. y' : 6(y - 2-5) tanhI.5x
10. y' + 4x2y : 14x2 - x)g-r2tz

11. y' + 2y sin2x: 2e'o"2*, y(0) : 0

12. y' tan x : 2y - 8, y(Žrů : 0

13. y' + 4y cotZx:6 cos2x, y(irr):2
14. y' + y tan x : ,-o,olr cos ,t, y(0) : 0

15. y' + ylx2:zxell', y(1): 13.86

16. y' cos2 x -l 3y : 1, y(iň : t
17. x3y' + 3x2y: 5 sinh 10x

y(x)
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NONLlNEAR ODES

Using a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

18.y'+y:j2, y(0):-1
19. yt : 5.Jy _ 6.5y,
20. (x2 + 1)y' : -tany, y(0) : irr
21. y' + (* + l)y : ,*'y', y(0) : 0.5

22. y' sin 2y * x cos 2y : 2x

23. Zyy' -| y2 sin í : sin.t, y(Q : \E
24. y' l *'y : (g-í3 sinh -r) l(3y')

FURTHER APPL!cATloNs
25. (Investment programs) Bill opens a retirement

savings account with an initial amount y6 and then adds

$k to the account at the beginning of every year until
retirement at age 65. Assume that the interest is
compounded continuously at the same rate R over the
years. Set up a model for the balance in the account
and find the general solution as well as the particular
solution, letting t : 0 be the instant when the account
is opened. How much money will Bill have in the

account at age 65 if he starts at 25 and invests $1000
initially as well as annually, and the interest rate R is
6Va? How much should he invest initially and annually
(same amounts) to obtain the same final balance as

before if he starts at age 45? First, guess.

26. (Mixing problem) A tank (as in Fig. 9 in Sec. 1.3)

contains 1000 gal of water in which 200lb of salt is
dissolved. 50 gal of brine, each gallon containing
(1 * cos r) lb of dissolved salt, runs into the tank per
minute. The mixture, kept uniform by stirring, runs out
at the same rate. Find the amount of salt in the tank at

any time t (Fig.20).

y

1000

500

20o

050100t
Fi6. 20. Amount of salt y(t) in the tank in Problem 26

27. (Lake Erie) Lake Erie has a water volume of about
450 km3 and a flow rate (in and out) of about 175 kmS
per year. If at some instant the lake has pollution
concentration p : 0.04Vo, how long, approximately,
will it take to decrease it to pl2, assuming that the
inflow is much cleaner, say, it has pollution

concentration pl4, and the
assumption that is only very

8uesS.

28. (Heating and qooling of a
cooling of a builct}ng can be

33

mixture is uniform (an

imperfectly true)? First,

building) Heating and
modeled by the ODE

T' : kt(T - T) + kz(T - Tu) + P,

where T : T(t) is the temperature in the building at

tíme t, To the outside temperature, T- the temperature

wanted in the building, and P the rate of increase of 7
due to machines and people in the building, and k1 and

k2 are (negative) constants. Solve this ODE, assuming
P : const, T- : const, and To varying sinusoidally
over24 hours, say,To- A - Ccos (2nl24)t. Discuss
the effect of each term of the equation on the solution.

29. (Drug injection) Find and solve the model for drug
injection into the bloodstream if, beginning at t : 0, a

constant amount A glmin is injected and the drug is
simultaneously removed at a rate proportional to the

amount of the drug present at time t.

30. (Epidemics) A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between

infected and noninfected persons, who are assumed to

move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as / -+ oo and explain
what it means.

31. (Extinction vs. unlimited growth) If in a population
y(r) the death rate is proportional to the population, and

the birth rate is proportional to the chance encounters

of meeting mates for reproduction, what will the model
be? Without solving, find out what will eventually
happen to a small initial population. To a large one.

Then solve the model,

32. (Harvesting renewable resources. Fishing) Suppose
that the population y(r) of a certain kind of fish is given
by the logistic equation (8), and fish are caught at a

rate Hy proportional to y, Solve this so-called Schaefer
model. Find the equilibrium solutions y1 and }z (> 0)
when H < A. The expression : Hyz is called the

equilibrium harvest or sustainable yield corresponding
to H. Why?

33. (Harvesting) In Prob. 32 find and graph the solution
satisfying y(0) : 2 when (for simplicity) Á : B : I

and H : 0.2. What is the limit? What does it mean?
What if there were no fishing?

34. (Intermittent harvesting) In Prob. 32 assume that you
fish for 3 years, then fishing is banned for the next 3

years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
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continued periodically. Find and graph the solution for
the first 9 years, assuming thatA: B : I, H:0.2,
and y(0) : 2.

43. CAS EXPERIMENT. (a) Solve the ODE
y' - ylx : -x-l cos (1/x). Find an initial condition
for which the arbitrpry constant is zero. Graph the

resulting particular s\ution, experimenting to obtain
a good figure near x : 0.

(b) Generalizing (a) from n : I to arbitrary n, solve
the ODE y' - nylx: -ť-2 cos (1/x). Find an initial
condition as in (a), and experiment with the graph.

44. TEAM PROJECT. Riccati Equation, Clairaut
Equation. A Riccati equation is of the form

(11) y' + p(x)y : 8@)y2 + hlx}.

A Clairaut equation is of the form

(I2) y:xy'+8(y,),
(a) Apply the transformation y : Y + llu to the
Riccati equation (11), where is a solution of (11), and

obtain for z the linear ODE u' + (2Yg - Ďu - -8.
Explain the effect of the transformation by writing it
asy:Ylu,u:llu.
(b) Show thaty : Y : x is a solution of
y' - (2x3 + 1)y - -x'y' - x4 - x * I

and solve this Riccati equation, showing the details.

(c) Solve y' + (3 - 2x2 sin x)y
: -y2 sin x * 2x + 3x2 - x4 sin x, using (and

verifying) that y : x2 is a solution.

(d) By working "backward" from the u-equation find
further Riccati equations that have relatively simple
solutions.

(e) SolvetheClairautequation y: xy' + 7lyl .Hint.
Differentiate this ODE with respect to.t.
(f) Solve the Clairaut equation y'' - xy' + y : 0

in Prob. 16 of Problem Set 1.1.

(g) Show that the Clairaut equation (I2) has as

solutions a family of straight lines y : cx * g(c) and

a singular solution determined by g'(r) - -x) where

s : !' , that forms the envelope of that family.

45. (Variation of parameter) Another method of
obtaining (4) results from the following idea. Write
(3) as cyx, where yx is the exponential function,
which is a solution of the homogeneous linear ODE
y*' + py* :0. Replace the arbitrary constant c in (3)

with a function u tobe determined so that the resulting
function y : uy* is a solution of the nonhomogeneous
linear ODE y' l py : r.

46. TEAM PROJECT. Transformations of ODEs. We
have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such

transformations is an extension of solution methods to

larger classes of ODEs, Describe the key idea of each

of these transformations and give three typical
examples of your choice for each transformation,
showing each step (not just the transformed ODE).

y
2

1.8

1.6

1.4

1.2

1

0.8 o2468t
rig. ž1. Fish population in Problem 34

35. (Harvesting) If a population of mice (in multiples of
1000) follows the logistic law withA : 1 and B :0.25,
and if owls catch at a time rate of L07o of the population
pfesent, what is the model, its equilibrium harvest for
that catch, and its solution?

36. (Harvesting) Do you save work in Prob. 34 if you first
transform the ODE to a linear ODE? Do this
transformation, Solve the resulting ODE. Does the

resulting y(t) agree with that in Prob. 34?

Fr_4,i GEI{ERAL pRopER.TlĚs oF LINEAR oDEs
These properties are of practical and theoretical importance
because they enable us to obtain new solutions from given
ones. Thus in modeling, whenever possible, we prefer linear
ODEs over nonlinear ones, which have no similar
properties.

Show that nonhomogeneous linear ODEs (1) and

homogeneous linear ODEs (2) have the following
properties. Illustrate each property by a calculation for two
or three equations of your choice, Give proofs.

37. The sum )1 -l y2 of two solutions y1 and y, of the

homogeneous equation (2) is a solution of (2), and so
is a scalar multiple a,y1 for any constant a. These
properties are not true for (1)!

38. y : 0 (that is, y(x) : 0 for all x, also written y(x) = 0)

is a solution of (2) [not of (1) if r(x) + 0!], called the

trivial solution.

39. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

40. The difference of two solutions of (1) is a solution ot (2).

41,. If y1 is a solution of (1), what can you say about cy1?

42. It y1 and y2 are solutions of yi * pyt : í1 áild
yL + pyz: f2, fespectively (with the same p!), what
can you say about the sum yt * yz?

-
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1.6 Orthogonat Trajectories. Optional
An important type of problem in physics or geometry is to find a family of curves that
intersect a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential c:urves, curves of equal voltage-the concentric circles in Fig. 22), anď
curves of electric force (the straight radial segments inFig.22).

Fig. 22. Equipotential lines and curves of electric force (dashed)
between two concentric (black) circles (cylinders in space)

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. Orthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found by using ODEs, as follows. Let

(1) G(x,y, c):0

be a given family of curves in the xy-plane, where each curve is specified by some value
of c. This is called a one-parameter family of curves, and c is called the parameter
of the family. For instance, a one-parameter family of quadratíc parabolas is given by
(Fig.23)

! : cxz or, written as in (1), G(x,y, c): y - cxz :0.

Step 1. Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter c.In our example we solve algebraically for
c and then differentiate and simplify; thus,

l,y x'- ZXy :0,

hence

,2Y
X

x4

y
, - 

Llx'

,1
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The last of these equations is the ODE of the given family of curves. It is of the form

y' : í(x, y).

Step 2. Write down the ODE of the orthogonal trajectories, that is, the ODE whose general

solution gives the orthogonal trajectories of the given curves. This ODE is

with the same / as in (2). Why? Well, a given curve passing through a point (xg, y6) has

slope .f(xo, yo) at that point, by (2). The trajectory through (xo, yo) has slope -Ilf(x6, yg)

by (3). The product of these slopes is - 1, as we see. From calculus it is known that this

is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at

(xo, yo)), hence of the curve and its orthogonal trajectory at (x9, yg).

Step 3. Solve (3).

For our parabolas ! : cx2 we have y' : 2ylx. Hence their orthogonal trajectories are

obtained from' : -xlry or 2' -l x 0. By integration,' + ir' : c*. These are

just the origin, and c * < 0 gives no real solution at all-

Fig. 23. Parabolas and orthogonal trajectories (ellipses) in the text

(3)

@ oRTHoGoNALTRAJEcToRtEs
Sketch or graph some of the given curves. Guess what their
orthogonal trajectories may look like. Find these

trajectories.

(Show the details of your work.)

Ly:4x*c 2.y:clx
3.y:cx 4.y':2x2+c
5.xzy:, 6.y:ce-3*

FJn oTHER FoRMs oF THE oDEs (2) AND (3)

13. (J as independent variable) Show that (3) may be

written dxld : -í(x, }). Use this form to find the

orthogonal trajectories ofy : 2x l ce-".

7, y : 
"r2l29.4x2*y':,

II. x - cea|4

8.x2-y2:c
10.x:,
12. x2 + () - c)2 : c2

36

-|y:-
f(x,)

x

a '.. -z

- -_4
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14. (Family 8(r,J) = c) Show that if a family is given as

8@, y) : c, then the orthogonal trajectories can be
obtained from the following ODE, and use the latter to
solve Prob. 6 written in the form g(x, !) : c.

d _ asla

dx dgl\x

15. (Cauchy-Riemann equations) Show that for a family
u(x, y) : c : const the orthogonal trajectories
u(x,y) : c* : const canbe obtained from the following
Cauchy-Riemann equations (which aíe basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of e* siny : const. (Here,

subscripts denote partial derivatives.)

U*: Ua. Ua: -U*

Eo-ro-l AppllcAT!oNs
16. (Fluid flow) Suppose that the streamlines of the flow

(paths of the particles of the fluid) in Fig. 24 are
Ý(x, y) : xy : const. Find their orthogonal trajectories
(called equipotential lines, for reasons given in Sec.
18.4).

-
Fig.24. Flow in a channel in Problem ]6

17. (Electric íield) Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders (Fig.22) be given by u(x,y): x2 l y' : ,.
Use the method in the text to find their orthogonal
trajectories (the curves of electric force).

37

18. (Electric field) The lines of electric force of two
opposite charges of the same strength at (-1, 0) and
(1, 0) are the circles through (-l, 0) and (1, 0). Show
that these circles are given by x2 + (y - ,)' : l * c2.

Show that the equipotential lines (orthogonal
trajectories of those circles) are the circles given by
(x -| gx12 * ' : c*2 - 1 (dashed in Fig. 25).

Fig. 25. Electric field in Problem'l8

19. (Temperature field) Let the isotherms (curves of
constant temperature) in a body in the upper half-plane
y > 0 be given by 4x2 -| 9y' : c. Find the orthogonal
trajectories (the curves along which heat will flow in
regions filled with heat-conducting material and free
of heat sources or heat sinks).

20. TEAM PROJECT. Conic Sections. (A) State the

main steps of the present method of obtaining orthogonal
trajectories.

@) Find conditions under which the orthogonal
trajectories of families of ellipses x2la2 + y2lb2 : c are
again conic sections. Illustrate your result graphically
by sketches or by using your CAS. What happens if
a ---> 0? If b ---> 0?

(C) Investigate families of hyperbolas
x2la2 - y2lb2 : c in asimilar fashion.

(D) Can you find more complicated curves for which
you get ODEs that you can solve? Give it a try.

1.7 Existence and Uniqueness of solutions
The initial value problem

ly'l +lyl :0, y(0) : 1

has no solution because } : 0 (that is, y(x) : 0 for all x) is the only solution of the ODE.
The initial value problem

Y' :2x, y(0) : 1
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has precisely one solution,

has infinitely many solutions, namely, } : 1 +
y(0) : 1 for all c.

From these examples we see that an initial

namely, y : x2 * 1. The initial value probiem

xl-' : y - 1, y(0) : l

(1) y' : f(x, y),

may have no solution, precisely one solution, or more than one solution. This fact leads
to the following two fundamental questions.

problem of Existence

Under what condítions does an initial value problem of the form (I) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

Theorems that state such conditions are called existence
theorems, respectively.

Of course, for our simple examples we need no theorems
examples by inspection; however, for complicated ODEs
considerable practical importance. Even when you are sure
system behaves uniquely, occasionally your model may be
give a faithful picture of the reality.

cx, where c is an arbitrary constant because

value problem

y(xo) : yo

theorems and uniqueness

because we can solve these

such theorems may be of
that your physical or other
oversimplified and may not

THEoREM l Existence Theorem

Let the right side f(x, y) of the ODE in the initial value problem

(1) y' : f(.x, y), y(xo) : yo

be continuous at all points (x, y) in some rectangle

R: |x-xol 1a, ly-yol<U

and bounded in R; that is, there is a number K such that

(Fig.26)

(2) lí@, l = t< for all (x, y) in R.

Then the initial value problem (I) has at least one solution y(x). This solution exists
at least for all x in the subinterval l* - xol < a of the interval l" - "ol 

1 a; here,
a is the smaller of the two numbers a and b/K.
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y

ya+b

yO

v^-b
" l)

Xa-a Xo xo+ a X

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function /(r, y) : x2 + y2 is bounded (with K : 2) in the
Square lrl . t, Iyl < t. The function /(x, y) : tan (x + y) is not bounded for |_r + y| < rr/2.
Explain!)

Uniqueness Theorem

Let f and its partial derivative ío : dí/dy be continuous for all (x, y) in the
rectangle R (Fig. 26) and bounded, srty,

(a) l/(", y)l < K, (b) |ír{r, y)| 
= 

M for all (x, y) in R.(3)

Then the initial value problem (I) has at most one solution y(x). Thus, by Theorem I,
the Problem has precisely one solution. This solution exists at least for all x in that
subinterval l, - xol < a.

Understanding These Theorems
These two theorems take care of almost all practical cases. Theorem 1 says that if f (x, y)
is continuous in Some region in the xy-plane containing the point (xo, yo), then the initial
value problem (1) has at least one solution.

Theorem 2 saYs that if, moreover, the partial derivative óflóy of / with respect to y
exists and is continuous in that region, then (1) can have at most one solution; ňence, by
Theorem 1, it has precisely one solution.

Read again what You have just read-these are entirely new ideas in our discussion.
Proofs of these theorems are beyond the level of this book (see Ref. tA11] in App. 1);

however, the following remarks and examples may help you to a good understandling or
the theorems.

Since Y' : Í(x, Y), the condition (2) implies that |y'l = 
r; that is, the slope of any

solution curve Y(x) in R is at least -K and at most K. Hence a solution curve that passes
through the Point (xo,Yo) must lie in the colored region in Fig. 2J onthe next page bounded
bY the lines /, and 12 whose slopes are -K and, K, respectively. Depending on the form
of R, two different cases may arise. In the first case, shown in Fig. b7u, *" have blK >
a and therefore (I : a in the existence theorem, which then asserts that the solution exists
for all x between Xg - a and, ío * a. In the second case, shown in Fig. 27b, wehave
blK < a. Therefore, q. : blK < a, and all we can conclude from the theorems is that the
solution exists for all x between xg - blK and, xo * b/K. For larger or smaller r,s the
solution curve maY leave the rectangle R, and since nothing is aszumed about / outside
R, nothing can be concluded about the solution for those Iarger or smaller r's; that is, for
such x's the solution may or may not exist-we don't know.

39
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y

yo+ b

yo

v^-b

(4)

y

y^+b

yo

y^-b

(a) (b)

Fig.27. The condition (2) of the existence theorem. (a) First case. (b) Second case

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with aIarge base (a long x-interval) will lead to the case in Fíg.27b.

E x A M P L E l 
:::;::;:ffi::ťi.ou.-

y'-I+y2, y(0):0

and take the rectangle n; l"l < 5, ly| < 3. Then a : 5, b : 3, and

i/(,r,y)l : |r * y'l= r : rc,

lar l

lŤl:2lyl=M:6.ld)l

b

K

Indeed, the solution of the problem is y : tanx (see Sec. 1.3, Example 1). This solution is discontinuous at
+rl2,and there is no continuous solution valid in the entire interval l"l < S from which we started. l

The conditions in the two theorems are sufficient conditions rather than necessary ones, and
can be lessened. In particular,by the mean value theorem of differential calculus we have

f (x, y) - f(x, r) : 0z - yr) + ld! lu:u

where (x, y) and (x, y2) are assumed to be in R, and ! is a suitable value between y1 and
y2. From this and (3b) it follows that

lf @, yr) - í(x, yr)l 
= 

Mly, - yrl.

E

It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.7 However, continuity of f(x, y) is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.
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ExAMPLE 2 Nonuniqueness

The initial value problem

has the two solutions

41

y' : \/Ň,

and y* :

y(0) : 0

y=0 [ ,'t+

|-*'t+

if x>0

if -r{0

although í(x, y): \,4' is continuous for all y. The Lipschitz condition (4) is violated in any region that includes

the line y : 0, because for y1 : 0 and positive y2 we have

|í@,lz)
, "/--/tx.y1)| _Yyz _ l tr6 r ol

ly, - yrl jz \E
and this can be made as large as we please by choosing y2 sufficiently small, whereas (4) requires that

quotient on the left side of (5) should not exceed a fixed constant M.

(5)

the
l

1. (Vertical strip) If the assumptions of Theorems I and 2

are satisfied not merely in a rectangle but in a vertical
infinite strip |x - xol { a, in what interval will the

solution of (1) exist?

2. (Existence?) Does the initial value problem
(x - I)y' :2!, y(1) : 1have a solution? Does your
result contradict our present theorems?

3. (Common points) Can two solution curves of the same

ODE have a common point in a rectangle in which the

assumptions of the present theorems are satisfied?

4. (Change of initial condition) What happens in Prob. 2

if you replace y(1) : 1 with y(I) : k?

5. (Linear ODE) If p and r in y' + p(x)y : r(x) are

continuous for all x in an interval l" - ,ol š a, show
that f (x, y) in this ODE satisfies the conditions of our
present theorems, so that a conesponding initial value
problem has a unique solution, Do you actually need

these theorems for this ODE?
6. (Three possible cases) Find all initial conditions such

that(x2 - 4x)y' : (2x - 4)y has no solution, precisely
one solution, and more than one solution.

7. (Length of r-interval) In most cases the solution of an

initial value problem (1) exists in an x-interval larger
than that guaranteed by the present theorems. Show this
fact for y' : 2y2,y(1) : 1 by finding the best possible
a (choosing b optimally) and comparing the result with
the actual solution.

8. PROJECT. Lipschitz Condition. (A) State the

definition of a Lipschitz condition. Explain its relation
to the existence of a partial derivative. Explain its
significance in our present context. Illustrate your
statements by examples of your own,

(B) Showthatfor alinearODEy' + p(x)y: r(í)with
continuous p andrin|x - xol É a aLipschitz condition
holds. This is remarkable because it means that for a
linear ODE the continuity of f (x, y) guarantees not only
the existence but also the uniqueness of the solution of
an initial value problem. (Of course, this also follows
directly from (4) in Sec. 1.5.)

(C) Discuss the uniqueness of solution for a few simple
ODEs that you can solve by one of the methods

considered, and find whether a Lipschitz condition is
satisfied.

9. (Maximum c) What is the largest possible a in
Example 1 in the text?

10. CAS PROJECT. Picard Iteration. (A) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

ť 
"ru,yGD 

dt.(6) y(x) : yo -|

zRUooLp LIPSCHITZ (1832-1903), German mathematician. Lipschitz and similar conditions are important

in modern theories, for instance, in partial differential equations.
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This form (6) of (1) suggests Picard's
method8, which is defined by

(B) Apply the iteration to y' : x l y, y(0) : 0. Also
solve the problem exactly.
(C) Apply the iteration to y' : 2y2, y(0) : 1. Also
solve the problem exactly.

(D) Find all solutions of y' :2\5.y(1) : 0. Which
of them does Picard's iteration approximate?
(E) Experiment with the conjecture that Picard's
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving
y6 outside the integral as it is). Begin with a simple
ODE and see what happens. When you are reasonably
sure, take a slightly more complicated ODE and give
it a try.

-Il(1) jn(x) : yo + J f G, yn_11G)) dt. n :
ro

iteration

,l 1...
Ll L;

It gives approximations y1, !z, !3,. . . of the unknown
solution y of (1). Indeed, you obtain y, by substituting

} : )o on the right and integrating-this is the first
step-, then y, by substituting y : }r o11 the right and
integrating-this is the second step-, and so on. Write
a program of the iteration that gives a printout of the

first approximations !o, !t,..., .h,l as well as their
graphs on common axes, Try your program on two
initial value problems of your own choice.

1. Explain the terms ordinary dffirential eclucttion (ODE),
partial dffirential equation (PDE), order, general
solution, and particular solution Give examples. Why
are these concepts of importance?

2. what is an initial condition? How is this condition used
in an initial value problem?

3. What is a homogeneous linear ODE? A nonhomogeneous
linear ODE? Why are these equations simpler than

nonlinear ODEs?
4. What do you know about direction fields and their

practical importance?

5. Give examples of mechanical problems that lead to ODEs.
6. Why do electric circuits lead to ODEs?
7. Make a list of the solution methods considered. Explain

each method with a few short sentences and illustrate
it by a typical example.

8. Can certain ODEs be solved by more than one method?
Give three examples.

9. What are integrating factors? Explain the idea. Give
examples.

10. Does every first-order ODE have a solution? A general
solution? What do you know about uniqueness oť
solutions?

E1-141 DIREcTIoN FIELDs

Graph a direction field (by a CAS or by hand) and sketch
some of the solution curves. Solve the ODE exactly and
compare.

|1. y' : I * 4y2 12. y| : 3y - 2x

13. y' : 4y * y2 14. y| : I6xly

rl_rd GENERAL soluTloN
Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

15. y| : x2(t + y,)
16.y':x(j_x2+11
17. yy' l xy2 : ,
18. - zr sin n,x cosh 3y dx * 3 cos zrx sinh 3y dy : 0

19. y' + ysinx : sinx 20. y' - y : Ily
21. 3 sin 2y dx -l 2x cos 2y dy : 0

22. xy' : x tan (ylx) + y
23. (y cos -ry - 2x) dx -f (x cos .ry + 2y) dy : 0

24. xy' : (y - 2x)2 + y (Set y - 2x : z.)
25. sin (y - x)dx * fcos (y - x) - sin (y - x)] dy : 0

26. xy' : 1ylx;3 + y

W4 lNlTlAL vALuE pRoBLEMs

Solve the following initial value problems. Indicate the
method used. Show the details of your work.

27. yy' * ,r : 0, y(3) : 4

28. y' - 3y : -I2y2, y(O) : 2

29. y' : I * y2, y(žň : 0

30. y' -l rry : 2b cos Ťx, y(0) : 0

31,. (2xy2 - sin x) dx + (2 + 2*'y) dy:0, y(0): 1

32. |2y + y2lx -l e*(I + Ilx)l dx -l (x + 2y) dy : 0,
y(1) : 1

BEMILB PICARD (1856-194l), French mathematician, also known for his important contributions to complex
analysis (see Sec. 16.2for his famous theorem). Picard used his method to prove Theorems l anď2 as well as
the convergence of the sequence (7) to the solution of (1). In precomputer times the iteration was of littlep ractical
value because of the intesrations.

E

T!ONS AND PROBLEMS



Summary of Chapter 1

F}fi] AppLlcATloNs,MoDELlNG
33. (Heat flow) If the isotherms in a region are x2 - y2 : c,

what are the curves of heat flow (assuming orthogonality)?

34. (Law of cooling) A thermometer showing 10"C is
brought into a room whose temperature is 25'C. After
5 minutes it shows 20"C. When will the thermometer
practically reach the room temperature, say, 24.9"C?

35. (Half-life) If I)%a of aradioactive substance disintegrates
in 4 days, what is its half-life?

36. (Half-life) What is the half-life of a substance if after
5 days, 0.020 g is present and after 10 days, 0.015 g?

37. (Half-life) When w1|| 997o of the substance in Prob. 35

have disintegrated?

38. (Air circulation) In a room containing 20 000 ft3 of
air, 600 ft3 of fresh air flows in per minute, and the
mixture (made practically uniform by circulating fans)
is exhausted at a rate of 600 cubic feet per minute
(cfm). What is the amount of fresh air y(t) at any time
if y(0) : 0? After what time wi|I907o of the air be
fresh?

39. (Electric field) If the equipotential lines in a region of
the xy-plan e are 4x2 * y' : c, what are the curves of
the electrical force? sketch both families of curves.

43

40. (Chemistry) In a bimolecular reaction A + B ---> M,
a moles per liter of a substance Á and b moles per liter
of a substance B aíe combined, under constant
temperature the rate of reaction is

y' : k(a - y)(b - y) (Law of mass action);

that is, y' is proportional to the product of the
concentrations of the substances that are reacting, whore
y(r) is the number of moles per liter which have reacted
after time r. Solve this ODE, assuming that a * b.

41. (Population) Find the population y(0 if the birth rate is
proportional to y(r) and the death rate is proportional to
the square of y(r).

42. (Carves) Find all curves in the first quadrant of the xy-
plane such that for every tangent, the segment between
the coordinate axes is bisected by the point of tangency.
(Make a sketch.)

43. (Optics) Lambert's law of absorptiong states that the
absorption of light in a thin transparent layer is
proportional to the thickness of the layer and to the
amount of light incident on that layer. Formulate this
law as an ODE and solve it.

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1) F(x, y, )') : O or in explicit form y' : í(x, y)

involving the derivative y' : dylclx of an unknown function y, given functions of
x, and, perhaps, y itself. If the independent variable x is time, we denote itby t.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3-1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

glogaNN 
HEINRICH LAMBERT (1128-1171), German physicist and mathematician.

First-Order ODEs
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(2)

A first-order ODE usually has a general solution, that is, a solution involving an

arbitrary constant, which we denote by c. In applications we usually have to find a

unique solution by determining a value of c from an initial condition y(xo) : yo.

Together with the ODE this is called an initial yalue problem

y' : f(x, y), y(xo,) : yo (xo, yo given numbers)

and its solution is a particular solution of the ODE. Geometrically, a general

solution represents a family of curves, which can be graphed by using direction
fields (Sec. 1.2). And each particular solution coffesponds to one of these curves.

A separable ODE is one that we can put into the form

sO) dy : f(x) dx (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as ylx : u)

and solve by integrating on both sides.
An exact ODE is of the form

M(x, y) dx -| N(-r, y) dy : 0 (Sec. 1.4)

where M dx + N dy is the differential

du:u*dx-luody

of a functionu(x, }), so that from du:0 we immediately get the implicit general

solution u(x, y) : c. This method extends to nonexact ODEs that can be made exact

by multiplying them by some function F(x, y), called an integrating factor (Sec. 1.4).

Linear ODEs

(5) y' + p(x)y: r(x)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.

certain nonlinear oDEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

y' + p(x)y: g(x)y" (Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard's existence and uniqueness theorems are explained in Sec. 1.7 (and

Picard's iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 2I.I and 2I.2
immediately after this chapter, as indicated in the chapter opening.

(3)

(4)
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Second-Order Linear ODEs

Ordinary differential equations (ODEs) may be divided into two large classes, linear
ODEs and nonlinear ODEs. Whereas nonlinear ODEs of second (and higher) order
generally are difficult to solve, linear ODEs are much simpler because various properties

of their solutions can be characterizeďin a general way, and there are standard methods
for solving many of these equations.

Linear ODEs of the second order are the most important ones because of their
applications in mechanical and electrical engineering (Secs. 2.4,2.8,2.9). Andtheir theory
is typical of that of all linear ODEs, but the formulas are simpler than for higher order
equations. Also the transition to higher order (in Chap. 3) will be almost immediate.

This chapter includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

(Boundary value problems follow in Chap. 5, which also contains solution methods for
Legendre's, Bessel's, and the hypergeometric equations.)

COMMENT. Numerics for second-order ODEs can be studied immediately after this
chapter. See Sec. 2L3, which is independent of other sections in Chaps. I9-2L

Prerequisite: Chap. 1, in particular, Sec. 1.5.

Sections that may be omitted in a shorter course: 2.3,2.9,2.I0.
References and Answers to Problems; App. 1 Part A, and App.2.

2.1 Homoteneous Linear ODEs of Second Order
We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,

2.8,2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

y" + p(x)y' + q(x)y: r(x)

and nonlinear if it cannot be written in this form.
The distinctive feature of this equation is that itis linear iny and its derivatiyes, whereas

the functions p, q, and r on the right may be any given functions of x. If the equation
begins with, say, f(x)y", then divide by f(x) to have the standard form (1) with y" as

the first term, which is practical.

(1)

45
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If r(x) = 0 (that is, r(x) : 0 for all x considered; read"r(x) is identically zero"), then

(1) reduces to

(2) y" + p(x)y' * q(x)y:O

and is called homogeneous. If r(x) * 0, then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.

For instance, a nonhomogeneous linear ODE is

y" + 25y : e-* cos x,

and a homogeneous linear ODE is

xy" + y' + xy : O, instandardform y" + ! r' *y : 0.

An example of a nonlinear ODE is

y"y*y'2:0.

The functions p and q in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

y : h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval I
if h ís defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknowny by h, the derivativey' by h', and the

second derivative y" by h". Examples are given below.

Homogeneous Linear ODEs: Superposition Principle
Sections 2.I-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining

sections of the chapter to nonhomogeneous linear ODEs.
Linear ODEs have a rich solution structure. For the homogeneous equation the backbone

of this structure is the superposition principle or linearity principle, which says that we

can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us

first discuss an example.

ExAMpLE t Homogeneous Linear ODEs: Superposition of Solutions

Ihe functions y : cos x and y : sin x are solutions of the homogeneous linear ODE

y"+):0

for all x. We verify this by differentiation and substitution. We obtain (cos x)" : -cos x; hence

1," +.y: (cosx)" + cos.T: -cosl -| cosx: 0.

Similarly fory : sinx (veriíy!). We can go an important step further. We multiply cosx by any constant, for

instance, 4.'7, and sinx by, say, -2, and take the sum of the results, claiming that it is a solution. Indeed,

differentiation and substitution gives

(4.7cos x-2 sinr)" + (4,1cos. - 2sinl): -4.1cosr-1- 2sinx-]- 4.7cosr- 2sinx:0,
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In this example we have obtained from y, (: cos x) and lz (: sin x) a function of the form

(3) ! : ctll * czyz (cy c2 arbitrary constants).

This is called a linear combination of y1 and yz.In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

THEoREM l Fundamental Theorem for the Homoteneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution oí (2) on I. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

P R O O F Let y1 and y2 be solutions of (2) on 1. Then by substituting ! : ctlt
derivatives into (2), and using the familiar rule (cůt l ,ryr)' : cry't
get

l czyz and its
-Ť ,ryl, etc., we

y" + py' + qy : (cryr l ,ryr)" -| p(c t l ,ryr)' -| q(cůt -l czyz)

: ců'l, + ,ry'J, + p(cl! + ,ry!) -| q(c t-l czyz)

: cíy| + py', + qyr) + c2OU + pyl l qyz) : 0,

since in the last line, (, , ,) : 0 because y, and y2 are solutions, by assumption. This shows
that y is a solution of (2) on I. l

CAUTION! Don't forget that this highly important theorem holds for homogeneous

Ir:?;?":,'"!n'J :::ťrtr,"rir1!:':""'nonhomogeneous 'inear 
or nonlinear oDEs, as

EXAMPLE 2 A Nonhomoteneous Linear ODE

Verifybysubstitutionthatthefunctionsy: l tcosxandy: l *sinxaresolutionsofthenonhomogeneous
linear ODE

y" * y : 1,

but their sum is not a solution. Neither is, for instance,2(I i cosx) or 5(1 i sin.r).

EXAMPLE 3 A NonlinearODE

Verify by substitution that the functions y : x2 and y : 1 are solutions of the nonlinear ODE

y"y - xy' :0,

but their sum is not a solution. Neither ls -x2, so you cannot even multiply by -1!

lnitial Value Prob[em. Basis. General Solution
Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition y(xo) : yo. The initial condition is used to determine the
arbitrary constant c in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solutiolz of the
ODE. These ideas extend to second-order equations as follows.

l

tr
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For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

y(xo) : Ko, y'(x : Kt.

These conditions prescribe given values Ko and K, of the solution and its first derivative
(the slope of its curve) at the same given x : xo in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants c, and c2 ín a
general solution

(4)

ExAMPLE 4

(5) !:ctjtlczyz

of the ODE; here, y1 and y2 aíe suitable solutions of the ODE, with "suitable" to be
explained after the next example. This results in a unique solution, passing through the
point (xo, Ko) with K, as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

!nitial value problem

Solve the initial value problem

y"-l-y:0, y(0) : 3.0, y'(o) : -o.s.

Solution. Sfup 1. General solution. The functions cos rr and sin x are solutions of the ODE (by Example
1), and we take

y: CI cosx i c2sinx.

This will turn out to be a general solution as defined below.

Step2. Particularsolution. Weneedthederivativey' : -c1 sin xl c2cosx.Fromthisandtheinitialvalues
we obtain, since cos 0 : 1 and sin 0 : 0,

y(0) : c1 : 3.0 and y'(0) : cz: _0.5.

This gives as the solution of our initial value problem the particular solution

y : 3.0 cos,r - 0,5 sin x.

Figure 28 shows that at x : 0 it has the value 3.0 and the slope -0.5, so that its tangent intersects the x-axis
at x : 3.0i0.5 : 6.0. (The scales on the axes differ!) l

y

3

2

1

0

_1

-Z

6\P Io l ,c

Fig. 28. Particular solution and initial tantent in Example 4

Observation. Our choice of y1 anď y, was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions lt : cos -r and

-l
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lz : k cos.tr, so that ylly2 : Ilk : const. Then we can write ! : ctlt * czyz in the
form

j : ctcos.r * cr(kcosx) : Ccosx where C : ct* c2k.

Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

DEFINlTloN General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval 1is a solution (5) in which
y1 and y2 aíe solutions of (2) on 1 that are not proportional, and c1 and c2 2.íe arbitrary
constants. These lylz are called a basis (or a fundamental system) of solutions
of (2) on I

A particular solution of (2) on 1is obtained if we assign specific values to c1

and c2 in (5).

For the definition of an interval see Sec. 1.1. Also, clanďc2 must sometimes be restricted
to some interval in order to avoid complex expressions in the solution. Furthermore, as

usual, y1 and lz Te called proportional on 1 if for aII x on I,

(a) lt: k}z (b) !z: Ljt

where k and / are numbers, zero or not. (Note that (a) implies (b) if and only If k + 0).

Actually, we can reformulate our definition of a basis by using a concept of general
importance. Namely, two functions y1 and y2 ate called linearly independent on an

interval 1where they are defined if

(7) klt@) -l k2y2@) :0 everywhere on / implies kr : 0 and k2 : 0.
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(6)

DEFlNlTloN

And y1 artď y2 are called linearly dependent
ky kz not both zero. Then if kl + 0 or k2 * 0,
proportional,

k2
.'l't:-, lz

Á1

If the coefficients p and q
general solution. It yields

on 1 if (7) also holds for some constants
we can divide and see that y1 anď y2 are

kr
)2- , )7.

K2

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

Basis (Reformulated)

A basis of solutions of (2) on an open interval 1is a pair of linearly independent
solutions of (2) on 1.

ot (2) are continuous on some open interval I, then (2) has a
the unique solution of any initial value problem (2), (4). It
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includes all solutions of (2) on 1; hence (2) has no singular solutions (solutions not

obtainable from of a general solution; see also Problem Set 1.1). Al1 this will be shown

in Sec. 2.6.

Basis, General Solution, Particular Solution

cosxand sinxin Example 4 form abasis of solutions of the ODE y" + y:0 for allxbecause theirquotient
iscotx*const(ortanx*const).Hence!:ctcos_r+c2sin-risageneralsolution.Thesolution

ExAMPLE 5

ExAMPLE 6

ExAMPLE 7

y : 3,0 cos.x - 0.5 sin"r of the initial value problem is a particular solution.

Basis, General Solution, Particular Solution

Verify by substitution that ll : er and y2 : e-* are solutions of the ODE y" -
value problem

Y"-y:0, yt0t : 6. y'{0) : -2.

Solution. (r')" - e* : 0 anď (e-')" - e-r : 0 shows thaí eÍ anď e-' are solutions. They are not

proportional , e'le-* : 
"2* 

+ const. Hence e', -* form a basis for all x. We now write down the corresponding

general solution and its derivative and equate their values at 0 to the given initial conditions,

!: cler * C2e-Í,
I I -.T!:C -Cze y(0) : c1 l c2: 6, y'(0): ct- cz:

By addition and subtraction, c1 : 2, cz: 4, so that the answer is y : 2rl í 4e-r. This is the particular solution

satisfying the two initial conditions.

Find a Basis if One Solution Is Known.
Reduction of order
It happens quite often that one solution can be found by inspection or in some other way.

Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order.l We first show this method for an example
and then in general.

Reduction of order if a solution ls known. Basis

Find a basis of solutions of the ODE

(*2 -,)y" - xy' + y:0,

Solution. Inspection shows that y1 : x is a solution because y! : t and y'!: 0, so that the first term

vanishes identically and the second and third terms cancel. The idea of the method is to substitute

ll ll ^ ly:uX+lu

l

0. Then solve the initial

l

! : U!1: UX, y':u'x+tt,

into the ODE. This gives

(x2 - x)(u"x + 2u') - x(u'x -l w) * ux:0.

ltx anď -xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

(x2 - x)(u"x + 2u') - x2w' : O, (x2-x)w" *(x-2)u|:O.

1Credited to the great mathematician JOSEPH LOUIS LAGRANGE (1736-1813), who was born in Turin,

of French extraction, got his first professorship when he was 19 (at the Military Academy of Turin), became

director of the mathematical section of the Berlin Academy ín I] 66, and moved to Paris in 1181 . His important

ma.jor work was in the calculus of variations, celestial mechanics, general mechanics (Mécanique anaLytiqlte,

Paris, 1788), differential equations, approximation theory, algebra, and number theory.
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ThisODEisof firstorderin u: l,|,',namely, (x2 - x)u'+ (.r - 2)u: O.Separationof variablesandintegration
gives

du x-2 / t 2\
;:- xr-x'*:l,í-l -;)'-

lx - ll
lnu| :ln|x- |1 -2ln|x| :ln-?-

We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

x-| 1 | f t

,: _, 
:;-?. u:Judx:lnl*l +r, hence jz:Ltx:xh|x| +1.

Since y1 : r and lz: x ln |x| + 1 are linearly independent (their quotient is not constant), we have obtained

a basis of solutions, valid for all positive x. l

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]

y"+p(x)y'*q(x)y:O.

Note that we now take the ODE in standard form, with y", not f (x)y"-this is essential
in applying our subsequent formulas. We assume a solution }r of (2) on an open interval
1to be known and want to find a basis. For this we need a second linearly independent
solution lz of (2) on 1. To Eet !z, we substitute

j : 1z: u!-]., y' : yL: Lt'y7 * ,y'r, y" : y'J,: u"y, l 2u'y', + ,yi

into (2). This gives

(8) u"y, l 2r'y'",, * uy'], f p(r'y, + 
"y'r) 

* quy1 : 0.

Collecting terms ifl l,t", u' , anď u, we have

u"y, * u'(2yl + py) + u(yi + py'r-| qy) : O.

Now comes the main point, Since yl is a solution of (2), the expression in the last
parentheses is zero. Hence z is gone, and we are left with an ODE in u' and u" .We divide
this remaining ODE by y, and set bl' : (J, Ll" : (J',

1,1" + u' 2Y| -| PY' - o, thus {J' + ("l * ,) U : O.
lt \y, 'l

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

+: (+ -,) and

By taking exponents we finally obtain

rn |u| - -2k lyrl - Iu o*.

(9)
1U: ,-ejt-

-Ip dr

5t
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Here IJ : 6l , so that u: JU dx.Hence the desired second solution is

jz:jtu:,rIUdx,

The quotient y2ly. : Ll : IU dx cannot be constant (since U > 0), so that y1 and y2 form

a basis of solutions.

r GENERAL soLuTloN. lNlTlAL vALuE
PRoBLEM

(More in the next problem set.) Verify by substitution that

the given functions form a basis. Solve the given initial
value problem. (Show the details of your work.)

1. y" - 16y : g, e4*, e-4', y(0) : 3, y'10; : 3

2. y" + 25y : 0, cos 5x, sin 5x, y(0) : 0.8,
,.^.y (U) : _ó,5

3. y" -l 2y' * 2y : 0, e-' cos x,

y(0): l,_y'(0): -l
4. y" - 6y' * 9y : O, e3', xe3,,

y'(0) : 4.6
-rlll5. í-v + xv

y'it) : -6
6. ,'y" - Jry' +

y'(l) : 1.0

4y : O, x2, x-2, y(1) : 11,

15y : O, x3, x5, y(7) : 0.4,

@ LINEAR INDEIENDENcE AND DEIENDENcE

Are the following functions linearly independent on the

given interval?

7.x,xlnx(O<x<10)
8. 3x2,Zxn (0 < .T < 1)

9. eo*, e-"* (any interval)

1,0. cos2 x, sin2 x (any interval)

11. ln x,In x2 (x > 0)

|2.x-2,x+2(-2<x<2)
13. 5 sin x cos x, 3 sin 2x (x > 0)

14, 0, sinh rrx (x > 0)

REDUCTION OF ORDER is important because it gives a

simpler ODE. A second-order ODE F(x,y,y' ,y"): 0, linear
or not, can be reduced to first order if y does not occur
explicitly (Prob. 15) or if x does not occur explicitly (Prob.

16) or if the ODE is homogeneous linear and we know a

solution (see the text).

15. (Reduction) Show that F(x, y' , y") : 0 can be reduced
to first order in z : y' (from which y follows by
integration). Give two examples of your own.

16. (Reduction) Show that F(y, y' , y"): 0 can be reduced
to a first-order ODE with y as the independent variable
andy" : (clztdy)z, where z: y|; derive this by the

chain rule. Give two examples.

@ Reduce to first order and solve (showing each

step in detail).

I7. y" : ky'
18.y":I*y',
19. yy" - 4y''
20. xy" + 2y' * xy : 0, lt : x-1 cosx
21. y" + y'3 siny : 0

22. (t - *')y" - Zxy' + 2y : g, !t: x

23. (Motion) A small body moves on a straight line. Its
velocity equals twice the reciprocal of its acceleration,
If at t : 0 the body has distance 1 m from the origin
and velocity 2 mlsec, what are its distance and velocity
after 3 sec?

24. (Hanging cable) It can be shown that the curve y(x)
of an inextensible flexible homogeneous cable
hanging between two fixed points is obtained by

solving y" : 1r1/ 1 a ,n, where the constant k depends

on the weight. This curve is called a catenary (from
Latin catena : the chain). Find and graph y(x),
assuming k : I and those fixed points are (- 1, 0) and
(1, 0) in a vertical xy-plane.

25. (Curves) Find and sketch or graph the curves passing
through the origin with slope 1 for which the second

derivative is proportional to the first.

26. WRITING PROJECT. General Properties of
Solutions of Linear ODEs. Write a short essay (with
proofs and simple examples of your own) that includes
the following.
(a) The superposition principle.

(b) y - 0 is a solution of the homogeneous equation
(2) (called the trivial solution).
(c) The sum ! : lt * y2 of a solution y1 of (1) and
y2 of (2) is a solution of (1).

(d) Explore possibilities of making further general

statements on solutions of (1) and (2) (sums,

differences, multiples).

27. CAS PROJECT. Linear Independence. Write a

program for testing linear independence and

dependence. Try it out on some of the problems in this
problem set and on examples of your own.

e-* Sin x,

y(0) : -7.4,
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with constant coefficients
We shall now consider second-order homogeneous linear ODEs whose coefficients a and
b are constant,

(1)

2.2 Homoteneous Linear ODEs

y"+oy'+by:0.

These equations have important applications, especially in connection with mechanical
and electrical vibrations, as we shall see in Secs. 2.4,2.8, and 2.9.

How to solve (1)? We remember from Sec. 1.5 that the solution of thefirst-order linear
oDE with a constant coefficient k

y'+lq:0

is an exponential function ! : ce-k*. This gives us the idea to try as a solution of (1) the

function

(2) y : e^r

Substituting (2) and its derivatives

y' : Le^* and

into our equation (1), we obtain

Y" : 72rxr

(^2+ ah*b)e^":g.

Hence if .[ is a solution of the important characteristic equation (or auxiliary equation)

(3) 
^2+ah-|b:0

then the exponential function (2) is a solution of the ODE (1). Now from elementary
algebra we recall that the roots of this quadratic equation (3) are

(4) ,\t : Lr_ o + \/o' - +u), hz: žr- o - 1"z - +u1.

(3) and (4) will be basic because our derivation shows that the functions

lt : enr* and !2 : e^Z*

are solutions of (1). Verify this by substituting (5) into (1).

From algebra we further know that the quadratic equation (3) may have three kinds of
roots, depending on the sign of the discriminant a2 - 4b,namely,

(Case I) Two real roots ií o' - 4b > 0,

(Case II) A real double root if a2 - 4b : 0,

(Case III) Complex conjugate roots ií o' - 4b < 0.

(5)
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Case l. Two Distinct Rea[ Roots i, and 
^2In this case, a basis of solutions of (1) on any interval is

!7 : eÁr* and !2: enzr

because y1 and y2 aíe defined (and real) for all x and their quotient is not constant. The
coffesponding general solution is

(6) j: CIe^'* + Cre^'*.

ExAMPLE' 
;::':::'::::;:"; T,:::;:i:"::i"5systematically Thecharacteristicequationis

^2 
- I: 0. Its roots are ir : 1 and r\2 : -1. Hence a basis of solutions is e'and e-* and gives the same

general solution as before,

!: cteÍ * c2e-*.

EXAMPLE 2 lnitial Value Problem in the Case of Distinct Real Roots

Solve the initial value problem

y" + y' - 2y : O, y(O) : 4, y'(0) : _5.

Solution. Sfup 1.

Its roots are

General solution. The characteristic equation is

^2+^-2:O.

nr:á(-t+x51 :l and
^z: i,-t - 

x6l : -z
so that we obtain the general solution

|: c|er + c2e-2'.

Step 2. Particular solution. Sincey'(x) : cl Í - 2c2e-2',we obtain from the general solution and the initial
conditions

y(0) : c1 l c2: 4,

y'(O) : c1- 2c2: -5.

Hence ct: 7 and c2: 3. This gives the answer y : er + 3e-2*. Figure 29 shows that the curve begins at

j: 4 with a negative slope (-5, but note that the axes have different scales!), in agreement with the initial
conditions.

y
8

6

4

2

0 1 1,5 2 x

Solution in Example 2

'0 0.5

Fig. 29.

l

l
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Case ll. Rea[ Double Root 
^ 

- -a/2
If the discriminant a2 - 4b is zero, we see directly from (4) that we get only one root,
i : i, : lz: -al2, hence only one solution,

lt - e-@lDr,

To obtain a second independent solution y, (needed for a basis), we use the method of
reduction of order discussed in the last section, setting lz : ujy Substituting this and its

derivative s yL : u' yt l uy'1 and y'/ tnto (1), we first have

(u"y, + 2u' y_ + uy']) l a(u'y. + 
"y'r) 

* buy, : 0.

Collecting terms In LI" , Lr' , anď u, as in the last section, we obtain

u"y, * u'(2y'I -l ayr) + uO'|, + oy'-,, -l by1) : 0.

The expression in the last parentheses is zero, since y, is a solution of (1). The expression
in the first parentheses is zero, too, since

2y'r: -or-alcl2 : -a!l.

We are thus left with u"y1: 0. Hence Lr" : 0. By two integrations, u : clx * c2. To
geta second independent solution lz: uly,wa can simply choose cl,: I, c2:0 and
take u : x. Then lz : xlr Since these solutions are not proportional, they form a basis.
Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

n-arl2, *r-arl2.

The comesponding general solution is

):(cr +c2x)e-o*l2

Warning. If ), is asimple rootof (4), then (cr i crx)e^' with c, * 0 is not a solution
of (1).

General solution in the case of a Double Root

Thecharacteristic equationof theODEy" + 6y' + 9y: Ois 
^2 

+ 6^ + 9: (^ + 3)2:0. Ithasthedouble
root ), : -3. Hence abasis is e-3' anďxe-3*. The corresponding general solution is,y : (c1 -| c2x)e-3'. I

lnitial value problem in the case of a Double Root

Solve the initial value problem

y" + y' + 0.25y : Q, .v(0) : 3.0, y'(o) : -:.s.

Solution. Thecharacteristicequationisi2 + 
^ 

+ 0.25: (^ + 0.5)2:0.IthasthedoublerootA: -0,5.
This gives the general solution

, -0.5r

We need its derivative 
) : (cr Ť C2X)e

y' : rzr-o'5' - 0.5{., + cr*\e-o,s*

55

(7)

ExAMPLE 3

ExAMPLE 4
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From this and the initial conditions we obtain

)(0) : c1 - 3,0, )'(0) : c2 - 0.5c1:

The particular solution of the initial value problem is y : (3

- 3.5; hence

- 2x)g-o,s', See Fig. 30.

^ - -.|L2 - L,

l

y
3

2

1

0

_1

Fig. 30. Solution in Example 4

Case lll. Complex Roots -}a + irrl and -}a iol
This case occurs if the discriminant a2 - 4b of the characteristic equation (3) is negative.
In this case, the roots of (3) and thus the solutions of the ODE (1) come at first out
complex. However, we show that from them we can obtain a basis of real solutions

-^*Ljt : *"'- cos trl,r. (r,l > 0)

where 0)2 : b - io'. It can be verified by substitution that these are solutions in the
present case. We shall derive them systematically after the two examples by using the

complex exponential function. They form a basis on any interval since their quotient
cot alx is not constant. Hence a real general solution in Case III is

j : e-o'l2 1Á cos olx * B sin ax) (A, B arbitrary).

(8)

(9)

E XA M P L E 5 Complex Roots. lnitial Value Problem

Solve the initial value problem

y" + 0.4v' + 9.04y : 0, y(0) : 0, }'(0) : 3.

Solution. Sfup 1. General solution. The characteristic equation is,tr2 + 0.4^ + g.O4: 0. It has the roots

-0.2 -ť 3i. Hence a: 3, and a general solution (9) is

y - "-o,"(A cos 3x i B sin 3x).

Step 2. Particular solution. The first initial condition gives y(0) : A : 0. The remaining expression is
y : 3"-o,2r sin 3x. We need the derivative (chain rule!)

y' : B(-0.2r-o,2t sin 3r -]- 3r-o,2r cos 3x).

From this and the second initial condition we obtain y'(0) : 38 :3. Hence B : I. Our solution is

y : ,-o,2r sin 3x.

Figure 31 shows y and the curves of e-o,zI anď -e-o2'(dashed), between which the curve of y oscillates.
Such "damped vibrations" (with -t : r being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4). t l
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Fig. 3t. Solution in Example 5

EXAMPLE 6 ComplexRoots

A general solution of the ODE

is

(ol constant, not zero)y" + tl2l,: O

y : A cos oJr * B sin rr.rx.

With ro : 1 this confirms Example 4 in Sec. 2.1.

It is very interesting that in applications to mechanical systems or electrical circuits,
these three cases coíTespond to three different forms of motion or flows of current,
respectively. We shall discuss this basic relation between theory and practice in detail in
Sec. 2.4 (and again in Sec. 2.8).

Derivation in Case lll. Complex Exponential Function
If verification of the solutions in (8) satisfies you, skip the systematic derivation of these
real solutions from the complex solutions by means of the complex exponential function
e' of a complex variable z : r + i/. We write r l it,notx * i because x and y occur
in the ODE. The definition of e' in terms of the real functions e', cos /, and sin r is

(10) uz - ur+it : e'eit: e'(cos t + i sinr).

l

57

Summary of Cases 1-1II

Case Roots of (2) Basis of (1) General Solution of (1)

I
Distinct real

ly lz g^l*, g^zr !: CI7X7' * Cre^zr

il
Real double root

^: -ia
,-arl2, ,r-arl2 /:(cr lcrx)e-o*/2

ilI
Complex conjugate

lr: -ta l ia,
lr: -la - io

,-arl2 cos r,,l.r

u-arl2 sin r..rx
! - e-o'l21Á cos ax l B sin cox)

,1
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This is motivated as follows. For real z: r,hence t : 0, cos 0 : 1, sin 0 : 0, we get

the real exponential function e'.It can be shown that e"*"' - e"e"',just as in real. (Proof
in Sec. 13.5.) Finally, if we use the Maclaurin series of e" with z : it as well as i2 : -I,
i3 : -i, i4 : I, etc., and reorder the terms as shown (this is permissible, as can be proved),

we obtain the series

pl| : l + it +
2!

f
íl-|| 2l, 4!

:cos/-llsin/.

Gt)4

4!

.-,(t_, ,\,

(ir)5

-+..5!

f
-+3! 5!

, (ir)3-Ť--
3!

-+..

(Look up these real series in your calculus book if necessary.) We see that we have obtained
the formula

(11) eit:cos/+isin/,

called the Euler formula. Multiplication by e'gives (10).

For later use we note that e-it : cos (-r) * i sin (-t) -- cos / - l sin /, so that by
addition and subtraction of this and (11),

(I2) cos/: (nn' + e-i'),
l

,

After these comments on the definition (10), let us now turn to Case III.

In Case III the radicand c - 4b tn (4) is negative. Hence 4b - a2 is positive and,

using \/-: i, we obtain in (4)

+\/r' - +u: +\,t-w - "'): \[:@ -rn"1 : i\/b - iď : ia

with ro defined as in (8). Hence in (4),

it:}a+ia and, similarly, lz: ta - ia.

Using (10) with , : -lax and t : @x, we thus obtain

elr* : n-k1.12)r+žor - n-(a/2)r(cos olx l i sin rr.l"r)

exr* : n-(al2)r-iar - ,-(a/2)tr(cos @x - i sin rr.rx).

We now add these two lines and multiply the result bv L.This gives y1 as in (8). Then
we subtract the second line from the first and multiply the result by ll(zi). This gives y,
as in (8). These results obtained by addition and multiplication by constants are again
solutions, as follows from the superposition principle in Sec. 2.1. This concludes the

derivation of these real solutions in Case III.
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@ GENERAL soluTloN
Find a general solution. Check your answer by substitution.

l.y"-6y'-Jy:O
2. I}y" - Jy' -l I.2y : Q

3. 4y" - zoy' * z5y : g

4. y" * 4rry' * 4n2y : g

5. 100y" + 20yl - 99y: g

6.y"*2y't5y:g
7.y"-y'+Z.5y:g
8. y" + 2.6y' + I.69y : 0

9. y" - 2y' - 5.25y : g

10.}"-2y:0
11. y" * 9rr2y : g 12. y" -l 2.4yl* 4.0y:6
13. y" - I44y : g 14. y" * y' - 0.96y : g

@ FIND oDE
Find an ODE y" l oy' l by :0 for the given basis.

W4 lNlTtAL vALuE pRoBLEMs

Solve the initial value problem. Check that your answer
satisfies the ODE as well as the initial conditions. (Show
the details of your work.)

21. y" - 2y' - 3y : 0, y(0) : 2, !'(0) : t4
22. y" + 2y' + y: 0, y(0) :4,!' (0) : -6
23. y" + 4y' + 5y: 0, y(0) :2,!'(0) : -5
24. IOy" - 50y' + 65y: 0, y(0) : 1.5, y'(0) : 1.5

25. y" + ,y' : 0, y(0) :3,y'(0): -,
26. I\y" + 18y' + 5.6y: O, y(0) : 4,!'(0) : _3.8

27. I\y" -f 5y' + 0.625y:0,y(0) :2,!'(0): _4.5

28. y" - 9y: 0, }(0) - -2, y'(0) : -I2
29.ZOy" + 4y' * } : 0, y(0) :3.2, y'(0) : 0

30. y" + zky' + (k2 + ,')y: 0, y(0) : 1,

y'(0) - -k
31. y" - 25y: 0, y(0) : 0, )'(0) : 40

32. y" - 2y' * 24y : 0, y(0) : 0, }'(0) : 20

33. (Instability) Solve y" - y: 0 for the initial conditions
y(0) : 1, y'(0) - - 1. Then change the initial conditions
to y(0) : 1.001, y'(0) : -0,999 and explain why this
small change of 0.001 at x : 0 causes alarge change
later, e.g., 22 at x : 10.

34. TEAM PROJECT. General Properties of Solutions
(A) Coefficient formulas. Show how a and b in (1)

can be expressed in terms of ,[1 and ,tr2. Explain how
these formulas can be used in constructing equations
for given bases.

(B) Root zero. Solve y" + 4y' : 0 (i) by the present

method, and (ii) by reduction to first order. Can you
explain why the result must be the same in both cases?
Can you do the same for a general ODE y" l ayl : 97

(C) Double root. Verify directly that xen* with
)" : -al2 is a solution of (1) in the case of a double
root. Verify and explain why y : g-2r is a solution of
Y" - y' - 6y : O btí xe-2" is not.

(D) Limits. Double roots should be limiting cases of
distinct roots i1, r\2 &s, say, ,\2 - ňr. Experiment with
this idea. (Remember l'Hópital's rule from calculus.)
Can you arrive at xe^t*? Give it a try.

35. (Verification) Show by substitution that y1 in (8) is a
solution of (1).

15. e2'. e'
17. e* 5, ,"*
19. e4*, e*4*

1,6. e0.5*, u-3.5r

18. I, e-3*

20. eGl+i)í. e-(L+i)r

2.3 Differential Operators. Optional
This short section can be omitted without interrupting the flow of ideas; it will not be
used in the sequel (except for the notations Dy, D'y, etc., for !',!", etc.).

Operational calculus means the technique and application of operators. Here, an
operator is a transformation that transforms a function into another function. Hence
differential calculus involves an operator, the differential operator D, which transforms
a (differentiable) function into its derivative. In operator notation we write

Dy:y(1) ,:dy
dx
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Similarly, for the higher derivatives we write D'y : D(Dy) : !", and so on. For example,

D sin : cos, D2 sin: -sin, etc.

For a homogeneous linear ODE y" + ay' + by :0 with constant coefficients we can

now introduce the second-order differential operator

L:P(D):D2-1 aD+bI,

where 1is the identity operator defined by Iy : y. Then we can write that ODE as

Ly : P(D)y : (D2 -f aD * bl)y :0.

P suggests "polynomia1." L is a linear operator. By definition this means that if Ly and

Lw exist (this is the case if y and w are twice differentiable), then L(cy + kw) exists for
any constants c and k, and

(2)

show that from (2)
: le^* and (Dze^)(x)

L(cy + kw) : cLy -l kLw.

we reach agreement with the results in Sec. 2.2. Slnce
-- ).'en*, we obtain

Let us
(ne\@)

(3)
Le^(x) : p(D)e^(x) : (D2 + aD * bDe^(x)

: (^2 -l aX -l b)e^" : p(i)e^" : 0.

This confirms our result of Sec. 2.2 that e^* is a solution of the ODE (2) ií and only if )"

is a solution of the characteristic equation P(,\) : 9.

P(^) is a polynomial in the usual sense of algebra. If we replace ,\ by the operator D,
we obtain the "operator polynomial" P(D).The point of this operational calculws is that

P(D) can be treated just like an algebraic quantity. In particular, we can factor it.

EXAMPLE l Factorization, Solution of an ODE

Factor P(D) : o2 - 3o - 4OI and solve p(D)y : 0.

Solution. D2 -3D- 40I: (D - 81)(D + 51)because 12: I.Now(D - 81)y:y' - 8y: Ohasthe
solution y! : ea* . Similarly, the solution of (D + 5Dy : 0 is y2 : 

"-5* 
. This is a basis of P(D)y : 0 on any

interval, From the factorization we obtain the ODE,, as expected,

(D - 81XD + 51)y : (D - 81)(y/+ 5y): D(y'+ 5y) - 8(y'+ 5y)

: y" +5y' - 8y' - 40y : y" - 3y' - 40y : g.

Verify that this agrees with the result of our method in Sec. 2.2. This is not unexpected because we factored

P(D) in the same way as the characteristic polynomial P(n) : 12 - 3^ - 40. l

[t was essential that L in (2) has constant coefficients. Extension of operator methods to

variable-coefficient ODEs is more difficult and wi1l not be considered here.

If operational methods were limited to the simple situations illustrated in this
section, it would perhaps not be worth mentioning. Actually, the power of the operator
approach appears in more complicated engineering problems, as we shall see in
Chap. 6.
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E AppLlcATloN oF DIFFERENTIAL
OPERATORS

Apply the given operator to the given functions. (Show all
steps in detail.)

1. (D - I)'; *, xe', sin x

2. 8D2 + 2D - I: cosh }x, sinh }x, ,ll2
3. D - 0.4I; 2x3 - I, eo,4*, ,uo,4r

4. (D + 51)(D - I); e-5* sinx, e5*, x2

5. (D - 4I)(D + 31); x3 - x2, sin 4x, e-3*

@ GENERAL soluTloN
Factor as in the text and solve. (Show the details.)

6. (D2 - 5.5D + 6,66I)y : O

7. (D ,l 2I)2y : g 8. (D' - 0.49I)y : g

9. (D2 + 6D + 131)y : 6

10. (10D2 + 2D 1- L7I)y : O

II. (D2 + 4,ID + 3.11)y : Q

12. GD2 ]- 4rrD -l r2l)y : g

13. (D2 * ú.64u'I)y : 0

14. (Double root) If D2 -l aD -f bI has distinct roots

t-L and 
^, 

show that a particular solution is
y : (e@ - "o*)l(p - ,\). Obtain from this a solution
xe^'by letting p -+ 

^ 
and applying l'Hópital's rule.

15. (Linear operator) Illustrate the linearity of L in (2) by
taking c : 4, k : -6, y : e2', andw : cos2x.
Prove that L is linear.

16. (Definition of linearity) Show that the definition of
linearity in the text is equivalent to the following. If
L|yl and l,[w] exist, then Lly + w] exists and L|cyl
and L|kw] exist for all constants c and k, and
Lly + w] : Lly] + L|wl as well as L|cy] : cL|ll and
Llkw): kLlw].

2.4 Modelint: Free Oscillations
(Mass-Sprint System)

Linear ODEs with constant coefficients have important applications in mechanics, as we
show now (and in Sec. 2.8), and in electric circuits (to be shown in Sec. 2.9).In this section
we consider a basic mechanical system, a mass on an elastic spring ("mass-spring system,"
Fig.32), which moves up and down. Its model will be a homogeneous linear ODE.

Setting Up the Model
We take an ordinary spring that resists compression as well extension and suspend it
vertically from a fixed support, as shown in Fig. 32. At the lower end of the spring we

System in

equilibrium System in
motion

(a) (b) (c)

Fig. 32. Mechanical mass-spring system
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attach a body of mass m, We assume m to be so large that we can neglect the mass of the

spring. If we pull the body down a certain distance and then release it, it starts moving.
We assume that it moves strictly vertically.

How can we obtain the motion of the body, say, the displacement y(r) as function of
time t? Now this motion is determined by Newton's second law

Mass X Acceleration : m " : Force

where y" : d2yldt2 and "Force" is the resultant of all the forces acting on the body.
(For systems of units and conversion factors, see the inside of the front cover.)

We choos e the downward direction as the positive direction, thus regarding downward
forces as positive and upward forces as negative.

Consider Fig.32. The spring is first unstretched. We now attach the body. This stretches

the spring by an amount s6 shown in the figure. It causes an upward force Fo in the spring.

Experiments show that F6 is proportional to the stretch ,6, s&},

Fo : -kso (Hooke's lawz).

k (> 0) is called the spring constant (or spring modulus). The minus sign indicates that
Fg points upward, in our negative direction. Stiff springs have large k. (Explain!)

The extension s6 is such that F6 in the spring balances the weight W : mg of the
body (where g : 980 cm/sec2 : 32.17 ftlsecz is the gravitational constant). Hence
Fo * W : -kso -l mg : 0. These forces will not affect the motion. Spring and body are

agatn at rest. This is called the static equilibrium of the system (Fig. 32b). We measure
the displacement y(r) of the body from this 'equilibrium point' as the origin y : 0,

downward positive and upward negative.
From the position y : 0 we pull the body downward. This further stretches the spring

by some amount y > 0 (the distance we pull it down). By Hooke's law this causes an
(additional) upward force F1 in the spring,

Ft: -kj.

F, is a restoring force. It has the tendency to restore the system, that is, to pull the body
backtoy:0.

Undamped System: ODE and Solution
Every system has damping-otherwise it would keep moving forever. But practically, the

effect of damping may often be negligible, for example, for the motion of an iron ball on
a spring during a few minutes. Then F1 is the only force in (1) causing the motion. Hence
(1) gives the model my" : -lry o,

my"+lcy:0.

(1)

(2)

(3)

2RogBRt HooKE (1635-1703), English physicist,
gravitation.

a íbrerunner of Newton with respect to the law of
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By the method in Sec. 2.2 (see Example 6) we obtain as a general solution

y(t): Á cos agt * B sinclgt,

The corresponding motion is called a harmonic oscillation.
Since the trigonometric functions in (4) have the period 2Ťlog, the body executes agl2nr

cycles per second. This is the frequency of the oscillation, which is also called the natural
frequency of the system. It is measured in cycles per second. Another name for cycles/sec
is hertz (Hz).3

The sum in (a) can be combined into a phase-shifted cosine with amplitude C : Y@ 1 3z
and phase angle 6 : arctan (BlA),
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(4)

(4*) y(t): Ccos(cl6r- 6).

To verify this, apply the addition formula for the cosine [(6) in App. 3.1] to (4*) and then
compare with (4). Equation (4) is simpler in connection with initial value problems,
whereas (4*) is physically more informative because it exhibits the amplitude and phase
of the oscillation.

Figure 33 shows typical forms of (4) and (4*), all corresponding to some positive initial
displacement y(0) [which determines Á : y(0) in (4)] and different initial velocities y'(0)
lwhich determine B : y' (0)/rr.ro].

|_.z

@ Positive
,A-
|4 Lero

@ Negative

Fig. 33. Harmonic oscillations

Undamped Motion. Harmonic Oscillation

If an iron ball of weight W : 98 nt (about 22lb) stretches a spring 1.09 m (about 43 in.), how many cycles per
minute will this mass-spring system execute? What will its motion be if we pull down the weight an additional
16 cm (about 6 in.) and let it start with zero initial velocity?

SOlUtiOn. Hooke's law (2) with I4l as the force and 0.09meter as the stretch gives Iť : 1.09k; thus
k : W/t.09 : 9BlI.0g : 9Olkg/sec'] : gO [nt/meter]. The mass is m : Wls : 98/9.8 : 10 tkg]. This gives
the frequency agl(2T): l,/tt*t(Zr):3l(2rr): 0.48 tHz] : 29 [cycles/min].

3HBtxRIcH HERTZ (1857-1894), German physicist, who discovered electromagnetic WaVeS, as the basis
of wireless communication developed by GUGLIELMO MARCONI (l874-1937), Italian physicist (Nobel prize
in 1909).

lnitial velocity

ExAM PLE 1
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From (4) and the initial conditions, y(0) : A : 0.16 [meter] and y ooB :0, Hence the motion is

y(t) :0.16 cos 3t [meter] or 0.52 cos 3t [ft] ig. 3a).

If you have a chance of experimenting with a mass-spring system, don't miss it. You will be surprised about

the good agreement between theory and experiment, usually within a fraction of one percent if you measure

carefully. l

y
o.2

0.1

0
_0.1
_o.2

Damped System: ODE and Solutions
We now add a damping force

Fz: -C!

to our model mryl|

(5)

: -kj, so that we have my" : -lq - ,y

my"+cy'+b:0.

Physically this can be done by connecting the body
this new force to be proportional to the velocity y'
a good approximation, at least for small velocities.

c is called the damping constant. We show that c is positive. If at some instant, y' is
positive, the body is moving downward (which is the positive direction). Hence the

damping force Fz : -c!' , always acting against the direction of motion, must be an

upward force, which means that it must be negative, Fz - -r!' ( 0, so that -c ( 0 and

c ) 0. For an upward motion, y' < 0 and we have a downward Fz : -cy > 0; hence

-c<Oandc)O,asbefore.
The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve

it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

^2+!^

to a dashpot; see Fig. 35. We assume
: dyldt, as shown. This is generally

k-|-:0.
m

<
:>>

ň R Spring<<<
í

nz I M Body

aryll:..WW&*
35. Damped

Fig. 34. Harmonic oscillation in Example 1

Fit.
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By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,
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(6) it:-a+P, lz:-a-B, where d-

It is now most interesting that depending on the amount of damping (much, medium, or little)
there will be three types of motion corresponding to the three Cases I, II, II in Sec.2.2:

Distinct real roots hu hz. (Overdamping)
A real double root. (Critical damping)
Complex conjugate roots. (Underdamping)

C
and

2m

Case I. c2 > 4mk.

Case II. c2 : 4mk.

Case III. c2 < 4mk,

(7)

Discussion of the Three cases
Case l. Overdampint
If the damping constant c is so large that c2 } 4mk, then ),1 and ),2 are distinct real roots.
In this case the coffesponding general solution of (5) is

y(r) : cre-@-F)t * cre-(o+ F)t

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For r > 0 both exponents in (7) are negative because a } 0, B > 0, and

F' : a2 - klm < a2. Hence both terms in (7) approach zero as t ---> @. Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position (y : 0). Figure 36 shows (7) for some typical initial conditions.

Case ll. Critical Damping
Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if c2 : 4mk,

@ Positive ]

@z",o I 
lni,iut velocity

@ Negative J

Fig.36. Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement

(b)
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so that F : O, Ar : Xz : - a. Then the coresponding general solution of (5) is

y(t): (cr* c2t)e-'t

This solution can pass through the equilibrium position y : 0 at most once because e-ot

is never zero and c' l c2t can have at most one positive zero. If both c1 and c2 ďí9 positive
(or both negative), it has no positive zeío, so that y does not pass through 0 at all. Figure

37 shows typical forms of (8). Note that they look almost like those in the previous figure.

Case lll. Underdamping
This is the most interesting case. It occurs if the damping constant c is so small that

c2 < 4mk.Then B in (6) is no longer real but pure imaginary, say,

(8)

(9) F:ia* where

(We write ar* to reserve a.r for driving and electromotive forces in Secs. 2.8 anď2.9.)The
roots of the characteristic equation are now complex conjugate,

ir: -alia*, hz:-a-ia*

with c : cl(2m), as given in (6). Hence the corresponding general solution is

(10) y(t) : e-'t(A cos rrr*/ -l B sin o*t) : Ce-ot cos (ro*r - 6)

where C2 : A2 + 82 and tan 6 : BlA, as in (4*).

This represents damped oscillations. Their curve lies between the dashed curves

! : Ce-ot andy - -Ce-ot in Fig. 38, touching them when a*t - 6 is an integer multiple

of rrbecause these are the points at which cos (rr.l*/ - 6) equals 1 or -1.
The frequency is a l(Zrr)Hz (hertz, cycles/sec). From (9) we see that the smaller c (> 0)

is, the larger is c,.l* and the more rapid the oscillations become. If c approaches 0, then rrr*

approaches do : \Elor, giving the harmonic oscillation (4), whose frequency agl(2Ťr) is

the natural frequency of the system.

Fig. 37. Critical damping [see (8)]

Fig. 38. Damped oscillation in

Case lll [see (10)]

Ce-o'

.o/-.---- r /a\/\AL)/ \- ,/'"Ý/\
\ ---.- /
'. \ ---
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The Three Cases of Damped Motion

How does the motion in Example 1 change if we change the damping constant c to one of the following three
values, with y(0) : 0.16 and y'10) : O as before?

(I)c:100kg/sec, (II)c:60kg/sec, (III)c: l0kg/sec,

SolutiOn. It is interesting to see how the behavior of the system changes due to the effect of the damping,
which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases II and I).

(I) With m: 10 and k: 90, as in Example 1, the model is the initial value problem

lOy" + 100y' + 90y: 0, y(0) : 0.16 [meter], }'(0) : 0.

The characteristic equation is l0),2 + l00^ + 90 : 10(^ + 9X^ + 1) : 0. It has the roots -9 and -1. This
gives the general solution

-9t , _t
j:C ŤC2 we also need y' : -9c -9t - c2e-t.

The initial conditions give c1 l cz: 0.16, *9c1 - c2:0. The solution is c1 : *0.02, c2 : 0.18, Hence in
the overdamped case the solution is

!: -0.02e-9t + 0.1Be-ú.

It approaches 0 as / --+ co. The approach is rapid; after a few seconds the solution is practically O, that is, the
iron ball is at rest.

(II) The model is as before, with c : 60 instead of 100. The characteristic equation now has the form
10),2 + 60^ + 90 : 10(^ + 

'2 
:0. It has the double root -3. Hence the corresponding general solution is

}:(cr+c2t)e-3t. we also need y' : (cz - 3rt - 3c2t)e-3t.

The initial conditions give y(0) - c1 0.16, ),'(0) - c2 3rr: 0, c2:0.48. Hence in the critical case the
solution is

y:(0,16 +0.48t)e-3t.

It is always positive and decreases to 0 in a monotone fashion.
(III) The model now is 10y" + 10y' + 90y : 0. Since c : 10 is smaller than the critical c, we shall get

oscillations.ThecharacteristicequationislOiz+10^+90:rO[1,1 +L)'ar-á] :0. Ithasthecomplex
roots [see (4) in Sec. 2.2 with a : I and b : 9]

^: 
_0.5 ,x6.s\ g: _0.5 -| 2.g6i.

This gives the general solution

, : n-o,st1{ cos2.96t * B sin 2.96t).

Thus y(0) : A : 0.16. We also need the derivative

y' : 
"-o'5t(-0.5Á 

cos2.96t - 0.5B sin2.96t - 2.96Asin2.96t + 2.968 cos2.96t).

Hence y'(0) : -0.5A + 2.968 : 0, B : 0.5A12.96 : 0.027. This gives the solution

y: e-o,5t(0.16 cos 2.96t + 0.027 sin 2.96t): O.t62e-o,5t cos(2.96t - 0.17).

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by
abo IVo (since 2.96 is smaller than 3.00 by about l7o). Their amplitude goes to zero. See Fig. 39. l

y
0.15

0.1

0.05

0

-0.05

_0,1

Fig. 39. The three solutions in Example 2

SEC. 2.4 Modelin6: Free Oscillations (Mass-Spring System)
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This section concerned free motions of mass-spring systems. Their models are

homogeneous lineat ODEs. Nonhomo7eneous linear ODEs will arise as models of forced
motions, that is, motions under the influence of a "driving force". We shall study them

in Sec. 2.8, after we have learned how to solve those ODEs.

MoTloN WITHouT DAMP|NG
(HARMoNlc osclLLATloNs)

1. (Initial value problem) Find the harmonic motion (4)

that starts from y6 with initial velocity u6. Graph or
sketch the solutions for @o : Ťí,.}o : 1, and various
u6 of your choice on common axes. At what r-values

do all these curves intersect? Why?
2. (Spring combinations) Find the frequency of vibration

of a ball of mass m : 3 kg on a spring of modulus
(i) frr : 2J nílm, (11) k2: 75 ntlm, (iii) on these springs

in parallel (see Fig. 40), (iv) in series, that is, the ball hangs

on one spring, which in turn hangs on the other spring.

3. (Pendulum) Find the frequency of oscillation of a

pendulum of length L (Fig. 4I), neglecting air
resistance and the weight of the rod, and assuming 0

to be so small that sin 9 practically equals 0.

4. (Frequency) What is the frequency of a harmonic
oscillation if the static equilibrium position of the ball
is 10 cm lower than the lower end of the spring before
the ball is attached?

5. (Initial velocity) Could you make a harmonic oscillation
move faster by giving the body a Ereater initial push?

6. (Archimedian principle) This principle states that the

buoyancy force equals the weight of the water
displaced by the body (partly or totally submerged).

The cylindrical buoy of diameter 60 cm in Fig. 42 is
floating in water with its axis vertical. When depressed

downward in the water and released, it vibrates with
period 2 sec. What is its weight?

Body of

maSS /7l

(Frequency) How does the frequency of a harmonic
motion change if we take (i) a spring of three times the

modulus, (ii) a heavier ball?
TEAM PROJECT. Harmonic Motions in Different
Physical Systems. Different physical or other systems

may have the same or similar models, thus showing the

unifying power of mathematical methods. Illustrate
this for the systems in Figs. 4345,
(a) Flat spring (Fig. 43). The spring is horizontally
clamped at one end, and a body of weight 25 nt (about

5.6 lb) is attached at the other end. Find the motion of
the system, assuming that its static equilibrium is 2 cm
below the horizontal line, we let the system start from
this position with initial velocity 15 cm,/sec, and

damping is negligible.
(b) Torsional vibrations (Fig. 44), Undamped
torsional vibrations (rotations back and forth) of a wheel
attached to an elastic thin rod are modeled by the ODE
Io0" + K0 : 0, where 0 is the angle measured from the

state of equilibrium, 16 is the polar moment of inertia of
the wheel about its center, and kis the torsional stiffness

of the rod. Solve this ODE fot KlIg: I] .64 sec-2, initial
angle 45o, and initial angular velocity 15" sec-l.
(c) Water in a tube (Fig. a5). What is the frequency
of vibration of 5liters of water (about 1.3 gal) in a

U-shaped tube of diameter 4 cm, neglecting friction?

7.

8.

Fig. a0. Parallel
springs (Problem 2)

Fig.4l. Pendulum
(Problem 3)

Fig.42. Buoy (Problem 6)

Fig. 43. Flat spring (Project 8a)

(y=0)

:ž
Fig.44. Torsional

vibrations (Project 8b)

Fig. a5. Tube (Project 8c)

DAMPED MOTION

9. (Frequency) Find an approximation formula for ro* in
terms of rr.16 by applying the binomial theorem in (9)

and retaining only the first two terms. How good is the

approximation in Example 2,III?

-\e
L-\
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10. (Extrema) Find the location of the maxima and
minima of y : e-2t cos r obtained approximately from
a graph of y and compare it with the exact values
obtained by calculation.

11. (Maxima) Show that the maxima of an underdamped
motion occur at equidistant /-values and find the
distance.

12. (Logarithmic decrement) Show that the ratio of two
consecutive maximum amplitudes of a damped oscillation
(10) is constant, and the natural logarithm of this ratio,
called the logarithmic decrement, equals L, : Zrala*.
Find A for the solutions of y" + 2y' + 5y : 0.

13. (Shock absorber) What is the smallest value of the

damping constant of a shock absorber in the suspension
of a wheel of a car (consisting of a spring and an absorber)
that will provide (theoretically) an oscillation-free ride
if the mass of the car is 2000 kg and the spring constant
equals 4500 kg/sec2?

14. (Damping constant) Consider an underdamped
motion of a body of mass m : 2 kg. If the time
between two consecutive maxima is 2 sec and the
maximum amplitude decreases to } of its initial value
after 15 cycles, what is the damping constant of the
system?

15. (Initial value problem) Find the critical motion (8)

that starts from y6 with initial velocity u6. Graph
solution curves for a : 1, }o : 1 and several u6 such
that (i) the curve does not intersect the /-axis, (ii) it
intersects it at t : I, 2,. . ., 5, respectively.

16. (Initial value problem) Find the overdamped motion
(1) that starts from y6 with initial velocity uo.

17. (Overdamping) Show that in the overdamped case, the
body can pass through y : 0 at most once.

18. CAS PROJECT. Transition Between Cases I,II, ilI.
Study this transition in terms of graphs of typical
solutions. (Cf. Fig. a6.)
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(a) Avoiding unnecessary generaw is part of good
modeling. Decide that the initial value problems (A)
and (B),

(A) y" + ,y' i y : 0, y(0) : 1, y'(0) : 0

(B) the same with different c and }'(0) : -2 (instead
of 0), will give practically as much information as a
problem with other m, k, y(O), y'(0).
(b) Consider (A). Choose suitable values of c, perhaps
better ones than in Fig. 46 for the transition from Case
III to II and I. Guess c for the curves in the figure.
(c) Time to go to rest. Theoretically, this time is
infinite (why?). Practically, the system is at rest when
its motion has become very small, say, less than 0.1Vo
of the initial displacement (this choice being up to us),
that is in our case,

(11) |y(l)| < 0.001 for all t greateí than some /r.

In engineering constructions, damping can often be varied
without too much trouble. Experimenting with your
graphs, find empirically a relation between \ and c,

(d) Solve (A) analytically. Give a reason why the
solution c of y(tr) : -0.001, with t, the solution of
y' (t) :0, will give you the best possible c satisfying (1 1).

(e) Consider (B) empirically as in (a) and (b). What
is the main difference between (B) and (A)?

0.5

_0,5

_1

Fig.46. CAS Project 18

y
1

2.5 Euler-Cauchy Equations

(1)

Buler-Cauchy equationsa are ODEs of the form

*'y"+axy'+by:0

aLBONHARD EULER (I101-I783)waS an enormously creative Swiss mathematician. He made fundamental
contributions to almost all branches of mathematics and its application to physics. His important books on algebra
and calculus contain numerous basic results of his own research. The great French mathematician AUGUSTIN
LOUIS CAUCHY (1789-1857) is the father of modern analysis. He is the creator of complex analysis and had
great influence on ODEs, PDEs, infinite series, elasticity theory, and optics.
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with given constants a and b and unknown y(x). We substitute

(2) y:x*

General solution in the case of Different Real Roots

The E,uler-Cauchy equation

,'y" + 1.5xy'-0.5_v:0

has the auxiliary equation

,n2 + 0.5- - 0.5:0.

The roots are 0.5 and - l. Hence a basis of solutions for all positive x is 1,1 : x
general solution

C2
r' : crV"{

_]r

(6)

and its derivatives y' : mx'n-l and y" : m(m - 1)7*-z into (1), This gives

We now
factor x-

(3)

xzm(m - 1)a*-z l axmx--l + bx* :0,

see that (2) was a rather natural choice because we have obtained a common

. Dropping it, we have the auxiliary equation m(m - I) * am * b : 0 or

m2+(a-I)m-lb:0. (Note: a - I,not'a.)

Hence y : xln is a solution of (1) if and only tf mis a root of (3). The roots of (3) are

(4) l7ll:*rr - ol*\f'nrt u>'_ u, ffi2:ltl - a)-\F- ">'-t,
Case I. trf the roots m1 and n,Iz are real and different, then solutions are

}r(x) : x-' and !z(x) : x-'

They are linearly independent since their quotient is not constant, Hence theY constitute

a basis of solutions of (1) for all x for which they are real. The coffesPonding general

solution for all these x is

(5) !:CLX*'*C2x*' (cy cz arbitrary).

EXA,MPtE t

(Note: 0.5, not 1.5|)

'O'5 
and y2: Ilx and gives the

(x>0). I

Case II. Equation (4) shows that the auxiliary equation (3) has a double root

t,ll: Lo - a) if and only if (I - o)' - 4b: 0. The Euler-Cauchy equation (1) then

has the form

,'y" + axy' + árt - a)zy:0.

A solution i, y, : *(I-cl)l2. To obtain a second linearly independent solution, we aPPlY

the method of reduction of order from Sec. 2.1 as follows. Starting from lz : Uly Wa

obtain for u the expression (9), Sec. 2.1, namely,

ru:]Udx where U- # "^o(-í,*)
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Here it is crucial that p is taken from the ODE written in standard form, in our case,

(1 - o)'
(6*)

4x2

This shows that p : a/x (not ax). Hence its integral is a ln x : In (x"), the exponential
functionin Uis llxo,anddivisionbyyt'- xl-o gives (J: !lx,andu: lnxbyintegration.

Thus, in this "critical case," a basis of solutions for positive x is y1 : x* and

lz : x* Inx, where * : ŽQ - a). Linear independence follows from the fact that the

quotient of these solutions is not constant. Hence, for all x for which y1 and y2 are defined
and real, a general solution is

):(cr*c2lnx)x- m:*(I-a),

EXAMPLE 2 General Solution in the Case of a Double Root

TheEuler-Cauchyequattonxzy"-5"y'+9),:0hastheauxiliaryequationrr2_ 6*+9:0. Ithasthe
double rooí m: 3, so that a general solution for all positive x is

y:(cr *c2lnx)xs.

Case III. The case of complex roots is of minor practical importance, and it suffices to
present an example that explains the derivation of real solutions from complex ones.

E x A M P L E 3 
T:,o;::ffilT:;:in 

the Case of Complex Roots

,'y"+0.6xy'+l6.04y:Q

has the auxiliary equation -2 - 0.4* + 16.04 : 0. The roots are complex conjugate, mt : 0.2 1- 4i anď

i,"*?.'";Í;;,ffi j*fJ;iff #il"Tlí:;iT*iH#lT,xTl'J':ffi#coef 
f icientshascomplex

m. 0-2. /1i 0.2, In r,4i 0.2 (4 In .r) i,r -,r :jr (e ) :x e ,

m9 0.2-4i 0.2, In r.-4i 0.2 -(4 ln I) iX :x \e ) :X e

Next apply Euler's formula (l1) in Sec,2.2 with r : 4lnx to these two formulas. This gives

ť"l : 
"o,21"os 

(4 ln,r) i i sin (4 ln x)],

x-' : 
"o,2;.o* 

(4 ln -r) - i sin (4 ln r)].

Add these two formulas, so that the sine drops out, and divide the result by 2. Then subtract the second formula

from the first, so that the cosine drops out, and divide the result by 2i. This yields

,o'2 .o, (4 ln x) xo,2 sin (41n x)

respectively. By the superposition principle in Sec. 2.2 these are solutions of the Euler-Cauchy equation (1).

Since their quotient cot (4 ln x) is not constant, they are linearly independent. Hence they form a basis of solutions,

and the corresponding real general solution for all positive x is

(8) y : ,o,'íA cos (4 ln r) + B sin (4 ln x)].

Figure 47 shows typical solution curves in the three cases discussed, in particular the basis functions in
Examples l and 3. l
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y

3.0

2.o

1.0

lnr
5lnr

Case II: Double root

Fig. 47. Euler-Cauchy equations

_0.5
_1.0

-1.5

u(10):.r+fr:o.

0 2 sin (4 lnl)

Case III: Complex roots

y

1.5

1,0

0.5

EXAM PLE 4 Boundary Value Problem. Electric Potential Field Between Two Concentric Spheres

Find the electrostatic potential u : u(r) between two concentric spheres of radii rt : 5 cm and 12 : 70 cm
kept at potentials ut : 110 V and uz: 0, respectively.

Physical Information u(r) is a solution of the Euler-Cauchy equation ru" + 2u' : 0, where u' : dulclr.

Solution. The auxiliary equation is m2 + m: O.It has the roots 0 and -1. This gives the general solution
u(r) : c1-| c2lr. From the "boundary conditions" (the potentials on the spheres) we obtain

u(5):r-,+?:ll0,-J

By subtract1,on, c2l10: 110, c2: 1100. From the second equation, c1 : -c2l10 : -Il0. Answer:
u(r) : - 1 10 + 1 100ir V. Figure 48 shows that the potential is not a straight line, as it would be for a potential

between two parallel plates. For example, on the sphere of radius 7.5 cm it is not 1I0l2:55 V, but considerably
less. (What is it?) l

U

100

B0

60

4o

2o
nl l

5t)

Fig.48.

7 B 9 10 r
Potential v(r) in Example 4

_0.5

-1.0
_1.5

@ GENERAL soluTloN
Find a real general solution, showing the details of your
work.

1. r'y" - 6, _ O 2. 4x2y" + 4xy' - y : 0

3. ,'y" - J*y' * 16y : 9

4. r'y" + 3xy' * y : 0 5. r'y" - ry' + 2y : g

6.2x2y"+4xy'+5y:6
7. (IOxZD2 - 20xD + 22,4I)y : Q

8. (4x2D2 * 1)y : 6 9. (I00x2D2 1- 9I1y : g

I0. (I0x2D2 + 6xD + 0.51)y : Q

@ lNlTlAL vALuE IRoBLEM
Solve and graph the solution, showing the details of your
work.

1,1,. x2y" - 4ry' + 6y: 0,y(1) : 1,}'(1) : 0

|2. xzy" + 3xy' + y: 0, y(I) : 4, y'(1) _ _2

13. (x2D2 -l ZxD + I00,25I)y : 0, y(I) : 2,
y'(1) : - 11

14. (x2D2 - ZxD + 2.25I)y: 0, }(I):2,2,
),'(1) :2,5

15. (xD2 + 4D)y: 0,y(1) : 12,y'(1) : _6

-l

Case I: Real roots

1 1.4 2 x

r0,2 cos (4 ln r)

y

1.5

1.0

0.5
x0,5
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16. TEAM PROJECT. Double Root
(A) Derive a second linearly independent solution of
(1) by reduction of order; but instead of using (9), Sec.

2.I, perform all steps directly for the present ODE (1).

(B) Obtain x* Inxby considering the solutions x- and
x**' of a suitable Euler-Cauchy equation and letting
s-+0.

73

(C) Verify by substitution that x* ln x) m : (I - a) 12,

is a solution in the critical case.

(D) Transform the Euler-Cauchy equation (1) into an

ODE with constant coefficients by setting x: et (x > 0).

(E) Obtain a second linearly independent solution of
the Euler-Cauchy equation in the "critical case" from
that of a constant-coefficient ODE.

wronskian

(1)

(2)

(3)

THEoREM 1

2.6 Existence and Uniqueness of Solutions.

In this section we shall discuss the general theory of homogeneous linear ODEs

y"+p(x)y'*q(x)y:0

with continuous, but otherwise arbitrary variable coefftcients p and q. This will concern
the existence and form of a general solution of (1) as well as the uniqueness of the solution
of initial value problems consisting of such an ODE and two initial conditions

y(xo) : Ko, y'(xo) : Kt

with given xg, Kg, and K1.
The two main results will be Theorem 1, stating that such an initial value problem

always has a solution which is unique, and Theorem 4, stating that a general solution

!:cl,ltlczyz (cy cz arbitrary)

have no " singularincludes all solutions. Hence linear ODEs with continuous coefficients
solutions" (solutions not obtainable from a general solution).

Clearly, no such theory was needed for constant-coefficient or Euler-Cauchy equations
because everything resulted explicitly from our calculations.

Central to our present discussion is the following theorem.

Existence and Uniqueness Theorem for lnitial Value Problems

Ií p(x) and q(x) are continuous functions on some open interval I (see Sec. 1 .I) and
xg is in I, then the initial value problem consisting oí (I) and (2) has a unique

solution y(x) on the interval L

The proof of existence uses the same prerequisites as the existence proof in Sec. 1.7

and will not be presented here; it can be found in Ref. tA11] listed in App. 1. Uniqueness
proofs are usually simpler than existence proofs. But for Theorem 1, even the uniqueness
proof is long, and we give it as an additional proof in App. 4.
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Linear lndependence of Solutions
Remember from Sec. 2.1 that a general solution on an open interval 1is made up from a

basis jt jz on 1, that is, from a pair of linearly independent solutions on 1. Here we call
jt, lz linearly independent on 1 if the equation

(4) klt@) * kry2(x) : 0 on 1 implies kr : 0, 0.

We call !t, lz linearly dependent on 1 if this equation also holds for constants k1, k2

not both 0. In this case, and only in this case, y1 and !2 ere proportional on I, that is (see

Sec. 2.1),

(a) lt : k}z or (b) lz : llt for all x on 1.(5)

For our discussion the following criterion of linear independence and dependence of
solutions will be helpful.

Linear Dependence and Independence of Solutions

Let the ODE (I) have continuows cofficients p(x) and q(x) on an open interval I.

Then two solutions !1and y2 oí (I) on I are linearly dependent on I if and only if
their 'oWronskian"

is0 at some xginI. Furthermore, líW:0 at anx: xoinI, thenW = 0 onI; hence

if there is an xl in I at which W is not 0, then !t, jz are linearly independent on I.

(6)

P R O O F (a) Let yl andlzbe linearly dependent on l Then (5a) or (5b) holds on I If (5a) holds, then

W(yt, jz) : yůL - yzy't : lqzyl - yztcyl : 0.

Similarly if (5b) holds.
(b) Conversely, we let W(yr, !z) : 0 for some x : xo and show that this implies linear

dependence of y1 anďy2 on 1. We consider the linear system of equations in the unknowns
kr kz

kůt@ *k2y2(xg):0

kryi@ +kry!@o):0.

To eliminate k2, multiply the first equation by yl and the second by -y, and add the

resulting equations. This gives

kl{x yl(xo) - kl\@ yz(ro) : klW(y{xg), yz(xo)) : 0.

Similarly, to eliminate kr, multiply the first equation by -yi and the second by y, and

add the resulting equations. This gives

k2W(yl@g), yr(xo)) : 0.

(])

THEoREM 2

W(yl,, jz) : yll - yry',
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If W were not 0 at xg, we could divide by W and conclude that kl, : kz: 0. Since W is
0, division is not possible, and the system has a solution for which k1 and k2 are not both
0. Using these numbers ky k2, we introduce the function

y(x):k t@)+k2y2@).

Since (1) is homogeneous linear, Fundamental Theorem 1 in Sec. 2.I (the superposition
principle) implies that this function is a solution of (1) on 1. From (7) we see that it satisfies
the initial conditions y(xo) : 0, y'(xo) : 0. Now another solution of (1) satisfying the

same initial conditions is y* = 0. Since the coefficients p and q of (I) are continuous,
Theorem 1 applies and gives uniqueness, that is, y = y*, written out

k t*kzjz=0 on 1.

Now since k1 and k2 are not both zero, this means linear dependence of y1, y, on I.

(c) We prove the last statement of the theorem. If W(xo) : 0 at an Jo in 1, we have
linear dependence of yr, }z oíl I by part (b), hence W = 0 by part (a) of this proof. Hence
in the case of linear dependence it cannot happen that W(xr) * 0 at aí xr in 1. If it does
happen, it thus implies linear independence as claimed.

Remark. Determinants. Students familiar with second-order determinants may have
noticed that

7s

l

W(y-,, yz) :
jzl

ltl
t l : )'l )'z - )'z)'r .

!zlIi
This determinant is called the Wronski determinants or, briefly, the Wronskian, of two
solutions y1 and lz of (1), as has already been mentioned in (6). Note that its four entries
occupy the same positions as in the linear system (7).

lllustration of Theorem 2

The functions h : cos (dJ and y2: sin crx are solutions of y " + ,2y : 0. Their Wronskian is

EXAMPLE ll

E X A M,P L,E ,,2

I cos rr.,x

W(cos rr,rr, sin a,rx) : 
|-, sin ox

sin c,-,x l

| : YrYL - Yzy'l: ,.o,2 ax l rosin2 ax: ,,_l.

0.,cos@'l '-''

ílxel
l : t, + l)e2* - *o2* : 12'+ O.

(x + l)eJ|

Theorem 2 shows that these solutions are linearly independent if and only if a * 0. Of course, we can see
this directly from the quotient yzlyt : tan ax. For r,.l : 0 we have y2 = 0, which implies linear dependence
(why?). l

lllustration of Theorem 2 for a Double Root

Ageneral solutionofy"-2y'+y:Oonanyintervalisy:(c1 -|c2x)e".(Verify!).Thecorresponding
Wronskian is not 0, which shows linear independence of e* and xe* on any interval. Namely,

W(x, xer) : 
r"-_

l

5lntroduced by WRONSKI (JOSEF MARIA HÓNE, 1'7'76_1853), polish mathematician.

_-1
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A General Solution of (l) lncludes All Solutions
This will be our second main result, as announced at the beginning. Let us start with existence.

THEoREM 3 Existence of a General solution

Ií p(x) and q(x) are continuous on an open interval I, then (I) has a general solution

on I.

p Ro o F By Theorem 1, the ODE (1) has a solution yr(x) on 1 satisfying the initial conditions

yi(xo) : 0yr(xo) : 1,

and a solution yz@) on 1 satisfying the initial conditions

yz(xo) : 0, yL@ : I.

The Wronskian of these two solutions has at x : x6 the value

W(yr(O), yz(O)) : y{x yr(xo) - y2@ y\@o) : 1.

Hence, by Theorem 2, these solutions are linearly independent on 1. They form a basis of
solutions of (1) on 1, and ! : ctlt l cry, with arbitrzíy ct, cris a general solution of (1)

on 1, whose existence we wanted to prove.

We finally show that a general solution is as general as it can possibly be.

THEoREM 4 A General solution lncludes All solutions

If the ODE (I) has continuous cofficients p(x) and q(x) on some open interval I,

then every solution y : Y(x) oí (I) on I is of the form

(8) Y(x) : Clt@) + C2y2@)

where !t, jz is any basis of solutions o/ (1) on I and Ct, Cz are suitable constants.

Hence (l) does not have singular solutions (that is, solutions not obtainable from
a general solution).

pRooF Lety : Y(x) be any solution of (1) on 1. Now, by Theorem 3 the ODE (1) has a general

solution

y(x) : cqt@) -l c2y2@)(9)

(10)

on 1. We have to find suitable values of c1, c2 such that y(x) : Y(x) on 1. We choose any

xg in 1and show first that we can find values of c1, c2 such that we reach agreement at

xg, that is, y(xg) : (xo) and y'(xo) : Y'(xo). Written out in terms of (9), this becomes

cgt(x *c2y2(xg): (xo)

cl|@ + crylr@g) : Y'(x .

(a)

(b)
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We determine the unknowns c1 and c2. To eliminate c2,,vla multiply (10a) by y!@) and
(10b) by -yr(xo) and add the resulting equations. This gives an equation for c1. Then we
multiply (10a) by -yi("o) and (10b) by yr("o) and add the resulting equations. This gives
an equation for cr. These new equations are as follows, where we take the values of }r,
y'r, yr, y;, Y, Y| at xg,

ctOll - yzyb : ctW(!t, !z) : Yy! - yrY'

czjll - yzyb : czW(!l, jz) : yrY' - Yy],.

Since jy jz is a basis, the Wronskian W in these equations is not 0, and we can solve for
clarLd c2. We call the (unique) solution c1 : Cy cz: Cz. By substituting it into (9) we
obtain from (9) the particular solution

y*(x):Cůt(x)+C2y2@).

Now since C1, C2is a solution of (10), we see from (10) that

y*(xo) : Y(xo), y*'(xo) : Y'(xo).

From the uniqueness stated in Theorem 1 this implies that y* and Y must be equal
everywhere on I, and the proof is complete. l

Looking back at he content of this section, we see that homogeneous linear ODEs with
continuous variable coefficients have a conceptually and structurally rather transparent
existence and uniqueness theory of solutions. Important in itself, this theory will also
provide the foundation of an investigation of nonhomogeneous linear ODEs, whose theory
and engineering applications we shall study in the remaining four sections of this chapter.

E BAsEs oF soluTloNs.
CORRESPOND|NG ODEs. WRONSKIANS

Find an ODE (1) for which the given functions are
solutions. Show linear independence (a) by considering
quotients, (b) bv Theorem 2.

1. 
"o,'*, 

,-o,5x 2. cos rrx, Sin rrx

3. ek*, xek* 4. x3, x-2
5. *o,", xo,25 In x 6. 

"",n*, 
e-2,5r

7. cos (2In x), sin (2 ln x)

8. ,-r*, xe-2* 9. *r-r, x-o.5

1,0. x-3, x-3 ln x 11. cosh 2.5x, sinhZ.Sx

12. e-2* cos (r-tr, e-2* Sin alx

13. e-' cos 0.8x, e-' sin 0.8x

14. x- 1 cos (ln x), x- 1 sin (ln x)

15. ,-2,5r cos 0.3x, 
"-2,5:t 

sin 0.3x

16. e-k' cos Ťrx, e-k* sin rrx

17. u-3.8rt, ag-S.8nr

18. TEAM PROJECT. Consequences of the Present
Theory. This concerns some noteworthy general
properties of solutions. Assume that the coefficients p
and q of the ODE (1) are continuous on some open
interval 1, to which the subsequent statements refer.

(A) Solve y" - y : 0 (a) by exponential functions,
(b) by hyperbolic functions. How are the constants in
the corresponding general solutions related?
(B) Prove that the solutions of a basis cannot be 0 at

the same point.
(C) Prove that the solutions of a basis cannot have a

maximum or minimum at the same point.
(D) Express (yzly)' by a formula involving the
Wronskian W. Why is it likely that such a formula
should exist? Use it to find I4z in Prob. 10.

(E) Sketch yt(x) : x3 If x > 0 and 0 if x { 0,
yz(x) : 0 if x > 0 and x3 If x < 0. Show linear

Wronskian? What Euler-Cauchy equation do !t, lz
satisfy? Is there a contradiction to Theorem 2?

77
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(F) Prove Abel's formulaG

W(yr(x), yz(x)) : c exp 
|- ť ,rr' "1

where c : W(7-{xo),,yz(.ro)). Apply it to Prob. 12. Hint:
Write (1) for y1 and íbr y2. Eliminate q a\gebraically
from these two ODEs, obtaining a first-order linear
ODE. Solve it.

Method of undetermined coefficients
In this section we proceed from homogeneous to nonhomogeneous linear ODEs

y" + p(,x)y' + q(x)y : r(x)

(2)

DEFlNlTloN

THEoREM 1

2.7 Nonhomoteneous ODEs

(1)

where r(x) * 0. We shall see that a "general solution" of (1) is the sum of a general

solution of the conesponding homogeneous ODE

y"+p(x)y'+q(x)y -t-,

terms "general solution of ( 1)" andand a "particular solution" of (1). These two new
"particular solution of (1)" are defined as follows.

General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (1) on an open interval 1 is a
solution of the form

(3) _v("r) 
: yn@) + yo(");

here, yn : ctlt l czyz is a general solution of the homogeneous ODE (2) on I and

}p is any solution of (1) on 1 containing no arbitrary constants.
A particular solution of (1) on 1 is a solution obtained from (3) by assigning

specific values to the arbitrary constants c1 and c2 in y6.

Our task is now twofold, first to justify these definitions and then to develop a method
for finding a solution yu of (1).

Accordingly, we first show that a general solution as just defined satisfies (1) and that

the solutions of (1) and (2) are related in a very simple way.

Relations of Solutions of (1) to Those of (2}

(a) The sum of a solution y oí (I) on some open interval I and a solution of
(2) on I is a solution oí (I) on I. In particular, (3) 

's 
a solution of (I) on I.

(b) The dffirence of two solutions of (I) on I is a solution of (2) on I.

GNIELS HENRIK ABEL (18O2-1 829), Norwegian mathematician.
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P R O O F (a) Let L[y] denote the 1eft side of (1). Then for any solutions y of (1) and of (2) on I,

L[y + l : Llyl + Ll ] -- r l 0 : r.

(b) For any solutions y and y* of (1) on 1we have Lly - y*l : LIyl

Now for homogeneous ODEs (2) we know that general solutions
We show that the same is true for nonhomogeneous ODEs (1).

-Líy*]-r-r:0.
l

include all solutions.

THEoREM z A General Solution of a Nonhomoteneous ODE lncludes All Solutions

If the cofficients p(x), q(x), and the function r(x) in (I) are continuous on some

open interval I, then every solution oí (I) on I is obtained by assigning suitable
values to the arbitrary constants cl and c2 in a general solution (3) oí (I) on I.

P R O O F Let y* be any solution of (1) on 1 and xg an! x in I. Let (3) be any general solution of (1)

on 1. This solution exists. Indeed, lh : ctlt l c2y2 exists by Theorem 3 in Sec. 2.6
because of the continuity assumption, and )p exists according to a construction to be shown
in Sec. 2.I0. Now, by Theorem 1(b) just proved, the difference Y : !* - }p is a solution
of (2) on 1. At x6 we have

Y(x : y*(xo) - !o(xo), Y'(x : y*'(ro) - yL@ .

Theorem 1 in Sec. 2.6 impltes that for these conditions, as for any other initial conditions
in 1, there exists a unique particular solution of (2) obtained by assigning suitable values
to cr, c2inyn. From this and y* : Y * lp the statement follows. l

Method of undetermined coefficients
Our discussion suggests the following . To solve the nonhomo7eneous ODE (I) or an initial
value problem for (I), we have to solve the homogeneous ODE (2) and find any solution

lp oí (1), so that we obtain a general solution (3) of (1).

How can we find a solution lo of (1)? One method is the so-called method of
undetermined coefficients. It is much simpler than another, more general method (to be
discussed in Sec. 2.I0). Since it applies to models of vibrational systems and electric
circuits to be shown in the next two sections, it is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs
with constant coefftcients a and b

y" + ay' + by: r(x)

when r(x) is an exponential function, a power of x, a cosine or sine, or sums or products
of such functions. These functions have derivatives similar to r(x) itself. This gives the
idea. We choose a form for yo similar to r(x), but with unknown coefficients to be
determined by substituting that yo and its derivatives into the ODE. Table 2.I on p. 80
shows the choice of }p for practically important forms of r(x). Corresponding rules are
as follows.

(4)
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choice Rules for the Method of undetermined coefficients

(a) Basic Rule. Ií r(x) in (4) is one of the fwnctions in the first column in
Table 2.I, choose yo in the same line and determine its undetermined
cofficients by substituting lp and its derivatives into (4).

(b) Modification Rule. If a term in your choice íor yo happens to be a
solution of the homogeneous ODE corresponding to (4), multiply your
choice oí yp by r (.or by ,' if this solution corresponds to a double root of
the characteristic eqwation of the homogeneous ODE).

(c) Sum Rule. If r(x) is a sum of functions in the first column of Table 2.I,

choose íor yp the sum of the functions in the corresponding lines of the

second column.

The Basic Rule applies when r(x) is a single term. The Modification Rule helps
indicated case, and to recognize such a case, we have to solve the homogeneous
first. The Sum Rule follows by noting that the sum of two solutions of (1) with r
and r : 12 (and the same left side!) is a solution of (1) with T : TI l rz. erify!)

The method is self-correcting. A false choice for yo or one with too few terms will lead
to a contradiction. A choice with too many terms will give a correct result, with superfluous
coefficients coming out zero.

Let us illustrate Rules (a)-(c) by the typical Examples

Table 2.1 Method of Undetermined Coefficients

Application of the Basic Rule (a}

Solve the initial value problem

y" + y: 0.001x2 .v(0) ),'(0) :

Solution. Sfup 1. General solution of the homogeneous ODE. The ODE y" + y: 0 has the general solution

yn : A cos,t + -B sin r.

Step 2. Solution y, of the nonhomogeneous ODE We flrst try ),, : Kxz. Then ),'; : 2K.By substitution,
2K + Kxz : 0.00l;2. For this to hold for all x, the coefficient of each power of r (x2 and ,ro) must be the same

on both sides; thus K : 0.001 and2K: 0, 2 contradiction.
The second line in Table 2.I suggests the choice

!p: K2x2 -l Kě * Kg. Then yi + yo: 2Kz + K2x2 f Kl-r i 0.00 |;2.

Equating the coefficients of *2, *, *o on both sides, we have K2: 0,00l, Kl : 0, 2K2 + Ko : 0. Hence

Ko: -2Kz: -0.002. This gives ),, : 0.00l;r2 - 0.002, and

,),: )h *.,,o - Á cos_r * B sinr i 0.0O1;r2 - 0.002.

in the
oDE
:TI

ExAMPLE l

(5)

Term in r(x) Choice for yo(x)

keY*

kx" (n : 0,

fr cos a;x

k sin ax
keo' cos ax
keo' sin ax

CeY*

Knxn + Kn_lť-1 + . . . l Klx t Ko

l
lKcos ulx * Msínax
)

}."(K cos rax -l M sin ax)
]
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ExAMPLE 2

8l

Step 3. Solution of the initial value problen. Setting x : 0 and using the first initial condition gives
y(0) : A - 0.002 : 0, hence A : 0.002. By differentiation and from the second initial condition,

) : }n + y; : -Á sin x -| B cos x -t- 0,002x

This gives the answer (Fig. a9)

and .y'(O):B:1.5.

y : 0.002 cosx * 1.5 sinx i 0.001"12 - 0.002.

Figure 49 shows y as well as the quadratic parabola }p about which y is oscillating, practically like a sine curve
since the cosine term is smaller by a factor of about 1/1000. l

Application of the Modification Rule (b)

Solve the initial value problem

(6) y" + 3y' + 2.25y: -l0 "-t,Sr, y(0): 1, )'(0):0.

Solution. Sfup 1. General solution of the homogeneous ODE. The characteristic equation of the

homogeneous ODE is i2 + 3^ + 2.25: (^ + 1.5)2 : O. Hence the homogeneous ODE has the general

solution

yh: (c7 + c2x)e-|,5*,

Step 2. Solutionypoíthe nonhomogeneous ODE The function r*Í,5r on the right would normally require

the choice g"-l'5r. But we see from y1 that this function is a solution of the homogeneous ODE, which
corresponds to a double root of the characteristic equation. Hence, according to the Modification Rule we have
to multiply our choice function by *'.That is, we choose

^ 2 -I.5.r
-\'p 

: L,\, e Then yL -- c(zx - 1.5X2)e-|,5*, :,i _ clz 3x 3x i 2.25x2)g-Lsa.

We substitute these expressions into the given ODE and omit the factor u-1,5r. This yields

C(2 - 6x -f 2.25x2) + 3C(2x - 1.5x2) + 2.25Cx2: -10.

Comparing the coefficients of x2, r, xo gives 0 : 0,0 : 0, 2C : _10, hence C : -5. This gives the solution

lp : -5x2e-1,5'. H"n." the given ODE has the general solution

! : ln + yp (cI -| c2x)e-1.5r - 5x2e-1.5I .

Step 3. Solution of the initial value problem. Setting x : 0 in y and using the first initial condition, we obtain
y(0) : c1 : 1. Differentiation of y gives

y' :(cz- 1.5c1 - 1.5c2x)e-!,5r * IOxe-Lí'+J.5x2e-1,5'.

From this and the second initial condition we have y'(0) - c2 1.5c1 : 0. Hence cz: 1.5.1 : 1.5. This
gives the answer (Fig. 50)

y: (1 + 1.5r) e 1,5I - 5*2"-|,5r: (1 + 1.5r - Sxzlg-Ls*.

Thecurvebeginswithahorizontaltangent,crossesthex-axis atx:0.6211 (where l * 1.5x - 5x2:0)and
approaches the axis from below as x increases. l

y

2

1

0

-i
Fig.49. Solution in Example 1
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y
1.0

0.5

0

_0.5

_1,0

Fig. 50. Solution in Example 2

Application of the Sum Rule (c)

Solve the initial value problem

(7) y" + 2y' + 5y : eo,5t + 40 cos 10x - 190 sin 10x, ,y(0) - 0.16, .l"(0) - 40.08.

Solution. Step l. General solution of the homogeneous ODE. The characteristic equation

^2 
+ 2^ + 5 : (^ + 1 + 2i)(^ + l - 2i):0

shows that a real general solution of the homogeneous ODE is

lh: e-Í (Á cos 2x * B sin 2x),

Step 2. Solution of the nonhomogeneous ODE We write _1rp 
: }p1 * :*pz,where yo1 corresponds to the

exponential term and )pz to the sum of the other two terms. We set

jp| : gro,5x. Then yLr: 0.5ceo'5' and y'i, - 0.25ceo,5*.

Substitution into the given oDE and omission of the exponential Í'actor gives (0.25 + 2'0.5 + 5)C : l, hence

C: 116.25: 0.16, andyr1 :0.16eo'5'.
We now setyo2 : Kcos lOx -l M sin lOx, as in Table 2,1,and obtain

yLr: - 10K sin 10x + I\M cos 10"r, ),'Jr: -100Kcos 10x - |00M sin lOx.

Substitution into the given ODE gives for the cosine terms and for the sine terms

-100K + 2,10M + 5K: 40,

or, by simplification,

-IjoM - 2.I)K + 5M: -190

-95K + 20M :40, -2oK - 95M: -l90.

The solution is K : 0, M : 2. Hence !p2: 2 sin 10r. Together,

|: ln* ypr * !p2: e-'(Acos2x i Bsin 2x) + 0.16eo,5'* 2 sin 10x.

Step 3. Solution of the initial value problem. From y and the first initial condition, y(0) : Á + 0.16 : 0.16,

hence Á : 0. Differentiation gives

y' : e-*(-A cos2r- B sin 2x - 2Asin 2,r * 2'B cos 2i) + 0-08eo,5r * 20 cos lOx.

Fromthisandthesecondinitialconditionwehavey'(0):-A+28+0.08+20:40.08,henceB:10.
This gives the solution (Fig. 51)

! : l\e-Í sin 2x -| 0.I6eo,5* Ť 2 sin lOx.

The ílrst term goes to O relatively fast. When x : 4,it is practically 0, as the dashed curves + I}e-' + 0.16eo'5'

show. From then on, the last term,2 sin 10,r, gives an oscillation about 0,16eo'5', the monotone increasing

dashed curve. 
- l

ExAMPLE 3
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Fig. 51. Solution in Example 3

Stability. The following is important. If (and only if) all the roots of the characteristic
equation of the homogeneous ODE y" + oy' * by :0 in (4) are negative, or have a negative
real part, then a general solution ln of this ODE goes to 0 as x @, so that the 6'transient

solution" ! : ln * y, of (4) approaches the 66steady-state solutig1|') !n.In this case the
nonhomogeneous ODE and the physical or other system modeled by the ODE are called
stable; otherwise they are called unstable. For instance, the ODE in Example 1 is unstable.

Basic applications follow in the next two sections.

@ GENERAL soluTloNs oF
NONHOMOGENEOUS ODES

Find a (real) general solution. Which rule are you using?
(Show each step of your calculation.)

l. y" * 3y' * 2y : 30e2*

2. y" -l 4y' + 3.75y: 109 cos 5x

3. y" - I6y : I9.2ea" * 60e"
4.y",|9y: cosxf jcos3x
5. y" l y' - 6y : 6r' _ 3x2 * I2x
6. y" -l 4y' -l 4y : e-2* sinzx
7. y" * 6y' + 73y : 8Oe* cos 4x
8. y" + 10y' + 25y: 100 sinh 5x
9. y" - 0.1 6y : 32 cosh 0.4x

I0. y" -l 4y' + 6,25y : 3.I25(x + I)2
11. y" + I.44y : 24 cos L2x
12. y" l 9y : 18x * 36 sin 3x

13. y" ,f 4y' * 5y : 25x2 + 13 sin2x
14. y" * 2y' * y : 2x sinx

E5J0l lNlTlAL vALuE pRoBLEMs FoR
NONHOMOGENEOUS ODES

Solve the initial value problem. State which rules you are
using. Show each step of your calculation in detail.

15, y" l 4y : 16 cos2x, y(0) : 0, y'(0) : 0

16. y" - 3y' + 2.25y : 2J(x2 - x),
y(0) : 20, y'(0) : 30

17. y" + 0.2y' + 0.26y : I.22eo,5',
y(0) : 3.5, y'(0) : 0,35

18. y" - 2y' : I2e2, - 8u-'*,
y(O) : -2, y'(0) : 12

19. y" - y' - I2y : 144x3 + I2.5,
y(0) : 5, y'(0) : _0.5

20. y" + 2y' + 10y : IJ sinx - 3J sin3x,
y(0) : 6.6, y'(0) : _2.2

21. WRITING PROJECT.Initial Value Problem. Write
out all the details of Example 3 in your own words.
Discuss Fig. 51 in more detail. Why is it that some of
the "half-waves" do not reach the dashed curves,
whereas others preceding them (and, of course, all later
ones) excede the dashed curves?

22. TF,A]NII PROJECT. Extensions of the Method of
Undetermined Coefficients. (a) Extend the method
to products of the function in Table 2.1. (b) Extend
the method to Euler-Cauchy equations. Comment on
the practical significance of such extensions.

23. CAS PROJECT. Structure of Solutions of Initial
Value Problems. Using the present method, find, graph,
and discuss the solutions y of initial value problems of
your own choice. Explore effects on solutions caused by
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changes of initial conditions. Graph !p, !, j - lp
separately, to see the separate effects. Find a problem in
which (a) the part of y resulting from y7, decreases to zero,

(b) increases, (c) is not present in the answer y. Study a

problem with y(0) : 0, y'(0) : 0. Consider a problem
in which you need the Modification Rule (a) for a simple
root, (b) for a double root. Make sure that your problems

cover all three Cases I, II, III (see Sec. 2.2).

motions of a mass-spring system (vibration of a mass

32 and 52) and modeled it by the homogeneous linear

(1) my" + cy' + ky -- 0.

Here y(r) as a function of time / is the displacement of the body of mass ru from rest.

These were free motions, that is, motions in the absence of external forces (outside forces)

caused solely by internal forces, forces within the system. These are the force of inertia

my" , the damping force cy' 1tf c } 0), and the spring force lcy acting as a restoring force.

We now extend our model by including an external force, call it r(t), on the right. Then

we have

(2*) my" + cy' + tcy : r(t).

Mechanically this means that at each instant / the resultant of the internal forces is in
equilibrium with r(r). The resulting motion is called a forced motion with forcing
function r(r), which is also known as input or driving force, and the solution y(r) to be

obtained is called the output or the response of the system to the driving force.
Of special interest are periodic external forces, and we shall consider a driving force

of the form

r(t) : Fo cos a.r/

Then we have the nonhomogeneous ODE

(Fo > 0, ro ) 0).

my" + cy' + lry : Fo cos d/.

Its solution will famlllartze us with further interesting facts fundamental in engineering
mathematics, in particular with resonance.

(2)

2.8 Modelin8: Forced Oscillations. Resonance
In Sec. 2.4 we considered vertical
m on an elastic spring, as in Figs.
oDE

Fig. 52. Mass on a spring

-l

84
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Solving the Nonhomogeneous ODE (2)

From Sec. 2.] we know that a general solution of (2) is the sum of a general solution y7,

of the homogeneous ODE (1) plus any soluti6n )n of (2). To find )p, we use the method
of undetermined coefficients (Sec. 2.7), starting from

(3) }p(/) : a cos at * b sin rr;/.

By difterentiating this function (chain rule!) we obtain

yL: -aa sin cor -f ab cos at,

),';: -o2r.L cos r,l/ - a}b sin cor.

SubstitutinE )p, !L, and yi into (2) and collecting the cosine and the sine terms, we get

[rr - m@2)u ,ť acbf cos r,,l/ + [- roca * (k - ma2)b] sin 0)t : F6 cos rrrl.

The cosine terms on both sides must be equal, and the coefficient of the sine term on the

left must be zero since there is no sine term on the right. This gives the two equations

(4) 'r 
-_:::'": 

*::,,), -:
fbr determining the unknown coefficients a and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by k - ma} and the second
by - ac and add the results, obtaining

(k - mu )2ct * a2c2a : Fg(k - maz).

Similarly, to eliminate a, multiply the first equation by olc and the second by k - mo

and add to get

a2c2b + (k - ma2lzb : Fgcoc.

If the factor (k - ma2')2 + tl2c2 is not zero, we can divide by this factor and solve for a
and b,

r k-tnu.
(Í r"(k-,,ta2 

12+u<,2

If we set \,[iň : a)o (> 0) as in Sec,

(5) o:Fn _ tlt(t,lo2-*t,l2\
u 

tn2(ulo2 - u2|2 + a2r,2

l-_E'@C' U 'u (k - m@2)2 + a2c2

2.4, then k : m@g2 and we obtain

l,:I} @C
' U' u,n2(0)n2 

- a2\2 + ul2c2

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form

y(/):yn(t)+y.p(t).(6)
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Here ynis a general solution of the homogeneous ODE (1) and )o is given by (3) with

coefficients (5).

We shall now discuss the behavior of the mechanical system, distinguishing between

the two cases c : O (no damping) and c } 0 (damping). These cases will correspond to

two basically different types of output.

Case 1. Undamped Forced Oscillations. Resonance
If the damping of the physical system is so small that its effect can be neglected over the

time interval considered, we can set c : 0. Then (5) reduces to a : Fgl|m(ao' - ,\]
and b : 0. Hence (3) becomes (use a42 -- klm;

Here we must assume that co2 + @o2; physically, the frequency al(2rr) [cycles/sec] of the

driving force is different from the natural frequency agl(2nr) of the system, whiCh is the

frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4*) in

Sec.2.4 we have the general solution of the "undamped system"

(1) !o(t) : *:\-.T cos t,lí :' m(oo' - t,l')

(9) oo:?o where

Fo
cos (,/.

Fo
(8) !ft): Ccos(ooí- 6)+ , , - cosoí.v ' m(@g'-uf)

kll - (al@ 2]

1

U- - ó' | - (alag)'

We see that this output is a superposition of two harmonic oscillations of the frequencies

.just mentioned.

Resonance. We discuss (7). We see that the maximum amplitude of le is (put

cos c,l/ : 1)

ag depends on ct,l and rr.ro. If a ---> a.rg, then p and ag tend to infinity. This excitation of
large oscillations by matching input and natural frequencies Qo : ao) is called

resonance. p is called the resonance factor (Fig. 53), and from (9) we see that plk: aglFg

is the ratio of the amplitudes of the particular solution lo and of the input F6 cos rrll.

We shall see later in this section that resonance is of basic importance in the study of
vibrating systems.

In the case of resonance the nonhomogeneous ODE (2) becomes

,,qFO
Y' * ao'y : 

- 
cos @6í.

m

Then (7) is no longer valid, and from the Modification Rule in Sec.2.] we conclude that

a particular solution of (10) is of the form

!oQ) : /(a cos agt l b sin agt).

(10)
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Fig. 53. Resonance factor p(a.r)

By substituting this into (10) we finď a : 0 and b : Fgl(Z*ro). Hence (Fig. 5a)

87

(11)

(I2)

We see that because of the factor / the amplitude of the vibration becomes larger and

larger. Practically speaking, systems with very little damping may undergo large vibrations
that can destroy the system. We shall return to this practical aspect of resonance later in
this section.

Fig. 54. Particular solution in the case of resonance

Beats. Another interesting and highly important type of oscillation is obtained if r,l is
close to arg. Take, for example, the particular solution [see (8)]

y-p

Fo
y(t) : -,--r: \ (cos rr;l - cos (t)oí)' m(ag' - a')

(a * ruog).

Using (I2) tn App. 3.1, we may write this as

),(í): 
^#:6*"(r+,) 

,i" ('+,)
Since r_o is close to og, the differeflc rrlg - ro is small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 55, the dashed
curve resulting from the first sine factor. This is what musicians are listening to when
they tune their instruments.

Fo
)o(í): ^ rSln d0/.' Znl@g
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Fig. 55. Forced undamped oscillation when the difference

or tn" input and natural frequencies is small ("beats")

THEoREM l

Case 2. Damped Forced Oscillations

(13)

If the damping of the mass-spring system is not negtigibly small, we have c ) 0 and a

damping te.m .y' in (1) and (2). Then the general solution )n of the homogeneous ODE

(1) approaches zero as / goes to infinity, as we know from Sec,2.4. PracticallY, it is zero

after a sufficiently long time. Hence the "transient solution" (6) of (2), given by

! : jn * !p, approaches the "steady-state solution" }p. This proves the following.

Steady-State Solution

After a sfficiently long time the output of a damped vibrating system under a pwrely

sinusoidal driving force Lsee (2)] will practically be a harmonic oscillation whose

frequency is that of the input-

Amplitude of the Steady_State Solution. Practical Resonance

Whereas in the undamped case the amplitude of }p approaches infinitY aS r',l aPProaches

cr.lg, this wi1l not happenin the damped case. In this case the amplitude will alwaYs be finite.

But it may have a maximum for some ro depending on the damPing constant c. This maY

be called practical resonance. It is of great importance because if c is not too large, then

some input may excite oscillations large enough to damage or even destroY the sYstem.

Such cases happened, in particular in earlier times when less was known about resonance.

Machines, cars, ships, airplanes, bridges, and high-rising buildings are vibrating mechanical

systems, and it is sometimes rather difficult to find constructions that are comPletelY free

of undesired resonance effects, caused, for instance, by an engine or bY strong winds.

To study the amplitude of _yp as a function of ro, we write (3) in the form

!oG) : C* cos (at - D.

c* is called the amplitude of .}o and 4 the phase angle or phase lag because it measures

the lag of the output behind the input. According to (5), these quantities are

C*(ai) : \F+ bŽ :

(14)

tan rlQ,l)
mk)o2 - @2)

F,o

:L:
0
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Let us see whether C*(c,l) has a maximum and, if so, find its location and then its size.

We denote the radicand in the second root in C* by R. Equating the derivative of C* to
zero, we obtain

dC* l l \-
d, 

: Fo (- Ž o-''' 
)|2n2t 

uo2 - ,,2:{-2uls + 2oc2f.

The expression in the brackets [. . .] is zero if

(15)

(15*)

c2:2m2(@o2-@2) (@o2 : klm).

By reshuffling terms we have

2m2a2 :2m2oo2 - c2 :2mk - c2.

The right side of this equation becomes negativeif c2 ž 2mk, so that then (l5) has no

real solution and C* decreases monotone as r-o increases, as the lowest curve in Fig. 56

on p. 90 shows. If c is smaller, c2 < zmk, then (15) has areal solution @: @^u*, where

22c2@max-{Xg - ^ .r
2m'

From (15*) we see that this solution increases as c decreases and approaches 0)g

as c approaches zero. See also Fig. 56.

The size of C*(al-.*) is obtained from (14), with a2 : @'^u* given by (15*). For this

a2 we obtain in the second radicand in (14) from (15*)

4

tn2{roz - .'^ur)' : ;' ,+m-
a2^u*c2: (ro' -and ,*L)*

The sum of the right sides of these two formulas is

(rn + 4m2o42c2 - Zc4)t(+m2) : c2l4m2ao2 - c21l14m21_

Substitution into (14) gives

(16) C*(c,r-"r) :

We see that C*(a*.*) is always finite when c ) 0. Furthermore, since the expression

c24m2ao2 - c4 : czl4mk - c2)

in the denominator of (16) decreases monotone to zero as c2 (< 2mk) goes to zero, the
maximum amplitude (16) increases monotone to infinity, in agreement with our result in
Case 1. Figure 56 shows the amplification C*lFo (ratio of the amplitudes of output and

input) as a function of c,.r for ffi : I, k : l, hence ao: 1, and various values of the

damping constant c.

2mF6

,\m%'- ,'
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Figure 57 shows the phase angle (the lag of the output behind the input), which is less

than rrl2 when al 1 @g, and greater than rrl2 for a ž ag.

2 (l)

C:l:

%
4

Fig. 56. Amplificat ion C*/Foas a function
of afor ffi : 1, k :1, and various values

of the damping constant c

Fig. 57. Phase lag 4 as a function of a f or
ffi:1, k : ], thus c,.lo : 1, and various

values of the damping constant c

0

E sTEADv-sTATE soluTloNs
Find the steady-state oscillation of the mass-spring system

modeled by the given ODE. Show the details of your

calculations.

I. y" -f 6y' * 8y : 130 cos 3t

2. 4y" * 8y' + I3y: 8 sin 1.5t

3. y" + y' + 4.25y : 221 cos 4.5r

4. y" * 4y' i 5y : cos/ - sin/
5. (D' + 2D + I)y : -sin2t
6. (D' + 4D + 3I)y : cos t + +cos3r
7. (D' + 6D + 181)y : cos 3t - 3 sin 3r

8. (D' + ZD + 101)y : -25 sin 4r

E TRANSIENT soluTloNs
Find the transient motion of the mass-spring system

modeled by the given ODE. (Show the details of your
work.)

9. y" -l 2y' + 0.75y : 13 sin r

I0. y" -l 4y' l 4y : cos 4t

11. 4y" + I2y' + 9y : J5 sin3t
12. (D2 + 5D + 4I)y : sin}t
13. (D2 + 3D + 3.25I)y : 13 - 39 cos}t
1,4. (D2 + 2D + 51)y : 1 * sin r

@ INITIAL vALuE pRoBLEMs

Find the motion of the mass-spring system modeled by
the ODE and initial conditions. Sketch or graph the

solution curve. In addition, sketch or graph the curve of

! - lp to see when the system practically reaches the

steady state.

L5. y" -l 2y' + 26y: 13 cos 3í,
y(0) : 1, y'(0) : 0,4

16. y" + 64y: cos /, }(0) : 0, y'(0) : 1

17. y" ,l 6y' + 8y : 4 sin1t, y(0) : 0.7,
y'(0) : - 11.8

18. (D2 + 2D + I)y : 75(sin t - }sín1t * } sin3r),
y(0) : 0, y'(0) : 1

19. GD2 + I2D + I3I)y : 12 cos / - 6 sin /,

y(0) : 1, y'(0) - -1
20. y" + 25y:99 cos4.9t, y(0):2, y,(0):0
21. (Beats) Derive the formula after (12) from (I2). Can

there be beats if the system has damping?

22. (Beats) How does the graph of the solution in Prob. 20

change ifyou change (a) y(0), (b) the frequency ofthe
driving force?

23. WRITING PROJECT. Free and Forced Vibrations.
Write a condensed report of 2-3 pages on the most
important facts about free and forced vibrations.

24. CAS EXPERIMENT. Undamped Vibrations.
(a) Solve the initial value problem y" + y: cos (r/,

a2 + I, y(0) : 0, y'(0) : 0. Show that the solution
can be written

[i ,, * ,l,] *

- ,)í]

2y(t): , ,|-u-

It
sin l - 11

L2

(11)
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(b) Experiment with (17) by changing rr; to see the

change of the curves from those for small a,l (> 0) to
beats, to resonance and to large values of ro (see Fig. 58).

a= 0.2

cO = 0.9

rrl=6

Fig. 58. Typical solution curves in CAS Experiment 24

9t

25. TEAM PROJECT. Practical Resonance. (a) Give
a detailed derivation of the crucial formula (16).

(b) By considertng dC*ldc show that C*(.,;*.*)
increases as c (< ÝZ*t decreases.

(c) Illustrate practical resonance with an ODE of your
own in which you vary c) and sketch or graph

corresponding curves as in Fig. 56.

(d) Take your ODE with c fixed and an input of two
terms, one with frequency close to the practical
resonance frequency and the other not. Discuss and

sketch or graph the output.

(e) Give other applications (not in the book) in which
resonance is important.

26. (Gun barrel) Solve

ll , |1 - lŤ2 ifo=tarr
y -1_ y:1

[ 0 iít>tr,
y(0):y'(0):0,

This models an undamped system on which a force F
acts during some interval of time (see Fig, 59), for
instance, the force on a gun barrel when a shell is fired,
the barrel being braked by heavy springs (and then

damped by a dashpot, which we disregard for
simplicity). Hint. At rrboth y and y' must be continuous.

Fig.59. Problem 26

2.9 Modelint: Electric Circuits
Designing good models is a task the computer cannot do. Hence setting up models has

become an important task in modern applied mathematics. The best way to gain experience
is to consider models from various fields. Accordingly, modeling electric circuits to be
discussed will be profitable for all students, not just for electrical engineers and computer
scientists.

We have just seen that linear ODEs have important applications in mechanics (see also
Sec. 2.4). Similarly, they are models of electric circuits, as they occur as portions of large
networks in computers and elsewhere. The circuits we shall consider here are basic
building blocks of such networks. They contain three kinds of components, namely,
resistors, inductors, and capacitors. Figure 60 on p. 92 shows such an RLC-circuit, as

they are called. In it a resistor of resistance R C) (ohms), an inductor of inductance L H
(henrys), and a capacitor of capacitance C F (farads) are wired in series as shown, and
connected to an electromotive force E(t) Y (volts) (a generator, for instance), sinusoidal
as in Fig. 60, or of some other kind. R, L, C, anď E are given and we want to find the

current I(t) A (amperes) in the circuit.
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"il]"
E(t) = Eosinat

Fig. 60. RLC-circuit

An oDE for the current 1(r) in the RLC-circuit in Fig. 60 is obtained from the following

law (which is the analog of Newton's second law, as we shall see later).

Kirchhoffrs Voltage Law (KVL).? The voltage (the electromotive force) impressed on

a closed loop is equal to the sum of the voltage drops across the other elements of the

loop.

In Fig. 60 the circuit is a closed loop, and the impressed voltage E(r) equals the sum

of the voltage drops across the three elements R, L, C of the loop.

Voltage Drops. Experiments show that a cunent 1flowing through a resistor, inductor

or capacitor causes a voltage drop (voltage difference, measured in volts) at the two ends;

these drops are

(Ohm's law)

dI:LeVoltagedrop

RI

LI'

O
C

Voltage drop

Voltage drop for a resistor of resistance R ohms (O),

for an inductor of inductance L henrys (H),

for a capacitor of capacitance C farads (F).

current byHere Q coulombs is the

doI(t): . .
dí

charge on the capacitor,

equivalently, Q(t)

related to the

: 
fry> at,

This is summarized in Fig. 61.

According to KVL we thus have in Fig. 60 for an RLC-circllit with electromotive force

E(t) : Eg sin at (Eg constant) as a model the o'integro-differential equation"

(1') LI' + R1 + Ž I, dt : E(t) : Eosin cr.l/.

?Gustev R9BERT KIRCHHOFF (1824-1887), German physicist. Later we shall also need Kirchhoff's
current taw (KCL):

At any point of a circuit, íhe sum of the inflowing cwrrents is equal to the swn of the outflowing currents.

The units of measurement of electrical quantities are named after ANDRB I\/IezuP AMPĚRE (1775-1836),

French physicist, CHARLES AUGUSTIN DE COULOMB (1736-1806), French physicist and engineer,

MICHAEL FARADAv (|'t91_1861), English physicist, JOSEPH HENRY (1'797-1878), American physicist,

GE9RG SIMQN oHM (1789-1854), German physicist, and ALESSANDRO VOLTA (1'745-1827), Italian

physicist.

92
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To get rid of the integral, we differentiate (1') with respect to t, obtaining

93

(1) LI" + RI'+Lr:
C

E'lts : Ena cos at.

This shows that the current in an RLc-circuit is obtained as the solution of this
nonhomogeneous second-order ODE (1) with constant coefficients.

From (l'), using I: Q', hence I' : Q", we also have directly

( 1") Lg" + Rg' Eg sin at,

But in most practical problems the current (r) is more important than the charge Q(t),
and for this reason we shall concentrate on (1) rather than on (1").

Solving the ODE (1) for the Current.
Discussion of Solution
A general solution of (1) is the sum ,í : ln * lo, where In ts a general solution of the

homogeneous ODE coíTesponding to (1) and 1, is a particular solution of (1). We first
determine Io by the method of undetermined coefficients, proceeding as in the previous
section. we substitute

(2) Ip:acosol*bstnat
tllp : @(-a sín at -l b cos iuot)

I'i : ,'(-a cos at - b sin ror)

into (1). Then we collect the cosine terms and equate them to Ega cos rrl/ on the right,
and we equate the sine terms to zero because there is no sine term on the right,

1

+ -O:C*

La2(-a) * Rab -l alC : Eoa

ra26b1 -l Ro\-a) + blC : 0

1

,C

(Cosine terms)

(Sine terms).

To solve this system for a and b, we first introduce a combination of L and C, called the
reactance

(3)

ohm's resistor

Inductor

Capacitor

-{/VW- R Ohm's resistance

/-0'trf0^\- L Inductance

=- 
C Capacitance

ohms (í))

henrys (H)

farads (F)

RI

L#t

QlC

Fig. 6l. Elements in an RLC-circuit

S:aL-

Unit Voltage Drop
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Dividing the previous two equations by ,, ordering them, and substituting S gives

-Sa*Rb:Eg
-Ra-SĎ:0.

We now eliminate b by multiplying the first equation by S and the second bY R, and

adding. Then we elimin ate a by multiplying the first equation by R and the second bY

-S, and adding. This gives

-(S2 + R')o: EoS, (R2+ S2lb:EoR.

In any practical case the resistance R is different from zero, so that we can solve for a

and b,

(4)
-EoS

n:-- R2 +s2'
- EoR
h: 

-

U R2+s2

Equation (2) with coefficients a and b given by (4) is the desired particular solution Io of

the nonhomogeneous oDE (1) governing the current 1in an RLC-círcuit with sinusoidal

electromotive force.
Using (4), we can write 1o in terms of "physically visible" quantities, namely, amplitude

1o and phase lag 0 of the current behind the electromotive force, that is,

(5) IeG) :16 sin @t - 0)

where [see (14) in App. A3.1]

Io: o' +b': -L, t.un|: -+ : +\/F1 b R

The quantitv Vn' + S'is called the impedance. Our formula shows that the impedance

equals the ratio Eollo. This is somewhat analogous to ElI: R (Ohm's law).

A general solution of the homogeneous equation corresponding to (1) is

Ih: Cte^" + 
'ru^"

where .tr1 and h2 are the roots of the characteristic equation

1

LC

We can write these roots in the form it : -a * B and Lz : -0t - B, where

Ra: -_=. F:2L,

Now in an actual circuit, R is never zeío (hence R > 0). From this it follows that In

approaches zero, theoretically as t ---ž @, but practically after a relatively short time. (ThiS

is as for the motion in the previous section.) Hence the transient current I : In -l /o tends

^2 
+ i n *

r-' , ll-iP- rc- 2L
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to the steady-state current Io, and after some time the output will practically be a harmonic
oscillation, which is given by (5) and whose frequency is that of the input (of the

electromotive force).

R[C-Circuit

Findthecurrentl(r)inanRtC-circuitwithR:11()(ohms),L:0.1 H(henry),C:l0-2F(farad),which
is connected to a source of vo|tage E(r) 1O0 sin4OOr (hence $lHz : $3 cycles/sec, because

400 : $l , 2Tr1. Assume that current and charge are zeío when r : 0.

Solution. Sfup l. General solution of the homogeneous ODE. Substituting R, L, C, and the derivative Ě'(r)
into (1), we obtain

1.1I" + 11I' + 1001 : l00.400 cos 400r.

Hence the homogeneous ODE is 0.l/" + l11/ + l001 :0. lts characteristic equation is

0.1,t2 + l1^ + 100:0.

The roots are ),1 : -l0 and.tr2 : -l00. The corresponding genera| solution oťthe homogeneous ODE is

InQl : r,lr-lo' + r2r-loot.

Step 2. Particular solution Io of (7). We calculate the reactance 
^S 

: 40 , 1l4 : 39.75 and the steady-state

current

Ie@ : cr cos 400r * Ď sin 400r

with coefficients obtained fiom (4)

100.39.75 100. l l
u- 

- 

--2.3368, b: _ =0.6-167.1l'+ 39.]5' Il'_ 39.]5'

Hence in our present case, a general solution of the nonhomogeneous ODE (l) is

(6) I(t) : ,,ť-1o' + ,,2r-Io0' - 2.33ó8 cos 400l + 0.6467 sin 400l.

Step 3. Particular solution satisfying the initial conditions. How to use QQ') = 0? We finally determine c1

and c2 from the initial conditions 1(0) : 0 and Q(0) : 0. From the first condition and (6) we have

(,7) 1(0) : C1 l C2 2.3368 : 0, hence cz: 2,3368 - ct

Furthermore, using 11'; wittr r: 0 anrl noting that the integral equals QG) (.see the formula befbre (1')), we

obtain

LI'Q)+R.0-: 0:0, hence /'(0) : 0.

Differentiating (6) and setting / : 0, we thus obtain

r'(o): -l0c1 - 100c2+0+ 0.6461,400:0, hence -10c1 :100(2.3368 _.r) _ 258.68.

The solution of this and (7) is c1 : -0.27'76, cz : 2.6144. Hence the answer is

I(t) : -0.27J6e-Iot + 2.6l44e-1ool - 2.3368 cos 4OOr + 0.6461sin 4OOr.

Figure 62 on p. 96 shows 1(0 as well as 1o(r), which practically coincide, except for a very short time near

t - o because the exponential terms go to zero very rapidly. Thus atter a very short time the current will
practically execute harmonic oscillations of the input frequency $lHz, : $3cycles/sec. Its maximum amplitude

and phase lag can be seen tiom (5), which here takes the íbrm

Ip(t) : 2.4246 sin (400r - 1.3008). l
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Example 1

Analog y of Electrical and Mechanical Quantities
Entirely dffirent physical or other systems may have the same mathematical model,

For instance, we hur," .""n this from the various aPPlications of the oDE Y' -- lrY in

Chap. 1. Another impressive demonstration of this unifying power of mathematics ts

giu"n by the oDE (ti for an electric RLC_circuit and the oDE (2) in the last section for

a mass-spring system. Both equations

LI" + RI' Egul cos ult and my" + cy' + lry : Fo cos @t

are of the same form. Table 2.2 shows the analogy between the various quantities involved,

The inductance L corresponds to the mass m and, indeed, an inductor opposes a change

in current, having an "inertia effect" similar to that of a mass. The resistance R conesPonds

to the damping constant c, anda resistor causes loss of energy, just as a damping dashpot

does. And so on.

This ana1o gy is strictly quantitative in the sense that to a given mechanical sYstem we

can construct an electric circuit whose current will give the exact values of the disPlacement

in the mechanical system when suitable scale factors are introduced,

The practical iiportance ofthis analogy is almost obvious. The analogY maY be used

for constructing an 
i,electrical model" of a given mechanical model, resulting in substantial

savings of time and money because electric circuits are easy to assemble, and electric

qountiti", can be measured much more quickly and accurately than mechanical ones,

Table 2.2 Analogy of Electrical and Mechanical Quantities

Electrical System Mechanical System

Inductance .L Mass lz

Resistance R Damping constant c

Reciproca| IlC of capacitance Spring modulus k

Derivative E.ídCoS at of 
} priving force Focos aí

electromotive force )

Cunent (r) Displacement y(r)

0

_1

1-|-I:
C

Fig.62. Transient and steady-state currents in

,,
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1. (RL-circuit) Model the Rl-circuit in Fig. 63. Find the
general solution when R, L, E are any constants. Graph
or sketch solutions when l : 0.1 H, R : 5 O,
E : 12Y.

2. (RL-circuit) Solve Prob. 1 when E : Eo sin oí and R,

L, Eg, rr.r are arbitrary. Sketch a typical solution.

3. (RC-circuit) Model the RC-circuit in Fig. 66. Find the

current due to a constant E.

4. (RC-circuit) Find the current in the RC-circuit in
Fig. 66 with E : E6 sin at anď arbitrary R, C, Eo, and rr;.

L
Fig. 63. RL-circuit

o.o2 0.04 0.06 0.08 0.1

Fig. 64. Currents in Problem ]

1.5

1

0.5

_0.5

_1

Fig. 65. Typical current l - e-o,lt -F sin (f - in)
in Problem 2

C

Fig.66. RC-circuit

Fig.67. Current 1 in Problem 3

5. (LC-circuit) This is an RlC-circuit with negligibly
small R (analog of an undamped mass-spring system).

Find the current when l : 0.2H, C : 0.05 F, and

E : sin / V, assuming zero initial current and charge.

6. (ZC-circuit) Find the current when L : 0.5 H,

'*:.r. 
10-4 F, E : t2 Y and,initial current and charge

@ R[c-clRculTs (F!G. 60, p. 92)

7. (Tuning) In tuning a stereo system to a radio station,

we adjust the tuning control (turn a knob) that changes

C (or perhaps L) in an RLC-circuit so that the amplitude
of the steady-state current (5) becomes maximum. For
what C will this happen?

8. (Transient current) Prove the claim in the text that if
R + 0 (hence R > 0), then the transient current
approaches Io as t --> co.

9. (Cases of damping) What are the conditions for an

RlC-circuit to be (I) overdamped, (II) critically
damped, (III) underdamped? What is the critical
resistance Rcrit (the analog of the critical damping

constant ZX6if

| 
10-12 | Find the steady-state current in the RLC-ciralit
in Fig. 60 on p.92 for the given data. (Show the details of
your work.)

10. R : 8 O, L : 0.5H, C : 0.1 F, E : 100 sin2rV
11. R : 1 í), L: 0.25 H, C :5. 10-5 F, E : 110 V
12. R _ 2 d), L : I H, C : 0.05 F, n : # sin3rV

|13-15l Find the transient current (a general solution)
in the RLC-circuit in Fig. 60 for the given data. (Show the

details of your work.)

13. R : 6 í), L : 0.2H, C : 0.025F, E : 110 sin 10rV
14. R:0.2 O, L:0,1 H, C :2F, E: ]54 sinO.5rV
15. R : 1/10 a, L - Il2H,C : 100/13 F,

E : e-at(L 932 cos lt + 0,246 sin }r) V

l 
1ó-18 | Solve the initial value problem for the
RlC-circuit in Fig. 60 with the given data, assuming zero
initial current alld charge" Graph or sketch the solution.
(Show, ttre t]etllils ltl'vtlltr u,ork")

Current /(t)

Current 1( )

Current( )

.,,il

5

4

3

2

1
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16. R : 4 í), L: 0.L H, C : 0.025 F, E: 10 sin 10rV

17. R : 6 O, L - tH, C : 0.04 F,
E : 600(cos r + 4 sin r) V

18. R :3.6 a, L:0,2H, C : 0.0625 F,

E: 164 cos 10rV

19. WRITING PROJECT. Analogy of RlC,Circuits and
Damped Mass-,Spring Systems. (a) Write an essay of

2-3 pages based on Table 2,2. Describe the analogy in

more detail and indicate its practical significance.

(b) What RlC-circuit with L : \H is the analog of
the mass*spring system with mass 5 kg, damping

constant 10 kg/sec, spring constant 60 kg/sec2, and

driving force220 cos 10r?

(c) Illustrate the analogy with another example of your

own choice.

20. TEAM PROJECT. Complex Method for Particular
Solutions. (a) Find aparticular solution of the complex
oDE

Lí" + Ri'+ G: \/=)

by substituting 7o : Y,iolt (K unknown) and its
derivatives into (8), and then take the real part Io of Ío,

showing that loagrees with (2), (4). Hint- Use the Euler
tbrmula ui<ot - cos r',lí * j sin @t |(l1) in Sec. 2-2w\th

rot instead of r]. Note that E6ro cos úDl in (l) is the real

part of EgoeŽ't in (8). Use i2 - -1.

(b) The complex impedance Z is defined by

Z:R*iS:R+i(rr- *)

(8)

Show that K obtained in (a) can be written as

D
LLO,\--

iZ

Note that the real part of Z is R, the imaginary part is

the reactance S, and the absolute value is the impedance

71 : Ý n' + Š as defined before. See Fig. 68.

(c) Find the steady-state soluti.in of the ODE
I" + 2I' -l 3I :20 cos r, first by the real method and

then by the complex method, and compare. (Slrow the

details of your work.)

(d) Apply the complex method to an RLC-circuit of
your choice,

R Real axis

Fig. ó8. Complex impedance Z

.ax
(

(
E
oo
(

_E

2J0 Solution by Variation of Parameters
We continue our discussion of nonhomogeneous linear ODEs

y" + p(x)y' + q(x)y: r(x).

In Sec. 2.6 we have seen that a general solution of (1) is the sum of a general solution y7,

of the coffesponding homogeneous ODE and any particular solution }, of (1). To obtain vo

when r(x) is not too complicated, we can often use the method of undetermined cofficients,

as we have shown in Sec. 2.7 andapplied to basic engineering models in Secs. 2.8 and2.9.

However, since this method is restricted to functions r(x) whose derivatives are of a forrn

similar to r(x) itself (powers, exponential functions, etc.), it is desirable to have a method valid

for more general ODEs (1), which we shall now develop. It is called the rnethod of variation

of parameters and is credited to Lagrange (Sec. 2.1). Here p, Q, r in (1) may be variable

(given functions of x), but we assume that they are continuous on some open interval 1.

Lagrange's method gives a particular solution }p of (1) on 1in the form

, r !"- d* + r,fY d*)o(x):-yrJ w W

(1)

(2)
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where jt, jz form a basis of solutions of the corresponding homogeneous ODE

y" + p(x)y' -l q(x)y : O

99

on 1, and W is the Wronskian of ly jz,

(3)

(4) (see Sec. 2.6).W:yryl-yzy't

solution y, and i

CAUTION! The solution formula (2) is obtained under the assumption that the ODE
is written in standard form, with y" as the first term as shown in (1). If it starts with f (x)y" ,

divide first by f(,t).
The integration in (2) may often cause difficulties, and so may the determination of yr,

yz if (1) has variable coefficients, If you have a choice, use the previous method. It is
simpler. Before deriving (2) let us work an example for which you do need the new

method. (Try otherwise.)

Method of variation of parameters

Solve the nonhomogeneous ODE

y" + .y: sec.T: ;=

Solution. A basis of solutions of the homogeneous ODE on any interval is yr : cos -T, }2 : sin x, This

gives the Wronskian

W(yt, yz) : cos,r cos J * sin x (-sin x) : l.

From (2), choosing zero constants of integration, we get the particular solution of the given ODE

)p : -cos,/rin,T sec J dx -t sin,/.o, x sec x clx
(Fig. 69).

: cos.r 1n |cos x| + x sin x

Figure 69 shows )p and its first term, which is small, so that x sin x essentially determines the shape of the curve

of yo. (Recall from Sec. 2.8 that we have seen x sin x in connection with resonance, except for notation.) From

}p and the general solution ln: ctlt -| czyz of the homogeneous ODE we obtain tlle answer

! : ln + lp : (c1 t ln |cos x|) cos _r + (c2 -l x) sin x.

Had we included integration constants -cy c2 in (2), then (2) would have given the additional

c1 cos x l c2 sinx : cr.Ir * c2!2,that is, a general solution of the given ODE directly from (2). This will
always be the case. l

y

10

5

0

-5

_10

Fig. 69. Particular
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ldea of the Method. Derivation of (2)

What idea did Lagrange have? What gave the method the name? Where do we use the

continuity assumptions?
The idea is to start from a general solution

yn@):ctjt(x)*c2y2(x)

of the homogeneous ODE (3) on an open interval I anď to replace the constants ("the

parameters") ct and c2by functions z(x) and u(x); this suggests the name of the method.

We shall determine u and u so that the resulting function

lo@) : u(x)yl(x) + u(x)y2@)(5)

is a particular solution of the nonhomogeneous ODE (1). Note that yn exists by Theorem

3 in Sec. 2.6because of the continuity of p and q on I. (The continuity of r will be used

later.)
We determtne u and u by substituting (5) and its derivatives into (1). Differentiating

(5), we obtain

yL: u'yt l uy! + u'y2 + uy!2.

Now yo must satisfy (1). This is one condition for two functions u and u. It seems plausible

that wó may impose a second condition. Indeed, our calculation will show that we can

determine u and u such thatyo satisfies (1) and u and u satisfy as a second condition the

equation

(6)

This reduces the first derivative y| to the simpler form

(1)

Differentiating (7), we obtain

(9a)

Equation (6) is

(9b)

u'yt l U'yz: O.

yL: uy', + uy!_

,'y'r* r'yL: r.

u'y, * u'yz:0.

(8) yi : u'y', + uyi + u'y! + uy'/,

We now substitute le and, its derivatives according to (5), (7), (8) into (1). Collecting

terms tn u and terms in u, we obtain

u(y'| + py| + Qjt) + u(y'J + pyi + Q!) + u'y'r,| ,'yL: ,.

Since y1 and y2 are solutions of the homogeneous ODE (3), this reduces to

-
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This is a linear system of two algebraic equations for the unknown functions u' and t-l' .

We can solve it by elimination as follows (or by Cramer's rule in Sec. 7 .6). To eliminate
l)' , we multiply (9a) by -y2 and (9b) by y!2 and add, obtaining

u'(yll, - yzyb : -!2r, thus bt'W : -!zr.

Here, W is the Wronskian (4) of !t, lz.To elimin ate u' we multiply (9a) by yr, and (9b)

by -y| and add, obtaining

u'OlL - yzyb : !-l,f , thus tl'W : y{.

Since !t, lz form a basis, we have W + 0 (by Theorem2 in Sec. 2.6) and can divide by W,

(10)

By integration,

t lzTu :--.
W

t jtr
W

These integrals exist because r(x) is continuous. Inserting them into (5) gives (2)

completes the derivation.
and
l

1,4.

15.

1,6.

17.

18.

@ GENERAL soLuTIoN
Solve the given nonhomogeneous ODE by variation of
parametefs or undetermined coefficients. Give a general

solution. (Show the details of your work.)

I. y" -l y : cscx
2. y" - 4y' * 4y : a2":r

3. ,'y" - zry' * 2y : x3 cos x

4. y" - 2y' l y : e* sinx
5. y" l y : tanx
6.r'y" -ry'+y:xln|x|
7. y" -| y : cosx i secx
8. y" - 4y' * 4y : I2e2,/x4

9. (D' - 2D + I)y : x2 + x-2e*
t0. (D2 - I)y : l/cosh x
11. (D2 + 4I)y : cosh 2x

12. (x2D2 -l xD - it)y : 3x-l + 3x

13. (x2D2 - 2xD + ZI)y : x3 sin x

flzr f!I!:-|ad.r. u- |Ld.r.JW JW

(*'D'txD-4I)y:Ilxz
(D2 + Dy : sec .r - 10 sin 5x

(r'D' -l xD -| (x' - i>t>y - x3l2 cos J.
Hint.Tofindy1, y2 set !: ux-Ilz.
(r'D' -l xD -| (r' - i>tly - x3l2 sin x.
Hint: As in Prob. 16,

TEAM PROJECT. Comparison of Methods. The
undetermined-coefficient method should be used

whenever possible because it is simpler. Compare it
with the present method as follows.
(a) Solve y" + 2y' 15y : 17 sin 5x by both

methods, showing all details, and compare.

(b) Solve y" + 9y : f1 + f2, ť1 : sec 3x,

12 : sin 3x by applying each method to a suitable
function on the right.

(c) Invent an undetermined-coefficient method for
nonhomogeneous Euler-Cauchy equations by
experimenting,

10l
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1. What general properties make linear ODEs particularly
attractive?

2. What is a general solution of a linear ODE? A basis of
solutions?

3. How would you obtain a general solution of a

nonhomogeneous linear ODE if you knew a general
solution of the corresponding homogeneous ODE?

4. What does an initial value problem for a second-order
ODE look like?

5. What is a particular solution and why is it more common
than a general solution as the answer to practical
problems?

6. Why are second-order ODEs more important in
modeling than ODEs of higher order?

7. Describe the applications of ODEs in mechanical
vibrating systems. What are the electrical analogs of
those systems?

8. If a construction, such as a bridge, shows undesirable
resonance, what could you do?

GENEMI soLUTloN
Find a general solution. Indicate the method you are using
and show the details of your calculation.
9. y" - 2y' - 8): 52 cos6x

10. y" -l 6y' -| 9y : ,-3r - 2712
11. y" * 8}' + 25y : 26 sin 3x
12. yy" * 2y''
13. (x2D2 * 2xD - I2I)y : Ilxs
14. (x2D2 -f 6xD * 6I)y : 7z
15. (D2 - 2D + 1)y - x-3e*
16. (D2 - 4D + 5I)y : e2* csc x
t7. (D2 - 2D + 2I)y : e* csc x
18. (4x2D2 - 24xD + 49I)y : 36x5

ELrs] tNFtAL vALuE pRoBLEMs
Solve the following initial value problems. Sketch or graph
the solution. (Show the details of your work.)
19. y" * 5y' - l4y:6, y(0) : 6, }'(0) : _6
20. y" + 6y' * 18y:0, y(0):5, y'(0) : _2I
2l. x2y" - ry' - 24y: g, _v(1): 15, y'(1):0
22. x2y" * I5xy' l 49y:0, y(I):2, }'(1) : _11

23. y" -l 5y' f 6y: 108x2, }(0): 18, y'(:0): -26
24. y" + y' + 2.5y : 13 cos J, y(0) : 8.0,

y'(0) : 4,5

25. (x2D2 * xD - 4I)y : x3, y(1) : _4l5,
y'(l) :9315

V641 AppLIcATloNs
26. Find the steady-state solution of the system in Fig. 70

when ffi : 4, c : 4, k : I7 and the driving force is
202 cos 3t.

27. Find the motion of the system in Fig. 70 with mass
0.25 kg, no damping, spring constant 1 kg/sec2, and
driving fbrce 15 cos 0.5r - 7 sin 1.5t nt, assuming zero
initial displacement and velocity. For what frequency
of the driving force would you get resonance?

28. In Prob. 26 find the solution corresponding to initial
displacement 10 and initial velocity 0.

29. Show that the system in Fig, 70 with ffi : 4, c : 0,

k : 36, and driving force 6l cos 3.1r exhibits beats.
Hint: choose zero initial conditions.

30. In Fig. 70 let m : 2, c : 6, k : 2J, and
r(t) : 10 cos at.For what ra will you obtain the steady-
state vibration of maximum possible amplitude?
Determine this amplitude. Then use this ro and the
undetermined-coefficient method to see whether you
obtain the same amplitude.

31. Find an electrical analog of the mass-spring system in
Fig, 70 with mass 0.5 kg, spring constant 40 kg/sec2,
damping constant 9 kg/sec, and driving force
l02 cos 6rnt. Solve the analog, assuming zero initial
curent and charge.

32. Find the current in the RlC-circuit in Fig. 7I
when L:0.1 H, R :20 í), C - 2.10-4 F, and
E(t) : 110 sin 4I5t Y (66 cycles/sec).

33. Find the current in the RLC-circuit when L : 0.4 H,
R : 40 í), C : 10-4 F, and E(t) : 220 sin 314r V
(50 cycles/sec),

34. Find a particular solution in Prob. 33 by the complex
method. (See Team Project 20 in Sec. 2.9.)

Spring

Mass

Dash pot

Fig. 70. Mass-spring
system

"il},
E(t)

Fig. 7l. RLC-circuit



Summary of Chapter 2

l]

l03

(2)

Second-order linear ODEs are particularly important in applications, for instance,

in mechanics (Secs, 2.4,2.8) and electrical engineering (Sec. 2.9). A second-order

ODE is called linear if it can be written

(1) l y"'I+ p@)y' + q(x)y : r(x) (Sec, 2,1),l,
(If the first term is. sa},. í(*)y", divide by í(x) to get the '(standard form" (1) with
y" us the first term.) b,quation (1) is called homogeneous if r(x) is zero for aII x
considered, usually in some open interval; this is written r(x) :0. Then

)," + p(.x)),' + q(x)y : O,

Equation (1) is called nonhomogeneous if r(x) * 0 (meaning r(x) is not zero for
some x considered).

For the homogeneous ODE (2) we have the important superposition principle
(Sec. 2.I) that a linear combination y : lqt + ly2 of two solutiofls }1, y2 is again

a solution.
Two linearly independent solutions jy lz of (2) on an open interval 1form a basis

(or fundamental system) of solutions on I, anď j : ctlt l czy, with arbitrary
constants c., c2 is a general solution of (2) on 1. From it we obtain a particular
solution if we specify numeric values (numbers) for c, and c2, usually by prescribing
two initial conditions

(3) y(xo) : Ko, y'(x : Kt (xg, Kg, K1 given numbers; Sec. 2.1).

(2) and (3) together form an initial value problem. Similarly for (1) and (3).

For a nonhomogeneous ODE (1) a general solution is of the form

!:ln*jp (Sec. 2.7).

Here yn is a general solution of (2) andyo is a particular solution of (1). Such a yo

can be determined by a general method (variation of parameters, Sec. 2.10) or in
many practicalcases by the method of undetermined coefficients. The latter applies
when (1) has constant coefficients p and q, anď r(x) is a power of x, sine, cosine,

etc. (Sec. 2.7).Then we write (1) as

(5) y" + ay' + by : r(x) (Sec. 2.7).

The corresponding homogeneous ODE y' + oy' + by : 0 has solutions y : et*,

where ,\ is a root of

^2+il"*b:O.

(4)

(6)



Hence there are three cases (Sec. 2.2):

I

il
il

Distinct real .i.1, .tr2

Double -}a
Complex -ta + iu

!: CIe^r* l Cre^zr

}:(cr +c2x)e-o*l2

! - e-arlz(Á cos a*x * B sin o*x)

Important applications of (5) in mechanical and electrical engineering in connection
with vibrations and resonance aíe discussed in Secs. 2.4, 2.7, and 2.8.

Another large class of ODEs solvable "algebraically" consists of the

Euler-Cauchy equations

,'y" + axy' + by: O(1) (Sec. 2.5).

These have solutions of the form j : x*, where m is a solution of the auxiliary
equation

(8) m2+(a-I)m-lb:O.

Existence and uniqueness of solutions of (1) and (2) is discussed in Secs. 2.6
and 2.7 , and reduction of order in Sec. 2.1.

104 CHAP.2 Second-Order Linear ODEs
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Higher Order Linear ODEs

\

In this chapter we extend the concepts and methods of Chap. 2 for linear ODEs from order

n : 2 to arbitrary order n. This will be straightforward and needs no new ideas. However,
the formulas become more involved, the variety of roots of the characteristic equation (in

Sec. 3.2) becomes much larger with increasing n, and the Wronskian plays a more
prominent role.

Prerequisire., Secs. 2.I, 2.2, 2.6, 2.7, 2.I0.
References and Answers to Problems: App. 1 Part A, and App.2.

Recall from Sec. 1.1 that an ODE is of nth order if the nthderivativey@) : dnyldxn of
the unknown function y(x) is the highest occurring derivative. Thus the ODE is of the form

(,''': #)

(1)

(2)

3.1 Homoteneous Linear ODEs

F(x,y,!',,",y(')):0

where lower order derivatives and y itself may or may not occur. Such an ODE is called
linear if it can be written

y'n' + pn_t@)y(n-l) a * p{x)y' + po@)y : r(x).

(For n : 2 this is (1) in Sec. 2.1 with pt : p andpo : q). The coefficients po,,,,, pn_I
and the function r on the right are any given functions of x, and y is unknown. y(') has

coefficient 1. This is practical. We call this the standard form. (If you have pn(x)y'n',
divide by p.(x) to get this form.) An nth-order ODE that cannot be written in the form
(1) is called nonlinear.

If r(x) is identically zero, r(x) : 0 (zero for all x considered, usually in some open
interval 1), then (1) becomes

y(n) + pn_{x)y(n-7) 1 -| p{x)y' -l pg(x)y : 0

and is called homogeneous. If r(x) is not identically zero, then the ODE is called
nonhomogeneous. This is as in Sec. 2.1.

A solution of an rrth-order (linear or nonlinear) ODE on some open interval 1 is a
function y : h(x) that is defined anď n times differentiable on I anď is such that the oDE
becomes an identity if we replace the unknown function y and its derivatives by h and its
coffesponding derivatives.

l05
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Homogeneous Linear ODE: Superposition Princip[e,
General Solution
Sections 3.1-3.2 will be devoted to homogeneous linear ODEs and Sec. 3.3 to

nonhomogeneous linear ODEs. The basic superposition or linearity principle in Sec. 2.1

extends to nth order homogeneous linear ODEs as follows.

(

Fundamental Theorem for the Homoteneous Linear ODE (2)

For a homogeneous linear ODE (2), sums and constant multiples of solutions on

some open interval I are again solutions on I. (This does not hold for a

nonhomogeneous or nonlinear ODE!)

The proof is a simple generalization of that in Sec. 2.I and we leave it to the student.

Our further discussion parallels and extends that for second-order ODEs in Sec. 2.1.

So we define next a general solution of (2), which will require an extension of linear
independence from 2 to n functions.

General Solution, Basis, Particular Solution

A general solution of (2) on an open interval 1 is a solution of (2) on 1of the form

(3) y(x): cr}r(x) + ",* cnyn(x) (ct",,cnarbitrary)

where }t, . , ln is a basis (or fundamental system) of solutions of (2) on 1,, that

is, these solutions are linearly independent on 1, as defined below.
A particular solution of (2) on / is obtained if we assign specific values to the

n constantS c1, , , , , crl. in (3).

Linear lndependence and Dependence

n functions }r(x), , , , ,!n(x) are called linearly independent on some interval I
where they are defined if the equation

(4) k t@)+",-lknyn(x):O on1

implies that all kr, . . . , kn are zero. These functions are called linearly dependent
on 1 if this equation also holds on 1for some kr, , , , , kn not all zero.

(As in Secs. 1.1 and 2.I,the arbitrary constants cb, , , , cnmust sometimes be restricted
to some interval.)

If and only if lr , , , , ln are linearly dependent on 1, we can express (at least) one of
these functions on 1 as a "linear combination" of the other n - t functions, that is, as

a sum of those functions, each multiplied by a constant (zero or not). This motivates the

term "linearly dependent." For instance, if (4) holds with k, * 0, we can divide by kl and
express }r as the linear combination

THEoREM t

DEFlNlTloN

DEFlNlTloN
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1

}t: - , (kzlz + ... * kn!).
Á1

Note that when fl:2,these concepts reduce to those defined in Sec. 2.1.

Linear Dependence

Show that the functions }r : ,', yr:5.r, ys : 2x are linearly dependent on any interval.

Solution. }z : 0h -l 2.5y. This proves linear dependence on any interval. l

Linear lndependence

Show that)1 : í, !2: x2,.!s : í3 are linearly independent on any interval, for instance, on -1 < x < 2.

Solution. Equation(4)iskl_r + k2x2 + kgx3:0.Taking(a).r: -1,(b) x: I, (c)l:2,weget

(a)-kr *kz- ks:0, (b)k1 + k2-1 kg:0, (c)2k1+ 4k2+ 8 3:9.

kz: O from (a) + (b). Then ks : O from (c) -2(b). Then Ř1 : 0 from (b). This proves linear independence,

A better method for testing linear independence of solutions of ODEs will soon be explained. l

EX A M Pt E 3 General Solution. Basis

Solve the fourth-order ODE

yi' - 5y" + 4y :0 (where yi" : dayldxa),

Solution. As in Sec. 2.Z we try and substitute y : e^r. Omitting the common factor e^', we obtain the

characteristic equation

^4-5^2+4:0.
This is a quadratic equation in p : ),2, namely,

p2 - 5p-l 4: (p - 1)(p - 4) : 0.

The roots are p: 1 and 4, Hence h: -2, -1, 1, 2. This gives four solutions. A general solution on any

interval is

y - (,|e'2* l c2e-Í l cger + cne2'

provided those four solutions are linearly independent. This is true but will be shown later, l

lnitial Value Problem. Existence and Uniqueness
An initial value problem for the ODE (2) consists of (2) and n initial conditions

y(Jo) : Ko, y'(x : K!, y'n-"(*o) : Kn_I

with given x6 in the open interval 1 considered, and given Ko, , , , , Kn_'
In extension of the existence and uniqueness theorem in Sec. 2.6 we now have the following.

Existence and Uniqueness Theorem for lnitial Value Problems

If the cofficients pg(x), . . , pn_l@) oí (2) are continuous on some open interval I
and xg is in I, then the initial value problem (2), (5) has a unique solution y(x) on I.

Existence is proved in Ref. tA11] in App. 1. Uniqueness can be proved by a slight
generalization of the uniqueness proof at the beginning of App. 4.

(5)

THEoREM 2
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ExAMpLE 4 lnitial Value Problem for a Third-Order Euler-Cauchy Equation

Solve the following initial value problem on any open interval 1on the positive x-axis containing x : 1.

3"'ll - 3x2y" + 6ry' - 6.y: O, y(I):2, y'(1): l, y"(1): _4,xy

Solution. Sfup 1. General solution. As in Sec. 2.5 we try y : x*.By differentiation and substitution,

m(m - 1)(m - 2)** - 3m(m - t)x* + 6mx* - 6x* :0. 
\

Dropping x* andordering gives llz3 - 6m2 í l|m - 6:0. If we can g^ues^s the root m: I, we can divide

by m - 1 and find the other roots 2 and 3, thus obtaining the solutions ,, ,2, *3, which are linearly independent

on 1(see Example 2). [In general one shall need a root-finding method, such as Newton's (Sec. 19.2), also

available in a CAS (Computer Algebra System).] Hence a general solution is

):Clx+c2x2*a3*3

valid on any interval I, eyen when it includes x : 0 where the coefficients of the ODE divided by x3 (to have

the standard lorm) are not Continuous.

Step 2. Particular solution. The derivatives are y' : ct -| 2c2x * 3cgx2 and y" : 2c2 -| 6cax. From this and

y and the initial conditions we get by setting x : 1

(a) "v(1) 
: c1 i cz l c3: 2

(b) y'(1) : ct * 2c2-| 3ca: l

(c) _y"lt; : 2c2 * 6ca: -4.

This is solved by Cramer's rule (Sec. 7.6), or by elimination, which is simple, as follows. (b) - (a) gives

(d) c2 + 2c": -1. Then (c) - 2(d) gives ca - -1. Then (c) gives c2 : 1. Finally ct:2 from (a).

Answer: ! :2x + x2 - x3. l

Linear lndependence of Solutions. Wronskian
Linear independence of solutions is crucial for obtaining general solutions. Although it
can often be seen by inspection, it would be good to have a criterion for it. Now Theorem

2 in Sec. 2.6 extends from order n: 2 to any n. This extended criterion uses the Wronskian
W of ,? solutions }r, , , ,ln defined as the lzth order determinant

W(yr",,!n):

y?-r, yy-r, .r, (rz - 1)
Jn

Note thatW depends on_r since !t,. . , , jndoes. The criterion states that these solutions

form a basis if and only if W is not zero1, more precisely:

THEoREM 3 Linear Dependence and lndependence of Solutions

Let the ODE (2) have continuous cofficients pg(x), , , , , pn_l(x) on an open

interval I. Then n solution }t, , " , ln oí (Z) on I are linearly dependent on I if
and only if their Wronskian is zero for some x : xo in I. FurtherTnore, if W is zero for
x : xg; then W is identically zero on I. Hence if there is an xl in I at which W is
not Zero, then y1, . . , ln are linearly independent on I, so that they form a basis
of solutions of (2) on I.

}r lz ln
llllt lz ln

(6)
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PROOF (a)Letlb",,
are constants k1,

lo9

lnbe linearly dependent solutions of (2) on 1. Then, by definition, there
, , , , kn not all zero, such that for all x in I,

kůtt",+knln:0.

By , - 1 differentiations of (7) we obtain for all x in I
\

ktYí +

kry?-') *

+ k.Y'. - 0

+ k-y*-l) : 0,

(7), (8) is a homogeneous linear system of algebraic equations with a nontrivial solution
kr, . . . , kn. Hence its coefficient determinant must be zero for every x on I, by Cramer's
theorem (Sec. 7 .7). Bttt that determinant is the Wronskian W, as we see from (6). Hence
W is zero for every x on I.

(b) Conversely, if W is zero at an xo in 1, then the system (7), (8) with x : x6 has a solution
kr*, . . . , kn*, not all zero, by the same theorem. With these constants we define the

solutiony*: k yt +,,, l kn*ynof (2) on1.By(7),(8)thissolutionsatisfiesthe
initial conditions y*(xo) - 0, . , l )l*(n-"("o) : 0. But another solution satisfying the

same conditions is y = 0. Hence y* = y by Theorem2, which applies since the coefficients
of (2) arecontinuous. Together,y*: k,,,*yt + ", l kn*ln= 0onl.Thismeanslinear
dependence of y1,,,,, yn on I.

(c) If W is zero at an x6 in 1, we have linear dependence by (b) and then W = 0 by (a).

Hence if I4z is not zero at an xl in 1, the solutions !t, , , , , y,, must be linearly independent

on1. l

EXAMPLE 5 Basis,Wronskian

We can now prove that in Example 3 we do have a basis. In evaluating I pull out the exponential functions
columnwise. In the result, subtract Column 1 from Columns 2, 3, 4 (without changing Column 1). Then
expand by Row 1. In the resulting third-order determinant, subtract Column 1 from Column 2 and expand

the result by Row 2:

(1)

(8)

-2r -I Ieee

^ -2x -_r "r-Ze -e " e

n -2r -.r Ja+e e" e

_8e-2* _ e-r e,

e

2e2'

4e2*

8e2'

11
-2 -1
4I

-8 -1

1l
I2
14
l8

13
-3 -3
79

:72. l
,lI

A General Solution of (2) Includes A
Let us first show that general solutions always exist. Indeed,
as follows.

l1 Solutions
Theorem 3 in Sec. 2.6 extends

TH Eo REM 4 Existence of a General solution

If the cofficients p6(x), , , , , pn_l@) oí (2) are continuous on some open interval
I, then (2) has a general solution on I.

W:
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PROOF We choose any fixedx6 in 1.By Theorem 2the ODE (2) has n solutions )t, ", jn,
where }3. satisfies initial conditions (5) with Kj_t: 1 and all other K's equal to zero. Their
WronsÉan at x6 equals 1. For instance, when n : 3, then yr(xo) : 1, y!@|) : l,
yÍ(xo) : 1, and the other initial values are zeío. Thus, as claimed,

|l,,txol yzTol }s(xo)l l' 0

lV(yl(x6). y2(x6). r,3(x6)l : |l{t*o) 
yj(rol ljrr6)l : 

IO 
I

|yit*ol y'JGo) y]tx6ll lo 0

:l

1|

- 1.

Hence for any n those solutions }t, , , , ln are linearly independent on 1, by Theorem 3.

Theyformabasisonl,and): cr)r + ", l cry,'isageneralsolution of (2) on1. l

We can now prove the basic property that from a general solution of (2) every solution

of (2) can be obtained by choosing suitable values of the arbitrary constants. Hence an

nth order linear ODE has no singular solutions, that is, solutions that cannot be obtained

from a general solution.

THEoREM 5 General solution lncludes All solutions

If the ODE (2) has continuous cofficients pg(x), , , pn_I@) on some open interval
I, then evetry solution y : Y(x) oí (2) on I is of the form

(9) Y(x):Cl{x) + ",-f Cnyn@)

where }1, , !,n is a basis oJ' solutions oí (2) on I and Ct, , , , Cn are suitable
constants.

PROOF LetY beagivensolutionandy: c1lt + ", l cny',.ageneralsolution of (2) onl.We
choose any fixed x6 in 1 and show that we can find constants cb , , ,, cn for which y and

its first n - I derivatives agree with and its coíTesponding derivatives at xg. That is,

we should have at x : xo

(10)

cr}r*",+ cnjn -Y

cl!+ ",+ c-y|" :Y'

:

cry?-'' + . . . * rry*-l) - y{n-1)

But this is a linear system of equations in the unknowfls c1, , , , , cn. Its coefficient
determinantis the Wronskian Wof }t, , , !-ndtx6. Since.}t, , ,, yr. form abasis, they

are linearly independent, so thatW is not zeroby Theorem 3. Hence (10) has a unique

solution c1 : C1, " , , ctt,: Cr, (by Cramer's theorem in Sec. 7.7). With these values

we obtain the particular solution

y*(x) : Cryr(x) +,,, * Cnyn(x)

on 1. Equation (10) shows that _y* and its íirst n - 1 derivatives agree at xo with Y and

its corresponding derivatives. That is, )* and Y satisfy at x6 the same initial conditions.
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The uniqueness theorem (Theorem 2) now implies that y* = on 1. This proves

theorem.

This completes our theory of the homogeneous linear ODE (2). Note that for n : 2 tt is
identical with that in Sec. 2.6. This had to be expected.

the
l

E TyplcAL ExAMpLEs oF BAsEs
To get a feel for higher order ODEs, show that the given
functions are solutions and form a basis on any interval.
Use Wronskians. (In Prob. 2, x } 0.)

l. l. x, x2, x3. yiu : 0

2. I, x2, x4, *'y"' - 3xy" + 3y' : 0

3. e', xe*, x2e', y"' - 3y" + 3y' - y : 0

4. e2* cos.]r, e2* sin x, e-2* cos jr, e-2* Sin x,
yi'-6y"+25y:O.

5. l, x, cos 3x, sin 3x, }iu + 9y" : 0

6. TEAM PROJECT. General Properties of Solutions
of Linear ODEs. These properties are important in
obtaining new solutions from given ones. Therefore
extend Team Project 34 in Sec. 2.2 tonth-order ODEs.
Explore statements on sums and multiples of solutions
of (1) and (2) systematically and with proofs.

Recognize clearly that no new ideas are needed in this
extension from n : 2 to general n.

@ LINEAR INDEIENDENcE
AND DEPENDENCE

Are the given íunctions linearly independent or dependent

on the positive x-axis? (Give a reason.)

7. I,e*,e-* 8.xf I,xl2,x
9. ln x, ln x2, (ln x)2 |0. e' , e-" , sinh 2x

11. x2, x|.r|, x 12. x, Ilx, 0
13. sin 2x, sin J, cos -tr 14. cos2 x, sinz x, cos 2,r

15. tanJ, cot.r, l 16. (,r - I)', (x * 1)2, -r

17. sin x, sin tx 18. cosh -r, sinh x, cosh2 x

19. cos2,r, sinz x,2rr

20. TEAM PROJECT. Linear Independence and
Dependence. (a) Investigate the given question about

a set ,S of ftrnctions on an interval 1. Give an example.
Prove yollr answer.

(1) If ,S contains the zero function, can ,S be linearly
independent?

(2) If .S is linearly independent on a subinterval J of I,
is it linearly independent on /?

(3) If S is linearly dependent on a subinterval J oí I,
is it linearly dependent on 1?

(4) If S is linearly independent on 1, is it linearly
independent on a subinterval -/?

(5) lf S is linearly dependent on 1, is it linearly
independent on a subinterval ./?

(6) If ,S is linearly dependent on 1, and if 7 contains S,

is Z linearly dependent on 1'l

(b) In what cases can you use the Wronskian for
testing linear independence? By what other means can
you perform such a test?

(1)

(2) ln + an_rl@-D +

3.2 Homogeneous Linear ODEs with Constant
coefficients

In this section we consider nth-order homogeneous linear ODEs with constant coefficients,
which we write in the form

y(n) + an_ty@-l) l

where y@) : dny/dxn, etc. We shall see that

Sec.2.2. Substituting y : e^* 1as in Sec. 2.2),

*ory'lagy:0

this extends the case n : 2 discussed in
we obtain the characteristic equation

" l a1h t a6:0
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of (1). If ,\ is a root of (2), then y : el* is a solution of (1). To find these roots, you may

need a numeric method, such as Newton's in Sec. 19.2, also available on the usual CASs.

For genera| n there are more cases than for n : 2. We shall discuss all of them and

illustrate them with typical examples.

Distinct Real
If all the n roots i1,

(3)

constitute a basis for all x. The corresponding

irr:Cl Ť

Roots
, , ln of (2) are real and different, then the n solutions

Átr
!t: ) ln:

general solution of (1) is

, ÁnI.+cne(4) y

Indeed, the solutions in (3) are

ExAMPLE 1

linearly independent, as we shall see after the example.

Distinct Real Roots

Solve the ODE y"' - 2y" - y' + 2y : 0.

Solution. The characteristic equation is i3 - 2^2 - 
^ 

+ 2: O. It has the roots -Í,I,2; if You find one

of them by inspection, you can obtain the other two roots by^ solving a quadratic equation (exPlain!). The

corresponding general solution (4) is y : cI't * c2e* + cge2', l

Linear Independence of (3). Students familiar with nth-order determinants may verify

that by pulling out all exponential functions from the columns and denoting their product

by E,thus E : exp [(nr + . . . + hn)xf,the Wronskian of the solutions in (3) becomes

W-

Xtr Xzr

Xre^r* hze^'*

l12g^'* X22g^,*

lnr

X,'g^nr

Xnzg^n*

Xff-lrl,,r

1

^n
Xr'

^t-'
: 0 if and only if the determinant on

or Cauchy determinantl. It can be

(5)

h!-lrx'r

1

^1
Xr'

^T-'

X!-Irxzr

1 ..

^2

lr'-E

^t-'
The exponential function E is never zero. Hence W

the right is zero. This is a so-called Vandermonde
shown that it equals

'ALEXANDRE THEOPHILE VANDERMONDE (1135-1]96), French mathematician, who worked on

solution of equations by determinants. For CAUCHY see footnote 4, in Sec. 2.5,



SEC. 3.2 Homogeneous Linear ODEs with Constant Coefficients lt3

(6) (-lsn<n-t>tz,

, ], .,T]l{ E o,R E M, l

THEoREM 2

where 7is the product of all factors Xi - howith7 < k(= n);for instance, when n:3
we get -V : -(ir - izXr\r - isXnz - ir). This shows that the Wronskian is not zero

if and only if all the n roots of (2) are different and thus gives the following.

Basis

Solutions !7 : eX'* ln : nn"* of (1) (with any real or complex ),i s) form a

basis of solutions o/ (1) on any open interval if and only if all n roots oÍ (2) are

dffirent,

Actually, Theorem 1

from (5) and (6):
is an important special case of our more general result obtained

Linear lndependence

Any number of solutions of (1) oí the form en* are linearly independent on an open

interval I if and only if the corresponding ), are all dffirent.

Simple Complex Roots
If complex roots occur, they must occur in conjugate pairs since the coefficients of (1)

arereal.Thus,if i: y* iaisasimpleroot of (2), soistheconjugate h: y- ia,and
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation)

lt : eY* cos )í,

Simple Complex Roots. lnitial Value Problem

Solve the initial value problem

!2 : eY* sin arx.

y"'-y"*100y/-100y:0, y(0) : 4, y'(0) : 11, y"(0) : -299.

Solution. The characteristic equation is i3 - 
^2 

+ 100^ - 100 : 0. It has the root 1, as can perhaps be

seen by inspection. Then division by ), - l shows that the other roots are :l 10l. Hence a general solution and

its derivatives (obtained by differentiation) are

j: cIeI i Á cos 10x * B sin lOx,

II!' : c " - l0Á sin 10x + 10B cos 10x,

llí!" : c * - 100A cos 10x - 1008 sin 10x.

From this and the initial conditions we obtain by setting x : 0

(a) c1,1 A: 4, (b) c1 * 10B : 1l, (c) c1 - 100Á : -299.

We solve this system íbr the unknowns A, B, cy Equation (a) minus Equation (c) gives 101Á : 303, Á : 3.

Then c1 : l from (a) and B : 1from (b). The solution is (Fig. 72)

! : er i 3 cos 10x f sin 10x.

This gives the solution curve, which oscillates about e" (dashed in Fig. 12 onp. ll4), I
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o0'

íQ.72. Solution in Example 2

Multiple Real Roots
If a real double root occurs, say, ir : ,trr, then lt : lz in (3), and we take y, and xy1 as

coffesponding linearly independent solutions. This is as in Sec.2.2.

Ivtoie geneially, if ,\ is arealroot of order m,then /,? colTesponding linearlY indePendent

solutions are

We derive these solutions after the next example and indicate how to Prove their linear

independence.

EXAMPLE 3 Real Double andTriple Roots

Solve the oDE yO - 3}i' + 3y"' - }" : 0.

Solution.Thecharacteristicequation.tr5. 3^4+3^3-^2:0hastherootsi1 -lz:Oand
is : i+ - is : 1, and the answer is

(8) ) : c1 l c2xi (ca * c4x + c5x2)eÍ

Deňvation oí (7). We write the left side of (1) as

Líyl : y@) + ar_I!'n-l) +,,, * aoy.

Let y : eOx. Then by performing the differentiations we have

Llun"l : (^n l ar_lhn-l +,,, + ao)e^*.

Now let i1 be a root of mth order of the polynomial on the right, where m a n. For

m 1 nlet X,-11, . . , lnbe the other roots, all different from i1. Writing the polynomial

in product form, we then have

Llnn"l: (^ - h)*h(l)e^"

withh(n): 1if /7l: fl,andh(n): (^ - i_*r) ",(^ - t)if m< n.Nowcomesthe

key idea: We differentiate on both sides with respect to )",

a . í, a .(9) ]: tlrn"f : -(t - ir)--1h(X)e^* + (^ _ ir)- ", |n(Deo"].
ó^ 

L- J - 
d^

y

20

(7)

tr
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The differentiations with respect to x and ,\ are independent and the occurring derivatives
are continuous, so that we can interchange their order on the left:

tl5

(10) * ilro,]
dA

: t[* ,*] : Llxen*l.

The right side of (9) is zero for i : i, because of the factors i - i, (and m > 2 since

we have a multiple root!). Hence L|xen"l: 0 by (9) and (10). This proves that xe^'* is
a solution of (1).

We can repeat this step and produ"" *'nn'*, , , , , x*-'r^'* by another m - 2 such
differentiations with respect to ,tr. Going one step further would no longer give zero on
the right because the lowest power of .\ - ),1 would then be (^ - .trr)o, multiplied by
mlh(D and ň(,\1) * 0 because /z(n) has no factors n - nr, so we getprecisely the solutions
in (7).

We finally show that the solutions (7) are linearly independent. For a specific n
this can be seen by calculating their Wronskian, which turns out to be nonzero. For
arbitrary m we can pull out the exponential functions from the Wronskian. This gives
(nn")- - e^ln,, times a determinant which by "row operations" can be reduced to the
Wronskian of 1 , x, , , , , x*-|. The latter is constant and different from zero (equal to
Il2| , , , (m - 1)!). These functions are solutions of the ODE y(*) : 0, so that linear
independence follows from Theroem 3 in Sec. 3.1. l

Multiple Complex Roots
In this case, real solutions are obtained as for complex simpleroots above. Consequently,
if i: y-l ia isacomplexdoubleroot,soistheconjugate X: y- ia. Corresponding
linearly independent solutions are

(11)

The filst
and xe^*

(l2)

eY* Cos {DX, eY* Sin alx, XeY' Cos a)x, xeY* stn alx.

y : eY'l(A, -l A2x) cos alí + (Br * B2x) sin r,.lr].

For complex triple roots (which hardly ever occur in applications), one would obtain
two more solutions x2e^* cos .rjr, x2eY* Sin rrlx, and so on.

two of these result from e^' and ,i* u, before, and the second two from xe^'
in the same fashion. Obviously, the corresponding general solution is

E

oDE FoR GIVEN BAsls
Find an ODE (1) for which the given functions form a basis
of solutions.

1, e*, e2*, e3*

3. e*, e-', cos,r, Sin x

2. e-'*, xe-2', 12r-2r

4. cos x, sin í, .tr cos t, x Sin x

5, I, x, cos 2.r, stn2x
6. "-'*, 

-', *, e2*, I

@ GENERAL soluTloN
Solve the given ODE, (Show the details of your work.)

7,y"'ty':0
8. y'" - 29y" + I00y : 3

9.y"'-|.u"-1,'_y:0
10. 16yi"-8y"*}:0
Ll.y"'-3y"-4y'*6y:6
12.y'"*3y"-4y:0
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@ INITIAL vALuE pRoBLEMs

Solve by a CAS, giving a general solution and the particular

solution and its graph.

13. yi" + 0.45y"'- 0.165y" + 0.0045y' - 0.00175y : Q,

y(0) : I7.4, y' (0) : -2.82, y"(0) : 2.0485,
y"'(0) - -1 .458615

14.4y"'+ 8y" + 4Iy' + 37y: 0, 1,(0) : 9,

y'(0) : -6.5,y"(0) : -39.]5
|5. y"' + 3.2y" + 4.87y' :0, y(0) :3.4,

y'(0) - -4.6, y"(0) : 9.9I

16. y'" l 4y :0, y(0) : L, y' (0) : -Z, y"(0) : Z,

}"'(0) : -Z
17. y'" - 9y" - 400y: 0, },(0) : 0, }'(0) : 0,

y"(0) : 4I, )"'(0) : 0

18. y"' + 7.5y" 1- l4.25yl - 9.125y : 0,

y(0) : 10.05, y'(0) : -54-915,
y"(0) : 251,5125

19. CAS PROJECT. Wronskians. Euler-Cauchy
Equations of Higher Order. Although Euler-Cauchy
equations have variable coefficients (powers of x), we

include them here because they fit quite well into the

present methods.

(a) Write a program for calculating Wronskians,

(b) Apply the program to some bases of third-order

and fourth-order constant-coefficient ODEs. Compare

the results with those obtained by the program most

likely available for Wronskians in your CAS.

(c) Extend the solution method in Sec. 2,5 to any order

n, Solve ,"y"' * 2*'y" - 4,y' l 4y :0 and another

ODE of your choice. In each case calculate the

Wronskian.

20. PROJECT. Reduction of Order. This is of practical

interest since a single solution of an ODE can often be

guessed. For second order, see Example'7 in Sec,2,1,

(a) How could you reduce the order of a linear

constant-coefficient oDE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

y"' + pr(x)y" + p7@)y' -l p6(x)y : 0.

Assuming a solution y1 to be known, show that another

solution is y2(x) : u(x)yl(x) with u(x) : I z(x) dx and

z obtained by solving

yrz" * (3yí + pzyt)z'+Gyi+2pry!,*pl|)z:O,

(c) Reduce

,'y"' - 3r'y" + (6 - xz)xy' - (6 - x2)y : 0,

using y, : x (perhaps obtainable by inspection),

21. CAS EXPERIMENT. Reduction of Order. Starting

with a basis, find third-order ODEs with variable

coefficients for which the reduction to second order

turns out to be relatively simple.

* p{x)y' + po@)y : r(x)

: d.nyldxn as the first term, which is practical, and r(x) * 0. As for second-order

general solution of (1) on an open interval 1of the _r-axis is of the form

3.3 Nonhomoteneous Linear ODEs
We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write

them in standard form

(1)

with y(')
ODEs, a

.\J'' + pr_1(_r);,"r-1l 1

(2)

Here y7r(x) : c t(x) +

homogeneous ODE

y(x):yn@)+yo(r).

+ cnjn(x) is a general solution of the corresponding

(3) y@) + pn_t(x)y@-1)+ ", + p{x)y' *po(x)y:0

on 1. Also, }p is any solution of (1) on 1 containing no arbitrary constants. If (1) has

continuous cóefficients and a continuous r(x) on 1, then a general solution of (1) exists

and includes all solutions. Thus (1) has no singular solutions.

lt6
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An initial value problem for (1) consists of (1) anď n initial conditions

y(ro) : Ko, y'(x : K1, ,, y'n-')(ro):Kn_l

it has a unique solution. The ideas ofwith xo in 1. Under those continuity assumptions
proof are the same as those for n : 2 in Sec. 2.7.

Method of undetermined coefficients
Equation (2) shows that for solving (1) we have to determine a particular solution of (1).

For a constant-coefficient equation

y(n) + ar,_ty@-I) l * ory' l ooy: r(x)

(ao, . . . , an_l constant) and special r(x) as in Sec. 2.7, such a !p(x) can be determined
by the method of undetermined coefficients, as in Sec. 2.7 , llsing the following rules.

(A) Basic Rule as in Sec. 2.7.

(B) Modification Rule. If a term in your choice for yo@) is a solution of the

homogeneous equation (3), then multiply yo@) by ,o, where k is the smallest positive
integer such that no term of xkyo@) is a solution of (3).

(C) Sum Rule as in Sec. 2.7.

The practical application of the method is the same as that in Sec. 2.]. It suffices to
illustrate the typical steps of solving an initial value problem and, in particular, the new
Modification Rule, which includes the old Modification Rule as a particular case (with

F;$iT;:T:'oT:,:X*,r;,ff:Hfri::lil"":le 
same as for ft:2, perhaps except

EXAMPLE 1 lnitial Value Problem. Modification Rule

Solve the initial value problem

(6) y"' + 3y" + 3,-' + y - 30e-', y(0):3, y'(o): -:, .r-"10): -4J.

Solution. Sfup1. The characteristicequationis,tr3 +3^2 + 3^ + 1: (^+ t;3:0. Ithasthetripleroot

^ 
: -1. Hence a general solution of the homogeneous ODE is

),h- t,ť * + c2xe-Í + caxze-*

: (cr + c2x l csxzle-Í.

Step 2. If we try lp: Ce-',we 8et -C + 3C - 3C + C : 30, which has no solution. Try Cxe-* and Cx2e-'.
The Modification Rule calls for

Then

^3-r|p: Lx e

In,l 23,-r
)p:L(J,r -X ]e

yi: C6, - 6x2 + xs e-*,

!'i': Ct6 - l8x + 9x2 - *3lu-*

(4)

(5)
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Substitution of these expressions into (6) and omission of the common factor e-tr gives

C6 - l8x * 9x2 - í3) + 3C(6x - 6x2 + x3; + 3C(3x2 -,T3) + Cr3 : 30,

The linear, quadratic, and cubic terms drop out, and 6C:3}.Hence C: 5.This gives l,p: 5x3e-*,

Step 3. We now write down ! : ln t yo, the general solution of the given oDE, From it we find c1 by the

first initial condition. we insert the value, differentiate, and determine c2 fiom the second initial condition, insert

the value, and finally determine ca from y"10; and the third initial condition:

,}:)h+)p: (c1 l c2x+ c"x2le-* +5x3e-*, .v(0): ct:3

y' : [-3 ,l c2l (-cz-| 2cg)x * (15 - ca)x2 - 5.r3]e-,'. .y'(0) : -3 ,| c2 - -3, cz: 0

}": [3 -l 2cg-| (30 - 4cs).r + (-30 + c3)x2 + 5r3]e-", )"(0): 3-1 Zcg: -47, cs: -25,

Hence the answer to our problem is (Fig, 73)

) : (3 - 25x2le-* + 5x3e-*.

The curve of ,v begins at (0, 3) with a negative slope, as expected from the initial values, and approaches zero
I

as _r --> oo. The dashed curve in Fig. 73 is yo.

y

5

Fig. 73. y and )zp (dashed) in Exampte l

Method of variation of parameters

The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n.

It gives a particular solution}p for the nonhomogeneous equation (1) (in standard form

with y(') as the first term!) by the formula

(7)

yr,(x) :Ž,yu@) ÍW 1',) dx

sW{x) l l I l t í-W"(x) ..l1: )1(.r) J ffi rG) dx+,,, * y,(x) )iď rG\ d,r

on an open interval 1on which the coefficients of (1) and r(x) are continuous. In (7) the

functions jt, . .. , y," form a basis of the homogeneous ODE (3), with Wronskian W, and

Wj(j - 1, . . . ,nj is obtained from Wby replacing the jth column of W bY the column

tď 0 0 1]T. Thus, when fl:2, this becomes identical with (2)in Sec.2.10,

W- 'r'r|'
: !t.

Ii *: l:

!zl
| : -yo.yi|

l-vrn': 
|ri :l

The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can

be found in Ref tA11] listed in App. 1.

y and )zp (dashed) in Example 1
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ExAMPLE-2 Variation of Parameters. Nonhomoteneous Euler-Cauchy Equation

Solve the nonhomogeneous Euler-Cauchy equation

,')"" - 3x2l," + 6ry' - 6y : xa \n, (r > 0).

Solution. Step 1. General solution of the homogeneous ODE. Substitution of y : x- anď the derivatives

into the homogeneous ODE and deletion of the factor x- gives

m(m - I)(m - 2) - 3mQn - l) + 6m - 6:0,

The roots are 7,2,3 and give as a basis

2
|r : "l'. \'c : .\ ,

3}s:I

Hence the corresponding general solution of the homogeneous ODE is

lh: CIX + c2x2 + car3,

Step 2. Detenninants needed in (7). These are

,l:

":ll

,"=11- 
lo

":l:

2 3lr-Yl

2x z*'| : zr"

2 6-1

2 3lrŤl

^ .rl 4lX J,{ I: 
jr

Z 6, l

0 x3|

o 3x2| : -rr'
l 6, 1

*2 0|

2x Ol : 
"2.21l

lp: x I: ,hx clx - -' I-u.x dx _ r Í+ xlnx dx

; (+ nx- +) *(:h,-+) - +

Simplification gives ry : fxa (ln x -f;). Hence the answer is

Step 3. Integration.In (7) we also need the right side r(x) of our ODE in standard form, obtained by division

of the given equation by the coefficient .r3 of .y"'; thus, r(x) : 1xa ln x)lxs : x ln,r. In (7) we have the simPle

quotients WI|W : xll, W2lW - - 1, WslW : Il(2x). Hence (7) becomes

(xlnx-;).

|: !n+ yo: clx * c2x2 + cgxs + árn 1tnx - 161).

Figure 74 shows !p. Can you explain the shape of this curve? Its behavior near Jr : 0? The occurrence of
a minimum? Its rapid increase? Why would the method of undetermined coefficients not have given the

solution? l
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yl
3O

20

10

0

-10
_20

F|.7a. Particular solution yp of the nonhomogeneous

Euler-Cauchy equation in Example 2

Application: Elastic Beams

Whereas second-order oDEs have various applications, some of the more imPortant ones

we have seen, higher order oDEs occur much more rarely in engineering work, An

;;no5l *m:fi:i;.ff:erns 
the bending of elastic beams, such as wooden or iron

Vibrations of beams will be considered in Sec, 12,3,

ExAMPLE 3 Bending of an Elastic Beam under a Load

we consider a beam B of length L anď constant (e.g., rectangular) cross section and homogeneous elastic

material (e.g., steel); see Fig. 75. We assume that under its own weight the beam is bent so little that it is

practically straight, If we apply a load to B in a vertical plane through the axis of symmetry (the x_axis in

Fig. 75), B is bent. Its axis is curved into the so-called elastic curve C (or deflection curve), It is shown in

elasticity theory that the bending moment M(x) isproportional to the curvature k(x) of c. we assume the bending

to be small, so that the deflection y(x) and its derivative y'1"; 1determining the tangent direction of C) are small,

Then, by calculus, 1r: ,"l1I + y'')'l': y", Hence

(8)

M(x) : EIy"(x),

El is the constant of proportionality. E is Young's modulus of elasticity of the material of the beam, 1is the

moment of inertia of the cross section about the (horizontal) z_axis in Fig. 75.

Elasticity theory shows further that M"(x) : f(x), where í(x) is the load per unit length, Together,

EIyIv : f(x).

Fig. 75.

Deformed beam
under uniform load
(simply supported)

Elastic Beam

)c
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The practically most important supports and corresponding boundary conditions are as follows (see Fig. 76).

(9)

(C) Clamped atx:0, free aíx: L y(0) : )'(0) : O,y"(L): y"'1L1 : O.

Theboundaryconditiony:Omeansnodisplacementatthatpoint,}':0meansahorizontaltangent,y":O
means no bending moment, anď y"' : 0 means no shear force.

Let us apply this to the uniformly loaded simply supported beam in Fig. 75. The load is /(-r) : f g: const.

Then (8) is

íoy'u-Ř, k: _J ", El'

This can be solved simply by calculus. Two integrations give

y'':+x2 lcg+c2.

y"(0) : 0 gives cz : O.Then y"(t; : LGkLf .r) : 0, cr : -kLl2(since L * 0). Hence

," : L(r' L.rl.

Integrating this twice, we obtain

k
v: -

with ca : 0 from y(0) : 0. Then

kL lts L3 \ L3
|tl: , (" - u *rr) 0. ,,": n.

Inserting the expression for k, we obtain as our solution

u: JL u4 - 2Lx3 + L3x)., 24EI

Since the boundary conditions at both ends are the same, we expect the deflection y(x) to be "symmetric" with

respect to Llz, that is, ,v(x) : y(L - x). Verify this directly or set J : tt * Ll2 anď show that y becomes an

even function of u,

,:h(;-I*)(;-i*)
From this we can see that the maximum deflection in the middl e at u :0 (x : Ll2) is 5f oL4l06 , 24EI). Recall

that the positive direction points downward.

:--...--: {
_ rÁr Simp|ysupported

r=O x=L

(A) Simply supported

(B) Clamped at both ends

y:y":0atx:Oandt
y:y':0atx:OandL

(B) Clamped at both
ends

(C) Clamped at the left
end, free at the
right end

(+-'-i;+.s*+.a)

x=O x=L
Fig.76. Supports of a Beam

r=0 x:L

!
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E
E
Solve

GENERAL SOLUT|ON
the following ODEs. (Show the details of your work,)

!. y"' - 2y" - 4y' -l 8y : e,3' + 8x2

2. y"' + 3y" - 5y' - 39y : 30 cos x

3. y'" + 0.5y" + 0.0625y : e-* cos 0,5x

4. y"' + 2y" - 5y' - 6y:100e-3* -l 78e-*

5. "'y"' + 0.75xy' - 0.]5! : 9x5,5

6. (xDs + 4D2)y : 8e*

7. (Dn + IoDz + 9I)y : 13 cosh 2x

8. (D' - 2D2 - gD + 181)y : e2*

E lNlTlAL vALuE pRoBLEMs

Solve the following initial value problems, (Show the

details.)

9. y"' - 9y" 1- 27y' - 21y: 54 sin 3x, y(0) : 3.5,

y'(0) : 13.5, y"(0) : 38.5

10. y'" - t6y : I28 cosh 2x, y(0) : 1, y'(0) :24,
y"(0) : 20, y"'(0) : -160

II. (x3D3 - x2D2 - ]xD + l6l)y : 9x In x,

y(1) : 6, Dy(l) : 18, D'y(I) : 65

12. (D4 - 26D2 + 25I)y: 50(x + I)2, y(0) : 12,16,

Dy(O) - -6, D'y(O) :34, D3y(0) : -130

13. (D3 + 4D2 + 85D)y : í35xe*, y(0) : 10,4,

Dy(O) : -18.1, D'y(O) : -69L6
1,4, (2D3 - D2 - 8D + 4I)y : sin í, y(0) : 1,

Dy(O) : 0, D2y(0) : 6

15. WRITING PROJECT. Comparison of Methods,

write a report on the method of undetermined coefficients

and the method of variation of parameters, discussing and

comparing the advantages and disadvantages of each

method. Illustrate your findings with typical examples,

Try to show that the method of undetermined coefficients,

say, for a third-order ODE with constant coefficients and

an exponential function on the right, can be derived from

the method of variation of parameters.

16. CAS EXPERIMENT. Undetermined Coefficients,

Since variation of parameters is generally complicated,

it seems worthwhile to try to extend the other method,

Find out experimentally for what ODEs this is possible

and for what not. Hint: Workbackward, solving ODEs

with a CAS and then looking whether the solution

could be obtained by undetermined coefficients, For

example, consider

y"' - I2y" + 48y' - 64y : ,|l2u4x and

*"y"' + ,'y" - 6xy' + 6y: xlnx.

1. What is the superposition or linearity principle? For

what nth-order ODEs does it hold?

2. List some other basic theorems that extend from

second-order to nth-order ODEs.

3. If you know a general solution of a homogeneous linear

ODE, what do you need to obtain from it a general

solution of a corresponding nonhomogeneous linear

oDE?
4. What is an initial value problem for an nth-order linear

oDE?
5. What the wronskian? what is it used for?

@ GENERAL soluTloN
Solve the given ODE. (Show the details of your work,)

6. y"' + 6y" + 18y/ * 40y : 6

7. 4x2y"' -l l2xy" + 3y' : 0

8.y'"+10y"+9y:g
9. 8y"' + Izy" - 2y' - 3y : 0

10. (D3 + 3D2 + 3D 1- I)y : az

II. (xDa + Ds)y : l50xa

12. (D4 - 2D3 - lDly : 1,6 cos 2x

13. (D3 + Dy - 9nrl2

14. (x3D3 - 3x2D2 * 6xD - 6I)y : 3Ox-2

15.(D3 -D2-D+I)y:"'

@ INITIAL vALuE pRoBLEMs

Solve the given problem. (Show the details.)

16. y"' - 2y" -l 4y' - 8y:0, y(0) : -1,
y'(0) : 30, y"(0) : 282

17, x3y"' + 7x2y" - zry' - 10y : 0, y(1) : I,

y'(1) - -J, y"(1) : 44

18. (D3 + 25D)y : 32 cos2 4x, y(0) : 0,

Dy(O) : 0, D2y(0) : 6

Ig. (D4 + 40D2 - 4411)y: 8 coshx, y(0): 1,98,

Dy(O) : 3, D'y(O) : -40,02, D3y(0) : 27

20. (x3D3 + 5x2D2 -l 2xD - ZI)y : 7x3l2,

y(1) : 10.6, Dy(1) : -3,6, D'y(t) : 3L2

*retrne,nTl ONS AN D PROBLEMS



Summary of Chapter 3 l23

Compare with the similar Summary of Chap. 2 (the case n - 2).

Chapter 3 extends Chap. 2 from order n : 2 to arbitrary order n. An nth-order
linear ODE is an ODE that can be written

(1) y@) + pn_t(x)y@-1) + -| pt@)y' + po@)y : r(x)

with y(') : dnyldxn as the first term; we again call this the standard form. Equation
(1) is called homogeneous if r(x) : 0 on a given open interval I considered,
nonhomogeneous íf r(x) * 0 on 1. For the homogeneous ODE

(2) y@) + pn_t(x)y@-l) + + p1,@)y' * p6(x)y : 0

the superposition principle (Sec. 3.1) holds, just as in the case n:2. A basis or
fundamental system of solutions of (2) on 1 consists of n linearly independent
solutions !t . . . ,l,-of (2) on 1. A general solution of (2) on 1is a linear combination
of these,

}:Crhi * cnYn (ct,,,, crl.arbitrary constants).

A general solution of the nonhomogeneous ODE (1) on 1is of the form

j: jnl )'p (Sec. 3.3).

Here, le is a particular solution of (1) and is obtained by two methods
(undetermined coefficients or variation of parameters) explained in Sec. 3.3.

An initial value problem for (1) or (2) consists of one of these ODEs and n
initial conditions (Secs. 3.I, 3.3)

(5) y(xo) : Ko, y'(.xo) : Kr, , y(n-"("o) : Kr_l

with given 16 in I and given Ko, , , , , Kn_1.If po, , , , , pn_1,, r are continuous on
1, then general solutions of (1) and (2) on 1 exist, and initial value problems (1),
(5) or (2), (5) have a unique solution.

(3)

(4)
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Systems of oDEs. Phase Plane.

Óualitative Methods

Systems of oDEs have various applications (see, for instance, Secs. 4.1 and 4.5)' Their

theory is outlined in Sec. 4.2 anďincludes that of a single oDE. The PracticallY imPortant

conversionofasinglerrth-orderoDEtoasystemisshowninSec.4.1.
Linearsystems(Secs.4.3,4.4,4.6)arebesttreatedbytheuseofvectorsandmatrices,

of which, however, only a few eleme naury facts will be needed here' as given in Sec' 4'0

and probably familiar to most students,

Qualitative methods. In addition io actually solving systems (Sec, 4,3,4,6), which is

often difficult or even impossible, we shall explain a tňliY different method' namelY' the

powerful method of inveitigating ,t. g.n"rui behavior of whole families of solutions in

the phase plane (Sec. 4.3). This approactr to systems of oDEs is called a qualitative

method because it does not need ň"r solutions (in contrats to a "quantitative method"

of actually solving a system),

This phas, pbín mithod,as it is called, also gives information on stabilitY of solutions'

which is of general importance in control th"o.y, circuit theory, population dynamics' and

so on. Here, stability of a physical system*"án, that, roughly speaking, a small change

at some instant causes only smalt .t á^g". in the behavior of the system at all later times'

phase plane methods can be exteided to nonlinear systems, for which they are

particularly usetul. We wil| show this in Sec, 4,5, which includes a discussion of the

pendulum equation and the Lotka_Volterra population model, We finally discuss

nonhomogeneous linear systems in Sec, 4,6,

NoTATloN. Analogous to Chaps. 1-3, we continue to denote unknown functions by

y;thus,y{t),yz|).Thisseem.p..f",ubletosuddenlyusingxforfunctions,xt(t),xz(t),
u, i, ,ornetimes done in systems of ODEs,

Prerequisite: Chap,2,
References and Aiswers to Problems; App. 1 Part A, and App,2,

4.0 Basics of Matrices and Vectors
In discuss ing linearsystems of oDEs we shall use matrices and vectors. This simPlifies

formulas and clarifiesideas. But we sha|| need only a few elementary facts (by no means

the bulk of material in Chaps. 7 anď8). These facts wil' very likelY be at the disPosal of

most students. Hence this section is for reference only, Begin with sec, 4,í and consult

4.0 as needed.
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Most of our linear systems will consist of two ODEs in two unknown functions yt(t),

YzG),
Ilt: al!t l anlz.

(1) 
lyL: aztlt l azzjz,

y'l,: -5yr * 2yz
for example,

yL: 13y1 + ly,

(perhaps with additional given functions 8{t), g2(t) in the two ODEs on the right).
Similarly, a linear system of n first-order ODEs in n unknown functions yr(r), , , , ,

y,(r) is of the form

y|: atlyt t anlz + , , , l atnjn

yL: aztyt* azzjz + ", * aznln
(2)

y'r: antltl anzlz + ", l annln

(perhaps with an additional given function in each ODE on the right).

some Definitions and Terms
Matrices. In (1) the (constant or variable) coefficients form a 2 X 2 matrix A, that is,

an aríay

f o.,, anf [ -5 2]
(3) A:[a;r] :| | forexample. A:I l_

|o^ orr) 
lvl l^qlrrťrvt 

L 
'' 

+_.l

Similarly, the coefficients ín (2) form an n x n matrix

f 
or, 0e or,1

I o^ azz or, 
l(4) A:la;r]:| 
|Il

o.-)

The a11, al2, . . . are called entries, the horizontal lines rows, and the vertical lines
columns. Thus, in (3) the first row is [a11 ap], the second row is 1a21 a22], and the
first and second columns are

f orrf f orr1

L,,,_] 
and 

l,,,)
In the "double subscript notation" for entries, the first subscript denotes the row and the

second the columlz in which the entry stands. Similarly in (a). The main diagonal is the

diagonal att azz ann in (4), hence att azz in (3).

We shall need only square matrices, that is, matrices with the same number of rows
and columns, as in (3) and (4).

SEC. 4.0 Basics of Matrices and Vectors
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Vectors. A column vector x with n components x1,,,,, xnis of the form

l-xr l
I-.l

*:|.'l, thusif n:2.l:l
L-,]

Similarly, a row vector v is of the form

-: 
[;;]

f b, brr1
and B:| l.

l,b^ brr)

o : [r, unf, thus if n : 2, then Y : [U1, uz].

calculations with Matrices and vectors
Equality. Two lz X n matrtces are equal if and only if coffesponding entries are equal.

Thus for n:2,Iet

A: |-o"
Lo^

Then A :'B if and only if

'"'.,',f

a11 -- b11, atz: btz

a21: b21, azz: bzz.

Two column vectors (or two row vectors) are equal if and only if theY both have

components and coíTesponding components are equal. Thus, let

lurl ["r-l
":L,;_] and -:L",_] , Then

Addition is performed by adding corresponding
must both be n x n, and vectors must both have

for n -- 2,

UI: X"j,

v : x if and only if
U2: X2,

entries (or components); here, matrices

the same number of components. Thus

f a1 -l b1 a9 * blr] [r,(5) A+B:| l, v*x:|
|a21 * b21 a22 * b22) Lu,

Scalar multiplication (multiplication by a number c) is performed by

entry (or component) by c. For example, if

i xrl

* 
",_]

multiplying each

19 3l
A:I l. then

|-z 0_]

then

r -63
-7A: I

Lt4

|- 4l
10v : l l

[ - t:o_]

-2I1
.]

If

" 
: 

[::]
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x n matrices

j:I,"')n

k:I,",,fl,

j:l,"',n.

(6)

Matrix Multiplication. The product C : AB (in this order) of two n
A: |aq]andB : |biu) isthe nX n matrix C: ycry"]withentries

,lL

Cjk : ) ai*b*rc
ln:1

CAUTION! Matrix multiplication is not commutative, AB
example,

For example,

Ui

[j:]]

that is, multiply each entry in the7th row of A by the coffesponding entry in the lďh column
of B and then add these n products. One says briefly that this is a "multiplication of rows
into columns." For example,

tg 3l [t -o-1 :[9.1+3.2 g.(-4)+3,5-1

l--, 0_] L, 5_] L-z, t + 0,2 (-2), (-4) + 0 , 5l
I ts -2t]:|l.
L-z 8]

+ BA in general. In our

1 .3 + (-4) .0l
l2.3 + 5.0 l

ftl 3l_ll-L8 
6]

Multiplication of an n X n matňx A by a vector x with ,? components is defined by the

same rule: v : Ax is the vector with the n components

l: ;] l', ;] 
: 

|',',I',-r,'_,|,'

Systems of ODEs as Vector Equations
Differentiation. The derivative of
components) is obtained by differenti

[yrtOl f ,-"1
Y(/) : 

Ly,t,l_] 
: 

|,'",_] 
'

Using matrix multiplication and diffel

. lyil fo,(7) y, : 
L y;): 

o, : 
|o^

: 
Ž,a3rnxrl

[;,] 
: 

[j;: I,,-:,)

a matrix (or vector) with variable entries (or

ating each entry (or component). Thus, if

then y,(t) :t;il] :|-l:,i]

rentiation, we can now write (1) as

,.,..,,ft;;] , eg ,,: [,: 'lf[;;]
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Similarly for (2)by means of an nX nmatrixA and acolumnvectory with n components,

namely, y' : Ay. The vector equation (7) is equivalent to two equations for the

components, and these are precisely the two ODEs in (1).

Some Further Operations and Terms
Transposition is the operation of writing columns as rows and converselY and is indicated

by T. Thus the transpose AT of the 2 X 2 matrix

fo, anf [-5 21
o : 

|o,,, o,,,): | ,, ;] 
is

The transpose of a column vector, say,

f o-,, orr1 [ -5 'rlAT:l l:l l.A -|o,, ,,,)- | 2 +_]

": [:;] 
, is a row vector, o' : [r, uz],

and conversely.

Inverse of a Matrix. Then X nanitmatrix I is the n X n matrix with main diagonal

I, I, . . ., I and all other entries zero. Iffor a given n X nmatrix A there is an n X n

matrix B such that AB : BA : I, then A is called nonsingular and B is called the inverse

of A and is denoted by A-1; thus

(8)

If A has no inverse, it is

(9)

where the determinant of A is

AA-1 :A-lA:I.

called singular. For n : 2,

tr -1 _ _| [ 
azz -orrf 

.,* - d.tA l_-,o^ orr)

(10)
lal,t a el

detA: I l:urtazz-(ttza2t.
|o^ azzl

(For general n, see Sec. 7.'I, b this will not be needed in this chapter.)

Linear Independence. r given vectors y(1), , , v(') with n components are called a

linearly indepenclent set or, more briefly, linearly independent, if

(11) cry(')+",*crv('):0

implies that all scalars cL, . . . , c, must be zero; here, 0 denotes the zero vector, whose

,? components are all zero.If (11) also holds for scalars not aII zero (so that at leaSt

one of these scalars is not zero), then these vectors are called alinearly dependent set

or, briefly, linearly dependent, because then at least one of them can be expressed as
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a linear combination of the others; that is, if, for instancQ, c1 * 0 in (11), then we
can obtain

.,(1) - - 
l (rrr'rr+ . . . + crv(.)).

C1

Eigenvalues, Ei genvectors
Eigenvalues and eigenvectors will be very important in this chapter (and, as a matter of
fact, throughout mathematics).

Let A : |ait"] be an n X n matrix. Consider the equation

Ax : .trx

where ,tr is a scalar (a real or complex number) to be determined and x is a vector to be

determined. Now for every A a solution is x : 0. A scalar ň such that (I2) holds for some

vector x *'0 is called an eigenvalue of A, and this vector is called an eigenvector of A
corresponding to this eigenvalue .[.

We can write (I2) as Ax - .ňx : 0 or

(13) (A - ,\I)x : 0.

These ďíe n linear algebraic equations in the n unknowíls .í1, , , , , xr,. (the components of
x). For these equations to have a solution x * 0, the determinant of the coefficient matrix
A - 

^I 
must be zero. This is proved as a basic fact in linear algebra (Theorem 4 in

Sec. 7.7). In this chapter we need this only for n: 2. Then (13) is

(l2)

(I4)

in components,

(14*)

|"-.^o ,,:,: 
^f[;;] 

: 
[:] 

,

(al-,\)x1 * at2xz -0

aztxt * (azz - i)xr: g.

Now A - 
^I 

is singular if and only if its determinant det (A * 
^I), 

called the characteristic
determinant of A (also for general n), is zero. This gives

(15)

|arr - ,\ an 
ldet(A-il;:; 
I

I ort azr-^l

: (al - X)(azz - 
^) 

- atzazt

: X2 - (al -l ar))" l alla22 - al2a21 : 0.

This quadratic equation in .tr is called the characteristic equation of A. Its solutions are

the eigenvalues A1 and ,tr2 of A. First determine these. Then use (14*) with ,\ - ),, to
determine an eigenvector x(1) of A corresponding to .tr1. Finally use (14*) with ,\ : .tr, to
find an eigenvector x(2) of A corresponding to .tr2. Note that if x is an eigenvector of A,
so is kx for any k + 0.

SEC. 4.0 Basics of Matrices and Vectors
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EXA M PLE l Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

o : [-o,o ool
(16) ^-L-,.u 1.2)

Solution. The characteristic equation is the quadratic equation

|_^-\ A l

det[A-^Il : I l:o'+2.8^+ 1,6:0.
| -t.o 1.2-^l

It has the solutions \: -2 and ,tr2 : -0,8, These are the eigenvalues of A,

Eigenvector,u."obtuin"dfrom(14*).For),:i,r:-2wehavefrom(14*)

(-4.0 + 2.0)x1 -| 4.0x2 - 0

-1.6x1 + 0.2-1 2.0)x2: 0.

A solution of the first equation is x1 : 2, x2: 1. This also satisfies the second equation. (WhY?). Hence an

eigenvector of A corresponding to ),1 : -2,0 is

(I7) *" : [i] similarly, x(2) - 
[J_]

is an eigenvector of A corresponding to iz : -0,8, as obtained from (14*) with ), : ,\z, Verify this, l

4.1 Systems of ODEs as Models
We first illustrate with a few typical examples that systems of ODEs can serve as models

in various applications. We further show that a higher order ODE (with the highest

derivative standing alone on one side) can be reduced to a first-order sYstem. Both facts

account for the practical importance of these systems.

EXAMPLE 1 Mixing Problem lnvolvingTwoTanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the

.o.."rponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks, The

model will be a system of two first-order ODEs,

Tank71 anďT2inFig.77 containinitially 100galof watereach. InZlthewaterisPure,whereas 150 1bof

fertilizer are dissolved itr rr.yy circulating liquid at a rate of 2 ga|lmin and stining (to keeP the mixture uniform)

the amounts of fertilizer yrftl in Z1 and }z(r) in T2changewith time /. How long should we let the liquid circulate

so that 71 will contain at least half as much fertilizer as there will be left in 12?

Solution. Step 1. Setting up the model. As for a single tank, the time rate of change yi(r) or yl(r) equals

inflowminusoutflow.SimilarlyfortankT2.FromFig.11weseethat

22
)i : Inflow/min - Outflow/min : 

100 
Y, - 100 

Y'

22
yl : Inflow/min - Outflow/min : 

100 
Y' - 100 

Y'

Hence the mathematical model of our mixture problem is the system of first_order oDEs

yi: -o.0zy, * 0.02y2

yL: 0.02y1 - 0.0Zy2

(Tank Q)

(Tank Z2).

(Tank Z1)

(Tank 72).
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100

75

50

100 t

Fig.77. Fertilizer content in Tanks T, (lower curve) and T,

As a vector equation with column vector y :
t;;]

Step 2, General solution. As for a single equation, we try an exponential function of /,

(1) y : xe^t. Then y' : lxe^' : Lxe^'.

Dividing the last equation lxe^' : Axe^'by e^' and interchanging the left and right sides, we obtain

Ax : .[x.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues

and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

| -0.02 - ^ 
0.02 l

(z) det(A- 
^I): l 

|: (-0.02- 
^)2- 

0.022: 
^(^+0.04):0.l o.oz -0.02 - 

^ 

l

We see that .tr1 : 0 (which can very well happen-don't get mixed up-it is eigenvectors that must not be zero)
and .tr2 : -0.04. Eigenvectors are obtained from (14x) in Sec. 4.0 with i : 0 and ), : -0.04. For our present

A this gives [we need only the first equation in (14i')]

-0.02x1 -l 0.02x2: Q and (-0.02 + 0.04)11 -l 0.02x2: 0,

respectively. Hence xI: x2 and x1 : -x), respectively, and we can take xl : x2: l and x1 : -x2: I.

This gives two eigenvectors corresponding to ,tr1 : 0 and ,tr2 : -0.04, respectively, namely,

and matrix A this becomes

T -0.02 0.02l
A:| l.

L o.oz -0.02_]
Y' : Ay, where

*cr, _ ftl
Lt_]

and x,2,:[ 
l]

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

(3) y : ,t*G)"^'t + crx(2)"^2t - cl [l] 
- ,r|_'rf 'o*'

where c1 and c2 dra arbitrary constants. Later we shall call this a general solution.

Step 3. Use of initial conditions. The initial conditions are y1(0) : 0 (no fertilizer in tank [) and y2(0) : 150.

From this and (3) with r : 0 we obtain

y(0):.,[l] -" 
[_l] 

: 
[:l :',',f: [,:.]

System of tanks

y 2(t)

27,5 50

v(í)

150

2 gallmin

T, T22 gallmin

|_---=--|-------=l ----
iv,(í)|" I

I
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In components this is c1 l c2: 0, cr - c2: cz: -15. This gives the answer

e-o.o4t,

In components,

y : 75x(1) _ 75x2)e-0,04t _ J5

-. -o.o4l_r't:/)-l)e

-- -. -o.o4l|z -- l) Ť l)e

yt: 15 - ]Se-o'oat : 50, e-o,o4t - !,

Hence the fluid should circulate for at least about half an hour.

lution is c1: 75,

['l - r, [ 'lLr_] L-t]

150. The so

Figure 77 shows the exponential increase of y1 and the exponential decrease of )2 to the common limit 75 lb,

oid you expect this for physical reasons? Can you physically explain why the curves look "sYmmetric"? Would

the limit change if 71 initially contained l00 lb of fertilizer and T2 contained 50 lb?

Step 4. Answer. 71 contains half the t'ertilizer amount of T2 lf it contains 1i3 of the total amount, that is,

50 lb. Thus

(Tank 71, lower curve)

(Tank 72, upper curve).

, : (ln 3)10.04 : 2'7.5.

ExAM PLE 2 Electrical Network

Find the currents 11(r) and I2Q) ín the network in Fig. 78. Assume all currents and charges to be zero at l : 0,

the instant when the switch is closed.

L=lhenry C=0,25farad

Switch
t=O

Rr = 4 ohms

E = 12 volts..: c
Rz = 6 ohms

Fig. 78. Electrical network in Example 2

Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from

Kirchhoff's voltage law, as in Sec. 2.9 (where we considered single circuits). Letlr(l) ayd I2(t) be the currents

in the left and right loops, respectively. In the left loop the voltage drops are LI| = /i tV] over the inductor

and R1(11 - Iz) : 41It - 12) tV] over the resistor, the difference because 11 and 12 flow through the resistor

in opposiie directions. By Kirchhoff's voltage law the sum of these drops equals the voltage of the batterY;that

is, 1i + 4(Il * 12) : l2,hence

t'r: -+t, + 4I2 + 12,

,}ňlV

!

(4a)

In the right loop the voltage drops are RzIz: 6I2[Yl and R1(12 - 11)

(IICI 12 dt : 4 l I, dt [V] over the capacitor, and their sum is zero,

612+4(I2-11) + oÍrrclt:O or |0I2

Division by 10 and differentiation gives tL - O.+t', -l 0.412: Q.

To simplify the solution process, we first get rid oí O.aI|, which l

Substitution into the present ODE gives

I;: 0.4I| - 0.412: 0.4(-4h + 4I2 + 12) - 0.412

: 4(.I2 - 11) [V] over the resistors and

r
-4I1 +oJ,rdt:0.

by (4a) equals 0.4(-4It + 4I2 + l2).
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and by simplification

(4b) Ii- -1.611 + 1.2I2+ 4.8.

In matrix form, (4) is (we write J since I is the unit matrix)

r 1,1 l- -4.0 4.0f T l2.0l
(5) J':AJig. where J:|'I A:| | g:| 

|L,) L lo 1.2) - Los_]

Step 2. Solving (5). Because of the vector g this is a nonhomogeneous system, and we try to proceed as for
a single ODE, solving first the hotnog3neou., system J' : AJ (thus J' - AJ : 0) by substituting J : x"n'.
This gives

J':lxe^':Axe^', hence Ax : ),x.

Hence to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix

A they are derived in Example l in Sec. 4.0:

trt - -2. -,,, : 
[i] 

, iz:-0.8. *,,,-['-l
L0.8_]

Hence a "general solution" of the homogeneous system is

Jn: ctx(De-2t + ,zxQ)e-o,at,

For a particular solution of the nonhomogeneous system (5), since g is constant, we try a constant column vector

Jp-awithcomponentsrr1, a2.ThenJ;:0,andsubstitutioninto(5)givesAatg:O;incomponents,

-4.0q*4.0a2 -F l2.0:0

-1.6q-l 1.2a2 * 4.8 : 0.

The solution is c1 : 3. ct2:0: thus 
" - [;] . Hence

(6) J: Jnl Jr: crx(l)r-zt l crx(2)"-o," + u;

in components,

11: 2cp

Iz: cle

The initial conditions give

1r(0) : 2c1 -| c2-1 3 : 0

Iz(0): c1 *0,8c2 -0.

Hence cI : -4 anď c2: 5. As the solution of our problem we thus obtain

(7) J:-4x(De-2t+5x2)e-o,8'+a.
In components (Fig. 79b),

It: -8e-2t + se,o,Bt + 3

lz: -4e-2t 4ť-o,8t.

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 79a shows
I1(t) and I2Q) as two separate curves. Figure 79b shows these two currents as a single curve [11(r),12(t)] in the

I]2-plane, This is a parametric representation with time r as the parameter. It is often important to know in
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing /, as is shown.
The I1l2-plane is called the phase plane of our system (5), and the curve in Fig. 79b is called a trajectory. We
shall see that such "phase plane representations" are far more important than graphs as in Fig. 79a because

they will give a much better qualitative overall impression of the general behavior of whole families of solutions,
not merely of one solution as in the present case.

_2l -o.8r1 C2? ŤJ

-2t + O.icre-o,Bt.

tr
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I(t)

4

2

1

U

Currents 1,
(upper curve)

and I,

The first n - L of these n ODEs follow
y'* : y(n) by (9), so that the last equation

I2

1.5

1

0.5

ll

(b) Trajectorv t1,(f), 1r(ť)ť
in the /rlr-plane

(the "phase plane")

immediately from (9) by differentiation.
in (10) results from the given ODE (8).

012
(a)

Fig.79. Currents in Example 2

Conversion of an nth-Order ODE to a System

We show that an nth-order oDE of the general form (8) (see Theorem 1) can be converted

to a system of n first-order ODEs. This is practically and theoreticallY imPortant-
practically because it permits the study and solution of single ODEs bY methods for
-systems, 

ánd theoretically because it opens a way of including the theory of higher order

ÓoB, into that of first-order systems. This conversion is another reason for the imPortance

of systems, in addition to their use as models in various basic apPlications. The idea of

the conversion is simple and straightforward, as follows.

THEoREM l

PRooF Also,
l

Conversion of an ODE

An nth-order ODE

(8) ,@)

can be converted to a system

(9) !t: !, lz

This system is of the form

: F(t,!,!',, , , ,y'n-D)

of n first-order ODEs by setting

: ]u', !3: !",' ",ln- r@-L)

(10)

lt: lz

lz: ls

:

I!n-t: ln

Y'. : F(t, Yt, jz,''', !n),



SEC. 4.1 Systems of ODEs as Models

EXAMPLE 3 MassonaSpring

l35

To gain confidence in the conversion method, let us apply it to an old friend of ours, modeling the free motions

of a mass on a spring (see Sec. 2.4)

my"+cy' +lq:g or y":-!r' _Lr.
mm

For this ODE (8) the system (l0) is linear and homogeneous,

Setting y :

The characteristic equation is

|-l l l

llockdetlA-^l):I k . l:i,+-^--:0.
l; -;-o| m m

It agrees with that in Sec. 2.4.For an illustrative computation,letm: 1, c :2, and : 0.75. Then

^2 
+ 2^ + 0.75: (^ + 0.5X^ + 1.5):6.

This gives the eigenvalues ,\1 : -0.5 anď ),2: -1.5. Eigenvectors follow from the first equation in

A - 
^I:0,whichis 

-)-r1 * xz:0. Forilthisgives0.5-11 i xz:0, sá},Jr1 :2,xz - -1. Fori2: -1.5
it gives 1.5x1 -| xz: 0, say,,r1 : I, xz: -1.5. These eigenvectors

Y't: Yz

yL: - }r,- *r,.
[Yrll l . we get in matrix form

Lyr_]

,,:o,:[ ; ]l ["l
|-; -Á)Ll,)

f 21 1-1l
x(1)-l l. *'2':l I give

L-l] L-r.s_j

This vector solution has the first component

) :.Ir : 2'rn-o'" + c2e-|'5t

which is the expected solution. The second component is its derivative

Yz: Y' ': y' : _ clg-o'51 - L5c2e-1,5t

[ 2-] -o5l I l l -r,Y:crL-,_] e +"l,_1.5_] 
"

3. Derive the eigenvectors in Example 1 without
consulting this book.

4. In Example 1 find a "general solution" for any ratio
a : (flow rate)l(tank size), tank sizes being equal.

Comment on the result.

5. If you extend Example 1 by a tank 73 of the same size
as the others and connected to T, by two tubes with

1.
r MIXING pRoBLEMs

Find out without calculation whether doubling the flow
rate in Example 1 has the same effect as halfing the

tank sizes. (Give a reason.)

What happens in Example 1 if we replace Tzby a tank
containing 500 gal of water and 150 lb of fertilizer
dissolved in it?

l
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flow rates as between TlandT2,what system of ODEs

will you get?

6. Find a "general solution" of the system in Prob, 5,

@ ELEcTRlcAL NETwoRKs
7. Find the currents in ExampLe 2 if the initial currents

are 0 and -3 A (minus meaning that 1r(0) flows against

the direction of the arrow),

8. Find the cuments in Example 2 \f the resistance of R,
and R, is doubled (general solution only), First, guess,

9. What are the limits of the cur:rents in Example 2?

Explain them in terms of physics.

10. Find the currents in Example 2 if the capacitance is

changed to C : Il5,4F (farad).

EJšl coNvERsloN To sysTEMs
Find a general solution of the given ODE (a) by first
conveTting it to a system, (b), as given. (Show the details

of your work.)

ll.y" - 4y : O 12. y" -l 2y' - 24y : g

13. y" - y' : 0 14. y" + 15y' * 50y:6
'1,5. 64y" - 48y' - 7y : 0

16. TEAM PROJECT. Two Masses on Springs, (a) Set

up the model for the (undamped) system in Fig, 80,

(b) Solve the system of ODEs obtained, Hint, Try

y : xe'' and set a2 : ).. Proceed as in Example 1 or 2,

(c) Describe the influence of initial conditions on the

possible kind of motions.

hf 12

mt= I

k,= 8

mz= I

System in
static

equilibrium

Fig. 80. Mechanical system in Team Project 16

-?Y,lL&
t*.' change in

-r-) spring length
l \\_ = v^- v.'|

-], 
*É--LW

System in
motion

4.2 Basic Theory of Systems of ODEs
In this section we discuss some basic concepts and facts about sYstems of ODEs that are

quite similar to those for single ODEs.
The first-order systems in the last section Were Special cases of the more general system

y'r -- í{t, !l, " , , !n)

yi -- íz(t, yt, " , , !n)
(1)

Y'.: Ín(t,Yt, "' ,!n),

We can write the system (1) as a vector equation by introducing the column vectors

y : Lh y,rlT and f : [/, ír]'(rh.re T means transposition anď saves uS

in" ,pu." that would be needed for writing y and f as columns). This gives

(1) y' : f(r, y).

This system (1) includes almost a1l cases of practical interest. For n : 1 it becomes

y't: ír(t, y) or, simply, y' : í(t, y), well known to us from Chap, 1,

Asolution of (1) on some interval a 1t < b is a setof n differentiablefunctions

lt: htG), , ln: hn1)

------
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on a 1 t < b that satisfy (1) throughout this interval. In vector form, introducing the

"solution vector" h : lhí h.]T (a column vector!) we can write

y : h(/).

An initial value problem for (1) consists of (1) and n given initial conditions

(2) yr(/o):Kr, yzG :K2, ",, yn(t :Kn,

in vector form, y(/o) : K, where /g is a specified value of r in the interval considered and

the components of K : [K, KnfT are given numbers. Sufficient conditions for the

existence and uniqueness of a solution of an initial value problem (I), (2) are stated in
the following theorem, which extends the theorems in Sec. 1 .7 for a single equation. (For

a proof, see Ref. [A7].)

THEoREM t Existence and Uniqueness Theorem

Let f 1,. . - , f nin(I) be continuousfunctions having continuous partial derivatives
0f1l6yy,,,, \ír/ó!n,,,,, afnlaln in some domain R oí t!ůz,,, yn-space

containing the point (to, Kt, , , , , Kn).Then (I) has a solution on some interval
to- a<t <tg* asatisfuing (2), andthis solutionis uniqwe.

Linear Systems
Extending the notion of a linear ODE, we call (1) a linear system if it is linear in

}r , , , jn, that is, if it can be written

1l7

(3)

Y':,:alG)Yt+",

:

Y|,,.: anl7)lt + ",

vector form, this becomes

+ a7n(t)yn + sr(/)

+ ann(t)jn + g*(t).

In

(3) y':Ay*g

Io"where A - |

I

Lu,t

This system is called homogeneous if g : 0, so that it is

y' : Ay.

,: 
L;], 

g 
L;]

(4)

If g * 0, then (3) is called nonhomogeneous. The system in Example 1 in the last section is
homogeneous and in Example 2 nonhomogeneous. The system in Example 3 is homogeneous.

aIn

ann
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For a linear system (3) we have 6f ,l}jt: an(t), , , , , óf ,l6yn: ann(t) in Theorem 1.

Hence for a linear system we simply obtain the following.

Existence and Uniqueness in the Linear Case

Let the ai,'s alld. 1i's in (3) be continuous functions of t on an open interval

a 1 t < B containing the point t : to. Then (3) has a solution y(t) on this interval

satisfuing (2), and this solution is unique.

As for a single homogeneous linear ODE we have

Superposition Principle or Linearity Principle

Iíyr'' and yQ) are solutions of the homogeneous^linear system (4) on Some interval,

so is any linear combination y : .ry(') + ,ry"'.

PRooF Differentiating and using (4), we obtain

y' : [.ry''' + rry"'l'

: ary'r/ l ,ryr'r'

: crAy(l) + c21rye)

: A(cry(" l ,ry"') : Ay.

The general theory of linear systems of ODEs is quite similar to that of a single linear

oDE in Secs. 2.6 and 2.7 . To see this, we explain the most basic concepts and facts. For

proofs we refer to more advanced texts, such as tA7].

Basis. General Solution. Wronskian
By a basis or a fundamental system of solutions of the homogeneous system (4) on Some

interval _/ we mean a linearly independent set of n solutions y(1), , , , , Y'n'of (4) on that

interval. (We write _/because we need I to denote the unit matrix.) We call a conesponding

linear combination

Y : CrY(l) ,l ,ny'n' (cr,, ,,,cn arbitrary)

THEoREM 2

THEoREM 3

(5)

a general solution of (a) on,I. It can be shown

,I, then (4) has a basis of solutions on "/, hence

solution of (4) on.I.
We can write n solutions y('), , , , , y@) of

n x n matrix

y : [y'r'

that if the aip(t) in (4) are continuous on

a general solution, which includes every

(4) on some interval ./ as columns of an

. y,,'].(6)



139

The determinant of Y is called the Wronskian of y"', y('), written

y?)

yy)

yy)

(7) W(y"',, , ,, y'')) :

The columns are these solutions, each in terms of components. These solutions form a

basis on -I if and only if W is not zero at any r, in this interval. W either is identically zero
or is nowhere zero in "/. (This is similar to Secs. 2.6 and 3.I.)

If the solutions y"', . . . , y(n'in (5) form a basis (a fundamental system), then (6) is
often called a fundamental matrix.Introducing a column vector c : [cr c2 cn]T,

we can now write (5) simply as

y:Yc.

Furthermore, we can relate (7) to Sec. 2.6, as follows. If y anď z are solutions of a
second-order homogeneous linear ODE, their Wronskian is

ly z|
W(y.ň:|, ,|ly ,l

To write this ODE as a system, we have to set y : yt, y' : y| : y2 and similarly for z
(see Sec.4.1). But thenW(y, e) becomes (7), except for notation.

(8)

4 .3 Constant-Coefficient Systems.
phase plane Method

Continuing, we now assume that our homogeneous linear system

y':Ay

under discussion has constant coefficients, so that the n X n matrix A : |ai1"]has entries
not depending on r. We want to solve (1). Now a single ODE y' : ky has the solution
j : Cekt. So let us try

(2)

Substitution into (1) gives y' : lxe^'
eigenvalue problem

(3)

(1)

Y : Xe^'.

: Ay : Axe^'. Dividing by ,n', we obtain the

Ax : ),x.

SEC. 4.3 Constant-Coefficient Systems. Phase Plane Method
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Thus the nontrivial solutions of (1) (solutions that are not zero vectors) are of the form (2),

where ), is an eigenvalue of A and x is a corresponding eigenvector.

We assume that A has a linearly independent set of n eigenvectors. This holds in most

applications, in particular if A is symmetric (auj: a7) or skew-symmetric (aui -- -aqr)
or has n dffirenr eigenvalues.

Let those eigenvectors be x(1), . . . , x(n) and let them conespond to eigenvalues

it, . . , Xn (which may be all different, or some-or even all-may be equal). Then the

coffesponding solutions (2) are

y(1) _ *{\)u^tt, .. ., ,tnl - *(:n),

Their Wronskian W : W(y'r', . . . , y(')) t(7) in Sec. 4.2] is given by

xf) nxrt x{) r^-t x?)

*y'

*r)

, xY)n

(4)

x ) nx't
W: (y"', ", , y(')) :

*;),rrn* . ,(rt't),

We shall now
ODEs

(6) y' : Ay; in components,

Of course, we can graph solutions of (6),

y(/) :

^,t 
+:g'

"Í')
,r"

,;:)

THEoREM, l

On the right, the exponential function is never zero, and the determinant is not zero either

because its columns are the nlineaťry independent eigenvectors. This proves the following
theorem, whose assumption is true if the matrix A is symmetric or skew-symmetric, or if
the n eigenvalues of A are all different.

General solution

If the constant matrix A, in the system (I) has a linearly independent set of n

eigenvectors, then the corresponding solutions y"', , , , y'n' in (4) form a basis of
solutions o.f (I), and the corresponding general solution is

(5) y:crx(l'ro"+ ",+ cnx(n)g^nt.

How to Graph Solutions in the Phase Plane
concentrate on systems (1) with constant coefficients consisting of two

y!:anjtlanlz

yL: aztjt * azzlz.

t;;ll]
(1)
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as two curves over the /-axis, one for each component of y(r). (Figure 79ain Sec. 4.1 shows
an example.) But we can also graph (7) as a single curve in the yly2-plane. This is a parametric
representation (parametric equation) with parameter t. (See Fig. 79b for an example. Many
more follow. Parametric equations also occur in calculus.) Such a curve is called a trajectory
(or sometimes an orbit or path) of (6). The yly2-plane is called the phase plane.1 If we fill
the phase plane with trajectories of (6), we obtain the so-called phase portrait of (6).

EXAMPLE 1 Tralectories in the Phase Plane (Phase Portrait)

In order to see what is going on, let us find and graph solutions of the system

141

(8)
.v|:-3,r,1 + ),2

thus
Ilz.= Yt-3Yz.

Solution. By substituting y : xe^' and y' : lxe^' and dropping the exponential function we get Ax : ix.
The characteristic equation is

|-3-^ l l

dettA-nI) :l l:^2+6^-B:0.l r -3-^l
This gives the eigenvalues ),1 : -2 and Xz : -4. Eigenvectors are then obtained from

(-3 - i)x1 * xz: 0,

For.,\1 : -2 this is -x1 l xz:0. Hence we can take x(1) : [l l]T. For hz: -4 this becomes xl l x2: 0,

and an eigenvector is x(2) : [1 -l]T. this gives the general solution

[Yrl ( l ) 12\ [' 
-] 

-2t [ 
' 

-.l 
-.4t

': Lrr_] 
: clY Ť CzY - '', L,] " - r, 

|__1]'

Figure 81 on p. 142 shows a phase portrait of some of the trajectories (to which more trajectories could be added

if so desired). The two straight trajectories correspond to c1 : 0 and c2 : 0 and the others to other choices of
Cb C2.

Studies of solutions in the phase plane have recently become quite important, along with
advances in computer graphics, because a phase portrait gives a good general qualitative
impression of the entire family of solutions. This method becomes particularly valuable
in the frequent cases when solving an ODE or a system is inconvenient or impossible.

Critical Points of the System (6)

The point y : 0 in Fig. 81 seems to be a common point of all trajectories, and we want
to explore the reason for this remarkable observation. The answer will follow by calculus.
Indeed, from (6) we obtain

l

(9)
dy, : y; dt

dYt y'l dt

aztyt l azzyz

altjl, -f anlz
_lr_

}l

1A nutn" that comes from physics, where it is the y-(nu)-plane, used to plot a motion in terms of position
y and velocity y' : u Qn : mass); but the name is now usecl quite generally for the yly2-plane.

The use of the phase plane is a qualitative method, a method of obtaining general qualitative information
on solutions without actually solving an ODE or a system. This method was created by HENRI POINCARE
(1854-1912), a great French mathematician, whose work was also fundamental in complex analysis, divergent
series, topology, and astronomy.

SEc. 4.3
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This associates with every point P: (yt, !) a unique tangent direction dY2ldYl of the

trajectory passing through P, except for the point P : Pg,. (0, 0), where the right side of

(9jbecomes 0/0. This point po, atwhich dy2ldylbecomes undetermined, is called a critical
point of (6).

Five Types of Critical Points
There are five types of critical points depending on the geometric shaPe of the trajectories

near them. They are called improper nodes, proper nodes, saddle points, centers, and

spiral points. We define and illustrate them in Examples 1_5.

E X A M P L E 1 |Continued) lmproper Node (Fig, 8l)

An improper node is a critical point P6 at which all the trajectories, except for two of them, have the same

limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent

at P6 which, however, is different.

The system (8) has an improper node at 0, as its phase portrait Fig. 81 shows. The common limiting direction

at 0 is that of the eigenvecrá. *i" : [1 1]T because_ 9. 
4' go", to zero faster than n-2' as / increases. The two

exceptional limiting tangent directions are those of *(2) : [1 -1]T and -*{Z) - 1-1 1]T, l

EXAMPLE 2 Proper Node (Fig. 82)

A proper node is a critical point P6 at which every trajectory has a definite limiting direction and for any given

direction d at p6 there is a trajectory having d as its limiting direction.

The system

}r:}r
jz: lz

has a proper node at the origin (see Fig. 82). Indeed, the matrix is the unit matrix. ItS characteristic equation

ai-_ ir'': 0 has the root .\ : 1. Any x * 0 is an eigenvector, and we can take [1 0]T and [0 1]T. Hence

a general solution is

o' + cnl'l "' oí !l: Cťt

'Ll-] jz: czel
Ctlz : C2j,s,.

,,

,' : 
[; :] 

,, thus(10)

T1l

':"Lo_]

Fig. 8l. Trajectories of the system (8)

(lmproper node)
Fig. 82. Trajectories of the system (10)

(Proper node)

"I
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EXAMPLE 3 Saddle Point(Fig.83)

A saddle point is a critical point Pg at which there are two incoming trajectories, two outgoing trajectories, and

all the other trajectories in a neighborhood of P6 bypass P6.
The system

143

(1l) ,, : [; -:] 
,,

hasasaddlepointattheorigin. Itscharacteristicequation(l-^X-l-^):0hastherootsi1 :land
lz : -1. For 

^ 
: 1 an eigenvector [1 0]T is obtained from the second row of (A - ,II)x : 0, that is,

0x1 i (-l - l)xz: O.For lz: -1 thefirstrowgives [0 1]T.Hence ageneralsolutionis

has a center at the origin. The characteristic equation 
^2 

+ 4: 0 gives the eigenvalues2i and -2i.For 2i an

eigenvectorfollowsfromthefirstequation-2ix1 l xz: Oof (A -,\I)x: O,say, [l 2i]T.For l: _2ithat

equation is -(-2i)x1* xz:0 and gives, say, [1 -ZilT. Hence acomplex general solution is

jt: cg2it + c2e-2it
thus

y2: Zicpzit - 2icze-zŽt.

I}r: lt
thus

Ilz: -Jz

|- ll 1-0l yI : Clet

} : cr l l "' + c2 l l ,-' or _+ or yly2: const.
L0_] L lJ j2 : c2e '

This is a family of hyperbolas (and the coordinate axes); see Fig. 83.

EXAMPLE 4 Center(Fig. 8a}

A center is a critical point that is enclosed by infinitely many closed trajectories.
The system

Ilt: jz
thus

yL: -4yt

l

,, - [-; ;] ,,
(12)

(l2*)

The next step would be the transformation of this solution to real form by the Euler formula (Sec. 2,2). But we
were just curious to see what kind of eigenvalues we obtain in the case of a center. Accordingly, we do not
continue, but start again from the beginning and use a shortcut. We rewrite the given equations in the form
y'l: yz,4yl: -yL:then the product of the left sides must equal the product of the right sides,

ayl'r: -yzyl. By integration, 2yl2 + !y22 : ,orrt.

This is a family of ellipses (see Fig. 84) enclosing the center at the origin.

Y - cr li,]r- *,,l|r,f ,-,,,,

l

"I

Fig. 83. Trajectories of the system (11)

(Saddle point)
Fig. 84. Trajectories of the system (12)

(Center)
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ExAMPLE 5

ExAMPLE 6

CHAP. 4 Systems of oDEs. Phase Plane. Qualitative Methods

Spiral Point (Fig.85)

A spiral point is a critical point P6 about which the trajectories spiral, approaching P6 aS / ' cc (or tracing

these spirals in the opposite sense, away from P6),

The system

( 13) y: |--l l-] )Í:
l lv, thus lL-t -l_] lz:

-yl * )z

-)'r - ,vz

has a spiral point at the origin, as we shall see. The characteristic equation is i2 + 2^ + 2: 0, It gives the

eigenvalues -l + i and _1 _ l. Corresponding eigenvectors are obtained from (_1 _ ),)x1 l X2:0, For

^ 

: -1 -1- i this becomes -ix1 * xz: O and we can take [1 i]T as an eigenvector, Similarly, an eigenvector

corresponding to -1 - l is [1 -i]T. This gives the complex general solution

Thus, ,' : -r,

Y:cl
(-1+i)t ,e -Ťc2

The next step would be the transformation of this complex solution to a real general solution bY the Euler

formula. But, as in the last example, we just wanted to see what eigenvalues to expect in the case of a sPiral

point. Accordingly, we start again fiom the beginning and instead of that rather lengthY sYstematic calculation

we use a shortcut. We multiply the first equation in (l3) by 11, the second by y2, and add, obtaining

yr_vi + yzyl: -O: + yz2),

We now introduce polar coordinates r, r, where ,' : yr' + y22. Differentiating this with respect to r gives

2rr' :2yry| + 2yryl. Hence the previous equation can be written

l2rr - -r drlr:-cJt, h|r| : - t*c*, ,:"-'

For each real c this is a spiral, as claimed. (see Fig, 85),

Fig. 85. Trajectories of the system (13) (Spiral point)

No Basis of Eigenvectors Available. Degenerate Node (Fig. 86)

This cannot happen if A in (l) is symmetric (a7"i: ajt, as in Examples 1-3) or skew-sYmmetric (,api : -a4t,
thus a3i: 0). And it does not happen in many other cases (see Examples 4 and 5). Hence it suffices to exPlain

the method to be used by an example.

[-i] ",-,-"t:]

l
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Find and graph a general solution of

r 4 ll
(I4) y':Ay:| lv.Lt 2l

Solution. A is not skew-symmetric! Its characteristic equation is

det lA nr): |'- 
n 

' | : 
^2 

- 6l,+ 9: (^ - 3)2:0.|-r 2-^l

It has a double root ,\ : 3. Hence eigenvectors are obtained fiom (4 - ,\)rr l xz : 0, thus from x1 -| x2 : 0,

say, x(1) : Il -1]T and nonzero multiples of it (which do not help). The method now is to substitute

y'2' : xíe^t 1- 11n^t

with constant u : [u1 ar]T into (14), (The x/-term alone, the analog of what we did in Sec. 2.2inthe case of
a double root, would not be enough. Try it.) This gives

y(Dl : x"nt + lxte^t + hue^t : 4rtz) : Axte^t + Aue^'.

On the right, Ax : ),x. Hence the terms lxte^t cancel, and then division by e^t gives

x -l- ).u : Au, thus (A ,\I)u - x.

Herei:3 andx - [1 -1]T, sothat

f4-3 l l l- |l ullu2 :|(A-3l)u:I l":I l thus
L -l 2-3J L-l_.] -ul-uz:-|.

A solution, linearly independent of x : [l -l]T, is u : [0 1]T. trris yields the answer (Fig. 86)

y: cry(1) l,,y,,,:., 
[_i] "" 

*.,(t 
l] 

,- 
[:]) ",,

The critical point at the origin is often called a degenerate node. .1y(1) gives the heavy straight line, with
c1 ) 0 the lower part and c1 { 0 the upper part of it. y(2) gives the right part of the heavy curve from 0 through
the second, first, and-finally-fourth quadrants. -y(2) gives the other part of that curve. l

Fig. 86. Degenerate node in Example 6

145
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We mention that for a system (1) with three or more equations and a triple eigenvalue

with only one linearly independent eigenvector, one will get two solutions, as just

discussed, and a third linearly independent one from

y(3) - lx e^t l ate^t + ve^t with v from uf),v:Av.

r GENERAL soluTloN
Find a real general solution of the following systems. (Show

the details.)

1. Y _ 
: 3Y,

yL: I2yt

3-Y'r:]yt*jz
yL:lt1-!z

M. y'r: -)t 1- 5yz
,,

lz : -)t -f 3Yz

}r(0) : 7, y2(0) : 2

15.yi:Zyt*5yz
lz : 5}r 1- I2.5y2

yr(0) : I2, yz(O) : 1

y| : 4yz 6. y',

yL : -4y, yi

y't : Zyt ]- 8yz - 4ys

yL : -4y, - I}y, -f Zyz

yL:-4yr-4yr-4ys

Y't:8Yl-Y,
yL : y, 1- IOy2

9. y', : -}1 1- yz * 0.4ys

yi : lt - 0.1yz -l l.4yg

yL : 0.4y, -l I.4y2 * 0.2yg

@ lNlTlAL vALuE pRoBLEMs

Solve the following initial value problems. (Show the details.)

10. yi : !l, l lz 11. y'r: lt * 2jz

yi : 4yt * yz yL : žy,,, -| yz

yr(O) : 1, y2(0) : 6 yr(0) : 16, y2(0) - -2

12. y', : 3yl, * Zyz 13. y', : Lyl, - 2y,

lz : 2yt -l 3yz yi : -iyl * y,

yr(0) : 7, y2(0) : 7 yr(0) : 0.4,y2(0) : 3.8

E6-1i coNvERsloN
Find a general solution by conversion to a single ODE.

16. The system in Prob. 8.

17. The system in Example 5.

18. (Mixing problem, Fig. 87) Each of the two tanks

contains 400 gal of water, in which initially 100 lb
(Tank T1) and 40 lb (Tank Zr) of fertilizer are

dissolved. The inflow, circulation, and outflow are

shown in Fig. 87. The mixture is kept uniform by

stirring. Find the fertilizer contents yl(r) in T, and y2(t)

tn Tr.

Fig. 87. Tanks in Problem ]8

19. (Network) Show that a model for the currents 11(r) and

I2(t) in Fig. 88 is

1r
^lt, dt + R(h - Ir) : g, u! + R(Iz - 1r) : 0.
LJ

Find a general solution, assuming that rR : 20 a,
L:0.5H,C:2,10-4F.

20. CAS PROJECT. Phase Portraits. Graph some of the

figures in this section, in particular Fig. 86 on the

degenerate node, in which the vector y(2) depends on
r. In each figure highlight a trajectory that satisfies an

initial condition of your choice.

Fi3.88. Network in Problem ]9

)r

!z

!t

!z

: 5Yz

- sll

: 9yt * 13.5y2

: 1.5)r * 9yz

_ a-, _.).,
- Lyl L!2

: 2yl, -l 2yz

5.

7.
A9 oallmin 16 gallmin

48 gallmin
-->

Tl

<__

T2
(Pure water)

64 gallmin

-_+ +
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in components,
y'l,: anjl,* anlz

yr: aztlt * azzlz.

dy, :
dyt

yi dt
(3)

q : det A,: allar, - al2a21> A,: p2 - 4q.

(6)

Furthermore, the product representation of the equation gives

^2 
- p^ + q: (^ - nrXn - b): 12 - (ir + 

^2)^ 
+ 

^1^2.

4.4 Criteria for Critical Points. Stabitity
We continue our discussion of homogeneous linear systems with constant coefficients

(l) y' : Ay : [n" 
n"l 

,,
Lon azz_]

From the examples in the last section we have seen that we can obtain an overview of
families of solution curves if we represent them parametrically as y(/) : [yr(r) yzG)]T

and graph them as curves in the yry2-plane, called the phase plane. Such a curve is called

a trajectory of (1), and their totality is known as the phase portrait of (1).

Now we have seen that solutions are of the form

y(t): xe^t. Substitutioninto (1) gives y'(t): Xxe^t: Ay : Axe^t.

Dropping the common factor e^t, wehaye

(2) Ax : ,\x.

Hence y(r) is a (nonzero) solution of (1) if ,\ is an eigenvalue of A and x a coíTesponding

eigenvector.
Our examples in the last section show that the general form of the phase portrait is

determined to a large extent by the type of critical point of the system (1) defined as a

point at which dy2tdyl becomes undetermined, 0/0; here [see (9) in Sec. 4.3]

azlyt * arryz

y: anlt * anjz

We also recall from Sec. 4.3 that there are various types of critical points, and we shall

now see how these types are related to the eigenvalues. The latter are solutions ), : .tr1

and .[, of the characteristic equation

larr-tr atz l

(4) det(A-^I): | |:tr"-(ar,-la22))" *detA:0.
I o^ or,-X|

This is a quadratic equation 
^2 

- p^ + q: O with coefficients p, q and discriminant A
given by

(5) p:attlorr,

From calculus we know that the solutions of this equation are

it: ž@ + VÁ), Xz: Žrp - VÁl.
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Hence p is the sum and q the product of the eigenvalues. Also 
^1 

-
Together,

),2 : ÝT from (6).

P--\lXr, 4: XtLz, A : (ňr - Xr)',

for classifying critical points. A derivation will beThis gives the criteria in Table 4.1

indicated later in this section.

Table 4.1 Eigenvalue Criteria for Critical Points
(Derivation after Table a.2)

Stabitity
Critical points may also be classified in terms of their stability. Stability concepts are basic

in engineering and other applications. They are suggested by physics, where stabilitY

means, roughly speaking, that a small change (a small disturbance) of a physical system

at some instant changes the behavior of the system only slightly at all future times /. For

critical points, the following concepts are appropriate.

Stable, Unstable, Stable and Attractive

A critical point Po of (1) is called stablez if, roughly, all trajectories of (1) that at

some instant are close to Po remain close to Pg at all future times; precisely: if for

every disk D. of radius e ) 0 with center P6 there is a disk Du of radius 6 > 0 with

center Pg such that every trajectory of (1) that has a point P, (corresponding to

t : tr, say) in Du has all its points coíTesponding to t =- tttn D.. See Fig. 89.

Po is called unstable if P6 is not stable.

P6 is called stable and attractive (or asymptotically stable) if P0 is stable and

every trajectory that has a point in Du approaches P6 as t ---> @. See Fig. 90.

Classification criteria for critical points in terms of stability aíe given in Table 4.2. Both
tables are summarizeďin the stability chart in Fig. 91. In this chart the region of instability

is dark blue.

2In the sense of the Russian mathematician ALEXANDER MICHAILOVICH LJAPUNOV (l857-19l8),

whose work was fundamental in stability theory fbr ODEs. This is perhaps the most appropriate definition of

stability (and the only we shall use), but there are others, too.

Name p: h1 l )"2 Q: Xtlz A:(i, -lr)' Comments on ,[1, .[2

(a) Node
(b) Saddle point
(c) Center
(d) Spiral point

p:0
p+0

q>0
q<0
q>0

^=0

A<0

Rea1, same sign

Real, opposite sign

Pure imaginary

Complex, not pure
imaginary

"------I



SEC.4.4 Criteria for Critical Points. Stability

Fig. 89. Stable critical point Po of (1) (The trajectory
initiating at P' stays in the disk of radius e.)

Table 4.2 Stability Criteria for Critical Points

Fig. 90. Stable and attractive critical
point Po of (1)

149

Fig. 9l. Stability chart of the system (l) with p, Q, L defined in (5).

Stable and attractive: The second quadrant without the g-axis.

Stability also on the positive g-axis (which corresponds to centers).

Unstable: Dark blue region

We indicate how the criteria in Tables 4.1 and 4.2 are obtained. If q: A1^2 > 0,

both eigenvalues are positive or both are negative or complex conjugates. If also
p : lt * Lz ( 0, both are negative or have a negative real part. Hence P6 is stable

and attractive. The reasoning for the other two lines in Table 4.2 is similar.
If A < 0, the eigenvalues are complex conjugates, say, ht : ot + iB anď hz: ot - iB.

If also p : Ll t lz : 2a ( 0, this gives a spiral point that is stable and attractive. If
p : 2d ) 0, this gives an unstable spiral point.

If p:0, then Lz: -),1 and Q: htlz- -ll,'.If also qž 0, then ),12 - -q 10,
so that .tr1, and thus ),2, must be pure imaginary. This gives periodic solutions, their
trajectories being closed curves around P6, which is a center.

EXAMPLE 1 Application of the Criteria in Tables 4.1 and 4.2

In Example l, Sec.4.3, we have y' : [-' '-l ,,, : -6, Q:8, L: 4,a node by Table 4.I(a),which
L1-3]

is stable and attractive by Table 4.2(a). l

Type of Stability p:hllX2 Q: ltLz

(a) Stable and attractive

(b) Stable
(c) Unstable

p<0 l q>0
p=0 l qr}
p>0 OR q<0

Spiral
poi nt

o,o/ o

//

,O

Node

Spiral
point

Saddle point
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Free Motions of a Mass on a Spring

What kind of critical point does my" + cy' + ky : 0 in Sec. 2,4 have?

Solution. Division by ru gives ,l' : -(klm)y - (clm)y'. To get a system, set y1 : |, lz : y' (see Sec.

4.1). Then yL: y" : -(ktm)y1- @lm)y2. Hence

'' 
: 

|-oo,* -',,*f ',

|-l 1 l _ c k
ctettA-.trI):l l:tr"+ -^+-:0.' |-rt. -ctn - tl m m

Weseethatp:-clm,q:klm,6:1clm)2-4ktm.FromthisandTables4.1 and4.2weobtainthefollowing

results. Note that in the last three cases the discriminant A plays an essential role.

No damping. c : 0, p : 0, q } 0,a center.

Ilnderdamping. c2 1 4mk, p 1 O, q > 0,A < 0, a stable and attractive spiral point,

Critical damping. c2 : 4mk, p 1 0, q ž 0,A : 0, a stable and attractive node.

overdamping. 12 > 4-k, p < 0, q ž O,A > 0, a stable and attractive node. l

r TypE AND sTABlLlTy oF cRlTlcAL polNT

Determine the type and stability of the critical point. Then

find a real general solution and sketch or graph some of the

trajectories in the phase plane. (Show the details of your

work.)

1. Y', : 2Yz

yL: 8y._

3. yi :zyl + jz

yL : lt ]- Zyz

5. y', : -4yl * lz

!z: lt - 4!z

7. yr: -Zyz
yL: 8y,

9. y', : yt * 2yz

yL: 2yt * lz

@ FoRM oF TRAJEcToRIEs

What kind of cuíves are the trajectories of the following

ODEs in the phase plane?

ll.y" + 5y' :0
II.y"-k'y:0
12.y" + #y:0
13. (Damped oscillation) Solve y" + 4y' i 5y : 0. What

kind of cuíves do you get as trajectories?

1,4. (Transformation of variable) What happens to the

system (1) and its critical point if you introduce T : -t
as a new independent variable?

15. (Types of critical points) Discuss the critical points in
(10)-(14) in Sec. 4.3 by applying the criteria in Tables

4.I and4.2in this section.

16. (Perturbation of center) If a system has a center as

its critical point, what happens if you replace the matrix

A by Á : A * kI with any real number k + 0
(representing measurement elTors in the diagonal

entries)?

17. (Perturbation) The system in Example 4 in Sec. 4.3

has a center as its critical point. Replace each a7, in

Example 4, Sec. 4,3,by ayx -| á. Find values of b such

that you get (a) a saddle point, (b) a stable and attractive

node, (c) a stable and attractive spiral, (d) an unstable

spiral, (e) an unstable node.

18. CAS EXPERIMENT. Phase Portraits. Graph phase

portraits for the systems in Prob. 17 with the values of
b suggested in the answer. Try to illustrate how the phase

portrait changes "continuously" under a continuous

change of á.

19. WRITING EXPERIMENT. Stability. Stability
concepts are basic in physics and engineering. Write a

two-part report of 3 pages each (A) on general

applications in which stability plays a role (be as

precise as you can), and (B) on material related to

stability in this section. Use your own formulations and

examples; do not copy.

20. (Stability chart) Locate the critical points of the

systems (10)-(14) in Sec, 4.3 and of Probs. 1, 3, 5 in
this problem set on the stability chart.

2. Y', : 4Yt

lljz: 5!z

4. Y', : Y,

yL: -5y, -Zyz

6. y _ 
: y, -l 10y2

yL: ]yt - 8y,

8. yl : 3y1 * 5y,

yL:-5yt-3y,
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(1)

qualitative information on solutions
are particularly valuable for systems

impossible. This is the case for many

y|: f {yt, yz)

yL: fz(yt,y).

y| : allt -l anlz -l h{yt, yz)

yl, : aztlt * azzlz * hz(yl, y).

is autonomous. One can prove the following
App. 1).

4.5 Qualitative Methods for Nonlinear Systems
Qualitative methods are methods of obtaining
without actually solving a system. These methods
whose solution by analytic methods is difficult or
practically important nonlinear systems

(2) y' : Ay + h(y), thus

A is constant (independent of r) since (1)

(proof in Ref. [A7], pp. 375-388, listed in

y' : f(y), thus

In this section we extend phase plane methods, as just discussed, from linear systems
to nonlinear systems (1). We assume that (1) is autonomous, that is, the independent
variable / does not occur explicitly. (A11 examples in the last section are autonomous.)
We shall again exhibit entire families of solutions. This is an advantage over numeric
methods, which give only one (approximate) solution at a time.

Concepts needed from the last section are the phase plane (the yp2-plane), trajectories
(solution curves of (1) in the phase plane), the phase portrait of (1) (the totality of these
trajectories), and critical points of (1) (points (yr y) at which both /1(y1, y2) and f z(yt, yz)

are zerc).
Now (1) may have several critical points. Then we discuss one after another. As a

technical convenience, each time we first move the critical point Pg:. (a, b) tobe considered
to the origin (0, 0). This can be done by a translation

l,: lt - a, z:lz-b

which moves Po to (0, 0). Thus we can assume Po to be the origin (0, 0), and for
simplicity we continue to write jy lz (instead of r, z). We also assume that P6 is
isolated, that is, it is the only critical point of (1) within a (sufficiently small) disk with
center at the origin. If (1) has only finitely many critical points, this is automatically
true. (Explain!)

Linearization of Nonlinear Systems
How can we determine the kind and stability property of a critical point Pg: (0, 0) of
(1)? In most cases this can be done by linearization of (1) near P6, writing (1) as
y' : f(y) : Ay + h(y) and dropping h(y), as follows.

Since Po is critical, /1(0, 0) : 0, f z(0,0) : 0, so that /1 and f 2have no constant terms
and we can write
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Free Undamped Pendulum. Linearization

Figure 92a shows a pendulum consisting of a body of mass m (the bob) and a rod of length L, Determine the

locations and types oť the critical points, Assume itrat tne mass of the rod and air resistance are negligible,

Solution. Step L Setting up the mathematical model. Let 0 denote the angular displacement, measured

counterclockwise tiom the equilibrium position. The weight of the bob is mg (g the acceleration of gravitY), It

callses a restoring fbrce nzg sin 0 tangent to the curve of motion (circular arc) of the bob. BY Newton's second

1aw, at each instant this 1brce is balanced by the íbrce of acceleration mL7" , where L0" is the acceleration;

hence the resultant oť these two tbrces is zero, and we obtain as the mathematical model

ttlLe"' lilgsiná:0.

0"+ksin0:0

when 0 is very small, we can approximate sin 0 rather accurately by 0 and obtain as an approximate sollltion

A;;::{k, + b sin xTt,wutthe exact solution for any 0is not an elementarY function,

Step 2. Critical points (0,0), !(2rrr0), +(4Ťrr0), , , , ,Linearization,To obtain a System of oDEs, We Set

á ] r,r,0' : ),z.Then í}om (4) we obtain a nonlinear system (t) of the íbrm

l"}r:Jr()r,jz'-lz
l?,rjz: Jz(jt !z| : -k Sln )'1.

Therightsidesarebothzerowhen'1',:0andsin1'':0.Thisgivesinfinitelymanycriticalpoints(nrr,0),
where n:0, _|I, )_2,. . . . We consider (0,0). Since the Maclaurin series is

siny1 : yr - áyr3 + - , , , :.}1,

the linearized system at (0, 0) is

,Y't: Yz

yL: -kyt

ToapplyourcriteriainSec.4,4wecalculatep:at|lazz:O,q:detA:k:glL(>0),and
L' :;Ž'_ +i : -+t .From this and Table 4.1(c) in Sec. 4.4 we conclude that (0, 0) is a center, which is alwaYs

stable. Since sin 0 : siny1 is periodic with period 2rr,the critical Points (nrr,0), n: +2, !4,'", are all

centerS.

Step 3. Critical points i(rr,0), !(3Í,r0), =(5r,0), , , , ,Linearization"ý{e now consider the critical point

(rr,, O), setting 0 - t: }1 and (0 - ,T)' : 0' : y2, Then in (4),

sin 0: sin(,v1 * r): -sin_y1 : -J,1 + áyr'- + , ,'- -}1

Dividing this by ruL, we haye

(4) (-: ;)

(4")

y':Ay:t: 
;] ,, thus

Linearization

If f 1 and f z i, (1) are continuous and

neighborhood of the criticctl point P6: (0,

and stability of the critical point oí (|)
system

hctve continuous partial derivatives in a

0), and ií'det A + 0 in (2), then the kind

are the same as those of the linearized

(3) Y' : AY, thus
y|: alyt

YL : aztYt

-l anjz

-l azzlz,

Exceptions occwr if A, has equal or pure imaginary eigenvalues; then (l) may have

the iame kincl of critical point as (3) or a spiral point,
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and the linearized system at (rr, 0) is now

. 1-0 ll yi:y,
v':Av-| lv. thusLr 0] " yL: kyt.

We see that p : O, q : -ft (< 0), and L : - 4q : 4k. Hence, by Table 4.1(b), this gives a saddle point. which
is always unstable. Because of periodicity, the critical points (nn,0), n: + 1, -|3, , . ., are all saddle points.
These results agree with the impression we get fiom Fig. 92b. l

(a) Pendulum (b) Solution curves yr(y,) of (4) in the phase plane

Fig. 92. Example l (C will be explained in Example 4.)

EXAM PLE 2 Linearization of the Damped Pendulum Equation

To gain further experience in investigating critical points, as another practically important case, let us see how
Example 1 changes when we add a damping term c0' (clamping proportional to the angular velocity) to equation
(4), so that it becomes

(5) 0"+c0'+tsin0:0

wherek) 0andc > 0 (which includes ourpreviouscaseof nodamping, c:0). Setting 0: yt,0' : y2,as
before, we obtain the nonlinear system (use 0" : ,!1

Y'l : Yz

yi: -k sin y1 - cy2,

We see that the critical points have the same locations as before, namely, (0,0), (*zr,0), (X.2r,0), . . .. We
consider (0,0). Linearizing sin)1 :,vt as in Example 1, we get the linearized system at (0,0)

, T 0 ll yi:y,(6) v:Av:| lv. thus
L-t -c_] 

- 
yL - -lcyt - c!z.

This is identical with the system in Example 2 of Sec 4,4, except for the (positive!) íactor m (and except for
the physical meaning of yr). Hence for c : 0 (no damping) we have a center (see Fig. 92b), for small damping
we have a spiral point (see Fig. 93), and so on.

We now consider the critical point (z,,0). We set 0 - r: !t, G - i)' : 0' : y2andlinearize

sin 0 : sin (y1 + rr): -siny1 : -yt.

This gives the new linearized system at (rr,0)

|-0 l1y':Ay:I lv.Lr -c,]

153

Ilt: |z
thus

yL: kyt - c|z.
(6")
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Lotka-Volterra Population Model

ExAMPLE 3

CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

ForourcriteriainSec 4.4wecalculate p: a,ltl a22: -c,q: detA: -k,and L,- p2 - 4q:,2 + 4k,

This gives the following results for the critical point at (n 0).

No damping. c : 0, p : 0, q 1 0, A > 0, a saddle point. See Fig. 92b.

Damping. c ) 0, p 10,q <0, A > 0, a saddlepoint. SeeFig.93.

Since sin y1 is periodic with period 2rr, the critical points (*2t, 0), (.+4rr,0), , , , are of the same type aS

(0,0), and the critical points (-rr, 0), (t3r,0), . , , are of the same type as (z,,0), so that our task is finished.

Figure 93 shows the trajectories in the case of damping. What we see agrees with our physical intuition. Indeed,

damping means loss of energy. Hence instead of the closed trajectories of periodic solutions in Fig. 92b we now

have trajectories spiraling around one of the critical points (0, 0), (+2r,0), , , , . Even the wavY trajectories

corresponding to whirly motions eventually spiral around one of these points. Furthermore, there are no more

trajectories that connect critical points (as there were in the undamped case for the saddle points). l

Fig. 93. Trajectories in the phase plane for the damped pendulum
in Example 2

Predator-Prey Population Model3

This model concerns two species, say, rabbits and foxes, and the foxes prey on the rabbits.

Step 1. Setting up the model. We assume the following.

1. Rabbits have unlimited food supply. Hence if there were no foxes, their number yl(r) would grow

exponentially, yI : ayt,

Actually, y1 is decreased because of the kill by foxes, say, at a rate proportional to y|yz, where y2(r) is

the number of foxes. Hence y|: "yt - byl,yz, where a > 0 and Ď ) 0.

If there were no rabbits, then y2Q) would exponentially decrease to zero, yL: -lyz. However, y2 is

increased by a rate proportional to the number of encounters between predator and prey; together we

have y!2 : - llz + kltlz,where k > 0 and l > 0.

This gives the (nonlinear!) Lotka-Volterra system

y|: í{yt, yz) : ayt - by z

yL: f z(,yt, yz) : kyůz - lyz .

3lntroduced by ALFRED J. LOTKA (1880-1949), American biophysicist, and VITO VOLTERRA
(1860-1940), Italian mathematician, the initiator of functional analysis (see [GR7] in App. 1).

2.

3.

(7)
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Step 2. Critical poinl (0, 0), Linearizati.on. We see from (7) that the critical points are the solutions of

(7*) "fr(yl, y): yt@ * by): o, ízOr y) : y2&yr - /) : 0.

la
The solutions are (y1, yz) : (0, 0,1 and (;, ; ). We consider (0, 0). Dropping -byůz anď lcy12 from (7) gives,kb
the linearized system

|" ol 
,.L0 -l)

Step 3. Cňtical point (llk, alb), Linearization. We set.}r : }r -l llk, y2: z + alb.Then the critical point

(llk, alb) corresponds to (}r,Iz) : (0, 0). Since 'r: y'r, L: yL, we obtain from (7) [factorized as in (8)]

,i- (,,,-;) |"-,(o,- t)] 
: (,,- i) (-b )

,;: (,,- ;) [-(o,- i) -,] : (o, - í)o,,

Dropping the two nonlinear terms -b!1}2and l$1 2, we have the linearized system

(7xx..

(a)

(b)

-l lb-}r:-TY,

-l ak-
!z: , |t-

The left side of (a) times the right side of (b) must equal the right side of (a) times the left side of (b),

ak_ _, lb_ _,
bYIYI: - n!z!z.

By integration,
ak_, lb_,

Vr- t 
-Yo-: 

CollSl.
DK

This is a family ellipses, so that the critical point(llk, alb) of the linearized system (7*x) is a center (Fig. 9a).

It can be shown by a complicated analysis that the nonlinear system (7) also has a center (rather than a spiral
point) at (llk, alb) surrounded by closed trajectories (not ellipses).

We see that the predators and prey have a cyclic variation about the critical point. Let us move counterclockwise
around the ellipse, beginning at the right vertex, where the rabbits have a maximum number. Foxes are sharply
increasing in number until they reach a maximum at the upper vertex, and the number of rabbits is then sharply
decreasing until it reaches a minimum at the left vertex, and so on. Cyclic variations of this kind have been

observed in nature, for example, for lynx and snowshoe hare near the Hudson Bay, with a cycle of about 10

years.

For models of more complicated situations and a systematic discussion, see C. W. Clark, Mathematical
Bioeconomics (Wiley, I9'7 6).

yI

Fig. 9a. Ecological equilibrium point and trajectory
of the [inearized Lotka-Volterra system (7**)

l

L
h
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Transformation to a First-order Equation

in the phase plane

Another phase plane method is based on the idea of transforming a second-order

autonomóus oDE (an oDE in which r does not occur explicitly)

F(y, y', )") : 0

to first order by taking ) : }r as the independent variable, setting y' : yzand transforming

y" by the chain rule,

ll I _} -J2
dy, : dy, dyt : dy,

dt dy, dt dy,
!z.

Then the ODE becomes of first order,

r(lr,lr,

and can sometimes be solved or treated by direction fields. We illustrate this for the

equation in Example l and shall gain much more insight into the behavior of solutions,

ExAMPLE 4 An oDE (8) for the Free Undamped Pendulum

If in (4) 0,, + ksin 0 : 0 we set 6 : ),r, 0, : yz(the angular velocity) and use

#r,):o(8)

0,, : 
,ly: _ dyz 9_L : bro We get * ,r: -k sin)t.
dt clyt dt dyt " - tlyt

Separation of variables gives y2 d,yz: -k sin yl dyt By integration,

(9)

Multiplying this by tttLz, we get

Lyrr: kcosy1 t C (C constant).

}m(Ly2S2 - mL2k cos y1 : mL2C,

We see that these three terms are energies. Indeed, y2 is the angular velocity, so that I,y2 is the velocitY and the

first term is the kinetic energy. The second term (including the minus sign) is the potential energY of the Pendulum,

unÁ *ric is its total energy, which is constant, as expected fiom the law of conservation of energy, because

there is no damping (no loss of energy). The type of motion clepends on the total energY, hence on C, as follows,

Figure 92b on p. 153 shows trajectories íb. ua.ious values of C. These graphs continue periodically with

pe.ioa 2rr to the left and to the right. We see that some of them are ellipse-like and closed, others are Wavy,

and there are two trajectories (passing through the saddle pclints (nt, O), n : + 1, t3, , , ,) that Separate

those two types of trajectories. From (9) we see that the smallest possible C is C - -k', then -Y2 
: 0, and

cos y1 : 1, so that the pendulum is at rest. The penclulum will change its direction of motion if there are Points

oir,Ín'r"n y|r: o|i : o.Tr.nkcosy1 + C: Oby(9). If )l: n,thencos}1 : -l and C: k, Henceií
_k<C(k,thenthependulumreversesitsdirectionfora|_y1| :l0I <z,andíbrthesevaluesofCwith

lCl < k the pendulum oscillzrtes, This corresponds to the closed trajectories in the figure, However, if C > k,

then y2 : 0 is impossible and the pendulum makes a whirly motion that appears aS a WavY trajectorY in the

yly2_plane. Finally, the value C : kcorresponds to the two "separating trajectories" in Fig. 92b connecting the

saddle points. 
'- -.----"r'--- ' l

The phase plane method of deriving a single first_order equation (8) may be of practical interest

not ónly *h"n (8) can be solved (as in Example 4) but also when solution is not Possible and

we have to utilize direction fields (Sec. 1.2). We illustrate this with a very famous examPle:
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ExAMPLE 5 Self-Sustained Oscillations. Van der Pol Equation

There are physical systems such that for snrall oscillations, energy is fed into the system, whereas for large
oscillations, energy is taken from the system. In other words, large oscillations will be damped, whereas for
small oscillations there is "negative damping" (feeding of energy into the system). For physical reasons we
expect such a system to approach a periodic behavior, which will thus appear as a closed trajectory in the phase

plane, called a limit cyc|e. A diííbrential equation describing such vibratiorrs is the famous van der Pol
equationa

(10) )," - lr(l -._,,,2),),'*.r,:0 (p > 0,constant).

It first occurred in the study of electrical circr"rits containing vacuum tubes. For LL : 0 this equation becomes
y"+y:Oandweobtainharmonicoscillations.Letp)O.Thedampingtermhastheí'actor_ p(l _ y2).

This is negative for small oscillations, when y2 ( 1, so that we have "negative damping"'is zero íbr v2 : l (no

damping), and is positive if y2 > 1 (positive damping, loss of energy). If pl is small, we expect a limit cycle
that is almost a circ|e because then our equation diíTers but little íiom ,y" i ,l, : 0. If p is large, the limit
cycle will probably look different.

Setting) : }r, y' : yz and using ,l| - (dy2ldl,r).yz as in (8), we have tiom (l0)

(11)

The isoclines in the )r_yz-plane (the phase plane) are the curves d1,2ldy1 : K : consl, that is,

92 : LL(l - y]| -
tly l

Solving algebraically for _y2, we see that the isoclines are given by

)'r
,,) op(l -.r,r') - K

K-

r
/

,^

K=O
_5K=-I

Fig. 95. Direction field for the van der Pol equation with p : 0.] in the phase plane,
showing also the limit cycle and two trajectories. See also Fig. 8 in Sec.'1.2.

agALtH.qsAR VAN DER PoL (l889-1959), Dutch physicist and engineer.

":U.Jz

(Figs. 95, 96).

Yr)

5

K=-5

5 Y1"

K=l
K=i

-0 K=-l

K=i
K=I
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Figure 95 shows some isoclines when p is small, p:0.1. the limit cycle (almost a circle), and two (blue)

trajectories approaching it, one from the outside and the other from the inside, of which onlY the initial Portion,

a small spiral, is shown. Due to this approach by trajectories, a limit cycle differs conceptually from a closed

curve (a trajectory) surrounding a center, which is not approached by trajectories, For larger p the limit cycle

no longer resembles a circle, and the trajectories approach it more rapidly than for smaller p, Figure 96 illustrates

this for pL : 1.

K=-I

Fig. 96. Direction field for the van der Po[ equation with p : ] in the phase plane,

showing also the limit cycle and two trajectories approaching it

@ cilTlcAL polNTs, LlNEARlzATloN
Determine the location and type of all critical points by

linearization. In Probs.1_I2 first transform the oDE to a

system. (Show the details of your work.)

* yzz 2. y', : 4yt - !t2

yL: y,

4. y'r: -3yl i lz - jzz

IyL: yl - 3y,

!z2 6. y', : lz - !z2

yL:yt-!t2

8.y"t9y+y2:0

13. (Trajectories) What kind of curves are the trajectories

of yy" l 2yl2 : Ql

14. (Trajectories) Write the ODE y" - 4y * y' :0 as a

system, solve it for y2 as a function of )r, and sketch

or graph some of the trajectories in the phase plane,

15. (Trajectories) What is the radius of a real general

solution of y" + y : 0 in the phase plane?

16. (Trajectories) In Prob. 14 add a linear damping term

to 8et y" + 2y' - 4y + y3 : 0, Using arguments from

mechanics and a comparison with Prob, 14, as well as

with Examples 1 and 2, guess the type of each critical

point. Then determine these types by linearization,
(Show all details of your work.)

9.y"*cosy:0
II.y"+4y-y3:0

10. y" + siny:0
12.y"+y'+2y-y':o

I.Y'r:Yr,
l-jz : 3!t

3. y, : 4yz

yL:2yt-ytz

5.yi :-|t-|lz-

yL:-yt-yz

7.y"iy-4y':o



SEC. 4.6 Nonhomogeneous Linear Systems of ODEs

17. (Pendulum) To what state (position, speed, direction
of motion) do the four points of intersection of a

closed trajectory with the axes in Fig.92b correspond?
The point of intersection of a wavy curve with the

y2-axis?

18. (Limit cycle) What is the essential difference between

a limit cycle and a closed trajectory surrounding a

center?

19. CAS EXPERIMENT. Deformation of Limit Cycle.
Convert the van der Pol equation to a system. Graph
the limit cycle and some approaching trajectories for

LL: 0.2,0.4,0.6,0.8, 1.0, I.5,2.0. Try to observe how
the limit cycle changes its form continuously if you

vary p, continuously, Describe in words how the limit
cycle is deformed with growing p.

20. TEAM PROJECT. Self-sustained oscillations.
(a) Van der Pol Equation. Determine the type of the

critical point at (0, 0) when p ž O, L,,: 0, p, { 0.

159

Show that if p ---> 0, the isoclines approach straight

lines through the origin. Why is this to be expected?

(b) Rayleigh equation. Show that the so-called
Rayleigh equations

y"-p(í-ly'')y' * :0 (p>0)

also describes self-sustained oscillations and that by
differentiating it and setting ! : Y' one obtains the van

der Pol equation.

(c) Duffing equation. The Duffing equation is

y"+,o'y*Éy3:0

where usually |B| is small, thus characterizing a small
deviation of the restoring force from linearity. B > 0
and B { 0 are called the cases of a hard spring and a

soft spring, respectively. Find the equation of the

traiectories in the phase plane. (Note that for B > 0 all
these curves are closed.)

4.6 Nonhomoteneous Linear Systems of ODEs
In this last section of Chap. 4 we discuss methods for solving nonhomogeneous linear

systems of ODEs

y' : Ay + g (see Sec. 4.2)

where the vector g(r) is not identically zero. We assume g(/) and the entries of the n X n

matrix A(r) to be continuous on some interval "/ of the /-axis. From a general solution
y'n'(t) of the homogeneous system y' : Ay on J and a particular solution y(e)lr; of
(1) on J |i.e., a solution of (1) containing no arbitrary constants], we get a solution
of (1),

y:y&)ly@)

y is called a general solution of (1) on ,/ because it includes every solution of (1) on .I.

This follows from Theorem 2 in Sec. 4.2 (see Prob. 1 of this section).
Having studied homogeneous linear systems in Secs. 4.I-4.4, our present task will be

to explain methods for obtaining particular solutions of (1). We discuss the method of
undetermined coefficients and the method of the variation of parameters; these have

counterparts for a single ODE, as we know from Secs. 2.] and 2.|0.

5LORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842-1919), great English physicist and mathematician,

professor at Cambridge and London, known by his important contributions to the theory of waves, elasticity
theory, hydrodynamics, and various other branches of applied mathematics and theoretical physics. In 1904 he

received the Nobel Prize in physics.

(1)

(2)
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Method of undetermined coefficients
As for a single ODE, this method is suitable if the entries of A are constants and the

components of g are constants, positive integer powers of /, exponential functions, or
cosines and sines. In such a case a particular solution y(P) is assumed in a form similar
to g; for instance, y(P) : u f v/ l wtz if g has components quadratic in /, with u, v, w
to be determined by substitution into (1). This is similar to Sec. 2.7, except for the

Modification Rule. It suffices to show this by an example.

ExAMPLE l Method of Undetermined Coefficients. Modification Rule

Find a general solution of

[-: tl l--ol
(3) y':Ay+g:l lv+l le-z'.' L l -3_] 

" L z)
Solution. A general equation of the homogeneous system is (see Example 1 in Sec. 4.3)

|-tl l- tl
(4) y"":.,| |r-2'+r2| lr-+t.Lr_] 'L-t_]

Since,tr : -2 is an eigenvalue of A, the function ,-2'onthe right also appears in y"', and we must apply the

Modification Rule by setting

to

rc

,n ue

suffi

ondil

than

be s,

).

cient

ng to

Ut-U2:-a_6

-Ul * uz: -a _l 2.

Byaddition,O:-2a-4,a- -2,andthenuz:ut+4,say,ut:k,uz:k+4,thus,v:[t k+4]T
We can simply choose r : 0. This gives íhe answer

(5) y: y,h)+ y,o,:., ['-l "_L1]

For other fr we get other v; for instance, fr :

(5*) y : cl |'l ,-" * ,,
LlJ

[l],

_2t
-i-

|- tl2tl1_4t"|-czl le-"-2
L-1]

-2 gives v : |-2 2]T,

|- tl l-tll lr-a'-2l lrcL-t_] Lt]

-2t [o-.l -2t* 
lo)'

, so that the answer becomes

|-:]""
etc. l

Method of variation of parameters

This method can be applied to nonhomogeneous linear systems

y' : A(r)y + g(r)

u-2v:Avi t :] thus [;] l:,,,,1: [-:;,_-,',,,f* [ ;]
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It yields a particular solution y(P) of (6) on some
solution of the homogeneous system y' : A(r)y

in terms of the previous example.

e-2tlT andlr_at - e-4tfT .Hence

with variable A : A(r) and general g(r).

open interval J on the /-axis if a general
on "I is known. We explain the method .

EXAMPLE 2 Solution by the Method of Variation of Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous system isfr-2t
the general solution (4) of the homogenous system may be written

(,]) y(h) -|",',', ",nn'uf[.;] : Y(r)c.

Here, Y(t) : [y"' ,tzl]T is the fundamental matrix (see Sec. 4.2). As in Sec.2.10 we replace the constant
vector c by a variable vector u(0 to obtain a particular solution

y(Pl : Y(r)u(r).

Substitution into (3) y' : Ay i g gives

(B) Y'u + Yu' : AYu * g.

Now since y(1) and yQ) are solutions of the homogeneous system, we have

y(1)/ * Ay"', ,(2)| - lrrQ), thus y' : Ay.

Hence Y'u : AYu, so that (B) reduces to

Yu' : 9. The solution is u' : Y*lg;

here we use that the inverse Y- 1 of Y (Sec. 4.0) exists because the determinant of Y is the Wronskian lV, which
is not zero for a basis. Equation (9) in Sec.4.0 gives the form of Y-1,

,lrz-],I - -k-'

We multiply this by g, obtaining

f -st -st1|-e -e 1_1
l ^_zt ^-zt l 2L-e e -J

,fo2' o2,ff-oo-r'f l[-4 1 [-rlu' : Y-lg : 1|,o, _,n,)L ,n,,): 
' 

L _8,,,): |_od,]

f zt zt1

|',n -',n )

Integration is done componentwise fiust as differentiation) and gives

r'f -2 l l- -2t l
u(/) - lo|_o,ri )o' 

: 
l__r,r, * r)

(where i 2 comes from the lower limit of integration). From this and Y in (7) we obtain

",,: 
["-rt ,-+tl f _z, l t-2te-2t - 2e-2t + 2e-all:l-r, - 11 

,_r, *l 2f 
n_n,.

Lr_2, _r_n,)l_r.rr, * r): l__z,r-r, + 2e-2t - zr-n ): l--z, - zl L- z_J

The last term on the right is a solution of the homogeneous system. Hence we can absorb it into y(b). We thus
obtain as a general solution of the system (3), in agreement with (5x),

(9) Y: cr 
[l] 

,-" *., 
[ _'rf n* - r|',f ,ru -|-'r]r"
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1,. (General solution) Prove that (2) includes every

solution of (1).

@ GENERAL soluTloN
Find a general solution. (Show the details of your work,)

14. y| : 3yt - 4y, * 20 cos r

yL: yl - 2y,

yr(0) : 0, y2(0) : 8

15. y'l : 4y2 l 3e3t

yL :2y, - I5e-3t

yr(O) : 2, y2(0) : 2

'r:4y, f 8y, * 2cost

2.y'r:lzlt
yL: yt - 3t

3.yi:4yz*9t
yL:-4y1 *5

4. y'r: jl * lz * 5 cos t 5. y't:

y'r,:3yt- !z- 5sinr yL:

6. y|: -)r * 1.2 * e-zt
, -rtV, : -|1 - Y2 -

7. y', : -I4:yt * 10y2 + 162

yL:*5y,.*y2-324t

S. yi: 10y, - 6y, + 10(l - t -
yL:6yr-l0y2*4-20t-

g. y't: -3)r - 4yz + 11í + 15

yL : 5.y1 + 6yz -| 3e-t - I5t

2y, ]- 2y2 + 12

5yr-}z-30

t2)

6t2

-20

10. CAS EXPERIMENT. Undetermined Coefficients,

Find out experimentally how general you must choose

y(o), in particular when the components of g have a

different form (e.g., as in Prob. 9). Write a short report,

covering also the situation in the case of the

modification rule.

@ lNlTlAL vALuE IRoBLEM
Solve (showing details):

11. y't : -2y, * 4t

yL:2yt - 2t

yr(O) : 4, lz (0) : +

12. y't : 4y, _l 5et

" - 2Oe-ty2 - ]l

yr(0) : 1, y2(0) : 0

13. y|:yt*Zyz+e2t-2t

"/ : _ ,, + l + /y2 - 12

yr(O) : 1, y2(0) - -4

!zL:6yr*Zyricos/-
yr(0) : 15, yz(0) : 13

17. (Network) Find the currents in Fig. 97 when R: 2,5 a,
L : I H, C :0.04 F, E(t) : 845 sin / V, and {(0) : 0,

1z(0) : 0. (Show the details.)

18. (Network) Find the currents in Fig. 97 when R : 1 C),

L : 1,0H, C : I.25 F, E(t) : 10 kV, and 11(0) : 0,

/z(0) : 0. (Show the details,)

Fig. 97. Network in Probs. 17, 18

19. (Network) Find the currents in Fig. 98 when R1: 2 O,

Rz : 8 a, L : ll1', C : 0.5 F, E : 200 V, (Show the

details.)

Fig. 98. Network in Prob. ]9

20. WRITING PROJECT. Undetermined Coefficients,
Write a short report in which you compare the

application of the method of undetermined coefficients

to a single ODE and to a system of two ODEs, using

ODEs and systems of your choice.

16. }r - 16 sinr

14 sin r
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1. State some applications that can be modeled by systems

of ODEs.

2. What is population dynamics? Give examples.

3. How can you transform an ODE into a system of ODEs?

4. What are qualitative methods for systems? Why are they

important?

5. What is the phase plane? The phase plane method? The
phase portrait of a system of ODEs?

6. What is a critical point of a system of ODEs? How did

we classify these points?

7. What are eigenvalues? What role did they play in this

chapter?

8. What does stability mean in general? In connection with
critical points?

9. What does linearization of a system mean? Give an

example.

10. What is a limit cycle? When may it occuf in mechanics?

FIJE GENERAL soluTloN. cRlTlcAL polNTs

Find a general solution. Determine the kind and stability of
the critical point. (Show the details of your work.)

:4yt*3y2*2
: -6yt - 5y, l 4e-t

:.}t - 2y, - sint

:3yt-4yr-cos/

:}r*2y2-1 t2

:2yt*yr-t'

2ó. (Mixing problem) Tank T1 in Fig. 99 contains initially
200 gal of water in which 160 lb of salt are dissolved.
TankTrcontains initially 100 gal of pure water. Liquid
is pumped through the system as indicated, and the

mixtures are kept uniform by stining, Find the amounts

of salt yl(r) and yr(t) in 7, and T2, respectively.

Fig. 99. Tanks in Problem 26

27. (Critical point) What kind of critical point does y' : Ay
have if A has the eigenvalues -6 and 1?

28. (Network) Find the currents in Fig. 100, where
Rt : 0.5 C), Rz : 0.7 O, Ll : 0-4 H, Lz: 0.5 H,
E : I kV : 1000 V, and 1.(0) : 0, 12(0) : 0.

LI L2

R2

Fig.l00. Network in Problem 28

(Network) Find the currents in Fig. 101 when R : 10 C),

L : I.25 H, C :0.002 F, and 1r(0) : 12(0) : 3 A.

Fig.1O1. Network in Problem 29

)r

!z

_Yr

jz

!t

jz

25.

11, y', : 4yz

Y', : I6Y,

12. y', : 9y,s,

13.

1,6.15.

18.17.

,
)r

!z

}r

jz

}r

!z

:lz
: 6yl, - 5yz

: 1.5yr - 6y,

: -4.5yt 1- 3yz

: 3yr -l 2yz

: Zyt -f 3yz

r a-,yl I Ly2

a-.Lll 12

:lz

: 3yt - 3yz

: 3y1 t 3y,

: -3yt - Zyz

: -Zyt - 3y,

: 3yt ]- 5yz

: -5yr - 3yz

!z

Ia. y',

I

!z

jt

!z

}r

!z

19. Y',

!z

@ NoNHoMoGENEoussysTEMs
Find a general solution. (Show the details.)

29.

20. y't : 3y2 * 6t

yL: I2y1 + I

22. y', : y, * y2 -l sin /

yL : 4y, -| y,

2L. y', : yr, t 2y, + ezt

.. l I.5e-2ty2 - 12 |

Water,
10 gallmin

M ixture,
10 gallmin

TlONS AND PROBLEMS

6 gallmin

T,T,

+ <-

16 gallmin

---.__+ .>
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LINEAR|ZAT!oN
Determine the location and kind of all critical points of the

given nonlinear system by linearization.

32, y| : cos y,
|:

J' z : J.\'r

33. y', : y, - Zyr'

yL:yt-Zyr'

30. Y', : Y,

y'r:4yl,-yr3

31. y', : -9y,
I

!z: SlnY1

Whereas single electric circuits or single mass-spring systems are modeled bY single

oDEs (Chap. 2), networks of several circuits, systems of several masses and sPrings,

and other engineering problems lead to systems of ODEs, involving several unknown

functions y{t), . . . , !nG). Of central interest are first-order systems (Sec. 4.2):

y' : f(r, y), in components,

Y'r -- í{t, !|, " ' , !n)

:

jn: Ín(t,Yt" ",!n),

to which higher order ODEs and systems of ODEs can be reduced (Sec. 4.1). In

this summary we let n : 2, so that

(1) y' : f(r, y), in components,
yi -- ítG, yt, yz)

yL : ízG, !t, !z)

Then we can represent solution curves as trajectories in the Phase Plane (the

yly2-p1ane), investigate their totality [the "phase portrait" of (1)], and studY the

kiná a"d stability of the critical points (points at which both f1 and f 2 are zero),

and classify them as nodes, saddle points, centers, or spiral points (Secs. 4.3,4.4).

These phase plane methods are qualitative; with their use we can discover various

general properties of solutions without actually solving the system. TheY are

primarily used for autonomous systems, that is, systems in which / does not occur

explicitly.
A linear system is of the form

If g : 0, the system is called homogeneous and is of the form

(3) y' : Ay.

(2)y,:Aytg, where A- 
|"o','o 

oo',',7 
r:[;] , 8:[;]

of ODEs. Phase Plane. Qualitative Methods



l65Summary of Chapter 4

Ifa1,...,az2areconstants,ithassolutionsy:xe^,wherer\isasolutionofthe
quadratic equation

larr-i atz l

l l:(a1-L)(azz-^)-al2a21:0
I o1 azz-h|

and x * 0 has components .T1, x2 determined up to a multiplicative constant by

(al - i)x1 * apx2 -- 0.

(These ň's are called the eigenvalues and these vectors x eigenvectors of the matrix

A. Further explanation is given in Sec. 4.0.)

A system (2) with g + 0 is called nonhomogeneous. Its general solution is of
the form y : yn * yo, where yn is a general solution of (3) and yo a particular

solution of (2). Methods of determining the latter are discussed in Sec. 4.6.

The discussion of critical points of linear systems based on eigenvalues is
summarized in Tables 4.1 and 4.2tn Sec.4.4. It also applies to nonlinear systems

if the latter are first linearized. The key theorem for this is Theorem 1 in Sec. 4.5,

which also includes three famous applications, namely the pendulum and van der

Pol equations and the Lotka_Volterra predator-prey population model.


