CHAPTER 5

Series Solutions of ODEs.
Special Functions

In Chaps. 2 and 3 we have seen that linear ODEs with constant coefficients can be solved
by functions known from calculus. However, if a linear ODE has variable coefficients
(functions of x), it must usually be solved by other methods, as we shall see in this
chapter.

Legendre polynomials, Bessel functions, and eigenfunction expansions are the three
main topics in this chapter. These are of greatest importance to the applied mathematician.

Legendre’s ODE and Legendre polynomials (Sec. 5.3) are likely to occur in problems
showing spherical symmetry. They are obtained by the power series method (Secs. 5.1,
5.2), which gives solutions of ODEs in power series.

Bessel’s ODE and Bessel functions (Secs. 5.5, 5.6) are likely to occur in problems
showing cylindrical symmetry. They are obtained by the Frobenius method (Sec. 5.4),
an extension of the power series method which gives solutions of ODEs in power series,
possibly multiplied by a logarithmic term or by a fractional power.

Eigenfunction expansions (Sec. 5.8) are infinite series obtained by the Sturm-
Liouville theory (Sec. 5.7). The terms of these series may be Legendre polynomials or
other functions, and their coefficients are obtained by the orthogonality of those functions.
These expansions include Fourier series in terms of cosine and sine, which are so
important that we shall devote a whole chapter (Chap. 11) to them.

Special functions (also called higher functions) is a name for more advanced functions
not considered in calculus. If a function occurs in many applications, it gets a name, and
its properties and values are investigated in all details, resulting in hundreds of formulas
which together with the underlying theory often fill whole books. This is what has
happened to the gamma, Legendre, Bessel, and several other functions (take a look into
Refs. [GR1], [GR10], [A11] in App. 1).

Your CAS knows most of the special functions and corresponding formulas that you
will ever need in your later work in industry, and this chapter will give you a feel for the
basics of their theory and their application in modeling.

COMMENT. You can study this chapter directly after Chap. 2 because it needs no
material from Chaps. 3 or 4.

Prerequisite: Chap. 2.
Sections that may be omitted in a shorter course: 5.2, 5.6-5.8.
References and Answers to Problems: App. 1 Part A, and App. 2.
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5.1 Power Series Method

The power series method is the standard method for solving linear ODEs with variable
coefficients. It gives solutions in the form of power series. These series can be used for
computing values, graphing curves, proving formulas, and exploring properties of solutions,
as we shall see. In this section we begin by explaining the idea of the power series method.

Power Series

From calculus we recall that a power series (in powers of x — x,) is an infinite series of

the form
(6] 2l 1 )T ety A B8 Yook Gl o)t
m=0
Here, x is a variable. ag, ay, as, - - - are constants, called the coefficients of the series.

Xo is a constant, called the center of the series. In particular, if x, = 0, we obtain a power
series in powers of x
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We shall assume that all variables and constants are real.
Familiar examples of power series are the Maclaurin series
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We note that the term “power series” usually refers to a series of the form (1) [or (2)]
but does not include series of negative or fractional powers of x. We use m as the
summation letter, reserving n as a standard notation in the Legendre and Bessel equations
for integer values of the parameter.

Idea of the Power Series Method

The idea of the power series method for solving ODEs is simple and natural. We describe
the practical procedure and illustrate it for two ODEs whose solution we know, so that
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EXAMPLE 1

CHAP.5 Series Solutions of ODEs. Special Functions

we can see what is going on. The mathematical justification of the method follows in the
next section.
For a given ODE

Y+ py + gy =0
we first represent p(x) and g(x) by power series in powers of x (or of x — Xg if solutions
in powers of x — xo are wanted). Often p(x) and g(x) are polynomials, and then nothing

needs to be done in this first step. Next we assume a solution in the form of a power series
with unknown coefficients,

3) yzz amxm:a0+alx+a2x2+a3x3+---
=

and insert this series and the series obtained by termwise differentiation,

o
(@ y = 2 ma, X"~ = a; + 2axx + Fagn® + -~ -

3

“4)

m(m — 1)a,x™ 2 = 2ay + 3+ 2azx + 4+ 3asx> + - -
2

b ¥
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into the ODE. Then we collect like powers of x and equate the sum of the coefficients of
each occurring power of x to zero, starting with the constant terms, then taking the terms
containing x, then the terms in x2, and so on. This gives equations from which we can
determine the unknown coefficients of (3) successively.

Let us show this for two simple ODEs that can also be solved by elementary methods,
so that we would not need power series.

Solve the following ODE by power series. To grasp the idea, do this by hand; do not use your CAS (for
which you could program the whole process).

y' = 2xy.
Solution. We insert (3) and (4a) into the given ODE, obtaining
ay + 2asx + 3a3x2 + -0 = 2x(ag + ayx + azxz + ).
We must perform the multiplication by 2x on the right and can write the resulting equation conveniently as

ay + 2asx + 3a3x2 + 4a4x3 + 5ayc4 + 6(sz5 +oo

2ag9x + 2a1x2 + 2a2x3 + 2agx4 + 2a4x5 + e

For this equation to hold, the two coefficients of every power of x on both sides must be equal, that is,

ap =0, 2ay = 2ay, 3as = 2ay, 4ay = 2as, Sas = 2as, 6ag = 2aq, " **
Hence a3 = 0, a5 = 0, - - - and for the coefficients with even subscripts,
as do dg do

as = do, (,14:27?’ 11643,3"...-’
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ag remains arbitrary. With these coefficients the series (3) gives the following solution, which you should confirm
by the method of separating variables.

4 6 38
L .2+L+L+"_+ _ 32
y=ag {1 +x o 3 a1 = apge” .

More rapidly, (3) and (4) give for the ODE y' = 2xy

o oc oo
0 m—1 _ m o_ m+1
l-ax” + E My X = 2x E aypx = E 2a,,x .
m=2 m=0 m=0

Now, to get the same general power on both sides, we make a “shift of index™ on the left by setting m = s + 2,

thus m — 1 = s + 1. Then a,, becomes a_ o and *" 7L becomes L. Also the summation, which started with
m = 2, now starts with s = 0 because s = m — 2. On the right we simply make a change of notation m = s,
hence a,, = a5 and x™ 1 = x*"1; also the summation now starts with s = 0. This altogether gives

[ee) oo
ap + 2 (s + Dagrex™ = E 2agxS 1,
s=0 s=0

Every occurring power of x must have the same coefficient on both sides; hence

2
a; =0 and (s + 2)ag, o = 2a, or Is+2 = 5 s
s
Fors =0, 1, 2, - - - we thus have ay = (2/12)ag, azg = (2/3)a; = 0, ag = (2/4)as, - - * as before. |

EXAMPLE 2 Solve

n

+y=0.

Solution. By inserting (3) and (4b) into the ODE we have

(o] o)

m(m — Da,,x™ "2 + a,,x™ = 0.
m ne

m=2 m=0

To obtain the same general power on both series, we set m = s + 2 in the first series and m = s in the second,
and then we take the latter to the right side. This gives

o [ee]
E (s +2)(s + Dag,ox® = — agx®.
s=0 5=0
Each power x® must have the same coefficient on both sides. Hence (s + 2)(s + 1)ag, o = —as. This gives the
recursion formula
% 0,1
G+2 = T T )6 + 1) (6=01,-")
We thus obtain successively
ag ag ay aq
=750 T T BT T30 T T 31
- dg do das ag
“WTTY3 T a B~ 754" 5

and so on. ag and aq remain arbitrary. With these coefficients the series (3) becomes

dg o a1 3 dgp 4 ay 5
y =agt+ apx — N X = 3 -l & a ™ e 51 x5t e,
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Reordering terms (which is permissible for a power series), we can write this in the form

x2 x4 x3 x5
},:QO(I,T+I,+...)+Q1( _§+;4+...)

and we recognize the familiar general solution
y = ag cos x + ay sinx. [

Do we need the power series method for these or similar ODEs? Of course not; we used
them just for explaining the idea of the method. What happens if we apply the method
to an ODE not of the kind considered so far, even to an innocent-looking one such as
y" + xy = 0 (“Airy’s equation”)? We most likely end up with new special functions given
by power series. And if such an ODE and its solutions are of practical (or theoretical)
interest, we name and investigate them in terms of formulas and graphs and by numeric
methods.

We shall discuss Legendre’s, Bessel’s, and the hypergeometric equations and their
solutions, to mention just the most prominent of these ODEs. To do this with a good
understanding, also in the light of your CAS, we first explain the power series method
(and later an extension, the Frobenius method) in more detail.

1-10 POWER SERIES METHOD: TECHNIQUE, 11. y/ + 4y = 1, y(0) = 1.25, x; = 0.2
FEATURES 2.y =1+y%  y0) =0 x=in
Apply the power series method. Do this by hand, not by a 183y =y - y2 y(0) = 1 =1
CAS, so that you get a feel for the method, e.g., why a , > !
. . 14. (x — 2)y = xy, y(0) = 4, Xy =2
series may terminate, or has even powers only, or has no " ,
constant or linear terms, etc. Show the details of your work. 15. y , +3xy’ + 2y =0, y(0) =1,
Ly ~y=0 2y 4w =0 16y1(0)_21’" 2XI’#0'350 0 0) =0
e (1 = - + =0, =0,
3.y +4y=0 4y —y=0 ;’(O)i—))l/875 S =y05 ¥(0)
5.2+xy =y 6.y +31+x)y=0 R o
7.y =y +x 8. (x° + 4Py = (5x* + 12x%)y 17. WRITING PROJECT. Power Series. Write a review
9. y" — y =0 10. y" — xy' +y=0 (2-3 pages) on power series as they are discussed in

calculus, using your own formulation and examples—
CAS PROBLEMS. INITIAL VALUE

PROBLEMS

Solve the initial value problems by a power series. Graph
the partial sum s of the powers up to and including x°. Find
the value of s (5 digits) at x;.

18.

do not just copy passages from calculus texts.
LITERATURE PROJECT. Maclaurin Series.
Collect Maclaurin series of the functions known from
calculus and arrange them systematically in a list that
you can use for your work.

5.2 Theory of the Power Series Method

In the last section we saw that the power series method gives solutions of ODEs in the
form of power series. In this section we justify the method mathematically as follows. We
first review relevant facts on power series from calculus. Then we list the operations on
power series needed in the method (differentiation, addition, multiplication, etc.). Near
the end we state the basic existence theorem for power series solutions of ODE:s.
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Basic Concepts

Recall from calculus that a power series is an infinite series of the form

[ee]
1 2 anlx = X" = ag + ay(x = xp) + aylx — x)? + -
m=0
As before, we assume the variable x, the center Xo, and the coefficients a, a,, - - - to be

real. The nth partial sum of (1) is

2) Sa(X) = ag + a;(x — xg) + as(x — X+ -+ Ap(x — xo)"

wheren =0,1,- - - . Clearly, if we omit the terms of s, from (1), the remaining expression
is

3 Ry(X) = @, 1(x — x9)""! + 4, o(x — X)) R

This expression is called the remainder of (1) after the term a,(x — x,)".
For example, in the case of the geometric series

L+x+x®+ - x4+

we have
— — 2 3
so = 1, Ry=x+x"+x>+ .-,
S1=l+x, R12x2+x3+x4+...7
so =1+ x + x2 R2=x3+x4+x5+‘--, etc.

In this way we have now associated with (1) the sequence of the partial sums
5o(x), §1(x), s9(x), - - - . If for some x = x, this sequence converges, say,

lim s5,(x;) = s(xy),

then the series (1) is called convergent ar x = x;, the number s(x;) is called the value or
sum of (1) at x;, and we write

S00) = 2 aplEy — xo)™,
m=0
Then we have for every n,
“) $(x1) = $,(x1) + Ry (xy).

If that sequence diverges at x = x1, the series (1) is called divergent at x = X1.
In the case of convergence, for any positive € there is an N (depending on €) such that,
by (4),

S IR, (x| = [s(xp) — sn(xp)| < € for all n > N.
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Geometrically, this means that all s,,(x;) with n > N lie between s(x;) — € and s(x;) + €
(Fig. 102). Practically, this means that in the case of convergence we can approximate
the sum s(x;) of (1) at x; by s,(x1) as accurately as we please, by taking n large enough.

Convergence Interval. Radius of Convergence

With respect to the convergence of the power series (1) there are three cases, the useless
Case 1, the usual Case 2, and the best Case 3, as follows.

Case 1. The series (1) always converges at x = x,, because for x = x all its terms are
zero, perhaps except for the first one, ao. In exceptional cases x = x, may be the only x
for which (1) converges. Such a series is of no practical interest.

Case 2. If there are further values of x for which the series converges, these values form
an interval, called the convergence interval. If this interval is finite, it has the midpoint
Xo, SO that it is of the form

() lx — x| <R (Fig. 103)

and the series (1) converges for all x such that [x — x| < R and diverges for all x such
that |x — xo| > R. (No general statement about convergence or divergence can be made
for x — xo = R or —R.) The number R is called the radius of convergence of (1). (R is
called “radius” because for a complex power series it is the radius of a disk of convergence.)
R can be obtained from either of the formulas

) @ R=1 /lim V] ® R=1 /lim L

m—o0

Ay,

provided these limits exist and are not zero. [If these limits are infinite, then (1) converges
only at the center x|

Case 3. The convergence interval may sometimes be infinite, that is, (1) converges for
all x. For instance, if the limit in (7a) or (7b) is zero, this case occurs. One then writes
R = o, for convenience. (Proofs of all these facts can be found in Sec. 15.2.)

For each x for which (1) converges, it has a certain value s(x). We say that (1) represents
the function s(x) in the convergence interval and write

oo

S(X) = ) aplx — x)™ () — xo| < R).

m=0

Let us illustrate these three possible cases with typical examples.

Divergence <—— Convergence ——— Divergence
% € l € i < R \|< vid
| ! | | | |
slx)—€ s(xy) slx)+e xq— R %, xy+R
Fig. 102. Inequality (5) Fig. 103. Convergence interval (6) of a power

series with center x,
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EXAMPLE 1 The Useless Case 1 of Convergence Only at the Center

In the case of the series

oCc
Dol =1 x+ 22 e
m=0

we have a,, = m!, and in (7b),

A t1 (m + D!
—:7|:m+1—>0c as m — o,
A, m!
Thus this series converges only at the center x = 0. Such a series is useless. ]

EXAMPLE 2 The Usual Case 2 of Convergence in a Finite Interval. Geometric Series

For the geometric series we have

8

1

I —x

= XM=1 2t (¥ < D).
0

m

In fact, a,, = 1 for all m, and from (7) we obtain R = 1, that is, the geometric series converges and represents
1/(1 — x) when |x| < 1. |

EXAMPLE 3 The Best Case 3 of Convergence for All x

In the case of the series

') m 2
X X
x _ - = 4+ — + ...
¢ E m! b 2!
m=0
we have a,,, = 1/m!. Hence in (7b),
A1 1/(m + 1)! 1
= = —0 as m— «,
i 1/m! m+ 1
so that the series converges for all x. =
EXAMPLE 4 Hint for Some of the Problems
Find the radius of convergence of the series
o m 3 6 9
=D" 4 X x X
=1— —+ — — —= + — .
> g 8 64 s12
m=0

Solution. This is a series in powers of + = x with coefficients a,, = (—1)™/8™, so that in (7b),

Am+1 o 8" _ 1
m
Thus R = 8. Hence the series converges for [f| = [x3] < 8, that is, [x| < 2. B

Operations on Power Series

In the power series method we differentiate, add, and multiply power series. These three
operations are permissible, in the sense explained in what follows. We also list a condition
about the vanishing of all coefficients of a power series, which is a basic tool of the power
series method. (Proofs can be found in Sec. 15.3.)
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Termwise Differentiation

A power series may be differentiated term by term. More precisely: if

o0

Y = 2 dpx — x™

m=0

converges for [x — xo| < R, where R > 0, then the series obtained by differentiating term
by term also converges for those x and represents the derivative y' of y for those x,
that is,

V() = 2 mapx = x)" (x = x|l < R).
m=1
Similarly,
y'(x) = >, m(m = Da,(x — ™2 (x — x| < R), ete.
m=2

Termwise Addition

Two power series may be added term by term. More precisely: if the series

(8) > apx = x™ and > bplx = x)™
m=0 m=0

have positive radii of convergence and their sums are f(x) and g(x), then the series

2 (am + bm)(x - xO)m

m=0

converges and represents f(x) + g(x) for each x that lies in the interior of the convergence
interval of each of the two given series.

Termwise Multiplication

Two power series may be multiplied term by term. More precisely: Suppose that the series
(8) have positive radii of convergence and let f(x) and g(x) be their sums. Then the
series obtained by multiplying each term of the first series by each term of the second
series and collecting like powers of x — X, that is,

2 (agby, + a1bypq + -+ - F Ambo)(x — xp)™

m=0

= aobo + (aobl -+ albo)(x - 'XO) + (aobz + a1b1 £ azbo)(.x - xO)z + mos

converges and represents f(x)g(x) for each x in the interior of the convergence interval of
each of the two given series.




SEC. 5.2 Theory of the Power Series Method 175

DEFINITION

THEOREM 1

Vanishing of All Coefficients

If a power series has a positive radius of convergence and a sum that is identically zero
throughout its interval of convergence, then each coefficient of the series must be zero.

Existence of Power Series Solutions of ODEs.
Real Analytic Functions

The properties of power series just discussed form the foundation of the power series
method. The remaining question is whether an ODE has power series solutions at all. An
answer is simple: If the coefficients p and ¢ and the function r on the right side of

) Y+ py” + gy = r(x)

have power series representations, then (9) has power series solutions. The same is true
if A, p, g, and 7 in

(10) hy" + ploy" + Gy = Fx)

have power series representations and /(x) # 0 (xo the center of the series). Almost all
ODEs in practice have polynomials as coefficients (thus terminating power series), so that
(when r(x) = 0 or is a power series, too) those conditions are satisfied, except perhaps
the condition ﬁ(xo) # 0. If h(xy) # 0, division of (10) by h(x) gives (9) with p = p/h,
g = g/h, r = #/h. This motivates our notation in (10).

To formulate all this in a precise and simple way, we use the following concept (which
is of general interest).

Real Analytic Function

A real function f(x) is called analytic ar a point x = x, if it can be represented by
a power series in powers of x — x, with radius of convergence R > 0.

Using this concept, we can state the following basic theorem.

Existence of Power Series Solutions

If p, q, and r in (9) are analytic at x = xq, then every solution of (9) is analytic at
X = xg and can thus be represented by a power series in powers of x — xo with
radius of convergence R > 0. Hence the same is true if h, p, g, and ¥ in (10) are
analytic at x = xo and h(xg) # 0.

The proof of this theorem requires advanced methods of complex analysis and can be
found in Ref. [A11] listed in App. 1.

We mention that the radius of convergence R in Theorem 1 is at least equal to the
distance from the point x = x, to the point (or points) closest to x, at which one of the
functions p, g, r, as functions of a complex variable, is not analytic. (Note that that point
may not lie on the x-axis but somewhere in the complex plane.)




1-12| RADIUS OF CONVERGENCE
Determine the radius of convergence. (Show the details.)
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SHIFTING SUMMATION INDICES

(CF. SEC. 5.1)

This is often convenient or necessary in the power series
method. Shift the index so that the power under the
summation sign is x°. Check by writing the first few terms
explicitly. Also determine the radius of convergence R.

o 1 n+1
B3> S e
o S5n
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oo —1 m+1
14,3 S ms
m=3 4
o 3
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15.51 o

16-23| POWER SERIES SOLUTIONS

Find a power series solution in powers of x. (Show the
details of your work.)

16. y" + xy =0
17. y" -y +x%y =0

18.y"—y' +xy =0

19. y" + 4xy' =0

20. y" + 2y +y=0

2Ly "+ (1 +xP)y =0

22.y" — 4xy' + (4x* = 2)y =0

23. (2x% — 3x + Dy" + 2xy' =2y =0

24. TEAM PROJECT. Properties from Power Series.
In the next sections we shall define new functions
(Legendre functions, etc.) by power series, deriving
properties of the functions directly from the series. To
understand this idea, do the same for functions familiar
from calculus, using Maclaurin series.

(a) Show that coshx + sinhx = e®. Show that
coshx > 0 for all x. Show that ¢ = ¢™" for all
x=0.

(b) Derive the differentiation formulas for e, cos x,
sinx, 1/(1 — x) and other functions of your choice.
Show that (cos x)" = —cosx, (cosh x)" = coshx.
Consider integration similarly.

(¢) What can you conclude if a series contains only
odd powers? Only even powers? No constant term? If
all its coefficients are positive? Give examples.

(d) What properties of cos x and sin x are not obvious
from the Maclaurin series? What properties of other
functions?

25. CAS EXPERIMENT. Information from Graphs of
Partial Sums. In connection with power series in
numerics we use partial sums. To get a feel for the
accuracy for various x, experiment with sin x and
graphs of partial sums of the Maclaurin series of an
increasing number of terms, describing qualitatively
the “breakaway points” of these graphs from the
graph of sin x. Consider other examples of your own
choice.
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5.3 Legendre’s Equation.
Legendre Polynomials P,(x)

In order to first gain skill, we have applied the power series method to ODEs that can
also be solved by other methods. We now turn to the first “big” equation of physics, for
which we do need the power series method. This is Legendre’s equation’

1 (1-x%"—2x"+nn+1)y=0

where 7 is a given constant. Legendre’s equation arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).
The parameter 7 in (1) is a given real number. Any solution of (1) is called a Legendre
function. The study of these and other “higher” functions not occurring in calculus is
called the theory of special functions. Further special functions will occur in the next
sections.

Dividing (1) by the coefficient 1 — x2 of y”, we see that the coefficients —2x/(1 — x?)
and n(n + 1)/(1 — x?) of the new equation are analytic at x = 0. Hence by Theorem 1,
in Sec. 5.2, Legendre’s equation has power series solutions of the form

) Y= ™

Substituting (2) and its derivatives into (1), and denoting the constant n(n + 1) simply by
k, we obtain

(1 —x%) >, mim — Da,x™"2 — 2x > ma ™+ kD, a,x™ = 0.

m=2 m=1 m=0

By writing the first expression as two separate series we have the equation

D m(m — Dax™=2 — > mm — Dayx™ — > 2max™ + X, kax™ = 0.
m=2 m=2 m=1 m=0

To obtain the same general power x° in all four series, we set m — 2 = s (thus m = 5 + 2)
in the first series and simply write s instead of m in the other three series. This gives

oo}

(s 4 25 + Dagaox® — 2 s(s — Dagx® — >, 2sa,x° + >, kagx® = 0.
s=1

s=0 s=2 s=0

LADRIEN-MARIE LEGENDRE (1752-1833), French mathematician, who became a professor in Paris in
1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus
of variations, His book Eléments de géométrie (1794) became very famous and had 12 editions in less than 30
years.

Formulas on Legendre functions may be found in Refs. [GR1] and [GR10].
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(Note that in the first series the summation begins with s = 0.) Since this equation with
right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the
coefficients of each power of x on the left must be zero. Now x° occurs in the first and
fourth series and gives [remember that k = n(n + D]

(3a) 2+ las + n(n + 1yay = 0.

x! occurs in the first, third, and fourth series and gives

(3b) 3-2a3 +[—2 + n(n + D]a, = 0.
The higher powers x2, x%, - = - occur in all four series and give
3¢) (s + 2)(s + Dago + [—s(s = 1) — 25 + n(n + D]a, = 0.

The expression in the brackets [- - -] can be written (n — s)(n + s + 1), as you may
readily verify. Solving (3a) for a; and (3b) for az as well as (3c¢) for ag,, We obtain the
general formula

n—s)n+s+1)

(4) as+2 o= (S 4 2)(5 o 1) as (S = 07 15 o .)'

This is called a recurrence relation or recursion formula. (Its derivation you may verify
with your CAS.) It gives each coefficient in terms of the second one preceding it, except
for ay and a,, which are left as arbitrary constants. We find successively

ot D) _ (n=Dn +12)
CETI T
__(n—2)(n+3) __(n—3)(n+4)
da = 4-3 2 a5 = 5-4 8
(n — 2nn + Dn + 3) n—3mn-—Dn+2)n+4
N 41 do N 5! s

and so on. By inserting these expressions for the coefficients into (2) we obtain
) y(x) = agy1(x) + arys(x)
where

nn + 1) (n — 2n(n + D + 3)
X2+ x*
2! 4!

(6) n@=1-

Wy B A
X

(7) yalx) = x — 31 x 51

These series converge for [x| < 1 (see Prob. 4; or they may terminate, see below). Since
(6) contains even powers of x only, while (7) contains odd powers of x only, the ratio
y,lys is not a constant, so that y; and yy are not proportional and are thus linearly
independent solutions. Hence (5) is a general solution of (1) on the interval -1 <x<l.
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Legendre Polynomials P,(x)

In various applications, power series solutions of ODEs reduce to polynomials, that is,
they terminate after finitely many terms. This is a great advantage and is quite common
for special functions, leading to various important families of polynomials (see Refs. [GR1]
or [GR10] in App. 1). For Legendre’s equation this happens when the parameter n is a
nonnegative integer because then the right side of (4) is zero for s = n, so that a,,.5 = 0,
Gpia = 0,a,.¢6 =0, . Hence if n is even, y;(x) reduces to a polynomial of degree n.
If n is odd, the same is true for y,(x). These polynomials, multiplied by some constants,
are called Legendre polynomials and are denoted by P, (x). The standard choice of a
constant is done as follows. We choose the coefficient a,, of the highest power x™ as

@m!  1:3:5---Q2n—1)

22 n!

) Uy, = (n a positive integer)

(and a,, = 1 if n = 0). Then we calculate the other coefficients from (4), solved for a; in
terms of ag, o, that is,

(s +2)(s + 1)
n—sn+s+1) s

(9) as = — +9 (S =n— 2)

The choice (8) makes P,(1) = 1 for every n (see Fig. 104 on p. 180); this motivates (8).
From (9) with s = n — 2 and (8) we obtain

nn —1) o nn — 1H(2n)!
20— 1) T T 220 — 12"

Ap—2 =

Using (2n)! = 2n(2n — )2n — 2)!, n! = n(n — D!, and n! = n(n — D(n — 2)!, we
obtain
B n(n — 1)2n2n — H(2n — 2)!

22n — 1)2"n(n — D! a(n — 1)(n — 2)!

Ap—2 =

n(n — 1)2n(2n — 1) cancels, so that we get

2n — 2)!
G2 T T~ Dl - 2y
Similarly,
P (n—2)n —3)

Aon —3) 2

2n — 4)!
2720 (n — 2)! (n — 4)!

and so on, and in general, when n — 2m = 0,

2n — 2m)!

2%m! (n — m)! (n — 2m)!

(10) p—2m = (_l)m
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The resulting solution of Legendre’s differential equation (1) is called the Legendre
polynomial of degree n and is denoted by P, (x).
From (10) we obtain

M

. . In - 2m)! n—2m
P, (x) —Z,O( e el o
an
. (2}1)' i (211 e 2)' n—2 =

TRl G e D

where M = n/2 or (n — 1)/2, whichever is an integer. The first few of these functions are

(Fig. 104)
Po(x) = 1, Pi(x) = x
(a1’ Py(x) = 862 — 1), P = #0650 — 30
Pylx) = %3(35)64 — 30x2 + 3), Ps(x) = %(63)65 — 70x3 + 15x)

and so on. You may now program (11) on your CAS and calculate P,(x) as needed.
The so-called orthogonality of the Legendre polynomials will be considered in
Secs. 5.7 and 5.8.

P(x)
\l "xl

-1

Fig. 104. Legendre polynomials

1. Verify that the polynomials in (11") satisfy Legendre’s 5. (Legendre function Qo(x) for n = 0) Show that (6)

equation. with n = 0 gives y;(x) = Po(x) = 1 and (7) gives
2. Derive (11") from (11).
3. Obtain Pg and Py from (11). Volx) = x + N x° + — 5 x° +
4. (Convergence) Show that for any n for which (6) or ] ’
(7) does not reduce to a polynomial, the series has — 2 n X b= 1 n 1 +x
radius of convergence 1. 3 5 2 1—x
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9.

10.
11.
12.

13.

14.

. (Legendre function —Q,(x) for n

Verify this by solving (1) with n = 0, setting z = y’
and separating variables.

1) Show that (7)
x and (6) gives

Il

with n = 1 gives yy(x) = P1(x)

y1(x) = —Q;(x) (the minus sign in the notation being
conventional),
w-1-S 2%
= I3 5
=1 + e + 3 +
= x | x 3 5
—1 1 I 1 +x
= 2 x In -

. (ODE) Find a solution of

(a®> — x?)y" — 2xy' + n(n + 1)y = 0,a # 0,
by reduction to the Legendre equation.

. [Rodrigues’s formula (12)]> Applying the binomial

theorem to (x2 — 1), differentiating it n times term
by term, and comparing the result with (11), show
that

n

d_ D n
sl 1.

12) Pl) = S

(Rodrigues’s formula) Obtain (11’) from (12).

CAS PROBLEMS

Graph Py(x), - -+, Pio(x) on common axes. For what
x (approximately) and n = 2, - - -, 10 is |P,(x)] < £?
From what n on will your CAS no longer produce
faithful graphs of P,(x)? Why?

Graph Qy(x), 04(x), and some further Legendre
functions.

Substitute ax® + ag, x5 + ag,x° 2 into Legendre’s
equation and obtain the coefficient recursion (4).

TEAM PROJECT. Generating Functions.
Generating functions play a significant role in modern
applied mathematics (see [GR5]). The idea is simple.
If we want to study a certain sequence (f,,(x)) and can
find a function

G, x) = > falxu™,

n=0

we may obtain properties of (f,(x)) from those of G,
which “generates” this sequence and is called a
generating function of the sequence.
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(a) Legendre polynomials. Show that

13) Gu,x) =

1 oc
—_— = > P,u"
V1 — 2xu + u?

n=0

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 1/ m,
then set v = 2xu — u?, multiply the powers of

2xu — u? out, collect all the terms involving u™, and
verify that the sum of these terms is P, (x)u".

(b) Potential theory. Let A; and A, be two points in
space (Fig. 105, r, > 0). Using (13), show that

1 1

r \/r12 + ry2 — 2147y cos 6

- LS pcos 0 (%)m .

T2 m=0 2

This formula has applications in potential theory.
(QIr is the electrostatic potential at A, due to a
charge Q located at A;. And the series expresses 1/r
in terms of the distances of A; and A, from any origin
O and the angle 6 between the segments OA; and
OA,.)

Fig. 105. Team Project 14

(¢) Further applications of (13). Show that
Pp(l) = 1, Pp(=1) = (= 1), Py, 1(0) = 0, and

Py, (0)y = (=1D)"-1-3---C2n— D/[2:4---2n)].

(d) Bonnet’s recursion.® Differentiating (13) with
respect to u, using (13) in the resulting formula, and
comparing coefficients of u”, obtain the Bonnet
recursion

(14) (n + DPy(0) = 2n + DxPy(x) — nky_y(x),

where n = 1, 2, -+ -. This formula is useful for
computations, the loss of significant digits being small
(except near zeros). Try (14) out for a few computations
of your own choice.

20LINDE RODRIGUES (1794-1851), French mathematician and economist.
30SSIAN BONNET (1819-1892), French mathematician, whose main work was in differential geometry.
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15. (Associated Legendre functions) The associated and are solutions of the ODE
Legendre functions P,F(x) play a role in quantum S :
physics. They are defined by (=3 — 2
; (16) [ k2 }
dkp +ilnln 1) = = 0.
(15) Pl e o Rl
X

Find P;1(x), Po'(x), P5%(x), and P,2(x) and verify that
they satisty (16).

5.4 Frobenius Method

Several second-order ODEs of considerable practical importance—the famous Bessel
equation among them—have coefficients that are not analytic (definition in Sec. 5.2), but
are “not too bad,” so that these ODEs can still be solved by series (power series times a
logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits
an extension of the power series method that is called the Frobenius method. The latter—
as well as the power series method itself—has gained in significance due to the use of
software in the actual calculations.

THEOREM: 1 Frobenius Method
Let b(x) and c(x) be any functions that are analytic at x = 0. Then the ODE

b(x) c(x)
@ )’I'+7y'+"x—2y:0

has at least one solution that can be represented in the form

2) y(x) = x" E a,x™ = x"(ag + apx + asx® + -+ °) (ag # 0)

m=0

where the exponent r may be any (real or complex) number (and r is chosen so that
ag # 0).

The ODE (1) also has a second solution (such that these two solutions are linearly
independent) that may be similar to (2) (with a different r and different coefficients)
or may contain a logarithmic term. (Details in Theorem 2 below.)*

For example, Bessel’s equation (to be discussed in the next section)

” 1, 2 -2 _
y+ =y +|l—=—)y=0 (v a parameter)

4GEORG FROBENIUS (1849-1917), German mathematician, also known for his work on matrices and in
group theory.

In this theorem we may replace x by x — xo with any number xo. The condition ag # 0 is no restriction; it i
simply means that we factor out the highest possible power of x. \H

The singular point of (1) at x = 0 is sometimes called a regular singular point, a term confusing to the I
student, which we shall not use.
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is of the form (1) with b(x) = 1 and c¢(x) = x* — v? analytic at x = 0, so that the theorem
applies. This ODE could not be handled in full generality by the power series method.

Similarly, the so-called hypergeometric differential equation (see Problem Set 5.4) also
requires the Frobenius method.

The point is that in (2) we have a power series times a single power of x whose exponent
ris not restricted to be a nonnegative integer. (The latter restriction would make the whole
expression a power series, by definition; see Sec. 5.1.)

The proof of the theorem requires advanced methods of complex analysis and can be
found in Ref. [A11] listed in App. 1.

Regular and Singular Points
The following commonly used terms are practical. A regular point of

Y+ p)y + gy = 0
is a point x, at which the coefficients p and g are analytic. Then the power series method

can be applied. If x, is not regular, it is called singular. Similarly, a regular point of the
ODE

h(x)y" + p)y'(x) + gx)y = 0

is an x, at which &, p, § are analytic and A(x,) # 0 (so what we can divide by / and get
the previous standard form). If x, is not regular, it is called singular.

Indicial Equation, Indicating the Form of Solutions

We shall now explain the Frobenius method for solving (1). Multiplication of (1) by x*
gives the more convenient form

(1’) xzy" ¥ xb(x)y' 4 c(x)y £
We first expand b(x) and c(x) in power series,
b(x) = bo + byx + bpx® + -+ -, c(x) = co+ cpx + cox? + - -

or we do nothing if b(x) and c(x) are polynomials. Then we differentiate (2) term by term,

finding
V@) =2 o+ Pa ™ = rag + (r 4 Dagx + -+ 0]
m=0
(2%) Vi) =D (m+ P(m + r— Da, ™2
m=0

= X"2r(r — Dag + (r + Drayx + - - -].
By inserting all these series into (1) we readily obtain

Xr(r = Dag + -] + (bg + byx + -+ )x"(rag + - - *)
3)
+ (¢t cpx + - )x(ag + apx + -+ ) = 0.
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We now equate the sum of the coefficients of each power x", XL X2, -+ - to zero. This
yields a system of equations involving the unknown coefficients a,,. The equation
corresponding to the power x" is

[r(r = 1) + bor + colag = 0.

Since by assumption ao # 0, the expression in the brackets [+ - -] must be zero. This gives
(4) r(r_’l)_"bor"'_CO:O.

This important quadratic equation is called the indicial equation of the ODE (1). Its role
is as follows.

The Frobenius method yields a basis of solutions. One of the two solutions will always
be of the form (2), where r is a root of (4). The other solution will be of a form indicated
by the indicial equation. There are three cases:

Case 1. Distinct roots not differing by an integer 1, 2,3, + - - .
Case 2. A double root.
Case 3. Roots differing by an integer 1,2, 3, -« -,

Cases 1 and 2 are not unexpected because of the Euler-Cauchy equation (Sec. 2.5), the
simplest ODE of the form (1). Case 1 includes complex conjugate roots ry and ry = 7y
because r; — 1y = rp — rp = 2i Imry is imaginary, so it cannot be a real integer. The
form of a basis will be given in Theorem 2 (which is proved in App. 4), without a general
theory of convergence, but convergence of the occurring series can be tested in each
individual case as usual. Note that in Case 2 we must have a logarithm, whereas in Case
3 we may or may not.

Frobenius Method. Basis of Solutions. Three Cases

Suppose that the ODE (1) satisfies the assumptions in Theorem 1. Let ry and rq be
the roots of the indicial equation (4). Then we have the following three cases.

Case 1. Distinct Roots Not Differing by an Integer. A basis is

Q) yi(x) = xrl(ao +ax + agx® + )
and
(6) Po(x) = X (Ag + Apx + Apx® + -+ 0)

with coefficients obtained successively from (3) with r = rq and r = ro, respectively.

Case 2. Double Root ry = ry = r. A basis is
(7 y1(x) = x"(ag + ax + agx® + -+ ) [r =301 = by)]

(of the same general form as before) and

8) Vo(x) = y1(x) Inx + x"(Ax + Ax® + -0 1) (x> 0).
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EXAMPLE 1

EXAMPLE 2

Case 3. Roots Differing by an Integer. A basis is

©) M@ = x"ag + ayx + agx® + - )

(of the same general form as before) and

(10) Y2(¥) = ky;(0) Inx + x*(Ag + Ayx + Apx® + -+ ),

where the roots are so denoted that r; — ry > 0 and k may turn out to be zero.

Typical Applications

Technically, the Frobenius method is similar to the power series method, once the roots
of the indicial equation have been determined. However, (5)-(10) merely indicate the
general form of a basis, and a second solution can often be obtained more rapidly by
reduction of order (Sec. 2.1).

Euler—Cauchy Equation, Illustrating Cases 1 and 2 and Case 3 without a Logarithm

For the Euler—Cauchy equation (Sec. 2.5)
2.n 4
X°y" + bogxy’ + cogy =0 (bg, ¢ constant)
substitution of y = x" gives the auxiliary equation
r(r = 1) + bor + co = 0,
which is the indicial equation [and y = x" is a very special form of (2)!]. For different roots rq, ro we get a

basis y; = £ Yo = x'2, and for a double root r we get a basis x”, x" In x. Accordingly, for this simple ODE,
Case 3 plays no extra role. H

Ilustration of Case 2 (Double Root)
Solve the ODE
(11) xx— 1Dy "+ GBx—1)y +y=0

(This is a special hypergeometric equation, as we shall see in the problem set.)

Solution. Writing (11) in the standard form (1), we see that it satisfies the assumptions in Theorem 1. [What
are b(x) and c(x) in (11)?] By inserting (2) and its derivatives (2*) into (11) we obtain

oo oc
E (m + 1m + r — Dapx™ ™ = D (m+ m + r — Day™ 1
m=0 m=0

(12)

oo oo} oo
F3> (m A+ Na ™ = D (A D™+ D, T = 0.

m=0 m=0 m=0

The smallest power is AL occurring in the second and the fourth series; by equating the sum of its coefficients
to zero we have

[=r(r = 1) = rlag = 0, thus r?=0.

Hence this indicial equation has the double root r = 0.
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First Solution. We insert this value r = 0 into (12) and equate the sum of the coefficients of the power
x* to zero, obtaining
s(s = Dag — (s + Dsagyq + 3sas — (s + Dageq +a;,=0

thus ag, 1 = ag. Hence ag = a; = ag = - - -, and by choosing ag = 1 we obtain the solution

() = (b < D.

T
=
3
Il

Second Solution. We get a second independent solution yy by the method of reduction of order (Sec. 2.1),
substituting ys = uy; and its derivatives into the equation. This leads to (9), Sec. 2.1, which we shall use in this
example, instead of starting reduction of order from scratch (as we shall do in the next example). In (9) of
Sec. 2.1 we have p = (3x — l)l(x2 — x), the coefficient of y' in (11) in standard form. By partial fractions,

f b= f3x*1 dx*—f 2
TyresT zE— 1 - x— 1

Hence (9), Sec. 2.1, becomes
@-10 1

W =U=y2e Pl ——— =

1
-+ ;)dx:—an(x—l)*lnx.
x

In x

= N u = Inx,
- D% x

Yo = Uy1 = 1—x"
y; and y,, are shown in Fig. 106. These functions are linearly independent and thus form a basis on the interval
0<x<1(aswellasonl <x<x). ]

N W AR
I

|
|
|
I
|
|
|
|
]
|
Yoy, -~
|
|
|
|
|
|

|
2 0 2. ——=4="" 6 X
-1 =
/ Y1
2 _';
3
I
-4
Fig. 106. Solutions in Example 2

Case 3, Second Solution with Logarithmic Term

Solve the ODE

(13) o —xy" —x +y=0
Solution. Substituting (2) and (2*) into (13), we have
oo o oo
) E (m+ rm+r— Daypx™ ™2 —x E (m + ra,x™T + E a X = 0.
m=0 m=0 m=0

We now take x2, x, and x inside the summations and collect all terms with power xX™*" and simplify algebraically,

o o0
2 (m + r— 12" — 2 (m + rm + r — Da, X" =o0.

m=0 m=0

In the first series we set m = s and in the second m = s + 1, thus s = m — 1. Then

o'} o
D s+ r— D2t - S s+ Dis + Rag = 0.
s=0

(14)

s=—1
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The lowest power is +" 71 (take s = —1 in the second series) and gives the indicial equation
r(r—1)=0.

The roots are r; = 1 and ro = 0. They differ by an integer. This is Case 3.

First Solution. From (14) with r = r; = 1 we have
oc
E [szas — (s + 2)(s + 1)as+1]x5+1 =0.
s=0

This gives the recurrence relation

2
s
a - s=0,1,-).
LT s+ s+ 1) 0 ( )
Hence a; = 0, ay = 0, - - - successively. Taking ag = 1, we get as a first solution y; = xrlao =X

Second Solution. Applying reduction of order (Sec. 2.1), we substitute yo = yqu = xu, y5 = xu’ + u and
vy = xu” + 2u’ into the ODE, obtaining

()c2 — x)(xu” -+ 2u') — x(au’ +u) + xu=0.
xu drops out. Division by x and simplification give
(x2 —0u" + x—2u =0.
From this, using partial fractions and integrating (taking the integration constant zero), we get

u” x—2 2 1 ’
—_— = = = - — 4+ s Inu =1In
u o i o X x—1

2
X

x—l‘

Taking exponents and integrating (again taking the integration constant zero), we obtain

1 1
- = . u=Inx+ —, yo =xu = xlnx + 1.
X X x x

y1 and ys are linearly independent, and ys has a logarithmic term. Hence y; and y, constitute a basis of solutions
for positive x. (il

The Frobenius method solves the hypergeometric equation, whose solutions include
many known functions as special cases (see the problem set). In the next section we use
the method for solving Bessel’s equation.

BASIS OF SOLUTIONS BY THE 8.0 —y=0

FROBENIUS METHOD 9

Find a basis of solutions. Try to identify the series as
expansions of known functions. (Show the details of your

Lxy" Qe+ Dy x4+ Dy=0
10. x2y" + 2x%y" + (x2 — 2)y = 0
11 (x2 + x)y" + (4x + 2)y' + 2y =0

work.)
Lxy"+2y —xy=0 2.(x+2%"-2y=0 12. x%" + 6xy" + (4x® + 6)y = 0
3.xy" +5) +xy=0 13. 2xy" — (8x — 1)y’ + (8x = 2)y = 0
4. 20" + 3 — 40y + 2x — 3y =0 4. xy" +y —xy=0
‘ 5.x%" +4xy" + X2+ 2y =0 15. (x — %" — (x — 4)y' =35y =0
‘i 6. 4xy" + 2y +y=0 16. x2y" + 4xy' — x2 = 2)y =0
i 7. (x +3)%" = 9(x + 3)y’ + 25y =0 17" + (x —6)y =0




18. TEAM PROJECT. Hypergeometric Equation,
Series, and Function. Gauss’s hypergeometric ODE®
is

as) x(1 — x)y” e (@bt l)x]y' — aby = 0.

Here, a, b, ¢ are constants. This ODE is of the form
pay" + py' + poy = 0. where ps. pi, po are
polynomials of degree 2, 1, 0, respectively. These
polynomials are written so that the series solution takes
a most practical form, namely,

_1+ab +a(a-l—l)b(b-|—l) 2
ne) = T Ne@e+ 1)

3

+ a(a + )(a + 2)b(b + )b + 2)
3tc(c + D)(c +2)

This series is called the hypergeometric series. Its sum
y1(x) is called the hypergeometric function and is
denoted by F(a, b, c¢; x). Here, ¢ # 0, —1, —Q, %
By choosing specific values of a, b, ¢ we can obtain
an incredibly large number of special functions as
solutions of (15) [see the small sample of elementary
functions in part (c)]. This accounts for the importance
of (15).

(a) Hypergeometric series and function. Show that
the indicial equation of (15) has the roots r; = 0 and
ro = 1 — c. Show that for r; = 0 the Frobenius method
gives (16). Motivate the name for (16) by showing that

1

1 —x

F(1,1,1;x) = F(1, b, b; x) = F(a, 1, a; x) =

(b) Convergence. For what a or b will (16) reduce to
a polynomial? Show that for any other a, b, ¢
(¢ # 0, —1, =2, - - ) the series (16) converges when
x| < 1.

(¢) Special cases. Show that
(1 4+ x)" = F(—n, b, b; —x),
1=—x"=1-mF(1 —n,1,2;x),
arctan x = xF(%, 1, %; —xz),

arcsinx = xFG, 1, 3; ¥,
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In (1 + x) = xF(1, 1, 2; —x),
1 +x

In = wFE, 1,3 ).
- X

Find more such relations from the literature on special
functions.

(d) Second solution. Show that for r, = 1 — ¢ the
Frobenius method yields the following solution (where
c#2,3, 4,

a—c+DHb—-—c+1)

P,
yaolx) = (1 - 1 (—c +2) *

a7

+(a*c+1)(afc+2)(b—c+l)(b'c+2) 5
2 (—¢ + 2)(—c + 3) *
+)

yo) = xCFla—c+ 1,b—c+ 1,2 = ¢; x).

Show that

(¢) On the generality of the hypergeometric
equation. Show that

18) (2 +Atr+ By + (Ct+ D)y +Ky=0

with y = dy/dt, etc., constant A, B, C, D, K, and
2+ Ar+ B = (t — 1))t — t5), ; # 1o, can be reduced
to the hypergeometric equation with independent
variable

t—t
x= ——
Iy = h
and parameters related by Ct; + D = —c(ty — 1),

C=a+ b+ 1, K= ab. From this you see that (15)
is a “normalized form” of the more general (18) and
that various cases of (18) can thus be solved in terms
of hypergeometric functions.

HYPERGEOMETRIC EQUATIONS

Find a general solution in terms of hypergeometric
functions.

19.
20.
21.
22.
23.
24.

x(1—xpy"+ G —2x)y - =0
2x(1 — x)y” - (1 + 6x)y/ -2y =20
x(1—xpy" +3y' +2y=0

31 + )y + 1y —y =0

202 =5t + 6)y + (2t —3)y —8y =0
42 =3t +2)y — 2y +y =0

5CARL FRIEDRICH GAUSS (1777-1855), great German mathematician. He already made the first of his great
discoveries as a student at Helmstedt and Géttingen. In 1807 he became a professor and director of the Observatory
at Gottingen. His work was of basic importance in algebra, number theory, differential equations, differential
geometry, non-Euclidean geometry, complex analysis, numeric analysis, astronomy, geodesy, electromagnetism,
and theoretical mechanics. He also paved the way for a general and systematic use of complex numbers.
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5.5 Bessel’s Equation. Bessel Functions J,(x)

One of the most important ODEs in applied mathematics in Bessel’s equation,®
1) 2" + xy' + @2 =Yy =0.

Its diverse applications range from electric fields to heat conduction and vibrations (see
Sec. 12.9). It often appears when a problem shows cylindrical symmetry (just as Legendre’s
equation may appear in cases of spherical symmetry). The parameter v in (1) is a given
number. We assume that v is real and nonnegative.

Bessel’s equation can be solved by the Frobenius method, as we mentioned at the
beginning of the preceding section, where the equation is written in standard form
(obtained by dividing (1) by x?). Accordingly, we substitute the series

) ) =D apx™tT (ao # 0)

m=0

with undetermined coefficients and its derivatives into (1). This gives

o oo
S m+ Pm+ = Daxk™ T+ D (m+ P
m=0 m=0
oo oo
+ E amxm+7~+2 _ V2 E amxm+r =0
m=0 m=0

We equate the sum of the coefficients of x**" to zero. Note that this power x**"

corresponds to m = s in the first, second, and fourth series, and to m = s — 2 in the
third series. Hence for s = 0 and s = 1, the third series does not contribute since
m = 0. For s = 2, 3, - - - all four series contribute, so that we get a general formula for
all these s. We find

(a) r(r — Dag + rag — v2ay = 0 (s =0
(3) (b) (r+ Dra; + (r + a; — v2a; =0 (s=1)
c (s+nrs+r—Da,+ (s +nra, +as_o — v2as =0 (s=2,3,--").

From (3a) we obtain the indicial equation by dropping a,,
@) (r+v(r—wv =0.

The roots are r; = v (= 0) and 1, = —v.

SERIEDRICH WILHELM BESSEL (1784-1846), German astronomer and mathematician, studied astronomy
on his own in his spare time as an apprentice of a trade company and finally became director of the new Konigsberg
Observatory.

Formulas on Bessel functions are contained in Ref. [GR1] and the standard treatise [A13].
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Coefficient Recursion for r = r; = ». For r = v, Eq. (3b) reduces to 2v + 1)a; = 0.
Hence a; = 0 since v = 0. Substituting » = » in (3c) and combining the three terms
containing a, gives simply

(5) (s + 2v)sa, + as_o = 0.

s

to deal only with even-numbered coefficients ag with s = 2m. For s = 2m, Eq. (5) becomes

Since a; = 0 and v = 0, it follows from (5) that a3 = 0, a5 = 0, - - - . Hence we have

2m + 2v)2mag,, + dzp—o = 0.

Solving for as,, gives the recursion formula

1
6 Uo =it i o) m=1,2,--:
( ) 2m sz(v+ m) 2m—2
From (6) we can now determine ay, g, * * = successively. This gives
do

as = — —5— T

2 22(y + 1)

ds do

ag =

T2 220w+ D+ 2)

and so on, and in general

™ 5y St oy 15w e
T 2y (p+ DY+ 2) - (v m) T

Bessel Functions J,(x) For Integer v = n

Integer values of v are denoted by n. This is standard. For v = n the relation (7) becomes

(_ l)ﬂlao

22"ml(n+ D(n +2) - (n+m)’

(8) Aom = m:]’z,...

ay is still arbitrary, so that the series (2) with these coefficients would contain this arbitrary
factor ao. This would be a highly impractical situation for developing formulas or
computing values of this new function. Accordingly, we have to make a choice. ag = 1
would be possible, but more practical turns out to be

1

2"

€)) ap =

because then n!(n + 1) + - - (n + m) = (m + n)! in (8), so that (8) simply becomes

(10) D 12

T ==
Im T g2mAn ) (p + )
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EXAMPLE 1

This simplicity of the denominator of (10) partially motivates the choice (9). With these
coefficients and r; = v = n we get from (2) a particular solution of (1), denoted by J,,(x)
and given by

- e} (_1)n2x2m
(1) L - mE 22t (n + m)!

=0

J,,(x) is called the Bessel function of the first kind of order n. The series (11) converges
for all x, as the ratio test shows. In fact, it converges very rapidly because of the factorials
in the denominator.

Bessel Functions J,(x) and J;(x)

For n = 0 we obtain from (11) the Bessel function of order 0

Ed (— l)mx2m X2 )C4 XG
12 Jox) = e o+ = + —
12 o };‘0 22" ()2 2z rehr 09
which looks similar to a cosine (Fig. 107). For n = 1 we obtain the Bessel function of order 1
o (_ I)mXZ'rrH— 1 ¥ 1‘3 x5 X7

0 = — = + - +
13 he =2 22" Lt (m + 1)) 2 Rre  oxaldl L ol

m=0

which looks similar to a sine (Fig. 107). But the zeros of these functions are not completely regularly spaced
(see also Table Al in App. 5) and the height of the “waves” decreases with increasing x. Heuristically, n2ix?
in (1) in standard form [(1) divided by xz] is zero (if n = 0) or small in absolute value for large x, and so is
y'/x, so that then Bessel’s equation comes close to y" + y = 0, the equation of cos x and sin x; also y'Ix acts
as a “damping term,” in part responsible for the decrease in height. One can show that for large x,

i 2 niw T
(14) Jnx) ~ g cos (x = 7 = X)

where ~ is read “asymptotically equal” and means that for fixed n the quotient of the two sides approaches 1
as x — .

Formula (14) is surprisingly accurate even for smaller x (> 0). For instance, it will give you good starting
values in a computer program for the basic task of computing zeros. For example, for the first three zeros of Jg
you obtain the values 2.356 (2.405 exact to 3 decimals, error 0.049), 5.498 (5.520, error 0.022), 8.639 (8.654,

error 0.015), etc. |

1
C
— T

0.57 s \\Jl

- # N
7 \\ ——
// X 7~ - ~

0 I | ! N | ! P L 1 N| |
C N 7 10 ~_ ®
L. N P s

N F s

Fig. 107. Bessel functions of the first kind J, and J,
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Bessel Functions J,(x) for any v = 0. Gamma Function

We now extend our discussion from integer » = n to any v = 0. All we need is an
extension of the factorials in (9) and (11) to any ». This is done by the gamma function

I'(v) defined by the integral

o0

(15) T — f et gt (> 0).

0

By integration by parts we obtain

oC oo

+ Vf el dr.
0

oo

v+ 1) = f e dt = —e U
0

0

The first expression on the right is zero. The integral on the right is I'(»). This yields the
basic functional relation

(16) '+ 1) =vIw.

Now by (15)

=0-(-D=1L
0

oC

ra) = J e tdr= —et

0

From this and (16) we obtain successively I'(2) = T'(1) = 1!, I'(3) = 2I'(2) = 2!, - - -
and in general

an I'n + 1) =n! (n=20,1,---).

This shows the the gamma function does in fact generalize the factorial function.
Now in (9) we had a, = 1/(2"n!). This is 1/(2"I'(n + 1)) by (17). It suggests to choose,

for any v,

1

a8 %= ST E D)

Then (7) becomes

- -1y
G2m = Samp G+ D +2) -+ m2 T+ 1)

But (16) gives in the denominator
v+ DI'v+ 1) =Tw+2), v+2I'v+2)=TWw+ 3)
and so on, so that

v+ D+ - (v+rmITy+1)=Tw+m+1).
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THEOREM 1

THEOREM 2

Hence because of our (standard!) choice (18) of a, the coefficients (7) simply are

(=n™

am = Hamiy T'wv+m+ 1)

(19)

With these coefficients and » = r; = v we get from (2) a particular solution of (1), denoted
by J,(x) and given by

(_ l)mx2m

m Twv+m+ 1)

(20) L= > T
m=0

J,(x) is called the Bessel function of the first kind of order ». The series (20) converges
for all x, as one can verify by the ratio test.

General Solution for Noninteger v. Solution J_,,

For a general solution, in addition to J, we need a second linearly independent solution.
For v not an integer this is easy. Replacing » by —v in (20), we have

o -1 m,.2m
@1 T =Y S U

m=0

m!'T(m — v+ 1)

Since Bessel’s equation involves v?, the functions J, and J_, are solutions of the
equation for the same v. If v is not an integer, they are linearly independent, because
the first term in (20) and the first term in (21) are finite nonzero multiples of x” and
x~7, respectively. x = 0 must be excluded in (21) because of the factor x™" (with v > 0).
This gives

General Solution of Bessel’s Equation

If v is not an integer, a general solution of Bessel’s equation for all x # 0 is

(22) y(x) = 1, (@) + caJ_,(%).

But if v is an integer, then (22) is not a general solution because of linear dependence:

Linear Dependence of Bessel Functions J,, and J_,

For integer v = n the Bessel functions J,(x) and J_,(x) are linearly dependent,
because

(23) J_n(®) = (=1)"p(x) (n=12"--").
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PROOF

THEOREM 3

PROOF

CHAP. 5 Series Solutions of ODEs. Special Functions

We use (21) and let v approach a positive integer n. Then the gamma functions in the
coefficients of the first n terms become infinite (see Fig. 552 in App. A3.1), the
coefficients become zero, and the summation starts with m = n. Since in this case
I'm —n+ 1) = (m — n)! by (17), we obtain

o (_1)mx2m—n @ (* l)n+sx23+n,
J_,(x) = = m=n+s).
nl¥) m%ﬂ 22m =l (m — n)! s§0 225H 0y + 5)! 5! ( )

The last series represents (—1)"J,,(x), as you can see from (11) with m replaced by s. This
completes the proof. M

A general solution for integer n will be given in the next section, based on some further
interesting ideas.

Discovery of Properties From Series

Bessel functions are a model case for showing how to discover properties and relations of
functions from series by which they are defined. Bessel functions satisfy an incredibly large
number of relationships—Ilook at Ref. [A13] in App. 1; also, find out what your CAS
knows. In Theorem 3 we shall discuss four formulas that are backbones in applications.

Derivatives, Recursions

The derivative of J,(x) with respect to x can be expressed by J,_1(x) or J,.1(x) by
the formulas

@ Y] =X, %)

(24)
(b) I

—x" ", ().

Furthermore, J,(x) and its derivative satisfy the recurrence relations

2y
© J,4(0) F T, (0 = —J,(x)

(24) x
@) S,y (x) = T, 1 (0) = 2J(x).

(a) We multiply (20) by x” and take x2” under the summation sign. Then we have

oo (_ 1 )'mx2m+2u

'XUJV(X) = E 22m+

m=0

"m Ty +m+ 1)

We now differentiate this, cancel a factor 2, pull x**~! out, and use the functional
relationship I'(v + m + 1) = (v + m)['(v + m) [see (16)]. Then (20) with v — 1 instead
of v shows that we obtain the right side of (24a). Indeed,

, , e (__ l)T)’Lz(In - V) x21n+2v—1
) =2
2 m! T'(v + m + 1)

m=0

(_ 1 )mx2m

hal Ty + m) -

oo

I TR el §

=EE E H2m+
m=0
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EXAMPLE 2

(b) Similarly, we multiply (20) by x~", so that x” in (20) cancels. Then we differentiate,
cancel 2m, and use m! = m(m — 1)!. This gives, with m = 5 + 1,

ool (7 1 )mx2m—1

-y =
(-x u) E 221’)Z+xf—1(’,’1 — l)l F(V + m + 1)

m=1

(4 1 )S+1x28+1

s=0

2T Ty 4+ 5 + 2)

Equation (20) with v + 1 instead of v and s instead of m shows that the expression on
the right is —x~"J,, 1(x). This proves (24b).

(¢), (d) We perform the differentiation in (24a). Then we do the same in (24b) and
multiply the result on both sides by x2”. This gives

(a*) vx" "W, + XL =X,
(b*) —vx”"lj,, + x”J,’, = —=x"J 1

Substracting (b*) from (a*) and dividing the result by x” gives (24c). Adding (a*) and
(b*) and dividing the result by x” gives (24d). &

Application of Theorem 3 in Evaluation and Integration

Formula (24c¢) can be used recursively in the form
2v
Sy = — J, 0 = J,-1(0)

for calculating Bessel functions of higher order from those of lower order. For instance, Jo(x) = 2J1(x)/x — Jo(x),
so that J5, can be obtained from tables of Jo and J; (in App. 5 or, more accurately, in Ref. [GR1] in App. 1).

To illustrate how Theorem 3 helps in integration, we use (24b) with » = 3 integrated on both sides. This
evaluates, for instance, the integral

2
2
1
1= f Y30 dy = —x 3y | = — 3 1@ + I,
1 1
A table of Jg (on p. 398 of Ref. [GR1]) or your CAS will give you

—1-0.128943 + 0.019563 = 0.003445.

Your CAS (or a human computer in precomputer times) obtains J5 from (24), first using (24¢) with v = 2,
that is, Jg = 4x~ Uy — Jy then (24c) with v = 1, that is, Jy = 2x'J; — Jo. Together,

2
[=x"3@ o™y — Jg) = Jy)
1

= —1[2J1(2) — 2Jp(2) — J1(D)] + [8/1(1) — 4Jo(1) — Jy(D)]

—4112) + 3J6(2) + TJ1(1) — 4Jo(D).

This is what you get, for instance, with Maple if you type int(- - -). And if you type evalf(int(- - -)), you obtain
0.003445448, in agreement with the result near the beginning of the example. #

In the theory of special functions it often happens that for certain values of a parameter
a higher function becomes elementary. We have seen this in the last problem set, and we
now show this for J,.
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PROOF

EXAMPLE 3

CHAP. 5 Series Solutions of ODEs. Special Functions

Elementary J, for Half-Integer Order v

Bessel functions J, of orders +1 +3 +2 .. - are elementary; they can be expressed
by finitely many cosines and sines and powers of x. In particular,

149 2
(25) (@) Jypkx) = [ — sinx, b)) J_qpx) = \/j COS X.
X m

When v = 3, then (20) is

)m 2m+1

( 1)'m 2m
S = Vx 2 2 T +3) | x E 22m+1 m! D(m + %)

To simplify the denominator, we first write it out as a product AB, where

A=2"m!=2mQ2m — 2)2m —4)---4-2
and [use (16)]

B=2""Tm+3) = 2" m+3m—3) 531G

= Qm+ D2m — 1) - 31V,

here we used

(26) EQ) —Vn

We see that the product of the two right sides of A and B is simply (2m + 1!V, so that

Jy2 becomes
( l)m 2m+1 2 '
Jyp(x) = / 2 am + 1)l =\ 7 Sin%

as claimed. Differentiation and the use of (24a) with v = 3 now gives

, [2
[\/)_CJI/Z(X)] = ; Cos X = x“z]_l,z(x).

This proves (25b). From (25) follow further formulas successively by (24c), used as in
Example 2. This completes the proof. |

Further Elementary Bessel Functions

From (24¢) with » = 1 and v = —3 and (25) we obtain
1 2 sin x
Jajp(x) = — Jyp() — J_1p2(x) = [ — — — Cosx
X X X
1 2 COS X .
J_gpolx) = — T J_19(x) = Jyjo(x) = — P~ T + sinx

respectively, and so on. ]
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We hope that our study has not only helped you to become acquainted with Bessel
functions but has also convinced you that series can be quite useful in obtaining various
properties of the corresponding functions.

1. (Convergence) Show that the series in (11) converges
for all x. Why is the convergence very rapid?

2. (Approximation) Show that for small |x| we have
Jo = 1 — 0.25x%. From this compute Jo(x) for
x=0,0.1,0.2, - - -, 1.0 and determine the error by
using Table Al in App. 5 or your CAS.

3. (“Large” values) Using (14), compute Jy(x) for
x = 1.0, 2.0, 3.0, - - -, 8.0, determine the error by
Table Al or your CAS, and comment.

4. (Zeros) Compute the first four positive zeros of Jo(x)
and J;(x) from (14). Determine the error and comment.

ODEs REDUCIBLE TO BESSEL’S
EQUATION

Using the indicated substitutions, find a general solution in
terms of J, and J_, or indicate when this is not possible.
(This is just a sample of various ODEs reducible to Bessel’s
equation. Some more follow in the next problem set. Show
the details of your work.)

5. (ODE with two parameters)

2"+ xy + (A2 - Dy =0 (Ax=72)
6. x2y" + xy' + (x? — -fg)y =0
703" +ay + =By =0 (Va=2)

8. 2x + X" +202x + 1)y’ + 16x(x + 1)y =0
Q2x +1 =2

9. xy" =y +4xy =0 2)
10. x2y" + xy' + 12—y =0 (x =22
1L xy" + Qv+ Dy +xy=0 (y =x""u
12. x2y" + xy' +4x* — 2y =0 (% =72
13 22" + xy' 498 — vy =0 (3 =2
4. y" + ("~ gy =0 (e =2)

15. 5" +y=0 (y = Vxu 2Vx = 2)
16. 16x2y" + 8xy’ + (x'/2 + 1Byy = 0

(v = xu, 2x

(y = xu, x¥% = )
17. 36x2y" + 18xy’ + Vxy =0
(y = x1/4u, %xlm =2

183" +xy + Vay =0 (&' =2

19. %" + Loy’ + Vay =0 (y = x2Pu, 4214 = )

20. xzy” + (1 — 2V)x_v' + 2%+ 1 — Vz)y =90
(y = x"u, x¥ = z)

APPLICATION OF (24): DERIVATIVES,
INTEGRALS
Use the powerful formulas (24) to do Probs. 21-28. (Show
the details of your work.)
21. (Derivatives) Show that Jo(x) = —J;(x),
J{) = Jo(x) = J1(0)/x, Jo(x) = 3[J1(x) = J5(0)].
22. (Interlacing of zeros) Using (24) and Rolle’s theorem,
show that between two consecutive zeros of Jy(x) there
is precisely one zero of J,(x).

23. (Interlacing of zeros) Using (24) and Rolle’s theorem,
show that between any two consecutive positive zeros
of J,,(x) there is precisely one zero of J,, (x).

24. (Bessel’s equation) Derive (1) from (24).
25. (Basic integral formulas) Show that

J-x”J,,_l(x) dx = x"J,(x) + c,
J-x_"J,,H(x) dx = —x7"J,(x) + ¢,
ff,,ﬂ(x) dx = JJV—1(X) dx — 2J,(x).

26. (Integration) Evaluate Jx'114(x) dx. (Use Prob. 25;
integrate by parts.)

27. (Integration) Show that
szlo(x) dx = x2J1(x) + xJo(x) — f]o(x) dx. (The
last integral is nonelementary; tables exist, e.g. in Ref.
[A13] in App. 1.)

28. (Integration) Evaluate fjg,(x) dx.

29. (Elimination of first derivative) Show that y = uv
with v(x) = exp (—3 [ p(x) dx) gives from the ODE

y" + p)y" + gy = 0 the ODE

W'+ [q) — 3p? = 3p'W]u =0
no longer containing the first derivative. Show that for
the Bessel equation the substitution is y = ux~2 and

gives

(27) "+ 2+ 1 - vHu=0.
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30.

31.

32.

CHAP. 5 Series Solutions of ODEs. Special Functions

(Elementary Bessel functions) Derive (25) in
Theorem 4 from (27).

CAS EXPERIMENT. Change of Coefficient. Find
and graph (on common axes) the solutions of

Y+ kel 4y =0,y(0) = 1,)'(0) = 0,

for k =0, 1,2, -+, 10 (or as far as you get useful
graphs). For what k do you get elementary functions?
Why? Try for noninteger k, particularly between 0 and
2. to see the continuous change of the curve. Describe
the change of the location of the zeros and of the
extrema as k increases from 0. Can you interpret the
ODE as a model in mechanics, thereby explaining your
observations?

TEAM PROJECT. Modeling a Vibrating Cable
(Fig. 108). A flexible cable, chain, or rope of length L
and density (mass per unit length) pis fixed at the upper
end (x = 0) and allowed to make small vibrations
(small angles a in the horizontal displacement u(x, 1),
t = time) in a vertical plane.

(a) Show the following. The weight of the cable below
a point x is W(x) = pg(L — x). The restoring force is
F(x) = Wsin a =~ Wi, u, = du/dx. The difference in
force between x and x + Ax is Ax (Wu,),. Newton’s
second law now gives

p Ax uy = Ax pg[(L — X)uty],
For the expected periodic motion

u(x, 1) = y(x) cos (wr + 9) the model of the problem
is the ODE

(L — x)y" — v+ A%y =0, A2 = o?lg.

(b) Transform this ODE to § + s™'y +y =0,
y = dylds, s = 2Az"%, z = L — x, so that the
solution is

y(x) = JoQRoV (L = x)/g).

33.

(¢) Conclude that possible frequencies w/27 are those
for which s = 2w\/L7g is a zero of Jy. The
corresponding  solutions are called normal modes.
Figure 108 shows the first of them. What does the second
normal mode look like? The third? What is the frequency
(cycles/min) of a cable of length 2 m? Of length 10 m?

Cable
in motion

Equilibrium
position

Fig. 108. Vibrating cable in Team Project 32

CAS EXPERIMENT. Bessel Functions for Large x.
(a) Graph J,,(x) for n = 0, - - -, 5 on common axes.
(b) Experiment with (14) for integer n. Using graphs,
find out from which x = x,, on the curves of (11) and
(14) practically coincide. How does x,, change with n?
(¢) What happens in (b) if n = *3? (Our usual
notation in this case would be v.)

(d) How does the error of (14) behave as function
of x for fixed n? [Error = exact value minus
approximation (14).]

(e) Show from the graphs that Jo(x) has extrema where
Jy(x) = 0. Which formula proves this? Find further
relations between zeros and extrema.

(f) Raise and answer questions of your own, for
instance, on the zeros of J, and J;. How accurately are
they obtained from (14)?

5.6 Bessel Functions of the Second Kind Y, ()

From the last section we know that J, and J_, form a basis of solutions of Bessel’s
equation, provided v is not an integer. But when v is an integer, these two solutions are
linearly dependent on any interval (see Theorem 2 in Sec. 5.5). Hence to have a general
solution also when » = n is an integer, we need a second linearly independent solution
besides J,,. This solution is called a Bessel function of the second kind and is denoted
by Y,. We shall now derive such a solution, beginning with the case n = 0.

n = 0:

Bessel Function of the Second Kind Y, (x)

When 1 = 0, Bessel’s equation can be written

1

o' +y +xy=0.




SEC. 5.6 Bessel Functions of the Second Kind Y, (x) 199

Then the indicial equation (4) in Sec. 5.5 has a double root » = 0. This is Case 2 in
Sec. 5.4. In this case we first have only one solution, Jy(x). From (8) in Sec. 5.4 we see
that the desired second solution must be of the form

) YoX) = Jo) Inx + >, A,,x™.

m=1

We substitute y, and its derivatives

J o'e]
ya=Jilnx+ = + > mAxm™!
X m=1
2l 4 B
yi=Jgnx+ =2 — 22 4+ mm — 1AM 2
X X

m=1

into (1). Then the sum of the three logarithmic terms xJg In x, Jq In x, and xJ, In x is zero
because J, is a solution of (1). The terms —Jo/x and Jy/x (from xy” and y") cancel. Hence
we are left with

206+ > mm — DA™ + D mA "+ D A X = 0.

m=1 m=1 m=1

Addition of the first and second series gives Sm2A,,x™ 1. The power series of Jg(x) is
obtained from (12) in Sec. 5.5 and the use of m!/m = (m — 1)! in the form

o) (_ l)mzmx2m—1 oo (_ 1)mx27n—1
J’ = - = .
o(x) mzz‘,l 92m (m!)z mE:l 22m—1,, (m— 1)!

Together with m?A,,x™ ™1 and =A,,x™"?! this gives

oo (_I)WLXZWL—I

(3% 2 22m=21 (m — 1)!

m=1

+ D mPAXTT+ D AL = 0.

m=1 m=1

First, we show that the A,,, with odd subscripts are all zero. The power x° occurs only in
the second series, with coefficient A;. Hence A; = 0. Next, we consider the even powers
x¢. The first series contains none. In the second series, m — 1 = 2s gives the term
(25 + 1)?A,g,1x%. In the third series, m + 1 = 2s. Hence by equating the sum of the
coefficients of x** to zero we have

(25 + 1)2Agerq + Ags_q = 0, s=1,2,---.

Since A; = 0, we thus obtain A3 = 0, A5 = 0, - - -, successively.
We now equate the sum of the coefficients of x**! to zero. For s = 0 this gives

—1+44,=0, thus Ay =

N

For the other values of s we have in the first series in (3*%) 2m — 1 = 25 + 1, hence
m=ys + 1,in the second m — 1 = 2s + 1, and in the third m + 1 = 25 + 1. We thus obtain

(_1)S+1

m + (2s + 2)21428;2 + Ay = 0.
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For s = 1 this yields

1 3
g + 16A, + Ay = 0, thus Ay = —1—28‘
and in general
3 PV Gy PVILIRE . 1,2
©) 2m = M2 2 '3 m)’ me e
Using the short notations
1 1
4) hy =1 Bp,=1+—+" 4+ — m=23,-":
2 m
and inserting (4) and A; = A3 = -+ = 0 into (2), we obtain the result
oo (_1)771—1hm .
yox) = Jo(x) Inx + —?m—(m')T 2m
m=1
()
1 3 11
= Jy) Inx + —x% — —=x*+ 8 — +
o0 Inx 4 " = g © T 3804

Since Jo and y, are linearly independent functions, they form a basis of (1) for x > 0.
Of course, another basis is obtained if we replace y, by an independent particular solution
of the form a(yy + bJy), where a (# 0) and b are constants. It is customary to choose
a = 2/mand b = y — In 2, where the number y = 0.577 215664 90 - - - is the so-called
Euler constant, which is defined as the limit of

1 I
1+ =4+ ——1
) S ns

as s approaches infinity. The standard particular solution thus obtained is called the Bessel
function of the second kind of order zero (Fig. 109) or Neumann’s function of order
zero and is denoted by Yo(x). Thus [see (4)]

2 [ ( x ) = 0 }
(6) Y= — | L) M- b — x*™|.
T 2 5

2 24
T

For small x > 0 the function Y,(x) behaves about like In x (see Fig. 109, why?), and
Yo(x) — — @ asx — 0.

Bessel Functions of the Second Kind Y, (x)

For v=n = 1,2, - - asecond solution can be obtained by manipulations similar to those
for n = 0, starting from (10), Sec 5.4. It turns out that in these cases the solution also
contains a logarithmic term.

The situation is not yet completely satisfactory, because the second solution is defined
differently. depending on whether the order v is an integer or not. To provide uniformity
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of formalism, it is desirable to adopt a form of the second solution that is valid for all
values of the order. For this reason we introduce a standard second solution Y, (x) defined
for all v by the formula

1
(a) Y, (x) = T [/, (x) cos v — J_,(x)]
(7 “

(b) Y, (x) = lim Y, ().

This function is called the Bessel function of the second kind of order v or Neumann’s
function” of order v. Figure 109 shows Y,(x) and Y;(x).

Let us show that J, and Y, are indeed linearly independent for all v (and x > 0).

For noninteger order v, the function Y, (x) is evidently a solution of Bessel’s equation
because J, (x) and J_, (x) are solutions of that equation. Since for those v the solutions J,
and J_, are linearly independent and Y, involves J_,,, the functions J, and Y, are linearly
independent. Furthermore, it can be shown that the limit in (7b) exists and Y, is a solution
of Bessel’s equation for integer order; see Ref. [A13] in App. 1. We shall see that the
series development of Y,,(x) contains a logarithmic term. Hence J,,(x) and Y,,(x) are linearly
independent solutions of Bessel’s equation. The series development of Y, (x) can be
obtained if we insert the series (20) and (21), Sec. 5.5, for J,(x) and J_,(x) into (7a) and
then let v approach n; for details see Ref. [A13]. The result is

2 X Xl = (71)771—1(1/11” an hm-i—n)
Y o= =] kgl e i
n®) T n®) (n 2 ‘y) ™ mEo 22m Tyl (m + n)!
8) n—
g m-m DL
- E 22m n m! X
where x >0, n =0, 1,---,and [asin (4)] hy =0, hy =1,
1 | 1 |
Bpp=1+—=+ -+ —_, hpn=1+—=+- -+ .
2 m 2 m+n

0.5
/?ﬁ
0 10 «x
-0.5

Fig. 109. Bessel functions of the second kind Y, and Y.
(For a small table, see App. 5.)

“CARL NEUMANN (1832-1925). German mathematician and physicist. His work on potential theory sparked
the development in the field of integral equations by VITO VOLTERRA (1860-1940) of Rome, ERIC IVAR
FREDHOLM (1866-1927) of Stockholm, and DAVID HILBERT (1862-1943) of Goéttingen (see the footnote
in Sec. 7.9).

The solutions Y, (x) are sometimes denoted by N,(x); in Ref. [A13] they are called Weber’s functions; Euler’s
constant in (6) is often denoted by C or In .
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For n = 0 the last sum in (8) is to be replaced by 0 [giving agreement with (6)].
Furthermore, it can be shown that

Y_(x) = (= D)"Y ().

Our main result may now be formulated as follows.

THEOREM 1 General Solution of Bessel’s Equation

A general solution of Bessel’s equation for all values of v (and x > 0) is \

) yx) = CJ,(x) + GV, (0.

We finally mention that there is a practical need for solutions of Bessel’s equation that
are complex for real values of x. For this purpose the solutions

HP(x) = J,(x) + i, ()
(10)
HP(x) = J,(x) = iY,(x)

are frequently used. These linearly independent functions are called Bessel functions of
the third kind of order v or first and second Hankel functions® of order v.

This finishes our discussion on Bessel functions, except for their “orthogonality,” which
we explain in Sec. 5.7. Applications to vibrations follow in Sec. 12.9.

12. CAS EXPERIMENT. Bessel Functions for Large x.

[1-10] SOME FURTHER ODEs REDUCIBLE TO
It can be shown that for large x,

BESSEL’S EQUATIONS

(See also Sec. 5.5.)

Using the indicated substitutions, find a general solution in
terms of J, and Y, Indicate whether you could also use J_,
instead of Y,. (Show the details of your work.)

x2y" + xy + (2 —=25y=0

11 Y,(x) ~ V2/(mx) sin (x — %}’HT -~ %77')

with ~ defined as in (14) of Sec. 5.5.

(a) Graph Y,(x) forn =0, - -+, 5 on common axes.

[y
S N I U N S

[
—

Lx2y” 4+ xy + 9x2 -3y =0 (Gx =2
A"+ 4y Hy=0 (Vx=2)

" +y +36y=0 (12Vx=72)

X2y + xy + (4t - 16)y =0 (=12
2.1 ’ 6 _ — 1.3
x%y" +xy + (x Dy =0 (x° =2

Lxy o+ Iy +xy=0 (y= x"%u)
' Aty =0 (y = uVx, x2 = z)
Lx2y” =5y’ + 9 - 8)y=0 (y=x
L xy” o+ 7y +4xy =0 (y = x73u, 2x = 2)

Su, x® = 2)

. (Hankel functions) Show that the Hankel functions (10)

form a basis of solutions of Bessel’s equation for any ».

Are there relations between zeros of one function and
extrema of another? For what functions?

(b) Find out from graphs from which x = x, on
the curves of (8) and (11) (both obtained from your
CAS) practically coincide. How does x, change
with n?

(¢) Calculate the first ten zeros x,,, m = 1, * -+, 10,
of Yo(x) from your CAS and from (11). How does the
error behave as m increases?

(d) Do (c) for Y1(x) and Y5(x). How do the errors
compare to those in (c)?

8HERMANN HANKEL (1839-1873), German mathematician.
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13. Modified Bessel functions of the first kind of order » 14. (Modified Bessel functions 7,) Show that 7, (x) is real

are defined by 7, (x) = i~"/,(ix), i = V —1. Show that for all real x (and real v), I,(x) # O for all real x # 0,

[, satisfies the ODE and /_,(x) = I,(x), where n is any integer.

(12) 2" 4y — 2+ Py =0 15. Modified Bessel functions of the third kind (sometimes
called of the second kind) are defined by the formula (14)

and has the representation below. Show that they satisfy the ODE (12).

oo x2m+u T
= . 14 K = —[I_ -1
(13 L Eo 227 ) Tm + v + 1) 14 o) 2 sin v -.() o]

5./ Sturm-Liouville Problems.
Orthogonal Functions

So far we have considered initial value problems. We recall from Sec. 2.1 that such a problem
consists of an ODE, say, of second order, and initial conditions y(x,) = Ko, y'(xo) = K3
referring to the same point (initial point) x = x,. We now turn to boundary value problems.
A boundary value problem consists of an ODE and given boundary conditions referring
to the two boundary points (endpoints) x = a and x = b of a given interval a = x = b.
To solve such a problem means to find a solution of the ODE on the interval a = x = b
satisfying the boundary conditions.

We shall see that Legendre’s, Bessel’s, and other ODEs of importance in engineering
can be written as a Sturm-Liouville equation

(1) [p()y']" + [g(x) + Ar(x)]y =0

involving a parameter A. The boundary value problem consisting of an ODE (1) and given
Sturm-Liouville boundary conditions

@@  ky@ + k'@ =0
(b) Ly(b) + Ipy'(b) = 0

(2)

is called a Sturm-Liouville problem.’ We shall see further that these problems lead to
useful series developments in terms of particular solutions of (1), (2). Crucial in this
connection is orthogonality to be discussed later in this section.

In (1) we make the assumptions that p, ¢, r, and p’ are continuous on ¢ = x = b, and

r(x) >0 (a =x=0Db).

In (2) we assume that k;, k, are given constants, not both zero, and so are /4, /5, not both
Zero.

9JACQUES CHARLES FRANCOIS STURM (1803-1855), was born and studied in Switzerland and then
moved to Paris, where he later became the successor of Poisson in the chair of mechanics at the Sorbonne (the
University of Paris).

JOSEPH LIOUVILLE (1809-1882), French mathematician and professor in Paris, contributed to various
fields in mathematics and is particularly known by his important work in complex analysis (Liouville’s theorem;
Sec. 14.4), special functions, differential geometry, and number theory.
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EXAMPLE-1

EXAMPLE 2

CHAP.5 Series Solutions of ODEs. Special Functions

Legendre’s and Bessel’s Equations are Sturm-Liouville Equations
Legendre’s equation (1 — xz)y" — 2xy’ 4 n(n + 1)y = 0 may be written
[ -] + =0 X =n(n+ 1.

This is (1) withp = 1 — ¥2, g=0.,andr =1
In Bessel’s equation
25+ 55+ G2 - Py =0 § = dyld3, etc.
as a model in physics or elsewhere, one often likes to have another parameter k in addition to n. For this reason
we set ¥ = kx. Then by the chain rule y = dyldx = (dyldx) dldi = y'lk,y = .v"/kz. In the first two terms, K2
and k drop out and we get
xzy” + xy' + (k2x2 - 112))* = 0.

Division by x gives the Sturm-Liouville equation
2
n
[)g\‘/]/ + (— — + )uc)_\‘ = X = k2
X

This is (1) withp = x, ¢ = —n%/x, and r = x. i)

Eigenfunctions, Eigenvalues

Clearly, y = 0 is a solution—the «trivial solution”—for any A because (1) is homogeneous
and (2) has zeros on the right. This is of no interest. We want to find eigenfunctions y(x),
that is. solutions of (1) satisfying (2) without being identically zero. We call a number A
for which an eigenfunction exists an eigenvalue of the Sturm—Liouville problem (1), (2).

Trigonometric Functions as Eigenfunctions. Vibrating String

Find the eigenvalues and eigenfunctions of the Sturm—Liouville problem
©) '+ Ay =0, y(0) =0, y(m =0

This problem arises, for instance, if an elastic string (a violin string, for example) is stretched a little and then
fixed at its ends x = 0 and x = m and allowed to vibrate. Then y(x) is the “space function” of the deflection
u(x, 1) of the string, assumed in the form u(x, 1) = y(x)w(?). where ¢ is time. (This model will be discussed in
great detail in Secs. 12.2-12.4.)

Solution. From (1) and (2) we see that p = 1, ¢ = 0, r = 1 in (),anda = 0,b = m kg =1L = 1,
kg = I = 01in (2). For negative A = — 2 a general solution of the ODE in (3)is y(x) = ¢y + coe” V. From
the boundary conditions we obtain ¢q = ¢ = 0, so that y = 0, which is not an eigenfunction. For A = 0 the
situation is similar. For positive A = Za general solution is

y(x) = A cos vx + B sin vx.

From the first boundary condition we obtain y(0) = A = 0. The second boundary condition then yields

y(m) = Bsinvm = 0, thus y=0,=*1,*x2,:-"

For » = 0 we have y = 0. For A = 2 =1,4,9,16,- -, taking B = 1, we obtain
y(x) = sin vx v=1,2,""°)
Hence the eigenvalues of the problem are A= 2 wherev=1,2,--,and corresponding eigenfunctions are
y(x) = sin vx, where v = 1,2,% ¢+, |

Existence of Eigenvalues

Eigenvalues of a Sturm—Liouville problem (1), (2), even infinitely many, exist under rather
general conditions on p, ¢, r in (1). (Sufficient are the conditions in Theorem 1, below,
together with p(x) > O0and r(x) >0ona <x<bh. Proofs are complicated; see Ref. [A3]
or [A11] listed in App. 1.)




SEC. 5.7 Sturm-Liouville Problems. Orthogonal Functions 205

DEFINITION

EXAMPLE 3

Reality of Eigenvalues

Furthermore, if p, ¢, r, and p’ in (1) are real-valued and continuous on the interval
a = x = b and r is positive throughout that interval (or negative throughout that interval),
then all the eigenvalues of the Sturm-Liouville problem (1), (2) are real. (Proof in
App. 4.) This is what the engineer would expect since eigenvalues are often related to
frequencies, energies, or other physical quantities that must be real.

Orthogonality

The most remarkable and important property of eigenfunctions of Sturm-Liouville problems
is their orthogonality, which will be crucial in series developments in terms of eigenfunctions.

Orthogonality

Functions y;(x), y(x), * - - defined on some interval a = x = b are called orthogonal
on this interval with respect to the weight function r(x) > 0 if for all m and all n
different from m,

b
) [ r0ym@y @ dr =0 # n.

a

The norm ||y,,|| of y,, is defined by

b
) Iyl = f [ 9,20 d.

Note that this is the square root of the integral in (4) with n = m.

The functions y;, yo, * - - are called orthonormal on ¢ = x = b if they are
orthogonal on this interval and all have norm 1.

If r(x) = 1, we more briefly call the functions orthogonal instead of orthogonal
with respect to r(x) = 1; similarly for orthonormality. Then

b b
[ya@ v de=0 men, vl = /[ 20 dr.

Orthogonal Functions. Orthonormal Functions

The functions y,,(x) = sinmx, m = 1, 2, - - - form an orthogonal set on the interval —7 = x = m, because for
m # n we obtain by integration [see (11) in App. A3.1]

T ™

1 ("
f V(X)) yp(x) dx = f sin mx sin nx dx = 5 f cos (m — n)x dx — 3 f cos (m + n)x dx = 0.

e =,

The norm ||y, || equals V7, because

™

“.VmH2 = f sin mx dx = m=12,--).

=T

Hence the corresponding orthonormal set, obtained by division by the norm, is

sin x sin 2x sin 3x
— 3 . —
Vr Vv Va
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THEOREM 1

PROOF

CHAP. 5 Series Solutions of ODEs. Special Functions

Orthogonality of Eigenfunctions

Orthogonality of Eigenfunctions

Suppose that the functions p, g, 1, and p' in the Sturm-Liouville equation (1) are
real-valued and continuous and r(x) > 0 on the interval a = x = b. Let y,,(x) and
y,(x) be eigenfunctions of the Sturm—Liouville problem (1), (2) that correspond to
different eigenvalues A, and Ay, respectively. Then y,,, y,, are orthogonal on that
interval with respect to the weight function r, that is,

b
(6) f () Y (X) yp(x) dx = 0 (m # n).

If p(a) = 0, then (2a) can be dropped from the problem. If p(b) = 0, then (2b)
can be dropped. [It is then required that y and y" remain bounded at such a point,
and the problem is called singular, as opposed to a regular problem in which (2)
is used.]

If p(a) = p(b), then (2) can be replaced by the “periodic boundary conditions”

(7 y(a) = y(), y'(@) =y ().

The boundary value problem consisting of the Sturm-Liouville equation (1) and the
periodic boundary conditions (7) is called a periodic Sturm-Liouville problem.

By assumption, y,, and y,, satisfy the Sturm-Liouville equations
(pym)' + (g + Py = 0
(pyn) + (@ + Aur)y, =0

respectively. We multiply the first equation by y,,, the second by —y,,, and add,

(/\m - An)rymyn = ym(py';fz)’ - )7n(py7,71), = [(py;L)ym - (py'r’n)yn],

where the last equality can be readily verified by performing the indicated differentiation
of the last expression in brackets. This expression is continuous on a = x = b since p
and p' are continuous by assumption and y,,, y,, are solutions of (1). Integrating over x
from a to b, we thus obtain

b b
(8) Ay — )\n) J 'YmYn dx = |:P(y7/Jm - y‘r’nyn):l (a < D).
a

a

The expression on the right equals the sum of the subsequent Lines 1 and 2,

PO YD) m(D) = Vi(D)yn(b)] (Line 1)
—p(@)|Yh(@ym(a@) = Vi(@y,(@)] (Line 2).

Hence if (9) is zero, (8) with A,,, — A,, # 0 implies the orthogonality (6). Accordingly,
we have to show that (9) is zero, using the boundary conditions (2) as needed.

9)

-
%
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EXAMPLE 4

EXAMPLE 5

EXAMPLE 6

Case 1. p(a) = p(b) = 0. Clearly, (9) is zero, and (2) is not needed.
Case 2. p(a) # 0, p(b) = 0. Line 1 of (9) is zero. Consider Line 2. From (2a) we have
kyyn(a) + kayn(a) = 0,
kl,Vm(a> + k2y?’n(a) = 0
Let k, # 0. We multiply the first equation by v,,(a), the last by —y,(a) and add,
kol (@)Y (@) = Y@ yn(@)] = 0.

This is ky times Line 2 of (9), which thus is zero since ky # 0. If ky = 0, then k; # 0 by
assumption, and the argument of proof is similar.

Case 3. p(a) = 0, p(b) # 0. Line 2 of (9) is zero. From (2b) it follows that Line 1 of (9)
is zero; this is similar to Case 2.

Case 4. p(a) # 0, p(b) # 0. We use both (2a) and (2b) and proceed as in Cases 2 and 3.
Case 5. p(a) = p(b). Then (9) becomes

PO r (D) (D) = ¥ D)y (D) = Y1(@)y(@) + Yo (@)y,(a)].

The expression in brackets [- - -] is zero, either by (2) used as before, or more directly by
(7). Hence in this case, (7) can be used instead of (2), as claimed. This completes the
proof of Theorem 1. 2]
Application of Theorem 1. Vibrating Elastic String

The ODE in Example 2 is a Sturm-Liouville equation with p = 1, ¢ = 0, and r = 1. From Theorem 1 it follows
that the eigenfunctions y,, = sinmx (m = 1, 2, - - -) are orthogonal on the interval 0 = x = . |
Application of Theorem 1. Orthogonality of the Legendre Polynomials

Legendre’s equation is a Sturm-Liouville equation (see Example 1)

[ = x2y'] + Ay =0, X=nm+ 1)
withp =1 — xz, g = 0, and r = 1. Since p(—1) = p(1) = 0, we need no boundary conditions, but have a
singular Sturm—Liouville problem on the interval —1 = x = 1. We know that for n = 0, 1, - - -, hence
A=0,1-22-3, .-, the Legendre polynomials P,(x) are solutions of the problem. Hence these are the

eigenfunctions. From Theorem 1 it follows that they are orthogonal on that interval, that is,
1
(10) f Py(X) Py(x) dx = 0 (m#n). W

Application of Theorem 1. Orthogonality of the Bessel Functions J,(x)

The Bessel function J,,(¥) with fixed integer n = 0 satisfies Bessel’s equation (Sec. 5.5)
FHLE) + Tp@) + @ = n?)J,@) = 0,

where Jn = dJ,/dX, Jn = d2j,n/df2. In Example 1 we transformed this equation, by setting X = kx, into a
Sturm-Liouville equation

2
n
[x (k0] + (7 —+ kzx) J(kx) = 0

with p(x) = x, g(x) = —nz/x, r(x) = x, and parameter A = k2. Since p(0) = 0, Theorem | implies orthogonality
on an interval 0 = x = R (R given, fixed) of those solutions J,,(kx) that are zero at x = R, that is,

(11) J(kR) = 0 (n fixed).
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THEOREM 2

EXAMPLE 7

CHAP.5 Series Solutions of ODEs. Special Functions

[Note that g(x) = —n2/x is discontinuous at 0, but this does not affect the proof of Theorem 1.] It can be shown
(see Ref. [A13]) that J,,(¥) has infinitely many zeros, say, ¥ = a1 < Qp2 < - - (see Fig. 107 in Sec. 5.5 for
n = 0 and 1). Hence we must have

(12) kR = @y thus kpm = G m/R m=1,2,).

This proves the following orthogonality property.

Orthogonality of Bessel Functions

For each fixed nonnegative integer n the sequence of Bessel functions of the first
kind J,(ky,1%)s Jp(Kp 2%)s * with k., as in (12) forms an orthogonal set on the
interval 0 = x = R with respect to the weight function r(x) = x, that is,

R
13) J Xy () (K %) dx = 0 (j # m, n fixed).
0

Hence we have obtained infinitely many orthogonal sets, each corresponding to one of the fixed values n. This
also illustrates the importance of the zeros of the Bessel functions.

Eigenvalues from Graphs
Solve the Sturm—Liouville problem y” + Ay =0, y(0) + y'(0) =0, y(m—y'(m=0.
Solution. A general solution and its derivative are

y = A cos kx + B sin kx and y' = —Ak sin kx + Bk cos kx, k=VA

The first boundary condition gives y(0) + y'(O) — A + Bk =0, hence A = —Bk. The second boundary condition
and substitution of A = —Bk give

y(m) — y'(w) — A cos wk + B sin wk + Ak sin mk — Bk cos Tk

= —Bk cos mk + B sin mk — Bk? sin wk — Bk cos wk = 0.

We must have B # 0 since otherwise B = A = 0, hence y = 0, which is not an eigenfunction. Division by
B cos mk gives
5 —2k
—k + tank — kK tan 7k — k = 0, thus mnﬂk:?jl_'

The graph in Fig. 110 now shows us where to look for eigenvalues. These correspond to the k-values of the points
of intersection of tan 7k and the right side —2k/(l<2 — 1) of the last equation. The eigenvalues are A, = kmz,
where A = 0 with eigenfunction yo = 1 and the other A,,, are located near 22 32 42 . . . with eigenfunctions
08 kpyx and sin ky,x, m = 1, 2, - -+ . The precise numeric determination of the eigenvalues would require a
root-finding method (such as those given in Sec. 19.2).

Fig. 110. Example 7. Circles mark the intersections of tan 7k and —2k/(k* — 1)




SEC. 5.7 Sturm-Liouville Problems. Orthogonal Functions

. (Proof of Theorem 1) Carry out the details in Cases

3 and 4.

. Normalization of eigenfunctions y,, of (1), (2) means

that we multiply y,, by a nonzero constant c,,, such that
CmYm has norm 1. Show that z,, = cy,,, with any ¢ # 0
is an eigenfunction for the eigenvalue corresponding to

Ym-

. (Change of x) Show that if the functions yg(x), y;(x),

- - - form an orthogonal set on an interval a = x = b
(with r(x) = 1), then the functions yo(ct + k), y(ct + k),

-, ¢ > 0, form an orthogonal set on the interval
(a—Kklc=t= (b — k).

. (Change of x) Using Prob. 3, derive the orthogonality

of 1, cos mx, sin 7x, cos2wx, sin2ax, * -+ on
—1=x=1 (k) = 1) from that of 1, cos x, sin x,
cos 2x,sin2x, - --on —7wT=x = .

. (Legendre polynomials) Show that the functions

P,(cos 6),n = 0, 1, - - -, form an orthogonal set on
the interval 0 = 6 = 7 with respect to the weight
function sin 6.

. (Tranformation to Sturm—-Liouville form) Show that

y" 4+ fy' + (g + Ah)y = 0 takes the form (1) if you
set p = exp (ff dx), ¢ = pg, r = hp. Why would you
do such a transformation?

STURM-LIOUVILLE PROBLEMS

Write the given ODE in the form (1) if it is in a different
form. (Use Prob. 6.) Find the eigenvalues and eigenfunctions.
Verify orthogonality. (Show the details of your work.)

n

7.9" + Ay = 0, y(0) =0, y(5)=0
8.v" + Ay =0, y' () =0, y(m) =0
9.y" + Ay =0, y(0) =0, y(L)y=0
10. y" + Ay =0, y(0) = y(1), »'(0) = y'(1)
1L y" + Ay =0,  y(0)=yQ2m, y'(0) =yQ2mn
12. y" + Ay = 0, y(0) + y'(0) = 0,
y() +y'(1) =0
13. y" + Ay = 0, y(0) =0, y(l)+y'(1)=0
14. (xy')' + )\x‘l_v =0, y(l) =0, y/(e) = 0.
(Set x = ¢t))
15. x4y + (A + Da"3y = 0, y(1) = 0,
y(e™) = 0. (Set x = ¢'.)
16. y" — 2y + (A + 1)y = 0, y(0) = 0,
y(1) =0
17. y" + 8y + (A + 16)y = 0, v(0) = 0,
y(m =0
18 xy” + 2y’ + Axy = 0, y(m) =0, yQR2wm =0.
(UseaCAS orset y = x~tu.)

19.

20.

209

V' =2xh + (k2 + 2072y =0, y(1) = 0, y(2) = 0.
(UseaCAS orsety = xu.)

TEAM PROJECT. Special Functions. Orthogonal
polynomials play a great role in applications. For this
reason, Legendre polynomials and various other
orthogonal polynomials have been studied extensively;
see Refs. [GR1], [GR10] in App. 1. Consider some of
the most important ones as follows.

(a) Chebyshev polynomials'® of the first and second
kind are defined by

T, (x) = cos (n arccos x)

sin [(n + 1) arccos x]

Up(x) = —
respectively, where n = 0, 1, - - . Show that
To =1, Ti(x) = x, To(x) = 207 — 1,
Ts5(x) = 4x3 — 3x,
Uy =1, Ui(x) =2x, Uy(x) = 4x2 — 1,

Us(x) = 8x% — 4x.

Show that the Chebyshev polynomials T7,,(x) are
orthogonal on the interval —1 = x = [ with respect to

the weight function r(x) = 1/V1 —x2 (Hint. To
evaluate the integral, set arccosx = 6.) Verify that
T,(x),n=0,1,2, 3, satisfy the Chebyshev equation

(1= x2y" —xy" +n?y = 0.

(b) Orthogonality on an infinite interval: Laguerre
polynomials*! are defined by L, = 1, and

L x) = — = 1 2 @
n(X) o o0 "TLZ
Show that
Li(x) =1 — x, Ly(x) = 1 — 2x + x%2,

Ly(x) = 1 — 3x + 3x%2 — x3/6.

Prove that the Laguerre polynomials are orthogonal on
the positive axis 0 = x < % with respect to the weight
function r(x) = e™". Hint. Since the highest power in
Ly, is x™, it suffices to show that [ e™"x*L,, dx = 0 for
k < n. Do this by k integrations by parts.

1P AFNUTI CHEBYSHEV (1821-1894), Russian mathematician, is known for his work in approximation
theory and the theory of numbers. Another transliteration of the name is TCHEBICHEF.

HEDMOND LAGUERRE (1834-1886), French mathematician, who did research work in geometry and in

the theory of infinite series.
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CHAP. 5 Series Solutions of ODEs. Special Functions

5.8 Orthogonal Eigenfunction Expansions

Orthogonal functions (obtained from Sturm-Liouville problems or otherwise) yield
important series developments of given functions, as we shall see. This includes the famous
Fourier series (to which we devote Chaps. 11 and 12), the daily bread of the physicist and
engineer for solving problems in heat conduction, mechanical and electrical vibrations, etc.
Indeed, orthogonality is one of the most useful ideas ever introduced in applied mathematics.

Standard Notation for Orthogonality and Orthonormality

The integral (4) in Sec. 5.7 defining orthogonality is denoted by (Y, v,,). This is standard.
Also, Kronecker’s delta'? §,,,, is defined by 6,,,, = 0 if m # n and 3,,, = Lif m = n
(thus 8,,, = 1). Hence for orthonormal functions yg, ¥1, Y2, * * * with respect to weight
r(x) (> 0) on a = x = b we can now simply write (y,,, ¥5) = Oy Written out

b {0 if m#*n

8 O 3) = | Ym0 dx = 8 =1
a 1 it m=n.

Also, for the norm we can now write

b
@) Iyl = VG v = /| w2 dr.

Write down a few examples of your own, to get used to this practical short notation.

Orthogonal Series

Now comes the instant that shows why orthogonality is a fundamental concept. Let
Yo, V1, Vo * + - be an orthogonal set with respect to weight r(x) on an interval a = x = D.
Let f(x) be a function that can be represented by a convergent series

A3) ) = e = @)+ a0 b

m=0

This is called an orthogonal expansion or generalized Fourier series. If the y,, are
eigenfunctions of a Sturm-Liouville problem, we call (3) an eigenfunction expansion. In
(3) we use again m for summation since n will be used as a fixed order of Bessel functions.

Given f(x), we have to determine the coefficients in (3), called the Fourier constants
of f(x) with respect to yo, yy, * * * . Because of the orthogonality this is simple. All we have
to do is to multiply both sides of (3) by r(x)y,(x) (n fixed) and then integrate on both sides
from a to b. We assume that term-by-term integration is permissible. (This is justified, for
instance, in the case of “uniform convergence,” as is shown in Sec. 15.5.) Then we obtain

b b o] o
(fv Vn) = f rfyn dx = f r E AmYm | Yn dx = E am(ym» yn)
a @ m=0 m=0

121 EOPOLD KRONECKER (1823-1891). German mathematician at Berlin University, who made important
contributions to algebra, group theory, and number theory.
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EXAMPLE 1

Because of the orthogonality all the integrals on the right are zero, except when m = n.
Hence the whole infinite series reduces to the single term

@Y ) = anllyn .

Assuming that all the functions y,, have nonzero norm, we can divide by ||y, || % writing
again m for n, to be in agreement with (3), we get the desired formula for the Fourier
constants

sy L _
(4) am R Hymnz T ||ym’“2 J;lr(x)f(x)ym(x) dX (I’I’l - 0’ 1, T )

Fourier Series

A most important class of eigenfunction expansions is obtained from the periodic Sturm-Liouville problem
y” + Ay =0, y(m) = y(—m), y(m =y (—m.

A general solution of the ODE is y = A cos kx + B sin kx, where k = VA. Substituting y and its derivative
into the boundary conditions, we obtain

A cos kmm + B sinkm = A cos (—kw) + B sin (—km)

—kA sin k7 + kB cos ki = —kA sin (—k) + kB cos (—km).

Since cos (—a) = cos «, the cosine terms cancel, so that these equations give no condition for these terms. Since
sin (—a) = —sin «, the equations gives the condition sin k7w = 0, hence k77 = mm, k = m =0, 1,2, - - -, s0
that the eigenfunctions are

cos0 =1, COoS X, sin x, cos 2x, sin 2x, + -+ -, coS mx, sin mx, * -+

corresponding pairwise to the eigenvalues A = k%2=0,1,4,+--,m2 -+ (sin0=0isnotan eigenfunction.)
By Theorem 1 in Sec. 5.7, any two of these belonging to different eigenvalues are orthogonal on the interval
—m = x = 7 (note that r(x) = 1 for the present ODE). The orthogonality of cos mx and sin mx for the same
m follows by integration.
ks 1 T
f cos mx sin mx dx = 5 f sin 2mx dx = 0.
—ar

=

For the norms we get ||1] = V2, and V7 for all the others, as you may verify by integrating 1, cos? x,
sin? x, etc., from —ar to . This gives the series (with a slight extension of notation since we have two functions
for each eigenvalue 1,4, 9, - - +)

o]

(5) fx) = ag + E (ay, cos mx + b,, sin mx).
m=1
According to (4) the coefficients (with m = 1, 2, - - -) are
6 - fﬁ 1 o fﬂ dx, b, = : fﬂ i d
6) ag = 5 _,,f(X) dx; a, — = _.,,f(X) cos mx dx, by, = = _,,f(X) sin mx dx.

The series (5) is called the Fourier series of f(x). Its coefficients are called the Fourier coefficients of f(x),
as given by the so-called Euler formulas (6) (not to be confused with the Euler formula (11) in Sec. 2.2).
For instance, for the “periodic rectangular wave” in Fig. 111, given by

— | if —7<x<0
flx) = { and  f(x + 2m) = f(x),

if 0<x<m

e
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we get from (6) the values ag = 0 and

™

0
1
am = [I (—l)cosmxdx+j 1~cosmxdxj\ = 0.
—aF 0

™

0
1
by = p= l:f (—1) sinmx dx + f 1-sinmxdx]
- 0
CcOs mx v “
m 0

1 {4/(77771) ifm=1,3,--,

0 cos mx

3=

m

=T

= — [l —2cosmm+ 1] =
mm

itm=2,4--"-.

Hence the Fourier series of the periodic rectangular wave is

4 (. L .
f(x) = — |sinx+ 7 sin3x + 7 sindx+ o). 5

Fig. 111.  Periodic rectangular wave in Example 1

Fourier series are by far the most important eigenfunction expansions, so important to
the engineer that we shall devote two chapters (11 and 12) to them and their applications,
and discuss numerous examples.

Did it surprise you that a series of continuous functions (sine functions) can represent
a discontinuous function? More on this in Chap. 11.

EXAMPLE 2 Fourier—Legendre Series

A Fourier—Legendre series is an eigenfunction expansion
oc
FO) = D) amPp(®) = agPo + a1P1(x) + agPa(x) + -+ = dg T arx F ag@x® -+ -
m=0

in terms of Legendre polynomials (Sec. 5.3). The latter are the eigenfunctions of the Sturm—Liouville problem
in Example 5 of Sec. 5.7 on the interval —1 = x = 1. We have r(x) = 1 for Legendre’s equation, and (4) gives

2m + 1 .
(7 am = f F(x) Pyy(x) dx. m=0,1-""
=

7

because the norm is

1

JP()zd— -
Gl

(8) 2wl = (m =01

as we state without proof. (The proof is tricky: it uses Rodrigues’s formula in Problem Set 5.3 and a reduction
of the resulting integral to a quotient of gamma functions.)
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EXAMPLE 3

For instance, let f(x) = sin 7x. Then we obtain the coefficients

1 1
2m + 1 ) 3 . 3
Ay = (sin 7x) Py, (x) dx, thus ay = = x sin mx dx = — = 0.95493, etc.
2 1 2 J_4 T

Hence the Fourier-Legendre series of sin 7x is

sin x = 0.95493P;(x) — 1.15824P5(x) + 0.21429P5(x) — 0.01664P(x) + 0.00068Pg(x) — 0.00002Py;(x) + - - -

The coefficient of P,z is about 3 * 1077 The sum of the first three nonzero terms gives a curve that practically
coincides with the sine curve. Can you see why the even-numbered coefficients are zero? Why as is the absolutely
biggest coefficient? =
Fourier—Bessel Series

In Example 6 of Sec. 5.7 we obtained infinitely many orthogonal sets of Bessel functions, one for each of Jj,

J1. Js, - - - . Each set is orthogonal on an interval 0 = x = R with a fixed positive R of our choice and with
respect to the weight x. The orthogonal set for J,, is J,,(ky, 1%), Jp(ky, 9%), Jy(ky 3X), - - -, where n is fixed and

ky,m is given in (12), Sec. 5.7. The corresponding Fourier—Bessel series is

) flx) = E Ay Ik g X) = a1 (kyy 1%) + agy(ky, 0x) + agJy(ky, 3x) + - - - (n fixed).

m=1

The coefficients are (with a,, ,,, = ky, ,R)

R
2
(10) a :%f %00, (ke ox) d; m=1,2,---
R i) b -
because the square of the norm is
R B
(1n [ ) 12 = f 2y g 2) d = = T3 1 (kg R)
0

as we state without proof (which is tricky; see the discussion beginning on p. 576 of [A13]).

For instance, let us consider f(x) = 1 — xZand take R = 1 and n = 0 in the series (9), simply writing A for
ag - Then ky, 1y = ag = A = 2.405, 5.520, 8.654, 11.792, etc. (use a CAS or Table Al in App. 5). Next we
calculate the coefficients a,,, by (10),

- fl (1 = x*) (1) d
Uy = —5— | x(1 —x b
m le()\) o 1)
This can be integrated by a CAS or by formulas as follows. First use [xJI()\x)]' = AxJo(Ax) from Theorem 3
in Sec. 5.5 and then integration by parts,
2 fl(l ?)Jo(\y) d = [1(1 %)xJ1 ()
aym = ——5— | x(1 —x x=—— | — (0 —x%x
m 0 le()\) A 1

1
L [
- AX)(—2x) dx | .
0 o X ) Fh0-29 J

1
0
The integral-free part is zero. The remaining integral can be evaluated by [xzjz()\x)]' = A2 1(Ax) from Theorem
3 in Sec. 5.5. This gives
4J5(A) 5 y
a4y = 5.9 T = Qg )
™= 0220 ( 0,m.

Numeric values can be obtained from a CAS (or from the table on p. 409 of Ref. [GR1] in App. 1, together
with the formula Jo = 2x_1J1 — Jo in Theorem 3 of Sec. 5.5). This gives the eigenfunction expansion of
1 — x2 in terms of Bessel functions Jo. that is,

1 —x2= 1.1081J¢(2.405x) — 0.1398J(5.520x) + 0.0455J(8.654x) — 0.0210/¢(11.792x) + - - -.

A graph would show that the curve of 1 — x2 and that of the sum of the first three terms practically coincide. M




214

CHAP. 5 Series Solutions of ODEs. Special Functions

Mean Square Convergence.
Completeness of Orthonormal Sets

The remaining part of this section will give an introduction to a convergence suitable in
connection with orthogonal series and quite different from the convergence used in
calculus for Taylor series.

In practice, one uses only orthonormal sets that consist of “sufficiently many” functions,
so that one can represent large classes of functions by a generalized Fourier series (3)
certainly all continuous functions on an interval @ = x = b, but also functions that do “not
have too many” discontinuities (see Example 1). Such orthonormal sets are called “complete™
(in the set of functions considered; definition below). For instance, the orthonormal sets
corresponding to Examples 1-3 are complete in the set of functions continuous on the
intervals considered (or even in more general sets of functions: see Ref. [GR7], Secs. 3.4-3.7,
listed in App. 1, where “complete sets” bear the more modern name “total sets”).

In this connection, convergence is convergence in the norm, also called mean-square
convergence; that is, a sequence of functions f;. is called convergent with the limit f if

(12%) lim 1= £l = 0;

written out by (2) (where we can drop the square root, as this does not affect the limit)

b
(12) lim [ @U@ ~ fF dr =0,

Actordingly, the series (3) converges and represents fif

b
(13) lim [ @) — S dr = 0

where sy, is the kth partial sum of (3),

k
(14) 500 = 2 A ym).

m=0

By definition, an orthonormal set Vg, 1, - * * on an interval a = x = b is complete in
a set of functions S defined on a = x = b if we can approximate every f belonging to §
arbitrarily closely by a linear combination agyo + @11 + = = + ayyy, that is, technically,
if for every € > 0 we can find constants ag, * * *, di (with k large enough) such that

(15) If = (@oyo + - + ay)|l <€

An interesting and basic consequence of the integral in (13) is obtained as follows.
Performing the square and using (14), we first have

b b

b b
[ reotsio = foon dx = [rs2dx—2 f e, i -+ f r2 dx

b k 2 k b b
= J r \:2 amym:\ dx — 2 2 amf rfym dx + j rf? dx.
a m=0 m=0 @ @

The first integral on the right equals = a,,2 because [ ry,y; dx = 0 for m # I, and
{ry,2 dx = 1. In the second sum on the right, the integral equals a,,. by (4) with
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THEOREM 1

PROOF

EXAMPLE 4

|y |l 2 = 1. Hence the first term on the right cancels half of the second term, so that the
right side reduces to

k b
- E a,> + f rf? dx.
m=0 a

This is nonnegative because in the previous formula the integrand on the left is nonnegative
(recall that the weight r(x) is positive!) and so is the integral on the left. This proves the
important Bessel’s inequality

b

k
16) S 4’ = 1£17 = [ rf? ax (k=12
m=0

a

Here we can let k — o, because the left sides form a monotone increasing sequence that
is bounded by the right side, so that we have convergence by the familiar Theorem 1 in
App. A3.3. Hence

(a7 > a, = [IF]*
m=0
Furthermore, if yg, y1, - - - is complete in a set of functions S, then (13) holds for every

f belonging to S. By (15) this implies equality in (16) with k — oc. Hence in the case of
completeness every f in § satisfies the so-called Parseval’s equality

b
1) e T

1 Ms

0

As a consequence of (18) we prove that in the case of completeness there is no function
orthogonal to every function of the orthonormal set, with the trivial exception of a function
of zero norm:

Completeness

Let yo, y1, * - * be a complete orthonormal set on a = x = b in a set of functions S.
Then if a function f belongs to S and is orthogonal to every y,,, it must have norm
zero. In particular, if f is continuous, then f must be identically zero.

Since f is orthogonal to every y,,, the left side of (18) must be zero. If f is continuous,
then || f|| = O implies f(x) = 0, as can be seen directly from (2) with f instead of y,),
because r(x) > 0. =

Fourier Series

The orthonormal set in Example 1 is complete in the set of continuous functions on — 7 = x = . Verify directly
that f(x) = 0 is the only continuous function orthogonal to all the functions of that set.

Solution. 1Lef f be any continuous function. By the orthogonality (we can omit V27 and V),

T

f 1-f(x)dx =0, j f(x) cos mx dx = 0, f f(x) sinmx dx = 0.

Hence a,, = 0 and b,,, = 0 in (6) for all m, so that (3) reduces to f(x) = 0. &l
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This is the end of Chap. 5 on the power series method and the Frobenius method, which
are indispensable in solving linear ODEs with variable coefficients, some of the most
important of which we have discussed and solved. We have also seen that the latter are
important sources of special functions having orthogonality properties that make them
suitable for orthogonal series representations of given functions.

FOURIER—-LEGENDRE SERIES
Showing the details of your calculations, develop:

1.
3.

5.

Tx* — 6x2 2. (x + 1)?

B -x2+x-1 4. 1, x, x2, x3

Prove that if f(x) in Example 2 is even [that is,
f(x) = f(=x)], its series contains only P,,(x) with
even m.

CAS EXPERIMENTS. FOURIER-LEGENDRE

SERIES

Find and graph (on common axes) the partial sums up to
that S,,,, whose graph practically coincides with that of f{x)
within graphical accuracy. State what mq is. On what does
the size of m, seem to depend?

6.
8.
10.
12.

14.
15.

16.

17.

7. f(x) = sin 27x

9. f(x) = cos 2mx

f(x) = cos 3mx 11. f(x) = €

fx) = e 13. f(x) = (1 + x?)
f(x) = Jo(@o.1X), where agy is the first positive zero
of Jy

f(x) = Jo(ag2x), where agy is the second positive
zero of Jy

f(x) = sin mx

f(x) = cos mx

f(x) = Jy(a; 1x), where ay 1 is the first positive zero
of J;

CAS EXPERIMENT. Fourier—Bessel Series. Use
Example 3 and again take n = 10 and R = 1, so that
you get the series

19) fx) = 01J0(a0,1x) + azjo(ao,zx) + a3JO(a0,3x)

E R
with the zeros ag; @ g, - * * from your CAS (see also
Table Al in App. 5).

(a) Graph the terms Jo(ag %), = " Jo(ag 10%) for

0 = x = | on common axes.

(b) Write a program for calculating partial sums of
(19). Find out for what f(x) your CAS can evaluate the
integrals. Take two such f(x) and comment empirically

18.

on the speed of convergence by observing the decrease
of the coefficients.

(¢) Take f(x) = 1in (19) and evaluate the integrals
for the coefficients analytically by (24a), Sec. 5.5, with
v = 1. Graph the first few partial sums on common
axes.

TEAM PROJECT. Orthogonality on the Entire
Real Axis. Hermite Polynomials.'® These orthogonal
polynomials are defined by Heg(1) = 1 and

n
He,(x) = (—1)"e*2 A ey p= 1,2,
dx"
REMARK. As is true for many special functions, the
literature contains more than one notation, and one
sometimes defines as Hermite polynomials the
functions

n —12

dx"

Hit =1 HA = ()
This differs from our definition, which is preferred in
applications.

(a) Small Values of n. Show that

He,(x) = x, Hey(x) = x* — 1,

Heg(x) = X3 — 3x, Hey(x) = x* — 6x?% + 3.

(b) Generating Function. A generating function of
the Hermite polynomials is

[oe]

(20) 2 = g (o™
n=0

because He,(x) = n!a,(x). Prove this. Hint: Use the
formula for the coefficients of a Maclaurin series and
note that rx — 32 = 3x* — 3(x — H2.
(c) Derivative. Differentiating the generating function
with respect to x, show that

1) He!(x) = nHe,_1(x).

13CHARLES HERMITE (1822-1901), French mathematician, is known for his work in algebra and number
theory. The great HENRI POINCARE (1854-1912) was one of his students.

!
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Chapter 5 Review Questions and Problems

(d) Orthogonality on the x-Axis needs a weight
function that goes to zero sufficiently fast as x — *.
(Why?) Show that the Hermite polynomials are
orthogonal on —% < x < % with respect to the weight
function r(x) = ¢~%"2. Hint. Use integration by parts
and (21).

(e) ODEs. Show that

(22)  Hen(x) = xHe,(x) = Heyiq(x).

Using this with n — 1 instead of n and (21), show that
y = He,(x) satisfies the ODE

1. What is a power series? Can it contain negative or
fractional powers? How would you test for convergence?

2. Why could we use the power series method for
Legendre’s equation but needed the Frobenius method
for Bessel’s equation?

3. Why did we introduce two kinds of Bessel functions,
J and Y?

4. What is the hypergeometric equation and why did Gauss
introduce it?

5. List the three cases of the Frobenius method, giving
examples of your own.

6. What is the difference between an initial value problem
and a boundary value problem?

7. What does orthogonality of functions mean and how is
it used in series expansions? Give examples.

8. What is the Sturm-Liouville theory and its practical
importance?
9. What do you remember about the orthogonality of the
Legendre polynomials? Of Bessel functions?
10. What is completeness of orthogonal sets? Why is it

important?
11-20| SERIES SOLUTIONS

Find a basis of solutions. Try to identify the series as
expansions of known functions. (Show the details of your
work.)

11. y" =9y =0

12.(1 — 05"+ 0 —x)y —3y=0
1B3.xy" —(x+ 1y +y=0

14. x2y" — 3xy’ + 4y =0

15. y" + 4xy’ + (4x2 + 2)y =0

16. x2y" — 4xy" + X2+ 6)y =0

17. 0" + Qx + )y + x+ Dy =0

V- QUESTIONS AND PROBLEMS

217

(23) y'—xy' +ny=0.

2 ¥ .
Show that w = ¢ “ "y is a solution of Weber’s
equation'*

24 W+ m+3i-3Hw=0 @=0,1,---).

19. WRITING PROJECT. Orthogonality. Write a short
report (2-3 pages) about the most important ideas and
facts related to orthogonality and orthogonal series and
their applications.

18. (x2 — y” — 2xy’ + 2y =0
19. (x2 — Dy" +4xy" + 2y =0
20. x2y" + xy' + (4x* — Dy =0

BESSEL'S EQUATION

Find a general solution in terms of Bessel functions. (Use
the indicated transformations and show the details.)

21 x%y" + xy’ 4+ (36x%2 — )y =0 (6x = 2)

22, x2y" 4+ 5xy" + (x2 — 12)y =0 (y = u/x?
23. x2y" + xy' + 4G — 1)y =0 x% =72

24. 4x2y" — 20xy" + (4x% + 35)y =0 (y = x%u)
25. y" + k%x3%y = 0 (y = uV, 1kx? = )

26-30| BOUNDARY VALUE PROBLEMS
Find the eigenvalues and eigenfunctions.

26. y" + Ay = 0, y(0) = 0, y'(m) =0
27.y" + Ay =0, y(0) = y(1),
y'(0) = y' (1)
28. (xy') + Ax"ly =0, y(1) =0, y(e) = 0.
(Set x = eb.)
29, x2y" + xy" + (A2 = 1)y =0,
y(0) =0, y(1) =0
30. y" + Ay =0, y(0) + y'(0) = 0, yQm) =0

CAS PROBLEMS

Write a program, develop in a Fourier—Legendre series, and
graph the first five partial sums on common axes, together
with the given function. Comment on accuracy.

3. 2 (-1 =x=1)

32. sin(mx2) (-1 =x=1)
BU/A+ k) (-I1=x=1)

34. [cosmx| (-1 =x=1)

3B xif0=x=1,0if-1=x<0

L4HEINRICH WEBER (1842-1913), German mathematician.
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eries Sol

FAPTE
ution of ODEs. Special Functions

The power series method gives solutions of linear ODEs
)] Y+ ploy” + gy =0

with variable coefficients p and ¢ in the form of a power series (with any center
Xg» €.8., Xo = 0)

o

@) v =S anlx — X" = g + ar(x = xo) + a(x = x)*

m=0

Such a solution is obtained by substituting (2) and its derivatives into (1). This gives
a recurrence formula for the coefficients. You may program this formula (or even
obtain and graph the whole solution) on your CAS.

If p and ¢ are analytic at x, (that is, representable by a power series in powers
of x — xo with positive radius of convergence; Sec. 5.2), then (1) has solutions of
this form (2). The same holds if 7 p, g in

hx)y” + ploy” + gy =0

are analytic at xy and i(xy) # 0, so that we can divide by /1 and obtain the standard
form (1). Legendre’s equation is solved by the power series method in Sec. 5.3.
The Frobenius method (Sec. 5.4) extends the power series method to ODEs

5 IR

whose coefficients are singular (i.e., not analytic) at xo, but are “not too bad,”
namely, such that a and b are analytic at xo. Then (3) has at least one solution of
the form

oo

4) yx) = (x — XO)T E ap(x — xo)m = qao(x — xO)T + ay(x — XQ)T+1 TR

m=0

where 7 can be any real (or even complex) number and is determined by substituting
(4) into (3) from the indicial equation (Sec. 5.4), along with the coefficients of (4).
A second linearly independent solution of (3) may be of a similar form (with different
r and a,,’s) or may involve a logarithmic term. Bessel’s equation is solved by the
Frobenius method in Secs. 5.5 and 5.6.

“Special functions” is a common name for higher functions, as opposed to the
usual functions of calculus. Most of them arise either as nonelementary integrals
[see (24)—(44) in App. 3.1] oras solutions of (1) or (3). They get a name and notation
and are included in the usual CASs if they are important in application or in theory.




Summary of Chapter 5 219

Of this kind, and particularly useful to the engineer and physicist, are Legendre’s
equation and polynomials Py, P, - -- (Sec. 5.3), Gauss’s hypergeometric
equation and functions F(a, b, ¢; x) (Sec. 5.4), and Bessel’s equation and
functions J, and Y, (Secs. 5.5, 5.6).

Modeling involving ODEs usually leads to initial value problems (Chaps. 1-3)
or boundary value problems. Many of the latter can be written in the form of
Sturm-Liouville problems (Sec. 5.7). These are eigenvalue problems involving
a parameter A that is often related to frequencies, energies, or other physical
quantities. Solutions of Sturm-Liouville problems, called eigenfunctions, have
many general properties in common, notably the highly important orthogonality
(Sec. 5.7), which is useful in eigenfunction expansions (Sec. 5.8) in terms of cosine
and sine (“Fourier series”, the topic of Chap. 11), Legendre polynomials, Bessel
functions (Sec. 5.8), and other eigenfunctions.
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CH-AP-TER 6

Laplace Transforms

The Laplace transform method is a powerful method for solving linear ODEs and
corresponding initial value problems, as well as systems of ODEs arising in engineering.
The process of solution consists of three steps (see Fig. 112).

Step 1. The given ODE is transformed into an algebraic equation (“‘subsidiary
equation”).

Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given

problem.
IVP AP Solving Solution
Initial Value Algebraic AP of the
Problem @ Problem @ by Algebra @ VP

Fig. 112.  Solving an IVP by Laplace transforms

Thus solving an ODE is reduced to an algebraic problem (plus those transformations).
This switching from calculus to algebra is called operational calculus. The Laplace
transform method is the most important operational method to the engineer. This method
has two main advantages over the usual methods of Chaps. 1-4:

A. Problems are solved more directly, initial value problems without first determining
a general solution, and nonhomogeneous ODEs without first solving the corresponding
homogeneous ODE.

B. More importantly, the use of the unit step function (Heaviside function in
Sec. 6.3) and Dirac’s delta (in Sec. 6.4) make the method particularly powerful for
problems with inputs (driving forces) that have discontinuities or represent short impulses
or complicated periodic functions.

In this chapter we consider the Laplace transform and its application to engineering
problems involving ODEs. PDEs will be solved by the Laplace transform in Sec. 12.11.

General formulas are listed in Sec. 6.8, transforms and inverses in Sec. 6.9. The
usual CASs can handle most Laplace transforms.

Prerequisite: Chap. 2
Sections that may be omitted in a shorter course: 6.5, 6.7
References and Answers to Problems: App. 1 Part A, App. 2.
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6.1 Laplace Transform. Inverse Transform.
Linearity. s-Shifting

EXAMPLE 1

If £(1) is a function defined for all + = 0, its Laplace transform’ is the integral of f(7)
times e~ from t = 0 to . It is a function of s, say, F(s), and is denoted by £(f); thus

co

@) My By fo e ) de.

Here we must assume that f(¢) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

Not only is the result F(s) called the Laplace transform, but the operation just described,
which yields F(s) from a given f(¢), is also called the Laplace transform. It is an “integral
transform”

s} = fo s, DF (D) dr

with “kernel” k(s, 1) = e~
Furthermore, the given function f(¢) in (1) is called the inverse transform of F(s) and
is denoted by P~YF); that is, we shall write

(1*) f® = L7UF).
Note that (1) and (1¥*) together imply £~1(£L(f)) = f and L(L~'(F)) = F.

Notation

Original functions depend on ¢ and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same letters in
capital, so that F(s) denotes the transform of f(¢), and Y(s) denotes the transform of y(r),
and so on.

Laplace Transform
Let f(r) = 1 when t = 0. Find F(s).

Solution. From (1) we obtain by integration

80 oo

1
() = L) = f eStdr=— — ¢t = — (s > 0).
0 N 0 s

TPIERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements, see Ref. [GR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850-1925) and were often called “Heaviside calculus.”

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we
wrote L(f) instead of L(f)(s) and in (1*) L7L(F) instead of L~1(F)(1).
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EXAMPLE 2

THEOREM 1

PROOF

EXAMPLE 3

CHAP. 6 Laplace Transforms

Our notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite.
Such an integral is called an improper integral and, by definition, is evaluated according to the rule

o 7
f ¢S f( dr = lim f St (r) dr.
0 T—oo 0

Hence our convenient notation means

. 1 T | 1 1
f =St dr = lim [- — e_St:l = lim [~ — T+ — eo] = — (s > 0).
0 T—o0 s 0 T—o0o N N N

We shall use this notation throughout this chapter. ||

Laplace Transform £(e™) of the Exponential Function ™
Let f() = ¢ when t = 0, where a is a constant, Find £L(f).

Solution. Again by (1),

Q3 5]

i(eat) = J- e—steat dr = e—(s——a)t
0

a — S 0

hence, when s — a > 0,

P = | |

s—a’

Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? The answer is no. And the reason is that new transforms can
be found from known ones by the use of the many general properties of the Laplace
transform. Above all, the Laplace transform is a “linear operation,” just as differentiation
and integration. By this we mean the following.

T Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions f(t) and g(1) whose
transforms exist and any constants a and b the transform of af(t) + bg(t) exists, and

Plaf®) + bg)} = aL{f(D} + bE{g®}.

By the definition in (1),

oc

Plaf() + bg(n)} = fo e~Maf(t) + bg(n)] di

Il

a [ etfwdi+ b] e g di = alf0) + bEg). W
0 0

Application of Theorem 1: Hyperbolic Functions

Find the transforms of cosh at and sinh at.

Solution. Since cosh ar = (e + ¢~ and sinhar = (™ — e~ %), we obtain from Example 2 and
Theorem 1

1 1 8
F(cosh at) = 5(§€(eat) + Pe™ W) = E( ! + : ) e ’ 5
s

1 1 1 1
P(sinh at) = 7(2(6‘”) — Pe”My) = j( : - ) = ¢ 5 i}
2 2 5
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EXAMPLE 4

Cosine and Sine

Derive the formulas

5 -

s
SLcos wt) = 54—
32 +

¢ @)
5 (sin wt) = 50—
+ w2 sz

Solution by Calculus. We write L, = ¥(cos wt) and Ly = £(sin wt). Integrating by parts and noting that the
integral-free parts give no contribution from the upper limit %, we obtain

e—-St

L, = f et cos wr dt = cos wt
—s
0

(o e]
[0} —st . 1 ®
= == e Vsinwtdt = — — —Lg,
s Jy s s

co
0

—St.
et

sin wr
—-S

oo o]
o) _ ®
+ = e 'coswtdt = —Lg.
0 s Jg s

oo
L, = f ¢St sin wrdt =
0

By substituting Lg into the formula for L, on the right and then by substituting L, into the formula for Ls on
the right, we obtain

2
L—1 d wL L l+w— *l L“_S—
c“s 5 Pty e 52 —S’ 6732+w2’
2
w (1 ® %) ® 9}
S CRE LA RN (RS B S s

Solution by Transforms Using Derivatives. ~See next section.

Solution by Complex Methods. In Example 2, if we set a = iw with i = V —1, we obtain

1 s+ iw s+ iw 5 0]

— = —— — = = + i ;
s — iw (s — iw)(s + iw) 2+ o? 2+ o 2+ o

&Q(eiu)t) _

Now by Theorem 1 and &t = cos wt + i sin wt [see (11) in Sec. 2.2 with wt instead of ] we have

P = P(cos ot + isin wf) = L(cos wt) + i L(sin wi).

If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formal
calculation can be justified in the theory of complex integration.) E

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n = 0 because of Example 1 and 0! = 1. We make the induction hypothesis that it holds
for any integer n = 0 and then get it for n + 1 directly from (1). Indeed, integration by
parts first gives

Qo oo

n+1 i
+ fest”dt.
0 § 0

(ee]

1
ig(tn+1) — f e—sttn+1 dl — _E_Stln+1
0 N

Now the integral-free part is zero and the last part is (n + 1)/s times £(t™). From this
and the induction hypothesis,

o n+1 n n+1 n! (n + 1!
Lt 1)=T$(t): T = .

sn+1 Sn+2

This proves formula 4.




224

THEOREM 2

CHAP. 6 Laplace Transforms

Table 6.1 Some Functions f(t) and Their Laplace Transforms ZLA(f)

f@® £(f) f@® $(f)
1 1 1 7 i &
s cos .
5 ‘ 1/s? 8 sin w? =
2+ o
3 2 21/s3 9 cosh at u
2 2
4 3 ! 10 inh =
n=0,1,-"") gl sinh at 2 — a2
¢ '@+ 1) ut s—a
5 (a positive) Tt 11 € cos wt G- af + o
6 % ! 12 €™ sin wt S
s —a (s — a)?® + w?

I'(a + 1) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in
App. A3.1]. We get formula 5 from (1), setting st = x:

P = J:Oe_stta i = foe_x (i)a & _ L f“e_xxa 2

0 N N N 0

where s > 0. The last integral is precisely that defining T'(a + 1), so we have
T(a + 1)/s**1, as claimed. (CAUTION! I'(a + 1) has x* in the integral, not x**L)
Note the formula 4 also follows from 5 because I'(n + 1) = n! for integer n = 0.
Formulas 610 were proved in Examples 2—4. Formulas 11 and 12 will follow from 7
and 8 by “shifting,” to which we turn next.

s-Shifting: Replacing s by s — a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(1),
we can immediately get that of e f(1), as follows.

First Shifting Theorem, s-Shifting

If {(¢) has the transform F(s) (where s > k for some k), then e f(t) has the transform
F(s — a) (where s —a > k). In formulas,

a i e )
or, if we take the inverse on both sides,

iy = HEG — a))-
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PROOF

EXAMPLE 5

We obtain F(s — a) by replacing s with s — a in the integral in (1), so that
F(s —a) = f e~ dt = f e~ S e f()] dt = L{e™f(1)}.
0 0

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for
s — a > k. Now take the inverse on both sides of this formula to obtain the second formula
in the theorem. (CAUTION! —a in F(s — a) but +a in e®f(1).) &
s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

s —a w

Plecoswt) = ——5—5 , Plesinwt} = —5— .
{ I & — a)2 + ) (s — a)2 + @

For instance, use these formulas to find the inverse of the transform

3s — 137

Pf) = 59— .
& s2 + 25 + 401

Solution. Applying the inverse transform, using its linearity (Prob. 28), and completing the square, we obtain

- 5,9—1{ 3(s + 1) — 140} - 33)_1{ s+ 1 } 7$_1{ 20 }
f= (s + 12 + 400 "l s+ )2+ 202 s+ D2 +20% ]

We now see that the inverse of the right side is the damped vibration (Fig. 113)

f(t) = %3 cos 207 — 7 sin 207). H

Fig. 113. Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(r) has a Laplace transform if it does not grow too fast, say, if for all
t = 0 and some constants M and k it satisfies the “growth restriction”

2) lf()] = Me™.
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(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be k7, not kt? or similar.)

f(r) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(f) is piecewise continuous on a finite interval
a =t = b where f is defined, if this interval can be divided into finitely many subintervals
in each of which f is continuous and has finite limits as ¢ approaches either endpoint of such
a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the only possible
discontinuities, but this suffices in most applications, and so does the following theorem.

Fig. 114. Example of a piecewise continuous function f(t).
(The dots mark the function values at the jumps.)

THEOREM 3 Existence Theorem for Laplace Transforms

If f(t) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t = 0 and some constants M and k, then the Laplace
transform L(f) exists for all s > k.

PROOF Since f(?) is piecewise continuous, eStf() is integrable over any finite interval on the
f-axis. From (2), assuming that s > k (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of ¥£(f) from

oo

j et (r) dt Jid]
0

|2 = 7

= fo lfle™ dt = fo Merte™st dt =

Note that (2) can be readily checked. For instance, cosh f < et, 1™ < nle! (because t"/n!
is a single term of the Maclaurin series), and so on. A function that does not satisty (2)
for any M and k is s (take logarithms to see it). We mention that the conditions in
Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

LAPLACE TRANSFORMS 3. cos 2t 4. sin 41

Find the Laplace transforms of the following functions. 5. e®' cosh 1 6. ¢~ " sinh 5¢
Show the details of your work. (a, b, k, w, 6 are constants.) 7. cos (wt + 6) 8. sin (3r — 3)
112 -2 2. (1> = 3)? 9. 3720t 10. —8 sin 0.2¢
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11. sin ¢ cos ¢ 12. (+ + 1)?
13. 14.
k—— k- —
l f i
b a b
15 | | 6.
' L
5 b
17. 18.
b an
\ : |
\ |
| b
b
19. 20.
| - 1
| |
| | 1 2
1 e

21. Using £(f) in Prob. 13, find £(f,), where f,(¢) = 0 if
t=2and f;(t) = 1ifr> 2.

22. (Existence) Show that £(1/V1) = Vals. |[Use
B0O)T@) = Vrin App. 3.1.] Conclude from this that
the conditions in Theorem 3 are sufficient but not
necessary for the existence of a Laplace transform.

23. (Change of scale) If £(f(r)) = F(s) and c¢ is any
positive constant, show that £(f(ct)) = F(s/c)/c. (Hint:
Use (1).) Use this to obtain £(cos wf) from £(cos 7).

24. (Nonexistence) Show that ¢ does not satisfy a
condition of the form (2).

25. (Nonexistence) Give simple examples of functions
(defined for all x = 0) that have no Laplace transform.

26. (Table 6.1) Derive formula 6 from formulas 9 and 10.

27. (Table 6.1) Convert Table 6.1 from a table for finding

transforms to a table for finding inverse transforms (with
obvious changes, e.g., £71(1/s™) = "~ Y(n — 1)), etc.).

227

28. (Inverse transform) Prove that £7! is linear. Hint.
Use the fact that & is linear.
29-40| INVERSE LAPLACE TRANSFORMS

Given F(s) = £L(f), find f(z). Show the details. (L, n, k, a,
b are constants.)

4s — 37 2s + 16
29, JEp) 30. 216

st =352+ 12 10
31. 5—5 32. m

nwl 20
B Ee e e
35 8 6> KD
t o524+ 4s 'k=1 s+ k?
1 18s — 12

37.

(s — V3)s + V9) 38. 952 — |
1 1 1

39, ——— —  —
s2+5 s+5 0 (s + a)s + b)

41-54| APPLICATIONS OF THE FIRST SHIFTING
THEOREM (s-SHIFTING)

In Probs. 41-46 find the transform. In Probs. 47-54 find

the inverse transform. Show the details.

41. 3.8t 42. —3tte05¢

43. 5¢79 sin wt 44, 73 cos mt

45. ¢ *(q cos ¢ + b sin 1)

46. e (ay + ayt + - - - + a,t™)
7 T
47. ﬁ(s — 1)3 48. —(s n 77)2
o VB 50, 0
T s+ V2P BCE Vah
15 4s — 2
s 2+ 4s + 29 52. s2— 65+ 18
T 25 — 56
53. 54.

s2 + 10ms + 24477 s2—4s — 12

6.2 Transforms of Derivatives and Integrals.

ODEs

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforms. Roughly, differentiation of f(t) will correspond to multiplication of L(f)
by s (see Theorems 1 and 2) and integration of f(¢) to division of £(f) by s. To solve
ODEs, we must first consider the Laplace transform of derivatives.
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THEOREM 1

PROOF

THEOREM 2

EXAMPLE 1

CHAP. 6 Laplace Transforms

Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(¢) satisfy

1) 2 - s i - [0
2 Ly = SPLU) —osf Q)= £/ O):

Formula (1) holds if f(t) is continuous for all t = 0 and satisfies the growth restriction
(2) in Sec. 6.1 and f '(1) is piecewise continuous on every finite interval on the semi-
axis t = 0. Similarly, (2) holds if f and £ are continuous for all t Z 0 and satisfy
the growth restriction and f" is piecewise continuous on every finite interval on the
semi-axis t = 0.

We prove (1) first under the additional assumption that f " is continuous. Then by the
definition and integration by parts,

oc

Py = fo eStf (1) di = [ D)

o oo

+s f e S (1) dt.
0

0

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes — f(0). The last integral is L(f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence L(f ") exists when s > k and (1) holds.
If ' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of f must be broken up into parts such that f " is continuous in each such part.
The proof of (2) now follows by applying (1) to f " and then substituting (1), that is

D) = sL(F) — £10) = ssLF) — O = s*£(f) — sf(0) = £(0). u

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

Laplace Transform of the Derivative f ") of Any Order

Let f, ', -+, £~V pe continuous for all t = 0 and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let ™ be piecewise continuous on every finite interval
on the semi-axis t = 0. Then the transform of f™ satisfies

) P(F®) = s"L(F) — THO) = SmTEH©O) = - = fOTR0).

Transform of a Resonance Term (Sec. 2.8)

Let f(r) = ¢ sin wt. Then f(0) = 0, f'(t) = sin ot + w1 cos wt, f(0) =0, " =2wcos wt — @t sin ot. Hence
by (2),

" =2 — PLf) = 2L th F(f) = Lt sin wt) = _ ey ]
ws2+w2 $ ’ o 0= (Smw)_(52+w2)2-
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EXAMPLE 2

THEOREM 3

PROOF

EXAMPLE 3

Formulas 7 and 8 in Table 6.1, Sec. 6.1

This is a third derivation of £(cos wr) and £(sin wr); cf. Example 4 in Sec. 6.1. Let f(f) = cos wt. Then

f0) =1, £(0) = 0, £(t) = — e cos wt. From this and (2) we obtain

P = széﬁ(f) —5=— 2§E(f). By algebra, $(cos wt) = —5 5 -
7+ w

Similarly, let g = sin wt. Then g(0) = 0, g' = w cos wt. From this and (1) we obtain

w
= =

Pg") = sL(g) = w&(cos wi). Hence L(sin wt) = Twif(cos o) = — .
] s 1%

Laplace Transform of the Integral of a Function

Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function f(z) (roughly) corresponds to multiplication of its
transform £(f) by s, we expect integration of f() to correspond to division of £(f) by s:

Laplace Transform of Integral

Let F(s) denote the transform of a function f(t) which is piecewise continuous for
t = 0 and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and
t>0,

2 1 . 0
) 17 f Ho drt — ) s f e e
0 N 0 s

Denote the integral in (4) by g(#). Since f(¢) is piecewise continuous, g(f) is continuous,
and (2), Sec. 6.1, gives

¢ t M M
= f |f(n)| dr = Mfe’”dT: — (= 1) = — (k > 0).
0 0 k

lg()| = Z

fotf(f) dr

This shows that g(7) also satisfies a growth restriction. Also, g'(f) = f(£), except at points
at which f(7) is discontinuous. Hence g'(f) is piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = O (the integral from O to 0 is zero)

L{f0) = L' ) = sL{g®) — g0) = sL{g®)}.

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides. ]

Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9

1
Using Theorem 3, find the inverse of and .
5 s(s2 + wz) 52(32 + wz)

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

t
1 sin wt 1 sin T 1
if_l{ 5 5 } = 5 gt > 5 } = f dr = —5 (1 — cos wt).
$5 o w (0] s(s© + o) 0 @ (0]
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This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20 in
Sec. 6.9:

t . .
o1 1 1 J a ) T sin w7 " t sin ot
-5 o (= 5 —coswn)dr=| —5 — = — - .
Sz(s2 ca wz) o? 0 o WP o o? o®

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction.

Differential Equations, Initial Value Problems

We shall now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

) 22 Fay by = ) ¥(0) = Ko, y'(0) = K,

where a and b are constant. Here r(f) is the given input (driving force) applied to the
mechanical or electrical system and y(¢) is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = () obtained by transforming (5) by means of (1) and (2), namely,

[s2Y — sy(0) — y'(0)] + alsY — y(0)] + bY = R(s)
where R(s) = £(r). Collecting the Y-terms, we have the subsidiary equation

(s> + as + b)Y = (s + a)y(0) + y'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s2 4+ as + b and
use the so-called transfer function

1 1
6 — = .
(6) o(s) s2+as+b (s+ia+b-2a

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

Q) Y(s) = [(s + a)y(0) + y'(0)]0(s) + R()Q(s)-

If y(0) = y'(0) = 0, this is simply ¥ = RQ; hence

Y Y(output)

g 5 Z(input)

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £~X(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(r) = &£~ YY) of (5).
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EXAMPLE 4

EXAMPLE 5

Initial Value Problem: The Basic Laplace Steps
Solve

Yi—y=t y0) = 1, Y =1
Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = £(y)]

s2Y — sy(0) — y'(0) — ¥ = 1/s%, thus 2= DY=s+1+ 1s%

Step 2. The transfer function is Q = 1/(s2 — 1), and (7) becomes
s+ 1 1

+ .
s2—1  s%sZ-1)

1
Y=G+1D0+ 5 Q=
N

Simplification and partial fraction expansion gives

v 1 1 1
== + cam e )
5= 2 -1 52

Step 3. From this expression for ¥ and Table 6.1 we obtain the solution

1 1 1
() = ¢~ Yy = if_l{ﬁ} 58_1{—2‘—1} — if—l{‘z} = ¢t + sinht — 1.
- §9 = s

The diagram in Fig. 115 summarizes our approach.

t-space s-space

Given problem
J 9= _———
y(0) =1
y(0) =1

Subsidiary equation
(s2-1)Y=s+1+1/s?

|

Solution of given problem Solution of subsidiary equation
y(t) = et +sinh¢ -t [ . 11
= — =
s—-1 s2-1 ¢?

Fig. 115. Laplace transform method

Comparison with the Usual Method

Solve the initial value problem

Y +y +9y =0, y(0) = 0.16, y'(0) = 0.

Solution. From (1) and (2) we see that the subsidiary equation is
52Y = 0.165s + s¥ — 0.16 + 9Y = 0, thus
The solution is

0.16(s + 1) 0.16(s + 3) + 0.08
Y= = —
F+s+8 (s +3)° + %

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

35 0.08 35
1 t/2 .
= = . —1t+ —
y)y=%£"(Y)=e (0 16 cos ,/ t == sin t)

= ¢795%0.16 cos 2.96f + 0.027 sin 2.96%).

This agrees with Example 2, Case (III) in Sec. 2.4. The work was less.

2+ 5+ 9Y=016( + 1).
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EXAMPLE 6

CHAP. 6 Laplace Transforms

Advantages of the Laplace Method
1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.
2. Initial values are automatically taken care of. See Examples 4 and 5.

3. Complicated inputs r(t) (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.

Shifted Data Problems

This means initial value problems with initial conditions given at some ¢ = o > 0 instead of + = 0. For such
a problem set r = 7 + fp, so that t = fo gives 7 = 0 and the Laplace transform can be applied. For instance,

solve
"

+y=2t y(%ﬂ') = %'n', y'(iﬂ') =2-V2.

Solution. We have 1y = jmand we sett =7 + L. Then the problem is
¥+ =27+ g, 30) = 3, Yo =2-V2

where (7) = y(z). Using (2) and Table 6.1 and denoting the transform of y by Y, we see that the subsidiary
equation of the “shifted” initial value problem is

- - 2 La =4 2 im 1
T —slm—@2-V)+FP =" +22, thus (P+DF=F+2-+ -m+2-V2
2 2 s 52 s 2
Solving this algebraically for Y, we obtain
~ 2 im 1ms 2-V2
Y ="— 2 T T2 T 3 2
(s + s (s“ + s sT+ 1 s+ 1

The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos
and sin,

y=97Y¥) =27 - sin?) + 371 — cosT) + gmcosi + (2 — V?2) sin 7
=2+ 17— V2sini.

N o 1
Now =1t — im sinf = W(sint — cos 1), so that the answer (the solution) is

y =2t —sint + cost. ]
PROBLEM SET 6.2
OBTAINING TRANSFORMS BY expressing cos2ir in terms of cost, (b) by using
DIFFERENTIATION Prob. 3.
Using (1 2), find L(f) if f(z Is:
. tg L) BE{E, Bl S0 1 fz()te‘i“aSt 10-24]  INITIAL VALUE PROBLEMS
e . 1 COS
L2 4 5 Solve the following initial value problems by the Laplace
: s%n 2w - Cos 277-1[ transform. (If necessary, use partial fraction expansion as
. sinh” at 6. cosh” 51 in Example 4. Show all details.)
. .
t sin St 8. sin* 7 (Use Prob. 3.) 10. y/ + 4y =0, y(0) = 2.8
. (Derivation by different methods) It is typical that ~ 11. y' + 3y = 17 sin21, y(0) = —1
various transforms can be obtained by several methods. 12. y" =y — 6y =0, y(0) = 6,

Show this for Prob. 1. Show it for $(cos®1f) (a) by y'(0) = 13
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13.y" -3 =0,

14. y" — 4y" + 4y =0,
y'(0) = 3.9
15. y" + 2y’ + 2y
y'(0)= -3

16. y" + ky' — 2k%y = 0,
y'(0) = 2k

17. y" + 7y + 12y = 21*,
y'(0) = ~10

18. y" + 9y = 10e7F, y(0) = 0,

19. y" + 3y’ + 2.25y = 91 + 64,
y'(0) = 31.5

20. y" - 6y' + Sy = 29 cos 2t,
y' (0) = 6.2

21. (Shifted data) y’ — 6y = 0,

22.y" =2y =3y =0,
y'(1) = -17

23. y" + 3y’ — 4y = 6>'72,
y'(1) =5

24. y" + 2y + 5y
y'(3) = 14

y(0) = 4, y'(0) =0
y(0) = 2.1,

0, y(0) =1,
y(0) =2,
y(0) = 3.5,

y'(0)=0
y(0) =1,

y(0) = 3.2,

y(2) =4
y(1) = =3,

y(1) = 4,

50t — 150, y(3) = —4,

25. PROJECT. Comments on Sec. 6.2. (a) Give reasons

why Theorems 1 and 2 are more important than
Theorem 3.
(b) Extend Theorem 1 by showing that if f(¢) is
continuous, except for an ordinary discontinuity (finite
jump) at some ¢ = a (>0), the other conditions
remaining as in Theorem 1, then (see Fig. 116)

%) L(f') = s&L(f) = f0) — [fa + 0) = fa = )]

(c) Verify (1#%) for f(f) = ¢ "if 0 < ¢t < 1 and 0 if
t>1.

(d) Verify (1*) for two more complicated functions of
your choice.

(e) Compare the Laplace transform of solving ODEs
with the method in Chap. 2. Give examples of your
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own to illustrate the advantages of the present method
(to the extent we have seen them so far).
@ |
i /f (a-0)

L fa+0)
|

|
1
0 a t
Fig. 116. Formula (1*)

26. PROJECT. Further Results by Differentiation.
Proceeding as in Example 1, obtain

s2_w2

(52 + 0?)?

(a) £L(t cos wi) =

and from this and Example 1: (b) formula 21, (c) 22,
(d) 23 in Sec. 6.9,

s% + a?
(e) L(tcoshat) = m s

2as
(82 _ a2)2 .

(f) &L(tsinhar) =

OBTAINING TRANSFORMS BY

INTEGRATION
Using Theorem 3, find f() if £(f) equals:
1 10
2. 2+ 52 28. §3 — ars?
1 1
2. §3 — ks? % st + 52
5 2
3. s3 — 55 o s34+ 9s
1 1
=k st — 452 34. st + P2

35. (Partial fractions) Solve Probs. 27, 29, and 31 by
using partial fractions.

6.3 Unit Step Function. t-Shifting

This section and the next one are extremely important because we shall now reach the point
where the Laplace transform method shows its real power in applications and its superiority
over the classical approach of Chap. 2. The reason is that we shall introduce two auxiliary
functions, the unit step function or Heaviside function u(t — a) (below) and Dirac’s delta
8(t — a) (in Sec. 6.4). These functions are suitable for solving ODEs with complicated
right sides of considerable engineering interest, such as single waves, inputs (driving forces)
that are discontinuous or act for some time only, periodic inputs more general than just
cosine and sine, or impulsive forces acting for an instant (hammerblows, for example).
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Unit Step Function (Heaviside Function) u(t — a)

The unit step function or Heaviside function u(t — a) is 0 for 7 < a, has a jump of size
1 at t = a (where we can leave it undefined), and is 1 for t > a, in a formula:

0 ift<a
€)) u(t — a) ={ (a = 0).
1 ift>a

Figure 117 shows the special case u(f), which has its jump at zero, and Fig. 118 the general
case u(r — a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.)
The transform of u(r — a) follows directly from the defining integral in Sec. 6.1,

oo o —st |

Llut —a)} = f e Stu(t — a)dt = J’ eSteldt = — € .
0 a

S t=a

here the integration begins at r = a (= 0) because u(t — a) is 0 for t < a. Hence

—as

@) Plut — @)} = =

(s > 0).
s

The unit step function is a typical “engineering function” made to measure for
engineering applications, which often involve functions (mechanical or electrical
driving forces) that are either “off” or “on.” Multiplying functions f(#) with u(t — a),
we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119
and 120. In Fig. 119 the given function is shown in (A). In (B) it is switched off
between = 0 and ¢ = 2 (because u(t — 2) = 0 when t < 2) and is switched on
beginning at ¢t = 2. In (C) it is shifted to the right by 2 units, say, for instance, by 2 secs,
so that it begins 2 secs later in the same fashion as before. More generally we have the
following.

Let f(t) = O for all negative t. Then f(t — a)u(t — a) with a > 0 is f(t) shifted
(translated) to the right by the amount a.

Figure 120 shows the effect of many unit step functions, three of them in (A) and
infinitely many in (B) when continued periodically to the right; this is the effect of a
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make
sure that you fully understand these figures, in particular the difference between parts B)
and (C) of Figure 119. Figure 119(C) will be applied next.

u(t) u(t—a)

I 1 —

|
I
~ I
0 t 0 a t
Fig. 117. Unit step function u(t) Fig. 118.  Unit step function u(t — a)
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f@

5H 5 -
0 | L 0 !
T2 t 2nw 2t 2 w42 2m+2 t

5F v 5k U -5

(A) f(t)=5sint B) fOut-2) (C) flt-2u(t-2)

Fig. 119. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.

e A

0 2 4 6 8 10 t

(A) Elu(t—1)—2u(t —4) + ult - 6)] (B) 4 sin (ént)[u(t) —ult-2)+ult—4)—+ -]

Fig. 120. Use of many unit step functions.

Time Shifting (t-Shifting): Replacing t by t — a in f(t)

The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms F(s) = L{f(r)}
and F(s — a) = L{e™f(1)}. The second shifting theorem will concern functions f(¢) and
f(t — a). Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

THEOREM 1 Second Shifting Theorem; Time Shifting
If f(¢) has the transform F(s), then the “shifted function”

~ 0 ift<a
(3) f(l)=f(f“a)u(t—a)_{
flt — a) ift>a

has the transform e~ “*F(s). That is, if £{f(®)} = F(s), then
“4) L@ — a)u(® — a)} = e *F(s).
Or, if we take the inverse on both sides, we can write

(4%) ft — a)u(t — a) = L7 H{e SF(s)).

Practically speaking, if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by e, In Fig. 119, the transform of 5 sin ¢ is F(s) = 5/(s> + 1), hence the shifted
function 5 sin (+ — 2) u(t — 2) shown in Fig. 119(C) has the transform

e"BF(s) = 5¢725/(s% + 1).
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EXAMPLE 1

CHAP. 6 Laplace Transforms

We prove Theorem 1. In (4) on the right we use the definition of the Laplace transform,
writing 7 for ¢ (to have ¢ available later). Then, taking e~ inside the integral, we have

oo oo

F(s) = o [ e dr = | e () dn
0 0

Substituting 7+ a = t,thus 7=t — a, dr = dt, in the integral (CAUTION, the lower limit
changes!), we obtain

oo

e”“F(s) = J e~SHf(t — a) dr.

a

To make the right side into a Laplace transform, we must have an integral from 0 to oo,
not from a to %. But this is easy. We multiply theNintegrand by u(t — a). Then for ¢ from
0 to a the integrand is 0, and we can write, with f as in (3),

o0

e~ BF(s) = f e (t — a)u(t — a) dt = f et (1) dt.
0 0

(Do you now see why u(t — a) appears?) This integral is the left side of (4), the Laplace
transform of f(#) in (3). This completes the proof. 23]

Application of Theorem 1. Use of Unit Step Functions
Write the following function using unit step functions and find its transform.
2 ifo<t<l1
) = 436

cos t if

ifl<t<im (Fig. 121)

> %77.
Solution. Step 1. In terms of unit step functions,
fo =21 —u@— 1)+ %tz(u(z - 1) —u(t— %77)) + (cos Hu(t — '%77).

Indeed, 2(1 — u(t — 1)) gives f(r) for 0 < ¢ <1, and so on.

Step 2. To apply Theorem 1, we must write each term in f(7) in the form f(r — @)u(r — a). Thus, 2(1 — u(t — 1)
remains as it is and gives the transform 2(1 — e~ *%)/s. Then

ol L2 -1 X 4 e - Dt = Ll i)
2tu(t )= 2(: ¥+ 1 2u(t )—S3 2T

ooy bt 2 29

Together,

2 2 1 1 1\ . 1 ™ 7\ 1
if(f)=?—;e +S—3+S—2+ge Nzt 73t g )e - 5
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If the conversion of f(7) to f(r — a) is inconvenient, replace it by
(4%%) E{f@Qut — o)} = e 2E{f(t + a)}.
(4**) follows from (4) by writing f(t — a) = g(¢), hence f(f) = g(t + a) and then again writing f for g. Thus,

iz_ _-sl 2 _ -—s i2 l,—sl LL
if{ztu(t 1)}—e ${2(z+1) =e §£2z +z+2 = e s3+52+25

as before. Similarly for i{%tzu(z‘ =~ %77)}. Finally, by (4*%),

1 1 1
.SE{costu(t ~ )} = e_mlzﬁf{cos (t + Ew)} = e ™R pl—sint) = —e ™R —32 T H

@
2
1
0 | | \/I_\ /I\A |
1 2m A
-1

Fig. 121.  f(t) in Example 1

EXAMPLE 2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform f(z) of
—s e—2s e—3s
+

F(s) = . .

52+ 7P 2+ 7P {5+ 2)2

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses
(sin 77t)/7r, (sin 7rt)/7r, and te~2! because 1/s2 has the inverse ¢, so that /(s + 2)2 has the inverse e ™2 by the

first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (z-shifting),

L L. —2¢-3)
f® = ; sin (7r(t — 1)) u(t — 1) + ; sin (7r(t — 2)) u(t — 2) + (t — 3)e u(t — 3).

Now sin (7t — 1) = —sin 7t and sin (71 — 27) = sin ¢, so that the second and third terms cancel each other

when ¢ > 2. Hence we obtain f(f) = 0if 0 < ¢ < 1, —(sin f)/mif 1 <t <2,0if2<¢<3,and (t — 3)e 2%

if £ > 3. See Fig. 122. i
0.

3
0.2
0.1 /\
0 | |
0 1 2 3 4 5 6 ¢

Fig. 122.  f(t) in Example 2

EXAMPLE 3 Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(¢) in the RC-circuit in Fig. 123 if a single rectangular wave with voltage Vj is applied. The
circuit is assumed to be quiescent before the wave is applied.
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CHAP. 6 Laplace Transforms

v(?) i)

{___AAA,___ ) [__\ - N
R 0 a b t 6} a bV t

Fig. 123. RC-circuit, electromotive force v(t), and current in Example 3

Solution. The input is Volu(t — @) — u(t — b)]. Hence the circuit is modeled by the integro-differential
equation (see Sec. 2.9 and Fig. 123)

t

. qt) . 1 f . B _
Ri(t) + — = Ri() + — | (D dr = v(®) = Volut — a) — u(t — b))
C CcJy,

Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

V,
RI(s) + s 1 [e™% — 7%,
sC s

Solving this equation algebraically for I(s), we get

Vo/R V,
_ —as _ ,—bs — 0 “1 = 9 —tIRO
I(s) = F(s)(e e ) where F(s) ST (RO and FTHF) R e s

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 yields the solution (Fig. 123)
Vi
i) = £ = £} — £ F) = o [T Ou — @) — TP Ou - bl:

that is, i(f) = 0 if < a, and

Kle—t/(RC) ifa<t<b
i) =
K — Koye I ES ifa>b
where K; = Voe ®/R and K, = Vo BOR. B

Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval

Find the response (the current) of the RLC-circuit in Fig. 124, where E(?) is sinusoidal, acting for a short time
interval only, say,

E(r) = 100 sin 400z if 0 <t <2 and E(=0ifr> 27

and current and charge are initially zero.

Solution. The electromotive force E(r) can be represented by (100 sin 4007)(1 — u(t — 2m)). Hence the
model for the current i(f) in the circuit is the integro-differential equation (see Sec. 2.9)
t

0.1/ + 11i + 100 f i(7) dr = (100 sin 4006)(1 — u(t — 2m)), i0) =0, i'(0)=0.
0

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for I(s) = £(i)

0.1sl + 111+ 100 — = 5 ——
s 5%+ 400

N N

I 100 - 4005 (1 e—Z“S)
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Solving it algebraically and noting that 52 + 110s + 1000 = (s + 10)(s + 100), we obtain

1000 - 400 s se”27S
I(s) = .

(s + 10)(s + 100) \ s® + 400> s + 400
For the first term in the parentheses (- - -) times the factor in front of them we use the partial fraction expansion

400 000s A B Ds + K

= + + .
(s + 10)(s + 100)(s> + 400%) s+ 10 s+ 100 5%+ 400%

Now determine A, B, D, K by your favorite method or by a CAS or as follows. Multiplication by the common
denominator gives

400 000s = A(s + 100)(s> + 400%) + B(s + 10)(s% + 400%) + (Ds + K)(s + 10)(s + 100).

We set s = —10 and —100 and then equate the sums of the 53 and 52 terms to zero, obtaining (all
values rounded)

(s = —10) —4.000 000 = 90(10% + 400%)A, A= —0.27760
(s = —100) —40 000 000 = —90(100% + 400%)B, B = 26144
(s3-terms) 0=A+B+D, D = —2.3368
(s%-terms) 0 = 1004 + 10B + 110D + K, K = 258.66.

Since K = 258.66 = 0.6467 - 400, we thus obtain for the first term /y in I = [; — I

0.2776 2.6144 2.3368s 0.6467 - 400

= o +
! s+10  s+100 52+ 4007 s2 + 4002

From Table 6.1 in Sec. 6.1 we see that its inverse is
i(t) = —0.2776e 7108 + 2614427190 — 23368 cos 4001 + 0.6467 sin 4001,

This is the current i(f) when 0 < t < 2. It agrees for 0 < ¢t < 27 with that in Example 1 of Sec. 2.9 (except
for notation), which concerned the same RLC-circuit. Its graph in Fig. 62 in Sec. 2.9 shows that the exponential
terms decrease very rapidly. Note that the present amount of work was substantially less.

The second term /; of / differs from the first term by the factor =27 Since cos 400(t — 27r) = cos 400¢
and sin 400(t — 2) = sin 400z, the second shifting theorem (Theorem 1) gives the inverse is(r) = 0 if
0 <t < 2, and for > 27 it gives

is(t) = —0.2776e710¢ 2™ 1 2 6144,7100C=2™ _ 5 3368 05 4007 + 0.6467 sin 4001.

Hence in i(r) the cosine and sine terms cancel, and the current for t > 27 is

i) = —0.2776(e™10F — (~10G=2my 4 5 g144(,~100t _ ,—100¢—2m)
It goes to zero very rapidly, practically within 0.5 sec. B
C=102F
——
R=11Q § L=01H
| IS Y
E®)

Fig. 124. RLC-circuit in Example 4
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1. WRITING PROJECT. Shifting Theorem. Explain
and compare the different roles of the two shifting
theorems, using your own formulations and examples.

UNIT STEP FUNCTION AND SECOND
SHIFTING THEOREM

Sketch or graph the given function (which is assumed to

be zero outside the given interval). Represent it using unit

step functions. Find its transform. Show the details of your

work.

2.1 (0 <t<1) 3.t (0<t<?2)
4. sin3t (0 <r<m 5120 <t<2)
6. 12 (r > 3) 7. cos mt (1 <t < 4)

8.1 —et(O<t<m 9 :t(5<t<10)
10. sin wt (¢t > 67/ w) 11. 20 cos mt (3 <t < 6)
12. sinh 7 (0 < t < 2) 13.e™ (2 <1< 4)
INVERSE TRANSFORMS BY THE

SECOND SHIFTING THEOREM
Find and sketch or graph () if £(f) equals:
14. se 5/(s% + ©?)
15. e~ 45/s2
16. 572 — (572 + s7Ye™*
17. (e727 — e78™)/(s? + 1)
18. e~ "5/(s%2 + 25 + 2) 19. e~ 2555
20. (1 — e 5*F) /(s — k) 21. se™5/(s® — 4)
22, 2.5(e~388 — o285y

23-34| INITIAL VALUE PROBLEMS, SOME WITH
DISCONTINUOUS INPUTS

Using the Laplace transform and showing the details, solve:

23.y" + 2y +2y =0, y(0) = 0,
y'(0) =1

24. 9y" — 6y +y =0, y(0) = 3,
y'(0) =1

25. y" + 4y’ + 13y = 145 cos 21, y(0) = 10,
y'(0) = 14

26. y" + 10y’ + 24y = 14417, y(0) = 1
y'(0) = =5

27.y" + 9y = #(t), () = 8 sinzif 0 <t < 7 and 0
it > y(0) =00 =4
28.y" + 3y + 2y =7, r() =1if0 <t <1 and

0ifr>1; y0) =0,y =0
29.y" + y = r(r), r(t)=1tif0<t<1andO0if
r>1; y(0) =y'(0) =0

30. y" — 16y = r(r), r(t) = 48> if 0 <1 < 4 and
0if r > 4; y(0) = 3, y'(0) = —4

3. y" +y = 2y = r(), r(t) = 3sint — cos tif
0 <t < 2 and 3 sin 2t — cos 2t if t > 2
y(0) =1, y'(0) =0

32.y" + 8y’ + 15y = r(1), r(t) = 35> if
0<t<2and0ifr>2; y(0) = 3,
y'(0) = -8

33. (Shifted data) y” + 4y = 8:>if 0 <t <5and 0
ift>5y1) =1+ cosZ,y’(l) =4 — 2sin2

34.y" + 2y + 5y =10sin7if 0 <t < 27 and 0 if
t>2my(m) =1,y (m) =27 — 2

MODELS OF ELECTRIC CIRCUITS

35. (Discharge) Using the Laplace transform, find the
charge ¢(z) on the capacitor of capacitance C in Fig. 125
if the capacitor is charged so that its potential is V, and
the switch is closed at t = 0.

Q
11
1
=

_o/
Fig. 125. Problem 35
36-38| RC-CIRCUIT

Using the Laplace transform and showing the details, find
the current i(7) in the circuit in Fig. 126 with R = 10 ) and
C = 1072 F, where the current at ¢ = 0 is assumed to be
zero, and:

36. v(r) = 100 V if 0.5 < r < 0.6 and O otherwise.

Why does i() have jumps?

37.v=0ifr < 2and 100(t — 2) Vifr > 2

38. v =0ifr <4 and 14-10% 73 Vifr > 4

v(t)

Fig. 126. Problems 36—38

39-41| RL-CIRCUIT

Using the Laplace transform and showing the details, find
the current i(7) in the circuit in Fig. 127, assuming i(0) = 0
and:
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39.R=100Q,L=05H,v =200t Vif0 <r<?2and
0ifr>2

40. R = 1kQ (=1000Q), L =1H,v =0 if
0<t<mand40sint Vifr> =

41. R =250,L =0.1 H v =490 V if
0<t<landOifr>1

RZ L

L— o

v(t)
Fig. 127. Problems 39-41

LC-CIRCUIT

Using the Laplace transform and showing the details, find
the current i(f) in the circuit in Fig. 128, assuming zero
initial current and charge on the capacitor and:
42.L=1H,C=025F v =200(— %3 Vif
0<tr<landOiftr>1
43.L=1H,C=10"?F, v = —9900 cos ¢ V if
7 < t < 37 and 0 otherwise
44. L =05H,C =0.05F, v ="78sintVif
O0<t<mandOiftr>w

v(t)
Fig. 128. Problems 42-44

RLC-CIRCUIT

Using the Laplace transform and showing the details, find

the current i(f) in the circuit in Fig. 129, assuming zero

initial current and charge and:

45.R=2Q,L=1H,C=05F v@®) =1kVif
0<t<2and0iftr>2

46. R =4Q,L=1H,C=005F, v =234e"V
if0<tr<4andOifr > 4

47.R=2Q,L=1H,C=0.1F,v=255sintV
if0 <r<2mand0if t > 27

[
1? EE%E<>+ (<>__%%§ 1;
v(t)

Fig. 129. Problems 45-47

6.4 Short Impulses. Dirac’s Delta Function.

Partial Fractions

Phenomena of an impulsive nature, such as the action of forces or voltages over short
intervals of time, arise in various applications, for instance, if a mechanical system is hit
by a hammerblow, an airplane makes a “hard” landing, a ship is hit by a single high wave,
or we hit a tennisball by a racket, and so on. Our goal is to show how such problems are
modeled by “Dirac’s delta function” and can be solved very efficiently by the Laplace

transform.

To model situations of that type, we consider the function

ey fut —a) = {

1/k fa=t=a+k
(Fig. 130)
0 otherwise

(and later its limit as k — 0). This function represents, for instance, a force of magnitude
1/k acting from t = a to t = a + k, where k is positive and small. In mechanics, the
integral of a force acting over a time interval a = t = a + k is called the impulse of the
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force; similarly for electromotive forces E(r) acting on circuits. Since the blue rectangle
in Fig. 130 has area 1, the impulse of f;, in (1) is

a+k

) Iszofk(t—a)dtzf zdrzl.

a

To find out what will happen if k becomes smaller and smaller, we take the limit of f}
as k — 0 (k > 0). This limit is denoted by 8( — a), that is,

8t — a) = lim fit = ).

8(t — a) is called the Dirac delta function? or the unit impulse function.

8(r — a) is not a function in the ordinary sense as used in calculus, but a so-called
generalized function.? To see this, we note that the impulse I, of f;, is 1, so that from (1)
and (2) by taking the limit as k — 0 we obtain

e ift=a o
3) 8(t — a) = and f 8t —aydt =1,
0 otherwise 0

but from calculus we know that a function which is everywhere 0 except at a single point
must have the integral equal to 0. Nevertheless, in impulse problems it is convenient to
operate on 8(t — a) as though it were an ordinary function. In particular, for a continuous
function g(r) one uses the property [often called the sifting property of 8(t — a), not to
be confused with shifting]

o0

@ fo )5t — a) d = g(a)

which is plausible by (2).
To obtain the Laplace transform of 8(t — a), we write

1
filt —a) =+ [u(t — a) — ut = (a + k)]

a a+k t

Fig. 130. The function f,(t — a) in (1)

2pAUL DIRAC (1902-1984), English physicist, was awarded the Nobel Prize [jointly with the Austrian
ERWIN SCHRODINGER (1887-1961)] in 1933 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 by the Russian
mathematician SERGEI L’VOVICH SOBOLEV (1908-1989), and in 1945, under wider aspects, by the French
mathematician LAURENT SCHWARTZ (1915-2002).
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EXAMPLE 1

and take the transform [see (2)]

| N 1=k
LUt — @)} = — [e7% — em@ ] = gmas
ks ks
We now take the limit as k — 0. By I’Hopital’s rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to k, obtaining
se™" and s, respectively, and use se”**/s — 1 as k — 0). Hence the right side has the
limit e~ . This suggests defining the transform of 6( — a) by this limit, that is,

(5) P8t — @)} = ™.

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.
Mass—Spring System Under a Square Wave

Determine the response of the damped mass—spring system (see Sec. 2.8) under a square wave, modeled by (see
Fig. 131)
Y43y 2y =) = ut— 1) — u@t - 2), ¥(0) =0, y'(0) = 0.

Solution. From (1) and (2) in Sec. 6.2 and (2) and (4) in this section we obtain the subsidiary equation

1 1
S2Y +3sY +2Y = — (75 — 7). Solution Y(s) = —5 (75 — %)
s s(s“ + 35 + 2)

Using the notation F(s) and partial fractions, we obtain

Fo - 1 B 1 i N 7
VT (2 +3s+2)  sGFDs+2) s s+1  s+2°

From Table 6.1 in Sec. 6.1, we see that the inverse is
f =L MF) =L -t + 5%
Therefore, by Theorem 1 in Sec. 6.3 (z-shifting) we obtain the square-wave response shown in Fig. 131,
y = LN F(s)e™ — Fls)e™™)
ft = Dut — 1) = ft = Dult = 2)

0 o<t<l
— %_ e*(tfl) + %E—Z(t—l) 1<t<2)
76—(t—1) + e—(t—2) 4 %e—Z(t—l) _ %e—Z(th) (l‘ > 2). .
y(t)
1 1
| I
| |
! |
0.5 | |
[ |
|
0! L | |
0 1 2 3 4 t

Fig. 131. Square wave and response in Example 1
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EXAMPLE 2

EXAMPLE 3

CHAP. 6 Laplace Transforms

Hammerblow Response of a Mass—Spring System

Find the response of the system in Example 1 with the square wave replaced by a unit impulse at time
t=1

Solution. We now have the ODE and the subsidiary equation
Y3y 2y =80 — 1), and (2+3s+2y=¢"

Solving algebraically gives

Vo) — e’ (1 1 s
©= Gine+d \s+1 s+2)°
By Theorem 1 the inverse is

0 ifo<tr<l1
y(n:i‘lm:{

e—(t—l) _ e—2(t—1) if t>1.

y(f) is shown in Fig. 132. Can you imagine how Fig. 131 approaches Fig. 132 as the wave becomes shorter and
shorter, the area of the rectangle remaining 1?

y(t)
0.2
0.1

I I
O0 1 3 5 t

Fig. 132. Response to a hammerblow in Example 2

Four-Terminal RLC-Network

Find the output voltage response in Fig. 133ifR=20Q,L=1H,C= 10™*F, the input is 8(7) (a unit impulse
at time ¢ = 0), and current and charge are zero at time t = 0.

Solution. To understand what is going on, note that the network is an RLC-circuit to which two wires at A
and B are attached for recording the voltage v(#) on the capacitor. Recalling from Sec. 2.9 that current i(f) and
charge q(#) are related by i = q' = dqldt, we obtain the model

Li’ + Ri + % —Lq" +Rq + % = 4" +20q + 10000g = 8(1.

From (1) and (2) in Sec. 6.2 and (5) in this section we obtain the subsidiary equation for 06s) = L(q)

1

2 4 205 + 10000)Q = 1. Solutio =
S : 0 ution Q= T+ 102 + 9900

By the first shifting theorem in Sec. 6.1 we obtain from Q damped oscillations for g and v; rounding
9900 ~ 99.50%, we get (Fig. 133)

1
¢~ 10 §in 99.50¢ and v = — = 100.5¢ % sin 99.50%. i

— 9=l = 4
1=+ = 5950 c
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EXAMPLE 4

8(t) v

C 1 /\I L 1 |
N N 5 ° W 01 /015702 025 03 ¢
17

440 —
O O
v(t) =7 -80|
Network Voltage on the capacitor

Fig. 133. Network and output voltage in Example 3

More on Partial Fractions

We have seen that the solution Y of a subsidiary equation usually appears as a quotient
of polynomials Y(s) = F(s)/G(s), so that a partial fraction representation leads to a
sum of expressions whose inverses we can obtain from a table, aided by the first
shifting theorem (Sec. 6.1). These representations are sometimes called Heaviside
expansions.

An unrepeated factor s — a in G(s) requires a single partial fraction A/(s — a). See
Examples 1 and 2 on pp. 243, 244. Repeated real factors (s — a)?, (s — a)?, etc., require
partial fractions

Az Aq As Az Ay

(s—a)2+s—a (s~a)3+(s—a)2+s—a

, etc.,

The inverses are (Aot + Ay)e™, (34312 + Aot + Ap)e™, etc.

Unrepeated complex factors (s — a)(s — @), a = a + i3, a = a — i3, require a partial
fraction (As + B)/[(s — a)> + B?]. For an application, see Example 4 in Sec. 6.3.
A further one is the following.

Unrepeated Complex Factors. Damped Forced Vibrations

Solve the initial value problem for a damped mass—spring system acted upon by a sinusoidal force for some
time interval (Fig. 134),

y'+ 2y +2y=r@, r@®=10sin2rif0<t<mand0ifr>m  y0) =1, y'(0)= —5.

Solution. From Table 6.1, (1), (2) in Sec. 6.2, and the second shifting theorem in Sec. 6.3, we obtain the
subsidiary equation

Y —s+5 +2sY—1) +2Y=10

1—e ™).
s2+4( ¢ )

We collect the Y-terms, (s2 + 2s + 2)Y, take —s + 5 — 2 = —s + 3 to the right, and solve,

20 20e~7° s—3
Y=- 2 ) 2 R :
(s° + 4)(s” + 25 + 2) (s°+ (s + 25 + 2) ¥+ 2y 2

(6)

For the last fraction we get from Table 6.1 and the first shifting theorem

_1{ s+1—4

M s+ 1D2+1

} = e_t(cost — 4sin¢).
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In the first fraction in (6) we have unrepeated complex roots, hence a partial fraction representation

20 As + B Ms + N
2 2 ) T2 s
(s 4+ 4)(s™ + 25 +2) s°+4 sC+ 25+ 2

Multiplication by the common denominator gives
20 = (As + B)s2 + 25 + 2) + (Ms + N)(s* + 4).
We determine A, B, M, N. Equating the coefficients of each power of s on both sides gives the four equations
@ ¥ 0=4a+Mm ® [2: 0=24+B+N
© [s): 0=24+2B+4M (&) [l 20=2B+4N.
We can solve this, for instance, obtaining M = —A from (a), then A = B from (c), then N = —3A from (b),
and finally A = —2 from (d). Hence A = —2,B=—2,M =2,N = 6, and the first fraction in (6) has the

representation

—2s—2 2s+1)+6—2
2 -+ 2
sT+ 4 s+ 1) +1

Inverse transform: —2 cos 2t — sin 2t + e_t(2 cost + 4sint).

()

The sum of this and (7) is the solution of the problem for 0 <1 < 7, namely (the sines cancel),
) y(f) = 3¢ cos t — 2 cos 2t — sin 21 ifo<r<m

In the second fraction in (6) taken with the minus sign we have the factor e~ ™, so that from (8) and the second
shifting theorem (Sec. 6.3) we get the inverse transform

42 cos (2 — 2 + sin (2t — 2m) — ¢ [2cos (1 — ™) + 4sin (¢ — ™)

= 2cos2f + sin2t + e 7™ (2cost + 4sin ).
The sum of this and (9) is the solution for t > 7,
(10) y(f) = e H[(3 + 2¢™) cos t + 4e” sin 1] ift >

Figure 134 shows (9) (for 0 <1 < m) and (10) (for r > ), a beginning vibration, which goes to zero rapidly
because of the damping and the absence of a driving force after t = . |

y(t)
2 =
1 b3
—— y =0 (Equilibrium | L | -
iti 0
iosttion) b 2n 3r 4t
_ Y kb
Driving forcel
|| Dashpot (damping) _2%
Mechanical system Output (solution)

Fig. 134. Example 4

The case of repeated complex factors [(s — a)(s — @)%, which is important in connection
with resonance, will be handled by “convolution” in the next section.
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AA

1-12

EFFECT OF DELTA FUNCTION ON
VIBRATING SYSTEMS

Showing the details, find, graph, and discuss the solution.

1.y" +y=258t—2m, v(0) = 10,
y'(0) =0

2. v" + 2y + 2y =€t + 580 — 2),
y(0) =0,  y'(0)=1

3.y" —y =108t — &) — 1008(r — 1),
y(0) = 10, y'(0) =1

4. y" + 3y 4+ 2y = 10(sint + 8(t — 1)),
y©0) =1, y'(0)= -1

5.9+ 4y +5y=[1 —ut — 10)]e" — &8t — 10),
¥(0) =0, y'(0) =1

6. v" + 2y — 3y = 1008(tr — 2) + 1008(r — 3),
y(0) =1, y'(0) =0

7.y" +2y" 4+ 10y = 10[1 — u(r — 4)] — 108(t — 5),
y(0) =1, y'(0) =1

8. y" + 5y + 6y = 8(1 — im) + u(t — m) cost,
¥(0) =0, y'(0) =0

9.y" + 2y + 5y =25t — 1008(t — m),
y(0) = =2, y'(0) =5

10. y" + S5y = 251 — 1008(t — =), y(0) = =2,

11.

12.

13.

14.

y'(0) = 5. (Compare with Prob. 9.)
Yo+ 3y = 4y = 2e" — 8e?8(r — 2),

y(0) = 2, y'(0) =0
y' +y=—2sint+ 108(r — ), v(0) = 0,
y'(0) =1

CAS PROJECT. Effect of Damping. Consider a
vibrating system of your choice modeled by

y” + cy' + ky = r(t)

with r(7) involving a é-function. (a) Using graphs of
the solution, describe the effect of continuously
decreasing the damping to 0, keeping k constant.

(b) What happens if ¢ is kept constant and k is
continuously increased, starting from 07

(c) Extend your results to a system with two
o-functions on the right, acting at different times.

CAS PROJECT. Limit of a Rectangular Wave.
Effects of Impulse.

(a) In Example 1, take a rectangular wave of area 1
from 1 to 1 + k. Graph the responses for a sequence
of values of k approaching zero, illustrating that for
smaller and smaller k those curves approach the curve
shown in Fig. 132. Hint: If your CAS gives no solution

15.

16.
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for the differential equation. involving k, take specific
k’s from the beginning.

(b) Experiment on the response of the ODE in
Example 1 (or of another ODE of your choice) to an
impulse 8(f — a) for various systematically chosen a
(> 0); choose initial conditions y(0) # 0, y' (0) = 0.
Also consider the solution if no impulse is applied. Is
there a dependence of the response on a? On b if you
choose b&8(t — a)? Would —8(tr — a) with d > a
annihilate the effect of 6(r — a)? Can you think of
other questions that one could consider
experimentally by inspecting graphs?

PROJECT. Heaviside Formulas. (a) Show that for a
simple root a and fraction A/(s — a) in F(s)/G(s) we
have the Heaviside formula

(s — a)F(s)
G(s)

A = lim
S—a

(b) Similarly, show that for a root a of order m and
fractions in

F(S) o Am + Am—l s s

Gs) (—a"™  (s—am!

A
n 1

+ further fractions
5 —

we have the Heaviside formulas for the first coefficient

(s — a)"F(s)

A, =1
- im Go)

s—a

and for the other coefficients

PR B d™7F [ (s — a)"F(s)
k= m— k)] soa ds™F G(s) ’

TEAM PROJECT. Laplace Transform of Periodic
Functions

(a) Theorem. The Laplace transform of a piecewise
continuous function f(t) with period p is

1 D
e —st,
11 %) = -GaggE foe f(@) dt (s > 0).

. . . 2
Prove this theorem. Hint: Write [ ZC: I f; + [ pp +...

Sett = (n — 1)p in the nth integral. Take out ¢~ 1P
from under the integral sign. Use the sum formula for
the geometric series.
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(b) Half-wave rectifier. Using (11), show that the
half-wave rectification of sin wt in Fig. 135 has the
Laplace transform

o(l + e~ ™)
(SZ 3 (1)2)(1 _ e—Zﬂs/w)

£(f) =

(¢) Full-wave rectifier. Show that the Laplace
transform of the full-wave rectification of sin wt is

" s
—— coth — .
2 + w? 2w

(d) Saw-tooth wave. Find the Laplace transform of

the saw-tooth wave in Fig. 137.

@)
k V
| {} |
| | |
| | |
0 p 2p 3p

Fig. 137. Saw-tooth wave

_ w
- (52 s (1)2)(1 _ e—ﬂs/w) :

(A half-wave rectifier clips the negative portions of the
curve. A full-wave rectifier converts them to positive;
see Fig. 136.)

f@
1% T Ny

0 wtlo 2rlo 3nlo t

(e) Staircase function. Find the Laplace transform of
the staircase function in Fig. 138 by noting that it is
the difference of kt/p and the function in (d).

f®

Fig. 135. Half-wave rectification

f@t) I
k —_—
1 I I I
I
0 p 2p 3p t

0 o 2nlo 3o t

Fig. 136. Full-wave rectification Fig. 138. Staircase function

6.5 Convolution. Integral Equations

Convolution has to do with the multiplication of transforms. The situation is as follows.
Addition of transforms provides no problem; we know that L(f + o) = L + L(»).
Now multiplication of transforms occurs frequently in connection with ODEs, integral
equations, and elsewhere. Then we usually know £(f) and £(g) and would like to know
the function whose transform is the product £(f)£(g). We might perhaps guess that it is
fg, but this is false. The transform of a product is generally different from the product of
the transforms of the factors,

L(fg) # LHLW®) in general.

To see this take f = ¢’ and g = 1. Then fg = €', £(fg) = 1/(s — 1), but L =Us—1)
and (1) = /s give L(HL(g) = 1/(s* — 5).

According to the next theorem, the correct answer is that L(f)¥(g) is the transform of
the convolution of f and g, denoted by the standard notation f * g and defined by the

integral

t
(1) ht) = (f * g = fo (Mgt — 7 dr.
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THEOREM 1

EXAMPLE 1

EXAMPLE 2

PROOF

Convolution Theorem

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1,
so that their transforms F and G exist, the product H = FG is the transform of h
given by (1). (Proof after Example 2.)

Convolution
Let H(s) = 1/[(s — a)s]. Find h(?).

Solution. 1/(s — a) has the inverse f(r) = ¢*, and 1/s has the inverse g(r) = 1. With f(7) = ¢°7 and
g(t — 7 = 1 we thus obtain from (1) the answer
'

1
h(t) = e x 1 = je‘“-ldT: = (% ~ 1),
0 a

To check, calculate

N L) L(1). &

1 a 1
— - === = — =
s—a s a s —as s—a s

1
H(s) = £(h)s) = — (

Convolution
Let H(s) = 1/(s%2 + «®)2. Find h(?).

Solution. The inverse of 1/(s2 + wz) is (sin w?)/w. Hence from (1) and the trigonometric formula (11) in
App. 3.1 with x = 3(wt + w7) and y = 3(wt — wT) we obtain

t

sin wt  sin wf 1 ) .
h(t) = ¥ ——— = — [ sinoTsino( — 1)dT
w w 0
t
1
=5 [—cos wt + cos wT] dT
2w 0
1 sin o1 |*
= T35 | —Tcoswr +
2w w =0
1 sin wt
= 5 | "tcoswt =t
2w w
in agreement with formula 21 in the table in Sec. 6.9. |

We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables
of integration! We can denote them as we want, for instance, by 7and p, and write

oo oo

F(s) = J e f(7) dr and G(s) = f e *Pg(p) dp.

0 0

We now set t = p + 7, where 7 is at first constant. Then p = t — 7, and ¢ varies from 7
to o. Thus

oo (o]

G(s) = f e Ve(t — 1) dt = eS’f e Stg(t — 1) dt.

T T




250

EXAMPLE: 3

CHAP. 6 Laplace Transforms
+in F and ¢ in G vary independently. Hence we can insert the G-integral into the

F-integral. Cancellation of e~°7 and ¢°” then gives

oo

F(s)G(s) = J e_STf(T)eSTf e Slg(t — D dtdr = f f(7) f e Stg(t — 7) dtdr.
0 i 0 T

Here we integrate for fixed 7 over ¢ from 7to = and then over 7 from 0 to . This is the
blue region in Fig. 139. Under the assumption on f and g the order of integration can be
reversed (see Ref. [AS] for a proof using uniform convergence). We then integrate first
over 7 from O to ¢ and then over ¢ from 0 to %, that is,

oo 1 oo
F(s)G(s) = Jo et fof(T)g(t —ndrdt = fo eSth() dt = £(h) = H(s).

This completes the proof. =]

t

Fig. 139. Region of integration in the
tr-plane in the proof of Theorem 1

From the definition it follows almost immediately that convolution has the properties

frg=g*f (commutative law)
for(ga tg)=Ff*g +f*g (distributive law)
(f*xg*v=7F*(g*v) (associative law)

fx0=0xf=0
similar to those of the multiplication of numbers. Unusual are the following two properties.

Unusual Properties of Convolution
f # 1 # f in general. For instance,
t
t*l=j7'1d7=%t2=#t.
V]

(f * f)(©) = 0 may not hold. For instance, Example 2 with o = 1 gives

sinf*sint= —Ltcost +sint (Fig. 140). W
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EXAMPLE 4

Fig. 140. Example 3

We shall now take up the case of a complex double root (left aside in the last section in
connection with partial fractions) and find the solution (the inverse transform) directly by
convolution.

Repeated Complex Factors. Resonance

In an undamped mass—spring system, resonance occurs if the frequency of the driving force equals the natural
frequency of the system. Then the model is (see Sec. 2.8)

v+ wozy = K sin wgt

where w02 = k/m, k is the spring constant, and m is the mass of the body attached to the spring. We assume
y(0) = 0 and y'(0) = 0, for simplicity. Then the subsidiary equation is

Kwg Kwg

2 2 _
sYt wy' Y= 55— . Its solution is Y= —g—%55:
0 2+ woz (s2 + w02)2

This is a transform as in Example 2 with w = wq and multiplied by Kwg. Hence from Example 2 we can see
directly that the solution of our problem is

Ko
¥ = .

sin wot) K
20> T2

(*tcos wot + Ty; (—wot cos wgt + sin wqt).
0

@

We see that the first term grows without bound. Clearly, in the case of resonance such a term must occur. (See
also a similar kind of solution in Fig. 54 in Sec. 2.8.) B

Application to Nonhomogeneous Linear ODEs

Nonhomogeneous linear ODEs can now be solved by a general method based on
convolution by which the solution is obtained in the form of an integral. To see this, recall
from Sec. 6.2 that the subsidiary equation of the ODE

) v+ ay' + by = r(f) (a, b constant)
has the solution [(7) in Sec. 6.2]

Y(s) = [(s + a)y(0) + y"(0)]Q%s) + R()Q(s)
with R(s) = £(r) and Q(s) = 1/(s®> + as + b) the transfer function. Inversion of the first

term [- - -] provides no difficulty; depending on whether 3a® — b is positive, zero, or
negative, its inverse will be a linear combination of two exponential functions, or of the
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form (¢, + cot)e™ 2 or a damped oscillation, respectively. The interesting term is
R(s5)Q(s) because r(f) can have various forms of practical importance, as we shall see. If
v(0) = 0 and y'(0) = 0, then ¥ = RQ, and the convolution theorem gives the solution

t
@) v = | gt = ey ar

Response of a Damped Vibrating System to a Single Square Wave

Using convolution, determine the response of the damped mass—spring system modeled by

'3y 42y = (), #(#) = 1if 1 < <2 and 0 otherwise, ¥(0) = y'(0) = 0.

This system with an input (a driving force) that acts for some time only (Fig. 141) has been solved by partial
fraction reduction in Sec. 6.4 (Example 1).

Solution by Convolution. The transfer function and its inverse are

1 1 1

= = [ B -2t
090 = "3 3 +2 (+Ds+2 s+1 s+2 '

g =e¢"t—e

hence

Hence the convolution integral (3) is (except for the limits of integration)

W) = fq(t —-ldr= j[e—(t—f) _ 2= gy = o~ %e—z(t—f)_

Now comes an important point in handling convolution. r(7) = 1 if 1 < 7< 2 only. Hence if # < 1, the integral
is zero. If 1 < ¢ < 2, we have to integrate from 7 = 1 (not 0) to ¢. This gives (with the first two terms from the
upper limit)

0 1,-0 _ (e—(t—l) _ %6—2@—1)) = % _ e—(t—l) =8 %e—Z(t—l).

() =e " —se

If + > 2, we have to integrate from 7 = 1 to 2 (not to ). This gives

_ =2 1,—2t-2) —t-1D -2t—-1
yt) =e — e — (e —1e ).

Figure 141 shows the input (the square wave) and the interesting output, which is zero from O to I, then increases,
reaches a maximum (near 2.6) after the input has become zero (why?), and finally decreases to zero in a monotone
fashion. B

y(t)

1 —

I
I
|

0.5 |

|

|
|
: Output (response)
| /
|
| |
0 | | I
1 2 3 4 t

Fig. 141. Square wave and response in Example 5

Integral Equations

Convolution also helps in solving certain integral equations, that is, equations in which
the unknown function y(f) appears in an integral (and perhaps also outside of it). This
concerns equations with an integral of the form of a convolution. Hence these are special
and it suffices to explain the idea in terms of two examples and add a few problems in
the problem set.

Lt

L

‘

-
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EXAMPLE 6 A Volterra Integral Equation of the Second Kind

Solve the Volterra integral equation of the second kind®
t

() — fy(f) sin(t — ndr=+t
0

Solution. From (1) we see that the given equation can be written as a convolution, y — y * sin ¢ = ¢. Writing
Y = £(y) and applying the convolution theorem, we obtain

Y Y ! Y - !
. R e A
The solution is
2411 1 2
Y(s) = 7 =3+t =% and gives the answer yt)y=t+ i
s s K

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience). M

EXAMPLE 7 Another Volterra Integral Equation of the Second Kind

=¥er

Solve the Volterra integral equation

Y(t)—j(l + )yt — 1)dr=1—sinht.
0

Solution. By (1) we can write y — (1 + £)*y = 1 — sinh £. Writing ¥ = £(y), we obtain by using the
convolution theorem and then taking common denominators

o [t 1+1) 1 1 . " s2—s—1 s2—1-3
- = = = — - s ence - = .
) s 52 N G| ) 52 s(xz— 1)

(s2 — s — 1)/s cancels on both sides, so that solving for ¥ simply gives

K
Y(s) = Z_1 and the solution is y(t) = cosh t. &

CONVOLUTIONS BY INTEGRATION 13 1 4 s
Find by integration: BRI O ) T2 + 1602
L 11 2. 1%t 1 5
3.1k e 4. & % ¢ (a # b) 15 29 16. T2 125
5. 1 * cos wt 6. 1= f(1)
7. ft % okt 8. sin 7 * cos ¢ 17. (Partial fractions) Solve Probs. 9, 11, and 13 by using

partial fractions. Comment on the amount of work.
[9-16] INVERSE TRANSFORMS

BY CONVOLUTION 18-25 SOLVING INITIAL VALUE PROBLEMS
Find f(7) if £(f) equals: Using the convolution theorem, solve:
1 10 1 18. y" + y = sint, y(0) =0, y'(0) =0
(s =3 +5) s = 1) 19. y" + 4y = sin 31, y(0) =0, y'(0)=0
1 1 20. y" + 5y" + 4y = 272, y(0) = 0,
m -, 12, 50— ,
s(s® + 4) s(s — 2) y(0)=0

3If the upper limit of integration is variable, the equation is named after the Italian mathematician VITO
VOLTERRA (1860-1940), and if that limit is constant, the equation is named after the Swedish mathematician
IVAR FREDHOLM (1866-1927). “Of the second kind (first kind)” indicates that y occurs (does not occur)
outside of the integral.
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2. y" + 9y = 8sinrif 0 <t < wand 0 if 1 > m; 27-34| INTEGRAL EQUATIONS

y(0) =0, y'(0) = 4 Using Laplace transforms and showing the details, solve:
2.y +3y +2y=1if0<r<aand0if1>a; ¢

y(0) =0, y'(0)=0 27. y(1) — jy(f) dr =1

0

23. y" + 4y = Su(t — 1); y(0)=0, y'(0)=0 .
24.y" + 5y + 6y = 8t — 3); y(0) =1, 28. y(1) + fy(f) cosh(r — 7 dr =1t + ¢

y'(0) =0 o

" ! _ _ _ g

25.y" + 6y’ + 8y = 28(r — 1) + 28(t — 2); 29. y(1) — [ y(m) sin (¢ = 7) d7 = cost

y0) =1, vy (0)=0 0 #

t
26. TEAM PROJECT. Properties of Convolution.  30. y(1) + 2 f y(7) cos (1 — 7) dT = cost
Prove: t °
(a) Commutativity, f = g = g * f 31. y(1) + f (t — ny(r) dt
(b) Associativity, (f * g) * v = f # (g * V) o

Il

t
(¢) Distributivity, f * (g1 + g2) = f * &1 + f * & 32. y(1) — fy(r)(, — ) dr
(d) Dirac’s delta. Derive the sifting formula (4) in 0
Sec. 6.4 by using fj, with a = 0 [(1), Sec. 6.4] and
applying the mean value theorem for integrals.

Il
[\)

|

D)
-

t

33. y(r) + 2¢° J e~ Ty(7) dT = te'
0

(e) Unspecified driving force. Show that forced t
vibrations governed by 34. y() + joez“_f)y(T) dr =12 —1— 3+ L™
" !

Vit oy =1, v =K. YO =K 35 cAs EXPERIMENT. Variation of a Parameter.
(a) Replace 2 in Prob. 33 by a parameter k and
investigate graphically how the solution curve changes
if you vary k, in particular near k = —2.

with @ # 0 and an unspecified driving force r(z) can
be written in convolution form,

(b) Make similar experiments with an integral

1 K, .
y = — sinwt * r(t) + Ky cos wr + — sin ot. . . L -
[0} ) equation of your choice whose solution is oscillating.

6.6 Differentiation and Integration of Transforms.
ODEs with Variable Coefficients

The variety of methods for obtaining transforms and inverse transforms and their
application in solving ODEs is surprisingly large. We have seen that they include direct
integration, the use of linearity (Sec. 6.1), shifting (Secs. 6.1, 6.3), convolution (Sec. 6.5),
and differentiation and integration of functions f(z) (Sec. 6.2). But this is not all. In this
section we shall consider operations of somewhat lesser importance, namely,
differentiation and integration of transforms F(s) and corresponding operations for
functions f(z), with applications to ODEs with variable coefficients.

Differentiation of Transforms

Tt can be shown that if a function f(7) satisfies the conditions of the existence theorem in
Sec. 6.1, then the derivative F "(s) = dFlds of the transform F(s) = £(f) can be obtained
by differentiating F(s) under the integral sign with respect to s (proof in Ref. [GR4] listed
in App. 1). Thus, if

oo oC

F(s) = f e S (1) dt, then F'(s) = —f =St (1) dt.

0 0
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Consequently, if £(f) = F(s), then
® L) - —F), hence LHF (9} = —tf(®)

where the second formula is obtained by applying £~* on both sides of the first formula.
In this way, differentiation of the transform of a function corresponds to the multiplication
of the function by —t.

Differentiation of Transforms. Formulas 21-23 in Sec. 6.9

We shall derive the following three formulas.

2(f) @
1 1 <.
(2) E1 PP B3 (sin Bt — Bt cos B1)
3) s | sing
(s7 + B9 2B
4) &+ PP 2B (sin Bt + Bt cos B1)

Solution. From (1) and formula 8 (with @ = B) in Table 6.1 of Sec. 6.1 we obtain by differentiation
(CAUTION! Chain rule!)

e _ 2Bs
(tsin Bt) = A—‘——(sz N 52)2 .

Dividing by 28 and using the linearity of &, we obtain (3).

Formulas (2) and (4) are obtained as follows. From (1) and formula 7 (with @ = ) in Table 6.1 we find
(2 + g% — 252 52— p2

(s + 32)2 (s + 32)2 :

5) Lt cos Br)y = —

From this and formula 8 (with @ = B) in Table 6.1 we have

52—[32 N 1
2+ P22 2

§£(t cos Bt = iﬁ sin Bt) =

On the right we now take the common denominator. Then we see that for the plus sign the numerator becomes
$2 - ,82 + 52 + B2 = 252, so that (4) follows by division by 2. Similarly, for the minus sign the numerator
takes the form s — [32 — 52~ B2 = 72[32, and we obtain (2). This agrees with Example 2 in Sec. 6.5. M

Integration of Transforms

Similarly, if f(¢) satisfies the conditions of the existence theorem in Sec. 6.1 and the limit
of f(#)/t, as t approaches 0 from the right, exists, then for s > &,

6) g{f(ti)} s f FE) a8 hence 58-1{ f FG) dE} - @

In this way, integration of the transform of a function f(t) corresponds to the division of
f@®) byt
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We indicate how (6) is obtained. From the definition it follows that

f:oF(E) 47 = f m[ jo ") dt} 5.

and it can be shown (see Ref. [GR4] in App. 1) that under the above assumptions we may
reverse the order of integration, that is,

fs “rG) ds = fo w[fe-“f(t) ds{l dt = ff(r) [ f T df] dt.

Integration of et with respect to § gives ¢~5t/(—1). Here the integral over § on the right
equals e~**/t. Therefore,

f FG) d§ = f st T 4y sﬁ{i@} s>k
0 t t

S

Differentiation and Integration of Transforms

%) 2 2
w s¢t+ W

Find the inverse transform of In (1 + —2—) = In 5} .
K s

Solution. Denote the given transform by F(s). Its derivative is

d 2s 2s
F's) = — |In(s® + o® — Ins?| = —— ;
2
ds

52+w2 N

Taking the inverse transform and using (1), we obtain

2
¢~ YF (9} = :e“[ S —2—} =2 cos wt — 2 = —1f(D.

sz+w2 s

Hence the inverse f(t) of F(s) is f(f) = 2(1 — cos wi)/t. This agrees with formula 42 in Sec. 6.9.
Alternatively, if we let

2s 2

e — -1 — _
2+ o B then g = L7HG) = 2(cos wt — 1).

G(s) =

From this and (6) we get, in agreement with the answer just obtained,

$2 + o “ an 2
In 5 = G(s)ds = ——— = — (1 —cos i),
s s t t

the minus occurring since s is the lower limit of integration.
In a similar way we obtain formula 43 in Sec. 6.9,

2
a 2
¢! {m (1 ~ —2)} = — (1 — coshan. &
N

Special Linear ODEs with Variable Coefficients

Formula (1) can be used to solve certain ODEs with variable coefficients. The idea is this.
Let $(y) = Y. Then $(y") = sY — y(0) (see Sec. 6.2). Hence by (1),

, d dy
(N §B(ty):—d—[sY—y(0)]=—Y—s—.
s ds
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Similarly, £(y") = s%Y — sy(0) — y'(0) and by (1)
d dy
(8) Lay"y = - 0 [s%Y — s3(0) — y'(0)] = —25Y — 52 — TYO.
s s

Hence if an ODE has coefficients such as at + b, the subsidiary equation is a first-order ODE
for ¥, which is sometimes simpler than the given second-order ODE. But if the latter has
coefficients at® + bt + ¢, then two applications of (1) would give a second-order ODE for
Y, and this shows that the present method works well only for rather special ODEs with variable
coefficients. An important ODE for which the method is advantageous is the following.

: EXAMPLE 3 Laguerre’s Equation. Laguerre Polynomials

Laguerre’s ODE is
) "'+ A -ty +ny=0.
} We determine a solution of (9) withn = 0, 1, 2, - - - . From (7)—~(9) we get the subsidiary equation
5 dY dy
—25Y —s%— +y0) | +sY —y0) — | -Y —s— ) + nY =0.
ds ds
Simplification gives
5. dY
=) — +(m+1—-95Y=0.
ds

Separating variables, using partial fractions, integrating (with the constant of integration taken zero), and taking
exponentials, we get

i 108 dy n+1-sd n ntl1) . v (s — D"
HH 1o y 0 s-2 P \sa 5 : o T
i We write /,, = $~Y(Y) and prove Rodrigues’s formula
i
| t n
_ B e feme -t — e
(10) lo =1, b)) = 7~ @), n=1,2

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They
are called Laguerre polynomials and are usually denoted by L,, (see Problem Set 5.7, but we continue to reserve
| capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting),

‘ i n! { d" t} n!s™
ey = —m8— hence by (3) in Sec. 6.2 Fi— ("= ————
| Sl (s + Drtt eace by (3) ar" Ee (s + D+t

because the derivatives up to the order n — 1 are zero at 0. Now make another shift and divide by n! to get [see
! (10) and then (10%)]

— Ty
$(ln)=(sn—):y. (&
N

+1

TRANSFORMS BY DIFFERENTIATION 5. te™2 sint 6. 1> sin 31
Showing the details of your work, find £(f) if f(z) equals: 7. t2 sinh 4¢ 8. ekt
1. 4zet 2. —¢ cosh 2¢ 9. 12 sin wr 10. ¢ cos wt

3. t sin wt 4. t cos (t + k) 11. ¢ sin (¢ + k) 12. te ¥t sin ¢
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13-20| INVERSE TRANSFORMS

Using differentiation, integration, s-shifting, or convolution
(and showing the details), find f(2) it L(f) equals:

6 s
13— 4 7>
(s + 1)? (s2 + 16)
R Chat 16 — e
T (s + 27+ 1P ENCEE b
17, —2 18 1n ¢
T - kP b
S N
19. In 20. arccot —
s— 1 w

21. WRITING PROJECT. Differentiation and
Integration of Functions and Transforms. Make a
short draft of these four operations from memory. Then
compare your notes with the text and write a report of
2-3 pages on these operations and their significance in
applications.

22. CAS PROJECT. Laguerre Polynomials. (a) Write a
CAS program for finding /,,(¢) in explicit form from
(10). Apply it to calculate lo, = - -, l1o- Verify that o,
-, Iy satisfy Laguerre’s differential equation (9).

6.7 Systems of ODEs

(b) Show that

L= o (") g

0 m! m
and calculate Iy, * - -, lyo from this formula.
(¢c) Calculate Iy, * -+, Iy recursively from [y = 1,

l[,=1—1tby
n+ Dy =Q@n+ 1 =0, — nly_1-

(d) Experiment with the graphs of I, = * * + Iy, finding

out empirically how the first maximum, first minimum,
- - is moving with respect to its location as a function

of n. Write a short report on this.

(e) A generating function (definition in Problem Set

5.3) for the Laguerre polynomials is

2 ln(t)x” _ (1 _ x)—letx/(x—l).
n=0

Obtain lo, * - * » I from the corresponding partial sum
of this power series in x and compare the [,, with those
in (), (b), or (c).

The Laplace transform method may also be used for solving systems of ODEs, as we shall
explain in terms of typical applications. We consider a first-order linear system with
constant coefficients (as discussed in Sec. 4.1)

!
Y1

!

Y2

)

= apy; + a2y2 + &)

= dg1y1 T agey2 + 8a(D).

Writing Y; = £(y1), Yo = L(y2), G1 = $(g1), Go = $(gz), we obtain from (1) in

Sec. 6.2 the subsidiary system

sY; — y1(0) = ap Yy + apYs + Gi(s)

sYo — y2(0) = ag Yy + agYe + Go(s).

By collecting the Y7- and Yy-terms we have

(ay; — )Yy +

2

as Y1

+ (age — )Yz

ay2Y2 = —y(0) — G4(s)

Il

—y2(0) — Ga(s).

By solving this system algebraically for Y;(s), Yo(s) and taking the inverse transform we
obtain the solution y; = £7X(Yy), yo = L7 (Y) of the given system (1).
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Note that (1) and (2) may be written in vector form (and similarly for the systems in
the examples); thus, setting y = [y, yZ]T, A = [ag). g = g gz]T, Y=[1, Y2]T,
G =[G, G,]" we have

y =Ay +g and (A — sDY = —y(0) — G.

Mixing Problem Involving Two Tanks

Tank T in Fig. 142 contains initially 100 gal of pure water. Tank T, contains initially 100 gal of water in which
150 Ib of salt are dissolved. The inflow into 7' is 2 gal/min from T and 6 gal/min containing 6 1b of salt from
the outside. The inflow into T is 8 gal/min from T;. The outflow from 75 is 2 + 6 = 8 gal/min, as shown in
the figure. The mixtures are kept uniform by stirring. Find and plot the salt contents y(f) and yo(t) in T7 and
Ts, respectively.

Solution. The model is obtained in the form of two equations
Time rate of change = Inflow/min — Outflow/min
for the two tanks (see Sec. 4.1). Thus,

S T NI B
1T T 00 1T 0 2 T Y27 o0 1T 100 2

The initial conditions are y,(0) = 0, y5(0) = 150. From this we see that the subsidiary system (2) is

6
(—0.08 — s)¥; + 002V, =-——
A}

0.08Y;  + (—0.08 — )Y, = —150.

We solve this algebraically for Y7 and Y5 by elimination (or by Cramer’s rule in Sec. 7.7), and we write the
solutions in terms of partial fractions,

v 95 + 0.48 100 62.5 375
L7 os(s + 0.12)(s + 0.04) s s+0.12 s+ 004
15052 + 125 + 0.48 100 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>