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Series Solutions of ODEs.
Special Functions

In Chaps. 2 and3 we have seen that linear ODEs with constant coefficients can be solved

by functions known from calculus. However, if a linear ODE has variable coefficients

(functions of x), it must usually be solved by other methods, as we shall see in this

chapter.
Legendre polynomials, Bessel functions, and eigenfunction expansions are the three

main topics in this chapter. These are of greatest importance to the applied mathematician.

Legendre's ODE and Legendre polynomials (Sec. 5.3) are likely to occur in problems

showing spherical symmetry. They are obtained by the power series method (Secs. 5.1,

5.2), which gives solutions of ODEs in power series.

Bessel's ODE and Bessel functions (Secs. 5.5, 5.6) are likely to occur in problems

showing cylindrical symmetry. They are obtained by the Frobenius method (Sec. 5.4),

an extension of the power series method which gives solutions of ODEs in power series,

possibly multiplied by a logarithmic term or by a fractional power.

Eigenfunction expansions (Sec. 5.8) are infinite series obtained by the Sturm-
Liouville theory (Sec. 5.7). The terms of these series may be Legendre polynomials or

other functions, and their coefficients are obtained by the orthogonality of those functions.

These expansions include Fourier series in terms of cosine and sine, which are So

important that we shall devote a whole chapter (Chap. 11) to them.

Special functions (also called higher functions) is a name for more advanced functions

not considered in calculus. If a function occurs in many applications, it gets a name, and

its properties and values are investigated in all details, resulting in hundreds of formulas

which together with the underlying theory often fill whole books. This is what has

happened to the gamma, Legendre, Bessel, and several other functions (take a look into

Refs. [GRl], [GR10], tA11] in App. 1).

Your CAS knows most of the special functions and corresponding formulas that you

wi|l ever need in your later work in industry, and this chapter will give you a feel for the

basics of their theory and their application in modeling.

69MMENT. You can study this chapter directly after Chap.2because it needs no

material from Chaps. 3 or 4.

Prerequisite: Chap.2.
Sections that may be omitted in a shorter course: 5.2,5.6-5.8.
References and Answers to Problems; App. 1 Part A, and App.2.
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: 1 + x l x2 +,,, (l"| < 1, geometric series)

:1lxi

5.1 Power Series Method

l
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(1)

The power series method is the standard method for solving linear ODEs wtth variable
coefficients. It gives solutions in the form of power series. These series can be used for
computing values, graphing curves, proving formulas, and exploring properties of solutions,
as we shall see. In this section we begin by explaining the idea of the power series method.

power series
From calculus we recall that a power series (in powers of x - x is an infinite series of
the form

;
tn-O

arn(x - xo)* : ao l at(x - xo) + az(x - xo)2 + , , ,

Here, x is a variable. ag, a1, a2, , , , are constants, called the coefficients of the series.
xg is a constant, called the center of the series. In particular, if ío : 0, we obtain a power
series in powers of x

z-J
m,:O

a-X* : ao * alx l a2x2 l a3x3 +

We shall assume that all variables and constants are real.
Familiar examples of power series are the Maclaurin series

(2)

;
rn:O

@

rn-O

@

ln:O

@

tn:O

x2 x3

-+-+2l. 3!

am,

x*
ml.

x2 x4+--2| 4!

x3 x5+-3! 5!

(-I)-*'- :
(2m)l

(_ l)'nrz"*,
(2m + l)|

+.

-+

We note that the term "power series" usually refers to a series of the form (1) tor (2)]

but does not include series of negative or fractional powers of x. We vse m as the

summation letter, reserving n as a standard notation in the Legendre and Bessel equations
for integer values of the parameter.

Idea of the power series Method
The idea of the power series method for solving ODEs is simple and natural. We describe
the practical procedure and illustrate it for two ODEs whose solution we know, so that

l
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we can see what is going on. The mathematical justification of the method follows in the

next section.
For a given ODE

y"+p(x)y'*q(x)y:O

we first represent p(x) and q(x) by power series in powers of x (or of x _ x6 if solutions

in powers of x - 
'xg 

aía- *unt"d;. Often p(x) and q(x) are polynomials, and then nothing

needs to be done in ihis first step. Next we assume a solution in the form of a Power series

with unknown coefficients,

, : Ž.oarnx* : ao * alx l arx2 + a"x3 +,,,

and insert this series and the series obtained by termwise differentiation,

(3)

(a) y' :; marrx--| :al *2a2xl3agx2+",
m--l

(4)

(b) y" --Žr*(m - I)a,nx--2:Zaz+ 3,2a3x |-4,3aax2 + ",

into the oDE. Then we collect like powers of x and equate the sum of the coefficients of

each occurring power of x to zeío, starting with the constant terms, then taking the terms

containing x, then the terms ífi x2, and so on. This gives equations from which We can

determine the unknown coefficients of (3) successively,

Let us show this for two simple oDEs that can also be solved by elementarY methods,

so that we would not need power series,

ExAMPLE' 
iii:iT:J:::ffi,.":3li "n;;n,iil"j;.'l]grasptheidea,dothisbyhand; 

donotuseyourCAS(for

y' :2,y,

Solution. We insert (3) and (4a) into the given ODE, obtaining

a1 * 2a2x + 3a3x2 +, " : 2x(ao * alx + a2x2 +,,,),

We must perform the multiplication by 2x on the right and can write the resulting equation convenientlY as

a1 l 2a2x + 3ctgxz + 4a4x3 + 5a5xa + 6a6x5 +,,,

2agx -| 2ctp2 + 2arx3 + 2agxa + 2a4x5 +,,,,

For this equation to hold, the two coefficients of every power of _r on both sides must be equal, that is,

c\: O, 2a2: 2ag, 3a3: 2ct1, 4aa: 2a2, 5a5: 2ag, 6oa: 2as" , , 
,

Henceaz:O,a5:O,...andforthecoefficientswithevensubscripts,

a2 ag
a2: ag, Oq: 2 

: 
2|

a4 ag
u6- 3 3l
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ao remains arbitrary. With these coefficients the series (3) gives the following solution, which you should confirm
by the method of separating variables.

_ aI __o,
3.2 3!

t^*4
j:ao('*""* l\

More rapidly, (3) and (4) give for the ODE y/ :

- 
):0or

ŤCa)Ť

I,apo +) ma-x*-l:Z*2 a,nx*:) 2orrť"*I.
tn:2 tn:O tn_O

Now, to get the same general power on both sides, we make a "shift of index" on the left by setting m : s -l 2,

thusru - l:s* l.Thenarnbecomes a"a2&nd"--1 becomesr"*1.Alsothesummation,whichstartedwith
m:2,nowstartswiths:Obecauses--ln-2.]ntherightwesimplymakeachangeofnotationfix:s)
hence arn: rr" and í**l -,r"*1; also the summation now starts with s : 0. This altogether gives

or*i G-l 2)ctr*2Js+1 - Zo"r"*'.

6 a:c

2 .@ - l)arnx*-' * Ž a-xm : 0.

rn:2 tn-O

To obtain the same general power on both series, we set m: s * 2in the first series and n,L: s in the second,

and then we take the latter to the right side. This gives

i', * 2)(s +1)a"l2x" : - i r""".
s:O s:0

Each powerxs must have the same coefticient on both sides. Hence (s + 2)(s -| I)a" 2- *us. This gives the

recursion formula

as
as+2: - ( úG + D

(s:0, 1,",).

We thus obtain successively

ag
a2: - T1 

:

a2 ag
a4: - 4.3 

: T'
ag a1

5.4 5!

and so ofl. aganďal remain arbitrary. With these coefficients the series (3) becomes

.aozaIsao4a15
! : aol ctlx, T J- - 3! r" 

* 
T r' * 

í x- + ",

6Bxx
]lT3!T4|

2xy

s:O s:O

Every occurring power of x must have the same coefficient on both sides; hence

2
at: 0 and (s -l 2)a"*2: 2a" or as+2: 

s 1 ,a".

Fors: O, 1,2,...wethushave a2: (2l2)ao,a3: Ql3)a1 :O,a4: (2l4)a2, ",aSbefore. l

EXAMPLE 2 Solve

y"-|y:O,

Solution. By inserting (3) and (4b) into the ODE we have

ag
- 2l' a3:
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Reordering terms (which is permissible for a power series), we can write this in the form

+-)
and we recognize the familiar general solution

!: aocosx t a1 sinx, l

Do we need the power series method for these or similar ODEs? Of course not; We used

them just for explaining the idea of the method. what happens if we apply the method

to an oDE not of the kind considered so far, even to an innocent-looking one such as

y,, + xy : O(..Airy,s equation")? We most likely end up with new special functions given

ty po*", series. And if such an oDE and its solutions are of practical (or theoretical)

interest, we name and investigate them in terms of formulas and graphs and by numeric

methods.
We shall discuss Legendre's, Bessel's, and the hypergeometric equations and their

solutions, to mention just the most prominent of these ODEs. To do this with a good

understanding, also in the light of your CAS, we first explain the Power series method

(and later an extension, the Frobenius method) in more detail,

!:ao(r- + - +- +, 
) 
-,, (,- * -

POWER SER|ES METHOD: TECHNIQUE,

FEATUREs
Apply the power series method. Do this by hand, not by a

CAS, so that you get a feel for the method, e,g,, why a

series may terminate, or has even powers only, or has no

constant or linear tefms, etc. Show the details of your work,

l.y'- y:0 2,y'+xy:0
3.y"1-4y:0 4.y" _}:0
5. (2 + x)y' : y 6. y' + 3(1 + r')y : 0

7. y' : y + x 8. ("" + 4x3)y' : (5xa + I2x2)y

9.y" -y':0 10.y"-*y' *y:0

@ cAs pRoBLEMs. lNlTlAL vALuE
PRoBLEMS

Solve the initial value problems by a power series, Graph

the partial sum s of the powers up to and including x5, Find

the value of s (5 digits) at xr.

II. y' l 4y : !, y(0) : 1.25, x1 : 0,2

12. y' : I * y2, y(0) : 0, xt: irl
13,y':!- j2, y(0):}, x1 :I
14. (x - 2)y' : xj, y(0) : 4, xt: 2

15. y" + 3xy' l 2y : 0, y(0) : 1,

y'(0) : 1, x1 : 0,5

16. (1 - x2)y" - 2xy' * 30y : 6, y(0) : 0,

y'(0) : 1.875, x1 : 0.5

17. WRITING PROJECT. Power Series. Write a review

(2-3 pages) on power series as they are discussed in

calculus, using your own formulation and examples-
do not just copy passages from calculus texts,

18. LITERATURE PROJECT. Maclaurin Series,

collect Maclaurin series of the functions known from

calculus and arrange them systematically in a list that

you can use for your work.

5.2 Theory of the Power Series Method
In the last section we saw that the power series method gives solutions of ODEs in the

form of power series. In this section we justify the method mathematicallY as follows. We

first review relevant facts on power series from calculus. Then we list the oPerations on

power series needed in the method (differentiation, addition, multiPlication, etc.). Near

the end we state the basic existence theorem for power series solutions of ODEs.
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(1)

Basic Concepts
Recall from calculus that a power series is an infinite series of the form

Žoo*{, - xo)- : ao * a{x - xo) + az(x -xo)2 + . . .

As before, We assume the variable x, the center xg, zndthe coefficients ag, a1,. . . to be
real. The nth partial sum of (1) is

sn(x): ao l at(x - xo) * az(x - xo)z +. . . + an(x - xg)n

: 0, 1, ' ' ' . ClearlY, if we omit the terms of s, from (1), the remaining expression

R"(x) : an+t(x - xo)n*L l an*2(x - xo)nn2 + . . . .

is called the remainder oí (1) after the term an(x - xg)n
in the case of the geometric series

1:-'x+x2+...+xn+...
we have

o:1, Ro:,r+x2+J3* .,

S1 :1*-T, Rt:x2+x3+X4 l .,

sz:llxlx2, Rz:x3+xa+J5* ., etc.

In this WaY We have now associated with (1) the sequence of the partial sums
so(x), sr(x), sz(x),, , , . If for some x : x1, this sequence converges, say,

}9"@,) : s(rr),

then the series (1) is called convergent at x : x7, the number s(,y1) is called the value or
sum of (1) at /1, &Dd we write

,("r): j arr(x1 - xo)''.

s(Jl):sn@)*Rn@).

: x1,, the series (1) is called divergent at x : x..
for any positive e there is an N (depending on e)iuch that,

ln,("r)l : ls(xr) - s,(x1)| { e forallnžN.

(2)

where n
is

(3)

This expression
For example,

Then we have for every n,

(4)

If that sequence diverges at x
In the case of convergence,

by (4),

(5)
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Geometrically, this means that all sn(xt) with n > 1 lie between s(xr) - e and s(x1) * e

(Fig. 102). Practically, this means that in the case of convergence we can approximate
the sum s(x1) of (1) at xtby sn(xt) as accurately as we please, by taking nIarge enough.

Convertence lnterval. Radius of Conver8ence
With respect to the convergence of the power series (l) there are three cases, the useless

Case 1, the usual Case2, and the best Case 3, as follows.

Case 1. The series (1) always converges at x : xo, because for x: xo all its terms are

zero,perhaps except for the first one, ag.In exceptional cases x: xo may be the only x
for which (1) converges. Such a series is of no practical interest.

Case 2, If there are further values of x for which the series converges, these values form

an interval, called the convergence interval. If this interval is finite, it has the midpoint

í6, so that it is of the form

|x-xo| <R(6)

and the series (1) converges for all x such that |x - xol ( R and diverges for all x such

that |x - xol > R. (No general statement about convergence or divergence can be made

for x - xo : R or -R.) The number R is called the radius of convergence of (1). (R is

called "radius" because for a complex power series it is the radius of a disk of convergence.)

R can be obtained from either of the formulas

s(rr) s(rr) + e

Fig. t02. lnequatity (5)

(Fig. 103)

Divergence

*o-R xo ro+R

Fig. 1O3. Convergence interval (6) of a power
series with center xo

provided these limits exist and are not zero. [If these limits are infinite, then (1) converges

only at the center xg.]

Case 3. The convergence interval may sometimes be infinite, that is, (1) converges for
aII x. For instance, if the limit in (1a) or (7b) is zero, this case occurs. One then writes
R : @, for convenience. (Proofs of all these facts can be found in Sec. I5.2.)

For each x for which ( 1 ) converges, it has a certain value s(x). We say that ( 1 ) represents
the function s(x) in the convergence interval and write

s(x): Žoo*{r-xo)-

Let us illustrate these three possible cases with typical examples.

(l"-xol <R).

(7) (a) R: lfri^ W
/ *-- (b) R: lfn^ l!,-l-|

/*-* | ar" 
l

|--.-+."__-|
Converge nce ----->] D ivergence

---=t_ o________-|ll
s(r,) - e
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ExAMPLE l The Useless Case l of Convertence Only at the Center

In the case of the series

17l

aS m --> ď).

(1"l < t).

aS m--+ @

Thus this series converges only at the center x : 0, Such a series is useless.

The Usual Case 2 of Convertence in a Finite lnterval. Geometric Series

For the geometric series we have

we have a- : m|, and in (7b),

) -tr*: 1 + x -| 2x2* 6x3 + ...
ln:O

am'1 
- 

(m + l)| : ttt + I+z:.
a,n m|

l :Š,r-:li x*x2+...-l 
-x 

1J ^

1: __+0
m-|I

l

ExAMPLE 2

ExAMPLE 3

ExAMPLE 4

In fact, a-,: I for all m, and from (7) we obtain R : 1, that is, the geometric series converges and represents

Il(t - r) when l"l < t. l

The Best Case 3 of Convertence for All x

In the case of the series

_-_Š x- ,2,-: 
o _|:l-|x-| 2| +",

we have arn : Ilm|. Hence in (7b),

ant+l _ Il(m+1)l.

ayn llmt

so that the series converges for all "r.

Hint for some of the problems

Find the radius of convergence of the series

l

cc , l,Ťl1, 3 6 9(-ll ^ X x X

í" 8- n -' 8 '64 5l2

Solution. This is a series in powers of / : x3 with coefficients an : (- I)*l8*, so that in (7b),

|a*+tl_ r'_11
l o- l ,-" 8'

Thus R : 8. Hence the series converges for |r| 
: l"'l < 8, that is, |x| < 2. I

Operations on Power Series
In the power series method we differentiate, add, and multiply power series. These three
operations are permissible, in the sense explained in what follows. We also list a condition
about the vanishing of all coefficients of a power series, which is a basic tool of the power
series method. (Proofs can be found in Sec. 15.3.)
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Termwi se Differenti ation
A power series may be dffirentiated term by term_ More precisely: if

y(x):Žro*'*-xo)-

converges for |x - xo1 { R, where R ) 0, then the series obtained by differentiating term

by term also converges for those x and represents the derivative y' of y for those x,

that is,

y'(x): ; ma,n(x - xo)*-l (l" - xol < R).

m:t

Similarly,

y" (r): ; m(m - I)a,n@ - xo)*'2
m-2

(l, - xol < R), etc.

Termwise Addition
Two power series may be added term by term. More precisely: if the series

|'
(8) Žoo*r* - xď- and Ž 

',,r* 
- xo)*

tn:O

have positive radii of convergence and their sums are f (x) and g(x), then the series

Ž ro,, + b,,)(x - xo)*
m:O

converges and represents /(x) + s(x) for each x that lies in the interior of the convergence

interval of each of the two given series.

Termwise MultipIication
Two power series may be multiptied term by term. More precisely: SuPPose that the series

(8) ňave positive radii of convergence and let /(r) and g(x) be their sums. Then the

series obtained by multiplying each term of the first series by each term of the second

series and collecting like powers of x - x6, that is,

@

m:O
: aobot- (agb1 -l a g)(x -ío) * (agb2 l alb1 * a2bg)(x- xo)z +,,,

converges and represents f(x)g(x) for each x in the interior of the convergence interval of

each of the two given series.
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Vanishint of A[l Coefficients
If a power series has a positive radius of convergence and a sum that is identically zero
throughout its interval of convergence, then each cofficient of the series must be zero.

Existence of Power Series Solutions of ODEs.
Real Analytic Functions
The properties of power series just discussed form the foundation of the power series
method. The remaining question is whether an ODE has power series solutions at a11. An
answer is simple: If the coefficients p and q and the function r on the right side of

(9) y" + p(x)y' + q(x)y: r(x)

have power series representations, then (9) has power series solutions. The same is true
.^ y 

- -tI h, p. q, and r ln

(10) ň@)y" + F@)y' + d@)y : v(x)

have power series representations and ň.(r * O (xg the center of the series). Almost all
ODEs in practice have polynomials as coefficients (thus terminating power series), so that
(when r(x) : 0 or is a power series, too) those conditions are satisfied, except perhaps
the condition ň(x) + 0.If ň@ * 0, division of (10) by ňlx\ gives (9) with p : Flň,
q : qlň, r : lň. This motivates our notation in (10).

To formulate all this in a precise and simple way, we use the following concept (which
is of general interest).

DEFlN-ITlON Real Analytic Function

A real function /("r) is called analytic at a point x : xo if it can be represented by
a power series in powers of x - x6 with radius of convergence R > 0.

Using this concept, we can state the following basic theorem.

THEOREM',,:l Existence of power series solutions

Ií p, q, and r in (9) are analytic at x : xo, then every solution oí (9) is analytic at
x : xo and can thus be represented by a power series in powers oí x - xg with
radius of convergence R } 0. Hence the same is true ií ň,, F, Q, and in (I0) are
analytic at x : xg and ň@ * 0.

The proof of this theorem requires advanced methods of complex analysis and can be
found in Ref. tA11] listed in App. 1.

We mention that the radius of convergence R in Theorem 1 is at least equal to the
distance from the point x : xo to the point (or points) closest to x6 at which one of the
functions p, Q,T, as functions of a complex variable, is not analytic. (Note that that point
may not lie on the x-axis but somewhere in the complex plane.)

175
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@
Determi

RADIUS OF CONVERGENCE
ne the radius of convergence. (Show the details,)

Ť t ,m.*|

14.> +"tri-3
m,-3

T2
15. >, P , ,. .r''n(n * l)l

P-\ 
,l ,

@ powER sERlEs soluTloNs
Find a power series solution in powers of x, (Show the

details of your work.)

16.y"*xy:0
17.y"-y'+*'y:0
18. y" - y' * xy : 0

19. y" 4- 4xy' : 0

20.y"l2xy'-|y:0
2I.y"+(1+x')y:0
22. y" - 4ry' 1- (4x2 - 2')y : 0

23. (2x2 - 3x + 1)y" + Zxy' - rr: o

24. TEAM PROJECT. Properties from Power Series,

In the next sections we shall define new functions

(Legendre functions, etc.) by power series, deriving

properties of the functions directly from the series, To

understand this idea, do the same for functions familiar

from calculus, using Maclaurin series,

(a) Show that cosh x + sinh ;r : e', Show that

cosh x ) 0 for all x, Show that e' ž e-* for all

x>0.
(b) Derive the differentiation formulas for e', cos ,]r,

sin x, 1/(1 - x) and other functions of your choice,

Show that (cos x)" : -cos ,x, (cosh x)" : cosh x,

Consider integration similarly.

(c) What can you conclude if a series contains only

odd powers? Only even powers? No constant term? If

al1 its coefficients are positive? Give examples,

(d) What properties of cos x and sin x are ltor obvious

from the Maclaurin series? What properties of other

functions?

25. CAS EXPERIMENT.Information from Graphs of

Partial Sums. In connection with power series in

numerics we use partial sums. To get a feel for the

accuracy for various J, experiment with sin x and

graphs of partial sums of the Maclaurin series of an

increasing number of terms, describing qualitatively

the "breakaway points" of these graphs from the

graph of sin x, Consider other examples of your own

choice.

an _fr
1.> + (c*0)

-:O 
C

2.Š.;l]{o,.* |)2*-, LJ 3*(m l I\,
m-O

3. ; '' !^,,,"' (.y - 3)2--' z-J 2-,":'

o.2o(-I)*xn-

rc
§

rn:O

(2m)|

(2m+2)(2m+4)
X*

u 
Ž,#x2ln+!o

?.Ž ',|,]',.- |)2*
+

m,:2

-Žffi--,
6 c,2

9. > !!-_}! .u-
" \m - J)

Ťn-.+

10. Š Q-)| r*

,r-),}a-in)-

,r.Ž,trť#,2ln+l

@ sHlFTlNG suMMATloN tNDlcEs
(cF. sEc. 5.1)

This is often convenient or necessafy in the power series

method. Shift the index so that the power under the

summation sign is xr. check by writing the first few terms

explicitly. Also determine the radius of convergence R,

, r,n]1

13' > |- l-) 
,,n " 

2

5nn,-I
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5.3 Legendre's Equation.
Legendre Polynomials P 

"(*)

oo

(| - x')2 
^@ -ln:2

177

(1)

In order to first gain skill, we have applied the power series method to ODEs that can

also be solved by other methods. We now turn to the first "big" equation of physics, for
which we do need the power series method. This is Legendre's equationl

(| - ,')y" - 2ry' * n(n * l)y:9

where nis agiven constant. Legendre's equation arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. I2.I0).
The parameter n in (I) is a given real number. Any solution of (1) is called a Legendre
function. The study of these and other "higher" functions not occurring in calculus is
called the theory of special functions. Further special functions will occur in the next
sections.

Dividing (1) by the coefficient 1 - x2 of j",,v{e see that the coefficients -Zxl(I - x2)

andn(n + 1)(1 - x\ of thenewequationareanalytic atx: O.HencebyTheorem 1,

in Sec. 5.2,Legendre's equation has power series solutions of the form

arrX*

Substituting (2) and its derivatives into (1), and denoting the constant n(n + 1) simply by
k, we obtain

(2) y:;
rn:O

I)a,nx*-2 - 2x) *o,rr-1 + tr) orr** :0.
ln:l m:O

By writing the first expression as two separate series we have the equation

aj) co @

m 2 m:2 m:I
*i ka,nx-:O.

Tn:O

To obtain the same general powerx" in all four series, we set m - 2 : s (thus m : s * 2)

in the first series and simply write s instead of min the other three series. This gives

@co@oo

s:O s.-2 s-l s:O

l,qoRrcN-uARIE LEGENDRE (I'752*1833), French mathematician, who became a professor in Paris in

I775 anď made important contributions to special tunctions, elliptic integrals, number theory, and the calculus

of variations, His book Éléments de géométríe (1794) became very famous and had 12 editions in less than 30

years.

Formulas on Legendre íunctions may be fbund in Refš. [GRt] and [GR10].
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(Note that in the first series the summation begins with s : 0.) Since this equation with

right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the

coefficients of each power of x on the left must be zero. Now xo occurs in the first and

fourth series and gives [remember that k : n(n + 1)]

(3a)

x' occurs in the

(3b)

ll^ -

(n

n(n + I)
a2: - t oo

(n-2)(n+3)

2, Ia2 -l n(n -l 1)a6 : 0.

first, third, and fourth series and gives

3.Zag +1-2 -l n(n + 1)] at : 0.

The higher powers x2, x3, . . . occur in all four series and give

(3c) (s + 2Xs * I)a,*2+ [-s(s - 1) - 2s * n(n+ 1)]a,: 0,

The expression in the brackets t, , ,] can be written (n - s)(n f s -|_ 1), as you may

readily verify. Solving (3a) for a2and (3b) for agas well as (3c) fof a"12, we obtainthe

general formula

(n-s)(n+s+1) (s:0, 1,",).as+2 (s+2Xs+1)

This is called a recurrence relation or recursion formula. (Its derivation you may verify

with your CAS.) It gives each coefficient in terms of the second one preceding it, except

for ag anď a1, which are left as arbitrary constants. We find successivelY

(n-I)(n+2)
3!

(n-3)(n+4)

(4)

a2 a5

a1a3

5!

5,4

(n-3)(n-I)(n

ag

+ 2)(n + 4)

4.3

- 2)n(n + 1)(n + 3)

and so on. By inserting these expressions for the coefficients into (2) we obtain

(5) y(x) : ao!{x) 1- ag2@)

where

(n-Z)n(n+lXn+3)
xa-+"

(n-I)(n+2)
x3+

4!

(n-3)(n-I)(n+2)(n+4) x5- +Yz@):x-

These series converge for |x| { 1 (see Prob. 4; or they may terminate, see below). Since

(6) contains even pÓ*"r* of x only, while (7) contains odd powers of x onlY, the ratio

ybz is not a constant, so that y1 and !2 eíe not proportional and are thus linearlY

inj.p"na"nt solutions. Hence (5) is a general solution of (1) on the interval -1 < x <-I.

a1
4l.

(6)

(7) 5!3!
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Legendre Polynomials P 
"(*)

In various applications, power series solutions of ODEs reduce to polynomials, that is,

they terminate after finitely many terms. This is a great advantage and is quite common
for special functions, leading to various important families of polynomials (see Refs. tGR1]
or [GR10] in App. 1). For Legendre's equation this happens when the parameter n is a
nonnegative integer because then the right side of (4) is zero for s : n, so that an+z: 0,

an+4:0,an+6 - 0,, , ,. Hence if n is even, yt@) reduces to apolynomial of degree n.

If n is odd, the same is true for y2@). These polynomials, multiplied by some constants,

are called Legendre polynomials and are denoted by P.(x).The standard choice of a
constant is done as follows. We choose the coefficient an of the highest power xn as

(8)

(andan:lifn:0).
terms of ar*2, that is,

(9)
(s+2Xs+l)

as+2 $=n-2),

(,2n)l, 1,3,5,,, (2n _ I)
a, : ,cÝ 

(n a positive integer)

Then we calculate the other coefficients from (4), solved for a" in

a": - (n-s)(n+s+1)

The choice (8) makes P,o(l) : 1 for every n (see Fig. 104 on p. 180); this motivates (8).

From (9) with s : n - 2 and (8) we obtain

n(n - I)
an-z: - zen _ I) art.: -

n(n - I)(2n)|

2(2n - I)2n(nt)2

Using (Zn)l. : 2n(2n - l)(2n - 2)|., n|. : n(n - 1)!, and n|. : n(n _ I)(n _ 2)!, we

obtain

n(n - I)2n(2n - I)(2n - 2)l
an-2

2(2n - l)2nn(n - 1)! n(n - I)(n - 2)l

n(n - I)2n(2n - 1) cancels, so that we get

(2n - 2)|
an-2

2"(n - I)| (n - 2)l

Similarly,

(n-2)(n-3)
an-4

4(2n - 3)

(2n - 4)l

an-2

2",2|.(n-2)l@-Dl

and so on, and in general, when n - 2m ž 0,

an-2ln: (-|)*
(2n - Zm)l

2"m|. (n - m)l. (n - 2m)t
(10)
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The resulting solution of Legendre's differential equation (1) is called the Legendre

polynomia| of degree n and is denoted by P,(x),

From (10) we obtain

(11)

M

rn:O

(2n)|

(2n - Zm)l.

2nm|. (n - m)t (n - 2m)t

(2n - 2)l

2nlt (n - 1)! (n - 2)l

,n-2tn

ť-2+-",xn
2n(nl.)z

where M : nl2 or (n - l)l2, whichever is an integer. The first few of these functions are

(Fig. 10a)

P6(x) : 1, P1@): x

(11') Pz@) : +(3x2 - 1), Ps(x) : +(5X3 - 3x)

PsJ,) : t(35x4 - 3Ox2 + 3), Pu(x) : á(63x5 - JOx3 + 15x)

and so on. You may now program (11) on your CAS and calculate Pn(x) as needed,

The so_calle,d orthogonality of the Legendre polynomials will be considered in

Secs. 5.7 and 5.8.

l)

1

Fig.l04. Legendre polynomials

1. Verify that the polynomials in (11/) satisfy Legendre's

equation.

2. Derive (11/) from (11).

3. Obtain P6 and P7 from (11).

4. (Convergence) Show that for any n for which (6) or

(7) does not reduce to a polynomial, the series has

radius of conver_eence 1.

5. (Legendre function Qo@) for n = 0) Show that (6)

with n : 0 gives yr(x) : Po(x) : 1 and (7) gives

2 ^ (-3X-|),2,4 R .

y2(x): " * 
3! "" 

* --- st x" + ",

x3:r*-+
"a

J

x5 1 l*x..,:-ltl-
5 2 I-x
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Verify this by solving (1) with fl:0, setting z: y|

and separating variables.

6. (Legendre function -Qt@) for n = 1) Show that (7)

with n : 1 gives yz(x) : Pt@) : x and (6) gives
yr(x) : -Qt@) (the minus sign in the notation being
conventional),

x2 x4 x6
v,(x): l- 

-135

+- )

7. (ODB) Find a solution of
(o' - x')y" - 2*y' * n(n + l)y : 0, a * 0,

by reduction to the Legendre equation.

8. [Rodrigues's formuta (12)]2 Applying the binomial
theorem to (x2 - I)', differentiating it n times term
by term, and comparing the result with (11), show
that

(a) Legendre polynomials. Show that

(13) G(u, x) : \I-2x"+"'
@

: ) pnlxlun
n:O

is a generating function of the Legendre polynomials.
Hint: Startfrom the binomial expansion of IlÝI - u,

then set t) : 2xu - u2, multiply the powers of
Zxu - L2 olJt, collect all the terms involving un, anď

verify that the sum of these terms is Pn(x)u",

(b) Potential theory. Let Al and A2 be two points in
space (Fig. 105, 12 ž O). Using (13), show that

1

Ý rr2 + rr2 - 2rrr, cos 0

This formula has applications in potential theory.
(Qlr is the electrostatic potential at A2 due to a
charge Q Iocated at A1, And the series expresses 1/r

in terms of the distances of Á1 and A2from any origin
O and the angle 0 between the segments OÁ1 and
OAr,)

rl

Fig. l05. Team Project 14

(c) Further applications of (13). Show that
P.O) : I, Pn(- 1) : (-I)", Pzr*t(0) : 0, and

Pz.(O) : (-1)', 1, 3,,, (2n - I)/I2, 4,,, (2n)].

(d) Bonnet's recursion.3 Differentiating (13) with
íespect to a, using (13) in the resulting formula, and
comparing coefficients of un, obtain the Bonnet
recursion

(14) (n 1- I)Pn*r(x) : (2n,| I)xP.(x) - nP,_1(x),

where n : I, 2, , , , . This formula is useful for
computations, the loss of significant digits being small
(except near zeros). Try (14) out for a few computations
of your own choice.

l8l

-1-

-1-

lx3
x lx * - +

\3
1 l*x
- xln2 I-x

1

r

: 
*žor,r*,o (i)-

1(12) P*(x) : 
2.r| - D*l

9. (Rodrigues's formula) Obtain (11/) from (12).

@ cAs pRoBLEMs

10. Graph Pz(x), , , , , Plo(x) on common axes. For what
x (approximately) and n - 2, " , , 10 is |r,lx;| < }Z

11. From what n on will your CAS no longer produce
faithful graphs of P.(x)? Why?

12. Graph Qo@), Q{x), and some further Legendre
functions.

13. Substitutearx" + a"*1,T"*1 l ar*2x'*2 intoLegendre's
equation and obtain the coefficient recursion (4).

14. TEAM PROJECT. Generating Functions.
Generating functions play a significant role in modern
applied mathematics (see tGRs]). The idea is simple.
If we want to study a certain sequence (f .(x)) and can

find a function

G(u, x):Ž ín(x)u',

we may obtain properties of (f .(x)) from those of G,
which oogenerates" this sequence and is called a

generating function of the sequence.

#ro,

A2

2oLINop RODRIGUES (1794-185l), French mathematician and economist.
3oSSIAN BONNET (1819-1892), French mathematician. whose main work was in difí-erential geometry.
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15. (Associated Legendre functions) The associated

Legendre functions Pno(r) play a role in quantum

physics. They are defined by

sko
(15) Pno(r): (1 - x2)kl2 

,Ě

and are solutions of the oDE

(I-x\y"-2ry'
(16) T k2 l

+|n{n + l)- -:- ,ly:0.L |-x')'

Find Prl(x), Pr'(x), Pr'(r), and Pnz(x) and verify that

they satisfy (16),

5.4 Frobenius Method

T.,H,.E :RrE,M"..]I

Several second-order ODEs of considerable practical importance-the famous Bessel

equation among them-have coefficients that are not analytic (definition in Sec. 5.2),but

are ,,not too bad," so that these ODEs can still be solved by series (power series times a

logarithm or times a fractional power of x, etc.). Indeed, the following theorem Permits
an extension of the power series method that is called the Frobenius method. The latter-
as well as the power series method itself-has gained in significance due to the use of

software in the actual calculations.

For example, Bessel's equation (to be discussed in the

y,,+|,'-(+)
next section)

y:0 (zaparameter)

aGBoRG FR6BENIUS (lB49-1917), German mathematician, also known íbr his work on matrices and in

group theory.

In this theorem we may replace x by .r - l;6 with any number 16. The condition ag * 0 is no restriction; it

simply means that we í'actor out the highest possible power of ,r.

The singular point of (l) at x : 0 is sometimes called a regular singular point, a term conÍ'using to the

student. which we shall not use.

Frobenius Method

Let b(x) and c(x) be any functions that are analytic at x : 0. Then the ODE

(1)

has at least one solution that can be represented in the form

(2) y(x): 
"i 

a*x-: x,(aol alx l a2x2 + ",) (ag* 0)

tn:O

where the exponent r may be rlny (real or complex) number (and r is chosen so that

ag * 0).
The oDE (I) also has a second solution (such that these two solwtions are linearly

independent) that may be similar to (2) (with cl dffirent r and dffirent cofficients)

or may contain a logarithmic term. (Details in Theorem 2 below.)a
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is of the form (1) with b(x) : 1 and c(x) -- x2 - u2 analytic at x :0, so that the theorem
applies. This ODE could not be handled in full generality by the power series method.

Similarly, the so-called hypergeometric differential equation (see Problem Set 5.4) also
requires the Frobenius method.

The point is that in (2) we have a power series times a single power of x whose exponent
r is not restricted to be a nonnegative integer. (The latter restriction would make the whole
expression a power series, by definition; see Sec. 5.1.)

The proof of the theorem requires advanced methods of complex analysis and can be
found in Ref. tA11] listed in App. 1.

Regular and Singular Points
The following commonly used terms are practical. A regular point of

y" + p(x)y' -l q(x)y : 0

is a point "16 at which the coefficients p and q are analytic. Then the power series method
can be applied. If x6 is not regular, it is called singular. Similarly, a regular point of the

oDE
ň@)y" + F@)y'(x) + Q@)y:0

is an x6 at which ň.F. q are analytic and ň.@ * 0 (so what we can divide by ň anď get
the previous standard form). If x6 is not regular, it is called singular.

lndicial Equation, lndicating the Form of Solutions
We shall now explain the Frobenius method for solving (1). Multiplication of (I) by x2
gives the more convenient form

,'y" + xb(x)y' * c(x)y : 0.

We first expand b(x) and c(x) in power series,

b(x):bg*b *b2x2+ ,, c(x):cglc +crx2l

or we do nothing if b(x) and c(x) are polynomials. Then we differentiate (2) term by term,
finding

óc

-nO

=**|'rru - l)ao* (r -| I)ralx+ . . .].

By inserting all these series into (1') *. readily obtain

(1')

x'|r(r - l)ctg + , , ,]
(3)

+ (bo * bg*,,,)x'(rag * . . .)

f (co l cpf ,,,)r'(ag * 0rr +,,,) : 0.
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We now equate the sum of the coefficients of each power x', ť*1, ť*',' ' ' to Zero. ThiS

yields a system of equations involving the unknown coefficients an, The equation

corresponding to the power x' is

|r(r - 1) * bgr -l co] ao : 0.

Since by assumption a6 * 0, the expression in the brackets t, , ,] must be zero. This gives

r(r-l)+borl-c6:0.

This important quadratic equation is called the indicial equation of the ODE (1). Its role

is as follows.
The Frobenius method yields a basis of solutions. One of the two solutions will alwaYs

be of the form (2), where r is a root of (4). The other solution will be of a form indicated

by the indicial equation. There are three cases:

Case 1. Distinct roots not differing by an integer I,2,3, , , ,

Case 2. A double root.

Case 3. Roots differing by an integer I,2,3,, , ,

Cases 1 and 2 are not unexpected because of the Euler-CauchY equation (Sec. 2.5), the

simplest oDE of the form (1). Case 1 includes complex conjugate roots 11 and fz: Vt

because ťt - Tz - f1 - 7t: 2i Im 11 is imaginary, so it cannot be a real integer. The

form of a basis will be giverr in Theorem 2 (which is proved in App. 4), without a general

theory of convergence, but convergence of the occurring series can be tested in each

individual case as usual. Note that in case 2 we must have a logarithm, whereas in case

3 we may or may not.

Frobenius Method. Basis of Solutions. Three Cases

Suppose that the oDE (I) satisfies the assumptions in Theorem I. Let 11 and 12 be

thi roots of the indiciat equation (4). Then we have the following three cases.

Case 1,. Distinct Roots IÝot Dffiring by an Integer. A basis is

(5) yr(x):{'(oo*alx+a2x2+",)

and

(6) yz@): {'(Ao* Arxl Arx2 + ",)

with cofficients obtained successively from (3) with f : T! and r -- T2, resPectivelY.

Case 2, Double Root ít = f2 = r, A basis is

(7) yr(x):x,(aolalx+arx2+.") |r:ž(t_b)

(of the same general form a, buforu| ard

(S) yz(x): !{x) lnx * x'(Ag * A2x2 + ,") (x > 0),

(4)

THEoREM 2

_-1
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Typica1 Applications
Technically, the Frobenius method is similar to
of the indicial equation have been determined.
general form of a basis, and a second solution
reduction of order (Sec. 2.1).

the power series method, once the roots
However, (5)-(10) merely indicate the

can often be obtained more rapidly by

ExAMPLE l

ExAMPLE 2

Euler-Cauchy Equation, lllustrating Cases l and 2 and Case 3 without a Logarithm

For the Euler-Cauchy equation (Sec. 2.5)

*'y" + bgxyl -| co) : 0

substitution of y : x' gives the auxiliary equation

(bo, co constant)

r(r-l)-|bgr*c6:0,

which is the indicial equation [and y : x'is a very special form of (2)!]. For different roots 11, 12we get a

basis y1 : x'I , y2: x'2, and for a double root r we get a basis x', x'lnx. Accordingly, for this simple ODE,
Case 3 plays no extra role.

lllustration of Case 2 (Double Root)

Solve the ODE

(11) x(x - l)y" + (3x - 1))' + y : 0.

(This is a special hypergeometric equation, as we shall see in the problem set.)

Solution. Writing (1 1) in the standard form (1), we see that it satisfies the assumptions in Theorem 1. [What
areb(x) and c(,r) in (11)?] By inserting (2) and its derivatives (2*) into (11) we obtain

(I2)

ď)Ť
2 r*+ r)(ml r- l)arnx**'_ 2 r-+ r)(ml r- I)arnx-*'-|

m:O tn:O

6@m

+3> (mir:)arnx?n+T -) r*lr)a-x-+'-l +2 o-x-n':O.
tn_O tn_O ln:O

The smallest power is x'-1, occurring in the second and the fourth series; by equating the sum of its coefficients
to zero we have

thus r2 : O

l

|-r(, - 1) - r]ao: 0,

Hence this indicial equation has the double root r : 0.

185

Case 3. Roots Dffiring by an Integer. A basis is

yr("r) : x"(ao * alx * a2x2 +,,,)(9)

(of the same 7eneral form as before) and

(10) yz(x): lcyt@) lnx -| f'(Ao l Ag l A2x2 + " ,),

where the roots are so denoted that 11 - rz } 0 and k may turn out to be zero.
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First solution. we insert this value r : 0 into (12) and equate the sum of the coefficients of the power

r" to zero, obtaining

s(s - 1)a" - (s + 1)sa"*1 * 3sa" - (s t 1)a"+r -l- a":0

thus a"*1 : c". Hence clg : a1 : o, :,,,, and by choosing ao : I we obtain the solution

(l,| < t).
ln-O

Second Solution. We get a second independent solution y2 by the method of reduction of order (Sec. 2.1),

substituting lz: u|tand its derivatives into the equation. This leads to (9), Sec. 2.1, which we shall use in this

example, instead of starting reduction of order from scratch (as we shall do in the next example). In (9) of

Sec.2.1 we have p: (3x - 1)l(x2 - _r), the coefficient of y' in (I1)in stand,ardform. By partial fractions,

- I rd-: -I # d- : -I É- ;) dx: _21n(x- 1) - lnx.

Hence (9), Sec. 2.1, becomes

, (x-l12 l
u' : (J : y-2 ^-Jp d,\,I ( (x- |)2* - r u: Inx,

(*2_ r)y"-.x}'+y:0.

lnx
!z: u!t: ' .

| -.\

y1 and y2are shown in Fig. 106. These functions are linearly independent and thus form a basis on the interval

0{x< l(aswel]ason 1(_r{@). l

0
_1

-Z

-J

_4

Fig. 106. Solutions in Example 2

Case 3, Second Solution with Logarithmic Term

y
4

3

2

ExAMPLE 3

Solve the ODE

( 13)

Solution. Substituting (2) and (2") into (l3), we have

T@Ť
o rr

lx- - x) Z Qn-l r)(m* r- 1)e4ni**'-'- 12 (m-l r)arnxln+T-l +), a-x-*':0,
tn_o m:o m.-o

We now take.r2, x, and,r inside the summations and collect all terms with power r-*' and simpliíy algebraicallY,

a/a

2 Q, l r - 1)2ar"x-*' - Ž (", * r)(m l r - 7lrt,.x-*'--l : 0,

tn_o ln-O

In the first series we set lr, : s and in the second m : s *

7aŤ

(l4)
s:o s:-1

1,thuss:m - 1.Then

r + l)(s + r)rt"*1x"+' : 0.
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The lowest power is r'-1 (take s : -1 in the second series) and gives the indicial equation

r(r-1):g.

The roots ilre 11 : l and 12: 0. They differ by an integer. This is Case 3.

FirSt SOlution. From (14) with r : /,1 : 1 we have

i [r'r- - (s i 2.11s + 1.)a"*1]x"+1 : 0.

s-0

This gives the recurrence relation

,2
as+l: 

1, + z1, + 9 
o" (s:0, 1,,..).

Hence c4: 0, az: O,, , , successively. Taking ao: 7, we get as a first solution yt: x'loo: x.

Second Solution. Applying reduction of order (Sec. 2.1), we substitute lz : jlu : xu, yL : xu' -| u and
yL : xu" + 2u' into the ODE,, obtaining

(x2 - x)(xu" + 2u'1 - x(xu' + u) * xu: 0.

xu drops out. Division by x and simplification give

(x2*x)u"í(x-2)u':0.

From this, using partial fractions and integrating (taking the integration constant zero), we get

u"x221
| 2 = -;

u "]r -,r
lntl :,,' l+l

Taking exponents and integrating (again taking the integration constant zero), we obtain

, ,-I 1 1 1u: *, 
:;-?, u:ln**;, !z:xL!-xlnxi1.

y1 and y2 are |inearly independent, and y2 has a logarithmic term. Hence y1 and y2 constitute a basis of solutions
for positive,r. l

The Frobenius method solves the hypergeometric equation, whose solutions include
many known functions as special cases (see the problem set). In the next section we use
the method for solving Bessel's equation.

E BAsls oF soluTloNs By THE
FROBEN|US METHOD

Find a basis of solutions. Try to identify the series as

expansions of known functions. (Show the details of your
work.)

1.,y" -l 2y' - x! : O 2. (x + 2)'y" _ 2y : 0

3.xy"+5y'+ry:g
4. Zxy" + (3 - 4x)y' + 12x - 3)y : 0

5. ,'y" + 4xy' + (*' -l 2)y : g

6.4xy"+2y'*r:0
7. (x + 3)'y" - 9(x + 3)y| * 25y : g

8."y"-,:0
9.,y" + 12x + 1)}' + (, * 1)y:6

10. x2y" + 2x3y' + (.*' * 2)y : 0

|1. (x2 + x')y" + 14x + 2)y' + 2y : g

12. xzy" + 6xy' + 14x2 * 6)y : 6

13. 2xy" - (8, - I)y' + (8x - 2)y : 0

1,4.xy"+y'-,,:o
15. (-r - 4)'y" - (* - 4)y' - 35y : 6

16. xzy" + 4xy' - (*' - 2)y : 0

17. y" * (.r - 6)l, : 0
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(15)

CHAP. 5 Series Solutions of ODEs. Special Functions

18. TEAM PROJECT. Hypergeometric Equation,
Series, and Function. Gauss's hypergeometric ODEs
is

x(.I - x)y" * lc - (a + b + l)x]y' - aby : g.

Here, a, b, c are constants. This ODE is of the form

pzy" l p'.y' -| poy : 0, where pz, p"s., po are

polynomials of degree 2, 1, 0, respectively. These

polynomials are written so that the series solution takes

a most practical form, namely,

ab a(a + I)b(b + I)
yl(x) : 1 -|

''-\, 
+ D

ln (1 + x) : xF(l, I,2; -x),

1-1 x
ln ] : 2xF(l, I,3r: x2'),1-x

Find more such relations from the literature on special
functions.

(d) Second solution. Show that for Tz : I - c the

Frobenius method yields the following solution (where

c * 2,3, 4, " ,):

. / (a-c-|)(b-ci1.1
j2(x|: *'-"(' -6r

(rD
(u- C- |)(a - 6-1- 2)lb- c-l lltb- c-l 2) ,

2| (-c - 2X-c + 3) 
\

*...l
l

Show that

yz(x): x7-"Fla - c l I,b - c * I,2 - c; x).

(e) On the generality of the hypergeometric
equation. Show that

(18) 1t2+At +B)y +(Ct +D)y*Ky:6

with y : dy/dt, etc., constant A, B, C, D, K, and
+ At l B : (t - tr)(t - tz), t1* t2, can be reduced

to the hypergeometric equation with independent

variable

t-tt
^ - b- ít

and parameters related by Ct1 + D : -c(tz - tt),

C : a + b + I, K: ab,Frcm this you see that (15)

is a "normalized foIm" of the more general (18) and

that various cases of (18) can thus be solved in terms

of hypergeometric functions.

HYPERGEOMETRIC EQUATIONS
Find a general solution in terms of hypergeometric
functions.

19. x(I - x)y" + (+ -
20.2x(1 - x)y" - (I

21. x(l - x)y" * žy'
22. 3t(1 + r)y + ty -
23. 2(t2 - 5t + 6)y +

24. 4(t2 - 3t + 2)y -

-X+I|. c
x2

(16)

a(a-| I)(a + 2)b(b + I)(b + 2) x3+",
3|. c(c + I)(c + 2)

This series is called the hypergeometric series.Its sum

yl(x) is called the hypergeometric function and is
denoted by F(a, b, c; x). Here, c * 0, -I, -2, , , ,

By choosing specific values of a, b, c we can obtain

an incredibly large number of special functions as

solutions of (15) [see the small sample of elementary

functions in part (c)]. This accounts for the importance

of (15).

(a) Hypergeometric series and function. Show that

the indicial equation of (15) has the foots 11 : 0 and

Tz: ! - c. Show that for rr : 0 the Frobenius method

gives (16). Motivate the name for (16) by showing that

F(1, 1, 1; x) : F(l, b, b; x) : F(a,I, a; x) : +

(b) Convergence. For what a or b will (16) reduce to

a polynomial? Show that for any other a, b, c

(c * 0, -I, -2, ",) the series (16) converges when

l"l < t.

(c) Special cases. Show that

(I -l x)" : F(,-n, b, b; _x),

(1 - x)" - 1 - nxF(I - n,I,2;x),

arctan x: xF(l, I,}; -x2),

arcsinx:xF$,},};r'),

2x)y'-áy:0
+ 6x)y' - 2, : 0

-f 2y:g
y:0
(2t-3)y-8y:0
2y+y:0

sCARL FRIEDRICH GAUSS (1111-1855), great German mathematician. He already made the first of his great

discoveries as a student at Helmstedt and Góttingen. In 1807 he became a professor and director of the Observatory

at Góttingen. His work was of basic importance in algebra, number theory, differential equations, differential

geometry, non-Euclidean geometry, complex analysis, numeric analysis, astronomy, geodesy, electromagnetism,

and theoretical mechanics. He also paved the way for a general and systematic use of complex numbers.

+

-1-
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(ag * 0)

(1)

(2) _v(x) : ) arnx**'
ln-O

;
m:O

5.5 Bessel's Equation. Bessel Functions J,(x)
One of the most important ODEs in applied mathematics in Bessel's equation,G

,'y"+:."J'+(*'-v2)y:0.

Its diverse applications range from electric fields to heat conduction and vibrations (see

Sec. 12.9). It often appears when a problem shows cylindrical symmetry (ust as Legendre's
equation may appear in cases of spherical symmetry). The parameter v in (1) is a given
number. We assume that u ts real and nonnegative.

Bessel's equation can be solved by the Frobenius method, as we mentioned at the

beginning of the preceding section, where the equation is written in standard form
(obtained by dividing (1) by x2;. Accordingly, we substitute the series

with undetermined coefficients and its derivatives into (1). This gives

(m+r)(m+r-I)a-xrn+r4 ;
rn:O

(m + r)arrťn*'

* i or"ťn*'*' - r'Ž a,nťn+' : 0.
m:O rn:O

We equate the sum of the coefficients of -tr"*' to zero. Note that this power í"*'
conesponds to m : s in the first, second, and fourth series, and to m : s - 2 tn the
third series. Hence for s : 0 and s : 1, the third series does not contribute since
m> 0. For s :2,3,, , , all four series contribute, so that we geta general formula for
all these s. We find

(a) r(r - t)ag -| rao - v2ao : g (s : 0)

(3) (b) (r t l)rar i (r -l I)a1 - v2ar: g (s : 1)

(c) (s+ r)(s l r- 1)a"-|(s* r)c" l a"_z- u2ar:g (s:2,3,",).

From (3a) we obtain the indicial equation by dropptng ag,

(r+v)(r-z):0.

The roots aíe 11 : u (ž 0) and T2 : - u.

GpRtpoRICH WILHELM BESSEL (l184-1846), German astronomer and mathematician, studied astronomy
on his own in his spare time as an apprentice of a trade company and finally became director of the new Kónigsberg
Observatory.

Formulas on Bessel functions are contained in Ref. IGRl] and the standard treatise tAl3].

(4)

aL _ -
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CoefficientRecursionfor í=tI= v. Forr: u,E9,. (3b)reducesto(2v i 1)a1 :0.
Hence a-],:0 since u> O. Substitutingr: uin(3c) and combining the three terms

containing a" gives simply

(s * 2v)sa, l ar_2 -- 0.(5)

Since a| : 0 and v ž 0, it follows from (5) that a3 : O, as - 0, , , , . Hence we have

to deal only with even-numberedcoefficients a" with s : 2m. For s : Zftt, Eq. (5) becomes

(2m + 2u)2ma2* * a2rn_2 -- 0.

Solving for rl2rn gives the recursion formula

(6)
1

a2m:- 
22m@+ňa2m-2,

a2rn:

m: 7,2,

m: Ir2,

From (6) we can now determine a2, a4,, , , successively. This gives

a6
Ilq 

-' 2'(u + l)

a2
a4: -

and so on, and in general

22zlv + 21 24z|. (u + I)(v + 2)

(-l)*ao m: 1,2,,'az,,n:
22*m! (u + I)(v + 2),,, (u * m)'

Bessel Functions J"(x) For lnteger u - n

Integer values of v are denoted by n. This is standard. Fot u : n the relation (7) becomes

(7)

(8)

a6 is still arbitrary, so that the series (2) with these coefficients would contain this arbitrary

factor a6. This would be a highly impractical situation for developing formulas or

computing values of this new function. Accordingly, we have to make a choice. ao : I

would be possible, but more practical turns out to be

(9)

because 111gn nl.(n -l I)

(10)

1ao: 2rnt.

(n + m) : (m -l n)t in (8), so that (8) simply becomes

(- D* m -- 1,2,azrn:
22m+n m|. (n -l m)t.

__-1
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This simplicity of the denominator of (10) partially motivates the choice (9). With these

coefficients and f|: |: nwe getfrom (2) aparticular solution of (1), denotedby J.(x)
and given by

J.(x) : ,, Ž
tn:O

(-I)-x'-
(11)

22m+n*l @ * m)t

*l?,ii:lťJi;':,ff 
,í:T j:ili.:i:iHl5.Tj,"{"í';;:*il:;;;::,.1",';",,xl|ffi l

in the denominator.

EXAM PLE 1 Bessel Functions/o(x) and/,(x)

For n : 0 we obtain from (l1) the Bessel function of order 0

l9l

(l2)

(13)

(14)

š 1- 1)"*2* ,2 ,4 
"6jgt.\l : )- ^2,.,r_ , ^r..., '> 

- 

T
nt _o z ltn,.l2 22(|,.)2 2at2|l2 26t3 l2

which looks similar to a cosine (Fig. 107). For n : l we obtain the Bessel function of order 1

, ,,m. 2m,+l(-l] x
/r(") : Ď

tn:O 22*+lm|. (m + I)t

Jn@) -

_r3 ,5 ,7
]-_-!_

z3tlzl ' 252|3| 273|4|

which looks similar to a sine (Fig. 107). But the zeros of these functions are not completely regularly spaced

(see also Table 41 in App. 5) and the height of the "waves" decreases with increasing x. Heuristical|y, n2lx2

in (1) in standard form [(1) divided by ,'l is zero (if n : O) or small in absolute value for large x, and so is

y'l", so that then Bessel's equation comes close to y" + y : 0, the equation of cos x and sin x; also y' lr acts

as a "damping term," in part responsible for the decrease in height. One can show that for large x,

.o, (, -
nTr

,- I)
where - is read "asymptotically equal" and means that.for fixed n the quotient of the two sides approaches 1

aS J --> co,

Formula (14) is surprisingly accurate even for smalier,{ (> 0).For instance, it will give you good starting

values in a computer program for the basic task of computing zeros. For example, for the first three zeros of -16

you obtain the values 2.356 (2.405 exact to 3 decimals, error 0.049), 5.498 (5.520, error 0.022), 8.639 (8.654,

error 0.0l5), etc.

Fig. 107. Bessel functions of the first kind Jo and J.,

l

2

Ťrx

\--\\
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We now extend our discussion from integer u : n to any v > 0. A11 we need is an

extension of the factorials in (9) and (11) to any z. This is done by the gamma function
f(z) defined by the integral

(15) f(z)

By integration by parts we obtain

-t7v-7 4, (z > 0).

f(z+I):ul(u).

: r,

f(z + 1) : I n-'t, dt : -e-'r,|" +, f ,-tt'-. dt.Jo- lo Jo

The first expression on the right is zero. The integral on the right is l(u). This yields the

basic functional relation

(16)

Now by (15)
@

f( |) : l ,-' dt : -e-tJo

From this and (16) we obtain successively f(2

0-(-1):1.

f(t) : 1!, f(3) : 2l(2) : 2!, " ,

and in general

(l7) T(n+I):nl. (n:0, 1,"').

This shows the the gamma function does in fact generalize the factorial function.
Now in (9) we had ag - Il(2"n|). This is ll(2nl(n + I)) by (17).It suggests to choose,

for any v,

(18) ao:

Then (7) becomes

2"l(v + 1) '

azrr:

But (16) gives in the denominator

(z + l)f(u + I): T(u + 2),

and so on, so that

(v + Z)l(v + 2): f(z * 3)

(u + l)(u + 2),,, (u + m)T(u+ l) : f(z + m + I).

l;:
):
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Hence because of our (standard!) choice (18) of agthe coefficients (7) simply are

(- D*

l93

azrn: 22-*"m|.f(u+m+I)

With these coefficients and ť : T|: uwe get from (2) aparticular solution of (1), denoted

by l 
"(x) 

and given by

(-I)*xz*
(20)

22m+"m|.T(u + m + I)

J ,(x) is called the Bessel function of the first kind of order v. The series (20) converges

for all í, as one can verify by the ratio test.

General Solution for Noninteger /. Solution J_,
For a general solution, in additionto J, we need a second linearly independent solution.

For v not an integer this is easy. Replacing vby - v in (20), we have

(19)

(2I)

J,(x) : 
""rn:O

THEoREM l

THEoREM 2

Since Bessel's equation involves u2, the functions "/, and J_, are solutions of the

equation for the same u. If u is not an integer, they are linearly independent, because

the first term in (20) and the first term in (27) are finite nonzero multiples of x" and
.r-", respectively. x : 0 must be excluded in (21) because of the factor x-" (with v > 0).

This gives

General Solution of Bessel's Equation

If v is not an integer, a general solution of Bessel's equationfor all x * 0 is

(22) y(x) : clJ,(x) -f c2J_,(x).

But if z is an integer, then (22) is not a general solution because of linear dependence:

Linear Dependence of Bessel FunctionsI and.|_,

For integer u : n the Bessel functions J.(x) and J_n(x) are linearly dependent,

because

(23) J_.(x) : (- l)"Jn@) (n : 1,2, , , ,).
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P R O O F We use (21) and let u approach a positive integer n. Then the gamma functions in the

coefficients of the first n terms become infinite (see Fig, 552 in App.A3.1), the

coefficients become zero, and the summation starts with m : n. since in this case

T(m - n,l l): (m - n)|. by (17), we obtain

J _.(x): ;
fn:yL

(-7Ynr2m-n (- |1n+sr2s+n

22m-nml. (m - nlt 22'*n(n -l s)! s!

22m+"m!l(u+m+I) - *z-z-1
AA/,

ln:O

(m: n * s).

22m+'-lm|. T(v + m)

cc

-š- Z-/
s:O

The last series represents (-I)"J.(x), as you can see from (11) with m replaced by s. This
completes the proof. l

A general solution for integer n will be given in the next section, based on some further

interesting ideas.

Discov ery of Properties From Series
Bessel functions are a model case for showing how to discover properties and relations of
functions from series by which they are defined. Bessel functions satisfy an incredibly large

number of relationships-look at Ref. tA13] in App. 1; also, find out what your CAS
knows. In Theorem 3 we shall discuss four formulas that are backbones in applications.

THEoREM 3 Derivatives, Recursions

The derivative of J,(x) with respect to x can be expressed by J,_1@) or J,*1(x) by

the formulas

(a) |x"J,(x)l' : x"J,_1(x)
(24)

(b) |x- "J ,(x)]' : - x- 'J ,*t(x'),

Furthermore, J,,(x) and its derivcttive satisfy the recurrence relations

(c) J,_{x) -| J,nl|x) : ?r,@)
(24) X

(d) J,_{x) - J,*t(x) : Zl',(x).

p R o o F (a) We multiply (20) by x" and take x2" under the summation sign. Then we have

x'J,(x): ;
m:O

(- I)-x2-*2"
22m+"m|.l(v + m + I)

We now differentiate this, cancel a factor 2, puII *2v-7 out, and use the functional
relationship f(z * m l l) : (u + m)l(v + m) [see (16)]. Then (20) with u - I instead

of z shows that we obtain the right side of (24a).Indeed,

(-l)*Z(m * v)lzr'+z"-t (.- I)n,Xz*
(x'J,)' : ;

Tt,t,-O
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(b) Similarly, we multiply (20) by.x-', so that x" in (20) cancels. Then we differentiate,

cancel 2m, andlse m|. : m(m - 1)!. This gives, with m : s l l,

a

l
ll l,- L

(-11m,rzm,_t (- 1)s+lí2s+1

22m+"-l1m - 1)! T(u + m + I) 22s+v+Ir! f(z+s+2)

Equation (20) with v * 1instead of z and s instead of ln shows that the expression on

the right is -x-"J,*r(x). This proves (24b).
(c), (d) We perform the differentiation in (24a). Then we do the same in (24b) and

multiply the result on both sides by x2". This gives

(a*) ux'-IJ, * r"J',: X'Jr,_7

(b*) -ux"-tJ,* x"J',: -x'J,+I,

Substracting (b*) from (a*) and dividing the result by *" gives (24c). Adding (a*) and

(b*) and diviciing the result by *" gives (24d). l

EXAMPLE 2 Application of Theorem 3 in Evaluation and lntegration

Formula (24c) can be used recursively in the form

J,..{.x) : 
2' 

J,(x) - J,_{x)

for calculating Bessel functions of higher order from those of lower order. For instance, Jz@) : 2Jl(x)lx - /o("),

so that J2can be obtained from tables of ./6 and -/1 (in App. 5 or, more accurately, in Ref. [GRl] in App. 1).

To illustrate how Theorem 3 helps in integration, we use (24b) with u : 3 integrated on both sides. This

evaluates, for instance, the integral

12Pl
' 
: 

Jr*-sJol*l 
dx: -x-3Jr'r' 

l, 
: - B 

J3Ql + Js(ll.

A table of .I3 (on p. 398 of Ref. tGRl]) or your CAS will give you

- $.o.tzsl43 + 0.019563 : 0.003445.

Your CAS (or a human computer in precomputer times) obtains ./3 from (24), first using (24c) wíth u : 2,

that is, Js: 4x-lJz - J1, then (24c) with v: 1, that is, Jz: |x-lJr - /o.Together,

I : x-3í4x-'{2x-IJr- /o) - 
'rr|'lr

: -*[2J{21 - 2Jg(2) - JtQ)] + [8/1(1) - 4Jo(1) - /l(1)]

: -áJ{2) + jtolz1 + lJrQ) - 4Jo0).

This is what you get, for instance, with Maple if you type int(, , ,). And if you type evalf(int(, , ,)), you obtain

0.003445448, in agreement with the result near the beginning of the example. l

In the theory of special functions it often happens that for certain values of a parameter

a higher function becomes elementary. We have seen this in the last problem set, and we

now show this for./,.

-- Z.J
s:O
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THEoREM 4

CHAP. 5 Series Solutions of ODEs. Special Functions

PROOF When v : Ž,then (20) is

Ju,@):*Žnffi ž
(- l)-x2**r

ž

To simplify the denominator, we first write it out as a product AB, where

A -- 2"m|, : 2m(2m - 2)(2m - 4) " , 4,2

and fuse (16)]

B : 2-*7T(m + }1 : 2,n*'(* + i>r* - ž) , , , 3,irržl

: (2m + I)(Zm- 1),,, 3, t,{rr;
here we used

(26)

|xGlr,r1*)]' :

We see that the product of the two right sides of Á and B is simply (2m + I)l\/;, so that

J172 becomes

fz s (-|)-x2-*t lz
J1l2G) : ] ,r j" c^ * llt 

: 
l; 

Sln r'

as claimed. Differentiation and the use of (24a) with z : } now gives

f(+): {n.

This proves (25b). From (25) follow further

Example 2. This completes the proof.

E X A M P L E 3 Further Elementary Bessel Functions

cos.r: x|l2J_rtz@).

formulas successively by (24c), used as in
l

From (24c) with z : } and ! anď (Z5) we obtain

t Fz (sinx -.nr*\Jg12(x\: - J112(xl-J- 112(xl:V; t - l

J_g12(x|: - + J_112(x) - J112(x\: Er (+ * ,,n,)

respectively, and so on. l

Elementary !,for Half-lnteger Order v

Bessel.functions J, of orders !l, tŽ, tZ,, , , are elementrlry; they canbe expressed

by finitely many cosines and sines and powers of x. In particular,

(25) (a) Jttz(x) :
r2

sin x, (b) J _112k) : 
] ,r cos -rr.

2

Ťx
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We hope that our study has not only helped you
functions but has also convinced you that series can
properties of the coíTesponding functions.

197

to become acquainted with Bessel
be quite useful in obtaining various

1. (Convergence) Show that the series in (11) converges
for all x. Why is the convergence very rapid?

2. (Approximation) Show that for smail |x| we have

Jo - 7 - 0.25x2. From this compute -/6(x) for
J: 0,0J,0.2,,", 1.0 and determine the errorby
using Table A1 in App. 5 or your CAS.

3. ("Large" values) Using (14), compute ./6(;r) for
x: í.0,2.0,3.0, , , ,,8.0, determine the errorby
Table A1 or your CAS, and comment.

4. (Zeros) Compute the first four positive zeros of .rg(x)

and "rl(x) from (14). Determine the enor and comment.

@ oDEs REDUcIBLE To BEssEL's
EQUAT|oN

Using the indicated substitutions, find a general solution in
terms of J, and J_, or indicate when this is not possible.
(This is just a sample of various ODEs reducible to Bessel's
equation. Some more follow in the next problem set. Show
the details of your work.)

5. (ODE with two parameters)
*'y" + xy' + (l'*' - r')y : 0 (),x : e)

6, *'y" l *y' * (x2 - #)y : O

7. r'y" + ry' * iQ - r')y : 0 1Ýi : z)

8. (2x + I)'y" + 2(2x + 1)y' * I6x(x * l)y : g

(2x+I:z)
9. ry" - y' + 4xy: O (y: xu,2x: z)

L0. xzy" + ,y' + }{x2 - l)y:0 (x:2z)
11. xy" + (2u * I)y' -| xy : 0 (y : x-"u)
12. x2y" + *y' + 4(xa - u2)y : 0 (x2 : z)

13. x2y" + ry' + 91x6 - v')y : 0 1x3 : z)

14. y" + (r'* - t)y : O (er : z)

15. xy" *r:0 (y:l/iu,2\/i: z)

16. l6x2y" + 8xy' + 1r''' + ifi)y : o
(y : x1 l4u. xlla : z)

17.36x2y" + lSxy' + Ýiy : g

|y: xll4u.lxlla : z)

18. xzy" l ry' + \,Gy : 0 (4xlla : 77

19. xzy" + *ry' + \/iy:0 (y: xzlsu,4xlla: r1

20. xzy" + (I - zu)xy' + u2(x2" + l - r')y : 0
(y : X"u, x" : z)

@ AppLlcATIoN oF (2a): DERlvATlvEs,
lNTEGRALs

Use the powerful formulas (24) to do Probs. 2I-28, (Show
the details of your work.)

21. (Derivatives) Show that/Ó(x) : -Jt(x),
li@) : Jo@) - J{x)lx, tJ@) : illr(r) - /s(x)].

22. (|nter|acing of zeros) Using (24) andRolle's theorem,
show that between two consecutive zeros of ./g(x) there
is precisely one zero of .I1(x).

23. (Interlacing of zeros) Using (24) and Rolle's theorem,
show that between any two consecutive positive zeros

of J.(x) there is precisely one zero of Jn*l(x).

24. (Bessel's equation) Derive (I) from (24).

25. (Basic integral formulas) Show that

r
J*"J,_{x) dx : x"J,(x) l c,

r
Jr-"J,*{x) dx : -x "J,(x) * c,

rr
Jr,,r(x) dx: JJ,_|x) dx - ZJ,(x\.

26. (Integration) Evaluate f ,-'lntň dx. (Use Prob.25;
integrate by parts.)

27. (Integration) Show thatr^r
Jx2Joíxl dx : xzJ t(x) * xJg(xt - J/otxl dx. (The

last integral is nonelementary; tables exist, e.g. in Ref.

tA 13] in App. l .)

28. (Integration) Evaluate Jrrr*' Or,

29. (Elimination of first derivative) Show that y : tlu
with u(x) : exp eL, í p(x) dx) gives from the ODE
y" + p(r)y' + q(*)y: 0 the oDE

u" + fa@) - Lnp(x)z - ip'@)]u: o

no longer containing the first derivative. Show that for
the Bessel equation the substitution is y : ux-Ll2 and.

. gives

(27) x2u" + (r'+l- u2)u:0.
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30. (Elementary Bessel functions) Derive (Z5) in

Theorem 4 from (21).

31. CAS EXPERIMENT. Change of Coefíicient, Find

and graph (on common axes) the solutions of

y" + kx-Ly' ] y: 0, y(0) : 1, y'(0) : 0,

for k : 0, 1,2,, , , , 10 (or as far as you get useful

graphs). For what k do you get elementary functions?

Why? Try for noninteger k, particularly between 0 and

2, to see the continuous change of the curve, Describe

the change of the location of the zeros and of the

extrema as k increases from 0. Can you interpret the

ODE as a model in mechanics, thereby explaining your

observations?

32. TEAM PROJECT. Modeling a Vibrating Cable
(Fig. 10S). A flexible cable, chain, or rope of length L
and density (mass per unit length) p is fixed at the upper

end (x : 0) and allowed to make small vibrations

(small angles a in the horizontal displacement u(x, t),

r : time) in a vertical plane.

(a) Show the following. The weight of the cable below

a point x is W(x) : p7(L - x). The restoring force is

F(x) : W sin ot : WLr, u*: \ulóx, The difference in

force between Jr and x * Ax is Ax (Wu*)*,Newton's

second law now gives

p Lx u6 : Lx pyl! - x)u*f*,

For the expected periodic motion

u(x, t): y(x) cos (alr + 6) the model of the problem

is the ODE

(L - *)y" - y' + l'y : O, 
^2 

: a2l8,

(b) Transform this ODE to i + ,-'y i y : 0,

y : dylds, s : 2[z|l2, Z: L - .tr, so that the

solution is

_v(x): loQrrIt-rW),

(c) Conclude that possible frequencies alTrr are those

for which s : }a\,E/g is a zeío of -/6. The

corresponding solutions are called normal modes,

Figure 108 shows the first of them. What does the second

normal mode look like? The third? What is the frequency

(cycles/min) of a cable of length 2 m? Of length 10 m?

'i:liiH,
Fig. l08. Vibrating cable in Team Project 32

33. CAS EXPERIMENT. Bessel Functions for Large r,
(a) Graph Jn@) for il : 0, , , , ,5 on common axes,

(b) Experiment with (14) for integer n. Using graphs,

find out from which x : xnon the curves of (11) and

(14) practically coincide. How does x," change with n?

(c) What happens in (b) íf n : t}? (Our usual

notation in this case would be u.)

(d) How does the error of (14) behave as function

of x for fixed n? fErtor : exact value minus

approximation (14).]

(e) Show from the graphs that-r6(x) has extrema where

Jíx) : 0. Which formula proves this? Find further

relations between zeros and extrema.

(0 Raise and answer questions of your own, for

instance, on the zeros of -/6 and "I1. How accurately are

they obtained from (14)?

5.6 Bessel Functions of the Second Kind Y"(*)

From the last section we know that J, and J_, form a basis of solutions of Bessel's

equation, provided z is not an integer. But when z is an integer, these two solutions are

linearly dápendent on any interval (see Theorem2 in Sec.5.5). Hence to have a general

solution also when u : n is an integer, we need a second linearly independent solution

besides "/,". This solution is called a Bessel function of the second kind and is denoted

by Yn. We shall now derive such a solution, beginning with the case n : 0,

n : O: Bessel Function of the Second Kind Yo(x)

When ft : O, Bessel's equation can be written

Jr_},"+.]" +r_}:0.(1)

l98
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Then the indicial equation (4) in Sec. 5.5 has a double root r : 0. This is Case 2 in
Sec. 5.4. In this case we first have only one solution, /o(x). From (8) in Sec. 5.4 we see

that the desired second solution must be of the form

(2)

We substitute y2 and

a:

yz@) : Jo@) lnx * 2 A,n -
m,-7

its derivatives

yl:,rih r+ b +; mA,,x*-I
X tn:l

yi : J,!ln, * 2Á - + + i m(m - |)A-x*-2

into ( 1). Then the sum of the three 
"r*rr*'. 

,;rn, xJ']In x, J IInx, and x-l6 ln x is zero
because -/6 is a solution of (1). The terms -Jglx and Jglx (from xy" andy') cancel. Hence
we are left with

2l[ + Ž *r- - I)A*,ť*-1 + ) *e,***-l + Ž o*,r**1 : 0.
tn:l tn:1, ,rn_l

Addition of the first and second series gives >m2A,nx*-1. The power series of "r|(xl is
obtained from (I2)ín Sec.5.5 and the use of m|.lm: (m - 1)! in the form

J3@) : š (-l)*2m*2rn-I _š (-l),".rz,"-'
'Ll ^'2-^ 

2 Ll 
^2m-| 

-
Í, 22- 1mtf Í, 2an-I*t (m - t)!

Together wlth2m2A*x*-l and2A-ť"*1 this gives

(3*)

First, we show that the An wtth odd subscripts are aIIzero. The powerxo occurs only in
the second series, with coefficient Á1. Hence At : 0. Next, we consider the even powers
x2". The first series contains none. In the second series, m - I : 2s gives the term
(2s + l)2Ar"*rx2". In the third series, m -l I : 2s. Hence by equating the sum of the

coefficients of x2" to zero we have

(2s + I)2Az"*t i Ár"_1 : 0, : 1, 2,. . .

Since At : 0, we thus obtaifl Ás : 0, Áu _ 0,,,,, successively.
We now equate the sum of the coefficients of r2"+1 to zero. For s : 0 this gives

-l + 4A2:0, thus Az:i-

For the other values of s we have in the first series in (3*) 2m
m : s * 1, inthe second m - l : 2s l 1, andinthe thtrdm* 1 :

(- l)"*'

'X(, 
+ l)1,1 

+ (2s + 2)2A2,+z l Az, :

- 1 - 2s -| 1, hence
,2s l 1. We thus obtain

0.

'---
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Fors: 1this

16A4 + A2 -- 0, thus

yields

1

-+8
aJ

^ - _-l1,4 - 08

and in general

(3) A2,n:ffi
Using the short notations

(,-:-;- -;)

1

m(4)

(6) yo@): + [^,o 
(,.; - ,)

m : 1,2,

m : 2,3,ht: I h,n: r * : + ",+

(5)

andinserting(a)andÁl:As:...:0into(2),weobtaintheresult

yz@): /o(x) lnx * Žrffi *,,

Since _/6 and y2 aíe linearly independent functions, they form a basis of (1) for x ) 0,

Of course, another basis is obtained if we replace yzby an independent particular solution

of the form a(y2 + b_I6), where a (* 0) and b are constants. It is customary to choose

a : 2lrr anď b - y - ln 2, where the number y : 0.57] 2I5 66490,,, is the so_called

Euler constant, which is defined as the limit of

1 + ! + ",+ 1 
- lns

2s

as s approaches infinity. The standard particular solution thus obtained is called the Bessel

function of the second kind of order zero (Fig.109) or Neumann's function of order

zero anď is denoted by Yg(x). Thus lsee (4)]

For small x ) 0 the function Yg(x) behaves about like ln x (see Fig, 109, why?), and

Yo@) --) - oo as í -+ 0.

Bessel Functions of the Second Kind y"(*)

For v : n : I,2, .. . a second solution can be obtained by manipulations similar to those

for n: 0, starting from (10), Sec 5.4.Itturns out that in these cases the solution also

contains a logarithmic term.

The situation is not yet completely satisfactory, because the second solution is defined

differently, depending on wheiher the order z is an integer or not. To provide uniformity
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of formalism, it is desirable to adopt a form of the second solution that is valid for all
values of the order. Forthis reason we introduce a standard second solution Y"(x) defined
for all v by the formula

Y"(x) lJ"(x) cos vŤr - J_"(x)]

Y.(x) : lim Y"(x).
y+lL

This function is called the Bessel function of the second kind o/ order z or Neumann's
function7 of order z. Figure 109 shows Yo@) and Y1@).

Let us show that J,and Y, are indeed linearly independent for all u (and í > 0).

For noninteger order u, the function Y"(x) is evidently a solution of Bessel's equation
because J"(x) and J_,(x) are solutions of that equation. Since for those y the solutions -/,
and ./_ , are Itnearly independent and , involves J _,, the functions -/, and Y, are linearly
independent. Furthermore, it can be shown that the limit in (7b) exists and Yn is a solution
of Bessel's equation for integer order; see Ref. IA13] in App. 1. We shall see that the

series development of Y.(x) contains a logarithmic term. Hence J.(x) andYn@) are linearly
independent solutions of Bessel's equation. The series development of Y-(x) can be
obtained if we insert the series (20) and (21), Sec.5.5, for J"(x) andJ_,(x) into (7a) and
then let v approach n; for details see Ref. [A13]. The result is

1

stn urr
(a)

(7)

(b)

2l*
}'n(.r) : ; J,(x) 

l'n , *

(8) 
_ x-'"

,
n-I

*tž
Ťr

t?? - ()

(n-m-

(- 1)",-1(h* l h**n)
x2*

22**nnt! (m + n1l.

l)! ,-^
X2*

22m-rLml,

wherex ) 0, ft:0, 1, ,, and [as in (4)] ho:0, ht:7,

hnr: hnr*n

Fig. tO9. Bessel functions of the second kind Yo and Y,.
(For a small table, see App. 5.)

7CARL NEUMANN ( 1832-1925), German mathematician and physicist. His work on potential theory sparked
the development in the tield of integral equations by VITO VOLTERRA (1860-1940) of Rome, ERIC IVAR
FREDHOLM (1866-1921) of Stockholm, and DAVID HILBERT (1862-1943) of Góttingen (see the íbotnote
in Sec. 7.9).

The solutions 1,(,r) are sometimes denoted by N,,(r); in Ref. [A13] they are called Weber's functions1 Euler's
constant in (6) is otten denoted by C or ln 7.

11
-ll 

ll

-l-i--i-.--i 2 mln
l1l+-+...+-2n7

20l
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For n: 0 the last sum in (8) is to be replaced by 0 [giving agreement with (6)].

Furthermore, it can be shown that

Y_.(x) : (- I)"Yn@).

Our main result may now be formulated as follows,

We finally mention that there is a practical need for solutions of Bessel's equation that

are complex for real values of x. For this pu{pose the solutions

THEoREM 1

(10)
Itf,"(*):J,(x)*iy,(x)

It?'(*):J,(x)_iy,(x)

are frequently used. These linearly independent functions are called Bessel functions of

the thiid kind of order v or first and second Hankel functions8 of order v.

This finishes our discussion on Bessel functions, except for their "orthogonalitY," which

we explain in Sec. 5.7. Applications to vibrations follow in Sec, 12,9,

General Solution of Bessel's Equation

A general solution of Bessel's equation for all values of u (and x > 0) is

C2Y,(x).(9) _y(x) : C],(x) *

@ soME FuRTHER oDEs REDuclBLE To
BEssEL's EQUATloNs

(See also Sec. 5.5.)

using the indicated substitutions, find a general solution in

terms of J,and ,. Indicate whether you could also use J_,
instead of Y,. (Show the details of your work,)

1. ,'y" + *y' * (x2 - 25)y : g

2. *'y" + ,y' ,t (9x2 - á)y _: O (3x : z)

3. 4xy" + 4y' * y : 0 (\/x : z)

4. *y" + y' + 36y : g QZÝi: z)

5.,'y" l,y' * (4xa - 16)y : g 1x2 : z)

6. *'y" + *y' * (x6 - 1)y : 0 1}x3 : z)

7. xy" + IIy' + xy : 0 (y : x-su)
8.y" l4x2y:g (y:u ,x2:z)
9. *'y" - 5ry'+ 9(x6 - 8)y:0 (y: *'r,xs: z)

10. xy" ]- 7y' -l 4xy : 0 (y : x-3u,2x : z)

11,. (Hankel functions) Show that the Hankel functions (10)

form a basis of solutions of Bessel's equation for any z,

12. CAS EXPERIMENT. Bessel Functions for Large x,

It can be shown that for large x,

(11) y*(x) - \El@ň sin (x - Žnn - Žn)

with - defined as in (14) of Sec. 5.5.

(a) Graph Yn@) for n : 0,, , , , 5 on common axes,

Are there relations between zeros of one function and

extrema of another? For what functions?

(b) Find out from graphs from which x : xn on

the curves of (8) and (11) (both obtained from your

CAS) practically coincide. How does xn change

witb n?

(c) Calculate the first ten zeros xln, m - 1, , , , , 10,

of 6(x) from your CAS and from (11). How does the

error behave as m increases?

(d) Do (c) for 1(x) and Yz@). How do the errors

comparo to those in (c)?

8HBRI,{RNN HANKEL ( 1 839-1 873), German mathematician,
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13. Modified Bessel functions of the first kind of order z
are defined by I,(x) : i-"J,(ix), i : \/ _y Show that
1, satisfies the ODE

(I2) ,'y" + xy' - (r' + ,2)y :0

and has the representation

co

(13) I,(i : )
ln:O

203

14. (Modified Bessel functions 1,) Show that I,(x) is real
for all realx (and real u), I,(x) * 0 for all real x * 0,

and I_n@) : In(x), where n is any integer.

15. Modified Bessel functions of the third kind (sometimes

called of the second kinó are defined by the formula ( 14)

below, Show that they satisfy the ODE (12).

(I4) K,(x) : :-!- V_,(x) - I,(x)]Z nuŤr
,2m+v

22-*"m|.T(m + v + I)

5.7 Sturm-Liouville Problems.

(1)

(2)
-0
-0

(a)

(b)

Orthogonal Functions
So far we have considered initial value problems. We recall from Sec. 2.I that such a problem
consists of an ODE, say, of second order, and initial conditions y(xo) : Ko, y'(x : Kt
referring to the same point (initial point) x : xo. We now turn to boundary value problems.
A boundary value problem consists of an ODE and given boundary conditions referring
to the two boundary points (endpoints) x : a and x : b of a given interval a š x š b.

To solve such a problem means to find a solution of the ODE on the interval a š x š b
satisfying the boundary conditions.

We shall see that Legendre's, Bessel's, and other ODEs of importance in engineering
can be written as a Sturm-Liouville equation

lp@)y']' + Iq@) +,\,r(x)]y:0

involving aparameter ),. The boundary value problem consisting of an ODE (1) and given
Sturm-Liouville boundary conditions

kl@) + kry'(a)

lů(b) + lzy| (b)

is called a Sturm-Liouville problem.g We shall see further that these problems lead to
useful series developments in terms of particular solutions of (I), (2). Crucial in this
connection is orthogonality to be discussed later in this section.

In (1) we make the assumptions that p, q, r, afiď p' are continuous on d š x š b, and

r(x)>O (a=x=b).

In (2) we assume that kr, k, are given constants, not both zero, and so are 11, 12, not both
Zero.

gl,tcquns 
CHARLES FRANQOIS STURM (1803-1855), was born and studied in Switzerland and then

moved to Paris, where he later became the successor of Poisson in the chair of mechanics at the Sorbonne (the

University of Paris).
JOSEPH LIOUVILLE (1809-1882), French mathematician and professor in Paris, contributed to various

fields in mathematics and is particularly known by his important work in complex analysis (Liouville's theorem;

Sec. 14.4), special functions, differentia| geometry, and number theory.
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ExAMPLE l

CHAP. 5 Series Solutions of ODEs, Special Functions

Legendre,s and Bessel,s Equations are Sturm_Liouville Equations

Legendre's equation (l - r2;_1"'- 2-,),' 1 rt(tt 1 t)l,:0 may be r,l,t,itterr

[(t - 
").,,']' 

+ 
^r, 

:0

0,andr:|.

i'j:n;y+(i2 -nz)y:O

asamodelinphysicsorelsewhere,oneoÍtenlikestohaveanotherparameterftinadditionton.Forthisreason
we set í : kx.Then by the chain rule t, : ;ri;i : klvldx') ,t,1,1, : ;;ji, i' : ,"'lk2,Inthe first two terms, k2

and k drop out and we get

,2r," + xy' + (k2x2 - r'ly : g-

Division by x gives the Sturm-Liouville equation

[,,u']'*

This is (1) with p : x, ,l : -,"l*, and r : r,

This is i1.1 with t, -- | - x', q :
In Bessel's equation

,\:n(ir+l),

i : ar-taí, etc.

,2\

(- 
' 

* *)v:0 Á: k2.

l

Eigenfunctions, Eigenvalues

;];"8ň-ff Jff ii,:T;J:i;,J,JT}iť#ť;i^;:TL}r;,ffi :,t];iff il,""'",Ti
that is, solutions of (1) satisfying (2) without being identically zero, We call a number ,[

for which an eigenfunction exists un .ig.rroalue of the Sturm-Liouville Problem (1)' (2)'

ExAMPLE 2 Trigonometric Functions as Eigenfunctions, Vibrating String

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

(3) )" + ,\y : g, y(0) : 0, y(n) : 0,

This problem arises, fbr instance, if an elastic string (a violin string, for examPle) is stretched a little and then

fixed at its ends x : 0 and x : z,and allowed to vibrate. Then y(x) is the "space function" of the deflection

w(x, t) ofthe string, assumed in the form u(x, t) -_ y(,r)w(r), where r is time, (This model will be discussed in

great detail in Secs. 12.2-|2,4,)

Solution,From(l)and(2)weseethittp:7,q:O,r:lin(1),anda:O,b:r,k1 
:11 :7,

kz: lz: 0 in (2). F;r;";"*";:"- ,;u g"n"rulsolution of the oDE in (3) is y(x) : Cle'x l c2e-"Í,From

the boundary conditions we obtain cl ^ cz-: 0, so that y = 0, which is not an eigenfunction, For ,\ : 0 the

situation is similar. For positive X : u2 a general solution is

,v(x): Acosux iBsinzx,

From the first boundary condition we obtain y(0) : A : 0, The second boundary condition then yields

y(r): B sinvt:0, thus u:0,,|l, -|2,, , , ,

For z : 0 we have .y = 0. For i : v2 : l, 4, g, 16, , , , , taking B : 1, we obtain

y(x) : sin zx (v : |,2, ' ' '),

Hence the eigenvalues of the problem are.tr : v2,where v: 7,2,, , ,, and coresponding eigenfunction, ui:

y(_r) : sin zx, where u: I,2,," ,

Existence of Eigenvalues

Eigenvalues of a Sturm-Liouville problem (1), (2), even infinitelY manY, exist under rather

general conditions orl p, q, r in (i), (surricient are the conditions in Theorem 1' below'

together with p(x) } oand r(x) > 0 on a 1 x 1b. Proofs are complicated; see Ref, [A3l

or [A11] listed in App. 1,)
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Reality of Eigenvalues
Furthermore, if p, Q, r, and p' in (1) are real-valued and continuous on the interval
a š x < b and r is positive throughout that interval (or negative throughout that interval),
then all the eigenvalues of the Sturm-Liouville problem (I), (2) are real. (Proof in
App. 4.) This is what the engineer would expect since eigenvalues are often related to
frequencies, energies, or other physical quantities that must be real.

Orthotonatity
The most remarkable and important properly of eigenfunctions of Sturm-Liouville problems
is their orthogonality, which will be crucial in series developments in terms of eigenfunctions.

DEFlNlTloN Orthogonality

Functions yr(x), !z(x),, , , defined on some interval a
on this interval with respect to the weight function
different from m,

3 x š b are called orthogonal
r(x) > 0 if for aII m and all n

(4) :0 (m*n).

The norm lly-ll of !,, is defined by

lly,-ll :

Note that this is the square root of the integral in (4) wíth n : m.

The functions y1, !z,,,, are called orthonormal on a š x < b if they are
orthogonal on this interval and all have norm 1.

If r(x) : 1, we more briefly call the functions orthogonal instead of orthogonal
with respect to r(x) : 1; similarly for orthonormality. Then

.b
l

J r(xl y-(;.) y n?l dx

(5)
^b

J ríx)1,*2(x) clx

b
l

J l'-t*l y,(x) dx :
a

0 (m*n),
Tb

lly. ll : Í J;-'{*l d* -

EXAMPLE 3 Orthogonal Functions. Orthonormal Functions

The functions)rrr(x) : sinmx,m: 1,2,, , ,form an orthogonal set on the interval -vš x í r, because for
m * n we obtain by integration [see (11) in App. A3.1]

I_,

The norm ||1,", || equal , {r, because

(m: I,2,, , ,).

Hence the corresponding orthonormal set, obtained by division by the norm, is

^T ^Tíll
,vfi(,r)),n(x) O, : J sin lnr sin nx dx : , J cos (r? -

ro
lll*ll' : J sin2 mx dx

n)x dx

sin 3x

Ý,

^Tl
l .o, (m l n|x ctx : O.
J

l-,

sin x
\/;

sin 2r

\/; l
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Orthotonality of Eigenfunctions

THEoREM 1

(6)

Orthogonality of Eigenfunctions

Suppose that the functions p, Q, T, and p' in the Stwrm-Liowville equation (I) are

real-valuecJ and continuous and r(x) > O on the interval a 3 x a b. Let y,*(x) and

yn@) be eigenfunctions of the Sturm-Liouville problem (1), (2) that corresPond to
-dffirent 

eigenvalues Xr'- and h,,, respectively. Then !p, ln are orthogonal on that

interval with respect to the weight function r, that is,

(m * n).

Ií p(a) : O, then (2a) can be dropped from the problem. If p(b) : 0, then (2b)

,o, 
-bu 

dropped. [It is then required that y and y' remain bounded at such a Point,

and the problem is called singular, as opposed to a regular problem in which (2)

is used.]
Ií p(a) : p(b), then (2) can be replaced by the "periodic boundary conditions"

y(a) : y(b), y'(a) : y'(b).

[)rrr>y-r*)y-(x) 
rlx : o

(7)

The boundary value problem consisting of the Sturm-Liouville equation (1) and the

periodic boundary conditions (7) is called a periodic Sturm-Liouville Problem.

p Ro o F By assumption, y,, and y,, satisfy the Sturm-Liouville equations

@yh)' + (q l ).,nr)y,n: 0

@yb'+@+X,'r)yn:0

respectively. We multiply the first equation by yn, the second by -Y*, and add,

(^_. - l,,")ry,nyn: y_(py|.)' - yn(pyh)' : l@y'_)y,, - @yh)y.]'

where the last equality can be readily verified by performing the indicated differentiation

of the last expression in brackets. This expression is continuous on a Š x < b stnce P
and p' are continuous by assumption and !p, ln are solutions of (1). Integrating over "T

from a to b, we thus obtain

(a < b),

l and 2,

p@ly -@)y *(b) - y h(Dy.(D] (Line 1)

(9)
-p@)ly.(a)y,*(a) - y'*(")y-@)] (Line 2).

Hence if (9) is zero, (8) with 
^,n 

- Xn * 0 implies the orthogonality (6). Accordingly,

we have to show that (9) is zero. using the boundary conditions (2) as needed.

(8) (l* - x,l [o 
,y-jn dx : I rty',l. - ,kr,r|o

The expression on the'rigr, ;;. ,;. ."," "r,l. subsequen, Li..1
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'á','n:;ii:i=',:),;:;]T::,l?ží:,";J"'3J*Tfi"j;:..om(2a)wehave

kůn@)+kry'.(a):O,

ků*(a)+kry'*(a):0.

Let k2 * 0. We multiply the first equation by yn(o), the last by -yn@) and add,

krlyi.@)y,,(a) - y'*(o)y,(o)] : 0.

This is k, times Ltne 2 of (9), which thus is zero since k2 + 0.If k2 : 0, then k' * 0 by
assumption, and the argument of proof is similar.

Case3.p(a)=0,p(b) *0.Line2of (9) iszero.From(2b)itfollowsthatLinelof (9)

is zero; this is similar to Case 2.

Case 4. p(a) * 0,p(b) # 0. We use both (2a) and (2b) and proceed as in Cases 2 and 3,

Case 5. p(a) - p(b). Then (9) becomes

p(Dly 
"@)y,,(b) - y',*(b)y.(b) - y i.@)y,*(a) + y i.@)y.@)7.

The expression in brackets [, , ,] is zero, either by (2) used as before, or more directly by
(7). Hence in this case, (7) can be used instead of (2), as claimed. This completes the
proofofTheorem 1. l

ExAMPLE 4 
T"' :',,T;il:;:,.;"];1i*];:il:::;il': |,q:0,andr:1 FromTheorem1itfo'lows
thattheeigenfunctioils}rrz: sinlax Qn: I,2,",) areorthogonal ontheinterval O< x< r. l

EXAMPLE 5 Application of Theorem l. Orthogonality of the Legendre Polynomials

Legendre's equation is a Sturm-Liouville equation (see Example 1)

[(t-r')y']'+iy:g, t:n(n+l)

withp-l-r',q:O,andr:I.Sincep(-l):p(1):O,weneednoboundaryconditions,buthavea
singular Sturm-Liouville problem on the interval -1 < ,r < l. We know that for n : 0, 1, . . ., hence

^ 
: 0, 1,2,2,3, , " , the Legendre polynomials Prr(x) are solutions of the problem. Hence these are the

eigenfunctions. From Theorem l it follows that they are orthogonal on that interval, that is,

(m*n). l

EXAMPLE 6 Application of Theorem l. Orthogonality of the Bessel Functions.|,(x)

The Bessel íunction Jn(í) with fixed integer n> 0 satisfies Bessel's equation (Sec. 5.5)

j',,G) + íj,,G) + G2 - r'lJ,"lí1 : g,

where in: d]nlc]í, j'n: ,l2Jnldí.z.In Example 1 we transformed this equation, by setting í : kx, ínto a
Sturm-Liouvi l Ie equation

Lli.u,*l]' * (- + - t',) 4o,*l: o

withp(x) : x, q(x) : -n2lx, r(x) : x, and parameter 
^: 

k2. Sincep(O) : 0, Theorem l implies orthogonality
on an interval 0 < x < R (R given, fixed) of those solutions Jn(kx) that are zero atx: R, that is,

Jn(kR) : g (n fixed).

(10)

_1
l

I r-t*lPníxldx:O
J_7

2o7
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[Note that q(x) : _r2lris discontinuous at 0, but this does not affect the proof of Theorem

(see Ref. tA13]) thatJni)has infinitely many Zeros, say, } : an,l 1 dn21, , , (see Fig,

n : 0 and l). Hence we must have

1.] It can be shown

107 in Sec. 5.5 for

(m: 1,2,, , ,).

THEoREM z

ExAMPLE 7

(12) kR : an,- thus kn,n: an,rrlR

This proves the following orthogonality property,

Hence we have obtained infinitety many orthogonal sets,each corresponding to one of the.ftxed values n. This

also illustrates the importance of the zeros of the Bessel functions_ l

Eigenvalues from Graphs

Solve the Sturm-Liouville problem)" + ,\y : g, y(0) + )'(0) : 0, y(rr) - y'(",) : 0,

SOlUtion. A general solution and its derivative are

y:Acoskr{Bsinkr and y' : -Ak sin kr * Bk cos kx, k : \/i.

The firstboundarY condition givesy(0) + y'(O) : A + Bk: O,henceA : -Bk,The secondboundary condition

and substitution of A -- -Bk give

we must have B
B cos rrk gives

y(rr) - y'(rr): Acosrk -l B sin tk i Ak sin n,ft - Bkcosrrk

: -Bk cos n,k i B sin rk - Bkz sin z,k - Bk cos rk : 0,

* 0 since otherwise B : A: 0, hence } : 0, which is not an eigenfunction, Division by

1l.

-k -l tan rrk - k2 ían nk - k : 0, thus tan rrk -- k2-I

y
1

Fig. llO. Example 7. Circles mark the intersections of tan rrk and -2k/(k2 - 1\

The graph in Fig. 1] 0 now shows us where to look f_or eigenvalues, These correspond to the k_values of the points

of intersection of tan tk andthe right ,id" -;;ia;; - Íl or the last equation, The eigenvalues are h,n : krnz,

where io:0witheigenfunction}o: 1andthe other.\*arelocated near22,32,42,, , ,, witheigenfunctions

cosk,,xandsink,,x,m:1,2,....Theprecisenumericdeterminationoftheeigenvalueswouldrequirea
root-finding method (such as those given in Sec, 19,2), 

- l

Orthogonality of Bessel Functions

For each fixed nonneyative inteyer n the sequence of Bessel functions of the first

kind J*(kn,{), Jn(kn,]ň, , , , ,it, kn,,n as in (t2) flrms an ortho7onal set on the

intervalg < x a R with respect to thíe weight function r(x) : x, that is,

xJn(kn,,,x)Jn(kn,ix) clx: O (j + *,n jixed),
(13)
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1. (Proof of Theorem 1) Carry out the details in Cases
3 and 4,

2. Normalization of eigenfunctions jn"of (1), (2) means
that we multiply jrnby a nonzero constant cr, such that
crnjrnhas norm l. Show thaí7r,.: clrnwithany c * 0
is an eigenfunction for the eigenvalue conesponding to
jrn.

3. (Change of x) Show that if the functions y6(x), yr(x),
, , , form an orthogonal set on an interval a š x š b
(with r(x) : 1), then the functions y6(cr -f k),y{ct * k),
," ) c } 0, form an orthogonal set on the interval
(a-k)lc<t<(b-k)lc.

4. (Change of x) Using Prob. 3, derive the orthogonality
of 1, cos ?TJ, sin n,x, cos2rx, sin2nx, on

-1 < x < I (r(x): l) from that of 1, cosJ, siní,
cos 2x, sinZx,, on - 6 š x š rr.

5. (Legendre polynomials) Show that the functions
Prr(cos 0), n:0, 1, ",, form an orthogonal set on
the interval 0 < 0 < rr with respect to the weight
function sin 0.

6. (Tranformation to Sturm-Liouville form) Show that
y" + Íy' + (s + 

^h)y 
:0 takes the form (1) if you

setp : exp (J/ clx), q : p8, r : hp, Why would you
do such a transformation?

@ sTuRM-LlouvlLLE pRoBLEMs
Write the given ODE in the form (1) if it is in a different
form. (Use Prob. 6.) Find the eigenvalues and eigenfunctions.
Verify orthogonality. (Show the details of your work.)
7. y" * ),y : 0, y(0) : 0, }(5) : 0
8. y" * ),y : 0, y'(0) : 0, y'(rr) : O

9. y" * .i,y : 0, y(0) : 0, y'(L) : 0
I0. y" f ),y : 0, y(0) : y(1), y'(0) : )'(1)
1|. y" -l .l,y : 0, y(0) : 1,(2n), y'(0) : y'12rr)
12. y" * ),y : 0, y(0) + y'(0) : 0,

}(l)+y'(1):0
13. y" * ,try : 0, }(0) : 0,

14. (xy';/ + ),x-'y : 0, y(1)
(Set x : et.)

15. (x-'y')' + (^ + 1)_r-3y : 0,
y(e'):0. (Setx:et.)

16,y"-2y'+(^+1)}:0,
y(1) : 0

17. y" * 8y' + (^ + I6)y : 0,
y(n) : 0

18. xy" + 2y' + ),ry : g, y(rr)
(Use a CAS or set y : x-Iu.)

}(1)+y'(1):0: 0, y'(.e) : 0.

y(1):0,

}(0) : 0,

)(0) : 0,

: 0, y(2rr) : 0.

19. y" - 2r-'y' + (k' + 2x-2)y: 0, y(1) : 0, y(2) : 0.
(Jse a CAS or set y : xu.)

20. TEAM PROJECT. Special Functions. Orthogonal
polynomials play a great role in applications. For this
reason, Legendre polynomials and various other
orthogonal polynomials have been studied extensively;
see Refs. [GRl], tGR10] in App. 1. Consider some of
the most important ones as follows.
(a) Chebyshev polynomialslo of the first and second
kind are defined by

Tn(x) : cos (n arccos x)

Un(x) :
sin [(n * i) arccos r]

\/I=

respectively, where fl : 0,1, .. Show that

To: I, Tt@) : x) Tz(x) : 2x2 - I,

Tz(x):4r3_3x,
(Jo : I, IJ-s,(x) :2x, Uz@) : 4x2 - I,

Ug(x):8x3_4x,

Show that the Chebyshev polynomials T.(x) are
orthogonal on the interval -1 š x š I with respect to

the weight function r(x) : I^,4=. (Hint. To
evaluate the integral, set arccos -r : 0.) Verify that
Tn(x), fi : 0, I,2,3, satisfy the Chebyshev equation

(I-x2)y"-xy'ln2y:g.

(b) Orthogonality on an infinite interval: Laguerre
polynomials11 are defined by Lo: 1, and

e' d"(x'e-')Ln(x):Á dr" , n:I,2,...

Show that

Lt@): I - x, Lz@):1-2x+ x2/2,

Ls@):I-3x+3x22-x3/6.

Prove that the Laguerre polynomials are orthogonal on
the positive axis 0 š x { cc with respect to the weight
function r(x) : e-*. Hint. Since the highest power in
L,n is x-, it suffices to show that I e-'xkLn dx : 0 for
k 1 n. Do this by t integrations by parts.

1OpAFNUTI CHEBYSHEV (1821-1894), Russian mathematician, is known for his work in approximation
theory and the theory of numbers. Another transliteration of the name is TCHEBICHEF.

11BOMOND LAGUERRE (1834-1886), French mathematician, who did research work in geometrv and in
the theory of inl'inite series.
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CHAP. 5 Series Solutions of ODEs. Special Functions

orthogonal functions (obtained from Sturm-Liouville problems or otherwise) yield

important series developments of given functions, as we shall see. This includes the famous

Fourier series (to which we devote Chaps. 11 and I2),the daily bread of the physicist and

engineer for solving problems in heat conduction, mechanical and electrical vibrations, etc.

Indeed, orthogonality is one of the most useful ideas ever introduced in aPPlied mathematics.

standard Notation for orthogonality and orthonormality
The integr al (4) in Sec. 5.7 defining orthogonality is denoted by (y*, y,). This is standard.

Also, Kronecker's delta1' }r,,,-is defined by 6rnn: 0 if m * n and 6*n: 1 if m: n

(thus 6n.n. : 1). Hence for orthonormal functions !o, !t, jz, , , , with resPect to weight

r(x) (> 0) on a 3 x = b we can now simply write (yrn, y,,.) : 6rrn, written out

(Yr., Y',,) r(x)y,,(x)yn(x) dx :
if m*n
if m:n.

Also, for the norm we can now write

lly ll : 1/1y-. ; :

Write down a few examples of your own, to get used to this practical short notation.

OrthogonaI Series
Now comes the instant that shows why orthogonality is a fundamental concept. Let

)o, )t, !z, . .. be an orthogonal set with respect to weight r(x) on an interval a < x = b.

Let f (x) be a function that can be represented by a convergent series

(3) í(x):Žo,,r,,(x): ao!o@)-lary{x)+",.
tn-O

This is called an orthogonal expansion or generalized Fourier series. If the y,n are

eigenfunctions of a Sturm-Liouville problem, we call (3) an eigenfunction expansion. In

(3) we use again nl for summation since n will be used as a fixed order of Bessel functions.

Given /(x), we have to determine the coefficients in (3), called the Fourier constants

oí f (x) with respect to yg, )t, . . . Because of the orthogonality this is simple. A11 we have

to do is to multiply both sides of (3) by r(x)y.(x) (nfixed) and then integrate on both sides

from a to b. We assume that term-by-term integration is permissible. (This is justified, for

instance, in the case of "uniform convefgence," as is shown in Sec. 15.5.) Then we obtain

arr(jrn, !n),

1zLBopoLD KR6NECKER (1823-1891), German mathematician at Berlin University, who made important

contributions to algebra, group theory, and number theory.

(1)
r0

a-, : 
|t

^b:l
a

.b

J ,Gly,,'k) dx

(í.y,, : 
ť,rrn 

d* : ť, (Ž_^o-r*) ,, ," : i"a \-:o l *:o

(2)
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on the right are zero, except when m : n.

single term

o.1ly,-ll'.

(m : 0,7, .).

Because of the orthogonality all the integrals
Hence the whole infinite series reduces to the

ar.(!r., !n.) :

Assuming that all the functiofls }n have nonzero norm, we can divide by lly,-ll' writing
again m for n, to be in agreement with (3), we get the desired formula for the Fourier
constants

(4)
(í, y*) 1

u m - lly- ll' - lly- ll'

|.-| if -7r<x<0
ítxl:l and f(x+2rr):f(.x),t l il 0{x(z

.b
I

.J 
r(x)f (x)y*(x) dx

EXAMPLE l FourierSeries

A most important class of eigenfunction expansions is obtained from the periodic Sturm-Liouville problem

)"+,\y:6, y(r) : y(-rr), y'(i) : y'(-r).

Ageneral solutionoftheODEis}:Ácoskr-l-Bsink,r,wherek:\/^.Substitutingyanditsderivative
into the boundary conditions, we obtain

A cos kr * B sin kr : A cos (-frz") i B sin Gkn)

-tÁ sin kn + kB cos frn, : -kA sin (-krr) i kB cos (-kn).

Since cos (- a) : cos a, the cosine terms cancel, so that these equations give no condition fbr these terms. Since
sin(-a):-sina,theequationsgivestheconditionsintz,:0,hencekr:mr,k:m:0, 1,2,...,so
that the eigenfunctions are

cos 0 : l, cos mx, sin mx, , , ,

corespondingpairwisetotheeigenvalues.tr:k2:0,1,4,,..,m2,.,,.(sin0:0isnotaneigenfunction.)
By Theorem 1 in Sec. 5.7, any two of these belonging to different eigenvalues are orthogonal on the interval

- n š x š rr (note that r(x) : 1 for the present ODE). The orthogonality of cos mx and sin mx for the same
n follows by integration,

^T ^Tl |I
J_..or ll,tx sin mx dx : , J_,sin2tnx dx : 0.

For the norms we get llt ll : \/-Zt. ana {rr íor all the others, as you may verify by integrating 1, cos2x,
sin2 x, etc., from - r to rr. This gives the series (with a slight extension of notation since we have two functions
for each eigenvalue I,4,9, , , ,)

f (r) : ,,o + , (a, cos m-v l brrsin nr).
11'L: L

According to (4) the coefficients (with n : I,2, . . .) are

lr"lr"lr"(6) oo: i J_ ía a*. o* : Ž J_ ru, cos mx dx. b* : ; J_ j,-, sin mx dx.

The series (5) is called Ur] Uou.r.. series of /(-r). Its coefficients are called the Fourier coef'íicients of /(x),
as given by the so-called Euler formulas (6) (not to be confused with the Euler formula (11) in Sec.2.2).

For instance, for the "periodic rectangular wave" in Fig. 11 1, given by

(5)

-
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we get íiom (6) the values 0o : 0 and

| [ [o , r" 
,, ,,,,'. ,1.1 : 0,

,, ,,,: i LJ__' 
-ltcoslllxJ,y, Jo',e(r:rrrrtr,r_.,1

| [ í-o r" 
,,,," ./*ll,,,,: i LJ_;- 

llsintttxdl -Jo',sil,",^,^_.1

l I cos,lr-. |o cos "r, |"-l-;| , l_.- , |._]

r 1-4l1trn) if m : l, 3, , , ,

: 
*II - 2cosltl?T+ t] : 

1.. o if nt: 2,4...

Hence the Fourier series of the periodic rectangular wave is

4l l l \
.[trl = * (r'". - J sin_],t -t 1 sinS,r, 

)

Fig. llt. Periodic rectangular wave in Example 1

Fourier series are by far the most important eigenfunction expansions, so important to

ntť",:X",T*r;;;Sll*n: 
two chapters (11 and 12) to them and their applications,

Did it surprise you that aieries of continuous functions (sine functions) can represent

a discontinuous function? More on this in Chap, 11,

E X A M P LE 2 Fourier-Legendre Series

A Fourier-Legendre series is an eigenfunction expansion

a)ó

.f(r): , ornrrn@):aopo,1 af{x)*a2P2(x) + ", :aol ap* a2(}x'-ll + ",

in terms ",,J'*ur. 
polynomials (Sec. 5.3). The latter are the eigenfunctions of the Sturm-Liouville Problem

inE,xample5ofSec.s.lontheinterva1 -1šx<l.Wehaver(x):1forLegendre'sequation,and(4)gives

2ttt l I r'
,t*: } | í'..l P,,{xl d-r-

/- J-1

l

f(x)

1

(7)

because the norm is

(8) llp-ll :

m:0,|,",

(m : 1,1,

aS We State without proof, (The proof is tricky; it uses Rodrigues's fbrmula in Problem Set 5,3 and a reduction

of the resulting integral to a quotient of gamma functions,)

2

h"+1

r Ztu
ll

1 l-J

____-1
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ExAMPtE 3

(10)

because the square of the norm is

For instance, let /(x) : sin a,x. Then we obtain the coefficients

2m-ll r' 3a-: 2 J_r'r'n nx)P*,(r) dx, thus ot: i

Hence the Fourier-Legendre series of sin rrx is

2
ooR'Ji*l(ar,-)

_,)

x sin rx dx : - : 0.95493.
7r

ru: 1,2,

(l : ao,rn).

213

sin n,x : 0.95493Pr(x) - 1.15824Pg(x) + 0.2I429Ps@) - 0.0I664P7G) + 0.00068Ps(,x) - 0,00002P1l(x) +

The coefficient of P13 is about 3 , 10-7. The sum of the first three nonzero terms gives a curve that practically
coincides with the sine curve. Can you see why the even-numbered coefficients are zero? Why a3 is the absolutely
biggest coefficient? I

Fourier-Bessel Series

In Example 6 of Sec. 5.J we obtained infinitely many orthogonal sets of Bessel functions, one for each of ./6,

JrJz,",.Eachsetisorlhogonal onaninterval 0<,r<RwithafixedpositiveRofourchoiceandwith
respect to the weight x. The orthogonal set for Jnis Jn(kn,lx), Jn(kn,2x), Jn(kn,gx),. . . , where n isfixed and
kn,r,-is given in (l2), Sec.5.7. The corresponding Fourier-Bessel series is

(9) í(x): , orr1.1t*,rrx): a{n(kn,lx) l ct2J ,(kn,2x) * a3J,(kn.3r) *... (nfixed).
ln:í

The coefficients are (wíth an,rn: kn,,R)

_1

J_,

,R

Jn 
r rr*' J,(k,.-x) dx.

(1l)

as we state without proof (which is tricky; see the discussion beginning onp.576 of [A13]).
Forinstance, letusconsider í(x): l - x2 andtakeR: 1 anďn: Ointheseries(9),simplywriting,trfor

a6,",. Then kn,,n: &o,m: 
^ 

- 2.405,5.520,8.654, I1.792, etc. (use a CAS or Table Al in App. 5). Next we
calculate the coefficienís am by (10),

2rI
a,": 

Jl2Á) Jn 
*'' - x"lJg(Lr) dx.

This can be integrated by a CAS or by formulas as follows. First use !r-l1(.Lr)l' : ),xJo()-t) from Theorem 3

in Sec. 5.5 and then integration by parts,

2 r' , , 2 r l o |l l r' l
"-: JrrÁ) Jo*'' - *2)Jn{i-.l ax - ,5 L; ,' - *2l"-l,t,\-rt Io ,r Jo"/,tl*)t 

-zxl dx).

The integral-free par1 is zero. The remaining integral can be evaluated ay |x2lrlXr!)' : Xr2trlXr) from Theorem
3 in Sec. 5.5. This gives

4J20)

"r.: 
^rJrr(^)

Numeric values can be obtained from a CAS (or from the table on p.409 of Ref. tGRl] in App. 1, together
with the formula Jz: 2x-tJt - Jo in Theorem 3 of Sec.5.5). This gives the eigenfunction expansion of
| - x2 in terms of Bessel functions -16, that is,

1-x2:1.108lJo(2.4O5x)-0.1398"ro(5.520x)+0.0455"/o(8.654x)-0.0210Jo(l1.792x)+....

A graph would show that the curve of 1 - x2 and that of the sum of the flrst three terms practically coincide. l

||lnlt<n,",x1 : f ,r,z(k,,-x) d- : + n*rlk..*n)
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Mean Square Convergence.
Completeness of Orthonormal Sets
The remaining part of this section will give an introduction to a convergence suitable in

connection with orthogonal series and quite different from the convergence used in

calculus for Taylor series.

In practice, one uses only orthonormal sets that consist of "sufficientlY manY" functions,

so that one can represent iurg" classes of functions by a generalized Fourier series (3)-
certainly all continuous functions on an interval a š x š b, but also functions that do "not

have toá many,, discontinuities (see Example 1). Such orthonormal sets are called "comPlete"

(in the set of functions considered; definition below). For instance, the ofthonormal sets

coíTesponding to Examples 1_3 are complete in the set of functions continuous on the

intervals considered (or even in more general sets of functions; see Ref. [GR7], Secs. 3,4-3,] ,

listed in App. 1, where "complete sets" bear the more modern name "total sets").

In this connection, convergence is convergence in the norm, also called mean-square

convergence; that is, a sequence of functions /o is called convergent with the limit .f if

(12*) #* ll íu - f ll : 0;

written out by (2) (where we can drop the square root, as this does not affect the limit)

r(x)|írc@) - f(x)]2 dx : 0-

Acčordingly, the series (3) converges and represents / if

(I2)
^b

lim l
k-aJa

(13) I:Í"''-Xsr(,r) - í(x)]' dx : 0

(14)

where sp is the kth partial sum of (3),

st(x) : 
Žoo,-r,,r*r.

By definition, an orthonormal set !o, jt,,,, on an interval a < x 5 b is complete in

a set of Junctions S defined on a š x š b if we can approximate every f belonging to S

arbitraiily closely by a linear combinatioil ag)6 l atyt + " , * aplp, that is, technically,

if for 
"uÓ.y 

e } 0 we can find constants rt6, " , , ak(with klarge enough) such that

llr - (aoyo + ", * auyu) ll <..

An interesting and basic consequence of the integral in (13) is obtained as follows.

Performing the square and using (14), we first have

- í(x)]2 dx :

(15)

.b

J r@[sl(x) ' dx - Z jo.rrro dx 1- ťrr *
^b

l"o-Ct

br
],I0L )oo,,-r,,f' 

o, - 'Ž,o,. ť ,fy* dx -| ť,r *

The first integra1 on the right

í ,,.,,,,,' r/.r : 1. In the second
equals 2 an2 because I ,yrny, dx - 0 for m * l, and

sum on the right, the integral equals ct,,,r, by (4) with
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the right cancels half of the second term, so that thelly,,ll2 : L Hence the first term on
right side reduces to

k_6

- )ra*z 
l J.rf' ar.

This is nonnegative because in the previous formula the integrand on the left is nonnegative
(recall that the weight r(x) is positive!) and so is the integral on the left. This proves the
important Bessel's inequality

k

' ^ 2<
.2um:

m-O

Here we can let fr --+ oo, because the left sides form a monotone increasing sequence that
is bounded by the right side, so that we have convergence by the familiar Theorem l in
App. A3.3. Hence

a)

2 o,n' = llr ll'.m.-O

Furthermore, if jo, !t, , , , is complete in a set of functions ,S, then (13) holds for every
/ belonging to S. By (15) this implies equality in (16) with fr --> oo. Hence in the case of
completeness every f in S satisfies the so-called Parseval's equality

(16)
^b

llr lI' : J ru)f 6)2 clx (k : I,2, . . .).

(I1)

(18) ; a-2 : llrll' : I rul]G)z dx.
ln-O a

THEoREM t

PRooF

ExAMPLE 4

As a consequence of (18) we prove that in the case of completeness there is no function
orthogonalto every function of the orthonormal set, with the trivial exception of a function
of zero norm:

Completeness

Let )lg, !t,,,, be a complete orthonormal set on a š x < b in a set of functions S.

Then if a function f belongs to S and is orthogonal to every !rn, it must have norm
zero. In particular, if f is continuous, then f must be identically zero.

Since / is orthogonal to every y,n,the left side of (18) must be zero.If / is continuous,
then ||/ || : 0 implies /(r) = 0, as can be seen directly from (2) with / instead of !*
because r(x) > 0. l
Fourier series

The orthonormal set in Example l is complete in the set of continuous functions on - 7,,š x š z,. Verify directly
that /(x) = 0 is the only continuous function orthogonal to all the functions of that set.

Solution. Lef / be any continuous function. By the orthogonality (we can omit \/-2t and Ýá1,

-Tl
l t.ft*.l dx:0,

J

^T
l
l .f rx:t cos //?x ttx : 0,

J

^T
ll .íG) sin mr dx : 0.

J

Hence arn : 0 and brn: 0 in (6) for all la, so that (3) reduces to /(.r) = Q. n
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This is the end of Chap. 5 on the power series method and the Frobenius method, which

are indispensable in sÓlving linear ODEs with variable coefficients, Some of the most

importani of which we have discussed and solved. We have also seen that the latter are

important sources of special functions having orthogonality proPerties that make them

suiiable for orthogonal series representations of given functions,

r FouRIER-LEGENDREsERlEs
Showing the details of your calculations, develop:

1.7xa _ 6x2 2. (x + I)2
3.x3 -x2+x- l 4. I,x,x2,x3

5. Prove that if í(x) in Example 2 is even fthat is,

'"Y:r:*/(--r)], 
its series contains onlry P,n(x) with

@ cAsExpERlMENTs.FoURIER_LEGENDRE
sERlEs

Find and graph (on common axes) the partial sums up to

that S-o whose graph practically coincides with that of _f(x)

within graphical accuracy. state what mgis. on what does

the size of mg seem to depend?

6. í(x): sin n,x 7. í(x) : sinZnx

S. í(x) : cos ?Tí 9, f (x) : cosZltx

10. /(x) : cos 3rrx \L f (x) -- e*

12. í(x) : "-*u 13. f(x) : Il(I + x2)

1'a.Í@):Jg(agJx),wherea9,1isthefirstpositivezero
of -/6

15. f(x) : Jg(ag.2x), where a6,2 is the second positive

zero of J1,

16. í(x) : Jl(alsx), where a1,1 is the first positive zero

of -I1

17. CAS EXPERIMENT. Fourier-Bessel Series, Use

Example 3 and again take n: 10 and R : 1, so that

you get the series

(19) í(x) : alg(ag, ) 1- a2Jg(ag,zx) t agJg(ag,gx)

+...
with the zeros d6,1 do,2, , , , from your CAS (see also

Table A1 in App. 5).

(a) Graph the terms Jg(a6,1x), , , , , Jo(ao,16,r) for

0<xšloncommonaxes.
(b) Write a program for calculating partial sums of

(19). Find out for what /(x) your CAS can evaluate the

integrals. Take two such /(x) and comment empirically

on the speed of convergence by observing the decrease

of the coefficients.

(c) Take /(x) : 1 in (19) and evaluate the integrals

for the coefficients analytical|y by (24a), Sec, 5,5, with

í_;.r. 
Graph the first few partial sums on common

18. TEAM PROJECT. Orthogonality on the Entire

Real Axis. Hermite Polynomials.l3 These orthogonal

polynomials are defined by Heg(I): l and

Hen@): (-1 ,nu..2l2 ft ,u-*''), lL: I,2,, , ,

REMARK. As is true for many special functions, the

literature contains more than one notation, and one

sometimes defines as Hermite polynomials the

functions

, dne-"
Ho* : l, Hn*(x) : (- 1)"e'' 1* ,

Thisdiffersfromourdefinition,whichispreferredin
applications.

(a) Small Values of r. Show that

Hel(x) : x,

H4(x):x3-3x,

He2@):x2_I,

Hea(x):xn_6x2+3,

(b) Generating Function. A generating function of

the Hermite polynomials is

(.2O) etí-tzl2 : 
Ž"an(x)t,

because Hen@) : n|,an(x),Prove this, Hint: Use the

formula for the coefficients of a Maclaurin series and

note that tx - lt2 : ir' - i@ - ilz.
(c) Derivative. Differentiating the generating function

with respect to x, show that

(2l) ael@) : nHen_{x).

I3CHARLES HERMITE (1822-I9OI). French mathematician, is known for his work in algebra and number

theory. The great HENRI POINCARE (l854_1912) was one of his students.

--J



Chapter 5 Review Questions and Problems

(d) Orthogonality on the x-Axis needs a weight
function that goes to zero sufficiently fast as x ---> -+@.

(Why?) Show that the Hermite polynomials ate

orthogonal on -co 1 x 1co with respect to the weight
function r(x) : ,- tz. Hint,lJse integration by parts

and (21).

(e) ODEs. Show that

(22) Ue'*(x) : xHen(x) - Hen*l(x).

Using this with n - I instead of n and (21), show that

y : Hen(x) satisfies the ODE

217

(23) y" - *y' l ny : 0.

Show that w : 
"-r2l+, 

is a solution of Weber's
equationla

(:24) w" + 1, + + - jxz)w : 0 (n : O, 1,,,,).

19. WRITING PROJECT. Orthogonality. Write a short

report (2-3 pages) about the most important ideas and

facts related to orthogonality and orthogonal series and

their applications.

1. What is a power series? Can it contain negative or
fractional powers? How would you test for convergence?

2. Why could we use the power series method for
Legendre's equation but needed the Frobenius method
for Bessel's equation?

3. Why did we introduce two kinds of Bessel functions,
J anďY?

4. What is the hypergeometric equation and why did Gauss
introduce it?

5. List the three cases of the Frobenius method, giving
examples of your own.

6. What is the difference between an initial value problem
and a boundary value problem?

7. What does orthogonality of functions mean and how is
it used in series expansions? Give examples.

8. What is the Sturm-Liouville theory and its practical
importance?

9. What do you remember about the orthogonality of the

Legendre polynomials? Of Bessel functions?

10. What is completeness of orthogonal sets? Why is it
important?

El-..ról sERlEs soluTloNs
Find a basis of solutions. Try to identify the series as

expansions of known functions. (Show the details of your
work.)

1|.y"-9y:0
12. (I - x)zy" + (I - x)y' - 3, : o

13.xy"-(x+1)y'-|y:0
|4. x2y" - 3*y' -f 4y : g

15. y" * 4xy' + 14x2 -l 2)y : O

1,6. xzy" - 4ry' + (r' * 6)y : 9

17. xy" + (2x + 1)y' + (x * l)y:0

18. (x2 - I)y" - Zry' * 2y : g

19. (x2 - 1)y" + 4xy' -f 2y : g

20. x2y" + *y' * (4xa - 1)y : 0

@ BEssEL's EQuATIoN
Find a general solution in terms of Bessel functions. (Use
the indicated transformations and show the details.)

2l. xzy" + *y' -l (36x2 - 2)y : 0 (6x : z)

22. x2y" * 5xy' * (x' - I2)y : g (y : ulx2)
23. x2y" l,y' * 4(xa - 1)y : 0 (x2 : z)

24. 4x2y" - 2Oxy' + 14x2 + 35)y : 6 (y : x3u)

25.y"lk2x2y:g (y:u , lkx2:z1

@ BouNDARy vALuE pRoBLEMs

Find the eigenvalues and eigenfunctions.

26. y" + ly : g, y(0) : 0, y'(n) : 0

27. y" + ly : g, y(0) : y(1),
y'(0): y'(1)

28. (xy' )' + 
^r-'y 

: 0, )(1) : 0,
(Set x : et.)

29. x2y" l *y' -l ()"x2 - l)y : 0,
y(0) : 0, y(1) : 0

30. y" .l i,y : 0, y(0) + y'(0) : 0,

y(e) : 0,

@ cAs pRoBLEMs

Write a program, develop in a Fourier-Legendre series, and
graph the first five partial sums on common axes, together

with the given function. Comment on accuracy.

3l.e2* (-l =.r< l)
32. sin(rr') (-1= x<I)
33. Il(1 +|x|) (-1 =x<t)
34. |cos zrx| (- 1 

= 
,r < 1)

35.x if 0< xšI,0if -1<x{0

y(2rr) : 0

1aHEINRICH WEBER (I842-t9 I3), German mathematician.

TlONS AND PROBLEMS



Series Solutions of ODEs. Special Functions

(1)

The power series method gives solutions of linear oDEs

.y"+p(x)y'tq(x)y:0

with variable cofficients p and q tn the form of a power series (with any center

Xg, a.S., Xo : 0)

@

(2) y(x):Ž a,n(x-xo)*:aol at(x- xo) * az(x- xo)2 + ""

Such 
".oru,roírroouruin"o 

by substituting (2) and its derivatives into (1). This gives

a recurrence formula for the coefficients. You may program this formula (or even

obtain and graph the whole solution) on your CAS,
If p and q are analytic at x6 (that is, representable by a power series in powers

of x - xo with positive radius of convergence; Sec. 5.2), then (1) has solutions of

this form (2). The same holds if ň" F, 4 in

ň(r)y" + F@)y' + Q@)y :0

are analytic at x6 and ň(xo) * 0, so that we can divide by ň and obtain the standard

form 11j. Legendre's equation is solved by the power series method in Sec. 5.3.

The Frobenius method (Sec. 5.4) extends the power series method to ODEs

(3) y" + #+:,'+ !]$y:0
whose coefficients are singular (i.e., not analytic) at xg, but are o'not too bad,"

namely, such that a andb are analytic atxg. Then (3) has at least one solution of

the form

(a) y(x) -- (x - ro)'i a*(x - xo)*: ao(x - ío)'+ at(x - ío)'*1 + ",
rn-O

where r canbe any real (or even complex) number and is determined bY substituting

(4) into (3) from the indicial equation (Sec. 5.4), along with the coefficients of (4).

A second linearly independent solution of (3) may be of a similar form (with different

r anď a,n, s) or may involve a logarithmic term. Bessel's equation is solved bY the

Frobenius method in Secs. 5.5 and 5.6.
,.special functions" is a common name for higher functions, as opposed to the

usual functions of calculus. Most of them arise either as nonelementarY integrals

[see (24)_ (44) inApp. 3.1] or as solutions of (1) or (3). They get a name and notation

and are included in rhe usual CASs if they are important in application or in theorY.
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Summary of Chapter 5

Of this kind, and particularly useful to the engineer and physicist, are Legendre's
equation and polynomials Po, Pu (Sec. 5.3), Gauss's hypergeometric
equation and functions F(a, b, c; x) (Sec. 5.4), and Bessel's equation and
functions J, and, Y, (Secs. 5.5, 5.6).

Modeling involving ODEs usually leads to initial value problems (Chaps. 1-3)
or boundary value problems. Many of the latter can be written in the form of
Sturm-Liouville problems (Sec. 5.7). These are eigenvalue problems involving
a parameter ), that is often related to frequencies, energies, or other physical
quantities. Solutions of Sturm-Liouville problems, called eigenfunctions, have
many general properties in common, notably the highly important orthogonality
(Sec. 5.7), which is useful in eigenfunction expansions (Sec. 5.8) in terms of cosine
and sine ("Fourier series", the topic of Chap. 11), Legendre polynomials, Bessel
functions (Sec. 5.8), and other eigenfunctions.

219
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Fig. ll2. Solving an lVP by Laplace transforms

,C.',H',., A'P,.,T,,,E,,',R,''-' 6

Laptace Transforms

The Laplace transform method is a poweďul method for solving linear oDEs and

coffesponding initial value problems, as well as systems of oDEs arising in engineering,

The pioce.. óf solution consists of three steps (see Fig. 112).

Step 1. The given oDE is transformed into an algebraic equation ('osubsidiarY

equation").

Step 2. The subsidiary equation is solved by purely algebraic manipulations,

step 3. The solution in step 2 is transformed back, resulting in the solution of the given

problem.

Thus solving an oDE is reduced to an algebraic problem (Plus those transformations).

This switching from calculus to algebra is called oPerational calculus. The LaPlace

transform method is the most importánt operational method to the engineer. This method

has two main advantages over the usual methods of Chaps. 1_4:

A. problems are solved more directly, initial value problems without first determining

a general solution, and nonhomogeneous ODEs without first solving the corresPonding

homogeneous ODE.

B. More importantly, the use of the unit step function (Heaviside function in

Sec. 6.3) and Dirac,s delta (in Sec. 6.4) make the method particularly powerful for

problems with inputs (driving forces) that have discontinuities or rePresent short imPulses

or complicated periodic functions,

In this chapter we consider the Laplace transform and its aPPlication to engineering

problems invólving oDEs. pDEs will be solved by the Laplace transform in Sec. I2,I|,

General formulas are listed in Sec. 6.8, transforms and inverses in Sec. 6,9, The

usual CASs can handle most Laplace transforms,

Prerequisite: Chap.2
Sections that may be omitted in a shorter Course: 6.5,6.7

ReferencesandAnswerstoProblems;App.lPartA,App.2.

22o



SEC. 6.1 Laplace Transform. lnverse Transform. Linearity. s-Shifting 22l

(1)

Here we must assume that f(t) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications-we shall discuss this near the
end of the section.

Not only is the result F(s) called the Laplace transform, but the operation just described,
which yields F(s) from a given /(r), is also called the Laplace transform.It is an "integral
transform"

F(s) :

with "kernel" k(s, t) : e-'t.
Furthermore, the given function f(t) in (1) is called the inverse transform of F(s) and

is denoted Uy 9,-11n); that is, we shall write

(1*) f(t) : g-'(F).

Note that (1) and (1*) together imply g-|@ff)) : í anď 9(9,-'(p)) : r.

Notation
Original functions depend on / and their transforms on s-keep this in mind! Original
functions are denoted by lowercuse letters and their transforms by the same letters in
capital, so that F(s) denotes the transform of f (t), and (s) denotes the transform of y(r),
and so on.

EXAMPLE l LaplaceTransform

Let í(t) : 1 when r > 0. Find F(s).

Solution. From (l) we obtain by integration

r"
l k(s, t).f(t) dt
'o

(s > 0).

1PIPRRE SIMON MARQUIS DE LAPLACE (I14g_lB27), greatFrench mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace's interesting political involvements, see Ref. tGR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850-1925) and were often called "Heaviside calculus."

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we
wrote 9(.f ) instead of 58(f)(s) and in (|'k) g,-l@) instead ot ?-I@)(t).

6.1 Laplace Transform. lnverse Transform.
Linearity. s-Shiftin8

If f(t) is a function defined for aII t > 0, its Laplace transform1 is the integral of f (t)
times e -" from t : 0 to oo. It is a function of s, say, F(s), and is denoted by 9(í); thus

rn
F(s; : 9(f) : l e-'tftt) dt.-Jo

r" l l- l
?rf l: 9l|): | "-" dt: - ' e-'' | : -' Jo s lo s
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our notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite,

Such an integral is called an improper integral and, by definition, is evaluated according to the rule

f'-*, r'--t
Jo ,-'' 1ttl dt : ;,: Jr,-"t,ru1,1t,

Hence ottr convenient notation means

(s > 0).

l

l n-",r1l: lim |-_ r "-",l':_li* [ 
l -sT , t o-] - l

Jo T-*L,' _.]o ir.i"L--( T"_.] -,

We shall use this notation throughout this chapter,

ExAMPLE 2 LaplaceTransform g(e",|of the Exponential Functione"*

Let í(ť) : eot ,Nhen t > O, where a is a constant, Find 9(í),

Solution. Again by (1),

rI
! teotl = | e-st eol clr : L e-(s-a)t

Jo o-S

THEoREM l

l;
hence.whens - cLž0,

l
J\( ,: , _,, . l

Must we go on in this fashion and obtain the transform of one function after another

directly from the definition? The answer is no. And the reason is that new transforms can

be found from known ones by the use of the many general properties of the Laplace

transform. Above all, the Laplace transform is a "linear operation," just as differentiation

and integration. By this we mean the following,

Linearity of the Laplace Transform

The Laplace transfotm is a linear operation; that is, for any functions f (t) and g(t) whose

transforms exist and any constants a and b the transfom of af (t) + bsG) exists, and

Staí(t) + bsÍ)j -- a?{f(/)} + bgís(t)}.

PRooF By the definition in (1),

9{aí(t)+bg(t)}:Í e-'tlcl|1t\ + bg(t)] dt

a)-r
l u-".f (t) dt 1- bl e-'1 g(t) dt : a9{/(/)} + bT|g(r)}.
Jo"Jo-a

ExAMPLE 3 Application of Theorem l: Hyperbolic Functions

Find the transforms of cosh at and sinh ar.

Solution. Since cosh o, : j{u"t + n-ot) and sinh o, : !{r"t _ ,-ot), we obtain from Example 2 and

Theorem l

(cosh ,,tl: !( (eo|1+!{e-.ot\,: )(* - jr):;

tsinh n,,: \{:!lťot|- !lť-ot,, - j (* +): 
"+ 

l

_,--
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EXAMPLE 4 Cosine and Sine

Derive the formulas

9(cos at) : 22
. -]- út)

223

9(sin ra4 : 22,-r)

Solution by Calculus. We wriíe L": 9(cos at) and L" : 9(sin or). Integrating by parts and noting that the

integral-free parts give no contribution from the upper limit rc, we obtain

,": l ,-"tcosc.ll Or: 
':.orrr|" 

-: |- "-"'sinro/ 
dr:1- - 1r*' Jo -s lo Jo s s

r* -.sí loo 
"^o

L" : I e-"tsin at dt : L rinrr| +' l r-"'cos @í rtt : 9r".
" Jo -s lo J Jo s

By substituting t" into the formula for L" on the right and then by substituting L" into the formula for ^L" on

the right, we obtain

L":!-:(:.") , Lc(,-t) :

L,:9 (+ í,) , L"(,- ž) :

l I-
, Le -s

(r)
l

',L.s._

22sŤ)
0)

,Ť)

Solwtion by Transforms Using Derivatives. See next section.

Solution by Complex Methods. In Example 2, if we set a : ial with i : Ý1, we obtain

g(ri.r): -r : s.-| ia : i* ''u : -:-- + i ,Ls - ia (s - lrr;)(s + iro) ,2 + ,' s' l a' ,2 + ,2

Now by Theorem I and ei't : cos r,l/ -F i sin a-l/ fsee (11) in Sec.2.2 with ror instead of r] we have

g("ž-'): 9(cos a -l i sin ror) : 58(cos @t) + iA(sin at).

If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formaI
calculation can be justified in the theory of complex integration.) l

Basic transform, are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
I-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n : 0 because of Example 1 and 0! : 1. We make the induction hypothesis that it holds
for any integer n > 0 and then get it for n -l 1 directly from (1). Indeed, integration by
parts first gives

9{tn*11 : I g-"t.n-Idt: -l u-rt,n r|** n-l l 
|*r-rrrrdr.Jos|6SJo

Now the integral-free part is zero and the last part is (n + I)ls times 9(t"). From this
and the induction hypothesis,

11 n_ll n_ll 71l. (n+l)l
9(t'''I) - 

- 

g(t") : 

- 

. 
r", 

: - šn+2 
.

This proves formula 4.
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Table 6.1 Some Functions f(t) and Their Laplace Transforms 9Ií|

í(t) g(í)

1

2

1J

4

5

6

t

q

t,

tn
(n--0, l,"

to
(a positive)

eot

,)

1/s

Ils2

2|.ls3

n!

?TT

I(a + 1)
-;"-'

1

S-a

f (t) s(í)

1

8

9

10

11

l2

cos (,'

sin a,l/

cosh at

sinh ar

eot cos at

e"t stn at

s
--r,,
S'+a-

(r)

,-- ,s'l a'

s--, ,s'-a'

a

s'-a'

S-a
(s-a)2+a2

a)

(s-a)'+a2

l(a + 1) in formula 5 is the so-called 7amma function t(15) in Sec. 5.5 or (24) in

App. A3.1]. We get formula 5 from (1), setting st : x|

91t"1 :

where s ) 0. The last integral is precisely that defining f(a + 1), so we have

ii; i Íllro*r,as claimed. (CAUTIoŇ! r(a + 1) has xo in the integral, not xo*1.)

Note the formula 4 also follows from 5 because l(n + I) : n! for integer n Ž 0.

Formulas 6_10 were proved in Examptes 2-4. Formulas 11 and 12 wtII follow from 7

and 8 by "shifting," to which we turn next,

s-Shifting: Replacing s by , a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(r),

we can immediately get that of e"tfG), as follows,

First Shifting Theorem, s-Shifting

Ií í(t) has the transform F(s) (where s ž kfor some k), then e"'í(t) has the transform

F(s - a) (where s - a > k). Informulas,

9{e"tí(t)}:F(s-a)

or, if we take the inverse on both sides,

e"tíG):9-1{F(s-a)}.

(,-",,,at: (, " (+I +: # ll u"*o*

THEoREM 7
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PROOF We obtain F(s - a)by replacing s with s - a in the integral in (1), so that

(2)

225

^l& co

F(s - g1 : | ,-"-o'''1g1 at : Ío ,-"'|n"'f(t)] : 9{e"tf1)|.
Jo

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for
s - a ) k. Now take the inverse on both sides of this formula to obtain the second formula
in the theorem. (CAUTION! -a in F(s - a) but la in e"'í(t).) l

EXAMPLE 5 s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 1l and 12 in Table 6.1,

9lru'cosr,,,/|: ',ro ,. g|eoísinrt|: .--3, 2' (s-a)'*a' {o-a)--|a"

For instance, use these formulas to find the inverse of the transform

9,G): -3s-l37-l 2s + 401

Solution. Applying the inverse transform, using its linearity (Prob. 28), and completing the square, we obtain

í3(s+l)-l4Oi:,g-,I ':' =I- rn-,Í 1o =Jt 
- 

co-|)J -J l tr* rf* 40OI- "* Ltr* l12 +202j'* ttr* 1,12 +zo2J'L

We now see that the inverse of the right side is the damped vibration (Fig. 1 13)

f(í) : "-t13 
.o. ZOt - 1sin 20r).

0

-Z

-4

_^

Fig.l13. Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms
This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A functioíL f (t) has a Laplace transform if it does not grow too fast, say, if for all
t > 0 and some constants M and k it satisfies the "growth restriction"

lrrol = 
Mekt.

6

4

2

1.0

V

l
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(The growth restriction (2) is sometimes called "growth of exponential order," which maY

be misleading since it hides that the exponent must be kt, not kt2 or similar.)

/(r) need not be continuous, but it should not be too bad. The technical term (generallY

used in mathematics) is piecewise continuity. í(r) is piecewise continuous on a finite interval

a š t < b where / is defined, if this interval can be divided into finitely many subintervals

in each of which / is continuous and has finite limits as / approaches either endPoint of such

a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the onlY Possible

discontinuities, but this suffices in most applications, and so does the following theorem.

Fig. ll4. Example of a piecewise continuous function /(t),
(The dots mark the function values at the jumps.)

THEoREM 3 Existence Theorem for Laplace Transforms

Ií í(t) is defined and piecewise continuous on every finite interval on the semi,axis

i 
= 

o and satisfies (2) for atl t 
= 

0 and some constants M and k, then the Laplace

transform 9(f) exists for all s ž k.

PRooF Since í(r) is piecewise continuous, e-'tfltl is integrable over any finite interval on the

/_axis. From (2), assuming that s } k (to be needed for the existence of the last of the

following integrals), we obtain the proof of the existence of 9(Í) from

|g0l:W' -st fl1 š f* ,rOru-.rt dt :
Jo

-,,f (t) o,| = jlVurt,. s-k

Note that (2) can be readily checked. For instance, cosh t 1 et, tn 1nl.et (becalse tnlnl.

is a single term of the Maclaurin series), and so on. A function that does not satisfY (2)

for any M and k is et' (take logarithms to see it). We mention that the conditions in

Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. If the Laplace transform of a given function exists, it is uniquelY

determined. Conversely, it can be shown that if two functions (both defined on the Positive
real axis) have the same transform, these functions cannot differ over an interval of Positive
length, although they may differ at isolated points (see Ref. tA14] in App. 1). Hence we

..ru} ,uy that the inverse of a given transform is essentially unique. In Particular, if two

continuous functions have the same transform, they are completely identical.

@ LAILAcE TRANsFoRMs
Find the Laplace transforms of the following functions.

Show the details of your work. (a, b, k, a, 0 are constants.)

'I. t2 - 2t 2. (t2 - 3)'

3. cos Zrrt

5. ezt cosh r

7. cos (at + 0)

9. r3a,zbt

4. sinz 4t

6. e-t sinh 5r

8.sini3r-+)
10. -8 sin 0.2r

Ť
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11. sin / cos / 12. (t + 1)3

ab

Il\
b

It_
b

13' 
u

15.
1

17.
b

14' 
u

16' r

18.
h

227

28. (Inverse transform) Prove that 9-I ts linear. Hint.
use the fact that is linear.

@Jd lNvERsE LAILAcE TRANsFoRMs
Given F(s) : 9(f), find í(r), Show the details. (L, n, k, a,
á are constants.)

4s - 3rr,oLr. , 's' -Ť rr'
sa-3s2+I2.jl. ='.

nnL
33. 

-

L'.s' -Ť n't'

8
35. s"l4s

l
Jl. _(r-r6xs+16;

1139. ^s'l5 s*5

|44 AppLlcATtoNs oF THE FlRsT sHlFTlNG
THEOREM (s-SHIFTING)

In Probs. 4146 find the transform. In Probs. 41-54 flnď
the inverse transform. show the details.

4I.3.8te2,4t
43. 5e-"t sin a,l/

2s+1630. ^s"-16
1032. -2s * \/2

20
34. (s-lXs+4)

36. Š, (k + 1)2

. Ť/(-k:l

18s - 1238. _9s"-I
1

4n_ 

-

(s*a)(s*Ď)

42. _37au-0.5t

44. e-st cos nrt

7r48. _
(s * zr)'

s*6
50. (s-1)"*4

4s-2
--fu+18
2s-56

s'-4s-a

45. e-kt(a cos / + á sin r)

46. e-t(ao l a + . . . l antn')

1
47.

(s - l)"
\rf49. _

(s + Vz)3

155i. --;----------- 52.s"*4sl29

6.2 Transforms of Derivatives and lntegrals.
ODEs

20. I,[ 
_

21. Using 9,(í)in Prob. 13, find 9(/1), where f ,(t): 0if
t=2andfl(r):1ift}2.

22. (Existence) Show that g(Il\,4) : \/rh. [Use
(30) f(+) : {, in App. 3.1.] Conclude from this that
the conditions in Theorem 3 are sufficient but not
necessary for the existence of a Laplace transform.

23. (Change of scale) It 9(í(t)) : F(s) and c is any
positive constant, show that 9(í(ct)) : F(slc)lc, (Hint:
Use (1).) Use this to obtain 58(cos ut) from 9(cos r).

24. (Nonexistence) Show that et' does not satisfy a

condition of the form (2).

25. (Nonexistence) Give simple examples of functions
(defined for all í > 0) that have no Laplace transform.

26. (Tatlle 6.1) Derive formula 6 from formulas 9 and 10.

27. (Table 6.1) Convert Table 6.1 from a table for finding
transforms to a table for finding inverse transforms (with
obvious changes, e,g.,9-|11/sn) : tn-ll1n - 1)!, etc.). s2 + 10zrs -l 24n2

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforrzs. Roughly, dffirentiation of f (t) will correspond to multiplication of 9(f)
by s (see Theorems 1 and 2) and integration of f (t) to division of 9(f) by ,. To solve
ODEs, we must first consider the Laplace transform of derivatives.

54.
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THEoREM l

CHAP. 6 Laplace Transforms

Laplace Transform of Derivatives

The transforms of the first and second derivatives of f (t) satisíy

(1) g(f') : sg(í) - í(0)

(2) 9(í") : s29(í) - sí(0) - í'(0),

Formula (I) holds ií í(t) is continuous for all t >_ O and satisfies the growth restriction

(2) in Sec. 6.I and"f '(t) is piecewise continuous on every finite interval on the semi,

axis t> 0. Simitaily, (2)iolds if f and f' are continuousfor allt=0 and satisfy

the growth restriction and f" is piecewise continuous on every finite interval on the

semi-axis / > 0.

pRooF We prove (1) first under the additional assumptionthat f'is continuous. Then bY the

definition and integration by parts,

Since / satisfies (2) in Sec. 6.1, the integraterd part on the right is zero at the upper limit

when s } k, and at the 1ower limit it contributes -/(0). The last integral is 9(Í). It exists

fors ) kbecause of Theorem 3 in Sec.6.1. Hence g(f') exists when s} k and (1)holds,- 
ff 1, is merely piecewise continuous, the proof is similar. In this case the interval of

integration of /' must be broken up into parts such that f ' is continuous in each such Part,

The proof of (2) now follows by applying (1) to f " and then substituting (1), that is

g(í"): sg(í') - í'(0): s[sg(í) - í(0)] : s29(í) - sí(0) - í'(0), l

Continuing by substitution as in the proof of (2) and using induction, we obtain the

following extension of Theorem 1.

THEoREM 2 Laplace Transform of the Derivative íb| oí Any Order

Let f , f', . . ., 7@-D be continuous for all t > 0 and satisÍy íhe growth restriction

(2) in Sec. 6.I. Furthermore, let f'n) b, piecewise,c.ontinuous on every finite interval

on the semi-axis t > 0. Then the transform oí ť") safisfies

(3) s(fr.\ : s"9(í) - ,,-'.f(0) - ,n-'f'(g) - í{"t-1)(0).

EXAMPLE l Transform of a Resonance Term (Sec,2,8)

Letí(t): /Sinrr_r/.Thení(0): O,í'(t): sinro/+ (.)/cos @t,f'(O):0,f":2l.,cos .t- t,l2tsinro/,Hence

by (z),

s(í") : zr r, z - r'g(f) : r2g(í),.-r)

s(f' ) : f ,-"'1' 61 at : l,g-,tf(t, 
|] 

+, 
r,-,tf(t) 

dt,
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EXAMPLE 2 Formulas 7and 8 in Table 6.1, Sec. 6.1

This is a third derivation of 9(cos l;lt) and 91sinrot.;; cf. Example 4 in Sec. 6.1. Let í(t) : cosco/, Then

/(0) : 1, í'(0) : 0, í"(t) : -r2 cos úJl. From this and (2) we obtain

9(í") : ,2g(í) - s : -r'g(í). By algebra, 9(cos ,Ď: ?+'
Similarly, let g : sin or. Then g(0) : O, 8' : o,l cos cr;/. From this and (1) we obtain

9(s'): s9(g) : afl.(cos.;rt). Hence 9(sinclt): 9g("o, &)0: -: 2. ls'l to'

Laplace Transform of the lntegral of a Function
Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function /(r) (roughly) corresponds to multiplication of its
transform 9(f ) by s, we expect integration of f (t) to correspond to division of 9(f ) by s:

THEoREM 3 Laplace Transform of lntegral

Let F(s) denote the transform of a function í(t) which is piecewise continuous for
t > 0 and satisfies a 7rowth restriction (2), Sec. 6.I. Then, for s ) 0, s } k, and
t>0,

(4) s{[rr,> d4: io,,,, thus |,", dr:g-'{1or,l}

P R O O F 
iffž;,,|:Jl:Ť:l,[í' 

by sG).Since /(r) is piecewise continuous, 8(/) is continuous,

ls(/)l : 
|ť 

,n o,|= I,1r"rldr=,Ino,dr: T,,n,- 1)= T,o, (k>0).

This shows that g(r) also satisfies a growth restriction. Also, g'(t) : f(t), except at points
at which fír) is discontinuous. Hence s'(t\ is oiecewis ach finite interval
;iíH1,:ii:#i:T#J?l;Tl;i,f, "'il:-x;:,,ffi ?,,"""3T",:Ti"

stí@} : 9{g' (D} : sg{s?)} - s(0) -- sg{sÍ)}.

Division by s and interchange of the left and right sides gives the first formula in (4),

from which the second follows by taking the inverse transform on both sides. l

E x A M P L E, 
;:l,;::: ; ;H::::H=::::.--ble 

of Sec, 6,9

s(s- * to-) s-(s- * ro-)

:3r::::r: 
From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)

,-r[_j _| - 
sinor ,-,1í-^]_J: |'sinor or: l(l - cosot).J 

l.rr* r'I- @ ' L 
Lr(r2+ rrl|- Jo @ ul- 

,2

229
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This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20 in

Sec. 6.9:

--rl \ \-J 
I ,'(r' + ,2l )

It is typical that results such as

reduction.

\ r' f r sint,.,tlt t sinurí

,, )o,1 - cos ar)dr: la - -F _].: ; - ,"

these can be found in several ways. In this example, try partial fraction

Differential Equations, lnitial Value Problems
We shall now discuss how the Laplace transform method solves ODEs and initial value

problems. We consider an initial value problem

(5) y" + ay' + by : r(t), y(0) : Ko, y'(0) : Kt

where a and b are constant. Here r(t) is the given input (driving force) applied to the

mechanical or electrical system andy(r) is the output (response to the input) to be obtained.

In Laplace's method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform

Y : 9(y) obtained by transforming (5) by means of (1) and (2), namely,

|r'y- sy(O)-y'(0)] *a|sy -y(0)] +by:R(s)

where R(s) : 9(r). Collecting the -terms, we have the subsidiary equation

(r' + as -l b)Y: (s * a)y(O) + y'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by 
" 

l as l b and

use the so-called transfer function

(6) 0(s): sr+6+b: G+Lzd\b-Lď.

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

í(s) : [(, + a)y(O) + y'(0)]Q(s) + R(s)o(s).

If y(0) : y'(0) :0, this is simply Y: RQ; hence

O:;:#ffi
and this explains the name of Q.Note that Q depends neither on r(t) nor on the initial
conditions (but only on a anď b).

Step 3. Inversion of Y to obtain y - g-I(t"). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(t) : g-I(Y) of (5).

(7)
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EXAM PLE 4 lnitial Value Problem: The Basic Laplace Steps

Solve
y" - y: t, y(0) : 1, y'(0) : l.

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation fwith : 9(y)]

,2y - y(0) - ),'(0) - y: Ils2, thus (s2-t)Y:.r+I*Ilsz.

Step 2. The transfer function is Q : Il(sz - 1), and (7) becomes

y:(s+t)Q*lq:;+*n: 
^s- s-- l s-(s-- l)

Simplification and partial fraction expansion gives

l l l l\}:;:T-(c-, -")
Step 3. From this expression for Y and Table 6.1 we obtain the solution

)(l) : -lty]: y-'{-+J * r-'{--]-}- "-'Íl] 
:,t+ sinhr- l.t"-J Lr-l I-- lr,-rJ & |.r,J-í |:

The diagram in Fig. 115 summarizes our approach.

l-Space s-SpaCe

23l

l

ExAMPtE 5

Fig.115. Laplace transform method

Comparison with the Usual Method

Solve the initial value problem

y" +y'-|9y:O, y(0) : 0.16,

Solution. From (1) and (2) we see that the subsidiary equation is

,2y- 0.16s+s -0.16-l 9y:0,

The solution is

thus

y'(0) : 0,

1s2+s+g)y:0.16(s+1).

0.16(s + 1) 0.16(s + }; + o.osf:s'-s-9:t,l;Fe-
Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

y(/) : -1tyl : e-tt2(o.,u.o, E, - i* ,'".'ry')

: ,-o,"(0.16 cos2.96t + 0.02'7 sin2.96t).

This agrees with Example 2, Case (III) in Sec. 2.4. The work was less. l

Subsidrary equation

(s2-1) =s+1+1/s2
Given problem

y"-y=t
y(0) =1
y'(0) =1

Solution of subsidiary equation

v_ l * 1 _ 1

s-I's2 -1 s2

Solution of given problem

y(t)=et+sinhr*l
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Advantages of the Laplace Method

1. Solving a nonhomo7eneous ODE does not require first solving the

homogeneous ODE. See Examp|e 4.

2. Initial values are automatically taken care of. See Examples 4 and 5.

3. Complicated inputs r(r) (right sides of linear ODEs) can be handled very

fficiently, as we show in the next sections.

shifted Data problems

This means initial value problems with initial conditions given at some / : to ) 0 instead of r : 0. For such

aproblemset/:V+to,sothatt:togives7:0andtheLaplacetransformcanbeapplied.Forinstance,
solve

y" -| y : 2t, y(ili : *rr, y'(iň:2 - \/ž.

Solution. We have to: in and we set / : 7 + jrr. Then the problem is

"+ :Z(7+i.n), (D:Ln,
''(o):2-\/'

where (.7) : y(r). Using (2) and Table 6.1 and denoting the transform of } by , we see that the subsidiary

ExAMPLE 6

equation of the "shifted" initial value problem ts

1 I-

s2 - r,in - t2 - x/1l + : + - + .
.

Solving this algebraically for , we obtain

thus (s2+t)7:+-
s

I- lall l -o + -rrs i 2- V2.
^sZ

2 *., *n, 2 - \/'
}- : 

(r2 - l)r2 - (r' * D, - * l - r'*,

The inverse of the first two terms can be seen from Example 3 (with @ : |), and the last two terms give cos

and sin,

: s-l(Ý):2(7 - sin7) +!r(I - cos7) * }rrcos7 + 1z - l/1)rin7

: 2i , }rr - Ýl sini.
1

Now7: t -ir, sini: ,6-(sin/ - cost), sothattheanswer(thesolution)is

y:2t-sinl+cos/. I

OBTAINING TRANSFORMS BY
DlFFERENTlATloN

Using (1) or (2), find 9,(í) if f(r) equals:

expressing cos'lt in terms of cos /, (b) by using
Prob. 3.

@54 INITIAL vALuE pRoBLEMs

Solve the following initial value problems by the Laplace
transform. (If necessary, use partial fraction expansion as

in Example 4. Show all details.)

10. y' l 4y : g, y(0) : 2.8

11. y' + žy : IJ sin2t, y(0) : _1

I2.y" - y' -6y : 0, y(0) : 6,

y'(0) : 13

1,. tekt

3. sin2 ol
5. sinl at
7. t sinlrrt

2. t cos 5t

4. cos2 ,ITt

6. cosh2 }r
8. sina r (Use Prob. 3.)

9. (Derivation by different methods) It is typical that

various transforms can be obtained by several methods.

Show this for Prob. 1. Show it for 9(cos2}r) (a) by
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13. y" - áy : 0, y(0) : 4, }'(0) : 0

14. y" - 4y' l 4y : O, y(0) : 2.1,
y'(0) : 3.9

|5. y" -f 2y' * 2y : 0, y(0) : 1,

y'(0) : -3
16. y" -f ky' - 2k2y : g, y(0) : 2,

y'(0) : 2k

17. y" -f Jy' + l2y : 2le3t, y(0) : 3.5,
y'(0) : -10

18. y" t 9y : IOe-t, y(0) : 0, y'(0) : 0

19. y" -l 3y' + 2,25y:9t3 + 64, y(0) : 1,

y'(0) : 31.5

20. y" - 6y' + 5y :29 cos}t, y(.0):3.2,
y'(o) : 6.2

21. (Shifted data) y' - 6y : 0, y(2) : 4

22. y" - 2y' - 3} : 0, }(1) : _3,
y'(t) : -I,7

23. y" -l 3y' - 4y : 6n2t-2, y(I) : 4,
y'(1):5

24. y" + 2y' * 5y:50r _ 150, y(3): _4,

y'(:) : 14

25. PROJECT. Comments on Sec. 6.2. (a) Give reasons

why Theorems 1 and 2 are more important than

Theorem 3.

(b) Extend Theorem 1 by showing that if í(r) is
continuous, except for an ordinary discontinuity (finite
jump) at some t : a (> 0), the other conditions
remaining as in Theorem 1, then (see Fig. i16)

(|*) S(f|): s9(í) - í(0) - lí@ + 0) - f(a - 0)]e-*.

(c) Verify (1*) for í(t): e-t if 0 < t < 1 and 0 if
t>l.
(d) Verify (1x) for two more complicated functions of
your choice.

(e) Compare the Laplace transform of solving ODEs
with the method in Chap. 2. Give examples of your

233

own to illustrate the advantages of the present method
(to the extent we have seen them so far).

f(t)

Oat

Fig. tt6. Formula (1*)

26. PROJECT. Further Results by Differentiation.
Proceeding as in Example 1, obtain

s2 - tl2(a) 9(rcostlt): .2, 2,2' (s' -Ť a')'

and from this and Example 1: (b) formula 2I, (c) 22,

(d) 23 in Sec. 6.9,

s2+a2(e) 9(r cosh at) : 
G2 _ a2Ý ,

2as(f) 9(r sinh at) : 
TF _8

OBTAINING TRANSFORMS BY
!NTEGRAT!oN

Using Theorem 3, find f (t) if 58(/) equals:

1n1Ll' 
s2 + slz

129' - ksz

5
31. s"-5s

1

33' 
s4 -Te

1028. 

-

s" - lts'
1

30' 
s4 +

2
32' 

s3 + 9s

1

34' 
s4 + Ťr%2

35. (Partial fractions) Solve Probs. 2J,29, and 31 by
using partial fractions.

6.3 Unit Step Function. ť-Shiftint
This section and the next one are extremely important because we shall now reach the point

where the Laplace transform method shows its real power in applications and its superiority
over the classical approach of Chap. 2. The reason is that we shall introduce two auxiliary
functions, the unit step.function or Heaviside function u(t - a) (below) and Dirac's delta

6(r - a) (in Sec. 6.4). These functions are suitable for solving ODEs with complicated
right sides of considerable engineering interest, such as single waves, inputs (driving forces)

that are discontinuous or act for some time only, periodic inputs more general than just

cosine and sine, or impulsive forces acting for an instant (hammerblows, for example).
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Unit Step Function (Heaviside
The unit step function or Heaviside function z(r

I at t : a (where we can leave it undefined), and
- a) is 0 for t 1 a, has a jump of size
is 1 for t > a, in a formula:

tftla
(a > 0).

íf t> a

Oat

Fig. 1l8. Unit step function u(t - a)

Function) u(t - a)

(1)
í0

u(t-o':t,

Figure 117 shows the special case u(r), which has its jump atzero, and Fig. 118 the general

case u(t - a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.)

The transform of u(t - a) follows directly from the defining integral in Sec. 6.1,

r* 
_cx: -.sf l @

9,|u(t - a\} : I e-'tu(t - a)dt : l r-", l dt : e 
I

,o - Jo' 
L u' 

, |, .,'

(2)

here the integration begins at t : 4 (> 0) because u(t - a) is 0 for / { a. Hence

e-o'
S,|uft - a)}: ;

(s > 0).

The unit step function is a typical "engineering function" made to measure for

engineering applications, which often involve functions (mechanical or electrical

driving forces) that are either "ofť' or "on." Multiplying functions /(r) w|th u(t - a),

we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119

and I20. In Fig. 119 the given function is shown in (A). In (B) it is switched off

between t : 0 anď t : 2 (because u(t - 2) : 0 when t < 2) and is switched on

beginning at t :2. In (C) it is shifted to the right by 2 units, s& , for instance, by 2 secs,

,o thut it begins 2 secs later in the same fashion as before. More generally we have the

fo11owing.

Let f(t) : O íor all negative t. Then Í(t - a)u(t - a) with a > 0 is f(t) shifted

(translated) to the right by the amount a.

Figure 120 shows the effect of many unit step functions, three of them in (A) and

infinitely many in (B) when continued periodically to the right; this is the effect of a

rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make

sure that you fully understand these figures, in particular the difference between parts (B)

and (C) of Figure 119. Figure 119(C) will be applied next.

ot
Fig. l17. Unit step function u(t)

I

I

I
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(A) f(.Ď = 5 sin t (B) f(t)u(t _ 2) (C) f(t - 2)u(t - 2)

Fig. 119. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.

0246810t
(A) kIu(t - l) - 2u(t - 4) + u(t - 6)] (B) 4 sin ()nt)íu(tl - u(t - 2) + u(t - 4) - +

Fig. 12O. Use of many unit step functions.

Time Shifting (f-Shiftin8): Replacing f by t - a in í(t)
The first shifting theorem ("s-shifting") in Sec. 6.1 concerned transforms F(s) : 9{í(t)}
and F(s - a) : 9{e"tí(t)}. The second shifting theorem will concern functions /(r) and

í(t - a).Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

Practically speaking, if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by e-o".In Fig. 119, the transform of 5 sin r is F(s) : 5l(s2 + 1), hence the shifted
function 5 sin (r - 2) u(t - 2) shown in Fig. l19(C) has the transform

e-z"Fls1 : 5e-2"l(s2 + 1;.

.h
ol#,,
,I V

Ik|-
l,,
|1 4 6 t

-n|- | 
i

Second Shifting Theorem; Time Shifting

Ií f (t) has the transform F(s), then the "shifted function"

(3) TG) : í(t - a)u(t - a) :

has the transform e-"'F(s). That is, tí g{í(t)} : F(s), then

(4) 9{f(t - a)u(t - a)} : e-o"F(s).

Or, if we take the inverse on both sides, we can write

(4*) f(t - a)u(t - a) : S-rlr-asF(s)}.

í 0 íft<a
lfv-rl ift>a
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p R o o F We prove Theorem 1. In (4) on the right we use the definition of the LaPlace transform,

writing rfor t (to have t avallable later). Then, taking e-"" inside the integral, we have

r- r*
e-"rF(s) : e-as l ,-",fti dr: I n-"''ra)f(r) dr.

Jo 'o

SubstitutingŤ+a-_t,thusr_ t- a,dr:dt,intheintegral (CAUTION,thelowerlimit

changes!), we obtain

r*
e-o"F(s1 : l r-"'í(t - a) dt.

Jo

To make the right side into aLaplace transform, we must have an integral from 0 to m,

not from a to a. But this is easy. We multiply the integrand by u(t - a). Then for r from

0 to a the integrand is 0, and We can write, with f as in (3),

r* r-
e-o,F(sl: | ,-"'.f(t - a)u(t - a) dt : l u-"'í(t) dt.' \-/ Jo Jo

(Do you now see why u(t - a) appears?) This integral is the left side of (4), the LaPlace

transform orT|it in (:). This completes the proof, l

EXAMPLE t Application of Theorem l. Use of Unit Step Functions

Write the following function using unit step functions and find its transform,

|, 
if 0 < r < l

1ttl: ]l if l < t <L,
I

[.ov if t>i,r.

SOlution. Step 1.In terms of unit step functions,

(Fig. 121)

í(t) : 2(I - u(t- 1)) + žt2(u(t- 1) - uQ - }rr)) -1- (cos t)uQ - llr).

Indeed, 2(I - u(t - 1)) gives í(r) for 0 < t < 1, and so on,

Step 2. To apply Theorem 1, we must write each tet.ln in í(r) in the form í(t - a)u(t - a). Thus, 2(1 _ u(t _ I))

remains as it is and gives the transform 2(I - e-s)ll Then

,{|r"r,- ,,J : "(iu - 
t)2 + (/ - 1) - I)^,-

,{!r"(,- L,4] : 
"{+ 

(, +ď - + (,-

:(+ -+-*_),-^,,

v{r"", ,,,,(, ; ")} 
: 

"{- 
(,* (, + l), (, -

,,} :(i*i**) 
"-"

+l - +)"(,-;4}

r-\1 :_ =' o- 
-^l2.

2"lJ- ,2+1

Together,

g(í) --
2z

-.s ,ť|.' (i-i-*)"-,-(i-# F
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If the conversion of í(t) to f(t - a) is inconvenient, replace it by

(4*x; 9{f(t)u(t - a)} : e-", s{f(t + a)}.

(4**) follows from (4) by writing í(t - a) : 8(t), hence /(r) : g(t + a) and then again writing / for g. Thus,

u{!r"r,- ,,} : "-",Iiu -,,'} : ,-'g,fl,'*,* :} :,-"(i - i - *)
as before. Similarly for 9|lt2u(t - in)|. Finally, by (4**),

g{"", ,,(,- +l}: e-Ťsl2g{""- (,- :4} : "-rstzgl-sinr} - -"-nsl2 # . l

f(t)
2

1

0

-1

Fig. l21. /(t) in Example'|

EXAMPLE 2 Application of Both Shifting Theorems. lnverse Transform

Find the inverse transform í(t) of

e-s ,-2, 
"-3,f(J'- 12+12- r'+r' 

T 
$+212.

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses
(sin nt)llr, (sin rt)lr, and rc-2t because 1/s2 has the inverse /, so that l/(s + 2)2 has the inverse te-2t by the
first shifting theorem in Sec.6.1. Hence by the second shifting theorem (r-shifting),

11
f(t1 : i sin (n(t - 1)) u(t- 1) + 1 sin (r(t - 2)) u(t - 2) + (t - 3)e-2G-D u(t - 3).

Now sin (rrt - rr): -sin Ťrt and sin (rrr - 2rr): sin a-l, so that the second and third terms cancel each other

when/)Z.Henceweobtainí(r):}ifO<r(1,-(sin,rrt)lrrifl <r<2,0if}<t<3,and(t-3)g-2G-s1
if r > 3. See Fig. l22.

0,3

U.Z

0,1

0 234
Fig. l22. /(t) in Example 2

EXAMPLE 3 Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(l) in the RC-circuit in Fig. I23 if a single rectangular wave with voltage V6 is applied. The
circuit is assumed to be quiescent before the wave is applied.

n

l
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C
u(t) 

|r--l 
iU(t) l u.l- [

?

L-_^^*__r "]__]--L__
R

volR
F(s):,+l(RC)

IK"-,',o"
"":l,u, -K,\2-.tl,ac1

where Kl,: Voeol(ROlR anď K2: VoeblGC)lR,

^tl

0.1i' + 1li + 10O Jn,,, clr: (lOO sin4O0rX1 - u(t - 2rr)),

Response of an R[C_Circuit to a Sinusoidal lnput Acting over a Time lnterval

Find the response (the current) of the RtC-circuit in Fig. I24, where E(r) is sinusoidal, acting for a short time

interval only, say,

E(t) : 10O sin 400r if 0 < t 12r and E(t):0ift>2r

and current and charge are initially zero,

Solution. The electromotive force E(t) can be represented by (100 sin4O0r)(1 _ u(t _ 2ri)), Hence the

model for the current i(r) in the circuit is the integro_differential equation (see Sec, 2,9)

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for 1(s) : 9,(ť)

l l00,4OOs l t "-2rs 1
0.1s1 *ll1+l00;:"+ffi \;- , )

i(t)

volR

Fig. l23. RC-circuit, electromotive force v(t), and current in Example 3

Solution. The input \s Vgfu(t - a) -
equation (see Sec. 2.9 andFie.l23)

w(t- b)],Hencethecircuitismodeledbytheintegro-differential

R,(/) + +:Rl(/) + 
Žť",,r1 

dr:l)(tl:vg|w(t- a)- u(t. b)l,

Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

R(s)+#:*'n-'"_ r-"l.

Solving this equation algebraically for (s), we get

(s):F(s)(e-"s -r-") where and g_ltr): + e-tlíRc\

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 Yields the solution (Fig, 123)

i(t, :g_trD:9-1{"_o"r(r)} _ g-lp-b"Flr;1 : *L"-u-"1lraoul,t- 
a,)- e-G-Ol(RC)uG_ D);

that is, l(/) : 0 if t 1 a, and

ifa<t<b

ifa>b

I

ExAMPtE 4

l(0) : 0, 
"(0) 

: 0.
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Solving it algebraically and noting that s2 + l lOs + 1000 : (s * 1OXs + 100), we obtain

l000,4O0 l s ,r-2rs \
r(J' - (s + lOt(s + l0O) \ r'+ +002 ,2 + +oo')'

For the first term in the parentheses (, , ,) times the factor in front of them we use the partial fraction expansion

400000s A B Ds*K
o

(s + lOX + l00lts2 + 4OO2| s - l0' s + l00' s2 * 4002'

Now determine A, B, D, Kby your favorite method or by a CAS or as follows. Multiplication by the common

denominator gives

400000s : A(s + l00Xs2 + 400\i B(.s i 10Xs2 + +oo2; + (Ds + o(s + lo)(s + 100).

We set 10 and -100 and then equate the sums of the s3 and s2 terms to zero, obtaining (all
values rounded)

(s: -l0)
(s : - 100)

(s3-terms)

(s2-terms)

-4 000 00O : 90(102 + 4OO\A,

-40 000 000 : -90(1002 + 400\B,

A : -0.2,7760

B - 2.6144

D: -2.3368

K: 258.66.

0:A+B+D,
0: 100Á + l0B + ll0D + K.

Since K : 258.66 : 0.6467.400, we thus obtain for the first term I1 in I : It - Iz

0.2716 2.6144 2.3368s 0.6467 ,400
l---l-'1- srlO's*l00 ,2+4002' s2+4OO2

From Table 6.1 in Sec. 6,1 we see that its inverse is

i{t): -0.2176e-lot + 2.6l44e-1oot - 2.3368 cos4O0r + 0.6467 sin4O0r.

This is the current i(r) when 0 < r < 2n. It agrees for 0 ( t 1 2r with that in Example 1 of Sec. 2.9 (except
for notation), which concerned the same Rl,C-circuit. Its graph in Fig. 62 in Sec. 2.9 shows that the exponential
terms decrease very rapidly. Note that the present amount of work was substantially less.

The second term 11 of 1 differs from the first term by the factor e-2n". Since cos 400(r - 2rr) : cos 400r
and sin 400(t - 2rr) : sin 400r, the second shifting theorem (Theorem 1) gives the inverse i2(t) : 0 if
0 < r < 2r, and for ) 2r it gives

iz(t) : -0.2776e-|o(t-2r) + 2.6144e-1,oo(t-2n) - 2.3368 cos 400r + 0.6467 sin4O0t.

Hence in i(r) the cosine and sine terms cancel, and the current for t ) 2rr is

i(t): -0.2776p-tOt - e-lo(t-2')1 +2.6144G-lOOt _ 
"-lOO(t-2r)1.

It goes to zero very rapidly, practically within 0.5 sec. l

C= 10 2F

R=l1Q l=0,1H

E(t)

Fig.l24. RlC-circuit in Example 4
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1. WRITING PROJECT. Shifting Theorem. Explain

and compare the different roles of the two shifting

theorems, using your o'wn formulations and examples,

@ uNtT sTEp FuNcTloN AND sEcoND
sHlFTlNG THEoREM

Sketch or graph the given function (which is assumed to

be zero outside the given interval). Represent it using unit

step functions. Find its transform. Show the details of your

work.

2. t (0 < / < 1) 3. et (0 < t < 2)

4.sin3t(O<t<Ťí) 5.t2 (1 <t<2)
6.t2(t>3) 7.cosrrt(I<t<4)
8. I - e-t (0 < t < Ťr) 9. t (5 < r < 10)

1,0. sin at (t > 6rrlal) t1,- 20 cos Ťrt (3 < t < 6)

12. sinh / (0 < t < 2) !3. e-' (2 < t < 4)

14 lNvERsE TRANsFoRMs By THE
SECOND SHIFTING THEOREM

Find and sketch or graph í(t) 1f 9(/) equals:

14.se-"l(s2+a)
1,5. e- 4s 

1 ,2
16. s_2 _ (r-' + ,-r;"-s
t7. (e-2ns - ,-8ns1l(s2 + 1)

!8, e--*/(sz + 2s + 2) 1,9. e-2slrs

20. (I - e-'*k)t(s - tc) 2,!,. se-'"/(r" - 4)

22.2.5(a-s,a" - e z,6s)/s

@ lNlTlAL vALUE pRoBLEMs, soME wlTH
DlscoNT!NUoUs lNPUTS

Using the Laplace transform and showing the details, solve:

23. y" + 2y' * 2y :0, y(0) : 0,

y'(0) : 1

24. 9y" - 6y' -| y : 0, y(0) : 3,

y'(0) : 1

25. y" * 4y' + I3y : I45 cos2t, y(0) : 10,

y'(0) : 14

26. y" + 10y/ + 24y : I44t2, y(0) : i9,
y'(0) - -5

27. y" + gy: r(t),r(t):8 sinrif 0 < t < Ť and0
if t } n; y(0) : 0, y'10; : 4

28. y" * 3y' * 2y : r(t), r(t) : 1 if 0 < t { 1 and

0 if r > 1; y(0) : 0, y'10; : 0

29.y" +y:r(t), r(t):tif 0<t< 1and0if
t } l; y(0) : y'(0) : 0

30. y" - l6y : r(t), r(t) : 48e2t if 0 < t 1 4 and

0 if t > 4; y(0) : 3, y'(0) - -4
3I. y" * y' - 2y : r(t), r(t) :3 sin r - cos r if

0 < t 12rr and 3 sin}t - cos 2t if t } 2rr;

y(0) : 1, )'(0) : 0

32. y" + 8y' + 15y : r(t), r(t) :35e2t if
0 <t 12anďOif t> 2,, y(0):3,
y'(0) - -8

33. (Shifted data) y" + 4y : 8t2 if 0 < t { 5 and 0

if t >5; y(1) : 1 * cos2, y'(1) - 4 - 2 stnZ

34.y" 1- 2y'* 5y:10 sinrif 0 < tl2n andOif
t ) 2rr; y(rr) : I, y'(n) : Ze-o _ 2

MoDELs oF ELEcTRlc clRculTs
35. (Discharge) Using the Laplace transform, find the

charge q(t) onthe capacitor of capacitance C in Fig. 125

if the capacitor is charged so that its potential is Vo and

the switch is closed at t : 0.

FG38l Rc-clRculT
Using the Laplace transform and showing the details, find

the current l(r) in the circuit in Fig. 126 with R : 10 C) and

C : I0-2 F, where the current at t : 0 is assumed to be

zero, and:

36. u(t) : 100 V if 0.5 < t < 0.6 and 0 otherwise,

Why does l(r) have jumps?

37. u : 0 if t < 2and 100(t - 2)Y if t > 2

38. u : 0 if t < 4 and 14, 1ge"-3t Y if t > 4

u(t)

Fig.l2ó. Problems36-38

F-r-4 RL-clRcu!T
Using the Laplace transform and showing the details, find

the current l(r) in the circuit in Fig. 127, assuming í(0) : 0

and:

Fig.l25. Problem 35

_=-J
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39. R: 10C), L:0.5H,l):200tY if 0 < t {.2and
0ift>2

40. R : 1 kO (: 1000í)), ,L : 1 H, u : 0 if
0 < t 1 rr, and 40 sin / V if t } rr

41,. R:25 a, L:0.1 H, u : 490e-5'V if
0<r{landOifr>1

24l

@ Rlc_clRculT
Using the Laplace transform and showing the details, find
the current i(t) in the circuit in Fig. 129, assuming zerc
initial current and charge and:

45. R : 2 f,l, L : lH, C : 0.5 F, u(t) : 1 kV if
O<tl2andOift>2

46. R : 4 a, L : IH, C : 0.05 F, u : 34e-' y
ifo<t<4andOift>4

47. R:2 a, L: IH, C :0.1 F, u :255 sinr V
if0<tlZnandOift>2n

C

----|"* 3,L-J
u(t)

Fig. t29. Problems 45-47

(1)

W4 Lc-clRculT
Using the Laplace transform and showing the details, find
the current i(r) in the circuit in Fig. 128, assuming zero
initial current and charge on the capacitor and:

42. L : 1 H, C : 0.25F, u : 200(t - $r3; V r
0<t{landOifr>1

43. L : 1 H, C : I0-2F, u : -9900 cos/ V if
nltl3nandOotherwise

44. L : 0.5 H, C : 0.05 F, u : 78 sinrV if
01tl,rrandOift>n

6.4 Short lmpulses. Dirac's Delta Function.
Partial Fractions

Phenomena of an impulsive nature, such as the action of forces or voltages over short
intervals of time, arise in various applications, for instance, if a mechanical system is hit
by a hammerblow, an airplane makes a"haíd" landing, a ship is hit by a single high wave,
or we hit a tennisball by a racket, and so on. Our goal is to show how such problems are

modeled by "Dirac's delta function" and can be solved very efficiently by the Laplace
transform.

To model situations of that type, we consider the function

|ttt< ifa=t<a*k
íu(t-a):1

L 0 otherwise
(Fig. 130)

(and later its limit as k -+ 0). This function represents, for instance, a force of magnitude
Ilk acting from t : a to t : a l k, where k is positive and small. In mechanics, the
integral ofaforceactingoveratimeintervalaat<a*kiscalledtheimpulseofthe

Fig. l28. Problems 42-44
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force; similarly for electromotive forces E(t) acting on circuits. Since the blue rectangle

in Fig. 130 has area 1, the impulse of íutn (1) is

,fr,G-a)dt:

To find out what will happen if k becomes smaller and smaller, we take the limit of /o

as k--+ 0 (k > 0). This limitis denotedby 6(r - a), thatis,

ó(r - ,) : lr$ íuG - a).

6(r - a) is called the Dirac delta functionz or the unit impulse function.

6(r - a) is not a function in the ordinary sense as used in calculus, but a so-called

generalized functionz To see this, we note that the impulse Ip of f 7"is I, so that from (1)

and (2) by taking the limit as k -+ 0 we obtain

(2)
ro*k 1l -dt:I.Jo k,_: í:

(3) 6(t - a):
tft:a

and
otherwise

ó(r - a) dt -- I,r{;

{

but from calculus we know that a function which is everywhere 0 excePt at a single Point

must have the integral equal to 0. Nevertheless, in impulse problems it is convenient to

operate on 6(t _ oj u, though it were an ordinary function. In particular, for a continuous

function g(r) one uses the property [often called the sifting property of 6(r - a), not to

be confused with shifting)

s(/) ó(r - a) dt : 8@)

which is plausible by (2).

To obtain the Laplace transform of 6(r - a), we write

(4)

1

íu(t - o) : T lu(t - a) - u(t - (a + k))l

a a+h t

Fig. l3O. The function í*lt - a) in (l)

t

2plUL DIRAC (I9O2_I984), English physicist, was awarded the Nobe1 Prize fiointlY with the Austrian

ERWIN SCHRóDINGER (1887-1961)] in 1933 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 bY the Russian

mathematician SERGEI L,VOVICH SoBoLEv (1908-1989), and in 1945, under wider aspects, by the French

mathematician LAURENT SCHWARTZ (1 9 I 5 -2002),

-_-1-
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and take the transform lsee (2)]

243

I - e-k'

We now take the limit as k ---> 0. By l'Hópital's rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to k, obtaining
se-k' and s, respectively, and use se-k"/s --+ 1 as k --+ 0). Hence the right side has the

limit e-"". This suggests defining the transform of 6(r - a) by this limit, that is,

9I6(t-a)}:e-as(5)

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.

EXAMPLE l Mass-Spring System Under a Square Wave

Determine the response of the damped mass-spring system (see Sec, 2.8) under a square wave, modeled by (see

Fig. 131)

y" + 3y' + 2y : r(t) : u(t - 1) - w(t - 2), y(0) : 0, y'(0) : 0.

Solution. From(1) and(2)inSec.6.2and(2)and(4)inthissectionweobtainthesubsidiaryequation

,2y+3s *2y:!\r--'- r-2'). Solution y(s): .-] _(e-"*e-2").s s(s" + 3s -] 2)

Using the notation F(s) and partial fractions, we obtain

11Il2F(sl: sď+3s+) 
: 

r,r* 11s+zi 
: ;

From Table 6.1 in Sec. 6.1. we see that the inverse is

f(t) : g.-'@) : 
+ - n-t + ie-zt.

Therefore, by Theorem 1 in Sec.6.3 (r-shifting) we obtain the square-wave response shown in Fig. 131,

1 Il2
l-

s.| 1 ' s*2

y : 9-1(r(s)e-" - F(sle-zs)

: í(t - l)u(t - 1) - í(t - Z)u(t - 2)

(o
l
) t _ _-(1-1) _r }r-2{t-t].l,| -(r-1), -(t-2),7 -2(L-I) 1-2G-2)|-(, -Ť? -ťž( -ž(

(0<t<1)

(I<t<2)

G>D.a

y(t)

1

0.5

l23

Fig. l3l. Square wave and response in Example 1
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ExAMPLE 2

ExAMPLE 3

By Theorem l the inverse ts

CHAP. 6 Laplace Transforms

Hammerblow Response of a Mass-Spring System

Find the response of the system in Example l with the square wave replaced by a unit impulse at time

t: 1.

Solution. We now have the oDE and the subsidiary equation

y" +3y'+2y: ó(r- 1),

Solving algebraically gives

and 1s2 + 3s + 2)Y: e-"

r0
y(í) :V-'tn : ] _(t_]) _2(1- 1|

L e- " '' - e

if0<r<1
if t> L

y(r) is shown in Fig. I32. Canyou imagine how Fig. 131 approaches Fig, 132 as the wave becomes shorter and

shorter. the area of the rectangle remaining 1? 
" l

y(t)

"0 1 35t

Fig. l32. Response to a hammerblow in Example 2

Four-Terminal R[C-Network

FindtheoutputvoltageresponseinFig. 133 ifR :20a,L: lH,C: I}-a F,theinputis D(r) (aunitimpulse

at time t : 0), and current and charge are zero at time t : 0,

solution. To understand what is going on, note that the network is an Rlc_circuit to which two wires at A

and B areattached íbr recording the voltage u(r) on the capacitor. Recalling from Sec. 2.9 Íhat current i(t) and

charge q(t) are related by l : q' : dqldt, we obtain the model

tť+nr-L:Lq"+Rq' : q" + ZOq' + 10 0004 : 6(í).

From (1) and (2) in Sec. 6,2 and (5) in this section we obtain the subsidiary equation for o(s) : 9(q)

1

1s2 + zos + 10 000)0 : 1. Solution

q+-
C

By the first shi[ting theorem in

9900 : gg.502, we get (Fig. l33l
Sec. 6.1 we obtain from Q damped oscillations for 4 and u; rounding

,1
q - Ý-|(Q| = nn; "-l0' sin99.50l 100.5e-1o' sin 99.50t. tand

q

C

,-_- ,l
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Network Voltage on the capacitor

Fig.133. Network and output voltage in Example 3

More on partial Fractions
We have seen that the solution of a subsidiary equation usually appears as a quotient
of polynomials (s) : F(s)/G(s), so that a partial fraction representation leads to a

sum of expressions whose inverses we can obtain from a table, aided by the first
shifting theorem (Sec. 6.1). These representations are sometimes called Heaviside
expansions.

An unrepeated factor s - a in G(s) requires a single partial fraction Al(s - a). See
Examples 1 and 2 onpp.243, Z44. Repeated real factors (s - a)2, (s - a)3, etc., require
partial fractions

245

ó(r)

il]
u(t) = ?

The inverses are (Art + At)eo', (ŽAr + Azt l Al)eot, etc.
(Jnrepeated complexfactors (s - aXs - a), a : a + iP, a : a - i|,require apartial

fraction (Ás + r)/[(s - d)2 + B2]. nor an application, see Example 4 in Sec. 6.3.

A further one is the following.

EXAMPLE 4 Unrepeated Complex Factors. Damped Forced Vibrations

Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some

time interval (Fig. 134),

y" +2y'*2y:r(t), ,(t):I}sinZtif 0< t1randOif t)r; y(0):1, y'(0): -5.

Solution. From Table 6.1, (1), (2) in Sec. 6.2, and the second shifting theorem in Sec. 6.3, we obtain the

subsidiary equation

2
(r2y -s + 5) + 2(sy- 1) + 2y : I0 

" 
_ 

^1l 
- e-o"),

We collect the l-terms, 1s2 + 2s + z)Y,take -s + 5 - 2 : -s i 3 to the right, and solve,

20e-n"

-40

-80

A. A,
j-T-(s-a)' s-a

(6) Y: G\4\rr+zr+2)-@
For the last fraction we get from Table 6.1 and the first shifting theorem

,"_rí s+1-4 l:ť -l ; i:"-'(.ort-4sinr).L(r+l)"+Ij

Ao A, A,
J -.l- _.) -T- 

-, 

9!l .,(s-a)' (s-a)' s-a

s-3
l-- ,'+ 2s*2

(7)
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In the first fraction in (6) we have unrepeated complex roots, hence a partial fraction rePresentation

20 As-lB Ms*N

@: s\4+ r1 ,r-2,

Multiplication by the common denominator gives

zO : (As + s)(r' -l 2s -| 2) + (Ms + ,$(s2 + 4).

We determin e A, B,M, N. Equating the coefficients of each power of s on both sides gives the four equations

(a) [r3], 0: A + M (b) [r'], O:2A+B+N

(c) [s]: 0:2A + 28 + 4M (d) [,o], 20:28 + 4N,

We can solve this, íbr instance, obtaining M: -A from (a), thenÁ : B from (c), then N : -3A from (b),

andfinallyA:-zfrom(d).HenceA:-2,B:-2,M:2,N:6,andthefirstfractionin(6)hasthe
representation

(8) -'.'-'* ''',*'l;!, ' Inversetransform: -2cos2l-sin 2t+e-t(zcosti4sinr).
s'+4 (s+l)'-|

The sum of this and (7) is the solution of the problem for O ( t 1 T r, namely (the sines cancel),

(9) y(/) : 3e-t cos t - 2 cos2t - sinZt ifo<tlrr.

In the second fraction in (6) taken with the minus sign we have the factor e--s, so that from (8) and the second

shifting theorem (Sec. 6.3) we get the inverse transform

t2cos (2t _ 2r) -| sin(2t _ 2rr) _ n,G_r) [2cos(r _ Tr) + 4sin(r _ n)]

: 2 cos 2t + sín2, 1 u-ft-r) (2 cos t * 4 sin r).

The sum of this and (9) is the solution for í ž rr,

(10) .v(0 : e-tIG -l 2e-) cos / + 4e" sínt] if t> n.

Figure134shows(9)(forO(r<zr)and(10)(fort>T),abeginningvibration,whichgoestozeroraPidlY
because of the damping and the absence of a driving force after t : Ť. l

y(t)

2

1

0

-1

a
-L

_ - t ! = 0 (Equilibrium
I position)

Ý,

Dashpot (damping)

4lt t

Mechanical system Output (solution)

Fig.l34. Example 4

The case of repeated complex factors t(s - a)(s - a)]2, which is imPortant in connection

with resonance, will be handled by "convolution" in the next section,

Driving'...I- 
ffi

.__-4



SEC. 6.4 Short lmpulses. Dirac's Delta Function. Partial Fractions

@ EFFEcT oF DELTA FuNcTloN oN
VIBRATING sYsTEMs

Showing the details, find, graph, and discuss the solution.

1.y" +y : 6(r - 2n), y(0) : 10,
y'(0) : 0

2. y" * 2y' * 2y: e-t + 56(t - 2),
y(0) : 0, y'(0) : 1

3. y" - y - 106(r - *) - 100ó(r - 1),

y(0) : 10, y'(0) : 1

4. y" -l 3y' l 2y : 10(sin r + 6(r - 1)),
y(0):1, y'(o) - -1

5. y" * 4y' * 5y: |t - "(t - 10)] et - e|o6(r - 10),

y(0) : 0, y'(0) : 1

6. y" -l 2y' - 3y : 1006(r _ 2) + 100ó(r - 3),
y(0) : 1, y'(0) : 0

7. y" -f 2y' + 10y: 10[1 - u(t - 4)l - 10ó(r _ 5),
y(0) : 1, y'(0) : 1

8.y" -l 5y' + 6y: ó(r _ *n)-l u(t _ fl cos/,
y(0) : 0, y'(0) : 0

9. y" -f 2y' * 5}: 25t - 1006(r * rr),

y(O) : -2, y'(0) : 5

I0. y" -l 5y : 25t - 100ó(r - rr), y(0) : _2,
y'(0) : 5. (Compare with prob. 9.)

!1. y" * 3y' - 4y:2et - 8e261t _ 2),
y(0) : Z, y'(0) : 0

|2. y" * } : -2 sinr + 10ó(r _ rr'), }(0) : 0,
y'(0) : 1

13. CAS PROJECT. Effect of Damping. Consider a

vibrating system of your choice modeled by

y"+,y'*ky:r(t)

with r(r) involving a 6-function. (a) Using graphs of
the solution, describe the effect of continuously
decreasing the damping to 0, keeping k constant.

(b) What happens if c is kept constant and fr is
continuously increased, starting from 0?

(c) Extend your results to a system with two
6-functions on the right, acting at different times.

14. CAS PROJECT. Limit of a Rectangular Wave.
Effects of Impulse.
(a) In Example 1, take a rectangular wave of area 1

from 1 to 1 * k. Graph the responses for a sequence
of values of t approaching zero, illustrating that for
smaller and smaller fr those curves approach the curve
shown in Fig. I32. Hint: If your CAS gives no solution

for the differential equation. involving k, take specific
k's from the beginning.

(b) Experiment on the response of the ODE in
Example 1 (or of another ODE of your choice) to an

impulse ó(r - a) for various systematically chosen a
(> 0); choose initial conditions y(0) + 0, y'10; : 6.

Also consider the solution if no impulse is applied, Is

there a dependence of the response on a? On b if you
choose b6(t - a)? Would *6(r - D with d } a
annihilate the effect of 6(r - a)? Can you think of
other questions that one could consider
experimentally by inspecting graphs?

15. PROJECT. Heaviside Formulas. (a) Show that for a

simple root íJ and fraction Á/(s - a) in F(s)/G(s) we
have the Heaviside formula

(s - a)F(s)o:JT 
","

(b) Similarly, show that for a root a of order m and
fractions in

F(s) _ A- - A^-, l...
G(s) (s - a)- (s - a)m-7 

|

+ A' 
* further fractionss-a

we have the Heaviside formulas for the first coefficient

A^^_ 
_,.* (s - a)-tr(s)

ííL s+o G(s)

and for the other coefficients

l d'-k I t, - a)-F(s) lAt : (. _ kll. ]1i ,r.* L ct" 
-J

k:I,",,m*L

16. TEAM PROJECT. Laplace Transform of Periodic
Functions
(a) Theorem. The Laplace transform of a piecewise
continuows function f (t) with period p is

1rp(l1) S(f) : : I e-'tf(t) dt (s > 0).
L - e . Jo

Prove this theorem. Hint: Write j;: JÍ * Ii" + . . . 
.

Set / : (n - I)p in the nth integral, Take or1 
"-@-Dn

from under the integral sign. Use the sum formula for
the geometric series.

247
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(b) Half-wave rectifier. Using (11), show that the

half-wave rectification of sin rr;r in Fig, 135 has the

Laplace transform

rr.r(1 + n-nsluSg(í) :
e+r'lt| -"-2rslu,,

G'* @\(t-r-nslo\

(c) Full-wave rectifrer. Show that the Laplace

transform of the full-wave rectification of sin ror is

a 7TS

7+;' coíh 

^ 
'

(d) Saw-tooth wave. Find the Laplace transform of

the saw-tooth wave in Fig. 137.

fQ)

k

Op2p3p
Fig. t37. Saw-tooth wave

(e) Staircase function. Find the Laplace transform of

the staircase function in Fig. 138 by noting that it is

the difference of ktlp and the function in (d),

(Ahalf-wave rectifier clips the negative portions of the

curve. A full-wave rectifier converts them to positive;

see Fig. 136.)

f(Ď

1

O nla 2rla 3xla

Fig. l35. Half-wave rectification
f(t)

f(t>

1

6.5 Convolution. lntegrat Equations

h(t) : (í * sX/) : |' írrrrr, - r) dŤ.
Jo

Convolution has to do with the multiplication of transforms. The situation is as follows.

Addition of transforms provides no problem; we know that 9(f * 8) : g(f) + 9(d,
Now multiplication of transforrr,. Ó..rrrs frequently in connection with ODEs, integral

equations, ánd elsewhere. Then we usually know 9(í) and 9(s) and would like to know

the function whose transform is the product g(í)s(d. We might perhaps guess that it is

/g, but this is false. The transform of a product is generally dffirent from the product of

the transforms of the factors,

9(íil + 9(f)9(s) in general.

ToseethistakeÍ_- n,and8:1.Thenf8:et,s(f):1/(s-1),but9(/):1/(s-1)
anď 9(I) : Ils give Y,(f)9(g) : 1/(s2 - s),

According to the next theorem, the correct answer is that 9(Í)9(ň is the transform of

the convolution of .f and g, denoted by the standard notation f * g and defined by the

integral

(1)

Fig. l36. Full-wave rectification

p2p3p

Fig. t38. Staircase function

,_-_-<
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THEoREM t convolution Theorem

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.I,
so that their transforms F and G exist, the product H : FG is the transform of h
given by (1).(Proof after Example 2.)

EXAMPLE l Convolution

Let (s) : 1/[(s - a)s]. Find ň(0.

Solution. 1/(s - a) has the inverse í(t): eot, anď 1/s has the inverse g(t) :1. With í(r) : eo" and

8(t - T) = 1 we thus obtain from (1) the answer

-t
h(t) : eot * I : l,o'-1 dr: ! p - t).Jo a

Io check, calculate

I/l
11(s): 9(h)(s): ; ( s _ a - ,2-o, S-a .

: s(e"t) s(t). l

EXAMPLE 2 Convolution

Let {s) : Il(sz + ,')'. Find ň(r).

Solution. The inverse of 1/(s2 + ,2) is (sin r,l t)lo. Hence from (1) and the trigonometric formula (11) in
App. 3.1 with x : i@t -| or) and y : L@t - lor) we obtain

: 1 .!a

+) 
:;

P R O O F We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables
of integration! We can denote them as we want, for instance, by Ť and p, and write

sin alt sin alí | r'
h(t) : l sin r,.,r sin o(r - r) dr(r) a a' Jo

1rt: 

^z- 
Jo t-"o' t'-l/ + cos <orf dr

l T sin r,-,r lí: 
2r, f-zcos '' * , ),:o
l I sina;rl

= 
2ú)2- [-' 

cos r' + , 
_]

in agreement with formula2l in the table in Sec. 6.9.

r-
F(s) : I e-"',f(r) dr and

Jo

r*G(s): l e-"og(p)dp.
'o

We now set /: p l r, where ris at first constant. Then p: t - T, and /varies from r
to oo. Thus

G(s)
_s<t-")g(t 

- r) dt -r'g(t - r) dt.

@

-.r"l .,Jl: 
[: ,
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r ín F and t in G vary independently. Hence we can inseft the G-integral into the

F-integral. Cancellation of e-"' aíď e"" then gives

r* r*
F(s)G(s) : Jn r-"'ílr)e" J, r-"glt - r) dtdr: ( r"' ť 

u-'"'r', - r) dtdr,

Here we integrate for fixed 7 over / from T to co and then over T from 0 to co. This is the

blue region in Fig. 139. Under the assumption on / and g the order of integration can be

..u".r.á (see Rei. [A5] for a proof using uniform convergence). We then integrate first

over 7 from 0 to r and then over / from 0 to @, that is,

F(s)G(s) : íJ n-,, ťrrnr^, 
_ ň dr a, : ( ,_"h(t) dt: 9(h) : /(s).

This completes the proof.

Fig. l39. Region of integration in the

tr-plane in the proof of Theorem 1

From the definition it follows almost immediately that convolution has the ProPerties

í*g:g*í

í * (g, + gr): f * 8r * í * g,

([*g)*u:.í*(8xu)

/*0:0*Í:0

(commutative law)

(distributive law)

(associative law)

similar to those of the multiplication of numbers. Unusual are the following two ProPerties,

E X A M P L E 3 Unusual Properties of Convolution

7 * 1 * / in general, For instance,

-t

t*I:l r.tar:!r2+t.
Jo

(í * í)(t) > 0 may not hold. For instance, Example 2 with ro : l gives

sin / x sin/ : -}rcos t + jsínt (Fig. laO). l

----1
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_4

Fig.14O. Example 3

We shall now take up the case of a complex double root (left aside in the last section in
connection with partial fractions) and find the solution (the inverse transform) directly by
convolution.

EXA M P L E 4 Repeated Complex Factors. Resonance

In an undamped mass-spring system. resonance occurs if the frequency of the driving force equals the natural

frequency of the system. Then the model is (see Sec. 2.8)

y" + ,o2y: Ksin co6l

where ,o2 : klm,k is the spring constant, andm is the mass of the body attached to the spring. we assume

y(0) : 0 andy'(0) : 0, for simplicity. Then the subsidiary equation is

,2Y + ,gzY :
Kro

Its solution is Y -
Kro

22
S Ť@6

,2 2,2(s Ť{Dg)

This is a transform as in Example 2 with 0) : ú) o and multiplied by Kal6. Hence from Example 2 we can see

directly that the solution of our problem is

y(t) : y+ (-,CoS 06í * sin r'lor 
) : ;+ (_ ulotcos {d6l * sin al6r).

Z@o\CtlolZ@o

We see that the first term grows without bound. Clearly, in the case of resonance such a term must occur. (See

also a similar kind of solution in Fig. 54 in Sec. 2.8.) I

Application to Nonhomoteneous Linear ODEs
Nonhomogeneous linear ODEs can now be solved by a general method based on
convolution by which the solution is obtained in the form of an integral. To see this, recall
from Sec. 6.2 that the subsidiary equation of the ODE

(2) y" + ay' + by : r(t)

has the solution [(7) in Sec. 6.2]

(a, b constant)

(s) : [(, + a)y(o) + y'Q)]Q(s) + R(s)O(s)

with R(s) : 9(r) and Q(s) : Il(s2 l as l b) the transfer function. Inversion of the first
term [. . .] provides no difficulty; depending on whether la2 , b is positive, zeío, oí
negative, its inverse will be a linear combination of two exponential functions, or of the

4

l

0 24'

ffi

--
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form (cr * c2t)e-ottz, or a damped oscillation, respectively. The interesting term

R(s)O(s) because r(t) canhave various forms of practical importance, aS we shall see,

;iój:' Ó and y'(0) : 0, then y : RQ, and the convolution theorem gives the solution

y(t) : - r)r(r) dr.

is
If

(3) ť,^,

ExAMPLE 5 Response of a Damped vibrating system to a single square wave

Using convolution, determine the response of the damped mass_spring system modeled by

y" + 3y' * 2y: r(t), r(t) : Iif 1 < t 1 2 and0 otherwise, y(0) : y'(O) : O,

This system with an input (a driving force) that acts for some time onty (Fig, 141) has been solved by partial

fraction reduction in Sec. 6.4 (Example 1),

Solution by Convolution. The transfer function and its inverse are

QG): 

" 
_+ _ r: 6rira, : * _ #, hence q(t): "_, 

_ 
"-2,,

. -rJJŤ

Hence the convolution integral (3) is (except for the limits of integration)

r r|u_tt- rl _ ,-2<t- rll dT: e-(|-ň - Le-zQ-ň,
!(t): Jot,-r),ldr: J"

Nowcomes animportantpointinhandlingconvolution. r(r):1if 1< r12on|y, Hence if t <I, theintegral

iszero.If 1< t12,wehavetointegratefromr: 1(notO)tor.Thisgives(withthefirsttwotermsfromthe

upper limit)

y(t): e-.O - žr-.O - (g-tt-ll -!e-2<t-t''):+- e-ft-I) i!e-2tt-t>,

íf t > 2, we have to integrate from r : 1 to 2 (not to r), This gives

y(t): e-Q-2) - že-zn-2) - (ť-(ť-I) - Le-2(L-7)).

Figure 141 shows the input (the square wave) and the interesting output, which is zero from 0 to 1, then increases,

reaches a maximum (neir 2.6)after the input has become zero (why?), and finally decreases to Zero in a monotone

fashion. 
LL9*L ?'v/ 

l

y(t)

1

0.5

'0 1

Fig.lal. Square wave and response in Example 5

lntegral Equations
Convolution also helps in solving certain integral equations, that is, equations in which

the unknown function y(/) appears in an integral (and perhaps also outside of it). This

concerns equations with an integral of the form of a convolution. Hence these are SPecial

and it suffices to explain the idea in terms of two examples and add a few Problems in

the problem set.

- l-t
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ExAMPLE 6

253

A Volterra lntegral Equation of the Second Kind

Solve the Volterra integral equation of the second kind3

,t
y(t) - l y(r) sin (.í - r) dr : t.

Jo

Solution. From(l)weseethatthegivenequationcanbewrittenas aconvolution,y - } * sin/: /. Writing
Y : 9(y) and applying the convolution theorem, we obtain

ls2 I
)'ts) -}'ts) , : (s)

.s'-l s']-I s'

ExAMPLE 7

The solution is
,2+1 1 1)r(s): ,. 

: 
P * 

,n

f ll l\-] _ r_ lrtsl[l -(;*p/] :;- 
s,_ l.

t3
and gives the answer )(í) : , * 

6 .

hence

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience). l

Another Volterra lntegral Equation of the Second Kind

Solve the Volterra integral equation 
^t

y(t) - Í r' * Ť) y(t - r) d,7 :1 - sinh r.

Solution. By(l)wecanwritey- (1 + t)*y: l - sinhr.Writing Y:9(y),weobtainbyusingthe
convolution theorem and then taking common denominators

s2-s-1
Y(s)' 2 :

.

. - l -.

slsz - 1;

(r' - " - 1)/s cancels on both sides, so that solving for simply gives

s
Y(s) : s'-1 and the solution is y(t) : cosh /, l

E coNvoluTloNs By INTEGRATIoN
Find by integration:

1. 1x1
3.t*et
5.1xcosr'r/
7, ekt x e-kt

|NVERSE TRANSFORMS
BY CONVOLUTION

Find í(r) if 9,(í) equals:

1o
(s-3Xs+5)

1

11.
s(s' i 4)

1

1,3. *
s"(s" * 1)

115. 
-

s(s" - 9)

14, Gj,ď
52. txt

4. eot x ebt (a * b)

6. I * í(t)
8. sin/*cos/

1

10. _
s(s - 1)

112. -s"ls - 2s

16. (r'+ 1Xs2 + 25)

17. (Partial fractions) Solve Probs. 9,II, and 13 by using
partial fractions. Comment on the amount of work.

Es-rs] soLvlNG lNtTtAL vALuE pRoBLEMs

Using the convolution theorem, solve:

18. y" + y: sin /, y(0) : 0, y'(0) :
19. y" + 4y: sin 3r, y(0) : 0, y'(0)
20. y" + 5y' + 4y :2e-2t. y(0) : 0,

y'(0) : 0

0

-0

slf the upper limit of integration ls variable, the equation is named after the Italian mathematician VITO
VOLTERRA (1860-1940), and if that limit is constant, the equation is named after the Swedish mathematician
IVAR FREDHOLM (1866-1927). "Of the second kind (first kind)" indicates that y occurs (does not occur)
outside of the integral.
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2I. y" + 9y:8 sinrif 0 < tl rr andO if tž r"
y(0) : 0, y'(0) : 4

22. y" + 3y' * 2y : 1 ifO < t < a and)if t > a;

}(0) : 0, )'(0) : 0

23. y" l4y:5u(t - I); y(0):0, y'(0):0
24. y" + 5y' + 6y: 6(r - 3); y(0) : 1,

y'(0) : 0

25. y" + 6y' + 8y : 26(t - 1) + 26(t - 2);

y(0) : 1, y'(0) : 0

26. TEAM PROJECT. Properties of Convolution,

Prove:

(a) Commutativity, / 8 8 : 8 * í
(b) Associativity, (í * s) * u : í * (g * u)

(c) Distributivity, / x (gr + 8z) : .f * 8, * f * 8z

(d) Dirac's delta. Derive the sifting formula (4) in

Sec. 6.4 by using /,. with a : O [(1), Sec, 6,4] and

applying the mean value theorem for integrals,

(e) Unspecified driving force. Show that forced

vibrations governed by

y" + ,'y : r(t), y(0) : Kr, y'(0) : Kz

@ INTEGRAL EQuATloNs
Using Laplace transforms and showing the details, solve:

-tl

27. v(t) - l ytr) clr : I, Jo-

-tl

28. y(r) + l y(") cosh (r - r) dr : t * et, Jo

r'
29. y(t) - l y(t.l sin (r - r) dr : cos /

Jo

rt
30. y(r) + 2 l y(r) cos (r - r) dr: cos /

Jo

^t
l

31. y(r) + l t, - r)y(r) dT : 1

Jo

^t
l

32. y,,rr - Jnlt r)(t - r) dr : 2 - *t2

-t,l
33. ,t t) f- 2eI | ,-'ytrl clr : tel

Jo

-tl

34. y(t) + l r'"-')_y(r) clr : t2 - t - L + Ž,"
Jo

35. CAS EXPERIMENT. Variation of a Parameter,
(a) Replac e 2 in Prob. 33 by a parameter k and

investigate graphically how the solution curve changes

if you vary k, in particulaf near k : -2,
(b) Make similar experiments with an integral

equation of your choice whose solution is oscillating,

with rr.r * 0 and an unspecified driving force r(t) can

be written in convolution form,

1K2
y : - sin a,lr x r(t) + K1 cos at l - sln tr,t/,
'a-0)

6.6 Differentiation and lntegration of Transforms.

The variety of methods for obtaining transforms and inverse transforms and their

application in solving oDEs is surprisingly large. We have seen that theY include direct

integration, the use oi linearity (Sec. 6.1), shifting (Secs. 6.7,6.3), convolution (Sec. 6.5),

and differentiation and integration of functions í(r) (Sec. 6.2). But this is not all. In this

section we shall consider operations of somewhat lesser imPortance, namelY,

differentiation and integration of transforms F(s) and corresponding operations for

functions /(r), with applications to oDEs with variable coefficients.

Differentiation of Transforms
It can be shown that if a function /(r) satisfies the conditions of the existence theorem in

Sec. 6.1, then the derivative F' (s) : dFlc]s of the transform F(s) : 9,(f) can be obtained

by differentiating F(s) under the integral sign with respect to s (proof in Ref. tGR4] listed

in App. 1). Thus, if

^aa

then F'(r) : - l e-'t tf 1ts dt-
Jo

ODEs with Variable Coefficients

F(s) : e-'tflty dt,I

254
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Consequently, if Y(í) : F(s), then

(1) 9,{tí(t)\ : -F'(s), hence 9-11F'ls)}: -tf(t)

illfi:,::;:,i;:::;::::"",,ž7;i:::i,tr:ť:}:Í,;:::"i*,::xiji)} ji:,}ii?Xi:};

of the function by -t.

EXAMPLE l Differentiation of Transforms. Formulas 21-23 in Sec.6.9

We shall derive the following three formulas.

9(f) í (t)

1

@+TÝ
s

@ +Fr
S2

TF +Fr

1

.^, (sin Ft - Ft cos Bl)ZlJ

t

- 
sin Br

2p

1

_ (sin Bt + Bt cos Br)2p

Solution. From (1) and formula 8 (with , : P) in Table 6.1 of Sec. 6,1 we obtain by differentiation
(CAUTIONl Chain rule!)

2Bs
: 1r sin prl : , ^r., (r, _l Bzrz 

,

Dividing by 29 and using the linearity of 9, we obtain (3).

Formulas (2) and (4) are obtained as follows. From (1) and formula 7 (with ,D: D in Table 6.1 we find

(2)

(3)

(4)

(5)

From this and formula 8 (with @: P) in Table 6,1 we have

v(,"o, p,. i.i"rl) : #' "hOn the right we now take the common denominator. Then we see that for the plus sign the numerator becomes
,2 - B2 + s2 + F2 : 2r2, so that (4) follows by division by 2. Similarly, for the minus sign the numerator
takes the form s2 - B2 - ,2 - P2 - -2B2, and we obtain (2). This agrees with Example2in Sec. 6.5. l

! ntegration of Transforms
Similarly, tf í(t) satisfies the conditions of the existence theorem in Sec. 6.1 and the 1imit
of f(t)lt, as / approaches 0 from the right, exists, then for s } k,

In this way, inte7ration of the transform of a function f (t) corresponds to the division of
f(t) by t.

ts2 + B21 - 2s2 ,2 - B2J(lcos lJtl: - --é ,Fl- 
: 

,? +PV

(6) ,{+} : {-o(š)d hence s-,{Í,* r(D d 
} 
: +
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We indicate how (6) is obtained. From the definition it follows that

J-rto dš :{-U ,- u'í(,) o,)ou.

and it can be shown (see Ref. iGR4] in App. 1) that under the above assumptions we may

reverse the order of integration, that is,

{-r,u, 
dš:{ 

U-"-š,/(r) 
o|o,-_ (,u,[{-"-", o1o,

Integratio n of e-št with respect to gives u-Š'l(-r). Here the integral over on the right

equals e-"t l t. Therefore,

J rto ďš - r,-"' * o,

Differentiation and tntegration of Transforms

/ .,2\ sz+rrr2
Find the inverse transform of tn (t * 

s2 / 
: 

'n 
--"-

Solution. Denote the given transform by F(s), Its derivative is

F,ls;: * (^1s2 + a21- ',') 
: +- -

Taking the inverse transform and using (1), we obtain

í 2s 
- 11 : ) cos aí _ 2: - tí(í).Y-'{r'(r)} :g-'1 2, 2- "l:z,ts -r d J.l

Hence the inverse Í(l) of F(s) is Í(t):2(1 - cos or)/t, This agrees with formula42ln Sec, 6,9,

Alternatively, if we let

= -= - + , then g(t): g-\(G):2(cos at - I),

s -1- clJ

From this and (6) we get, in agreement with the answer just obtained,

,2 + ,2 r* g(/) 2

ln ]-?1 : 
J" C(s}r/s : - Ť 

: 
; 

(l - coso/),

the minus occurring since s is the lower limit of integration,

In a similar way we obtain formula 43 in Sec, 6,9,

Speciat Linear oDEs with Variable Coefficients

Formula (1) can be used to solve certain ODEs with variable coefficients. The idea is this,

Let9(y) _ Y.Then 9(y,): s _ y(0) (see Sec. 6.2).Hence by (1),

,] dY
slty') - - Ž rrv- y(0)] - -Y - S fuds

:r{+} (s>k) l

ExAMPLE 2

2s
2,

,

,-, 
{,, 

(, - 5)} 
: 

+(1 - coshar) l

(1)

,___-a
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Similarly, g(y") : s2y - ,y(0) - y'(0) and by (1)

g(ty") fr'y -sy(O) - y'(0)] : -2sy -, # + y(0).

Hence if an ODE has coefficients such as at + b, the subsidiary equation is a first-order ODE
for Y, which is sometimes simpler than the given second-order ODE. But if the latter has
coefficients a + bt l c, then two applications of (1) would give a second-order ODE for
Y, andthis shows that the present method works well only for rather special ODEs with variable
coefficients. An important ODE for which the method is advantageous is the following.

EXAM PLE 3 Laguerre's Equation. Laguerre Polynomials

Laguerre's ODE is

(9) ty" + (I * t)y' + ny : 0.

We determine a solution of (9) with n : 0,1,2,," . From (7)-(9) we get the subsidiary equation

f ^av f t dy\
|-2sy - 

r'Á + lt0t_] * s/- y(0) - (-y- r;) l ny : O.

Simplification gives

1s-s2)#-(n*l-s):0.

:fi:fiffi, _" L:; 
using partial fractions, integrating (with the constant of integration taken zero), and taking

d

ds
(8)

dY n-|-s / r n*l\(l0*) y: --;_Fds:\r_l - , )o, 
and

We write ln: 9-1(Y) and prove Rodrigues's formula

1o:l ln(tl:*#(tnr-.'l.

(s - 1)'
' n.+1

s

(l0) ft:I,2,"'

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They
are called Laguerre polynomials and are usually denoted by tr,. (see Problem Set 5.7, but we continue to reserve
capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting),

because the derivatives up to the order n - 1 are zero at 0. Now make another shift and divide by n| to get [see
(10) and then (10*)-l

. nl.
!ftne-' ) : ---_^^

(., + 1)"
hence by (3) in sec. ó.2 -{# u',-*l}: a#-

(s - l)n
3tlrl: ,,1 :Y.

.,
I

2. -t cosh2t
4.rcos(t+k)

- -r+5. te -' Sln í
7. t2 sinh 4t
9. t2 sin olt

11. r sin (t + k)

6. t2 sin 3t

8. tnekt

10. r cos a;r

12. te-kt sin t

@ TRANsFoRMs By DIFFERENTIATIoN
Showing the details of your work, find 9(/) if í(t) equals:

1. 4tet

3. t sin olt
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t7.

t9.
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lNVERSE TRANSFORMS

Urin#ifr"rentiation, integration, s-shifting, or convolution

(and showing the details), find /(r) if S(í) equals:

6 ,. ,

13. ------ - 
14, ,-r-

(s + l)- (s2 + lÓ)2

2(s + 2) s
76. ---;-- -(s'- l)'

slcl
18. ln s*b

s
20. arccot -a)

(b) Show that

ln,):ž"+ (:)-
and calculate /g, , , , ,lto from this formula,

(c) Calculate lo, , , , , 116 recursively from 16 : 1,

h:I-tby
(n * I)ln*l: (2n + 1 - t)ln- nln_t,

(d) Experiment with the graphs of lg, , ,llo, finding

out empirically how the first maximum, first minimum,
, , , is moving with respect to its location as a function

of n. Write a short report on this,

(e) A generating function (definition in Problem Set

5.3) for the Laguerre polynomials is

C/)

) 1_1t1**: (1 - 11-\rtxl@-t).

Obtain 
'o,n,-,o 

,, 116 from the corresponding parlial sum

of this power series in x and compare the l, with those

in (a), (b), or (c).

|(s+2)2+1]2
2

G: kr
s

ln --- ,s-l

21. WRITING PROJECT. Differentiation and

Integration of Functions and Transforms, Make a

short draft of these four operations from memory, Then

compare your notes with the text and write a report of

2_3pagesontheseoperationsandtheirsignificancein
applications.

22. CASPROJECT. Laguerre Polynomials, (a) Write a

CAS program for finding lr(t) in explicit form from

(10). Apply it to calculate lo,, , ,, /ro,Verify that /o,

, , ,ltosatisfy Laguerre's differential equation (9),

(1)

6.7 Systems of ODEs
The Laplace transform method may also be used for solving sYstems of oDEs' as we shall

explain in terms of typical applications. We consider a first-order linear sYstem with

constant coefficients (as discussed in Sec, 4,1)

y| -- alyt l anlz + gr(D

yL: anyt -l azzjz + gz(t).

Writing Yt : g(yt), Yz : S(y), Gt : 9(g), Gz : 9(g), we obtain from (1) in

Sec. 6.2 the subsidiary system

sYt- yr(O) : attYtl ap 2 * Gl(s)

sYz- yz(0) : aztYtl a22Y2 + G2(s),

By collecting the Yy and lr-terms we have

(al- s),* avYz :-}r(0)-Gr(s)
(2) 

aztYt -| (azz - s)Yz: -}z(0) - Gz(s),

By solving this system algebraically for ,(|), 2(s) and taking the inverse transform we

obtain the solutiofl }r : k-'qr), lz : 9-1( 2) of the given system (1),

.- ._



SEC. 6.7 Systems of ODEs 259

form (and similarly for the systems in
fa3u),8 : [8r lrf', Y : I t Yr]-,

(A-sI)Y:-y(0)-G.

Note that (1) and (2) may be written in vector
the examples); thus, setting y : [yr yr]', A :
G : [G1 G2]T we have

__ l *y -Ay+g and

EXAMPLE l Mixing Problem Involving Two Tanks

Tank Q in Fig. 142 contains initially l00 gal of pure water. Tank Z2 contains initially 10O gal of water in which
t5O lb of salt are dissolved. The inflow into 71 is 2 gal/min fromT2and 6 gallmin containing 6lb of salt from
the outside. The inflow intoT2 is 8 gal/min from Q. The outflow fromT2is 2 * 6 : 8 gal/min, as shown in
the figure. The mixtures are kept uniform by stirring. Find and plot the salt contents y1(l) and y2Q) in T1 and
Z2, respectively.

SOlUtiOn. The model is obtained in the form of two equations

Time rate of change : Inflow/min - Outflow/min

for the two tanks (see Sec. 4.1). Thus,

,8288 -=yo]ó. ul=yI - l00 ll 
-r 

l00 . - J. = 
l00 

yl - l0O 
y2.

The initial conditions are y1(0) : 0, y2(0) : 150. From this we see that the subsidiary system (2) is

(-0.08-s))'r+ 0.02Y2 : -9̂
0.08Y1 + (-0.08 - s)Yz: -l50.

We solve this algebraically for Y1andY2by elimination (or by Cramer's rule in Sec.7.7), and we write the
solutions in terms of paltial fractions,

9s + 0.48 100 _ 62.5 _ 31.5Y7:

l50s2 + IZs + 0.48 100
l/ 

- 

-

' s(s + 0.12Xs + 0.04)

.l(s + 0.12)(s + 0.04) , s -l 0.12

I25

s + 0.12

s .l 0.04

75

s + 0.04

By taking the inverse transform we arrive at the solution

,}1 : 100 - 62.5e-O,r2t _ 3J.5e-0,04t

y2:100 + I25e-1,12t _75e-0.04t.

Figure 142 shows the interesting plot of these functions. Can you give physical explanations for their main
features? Why do they have the limit l00? Why is y2 not monotone, whereas y1 is? Why is y1 from some time
on suddenly larger than y2? Etc.

Fig.l42. Mixing problem in Example 1

6 gallmin

6 gallmin

Salt content in 7,

!

+]

.--t]-. ,

Tl

<-

T28 gallmin

-__>
I

------->
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other systems of oDEs of practical importance can be solved bY the LaPlace transform

method in a similar way, and eigenvalues and eigenvectors as we had to determine them

in Chap. 4 will come out automatically, aS We have seen in Example 1,

Electrical Network

Find the cuffents i1(/) and i2(t) ínthe network in Fig, 143 with L and R measured in terms of the usual units

(seeSec. 2.9.),u(t): 100uóttrir0< r<0.5 secundOth"."ufter,andi(0): O, 

"(O):0,

ExAMPLE 2

Lr=O,BH

Lz= 7H

l),
Rz= L4 L

u(t)

i2(t)

1 1.5 2
Currents

i(t)

30

20

10

i l(t)

0otr 2.5 3

circuit we obtain

and for the upper

Network

Fig. 143. Electrical network in Example 2

Solution. The model of the network is obtained from Kirchhoff's voltage law as in Sec. 2.9.For the lower

0.8,i + 1(jr - i2) + L4i1 : 100[l - "G - b)

|.ii+ I(iz - i) : 0,

Division by 0.8 and ordering gives for the lower circuit

i'r+ zil_ LZ5iz: |25[r - ulr _ 
}1]

and for the upper

ii_ lr* iz:0,

With,1(0):0,jz(O):0weobtainfrom(l)inSec.6.2andthesecondshiftingtheoremthesubsidiarySystem
( l_ _ "-"'' \(s + 3)/1 - 1.2512 : l25 \- , l

-It t (s + 1) Iz: 0,

Solving algebraically for 11 and /2 gives

The right sides without the factor 1

l25(s + l) _s2,
It:iG+Tlt,-tl||-e )'

I25Ir: ,G +ft + 7) 1I - e-"l21.

- u-sl2 have the partial fraction expansions

500 125 625

and

=--.-
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ExAMPLE 3

l25it(t): - 3 (1

250
iz(t): - 3 (1

261

500 250 250

7, - 3(r+T - 2|G+b'

respectively. The inverse transform of this gives the solution for 0 š í š i.

il(r) : -+e-tl2-% r-",,n

250 _lt2,250 _7t12i-(t\: e "'+ "'-+
32l

According to the second shifting theorem the solution for / ) } is ;rlr1 - itG - á) *O i2Q) - i2Q -

..t4, -tl2 625_ ell+)e-tlz _ 
i 11 _ r7lalr-7tl2

It4, -tl2 250_ell+|e-tlz+ 
, 11 _"7Alr-7tl2

2?b9a?2!e}5
-l5e>\uT--Q *, ='

Ý-b!1 >Dn>\
Q--_=-Ý-blc>' Dp
-

ž,*:llr*?ť;:a

Fig.144. Example 3

500

7

500

7

(0 < / 
=;).

}), thut i*,

Q>+)

Can you explain physically why both currents eventually go to zero, and why il(r) has a sharp cusp whereas

i2Q)hasacontinuoustangentdirection att:*? l

Systems of ODEs of higher order can be solved by the Laplace transform method in a
similar fashion. As an important application, typical of many similar mechanical systems,
we consider coupled vibrating masses on springs.

Model of Two Masses on Sp ints (Fig. l4a}

The mechanical system in Fig. 144 consists of two bodies of mass 1 on three springs of the same spring constant
k and of negligibly small masses of the springs. Also damping is assumed to be practically zero. Then the model
of the physical system is the system of ODEs

y'i: -kyt + k(yz - y)
yZ: -k(yz - y) - kyz.

Here y1 and y2 are the displacements of the bodies from their positions of static equilibrium. These ODEs follow
from Newton's second law, Mass X Acceleration : Force, as in Sec.2.4 for a single body. We again regard
downward forces as positive and upward as negative. On the upper body, - yr is the force of the upper spring
and k(y2 - y1) that of the middle spring, lz - lt being the net change in spring length-think this over before
going on. On the lower body, -k(yz - yl) is the force of the middle spring and -lq2 that of the lower spring.

(3)
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We shall determine the solution corresponding to the initial conditions y1(0) : 1,Yz(O) : t, Yitol : \'EI'

,;ói:":az-.*^;;;rr:'(yr) ana y, ) gori.Then íiom (2) in Sec. 6.2 anďthe initial conditions we obtain

the subsidiary system

,2yt -, - r,67 - -kYt + k(Y2 - Y)

,zyz- s + \,4k : -k(Yz- Y) - kYz,

This system of linear algebraic equations in the unknowns í1 anďy2 may be written

1s2+zklyr- kyz :s+\6k

-kyl, + (s2 + 2k)y2 :, - ^,/ztl.,

Elimination (or Cramer,s rule in Sec, 7.7) yields the solution, which We can exPand in terms of Partial fractions'

Y:-:

1s2 + zt;ls - {zt) + k(s *,,/ztl-l
Yr: :

Hence the solution of our initial value problem is (Fig, 145)

yr(/) : S-'(Yr) : "o"\/kt 
+ sin \&r

j2(tl : !-1tYr1: ,o, \4r - sin V3kr,

we see that the motion of each mass is harmonic (the system is undampedl), being the superposition of a "slow'

oscillation and a "rapid" oscillation,

\Eí
,r2+k ,2+3k'

Fig. l45. Solutions in Example 3

@ sysTEMs oF oDEs
Using the Laplace transform and showing

your work, solve the initial value problem:

l. y', : - jt - !z, YL: Y, - z,

yr(0) : 0, yz(O) : 1

2. y', : 5y, * yr, yL: y, l 5y,,

yr(O) : 1, yz(0) - -3

3. yi : -6yr l 4yr, yL : -4y, * 4y2,

yr(O) - -2, yz(0) - -1
a. y', l yz : 0, }r * yL : Zcos/,

}i(0) : 1, yz(O) : 0

5.yi - -4yt - 2y, * t, yL: 3yt l y, - t,

yr(Q) : 5.'75, yz(O) : -6"75
6. yl,: 4yz - 8 cos 4/, yL: -3y, - 9 sin4t,

,yr(O) : 0, }z(0) : 3

the details of

_-{



7- y'r: 5yr - 4y, - 9t2 + 2t,
yL : I}y, - 7yz - I'7t2 - 2t,

yt(O) : 2, yz(O) : 0

8. yi : 6yt * yr, yL: 9y1 l 6y2,
yr(0) - -3, yz(O) - -3

9. y'r: 5yr -f 5yz - 15 cos / * 2J sint,
yL : - 10yr - 5y, - 150 sin r,
yl(O) : 2, yz(O) : 2

10. yi : -2yt l 3yr, yL: 4yt - !z,
yr(O) : 4, yz(O) : 3

tl.yi:lz-|I-u(t-1),
yL: -)r i I - u(t- 1), yr(0) : 0,

Yz(0) : 0

12- y', : 2yt l yr, yL : 4y, * 2yz + 64tu(t - 1),

!{0) : 2, yz(O) : 0

13. yi :.}l * 6u(t - 2)"n', yL: yt * 2yz,

}r(0) : 0, }z(0) : 1

M. y|: -!2, yL: -yt + zLI - u(t - 2rr)l cost,

}r(0) : 1, yz(O) : 0

15. yi : -3yr * y, * u(t - I)et,
yL : -4yt t Tyz * u(t - I)e',

}r(0) : 0, yz(O) : 3

16. y'i, : -Zyt * 2yz, y'J, : 2y,,, - 5yr,
yr(O) : 1, yi(O) : 0, yz(0) : 3, yi(O) : 0

17. y'| : 4yt * 8yz, y'J, : 5yt * yz,

}r(0) : 8, yi(O) - -18, }z(0) : 5,

),.i(0) : -2I
18. y'i * yz: -101 sin 10r, y'l, + yr: 101 sin 10r,

yr(O) : 0, yi(O) : 6, }z(0) : 8,

YzQ) - -6
19. y', + yL:Zet + e-t, yL + yL: 2 sínht,

yá + y|: e'

}r(0) : 0, yz(O) : 1, ys(0) : 1

20.4y', + yL - ZyL:0, -zy| + yl : 1,

2yL*4yL:-I6t
y{0) : 2, yz(O) : 0, }s(0) : 0

21. TEAM PROJECT. Comparison of Methods for
Linear Systems of ODEs.

(a) Models. Solve the models in Examples 1 and 2 of
Sec. 4.I by Laplace transforms and compare the

amount of work with that in Sec. 4.1. (Show the details
of your work.)

(b) Homogeneous Systems. Solve the systems (8),

(11)-(13) in Sec. 4.3by Laplace transforms. (Show the

details.)

(c) Nonhomogeneous System. Solve the system (3)

in Sec. 4.6 by Laplace transforms. (Show the details.)

FURTHER APPLICATIoNS

22. (Forced vibrations of two masses) Solve the model in
Example 3 with k : 4 and initial conditions yr(O) : 1,

yí(0) : 1,yr(O) : t,y;(O) - -1underthe assumption

that the force 11 sin r is acting on the first body and the

:ffi# T::,#,ffiTif; *Tíl",ii; ;,l;", ""
23. CAS Experiment. Effect of Initial Conditions. In

Prob. 22, vary the initial conditions systematically,
describe and explain the graphs physically. The great

variety of curves will surprise you. Are they always
periodic? Can you find empirical laws for the

changes in terms of continuous changes of those

conditions?

24. (Mixing problem) What will happen in Example 1 if
you double all flows (in particular, an increase to

12 gallmin containing 12 lb of salt from the outside),

leaving the size of the tanks and the initial conditions
as before? First guess, then calculate. Can you relate

the new solution to the old one?

25. (Electrical network) Using Laplace transforms, find
the currents it(t) and iz(t) in Fig. 146, where
u(t) : 390 cos t and ir(O) : 0, i2(0) : 0. How
soon will the currents practically reach their steady

state?

i(t)

4o

2o

Currents

Fig. 146. Electrical network and

currents in Problem 25

(Single cosine wave) Solve Prob. 25 when the EMF
(electromotive force) is acting from 0 to 2n only. Can
you do this just by looking at Prob. 25, practically
without calculation?

0

*20

_40

SEC. 6.7 Systems of ODEs 263



LapIace Transforms

6.8 Laplace Transform: General Formulas

Formula Name, Comments Sec.

F(s) : ilIíG)} : |* ,-o

í(t) :9-1{r,(s)}

-"t1lt1 dt Definition of Transform

Inverse Transform
6.1

g{af(t) + bs?)} : ag{í(t)} + bg{s(t)} Linearity 6.1

9{e'tf(t)}:F(s-a)

9-1{r'(s-a)}:e"'f(t)
s-Shifting

(First Shifting Theorem)
6.1

s(f ') : s9(í) - /(0)

s(í"): s29(f) - s/(0) - í'(o)
g(f(*) : sng(í) _ r<n_D710) _,,,

1tn -t 
l1g;

EI f' r,rr, 
) l

LJo- "I: - 9(í)

Differentiation
of Function

Integration of Function

6.2

ff * sX/)

_t
l: l ítrls7 - r) dr

Jo

-tl: l .ft, - r)8(r) dr
Jo

il : 9(í)9(s)E(í

convolution 6.5

9{í(t - a) u(t - a)\ : e-o"F(s)

g-tp-asF(s)} : í(t - a) u(t - a)

r-Shifting
(Second Shifting Theorem)

6.3

9{tf(t)}

,{+}
: -F'(s)

:{ F( )d

Differentiation of Transform

Integration of Transform
6.6

IrPg(.f):,-* | e-'tflt\dt
| - e P" Jo / Periodic with Period p

6.4

Project
16

---,



SEC. 6.9 Table of Laplace Transforms

6.9 Table of Laplace Transforms
For more extensive tables, see Ref. íA9l in Appendix I.

F(s) : g{í(t)} í (t) Sec.

1

2
a
_]

4

5

6

Ils
Ils2

Ils"
vr/i
lls3l2

Ilso

(n I, )

(a 0)

1

t

tn-ll1n - 1)!

u\/ň
ZX/-tlrr

t"-llf 1a1

6.I

1

8

9

10

1

S-a

1

_,
ls - a)'

1

_ (n:1.2,...)
(s - a)'"

1___ . (k>01
(s - a)"

eot

t eot

I -n-t _atle
(n - I)l
l 

,o - ._e.,t

f(k)

6.I

11

l2

1 (a+b)

(a+b)

(s-aXs-á)
'

(s-a)(s-b)

,] ^ (eor- rrr)(a-b)

_) ^(aeot- bebt1(a-b)

I3

l4

15

l6

l1

18

1

"+as
1,s' -l a'

1

,,s'-a'
,s

,,s'-a'

(s - a)'* a

S-a
(s - a)'+ a2

1

- sin rol
(r)

cos (l)/

1

- sính at
a

cosh at

l
- eat sin c,.rr
(r)

eot cos tlt

6.1

19

20

2I

1

nP +;T
1

"C 
+ó

1

@ +-,,r

1

,, (l - cos ror)

1

,z @t - sin a,l/)

1

2s (sin at - ut cos cr;r)

},,
6.6

(continued)
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Table of Laplace Transíorms (continued)

F(s) : g{f(t)} í(t) Sec.

22

23

24

s

TF+ Pr
S2

óoo(s' -l df)'

(r'+ a\G2 + b2)
(a2 + b2)

t

- 
sin col

2ol

1

- 
(sin ot l aí cos rol)

2a
1

.Á-- " (cos a/ - cos br)
b'- a'

}.,

25

26

27

28

1

;4 + 4t<4

s

s4 + 4t<4

1

;4-

s

s4-ť

1

;1, rrin k/ cos kí - cos kt stnh kt)

]= ,in kr sinh kt
2k"

l

21s 
(sinh kl - sin kl)

1

2oz @oshkt - coskt)

29

30

3I

{s - a - \/s - b

\,G + "\r, + b
1

\/s2 + a'

-L 
(rb' - ,o')

2\/ rrt3

n-@+b)tl2;o(+)

Jo@t)

5,6

5.5

32

_rJ

s
D/o

(S - a)"''

1_.--- n, (k > 0)
(s' - a')'"

+ eot1l + 2at1
\/ rt

#(+)-1' I7"-112@t) 5.6

34

35

e-o" l s

e-o'

u(t - a)

6(t - a)

6.3

6.4

36

3l

38

39

1 
-or,

-e
' 

'= n_o,,
Vs
1 ,,

,slz eo',

,-o (k > 0)

JoQ\/kt)

7-----: cos 2\/ kt
\/nt

l-
- _ sinh 2Vkr
\/ tk

k 
-k2t4t

_ L

2\/ rrts

5.5

40
1

- lns
s

-Int- y (y:0.5]72) 5,6

(continued)
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Table of Laplace Transíorms (continued)

F(s) : 9{í(t)} í (t) Sec.

4I
S-aln-s-b

! put _ eot)
t

42

43

44

45

oos'* a'ln"
s-

n,s'-a'
lno ..

(r)

arctan -s
1

- arccot s
s

2
- (1 - cos rr;1)
t

2
- (1 - cosh ar)
t

1

- sin a-lr
t

Si(/)

6.6

App.
A3.1

l,. What do we mean by operational calculus?

2. What are the steps needed in solving an ODE by Laplace
transform? What is the subsidiary equation?

3. The Laplace transform is a linear operation. What does

this mean? Why is it important?

LAPLACE TRANSFORMS
Find the transform (showing the details of your work
indicating the method or formula you are using):

11. te3t 12. e-t sin 2t

4. For what problems is the Laplace transform preferable
over the usual method? Explain. 

lllolvltll Prvrvl.Urv 
@

5. What are the unit step and Dirac's delta functions? Give
examples.

6. What is the difference between the two shifting
theorems? When do they apply?

7. Is 9{f(t)s@} : 9,{í(t)}9{s(/)}? Explain.

8. Can a discontinuous function have aLaplace transform?
Does every continuous function have a Laplace
transform? Give reasons.

9. State the transforms of a few simple functions from
memory.

10. If two different continuous functions have transforms,

the latter are different. Why is this practically important?

INVERSE LAPLACE TRANSFORMS
Find the inverse transform (showing the details of your work
and indicating the method or formula used):

lz 2
31. (p * ,,

and

13. sin2 r

15. tu(t - n)
17. et x cos 2t

19. sin / + sinh /

21,. eot - eb' (a * b)

14. cos2 4t
16. u(t - 2t) sin t

18. (sin alt) x (cos a,lr)

20. cosh t - cos t

22. cosh 2t - cosh t

1524. 
-

,s'-4

3s
26. s"-2sl2

2s-I0
28. , e-5"

.s"

s2-16
30, Tp;tc

180+18s2+3s4
s7

2

"h',+2s+1

10.s,1
,s2+2

12,\
s" -l 4s -f 20

5si427. , e-2'
,s"

2s-l 4
-L̂7t (s" + 4s -| 512

) "-"

Ťí33. "-s-(s- + 0-)

32.

34.

TIONS AND PROBLEMS

t



@ slNGLE oDEs AND sysTEMs oF oDEs

Sotu" by Laplace transforms, showing the details and

graphing the solution:

35.y"+y:u(t-1),
y'(0) : 20

36. y" + 16y : 46(t _

y'(0) : 0

37. y" + 4y: 86(r - 5), y(0) : 10,

y'(0) - -1
38. y" * y : u(t - 2), y(0) : 0,

y'(0) : 0

39. y" 1- 2y' * 10y : 0,

y'(0) - - 1

40. y" -l 4y' * 5y : g7,

y'(0) - -5

y(0) : 7,

}(0) : 5,

4I. y" - y' - 2y: I2u(t - rr) sint,
y(0) : 1, y'(0) - -1

42.y"-2y'*y:16(r_1),
y(0) : 0, y'(0) : 0

43. y" - 4y' * 4y :6(r - 1) - 6(r - 2),

y(0) : 0, y'(0) : 0

44. y" * 4y : 6(r - n) - 6(t - 2rr),

y(0) : 1, y'(0) : 0

45. y', + yr: sin /, yL + yl,: -sin /,

yl(0) : 1, yz(O) : 0

a6. y'r: -3y, t y, - I2t, yL: -4yt * 2y, + Izt,

yr(0) : 0, yz(O) : 0

47. y', : yr, yL : -5y, - 2yr,

yr(O) : 0, yz(O) : 1

48. y', : yr, yL : _4y. + 6(, _ ír),

yr(0) : 0, yz(O) : 0

49. y'!, : 4yz - 4e', y'!,: 3y, l yr,

}r(0) : 1, yi9)-: z, !z(0) : 2, yLQ) : 3

50. y'! : I6yr, y'l, : I6yr,'ylq) : z, yiiol : !2, yz(o) : 6, yLQ) : 4

MODELS OF CIRCUITS AND NETWORKS

51. (RC-circuit) Find and graph the current 
'(D 

in the lC-
circuit in Fig. 147, where R : 100 a, C : 10-3 F,

u(t) : 100rV if 0 < t 1 2, u(t) : 200 V tf t > 2 and

the initial charge on the capacitor is 0,

u(t)

íig.147. RC-circuit

52. (LC-circuit) Find and graph the charge q(t) and the

current i(t) in the LC-circuit in Fig, l48, where

L : 0.5 H, C : 0.02 F, u(r) : t425 sin 5r V if

CHAP. 6 Laplace Transforms

y(0) : 0,

ír), y(0) : -1,

0 < r 1 n, u(t): 0 if t } Ť, and current and charge at

t:Oare0.

u(t)

LC-circuit

u=lOOt2 C=0.01 F

Fig.151. Network in Problem 55

T_-
Fig. t48.

53. (RLc,circuit) Find and graph the current l(l) in the

RlC-circuit in Fig. 149, where R : 1 a, L: 0,25H,

C : 0.2F, u(r) : 3]] sin 20r V, and current and charge

att:Oare0.
C

l\!o(nž la)l(
u(t)

Fig.149. RLC-circuit

54. (Network) Show that by Kirchhoff's voltage law

(Sec, 2.9), the curents in the network in Fig, 150 are

obtained from the system

Li'r+ R(lr- ir):u(t)

R(i;- i'rl* Žiz:0,

Solve this system, where R : 1 a, L : 2H, C : 0,5

F, u(r) : 9oe-tl4 V, i1(0) : 0, l2(0) : 2 A,

L

Fig.15O. Network in Problem 54

55. (Network) Set up the model of the network in Fig, 151

and find and graph the currents, assuming that the

currents and the charge on the capacitor are 0 when the

switch is closed at t : 0.

Tl,žl----()' l

Switc h Rz=30 )

L=IH

Rt=lOe)
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Summary of Chapter ó

r-,"o
(1)

The main pulpose of Laplace transforms is the solution of differential equations and
systems of such equations, as well as coffesponding initial value problems. The
Laplace transform F(s) : 9(f) of a function /(r) is defined by

F(s) : 9(f) : e-'tf 1t1 dt (Sec. 6.1).

This definition is motivated by the property that the differentiation of f with respect
to / coffesponds to the multiplication of the transform F by ,; more precisely,

g(í'):s9(í)-í(0)
s(f") : s29(í) - sí(0) - /'(0)

(Sec. 6.2)

etc. Hence by taking the transform of a given differential equation

(3) y" + ay' + by : r(t) (a, b constant)

and writine 9(y): (s), we obtain the subsidiary equation

(4) (r' + as l b)y : 9(r) + s/(0) + /'(0) + af (0).

Here, in obtaining the transform 9(r) we can get help from the small table in
Sec.6.1 or the larger table in Sec. 6.9. This is the first step. In the second step we
solve the subsidiary equatton algebraically for (s). In the third step we determine
the inverse transform y(/) : g-l(Y\ that is, the solution of the problem. This is
generally the hardest step, and in it we may again use one of those two tables. Y(s)

will often be a rational function, so that we can obtain the invers e ?-I(Y) by partial
fraction reduction (Sec. 6.4) if we see no simpler way.

The Laplace method avoids the determination of a general solution of the
homogeneous ODE, and we also need not determine values of arbitrary constants
in a general solution from initial conditions; instead, we can insert the latter directly
into (4). Two further facts account for the practical importance of the Laplace
transform. First, it has some basic properties and resulting techniques that simplify
the determination of transforms and inverses. The most important of these properties
are listed in Sec. 6.8, together with references to the conesponding sections. More
on the use of unit step functions and Dirac's delta can be found in Secs. 6.3 and
6.4, anď more on convolution in Sec. 6.5. Second, due to these properties, the present
method is particularly suitable for handling right sides r(r) given by different
expressions over different intervals of time, for instance, when r(r) is a square wave
of an impulse or of a form such as r(t) : cos / if 0 a t š 4rr and 0 elsewhere.

The application of the Laplace transform to systems of ODEs is shown in
Sec. 6.7. (The application to PDEs follows in Sec. I2.II.)

(2)
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