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p R o o F We enclose each of the singular points zi in a circle Q with radius small enough that those

k circles and C are all separated (Fig. 370). Then í(z) is analytic in the multiply connected

domain D bounded by C and C., . , , , Crcand on the entire boundary of D. From Cauchy's
integral theorem we thus have

(1) 6rrr>dz-|6 ru>dz+$ ík)dz+",*{ rradz:O,JC"' JC, 
'C, 'Cu

the integral along C being taken counterclochuise and the other integrals clockwise (as in

Figs.351 and 352, Sec. I4.2). We take the integrals over Cr, ", , Cw to the right and

compensate the resulting minus sign by reversing the sense of integration. Thus,

(8) § rrr, ar: {"C "Ct

where all the integrals are now taken counterclockwise. By (1) and (2),

r
Q írz> dz: 2rri Res /(z), j : I,, , , , k,
'C., 

z:zj

so that (8) gives (6) and the residue theorem is proved. I

4 - 3z. f + - zz.1Res-. _:| , l :-+.
z-o zQ- ]) L z- l Jz:o

4-3z. f +-lzf
}:l .t.-,,:L . ].-,:'

f tanz, l íanz tanz \
?rrr-, az:2"-i\}?zr- 

| 
*š,j, 

"-,):2riTl 
._,* T:l":-,)

: 2ni tan 1 : 9.7855i.

f(z) d,z * f",í{r) dz ,| , , , * f"_r(z) dz

This important theorem has various applications in connection with complex and real

integrals. Let us first consider some complex integrals. (Real integrals follow in the next

section.)

ExAMpLE 5 lntegration by the Residue Theorem. Several Contours

Evaluate the following integral counterclockwise around any simple closed path such that (a) 0 and 1 are inside

C, (b) 0 is inside, 1 outside, (c) 1 is inside, 0 outside, (d) 0 and 1 are outside.

f 4-3z,
92dZ,C Z - z

Solution. The integrand has simple poles at 0 and 1, with residues tby (3)]

[Confirm this by (4).] Ans. (a) 2ri(-4 + 1) : -6ri, (b) -8rrl, (c) 2rri, (ď) O. l

EXAMPLE 6 Another Application of the Residue Theorem

Integrate (tanz)l(z2 - 1) counterclockwise around the circle C: |1|:312.

Solution. tan z is not analytic at !tl2, +3rrl2,. . . , but all these points lie outside the contour C. Because

of the denominator z2 * 1 : (z - I)(z + 1) the given function has simple poles at +1. We thus obtain from

(4) and the residue theorem

I
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E X A M P L E 7 Poles and Essential Singularities

1. Verify the calculations in Example 3 and find the other
residues.

2. Verify the calculations in Example 4 andfind the other
residue.

@ REslDuEs
Find all the singular points and the corresponding residues.
(Show the details of your work.)

Evaluate the following integral, where C is the ellipse 9x2 + y2 : 9 (counterclockwise, sketch it).

[ ( ,r"' *_..t,\
7.(."-" +ze"'')dz

Solution. Since e4 - 16 : O at +2i anď +2, the first term of the integrand has simple poles at +2i inside
C, with residues [Uv (+), note that ,2ni : I]

zen' f zen'l rRes áz_2i z, - |6 L +z3 _) z=2i ló

zen' f ze" l r

.B.ir, .n _ 16 
: 

L;;" ), _r,: - ló

and simple poles at +2, which lie outside C, so that they are of no interest here. The second term of the integrand
has an essential singularity at 0, with residue ,2l2 u, obtained from

zro/r/n,2o3\12|:.(' *;n ,;-+,ť *...) :z-|t+|.'+

Ans2ri(-+ - * + Lr\ : rr(rr2 - ili : 30.22ti by the residue theorem.
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(lzl > o).

l

11_ Á1_2+-r{,

_ sinz\-
_6

7. cot z

1o'' k' - 1)'

tan Z

cos Z4.o
z,-

z.2+I6. "-1-4

8. sec z

I13
10. __.t íz -L

9
7'

12. l=
/. -I

CAS PROJECT. Residue at a Pole. Write a program
for calculating the residue at a pole of any order. Use
it for solving Probs. 3-8.

@ REslDuE INTEGRATIoN
Evaluate (counterclockwise). (Show the details,)

,o. f" YfI or, c: |z - il: z

ellz dz, C: |z| : 1

dz

sinhlnz' w, 11

tan rrz dz, C: |z| : I

tan rrz dz, C: |z| : 2

n' or, C; lzl : 4.5
cos Z

coth z dz, C: |z| : 1

j= Or. C: |z - ll : l.S
Cos 7Tz

cosh z
, _ dz. C: lz|z' - 3IZ,

tan Ťrz

- 

dz, C: lz, *z"

I-4z+6z2

-1

+il

C:dZ,

f"

f"

f"

f"

f"

f"

f"

f"

f.

f"

f"

15.

16.

I7.

18.

19.

20.

21.

22.

23.

24.

25.

11.

13.

@+5a-ó
30z2,- 23z + 5

-1

|.l :t

dz, C: |zl : 1(2z - l)2 (3z - I)
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Residue lntegration of Real lntegrals
It is quite surprising that certain classes of complicated real integrals can be integrated

by the residue theorem, as we shall see,

lntegrals of Rational Functions of cos 0 and sin 0

We first consider integrals of the type

(1)

,-
J - Í r(.o, 0. sin a d0

Jo

where F(cos 0, sin 0) is a real rational function of cos 0 and sin 0 [for example,

(sin2 o)l(5 - 4 cos 0)] and is finite (does not become infinite) on the interval of integration.

Setting ei' : z, wa obtain

cos,:+(urr+

sin 0: * ,u'' -

Since F is rational in cos 0 and sin 0, Eq. (2) shows that F is now a rational function of

z, s,.y,í(z). Sinc e dzldT : iei7, we have d0 : dzliz and the given integral takes the form

rdzJ:Q.fk) .JC lZ

and, as 0ranges from Oto2rr in (1), the variable Z: ei'ranges counterclockwise once

around the unit circle l.| : t, (Review Sec, 13,5 if necessary,)

EXAMPLE t An lntegral oftheType (1)

r" d0
Show by the present merhod that | : 2rr,-- Jo V2-cos0

Solution. We use cos 0 : }11 + 1lz,) anď d0 : clzliz, Then the integral becomes

J dzliz :Ó dz

Y.y-,_Tť :Y" 
-1,, _ 2111 r l)

zf dz

iI" v- \/r- l)(z -Ý' + l}

We see that the integrand has a simple pole at z1 : ÝŽ * 1 outside the unit circle C, so that it is of no interest

here,andanothersimplepoleatzz]r,5-1(wherez_ 
.r/i+1:O)insideCwithresiduetby(3),Sec. 16.3]

R::4:[ '= l
J:".', t. _\,5_ lXz -x5+ ll Lr_ r,/1- t_] :_\2-1

1

2'

Answer: 2ni(-2li)(-1l2) : 2rr. (Here -2ti is the factor in front of the last integral.) l

(2)

u-u,): + (. - :)

u-uu):+(.-;)

(3)
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As another large class, let us consider real integrals of the form

719

(4)

Such an integral, whose interval of integration is not finite is called an improper integral,
and it has the meaning

i*rn o,

|" .rr*, c]x : Iim |o plrlx i ]im |' í,*, o*,
J_:r. (]--x Ja b-:y- Jo

If both limits exist, we may couple the two independent passages to -oo and *, and write

r- rR(5) l /t*l dx : ]iq l ftx) dx.
"_T ^+4 

J_R

The limit in (5) is called the Cauchy principal value of the integral. It is written

r*pr.v. | ítxl dx.
J^^

It may exist even if the limits in (5') do not. Example:

;g/"^" dx-;9 (Ť Ť):o, but *ť-dx:n.

(5)

We assume that the function /(x) in (4) is a real rational function whose denominator
is different from zero for all real x and is of degree at least two units higher than the

degree of the numerator. Then the limits in (5') exist, and we may start from (5). We
consider the corresponding contour integral

(5*) Ó í,r, O,
J C"

around a path C in Fig. 371. Since f(x) is rational, í(z) has finitely many poles in the

upper half-plane, and if we choose R large enough, then C encloses all these poles. By
the residue theorem we then obtain

Ó írr, a, : I 1rz) c]z + [" P, dx : 2ti ) Res /(z)J"' '", , ,, Js, ,", - " J _Ru 
,

Fig. 37l. Path C of the contour integral
]

in (5*)
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where the sum consists of all the residues of f(z) at the points in the upper half-plane at

which f(1) has a pole. From this we have

(6)
rF-r

[-' rra dx - 2rri)Res í(z) - J rra or.
'-P"

k
lí(z)l < *

for sufficiently large constants k and Ro. By the ML-inequality in Sec.

lr l k kn

|J"rt.l 
orl . n, nR : 

R

r*l /t"l dx - 2rri) Res /(z)
J 

- o,

We prove that, if R -+ m, the value of the integral over the semicircle ,S approaches

zero. If we set z : Reiq, then S is represented by R : const, and as Z ranges along S, the

variable 0 ranges from 0 to zr. Since, by assumption, the degree of the denominator of

í(z) is at least two units higher than the degree of the numerator, we have

(1.1 :R=Ro)

I4.I,

(R > Ro).

Hence, as R approaches infinity, the value of the integral over S approaches zero, and (5)

and (6) yield the result

(7)

where we sum over all the residues of f (z) at the poles of í(z) in the upper half-plane.

EXAMPLE 2 An lmproper lntegral from 0 to co

Using (7), show that

dx
4lŤx n,D.

Solution. Indeed, f(z) : 1(1 + za) hu, four simple poles at the points (make a sketch)

Zl : enŽl4, Z2 : egoil4, zg : g-3nil+^ 24: ,-ril4.

The first two of these poles lie in the upper half-plane (Fig. 312).From (4) in the last section we find the residues

I"

Fig.372. Example 2



SEC. 16.4 Residue lntegration of Real lntegrals 721

[es /{z) : t . i"-].:., : 
[#]._., 

: } u-"-,4 : -

[1;/r:l 
: tí*, f ._,,: [#),_,,: 

!,-nn'^: 
+

(Here we lsed eni: -1 and ,-2ni - 1.) By (1) in Sec. 13.6 and (7) in this section,

l_-' * ; 
: - 4 (e'"* - e""") - _ 

4 '2i'sin 7 : rrsin

Since l/(l + xa) is an even function, we thus obtain, as asserted,

} u",n

"- 
ni,l4.

7r Ťr

4 \/2

rndxlr"dxTr|-_-|-
Jo l*x4 2J_-|-lxa 2Ý'

l

Fourier lntegrals
The method of evaluating (4) by creating a closed contour (Fig. 371) and "blowing it up"
extends to integrals

r*
l .ftxl cos sx dx and

J^^

r*
| ír*l sin sx dx (s real)

J-co

as they occur in connection with the Fourier integral (Sec. II.7).
If f(x) is a rational function satisfying the assumption on the degree as for (4), we may

consider the conesponding integral

6 ralei" dz (s real and positive)
JC-

over the contour C in Fig. 37l on p.719.Instead of (7) we now get

r
l ív)un"' dx : zrri) Res [/(z)e'""]J^^

(s>0)

Equating the

(8)

(9)

(10)

where we sum the residues of f(z)e"" at its poles in the upper half-plane.
real and the imaginary parts on both sides of (9), we have

rn
J__íti cos s-r dx - -2rr ) t* Res h(z)ei""],

rn
l_,_f rr, sin sx dx - 2r2 Re Res lík)r^"l.

(s>0)

To establish (9), we must show [as for (4)] that the value of the integral over the

semicircle S in Fig. 37I approaches 0 as R --+ oo. Now s } 0 and S lies in the upper

half-planey 
= 

0.Hence

|ur,,|:|ex<"+l.u>1 :lr''"llr-'r| - 1. e-sa < 1 (s ) 0, y 
= 

0).

From this we obtain the inequality lí(z) ,i'"| : lf k)llru""| = Vrz>l (s ) 0, y > 0). This
reduces our present problem to that for (4). Continuing as before gives (9) and (10). l
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ExAMPLE 3

CHAP. l6 Laurent Series. Residue lntegration

An Application of (l0)

(11)

whose integrand becomes infinite at

r- cos,xl ;- *: I,-r'-J_r K Ť X

r- sin.sr
l ., 

- 
dx:0 (s>O,fr>0).J_,o k'+ X'

,isz f ,iszl n-k"

.Li; o, *3 
: l * ),:,o: 2ik

r- ,isr ,-k' Tr

J__ o, * r dx:2rri 2k : 'o ,-u",

Since ezs : cos.-r * i sinsx, this yields the above results [see also (15) in Sec. 11.7.] l

Another Kind of lmproper lntegral
We consider an improper integral

rB
| .f (x) dr
'A

a point a tn the interval of integration,

|11 l/r"ll 
: -,

Show that

Solution, In fact, ,i"l1k' + ;2; has only one pole in the upper halí'-plane, namely, a simple pole at z.: ik,
and from (4) in Sec, 16.3 we obtain

Thus

By definition, this integral (11) means

rB ro-' rB(l2) l f a dx : lim_ l fr*l dx -l lim l .f (*) a*JA ,-OJA T-OJa+n

where both e anď rl approach zero independently and through positive values. It may happen
that neither of these two limits exists if e and 4 go to 0 independently, but the limit

1g |Il-,,,, dx-| í"_.ru, *f(13)

exists. This is called the Cauchy principal value of the integral. It is written

pr.v. [" í@) O*.
'A

For example,

17 dx f r-'dx r'dxfpr.v.J_, 
", 

: ls LJ_, ;, * J.i] : o,

the principal value exists, although the integral itself has no meaning.
In the case of simple poles on the real axis we shall obtain a formula for the principal

value of an integral from -oo to oo. This formula will result from the following theorem.
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THE,o,R E M l

PROOF Bythedefinitionof asimplepole(Sec. 16.2) theintegranďf(z) hasfor0 < lz - al<R
the Laurent series

b,
Í(:) : + g(:).

Z.- a
br : Res /(a).z:a

Here 8(z) is analytic on the semicircle of integration (Fig. 373)

Cz: Z:a+reiq, O=0=rr

and for all z between C2 and the x-axis, and thus bounded on C2, say, ls(z)l = M.By
integration,

Í",rrr, o, : Í:# irež, d0 * I",sk) dz : bpri * I",sk) dz.

The second integral on the right cannot exceed Mrrr in absolute value, by the ML-inequa\ity
(Sec. I4.I), and ML: MŤrr -+ 0 as r-+ 0. l

Figure 374 shows the idea of applying Theorem 1 to obtain the principal value of the
integral of a rational function /(x) from -oo to oo. For sufficiently large R the integral over
the entire contour in Fig. 374 has the value "/ given by 2rri times the sum of the residues
of Í(z) at the singularities in the upper half-plane. We assume that /(x) satisfies the degree

Simple Poles on the Real Axis

Ií í(z) has a simple pole at z :r"

"Cz

on the real axis, then (Fig.373)

f (z) dz : ri }$ rr.l.1im
r-O

a-r

Fig. 373.

a-r a a+rR

Application of Theorem ]Fig.374.
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condition imposed in connection with (4). Then the value of the integral over the large

semicircle S approaches 0 as R -+ m. For r -+ 0 the integral over C2 (clockwise!)

approaches the value

K - - ni R.es í(z)

by Theorem 1. Together this shows that the principal value P of the integral from -co to

* plus K equals,L hence P : J - K - J ,l ti Res.:o ík),If f(1) has several simple

poi., on th; real axis, then K will be - zrl times the sum of the conesPonding residues,

Hence the desired formula is

r*
pr. v. [_*ftrl dx - zrri) Res í(z) t ni Ž Res í(e)(14)

where the first sum extends over all poles in the upper half-plane and the second over all

poles on the real axis, the latter being simple by assumption.

EXAMPLE 4 Polesonthe RealAxis

Find the principal value

,," /:

,2-3*+2:(x-I)(x-2),

the integrand í(x), considered for complex z, has simple poles at

r 1-1
z : l, R9; /{z) : |,; ,ur' - 

" ],-,
l:-r,

rll
z:2. R9;f{:): 

[[-,,,** u_] .:,
1

5'
.ll

z: i. }::/r.l 
: 

I rr, - ,u ,,,u 
' ),-,1 3-,: o*r: n '

and at z : _i in the lower half-plane, which is oť no interest here. From (14) we get the answer

o..,í:#:2ni(+) *''(-;-+) :# l
More integrals of the kind considered in this section are included in the Problem set. TrY

also your CAS, which may sometimes give you false results on complex integrals,

(x2-3x+2)(x2+I)

724
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|NTEGRALS lNvoLVlNG coslNE AND slNE
Evaluate the following integrals. (Show the details of your
work.)

1. r"
,. r"

,. r"
,. r"

IMPROPER lNTEGRALS:
POLES ON THE REAL AXIS

Find the Cauchy principal value (showing details):

] -|6cos)

d0

31 - I2cose

d0

5-4sin0

cos 0

13 - 12 cos20

r" d0al
Jo 2-1 cos0

r2o de
!.|_Jo 8 - 2 sin 0

rzn sin2 06. | 

-d0

Jo 5-4cos0

x*5
-dxX"-X

dx

xa+3x2-4

d0
r- x-l 2

23. l - d.rJ_-X"lx

m
fxo

'o' J_- *+ - , dx

d0,

,r-Í__

,u. I:-

n. r*Hint. cos20 : : (r' *2\

r2o l*4cosg8. | _d0
Jo 17 - 8 cos 0

ž)

dx

}-

@ lMpRopER INTEGRALS:

10.

12.

14.

16.

lNF!NlTE lNTERVAL oF lNTEGRAT|oN
Evaluate (showing the details):

úf rlx

', J__7i
_@
ldX11.1 _J_-xo+1

r- dx

"' J-- @' + 4F
rc

fxo

"' J_- 1 -, *s 
dx

|?' r- ,,z -} * ry dY

@f x'l1
18. l ^ d.rJ_-x**1

r* cos,T
20. l " d.rJ_-x"*l

r* cos 4x
22, l "-rixJ_* x* l 5x'l 4

TEAM PROJECT. Comments on Real Integrals.
(a) Formula (10) follows from (9). Give the details.

(b) Use of auxiliary results. Integrating e-" arolnď
the boundary C of the rectangle with vertices -a, a,
a * ib, - a * ib,letting a -) @, and using

mf , Yrr
l e-r-dX- _
l-.l'-oL

show that

r* , \r-l e-" cos 2bx 7, : }_-" u-u'.Jo2-

(This integral is needed in heat conduction in Sec.
12.6,)

(c) Inspection. Solve Probs, 15 and 2I without
calculation.

29. CAS EXPERIMENT. Check your CAS. Find out to
what extent your CAS can evaluate integrals of the
form (1), (4), and (8) conectly. Do this by comparing
the results of direct integration (which may come out
false) with those of using residues.

30. CAS EXPERIMENT. Simple Poles on the Real
Axis. Experiment with integrals /a í@) dx,

í(x): |(x - a)(x - a)...(x - au))-',airealand
all different, k > 1. Conjecture that the principal va]ue
of these integrals is 0. Try to prove this for a special
k, say, k: 3. For general k.

r-

r_

r-

r-

x
^dxx"l7

dx

(r'-

dx

2x -l 5)2

xa+16

dx

(r'+I)(x2+9)

sin -r,dxx** l

sin 3x
^dxx"* l

,. I:-

,r. r*

725
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1. Laurent series generalize Taylor
details.

2. cana function have several Laurent series with the same

center? Explain. If your answer is yes, give examples,

3. What is the principal part of a Laurent series? Its

significance?

4. What is a pole? An essential singularity?

examples.

cosh 5z
--q-'. , . L. l- l| - -z,'Ť4
473 + 1z,|! ''\',C:|z+l|:1

cos Z

cot 8z, C: |z| : 0,2

z2-sinz -C:|_,-ll:24Z2- 1'-''"
cos Z

25. + . tt : 7.z..... C: |:| : l
L

z2+l I

26.:,C: ^*2 iJ,2:1_2 _ ,- 2 "
l, L1

I5z -| 9
27. #. C: l: - 3l: Z

,ě-9z<. ,-

15z -l 9
28. 

-.C:|:| 

:4
-ó-9z<t -\

Exolain the, 21.

23.

Give

in this5. What is Picard's theorem? Why
chapter?

6. What is the Riemann sphere? The extended complex

plane? Its significance?

it occur

1" ,Ilz2 analytic or singular at infinity? cosh z? Q - 4)'?

Explain.

What is the residue? Why is it important?

State formulas for residues from memory,

State some further methods for calculating residues,

What is residue integration? To what kind of complex

integrals does it apply?

By what idea can we apply residue integration to real

integrals from -co to co? Give simple examples,

What is a zero of an analytic function? How are zeros

classified?

REAL INTEGRALS

by the methods of this chapter (showing the

d0

25-24cos0

d0 .k> I
k*cos0

d0

1 -] ,tr, 0

' 
sin0_d0

3*cos0

X

- 

.l-q.q U*
(t + x')'

dx

(1 * x')'

I -f 2x2

-dX

I -Ť 4x"

to Prob. 18 in Sec. 16.4 from the

7.

8.

9.

10.

11.

12.

13.

r
Evaluate
details):

q-

29. l"o
14. What are improper integrals? Cauchy principal values?

Give examples.

15. Can the residue at a singular point be 0? At
pole?

16. What is a meromorphic function? An entire function? 31.
Give examples.

COMPLEX INTEGRALS

counterclockwise around C. (Show the details,)

30.
a simple r"o

l"o

J"

oo

@
Integrate

17.

18.

19.

tan Z.

Z,n ' 
\''

.. |-

*.r

.,.r

36. Obtain the answer

present Prob. 35.

sin 2z
_4l.

10z

2zti
iz*I

-2 -;- -, )<. .d I

-1

|-
|4 - -3

lz-t| :3
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Summary of Chapter 16

A Laurent series is a series of the form

(1) ík)
:r

-s- Z-J
n-O

an(z-z'+ž -!"--
n -I \4 1ol

(Sec. 16.1)

or, more briefly written [but this means the same as (1)!]

""Irfk*)(1*) í(z) :2 o.(z - zo)n, an: 2ri " k-- - hrl dď

where fl : 0, :i,-;r,. . . . This series converges in an open annulus (ring) Á with

Genter Zq. In Á the function /(z) is analytic. At points not in A it may have

singularities. The first series in (1) is a power series. In a given annulus, a Laurent

series of í(z) is unique, but /(z) may have different Laurent series in different annuli

with the same center.
Of particular importance is the Laurent series (1) that converges in a neighborhood

of z6 except at zg itself, say, for 0 < l. - zol < R (R > 0, suitable). The series (or

finite sum) of the negative powers in this Laurent series is called the principal part
of .f (z) at zo.The coefficient fu of Il(, - zo) in this series is called the residue of

f (z) at zo and is given by fsee (1) and (1*)]

1r
(2) Ď1 : Res í(z) : ,* 9 f |z't) dz*. Thus

z--.zo Zrrt J g
: Zrri Res /(z).

Z:Zo

bl can be used for integration as shown in (2) because it can be found from

1 l d*-1 \(3) L?. rr.l 
: ď ,\)::"\;rík - zos*f@]), (Sec. 16,3),

provided /(7) has at zg apole of order m; by definition this means that that principal
part has tl(, - zg)* as its highest negative power. Thus for a simple pole (m: I),

$ írr*, or*
"C

Res /(1) : lim (z - z f(z); also,
é- éo é-.o

pQ) pkg)
I\cs 

-
z zo Q(z) q'ko)

If the principal part is an infinite series, the singularity of f(z) at z6 is called an

essential singularity (Sec. 16.2).

Section 16.2 a\so discusses the extended complex plane, that is, the complex plane

with an improper point oo ("infinity") attached.

Residue integration may also be used to evaluate certain classes of complicated

real integrals (Sec. 16.4).
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Conformal Mappin8

If a complex functio fl w : í(z) is defined in a domain D of the z-plane, then to each Point

in D there coffesponds a point in the w-plane.In this way we obtain a maPPing of D onto

the range of values of f (z) in the w-plane. We shall see that if Í(z) is an analYllc function,

then the mapping given by w : í(z) is conformal (angle-preserving), excePt at Points

where the derivative f ' (7) is zero.

Conformality appeared early in history in connection with constructing maPS of the

globe, which can be conformal (can give directions conectly) or "equiareal" (give areas

Óonectly, except for a scale factor), but cannot have both properties, aS can be Proved
(see [GRS] in App. 1).

Conformality is the most important geometric property of analytic functions and gives

the possibility of a geometric approach to complex analysis. Indeed, just as in calculus

we use curves of real functions y : í(x) for studying "geometric" ProPerties of functions,

in complex analysis we can use conformal mappings for obtaining a deePer understanding

of properties of functions, notably of those discussed in Chap. 13.

indeed, we shall first define the concepts of conformal mapping and then consider

mappings by those elementary analytic functions in Chap. 13,

This is one purpose of this chapter. A second purpose, more imPortant to the engineer

and physicist, is the use of conformal mapping in connection with potential Problems. In

fact, in this chapter and in the next one we shall see that conformal maPPing Yields a

standard method for solving boundary value problems in (two-dimensiona1) Potential

theory by transforming a complicated region into a simpler one. CorresPonding

applications will concern problems from electrostatics, heat flow, and fluid flow.

In the last section (17.5) we explain the concept of a Riemann surface, which fits well

into the present discussion of "geometric" ideas.

Prerequisite: Chap. 13.

Sections that may be omitted in a shorter course: I1.3 and I1.5

References and Answers to Problems; App. 1 Part D, App, 2,

728
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17.1 Geometry of Analytic Functions:
Conformal Mappint

A. complex function

(1) w:í(z):l,L(x,y)+iu(x,y) (z:x+iy)

of a complex variable z gives a mapping of its domain of definition D in the complex

::::";,;,:;:i,i:.Tť}á;ii:xxffi í:,,Ht[,:,".iTffi iIJ3í,Ťt;I";;#"fi il:
for the points of a curve C tn D the image points form the image of C; similarly for other

point sets in D. Also, instead of the mapping by a function w : í(z) we shall say more

briefly the mapping w : fQ).

EXAMPLE l Mapping w = f|z| = za

Using polar forms z: ,"i'andw: ReiÓ, we have ,: Z' : ,2r2iu. Comparing moduli and arguments

givesR : 12 and ó:20. Hence circles r: roare mapped onto circles R: ,o2 and rays 0: loonto rays

ó:20o.Figure375showsthisfortheregionl=lzl <3l2,1116<0=rl3,whichismappedontotheregion
1= lrl =9l4,rl3< 0<2rl3.

In cartesian coordinates we have z : x + iy and

u:Re(z2|:*'-y'. u : Im 1z,21 : 2xy.

Hence vertical lines,r : c : consí aíe mapped onto t/ : ,2 - y'., :2cy. From this we can eliminatey. We
obtain y' : ,' - u anďuz _ 4r2y2. Together,

u2:4c2(c2-u) (Fie.376).

These parabolas open to the left. Similarly, horizontal lines y : k : const are mapped onto parabolas opening

to the right,

u2 :4k2(k2 + u) (Fig. 376). l

l2
(z-plane)

-2-101234u
(ro-plane)

Fig.375. Mapping w: zu. Lines |z| 
: const,ar1z: const and their images in the w-plane

1Th- gen".ul terminology is as follows. A mapping of a set Á into a set B is called surjective or a mapping

of Á onto B if every element of B is the image of at least one element of A. It is called injective or one,to-one

if different elements of Á have different images in B. Finally, it is called bijective if it is both surjective and

injective.
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Fig. 37ó. lmages of x : const, y : const under w : z'

Conformal Mapping
A mappin g w : í(z) is called conformal if it preserves angles between oriented curves

in magnitude as well as in sense. FiElre 377 shows what this means, The angle

a (0 i a a r) between two intersecting curves C1 and C2 is defined to be the angle

between their oriented tangents at the intersection point zg. And conformallryl means that

the images Cl* and C2* o} c, and C2 make the same angle as the curves themselves in

both magnitude and direction.

THEoREM 1

pRooF w: z2 hasacritical point atz: O,where í'(z):2z: Oandtheanglesaredoubled

(see Fig. 3]5), so that conformality fails,

The idea of proof is to consider a curve

C: zG) : x(t) + iy(t)

in the domain of /(z) and to show thatw : í(z) rotates all tangents at a point zo (where

f|ko) * 0) throuit tt" same angle. Now ž(t): dztdt: i(t) + iy(t) is tangentto Cin
(z) t".uure this is the limit of (zt - z lA,t (which has the direction of the secant Zl - Zo

(z-plane)

Fig.l77. Curves C., and C, and their respective images

C.,* and Cr* under a conformal mapping w : í(z)

(2)

=L

1
2

Conformality of Mapping by Analytic Functions

Themappingw:f(z)byananalyticfunction.fisconformal,
points, that is, points at which the derivative f ' is zero.

except at critica|

(ro-plane)

y=1
u

4

tr

1"-2

l
l
l

I

l
I 5u

x=I-
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in Fig. 378) as zlapptoaches z6 along C. The image C* of C isw : í(z(t)). By the chain
ru\e, iu : Í'(z(t))ž(r). Hence the tangent direction of C* is given by the argument (use
(9) in Sec. 13.2)

(3) argil : arg 7' + argž

where argŽ gtves the tangent direction of C. This shows that the mapping rotates all
directions at a point z6 in the domain of analyticity of / through the same angle arg f ' (z ,

which exists as long as _f'(eo) t 0. But this means conformality, as Fig. 377 illustrates
for an angle a between two curves, whose images C1* and C2* make the same angle
(because of the rotation).

Tangent

Fig. 378. Secant and tangent of the curve C

In the remainder of this section and in the next ones we shall consider various conformal
mappings that are of practical interest, for instance, in modeling potential problems.

EXAMPLE 2 Conformalityof w=zn
Themappin1w:zn,r:2,3,",,isconformal,exceptatz:O,wherew'-nzn-l:O.Forn:2thisis
shown in Fig. 375], we see that at 0 the angles are doubled. For general n the angles at 0 are multiplied by a
facíor n under the mapping. Hence the sector 0 < 0 < rln is mapped by z'onto the upper halt'-plane u > 0
(Fig. 379). ,l_

X

Fig.379. Mapping by w : z"

Mapping w = z * 1/z.Joukowski Airfoil

In terms of polar coordinates this mapping is

lw:u-|iu: r(cosáfi sin0)+; (cosO-i sin0).

By separating the real and imaginary parts we thus obtain

ExAMPLE 3

1u:acos0, u:bsin0 where q:rl -

Hence circles lrl: ,: const * 1 are mapped onto ellipses *2lo2 + y2lb2 :1. The circle r: 1 is mapped
onto the segment -2 < u < 2 of the u-axis. See Fig. 380.

lb:r--
r

711

tr

tr
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Now the derivative of ra; is

which is 0 at z: -+l. These are the points at which the mapping is not conformal. The two circles in Fig. 381

pass through z: _1. The larger is mapped onto a Joukowski aifoil. The dashed circle Passes through both -1
and 1 and is mapped onto a curved segment.

Another interesting application of w : 1 -l llz(the flow around a cylinder) will be considered in Sec. 18.4. l

Fig. 38l. Joukowski airfoiI

Conformalityofw=ez

From (10) in Sec. 13.5 we have|e'|: e* and Argz: y. Hence e' maps a vertical straight line x : Xg: ConSt

onto the circle |w| : e'o anď a horizontal straight line y : )sg : const onto the ray arg w : yo, The rectangle

in Fig. 382 is mapped onto a region bounded by circles and rays as shown.

The fundamental region - 7r < Atg z < rr of e" in the z-plane is mapped bijectively and conformallY onto

the entire w-plane without the origin w : 0 (because e" : 0 for no z). Figure 383 shows that the uPPer half

0 < y < rr of the fundamental region is mapped onto the upper half-plane 0 < argw < rr, the left half being

mapped inside the unit disk |r| 
jr and the right half outside (why?), l

Fig. 38O. Example 3

. l (z+lXz-l)
yv-l2_2

z1

ExAMPLE 4

3c

Fig. 382.

_3_2_10
Mappingbyw:e'

,
(e-plane) (ro-plane)

Fig.383. Mapping by w : e'

_1



SEc. l7.1 Geometry of Analytic Functions: Conformal Mapping

EXAMPLE 5 Principleof lnverse Mapping. Mapping w =Lnz
PrinciPle, The maPPing bY the inverse z : í-I(w) of w : í(z) is obtained by interchanging the roles of the
z-plane and the w-plane in the mapping by w : í(z).

Now the principal value n, : í(z): Ln { of the natural logarithm has the inverse z: .f*I(r) : e*.From
Example 4 (with the notations z anď w interchanged!) we know that /-11ur) : e* maps the fundamentur ,"gion
of the exponential function onto the z-plane withoutz : 0 (because e* + 0 for every rl. H"n." w: í(z): Lnz
maPs the z-Plane without the origin and cut along the negative real axis (where 0 : Im Ln z jumps by 2n)
conformally onto the horizontal strip - rr 1u < ,ITof the w-plane, where ly : u -| iu.

Since the mapping w : Ln z -l 2 differs from lu : Ln z by the translation 2ri (verttcally upward), this
lunction maPs the z-plane (cut as before and 0 omitted) onto the strip t š u < 3 rr. Similarly for each of the

:Ll,;ť"?rffi;JJTil":.];;;i:;:,3::,Í";,l;,';';,-,}T""::1T:Txlť;ffi :,i,:i:,;l
Magnification Ratio. By the definition of the derivative we have

(4) lim
z+zo

f(z) - f(zo)
( <,o

: lí'k |.
Therefore, the maPPing w : f(z) magnifies (or shortens) the lengths of short lines by
aPProximatelY the factor lf '(z I. The image of a small figure ,or7or*, to the original
figure in the sense that it has approximately the same shape. However, since /'(z) ňi",
from Point to Point, a large figure may have an image whose shape is quite different from
that of the original figure.

More on the Condition í'k) # 0. From (4) in Sec. 13.4 and the Cauchy-Riemann
equations we obtain

(5') lf 'k)l' : du
.
dx

-, l,dU l-11_| :
a*|

_6, óu _0u 0u

dx óy ay a*

that is,

(5) lf 'k)l' :

(#),- (#I

óu

0x

0u

í)x

arI
ó) l ó@. u)

óu l ó(x, y)

'r, 
I

This determinant is the so-called Jacobian (Sec. 10.3) of the transformation w : f(z)writteninrealform u: u(x, j),u: u(x,y). Hence f'(zo) * 0impliesthattheJacobian
is not 0 at 79. This condition is sufficient that the mapping w : í(z) in a sufficiently small
neighborhood of z6 is one-to-one or injective (different points have different images). see
Ref. [GR4] in App. 1.

1. Verify all calculations in Example 1.

2. Why do the images of the curves |e| : const and
atg z : const under a mapping by an analytic function
"f(z) intersect at right angles, except at points at which
í'(z) : 0?

3. Does the mapping w : ž : x - iy preserve angles in
size as well as in sense?

MAPP|NG OF CURVES
Find and sketch or graph the image of the given curves
under the given mapping.
4. x : 1,2, 3, 4,y : I,2,3, 4; w : 72
5. Curves as in Prob. 4, VV : z (Rotation)
6. lzl : I/3,I/2,1,2,3; Arg z: 0, t rrl4, -r r/2, +3d2,

*rr:w: Ilz

733
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MAPP|NG oF REGloNs FA|LURE OF CONFORMAL|TY

Find and sketch or graph the image of the given region Find all points at which the following mappings are not

under the given mapping.

7. -nl4< Arg 7 1 rrl4,Iz,| < ttZ,l, : z3

8. x > l.w: |lz

9. 1.1 > I,w -- 3z

10. Ime ) 0, w: I - z

I1-. xžO,y i 0, |z| = 
4;w:72

12. -1 3 xš 1, -r 1! 1 Ť;w : ez

13. ln3{x<ln5.w:e'
t4. -Ť<yš3n,w:e'
'1,5. 2= |z| = 

3, rl4 < 0 < rrl2,,w : Lnl,

16. CAS EXPERIMENT. Orthogonal Nets, Graph the

orthogonal net of the two families of level curves

Re í(z) : const and Im Í(z) : const, where

(a) í(z) : Z4, (b) í(z) : llz., (c) Í(z) : Ilz2,

(d) í(z) : (z + 
')/(1 

+ iz). Why do these curves

generally intersect at right angles? In your work,

experiment to get the best possible graphs, Also do the

same for other functions of youí own choice, Observe

and record shortcomings of your CAS and means to

oveícome such deficiencies.

@ MAGNlFlcATloN RATlo, JAcoBlAN
Find the magnification ratio M. Describe what it tells you

about the mapping. Where is M equal to 1? Find the

Jacobian "/.

conformal.

t7. zk4 - 5)

t9. cos rrz

2I.z2+az-fb
23. (, - a)3, (z3 - a')2

24. w : žz'
26.w:z3

18. z2 + Ilz2
2O. cosh2z.

22. exp (z5 - 80z)

25.w:e"
27. w : Lnz

28. w : 7lz

29. Magnification of Angles. Let í(z) be analytic at zo,

Suppose that f' (zo) : 0, " , , í'o-"(,o) : 0, Then

the mappin g w : í(z) magnifies angles with vertex at

zo by a factor k. Illustrate this with examples for

k : 2,3, 4,

30. Prove the statement in Prob, 29 for genera| k : I,

2, , , , . Hint, Use the Taylor series,

17 .7 Linear Fractional Transformations
Conformal mappings can help in modeling and solving boundary value problems by first

mapping regions cánformally onto another. We shall explain this for standard regions

(disks, half_planes, strips) in the next section. For this it is useful to know properlies of

special basic mappings. Accordingly, let us begin with the following very important class,

Linear fractional transformations (or Móbius transformations) are mappings

(1)
aZ+b (ad-bc*0)
,zt d

where a, b, c, d are complex or real numbers. Differentiation gives

(2)
Iw: a(cz 1- d) - c(az + b)

(cz + d)2

ad-bc
-----------.j

(cz -l d )'

This motivates our requirement ad - bc * O.It implies conformality for aII z. and excludes

the totally uninteresting case w' = 0 once and for a11. Special cases of (1) are

*:7*b
w:az with|a| :1

(3)
,:07 lb

(Trclnslations)

(Rotations)

(Line ar t r an sfo r mat i on s)

(Inversion in the unit circle).w:Ilz

w:
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ExAMPLE l Properties of the lnversion w = 1/z (Fig. 38a)

In polar forms z : ,riu and w : ReiÓ the inversion w : Ilzis

Reió_ 
1 _ 1 .,-l, andsives 1* : 

,.sn 
: 

; ,-"" and gives R: - , ó: -0.

Hencetheunitcircle]z| :r:lismappedontotheunitcircle|vr| :n:t;w:eió:n-i'.Forageneral;
theimagew:Ilzcanbefounclgeometricallybymarking|rl :n:llronthesegmentfromOtozandthen
reflecting the mark in the real axis. (Make a sketch.)

Figure 3B4 shows that i.y : l/z maps horizontal and vertical straight lines onto circles or straight lines. Even
the fbllowing is true.

w : Ilz maps evelry straight line or circle onto a circle or straight line.

715

Fig. 384. Mapping (lnversion) w = 1/z

Proof. Every straight line or circle in the z-plane can be written

A(x2 + y21 + Bx-l Cy -| D : 0

A:OgivesastraightlineandA+Oacircle. Intermsofzand!thisequationbecomes

Azž+r+*r++D:0.
Now w : liz. Substitution of z : Ilw and multiplicationby wll gives the equation

w*w w-wA+B +C-+Dww:022i

or. in terms of u and u,

A -l Bw - Cu -| D(u2 + u') : 0.

This represents a circle (if D + 0) or a straight line (if D : 0) in the w-plane.

(A,BC,Dreal).

l

THEoREM 1

The proof in this example suggests the use of e and ž instead of x and y, a general principle
that is often quite useful in practice.

Surprisingly, every linear fractional transformation has the property just proved:

Circles and Straight Lines

Everyl linear fractional transformation (I) maps the totality of circles and straight
lines in the z-plane onto the totality of circles and straight lines in the w-plane.
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p R o o F This is trivial for a translation or rotation, fairly obvious for a uniform exPansion or

contraction, and true for w : IlZ, as just proved. Hence it also holds for composites of

these special mappings. Now comes the key idea of the proof: represent (1) in terms of

these special mappings. When c:0, this is easy. When c * 0, the representation is

where

This can be verified by substituting K, taking the common denominator and simPlifYing;

this yields (t). We can now set

w1 l d, W4 : KWg,

and see from the previous formula that then w : VV4 * alc. This tells us that (1) is indeed

a composite of those special mappings and completes the proof. l

Extended Complex Plane
The extended complex plane (the complex plane together with the Point oo in Sec. 16.2)

can now be motivated even more naturally by linear fractional transformations as follows.

To each z for which cz -| d + }there coíTesponds a unique w tn(l). Now let c * 0.

Then for Z: -dlc we have cZ + d: 0, so that no }ť colTesponds to this z. This suggests

that we let w : oo be the image of z : -dlc.
Also, the inverse mapping of (1) is obtained by solving (1) for zi this gives again a

linear fractional transformation

dw-b
* 

-cw * a

When c * 0,thencw - a - 0for w: alc,andwe letalc betheimage of z: m, With

these settings, the linear fractional transformation (1) is now a one-to-one maPPing of the

extended z-plane onto the extended w-plane. We also say that everY linear fractional

transformation maps o'the extended complex plane in a one-to-one manner onto itself."

Our discussion suggests the following.

General Remark. If z : oo, then the right side of (1) becomes the meaningless exPression

(a. * + b)t(c. oo * d). We assign to it the value w : alc íf c * 0 and w : @if c : 0,

Fixed points

Fixed points of a mapplngw : í(z) are points that are mapped onto themselves, are "kePt

fixed" under the mapping. Thus they are obtained from

w:í(z):z.

The identity mapping w - z has every point as a fixed point. The mapPtngw : 2 has

infinitely many fixed points, w : Ilz has two, a rotation has one, and a translation none

in the finite plane, (Find them in each case.) For (1), the fixed-point condition w -- z. is

oz-|b
thus ,z'-(a-d)z-b:0,7: ,r*d'

1

K cz*d
a+-
C

ad-bc
v-l\--

C

1

3: 
-lil2

W1

(5)

736

(4)
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This is a quadratic equation in z whose coefficients all vanish if and only if the mapping
is theidentity mapping w: z (inthis case, a: d + 0,b: c:0). Hencewehave

THEoREM z Fixed points

A linear fractional transformation, not the identity, has at most two fixed points. If
a linear fractional transformation is known to have three or more fixed points, it
must be the identity mapping w : z.

To make our present general discussion of linear fractional transformations even more
useful from a practical point of view, we extend it by further facts and typical examples,
in the problem set as well as in the next section.

1. Verify the calculations in the proof of Theorem 1.

2. (Composition of LFTs) Show that substituting a linear
fractional transformation (LFT) into a LFT gives a
LFT.

3. (Matrices) If you are familiar with 2 X 2 matrices,
prove that the coefficient matrices of (1) and (4) are
inverses of each other, provided ad - bc : I, and
that the composition of LFTs coíTesponds to the
multiplication of the coefficient matrices.

Y1 |NVERSE

Find the inverse z: z(w). Check the result by solving z(w)
for w,.

15. Find a LFT whose (only) fixed points are -2 and,2.

16. Find a LFT (not w : z) with fixed points 0 and l.
17. Find all LFTs with fixed points -l and 1.

18. Find all LFTs whose only fixed point is 0.

19. Find all LFTs with fixed points 0 and oo.

20. Find all LFTs without fixed points in the finite plane.

@ FIxED polNTs
Find the fixed points.

8. w : 81z5

10.w:7-1 4i
-1

12. w
z+ I

3z,*2
14. w z.- 1

9.w:(4+i)z
11.w:(z-i)2

2iz-I
13. w

z,-l- 2i

4z] i

-3iz -l 1

z.* i6,w: .z- l

7z

2z-i
2z. 1- 5i

7. w:
4z.

17.3 Special Linear Fractional Transformations
In this section we shall see how to determine linear fractional transformations

az+b
cz-| d

(ad-bc*0)

for maPPing certain standard domains onto others and how to discuss properties of (1).
A maPPing (1) is determined by a, b, c, d, actually by the ratios of three of these

constants to the fourth because we can drop or introduce a common factor. This makes it
plausible that three conditions determine a unique mapping (1):

(1) w:



738

THEoREM l
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Three Points and Their lmages Given

Three given distinct points z1, z2, zg cafi always be mapped onto three prescribed

distinct points w1, ||2, wz by one, and only one, linear fractional transformation

w : í(z).This mapping is given implicitly by the equation

W-l0t
(2)

lil-Wz lilz-Wt Z-Zz Zz-Z.t

(If one of these points is the point a, the quotient of the two dffirences containing

this point must be replaced by I.)

PRooF Equation (2) is of the form F(w) : G(z) with linear fractional F and G. Hence

w : F-l(|G(z)) -_ í(z), where F-1 is the inverse of F and is linear fractional (see (4) in

Sec. 17.2) and so is the composite r-'(C(z)) (by Prob. 2I),that is, w : Í(z) is linear

fractiona1. Now if in (2) we set w : w., w2, w3 on the left and Z : z1, Z2, Z3 on the right,

we see that

F(w1) : 0, F(w2) __ I,

G(er) : 0, G(z) : l,

F(w"): a

G(4) : @

From the first column, F(w) : G(zt),thus w1 : F-l(G(z)) : Í(zt). Similarly, W2: f k),
w3 : f k). This proves the existence of the desired linear fractional transformation.

-To 
prove uniqueness, let w : g(z) be a linear fractional transformation, which also

maps zi oí|to wi, j : I,2,3. Thus wj : sk). Hence g-l(wj) : zj, where wj : Í(z),
toi.tÉ., s-r(Ík) : zi, a mapping with the three fixed points z1, z2, zs. By Theorem 2

in Šec. I7.2, this is the identity mapping, 7-I(íkD - z for all z. Thus í(z) : g(z) for all

z, the uniqueness.
The last statement of Theorem 1 follows from the General Remark in Sec. 17.2.

Mappin8 of Standard Domains by Theorem ]

Using Theorem 1, we can now find linear fractional transformations according to the

fo11owing

principle. prescribe three boundary points zI, z2, zg of the domain D in the z-Plane.

Choosá their images 1,1,,1l w2, w3 on the boundary of the image D* of D in the w-Plane.

3ffi il:l,iln'n]Ť";::T":3],#ffi i:T:1?",T*:l.ťr,:;ť*í,i,"li|ontoits

Ex A M F L,E t Mapping of a Half_Plane onto a Disk (Fig. 385)

Find the linear fractional transformation (1) that maps zt: -I, z2: O, Z3 : 1 onto 'ill: -I, w2: -i,
w3: !, respectively.

Solution. From (2) we obtain

w-(-1). -'-1 _ z-(-1). 0-1
w-I -'-(-1) z-1 0-(-1)

z- i
w : ----.-----.

-tz. -| I

<2 <,3

thus
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Fig. 385. Linear fractional transformation in Example 1

Let us show that we can determine the specific properties of such a mapping without much calculation. For

z:Jwehavelr.,:(x-í)l(-ix-l 1),thuslr| :t,sothatthex-axismapsontotheunitcircle.Sincez:j
gives w : 0, the upper half-plane maps onto the interior of that circle and the lower half-plane onto the exterior.

i*?#"ŤT:'JJ::;;ií;i",jlfr'j;J 'ffi il:'#Hi:L::"fi Tl",i ň';:',|i,í*i;*' .'jjj
and perpendicular to lr| : t (by conformality; see Fig. 385). Similarly, the horizontal lines y : const map onto

circles through w- : i and perpendicular to S (by conformality). Figure 385 gives these circles for y > 0, and

for y ( 0 they lie outside the unit disk shown. l

EXAMPLE 2 Occurrenceof m

Determine the linear fractional transformation that maps z1 : 0, zz: I, z3: oo onto w1,: -I,w2: -i,
}ť3 : 1, respectively.

Solution. From (2) we obtain the desired mapping

This is sometimes called the Cayley transfotmatior.2Inthis case, (2) gave at first the quotient (1 - cc)/(1 - co),

which we had to replace by 1. l

EXAMPLE 3 Mapping of a Disk onto a Half-Plane

Find the linear fractional transformation that maps Z1 : -1, z2: i, zs: 1onto }ť1 : 0, wz: i,w3: ,n,

respectively, such that the unit disk is mapped onto the right half-plane. (Sketch disk and half-plane.)

Solution. From (2) we obtain, after replacing (i - a)l(w * oo) by 1,

Mapping half-planes onto half-planes is another task of practical interest. For instance,

we may wish to map the upper half-plane y 
= 

0 onto the upper half-plane u > 0. Then
the x-axis must be mapped onto the z-axis.

2eRtHUR CAYLEY (l821-1895), English mathematician and professor at Cambridge, is known for his

important work in algebra, matrix theory, and differential equations.

z- i

z.-| i

l_zi1
z- I

!=5

,' i l \ '.

l

l

l

l

l
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110w:-. cz.- I

To see this, take 1.1 
: 1, obtaining, with c : 26 &s in (3),

|, - ,ol: lz - ,|

EXAM PLE 4 Mapping of a Half-Plane onto a Half-Plane

Find the linear fractional transformation that maps zl : -2, zz : 0, zz : 2 onto w1 : @, lluz : |l4,

w3 : 3/8, respectively.

Solution. You may verify that (2) gives the mapping function

z* 1,: 2z+4

What is the image of the x-axis? Of the y-axis?

Mappings of disks onto disks is a third class of practical problems. We may readily

verify that the unit disk in the z-plane is mapped onto the unit disk in the w-plane bY the

following function, which maps z6 olrto the center w : 0.

l

(3) C:Zg, |.o| < t.

Hence

:|z| Iz-c|
: lzž - czl: ll - czl : |cz - l|.

l,u| : |z - zo|l|rz - || : l

from (3), so that |e| : 1 maps onto |w| : 1, as claimed, with z6 going onto 0, as the

numerator in (3) shows.
Formula (3) is illustrated by the following example. Another interesting case will be

given in Prob. 10 of Sec. 18.2.

EXAMPLE 5 Mapping of the Unit Disk onto the Unit Disk

Taking zo: * in (3), we obtain (verify!)

2z- I
(Fig. 386). l

z-)

y=-

//l

' - - -,://, _ _- j-'l
/

Fig. 386. Mapping in Example 5

1
,-X=a

--!----],=O
.---{:.r-"=-:ilI

iii
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ExAMPLE 6 Mapping of an Angular Region onto the Unit Disk

Certain mapping problems can be solved by combining linear fractional transformations with others. For instance,

to map the angular region D: -1116 = argz< 1116 (Fig. 387) onto the unit disk lr,y| = t, we may map D by
z : z3 onto the right z-half-plane and then the latter onto the disk lr| = t uy

z"-1w-i -zo+1

741

lZ-1w:i- Z+l

1. Derive the mapping in Example 2 from (2).

2. (Inverse) Find the inverse of the mapping in Example
1. show that under that inverse the lines x : const are

the images of circles in the w-plane with centers on the

line u : 1.

3. Verify the formula (3) for disks.
4. Derive the mapping in Example 4 from (2), Find its

inverse and prove by calculation that it has the same
fixed points as the mapping itself. Is this surprising?

5. (Inverse) If w : í(z) is any transformation that has an

inverse, prove the (trivial!) fact that í and its inverse
have the same fixed points.

6. CAS EXPERIMENT. Linear Fractional
Transformations (LFTs). (a) Graph typical regions
(squares, disks, etc.) and their images under the LFTs in
Examples 1-5.
(b) Make an experimental study of the continuous
dependence of LFTs on their coefficients. For instance,

change the LFT in Example 4 continuously and graph

the changing image of a fixed region (applying
animation if available).

LFTS FROM THREE POINTS AND
THEIR IMAGES

Find the LFT that maps the given three points onto the three
given points in the respective order.

combined

(Z-plane)

Fig. 387. Mappin3 in Example 6

(z-plane) (rr,-plane)

This is the end of our discussion of linear fractional transformations. In the next section
we turn to conformal mappings by other analytic functions (sine, cosine, etc.).

7.

8.

9.

10.

11.

12.

13.

14.

15.

-1,0, 1 onto -0.6 - 0.8i, -1, -0.6, + 0.8i

0, I,2 onto 1, }, }

Zi, -2i,4 onto -4 + 2i, -4 - 2i,0

i, -I, 1 onto -I, -i, i
0, 1, * on16 oo, 1, 0

0, -i, i onto - 1, 0, oo

2i, i,0 onto Ei,2i, *

0,2i, -2i onto -1,0, oo

-1,0, 1 onto 0, 1, -1

Find all LFTs w(z) that map the x-axis onto the u-axis.

Find a LFT that maps |z| š 1 onto |rl = 1 so that

z : ilZ is mapped onto w : 0. Sketch the images of
the lines x: const andy : const.

Find an analytic function that maps the second quadrant
of the z-plane onto the interior of the unit circle in the
w-plane.

Find an analytic function w : í(z) that maps the region
0 S arg z< rrl4 onto the unit disk lr| = t.
(Composite) Show that the composite of two LFTs is
a LFT.

1,6.

17.

18.

19.

20.
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17.4 Conformal Mappint by Other Functions
So far we have discussed the mapping by zn, " (Sec. I7.D and linear fractional

transformations (Secs. I'7.2,I] .3), and we shall now turn to the mapping by trigonometric

and hyperbolic analytic functions.

(z-plane) (ro-plane)

Fi6.388. Mapping w: u l iv: sinz

Sine Function. Figure 388 shows the mapping by

u -l iu: sinz : sinx cosh y + i cosx sinhy (Sec. 13.6).

u : Sin x cosh y, u : cos x sinh y.

Since sin z is periodic with period 2rr, the mapping is certainly not one-to-one if we

consider it in the full z-plane. We restrict z to the vertical strip S; -Ž, = 
y = lrr in

Fig. 388. Since í'(z) : cos z : 0 at z : tirr, the mapping is not conformal at these two

critical points. We claim that the rectangular net of straight lines x : const and y : const

in Fig. 388 is mapped onto a net in the w-plane consisting of hyperbolas (the images of
the vertical lines x : const) and ellipses (the images of the horizontal lines y -- const)

intersecting the hyperbolas at right angles (conformality!). Corresponding calculations are

simple.From(2)anďtherelationssin2x*cos2x:Iandcosh2y-sinh2y:Iweobtain

(1)

(2)

u2

,ir'" cos2 x

U2

,'u' U'_L 

- 

: sin2x * cos2 X: l
cosh2y ' sinh2y

: cosh2y - sinh2 y: I (Hyperbolas)

(Ellipses).

Exceptions aíe the vertical lines x : tin, which are "folded" onto u Š -1 and

u> I (u : 0), respectively.
Figure 389 illustrates this further. The upper and lower sides of the rectangle are mapped

onto semi-ellipses and the vertical sides onto -cosh 1 < 4 š -1 and 1 Š u < cosh 1

(u : 0), respectively. An application to a potential problem will be given in Prob. 5 of
Sec. 18.2.

:

I

742
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Fig. 389. Mapping by w : sin z

Cosine Function. The mapping } : cos z could be discussed independently, but since

(3) ,h/ : cos z : sin (z + *rĎ,

we see at once that this is the same mapping as sin z preceded by a translation to the right
through }rr units.

Hyperbolic Sine. Since

(4) w : sinh z: -i sin (ie),

the mapping is a counterclockwise rotation Z : iz through ln (i.e.,90'), followed by the
sine mapptngZ*: sin Z,followed by a clockwise 9Oo-rotationw : -iZ*.

Hyperbolic Cosine. This function

(5) w: coshz: cos(iz)

defines a mapping that is a rotation Z : iz followed by the mapping w : cosZ.
Figure 390 shows the mapping of a semi-infinite strip onto a half-plane by , : cosh z.

Sincecosh0: 1, thepoint Z:0 is mappedonto lv: 1. For realz: xt_ 0, coshzis
real and increases with increasing x ín a monotone fashion, starting from 1. Hence the
positive x-axis is mapped onto the portion u > l of the u-axis.

For pure imaginary z : iy we have cosh ly : cos y. Hence the left boundary of the strip
ismappedontothesegment I> u > -1of the u-axis,thepoint z: Ti coffespondingto

w : cosh irr : cos ?7 - -1.
On the upper boundary of the strip, ! : T, and since sin rr : 0 and cos ,l7 - -I, it follows
that this part of the boundary is mapped onto the portion u š - 1 of the a-axis. Hence
the boundary of the strip is mapped onto the u-axis.It is not difficult to see that the interior
of the strip is mapped onto the upper half of the w-plane, and the mapping is one-to-one.

This mapping in Fig. 390 has applications in potential theory, as we shall see in
Prob. 12 of Sec. 18.3.

yl

l,-Ílu|
l j %

--- -r _i o 1 ,

Fig. 39O. Mapping by * : cosh z

743
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Tangent Function.
unit circle by w :
(Sec. 13.6)

Sln Zw: taíz: 
- 

:
cos Z

Hence if we set Z - u2i:z and use lli :

The right Z-half-plane is
Z : t has its image g(1)

Figure 391 shows the mapping of a vertical infinite strip onto the

tun ,, accomplished in three steps as suggested by the representation

(ei.z - e-iz)li _ (ezi, - 7)li

,i,z 1 ,-zz ezi' + !

-l, we have

Z- I

Z+ I(6) w : tafiz -- -iW, W- Z : e2i'

We now see that w : tarl zts alinear fractional transformation preceded by an exPonential

mapping (see Sec. 1,1.D and followed by a clockwise rotation through an angle Lrr (90'),

Ťt 
" 

,trip is S; _}rr 1 x 1!n, and we show that it is mapped onto the unit disk in the

w_plane. Since 7 '' ,zl" - ,=-2u+2'o*, *" see from (10) in Sec. 13.5 that|z| : e-2u,

AigZ : 2x. Hence the vertical lines x : -rl4, O, Trl4 are mapped onto the rays

xrg z - _ rrl2, 0, rrl2,respectively. Hence S is mapped onto the right Z-half-Plane. Also

lzl": e-2u .1if y > 0 and lzl> 1if y ( 0. Hencetheupperhalf of Sis mapPedinside

the unit circle lzl : 1 and the lower half of S outside |zl : 1, as shown in Fig. 391,

Now comes the linear fractional transformation in (6), which we denote bY S(D:

Z-I
W:g(Z):-;,-l+ 1

For real Zthisis real. Hence the real Z-axis is mapped onto the realW-axis. Furthermore,

the imaginary Z_axisis mapped onto the unit circle lwl : 1 because for pure imaginary

Z : iY we get from (7)

iY-I
lwl : ls(iy)l : iY+I

(7)

- 1.

mapped inside this unit circle lwl : 1, not outside, because
: oinside that circle. Finally, the unit circle lZl: 1 is mapped

(e- plane) (Z-plane)

Fi6. 39t.

( I4r-plane)

Mapping by w : tan z

(u-plane)

r-
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onto the imaginary W-axis, because this circle is Z : eiÓ, so that (7) gives a pure imaginary
expression, namely,

. ;),, eió - l ,i+tz - e-iÓlz i sin ($l2)
^ l ^La\ó\" , 

eió + I eiólz + e-iÓlz cos (Ql2)

From the l4z-plane we get to the w-plane simply by a clockwise rotation through rrl2; see (6).

Together we have shown thatw: tanz maps S: -rrl4 { Re 71 rrl4 onto the unit
disk |w| : 1, with the four quarters of ,S mapped as indicated in Fig. 391. This mapping
is conformal and one-to-one.

CONFORMALMAPPINGw=e'
Find and sketch the image of the given region under w : e'.

1.0<x<2._7šy=Ť
2. -Išxš 0,0=!=rrl2
3. -0.5 { x 1 0.5,3rrl4 < y < 5nl4
4. -3 { x 1 3, rrl4 < y < 3rrl4
5.0<x1I,01ylrr
6.x10,-nl2<y<rrl2
7. xarbitrary.OS y<2rr

8. CAS EXPERIMENT. Conformal Mapping. If your
CAS can do conformal mapping, use it to solve
Prob. 5. Then increase y beyond Ťr, sá!, to 50rror 100zr.

State what you expected. See what you get as the
image. Explain.

@ coNFoRMAL MApplNG w = sin z
Find and sketch or graph the image of the given region
under w: sinz.
9. 0 < x 5 r,0 = v < l

10. 0 1x 1rrl6,y arbitrary

11. 0 1 x 12rr, I 1y < 5
12. -nl4{x{rrl4,0<y<3
13. Determine all points at which w : sin z is not

conformal.

14. Find and sketch or graph the images of the lines x : 0,
+ 1116, + rrl3, + nl2 under the mapping w : sin 4.

15. Find an analytic function that maps the region R
bounded by the positive x- and y-axes and the hyperbola
xy : rrl2 in the first quadrant onto the upper half-plane.
Hint. Firsí" map the region onto a horizontal strip.

16. Describe the mapping w : cosh z in terms of the
mapping w : sin z and rotations and translations.

17. Find all points at wirich the mappingw : cosh zrz is
not conformal.

@] coNFoRMAL MApplNG w = cos z
Find and sketch or graph the image of the given region
underw:cosz.
18.01x{rrl2,0<y<2
19.0{-xlŤ,O<y<1
20. - l <x< 1.0<.v< l

21. rrlx{2rr,y10
22.01xl2r,I/2<y<1

23. Find the images of the lines y : c : const under the
mapping w: cosz.

24. Show that w: Ln + maps the upper half-planez* I t

onto the horizontal strip 0 < Im w š ,rr as shown in
the figure.

ABCDE
o

(z-plane)

Dx(-) E)l =Át( B*(-)

U
(ro-plane)

Problem 24

rl4 < 0 < rl2 under the mapping w : Ln z.

ni

C*
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17.5 Riemann Surfaces. optional

w:Ll+iu:z2

,:{z

Riemann surfaces are suďaces on which multivalued relations, such aS w -- {z o'w : lfl z'

become single_valued, that is, functions in the usual Sense, We explain the idea, which is

simple_bui ingenious, one of the greatest in complex analysis.

The mapping given by

(1)
(Sec. 11,1)

(Sec. 13.2)

is conformal, except atZ:0, where n" :2z -_ 0, At z: O, angles are doubled under

the mapping. Thus the right z-half-plane (including the positive y-axis) is mapped onto

the full w-plane, cut alorrg the negative half of the u-axis this mapping is one-to-one'

Similarly for the left z-haňplane (including the negative Y-axis). Hence the image of the

full z_plane under , : zr.,Jovers the w-pline twicÓ" in the sense that everY w * 0 is the

image of two e_points; if z1 is one, the other is _z1. For examp\e, Z : l and _l are both

mapped onto w - -1,

Now comes the crucial idea. we place those two copies of the cut w_plane upon each

other so that the upper sheet is the i*ug" of the right half z_plane R and the lower sheet

is the image of tneleft half z-plane L. We join the two sheets crosswise along the cuts

(along the negative u_axis) so that if z moves from R to L, its image can move from the

upper to the lower sheet. The two origins are fastened together because w : 0 is the image

of just one z-poin t, z :0. The s,rrfaJe obtained is called a Riemann surface (Ftg.392a).

w : O is called a "winding point" or branch point. , : Z'maps the full e-plane onto

this surface in a one-to-one manner,

By interchanging the roles of the variables z and w it follows that the double_valued

relation

(2)

becomes single-valued on the Riemann surface in Fig. 392a,that is, a function in the usual

Sense. We can let the upper sheet coffespond to the principal value of {Z.Its image is

the right w_half_plan". Ťň" other sheet is then mapped onto the left w_half_plane,

(a) Riemann surface ot {Z

Fig. 392.

3_
(b) Riemann surface of r/ e

Riemann surfaces

Similarly, the triple-valued relation * : {rbecomes single-valued on the three-sheeted

Riemann surface in Eig. 392b, which also has a branch point at z: 0,
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The infinitely many-valued natural logarithm (Sec. 13.7)

w :lnz: Lnz -l 2nrri (n : 0, -+l, -+2,. . .)

becomes single-valued on a Riemann suďace consisting of infinitely many sheets. w : Ln z
corresponds to one of them. This sheet is cut along the negative x-axis and the upper edge
of the slit is joined to the lower edge of the next sheet, which corresponds to the argument
rr 1 0 é 3rr, that is, to

w : Lnz * 2rri.

The principal value Ln z maps its sheet onto the horizontal strip - rr 1u < rr. The function
w : Ln z * 2rri maps its sheet onto the neighboring strip rr 1 u = 3rr, and so on. The
mapping of the points z * 0 of the Riemann surface onto the points of the w-plane is
one-to-one. See also Example 5 in Sec. 17.1.

1.

)

3.

4.

Consider , : {z, Find the path of the image point w

of a point z that moves twice around the unit circle,
starting from the initial position z : I.

Show that the Riemann surface of w, : {2 consists of
n sheets and has a branch point at Z: 0.

Make a sketch, similar to Fig. 392, of the Riemann
surface of Ýž.

Show that the Riemann suďace of w : \G - I)k - 2)

has branch points at z : 1 and z : 2 and consists of

two sheets that may be cut along the line segment from
1 to 2 and joined crosswise. Hint. Introduce polar
coordinates z - I : rleiq', z - 2 : r2eiH2.

RIEMANN SURFACES
Find the branch points and the number of sheets of the
Riemann surface.

5. \,5. + 5 e. Ýlt - ,lya - ,1
7.5+Ý2z+i 8. ln(3:-4ť)
9. e{ l0. \/7

1. How did we define the angle of intersection of two
oriented curves, and what does it mean to say that a

mapping is conformal?
2. At what points is a mapping w : í(z) by an analytic

10. What is a Riemann suďace? Why was it introduced?
Explain the simplest example.

function not conformal? Give examples. tilJ6l MAPPING w = z'
3. What happens to angles at z6 under a mapping w : í(.z)

,f f 
, 

ko)' L o, í,,kš : 0, ,,,(ro) + 0? Find and sketch the image of the given curve or region under
.,. _ _2

4. What do "surjective," "injective," and "bijective" vV - <' '

mean'/ 
*-J----'- 

1,1, y: -I,!:1 12, xy _ _4

5. What mapping gave the Joukowski airfoil? 13, lZl : 4,5,1arg zl <- rrl4 14, 0 < y < 2

6. Whatarelinearfractionaltransformations(LFTs)?Why 15'} < x { 1 16' Imz ) 0

are they important in connection with the extended
complex plane?

7. Why did we require that ad _ bc * 0 for a LFT? W,rrl MAPP|NG w = 7/z
8. What are fixed points of a mapping? Give examples. Find and sketch the image of the given curve or region under

9. Can you remember mapping properties of u, : sin z? w : Ilz.
cosz? e"? 17. x - -1 18. y: 1

STlONS AND PROBLEMS
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19. |z - +l: +

21,. |arg z| < nl4

@j81 FAILuRE oF coNFoRMALlTy
Where is the mapping by the given function not conformal?
(Give reason.)

23. 5z7 + 7z5

25. sin 2z -l cos 2z

27. exp(z4 + z') 28. z -| Ilz(z * 0)

W LINEAR FRAcTIoNAL
TRANSFORMATIONS (LFTs)

Find the LFT that maps

29. 0,1, 2 onto 0, i,2i, respectively

30. -I,1,2 onto 0, 2,3l2, respectively

31. 1, - I, - i onto 1, - I, i, fespectively

32. *\, -i, j onto 1, - i,2, 0, respectively

33. 0, *, -2 onto 0, 1, oo, respectively

34, 0, i,2i onto 0, a,2i

CHAP. 17 Conformal Mapping

20.|z|{rl,y{0
22.|z| { l.x<O.y>0

24. cosh2z

26. cos rrz2

GIVEN REGloNs
Find an analytic function w : í(z) that maps:

41. The infinite strip 0 { y < rrl3 onto the upper half-plane
u)0.

42. The interior of the unit circle l.| : t onto the exterior
of thecircle|w+ ll :S.

43. The region x ) 0, y ) 0, xy < k onto the strip
0<u<1.

44. The semi-disk l.| < t, x ) 0 onto the exterior of the

unit circle lrl : t.

45. The sector 0 { arg a 1 rrl3 onto the region u 1 I.

F540l Fixed Points. Find all fixed points of

z*)

z.-l I

3zt2
37. w z,- I

(2+i)z*l
39. rr, : 

-

z- i

Ziz- I36.w:----
7, 1- Zt

izt5
38. w: 

-
5z.* i

40. w: z4 + z - 81

A complex function w : f (z) gives a mapping of its domain of definition in the

complex z-plane onto its range of values in the complex w-plane.If í(z) is analytic,
this mapping is conformal, that is, angle-preserving: the images of any two
intersecting curves make the same angle of intersection, in both magnitude and sense,

as the curves themselves (Sec. I7 .I). Exceptions are the points at which í' (z) : O

("critical points," e.g. z: 0 for w : z2).

For mapping properties of e", cos Z, sin z, etc. see Secs. 11.I and I7.4.

Linear fractional transformations, also called Móbius transformations

(1)
aZ+bw: cz+d

(Secs. I].2, I1.3)

(ad - bc * 0) map the extended complex plane (Sec. I7.2) onto itself. They solve
the problems of mapping half-planes onto half-planes or disks, and disks onto disks
or half-planes. Prescribing the images of three points determines (1) uniquely.

Riemann surfaces (Sec. 17 .5) consist of several sheets connected at certain points
called branch points. On them, multivalued relations become single-valued, that is,

functions in the usual sense. Examples. For , : \/ z we need two sheets (with

branch point 0) since this relation is doubly-valued. For ly : In z we need infinitely
many sheets since this relation is infinitely many-valued (see Sec. 13.7).

Conformal Mappint
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Complex Analysis and
Potential Theory

Laplaces's equation V2O : 0 is one of the most important PDEs in engineering
mathematics, because it occurs in gravitation (Secs. 9.], I2.10), electrostatics (Sec. 9.7),
steady-state heat conduction (Sec. I2.5), incompressible fluid flow, etc. The theory of
solutions of this equation is called potential theory (although "potential" is also used in
a more general sense in connection with gradients; see Sec. 9.7).

In the "two-dimensional case" when Q depends only on two Cartesian coordinates x
and y, Laplace's equation becomes

V2o: Q**lQoo:O.

From Sec. 13.4 we know that then its solutions Q are closely related to complex analytic
functions O + i Ý. This relation is the main reason for the importance of complex analysis
in physics and engineering. (We use the notation O + l Ý since u l iu will be needed
in conformal mapping.)

In this chapter we shall consider this connection and its consequences in detail and
illustrate it by modeling typical examples from electrostatics (Secs. 18.1, I8.2), heat
conduction (Sec. 18.3), and hydrodynamics (Sec. 18.4). This willlead to boundary value
problems, some of which involving functions whose mapping properties we have studied
in Chap. 17. Further relating to that chapter, in Sec. 18.2 we explain conformal mapping
as a method in potential theory.

In Sec. 18.5 we derive the important Poisson formula for potentials in a circular disk.
Finally, in Sec. 18.6 we show that results on analytic functions can be used to

characterize 7eneral properties of harmonic functions (solutions of Laplace's equation
whose second partial derivatives are continuous).

Prerequisite: Chaps. 13, 14, IJ.
References and Answers to Problems: App. 1 Part D, App.2.
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]8.] Electrostatic Fields
The electrical force of attraction or repulsion between charged particles is governed bY

Coulomb's law, This force is the gradient of a function O, called the electrostatic

potential. At any points free of charges, Ó is a solution of Laplace's equation

y2ó : 0.

The surfaces o : const are called equipotential surfaces. At each point p at which the

gradient of o is not the zero vector, it is perpendicular to the surface @ : Const through
-p; 

thatis, the electrical force has the direction perpendicular to the equiPotential surface.

(See also Secs. 9.] and I2.I0.)
The problems we shall discuss in this entire chapter are two-dimensional (for the reason

just given in the chapter opening), that is, they model physical systems that lie in
three-dimensional space (of course!), but are such that the potential O is indePendent of

one of the space coordinates, so that O depends only on two coordinates, which we call

x and y. Then Laplace's equation becomes

A2@ a2Q
V:Q: o -r _ :0.

Ex' i]v'

Equipotential surfaces now appear as equipotential lines (curves) in the xy-Plane.

Let us illustrate these ideas by a few simple basic examples.

potential Between parallel plates

Find the potential o of the field between two parallel conducting plates extending to infinity (Fig. 393), which

are kept at potentials ó1 and O2, respectively.

Solution. From the shape of the plates it follows that Q depends only on -r, and Laplace's equation becomes

Q" : O. By integrating twice we obtain Q : ax f b, where the constants a and Ď are determined bY the given

boundary values of Q on the plates. For example, if the plates correspond to 1 and x : 1, the solution is

o(r) : *ra, - ó1),r * }1o, + o.;.

The equipotential surfaces are parallel planes.

Fig. 393. Potential in Example 1

(1)

ExAM.PLE 1

l

Fig. 394. Potential in Example 2
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Potential Between Coaxial Cylinders

Find the potential Ó between two coaxial conducting cylinders extending to infinity on both ends (Fig, 394)
and kept at potentials Q1 and O2, respectively.

SOlUtiOn. Here O depends only on , : \/*' + r,2, for reasons of symmetry, and Laplace's equation
rzun+ n,Lr* uB6:0[(5),Sec. l2.9] withttuu: Oand tt:Qbecomes ró" + O' :0,Byseparatingvariables
and integrating we obtain

ó"l

-:ó'r ln O' : -ln r -l ?í. Q' : !, O : alnr -| b
r

and a and Ď are determined by the given values of Q on the cylinders. ALthough no infinitely extended conductors
exist, the field in our idealized conductor will approximate the field in a long finite conductor in that part u,hich
is far away from the two ends of the cylinders.

Potential in an Angular Region

Find the potential O between the conducting plates in Fig. 395, which are kept at potentials O1 (the lower plate)
and O2, and make an angle a, where 0 ( a = rr. (In the ťigure we have a : 120" : 2rrl3.)

SOlUtiOn. 0: Arg z(z: x + iy * 0) isconstantonrays 0: consí,Itis harmonicsinceit is theimaginary
part of an analytic function, Ln; (Sec. 13.7). Hence the solution is

l

O(",l):a+bArgz

with a and b determined tiom the two boundary conditions (given

a+b(-la):Qr, 0+

Thus rz : (óz + Q)lz, b : (Qz - ó)la. The answer is

_l1

values on the plates)

b(}@: a2.

Fig. 395. Potential
in Example 3 0: arcían "}, l

x
Q(;,y) : 1 (Qz+ ór) + - (Qz- Or)0,

Complex Potential
Let Ó(x, }) be harmonic in some domain D and Ý(x, y) a harmonic conjugate of O in D,
(See Sec. 13.4, where we wrote u and u, now needed in conformal mapping from the next
section on; hence the change to O and Ý.) Then

F(z) : @(x, y) + iÝ(x, y)

is an analytic function of z - x * i1l. This function F is called the complex potential
coffesponding to the real potential Ó. Recall from Sec. 13,4 that for given Q, a conjugate
Ý is uniquely determined except for an additive real constant. Hence we may say the
complex potential, without causing misunderstandings.

The use of F has two advantages, a technical one and a physical one. Technically, F is
easier to handle than real or imaginary parts, in connection with methods of complex
analysis. Physically, Ý has a meaning. By conformality, the curves : consl intersect
the equipotential lines O : const in the Jy-plane at right angles [except where F'(z): 0].
Hence they have the direction of the electrical force and, therefore, are called lines of force.
They are the paths of moving charged particles (electrons in an electron microscope, etc.).

E X A M P L E 4 Complex Potential

In Example 1, a conjugate is Ý : a.v-.It follows that the complex potential is

F(z) : az -| b : ax + b -l icty,

(2)

ExAMPLE
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and the lines of force are horizontal straight lines y : const parallel to the x_axis,

Complex Potential

InExample2wehave Q: alnrt b: aln|z| + b.AconjugateisÝ: aArgz,Hencethecomplex

potential is
F(z): aLnz-l b

and the 1ines of force are straight lines through the origin. F(z) may also be interpreted as the comPlex Potential

of a source line (a wire perpendicular to the xy-plane) whose trace in the xy-plane is the origin, l

Complex Potential

In Example 3 we get F(z)by noting that l Ln z : iln|z| _ e.g z, multiplying this by _b, and adding a:

F(z) : a - ibLn z : a,l b Argz - ib In|z|,

We see from this that the lines of force are concentric circles lr| : ,orrt. Can you sketch them?

Superposition
More complicated potentials can often be obtained by superposition,

Potential of a Pair of Source Lines (a Pair of Charged Wires)

Determine the potential of a pair of oppositely charged source lines of the same strength at the Points z : c and

7. : -c on the real axis.

Solution. From Examples 2 and 5 it follows that the potential of each of the source lines is

Or: Kln|z - c| and Qz: -K ln |z + c|,

respectively. Here the rea1 constant K measures the strength (amount of charge). These are the real Parts of the

complex potentials

F{z):KLn(z-c) and Fzk): -KLn (z + c).

Hence the complex potential of the combination of the two Source lines is

(3) F(z) : Fr(z) + Fzk) : KíLn(z - c) - Ln (z + c)].

The equipotential lines are the curves

l

ExAMPLE 5

ExAMPLE 6

ExAMPLE 7

l

lz-.I
o : Re F(z|:1( ln 

I z + c |: 
const,

lz-.I
| . -. |: 

const,thus

These are circles, as you may show by direct calculation. The lines of force are

Ý : Im F(z) : K[Arg (z - c) - Arg (z + c)] : const.

We write this briefly (Fig. 396)

Ý : K(01 - 02): const,

Now 91 - l2isthe angle between the line Segments from z to c and -c (Fig, 396), Hence the lines of force

are the curves along each of which the line Segment S,, -c < ,{ < c appears under a constant angle, These curves

are the totality of circular arcs over S, as is (or should be) known from elementarY geometrY, Hence the lines

of force are circles. Figure 397 shows some of them together with some equiPotential lines.

In addition to the inierpretation as the potential of two Source lines, this potential could also be thought of as

the potential between two circular cylinders whose axes are parallel but do not coincide, or aS the Potential

between two equal cylinders that lie outside each other, or as the potential between a cYlinder and a Plane wall,

Explain this, using Fíg.391. l

The idea of the complex potential as just explained is the key to a close relation of Potential

theory to complex analysis and will recur in heat flow and fluid flow,

r-
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-c

Fig. 39ó.

gX

Arguments in Example 7

753

r poTENTlAL

Find and sketch the potential. Find the complex potential:

1. Between parallel plates at x : -3 and 3, potentials
140 V and260 V, respectively

2. Between parallel plates aí x : -4 and 10, potentials
4.4kY and 10 kV, respectively

3. Between the axes (potential 110 V) and the hyperbola
xy : I (potential 60 V)

4. Between parallel plates aty : x and x -| k, potentials
0 and 100 V, respectively

E coAxlAL cyLlNDERs
Find the potential between two infinite coaxial cylinders of
radii 11 and 12 having potentials Ul and U2, respectively.
Find the complex potential.

5. ', 
: 0.5, 12 : 2.0, Ut : - 110 V, Uz: 1l0Y

6. ,-,, : I, 12 : 10, Ul: 100 Y, Uz: 1 kV
7. ,r: I, ť2: 4, Ut: 200Y, Uz: 0

8. ,1 : 0.1, 12: 10, Ur : 150 Y, Ur: 50 V

9. Show that O : 0lrr: (I/n) arctan (y/x) is harmonic in
the upper half-plane and satisfies the boundary condition
O(x, 0) : 1 ifx { 0 andOifx > 0, and the conesponding
complex potential is F(z) : -(iln) Ln z,

10. Map the upper half z-plane onto the unit disk lr| = t ,o
that 0, *, - 1 are mapped onto 1, l, -i, respectively. What
are the boundary conditions on |w| : 1 resulting from
the potential in Prob. 9? What is the potential at w : 0?

11. Verify by calculation that the equipotential lines in
Example 7 are circles.

12. CAS EXPERIMENT. Complex Potentials. Graph
the equipotential lines and lines of force in (a)-(d) (four
graphs, Re F(e) and Im F(a) on the same axes). Then
explore further complex potentials of your choice with
the purpose of discovering configurations that might
be of practical interest.

(a) F(z) : z2 (b) F(z) : iz2
(c) F(z) : Ilz (d) F(d : ilz

Fig.397. Equipotential lines and lines
of force (dashed) in Example 7

E 15-l poTENTlALs FoR oTHER
coNFlGURATIoNs

13. Show that F(z) : arccos z (defined in Problem Set
13.7) gives the potential in Figs. 398 and 399.

,l

Fig. 398. stit

,l

*

Fig. 399. Other apertures

14. Find the real and complex potentials in the sector
*d6 < 0 < rr/6between the boundary 0: +116
(kept at 0) and the curve x3 - 3xy2 : 1, kept at 110 V.

15. Find the potential in the first quadrant of the xy-plane
between the axes (having potential 220 Y) and the
hyperbola xy : I (having potential 110 V),

L\j]

1

(=

/.
((,

\

]_
,1,

J,-t

,
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l8.2 Use of Conformal Mappint. Modelint
Complex potentials relate potential theory closely to complex analysis, as we have just

seen. Another close relation results from the use of conformal mapping in modeling and

solving boundary value problems for the Laplace equation, that is, in finding a solution

of the equation in some domain assuming given values on the boundary ("Dirichlet
problem"; see also Sec. 12.5). Then conformal mapping is used to map a given domain

onto one for which the solution is known or can be found more easily. This solution is

then mapped back to the given domain. This is the idea. That it works is due to the fact

that harmonic functions remain harmonic under conformal mapping:

THEoREM l Harmonic Functions Under Conformal Mapping

Let ď be harmonic in a domain D* in the w-plane. Suppose that w : lt * iu : í(z)
is analytic in a domain D in the z-plane and maps D conformally onto D*. Then

the function

(1) O(x, y) : O*(r(r, y), u(x, y))

is harmonic in D.

p R o o F The composite of analytic functions is analytic, as follows from the chain rule. Hence,

*,t,J[ffin?il,iŤ,b{,;'!;,,l,,'*9),"J,:T,J::"]J.i,,;,]Í}áii'},ff i;ii:
analytic in D. Hence its real part Q(x, }) : Re F(z) is harmonic tn D. This comPletes the

proof.
We mention without proof that if D* is simply connected (Sec. 14.2), then a harmonic

::frffi:: ;'ri""""ilToii:'ner 
Proof of Theorem 1 without the use of a harmonic

l

EXAM PLE l Potential Between Noncoaxial Cylinders

Model the electrostatic potential between the cylinders C1: |z| : l and C2:|z * 2l5|:2l5 inFig.400. Then

give the solution for the case that C1 is groundeď, (Jy: 0 V, and C2 has the potential Uz: I10Y.

Solution. We map the unit disk |e] 
: l onto the unit disk |w| : l in such a way that C2 is mapped onto

some cylinder C2*: lr| : ,o.By (3), Sec. 17.3, a linear fractional transformation mapping the unit disk onto

the unit disk is

z- b
w:-

bz.- 1

%=O

Uz= IIO v

(a) z-plane (b) tv-plane

Fig.4OO. Example 1

(2)

754

Ut= O

Uz= ILo v

"
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where we have chosen b : zo real without restriction. z6 is of no immediate help here because centers of circles
do not map onto centers of the images, in general. However, we now have two free constants b and 16 and shall
succeed by imposing two reasonable conditions, namely, that 0 and 4l5 (Fig.400) should be mapped onto 16

and -16, respectively. This gives by (2)

a quadratic equation in 16 with solutions ro : 2 (no good because ro < 1) and 16

function (2) with b: ll2 becomes that in Example 5 of Sec. 17.3,

o-b
-I^,o- 0-1 -U1

(a) z-plane

and with this,

Fig.4Ol. Examp[e 2

4l5-b
-lo- 4b/5-1-

4/5 - ro

4rgl5 - | '

: 1l2. Hence our mapping

(3)

From Example 5 in Sec. l8.1, writing w for z we have as the complex potential in the w-plane the function
F*lw; : a Ln w t t and from this the real potential

Ó*(u,u): Re F*(yu) : aln |w| + r.

Thisisourmodel.Wenowdetermineaandkfromtheboundaryconditions.If|r.r,| :l,thenQ*:alnl*r:0,
hence k : 0. If lr| : .o : ll2, then Q* : aln(1l2): ll0, hence a: 7lOlln(1l2): -158.7. Substitution
of (3) now gives the desired solution in the given domain in the a-plane

2z- |w:f(z): ^.<,L

Ftzl : F*( [k)) : a Ln ': - .'1.- Z

l .l- r l

O(x,y): ReF(z) : alnl" : l, a: _158.1,
l z-2l'

^ 7-|z
W : .í(z) |-Z.

ExAMPtE 7

The real potential is

Can we "see" this result? Wel|, O(x, y): const if and only ií|(2z - 1)l(z - 2)|: const, that is, |w|: const
by (2) with b : 1l2. These circles are images of circles in the z-plane because the inverse of a linear fractional
transformation is linear fractional (see (4), Sec. 17.2), and any such mapping maps circles onto circles (or
straight lines), by Theorem 1 in Sec. l7.2. Similarly for the rays argw : const. Hence the equipotential lines
Q(x, y) : const are circles, and the lines of force are circular arcs (dashed in Fig, 400). These two families of
curves intersect orthogonally, that is, at right angles, as shown in Fig. 400, I

potential Between Two semicircular plates

Model the potential between two semicircular plates P1 and P2 in Fig. 401a having potentials -3000 V and
3000V, respectively. Use Example 3 in Sec. l8.1 and conformal mapping.

SOlUtiOn. Sfup 1. We map the unit disk in Fig. 401a onto the right half of the w-plane (Fig. 40lb) by using
the linear fractional transformation in Example 3, Sec. 17.3:

-2 kv

(b) tv-plane

,I
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Theboundarylzl :lismappedontotheboundaryll:0(theu_axis),withz:_1,i, lgoingontovy:O,i,x,

respectively, and z : -; orrto w : -i.Hence the upper semicircle of |z| 
: 1 is maPPed onto the uPPer half'

and the lower semicircle onto the lower half of the u-axis, so that the boundary conditions in the w-plane are

as indicated in Fig. 40lb,

Step 2. We determine the potential O*(r,r, u) in the right half-plane of the w-plane. Example 3 in Sec. 18' 1 with

a: T,Ur : _3000, anďUz : 3000 [with ó'k(rl, u) instead of O(x, Y)] Yields

Ox(a, u) : E: arctan
u

u

On the Positive half of the imaginary axis (q: Ťt2),this equals 3000 and on the negative half -3000, as it

shouldbe.o*istherealpartofthecomplexpotential

p*(r) Ln w.

Step 3. We substitute the mapping function into Fx to get the complex potential F(z) in Fig,401a in the

form

F(z):F*(í(z)):-

The real part of this is the potential we wanted to determine:

O(x, y) : Re F(z) Im Ln Arg

6000 ,

Ťr

6000

-E,
Ť

6000i 1-|zLn,.-Ťr L-z

1*z 6000
l-

6000

7r

|-|z
I-z

AsinExamplelweconcludethattheequipotentiallineso(x,y):constarecirculararcsbecausetheycorrespond
toArg t(l + z)/(1 _ z)f : const,hencétóarg w: Const.Also,Arg w: Const areraysfromOtoco,theimages

of Z: _1 and Z: I,respectively. Henceihe equipotential lines all have _1 and 1 (the points where the

boundary potential jumps) as their endpoints rr,ig. +bral. The lines of force are circular arcs' too' and since theY

must be orthogonal to the equipotential lines, tňeir centers can be obtained as intersections of tangents to the

unit circle with the x-axis, (Explain!)

Further examples can easily be constructed. Just take anY maPPing w : Í(z) in ChaP' 17'

a domain D in the Z_plane, its image D* in the w_plane, and a potential o* in D*, Then

(1) gives a potential in p. Make op ,o111" examples of your own, involving, for instance,

linear fractional transformations,

Basic Comment on Modeling

we formulated the examples in this section as models on the electrostatic potential. It

is quite important to realize that this is accidental. we could equally well have phrased

everything in terms of (time-independent) heat flow; then instead of voltages we would

have had temperatures, the equipotential lines would have become isotherms (: lines

of constant temperature), and the lines of the electrical force would have become lines

alongwhichheatflowsfromhighertolowertemperatures(moreonthisinthenext
section). or we could have talked about fluid now; then the electrostatic lines of force

would have become streamlines (more on this in Sec, 18,4), What we again see here is

theunifyingpowerofmathematics:differentphenomenaandsystemsfromdifferent
areas in physics having the same types of model can be treated bY the Same mathematical

methods. what differs from ur"u ,o u."a is just the kinds of problems that are of practical

interest.
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1. Verify Theorem 1 for Q*(a, u) : u2 - u2,
w : í(z) : e' and any domain D.

2. Yeify Theorem 1 for Q*(a, u) : uu, w : f (z) : e",
and D: x š 0, 0 S y < rr. Sketch D and D*.

3. Carry out all steps of the second proof of Theorem 1

(given in App. 4) in detail.
4. Derive (3) from (2).

5. Let Dx be the image of the rectangle D:
0 < x íŽn,0 S y š 1 underw : sin z, and
Q*(u, u) : u2 - u2. Find the corresponding
potential Q in D and its boundary values.

6. What happens in Prob. 5 if you replace the potential
by the conjugate Ox - Zuu? Sketch or graph some of
the equipotential lines O : const.

7. CAS PROJECT. Graphing Potential Fields.
(a) Graph equipotential lines in Probs. l and 2.

(tl) Graph equipotential lines if the complex potential
is F(z) : iz2, F(z) : e', F(z) : ie', F(z1 : nž'.

(c) Graph equipotential suďaces corresponding to
F(z) : ln z as cylinders in space.

8. TEAM PROJECT. Noncoaxial Cylinders. Find the
potential between the cylinders C1: lr| : t (potential
(Jt:0) and C2: |z - ,|: c (Uz: 110V), where
0 { c < }. Stetch or graph the equipotential curves
and their orthogonal trajectories for c : 0.1, 0,2,0.3,
0.4, Try to think of the furlher extension C; |z| : t,
C2:|z - cl : p* c.

9. Find the potential <D in the region rR in the first quadrant
of the z-plane bounded by the axes (having potential
Ur) and the hyperbola y : Ilx (having potential 0) in
two ways, (i) directly, (ii) by mapping R onto a suitable
infinite strip.

l8.3 Heat Probtems
Laplace's equation also governs heat flow problems that are steady, that is, time-independent.
Indeed, heat conduction in a body of homogeneous material is modeled by the heat
equation

Tt: c2Y2T

where the functi on T is temperature, T, : 0Tl6t, / is time, and c2 is a positive constant
(depending on the material of the body; see Sec. l2.5). Hence if a problem is steady, so
that Tr: 0, and two-dimensional, then the heat equation reduces to the two-dimensional
Laplace equation

(1) Y2T : T** l Tro : 0,

so that the problem can be treated by our present methods.

10. (Extension of Example 2) Find the linear fractional
transformationz: g(Z)tllatmaps|Z| < 1onto l.| = t
with Z : ilT being mapped onto e : 0. Show that
Zl : 0.6 + 0.8l is mapped onto z : -1 and
Zz: -0.6 + 0.8i onto z : 1, so that the equipotential
lines of Example 2look in|Z| = 1 as shown ínFig.4O2.

Fig.4O2. Problem'l0

11. The equipotential lines in Prob. 10 are circles. Why?
12. Show that in Example 2 the y-axis is mapped onto the

unit circle in the w-plane.

13. Find the complex and real potentials in the upper
half-plane with boundary values 0 if x 1 4 and 10 kV
ifx}4onthex-axis.

14. (Angular region) Applying a suitable conformal
mapping, obtain from Fig. 401b the potential O in the
angular region -ln < k8 z < }zr such that O : -3 kV
if Arg z: -l4ŤrandQ:3kVif Arg z:in.

15. At z: -+- 1 in Fig.401a the tangents to the equipotential
lines shown make equal angles (1116). Why?

757
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T(x, y) is called the heat potential. It is the real part of the complex heat Potential

to lower temperatures.
It follows that all the examples considered so far (Secs. 18.1, 18.2) can now be

reinterpreted as problems on heat flow. The electrostatic equipotential lines O(x, Y) : Const

now become isotherms 7(x, y) : const, and the lines of electrical force become lines of

heat flow, as in the following two problems,

E XA M P L E l Temperature Between Parallel Plates

Find the temperature between two parallel plates x : 0 and x: dinFig.403 having temPeratures 0 and 100"C,

respectively.

Solution. As in Example 1 of Sec.

Ď : 0 and a: 100ld. The answer is

The curves T(x, y) :
the curves Ý(x, y) :

The corresponding complex potential is F(z)

along the lines .v : const.

F(z) : T(x, y) + iÝ(x, y).

const are called isotherms (: lines of constant temperature) and

const heat flow lines, because along them, heat flows from higher

l8.1 we conclude thatT(x,l): ax -F Ď, From the boundary conditions,

100
T(x, y) : d .x ['C].

--(100ld)z.Heatflowshorizontallyinthenegativex.direction l

EXAMPLE 7 Temperature Distribution Between a Wire and a Cylinder

Find the temperature field around a long thin wire of radius rt : l mm that is electricallY heated to T1 : 500'F

and is surrounded by a circular cylinder of radius rz : 100 mm, which is kePt at temPerature T2 : 60'F bY

cooling it with air. See Fig. 404. (The wire is at the origin of the coordinate system.)

Solution. 7dependsonlyonr,forreasonsof symmetry.Hence,asinSec, 18,1 (Example2),

T(x, y) : aln r _| b.

The boundary conditions are

Zr:500 : alnl+ b, T2:60: aln l00 + Ď,

Hence Ď : 500 (since ln l : 0) and a: (60 - b)l|n 100 : -95.54. The answer is

Z("r, _v) 
: 500 - 95.54ln r ['F],

The isotherms are concentric circles. Heat flows from the wire radially outward to the cylinder.

function of r. Does it look physically reasonable?

7 = 60"F

Fig.403. Example 1 Fig.4O4. Example 2

sketch j" as a
l

O
O
O

ll

F-

Jc

Fig.4O5. Example 3
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ExAMPLE 3

ExAMPLE 4

(,2)
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Mathematically the calculations remain the same in the transition to another field of
application. Physically, new problems may arise, with boundary conditions that would
make no sense physically or would be of no practical interest. This is illustrated by the

next two examples.

A Mixed Boundary Value Problem

Find the temperature distribution in the region in Fig. 405 (cross section of a solid quarter-cylinder), whose
vertical portion of the boundary is at 20'C, the horizontal portion at 50"C, and the circular portion is insulated.

Solution. The insulated portion of the bounclary must be a heat f]ow line, since by the insulation, heat is
prevented íiom crossing such a curve, hence heat must flow along the curve. Thus the isotherms must meet

such a curve at right angles. Since Z is constant along an isotherm, this means that

along an insulated portion of the boundary.

Here 0Tlr)n is the normal derivative of ?", that is, the directional derivative (Sec. 9.7) in the direction normal
(perpendicular) to the insulated boundary. Such a problem in which 7is prescribed on one portion of the boundary
and í)Tlt)n on the other portion is called a mixed boundary value problem.

In our case, the normal direction to the insulated circular boundary curve is the radial direction toward the

origin. Hence (2) becomes í)T/ór - 0, meaning that along this curve the so|ution must not depend on r. Now
Argl : 0 satisfies (l), as well as this condition, and is constant (0 and rl2) on the straight portions of the

boundary. Hence the solution is of the íbrm

7(x, _v) 
: a0 -l b.

The boundary conditions yield a, rr/2 + b : 20 and a, 0 * b : 5}.This gives

7(.r, y) : 50 -
y

0: arcían L

The isotherms aIe portions of rays 0 : const. Heat flows from the ,r-axis along circles r : const (dashed in
Fig. 405) to the y-axis. l

(a) z-plane (b) rr.,-plane

Fi6. 406. Example 4

Another Mixed Boundary Value Problem in Heat Conduction

Find the temperature field in the upper half-plane when thex-axis is kept atT: OoC for x < - 1, is insulated
fbr -1 { "r { l, and is kept at T:20'C forr ) 1 (Fig. 406a).

Solution. We map the half-plane in Fig. 406a onto the vertical strip in Fig. 406b, find the temperature T*(u, u)

there, and map it back to get the temperature T(x, y) in the half-plane.
The idea of using that strip is suggested by Fig. 388 in Sec. 17.4 with the roles of z : x + ly and r,l, : u -| iu

interchanged. The figure shows that { : sin vu maps our present strip onto our half-plane in Fig. 406a. Hence
the inverse function

w : /(z) : arcsin z

aT

-:0átl

60
0.

Ťr

O
ll

F-

,I

7=0"C -1 \lnsulated 7 T=2O.C

(a) z-plane

,I

,ft
2

,
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maps that half-plane onto the strip in the w-plane. This is the mapping function that we need according to

Theorem 1 in Sec. 18.2.

The insulated segment -1 (;r { 1 on the x-axis maps onto the segment -rl2 < u 1 rr/2 on the u-axis.

The rest of the x-axis maps onto the two vertical boundary portions rl2 and tl2, u } 0, of the strip.

This gives the transformed boundary conditions in Fig. 406b for T*(u, u), where on the insulated horizontal

boundary, 3T*l0n: óT*lí)u: 0 because u is a coordinate normal to that segment.

Similarly to Example 1 we obtain

T*(u,u):10 + ! u
Tr

which satisfies all the boundary conditions. This is the real part of the complex potential F*(w) : 10 + (20lr)w.

Hence the complex potential in the z-plane is

20
F(z') : F*(.f(z.)) : 10 + 

- 
arcsin,

Ťr

and Z(x, )) : Re F(z) is the solution. The isotherms are ,l : const in the strip and the hyperbolas in the z-plane,

perpendicular to which heat flows along the dashed ellipses from the 2Oo-portion to the cooler Oo-Portion of the

boundary, a physically very reasonable result. l

This section and the last one show the usefulness of conformal mappings and complex

potentials, The latter will also play a role in the next section on fluid flow.

1. CAS PROJECT. Isotherms. Graph isotherms and

lines of heat flow in Examples 24. Can you see from

the graphs where the heat flow is very rapid?

2. Find the temperature and the complex potential in an

infinite plate with edges y : x - 2 andy : x -l 2kept
at - 1OoC and 20oC, fespectively.

3. Find fhe temperature between two parallel plates y : 0

and y : d kept at temperatures OoC and 100oC,

respectively, (i) Proceed directly. (ii) Use Example 1

and a suitable mapping.

4. Find the temperature T in the sector 0 < Arg z š rrl3,

1.1 = I if T : 20"C on the x-axis, Z : 50oC on

y : \,5 x, and the curved portion is insulated.

5. Find the temperature in Fig. 405 if T : -20"C on the

y-axis, Z : 100'C on the x-axis, and the circular
portion of the boundary is insulated as before.

6. Interpret Prob. 10 in Sec. 18.2 as a heat flow problem
(with boundary temperatufes, say, 20oC and 300"C).

Along what curves does the heat flow?

7. Find the temperature and the complex potential in the

first quadrant of the z-plane if the y-axis is kept at

100oC, the segment 0 { ;r { 1 of the x-axis is insulated

and the portion x } I of the x-axis is kept at 200'C.
Hint. Use Example 4.

8. TEAM PROJECT. Piecewise Constant Boundary
Temperatures. (a) A basic building block is shown

in Fig. 407. Find the corresponding temperature and

complex potential in the upper half-plane.

(b) Conformal mapping. What temperature in the

first quadrant of the z-plane is obtained from (a) by the

mapping w : a + z2 and what are the transformed
boundary conditions?
(c) Superposition. Find the temperature Z* and the

complex potential F8 in the upper half-plane satisfying

the boundary condition in Fig. 408.

(d) Semi-infinite strip. Applying w : cosh z to (c),

obtain the solution of the boundary value problem in

Fig. 409,

T* =Tz a T* =Tt u

Fig.4O7. Team Project 8(a)

?'{-=0 T,k=To 7-Y.=0

Fig.4O8. Team Project 8(c)

Fig. 409. Team Project 8(d)

T* = To 7-Y'= 0

+,í!lij.,",.
|:
|:::,!:.,
i:|::.|::+|
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TEMPERATURE DlsTRlBUTloNs lN
PLATEs

Find the temperature T(x, y) in the given thin metal plate
whose faces are insulated and whose edges are kept at the

indicated temperatures or are insulated as shown.

10. y

(2)

called the
Ý(x, y) :

(3)

F(z): O(x, y) + iÝ(x,y),

complex potential of the flow, such that the streamlines are given by
const, and the velocity vector or, briefly, the velocity is given by

V : V, + iV2: P' 1z)

Fig. 4l0. Velocity

761

11. y 12. y

T

O

14.

O

Il

šl

18.4 Fluid F[ow
Laplace's equation also plays a basic role in hydrodynamics, in steady nonviscous fluid
flow under physical conditions discussed later in this section. In order that methods of
complex analysis can be applied, our problems will be two-dimensional, so that the
velocity vector V by which the motion of the fluid can be given depends only on two
space variables x and y and the motion is the same in all planes parallel to the xy-plane.

Then we can use for the velocity vector V a complex function

V:Vr+iV2

giving the magnitude |V| and direction Arg V of the velocity at each point z : x + iy.
Here V1 and V2 are the components of the velocity in the x and y directions. V is tangential
to the path of the moving particles, called a streamline of the motion (Fig. 410).

We show that under suitable assumptions (explained in detail following the examples),
for a given flow there exists an analytic function

(l)

7=0"C

O
O

ď
ll

ts

13.

7=0'C X

VzE
!
l
!
l

I

I

l

>l
vl

stream l i ne

T=To 7= 100'C

7=0'C
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where the bar denotes the complex conjugate. Ý is called the stream function. The

function O is called the velocity potential. The curves ó(x, y) : const are called

equipotential lines. The velocity vector V is the gradient of O; by definition, this means

that

(4)

Indeed, for F : O + lÝ, Eq. (a) in

second Cauchy-Riemann equation.

ao
1/Yt - ^ .

CJX

A2o 62Q
VzQ: * ^ o :0.

dx' dy"

Sec. 13.4 is F' : Q" t lÝ, with Ý, : -@o by the

Together we obtain (3):

óo
ífvq - 

-
'0y

ó2q/ ó2Ý
v2Ý: . i . o :0.

dx' dy"

r' rr>: Q, - i *: ó, + ibu : Vt 1- iV2: 1l,

Furthermore, since F(z) is analytic, Q and Ý satisfy Laplace's equation

(5)

Whereas in electrostatics the boundaries (conducting plates) are equiPotential lines, in

fluid flow the boundaries across which fluid cannot flow must be streamlines. Hence in

fluid flow the stream function is of particular importance.

Before discussing the conditions for the validity of the statements involving (2)-(5), let

us consider two flows of practical interest, so that we first see what is going on from a

practical point of view. Further flows are included in the Problem Set.

EXAMPLE 1 Flow Around a Corner

The complex potential F(z) : z' : *2 - y2 + 2ixy models a flow with

Equipotential lines ó: x2 -y2: const

streamIines

From (3) we obtain the velocity vector

Ý :Zxy: const

(Hyperbolas)

(Hyperbolas).

í/ '.,v2 - LJ,V : 2i : 2(x - iy), that is, V1: 2x,

The speed (magnitude of the velocity) is

|v|:\/vr'*É:*/7*r'
The flow may be interpreted as the flow in a channel bounded by the positive coordinates axes and a hYPerbola,

Say, ,y : 1 (Fig. 411). We note that the speed along a streamline S has a minimum at the point P where the

cross section of the channel is large. 
" l

Fig.4tl. Flow around a corner (Example 1)
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EXAMPLE 2 FlowAround a Cylinder

Consider the complex potential

763

F(:): Ó(x,y) + iÝ(x,y): z f

Using the polar form z : ,ri', we obtain

F(z): ,riu + } ,-u': (, - +) "", 0 + i (r- i) ,,,',

Hence the streamlines are

Ý(x, y) : (" - i) ,'" 0 : const.

Inparticular,Ý(.r,y):0givesr-llr:Oorsin0:0.Hencethisstreamlineconsistsoftheunitcircle(r:Ilr
gives r: l) and thex-axis (0: 0 and 0: rr). For large |z| the term l/z.in F(z) is small in absolute value, so
that fbr these z the flow is nearly uniform and parallel to the x-axis. Hence we can interpret this as a flow around
a long circular cylinder of unit radius that is perpendicular to the z-plane and intersects it in the unit circle izl : l
and whose axis corresponds to z : 0.

The flow has two stagnation points (that is, points at which the velocity Vis zero), at1: -r l. This follows
from (3) and

F'(z) : l - hence z2 - I : O. (See Fig. 412.) l

Fig. al2. Flow around a cylinder (Example 2)

Assumptions and Theory Underlying (2)-(5)

THEoREM I Complex Potential of a Flow

If the domain of flow is simply connected and the flow is irrotational and
incompressible, then the statements involviny Q)-6) hold. In particular, then the

flow has a complex potential F(z), which is an analytic function. (Explanation of
terms below.)

P R O O F We prove this theorem, along with a discussion of basic concepts related to fluid flow.
(a) First Assumption: Irrotational. Let C be any smooth curve in the z-plane given

by z(s) : x(s) * iy(s), where s is the arc length of C. Let the real variable V, be the
component of the velocity V tangent to C (Fig. 4I3). Then the value of the real line integral

l

-

(6) f vra,
"C

1
Z
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Fig. 413. Tangential component of the

velocity with respect to a curve C

taken along C in the sense of increasing s is called the circulation of the fluid along C,

a name that will be motivated as we proceed in this proof. Dividing the circulation bY the

length of C, we obtain the mean velocityt of the flow along the curve C. Now

Vr: lVl cos d Gig. al3).

Hence V, is the dot product (Sec. 9.2) of V anď the tangent vector dzlds of C (Sec. L7.I);

thus in (6),

ds - Vldx + Vzdy.

The circulation (6) along C now becomes

v,ds:(r,*-,,*)

(1)

As the next idea, let C be a closed curve satisfying the assumption as in Green's theorem

(Sec. I0.4), and let C be the boundary of a simply connected domain D. SuPPose further

that V has continuous partial derivatives in a domain containing D anď C. Then We can

use Green's theorem to represent the circulation around Cby a double integral,

í"r, o, : I"rr, dx -| vz dy).

IJ (*-Ť) dxdy

called the vorticity of the flow. The vorticity

(8)
r
P (V1 dxtVzdy):

The integrand of this double integral is

divided by 2 is called the rotation

(9) tl(x,y):+(* Ť)

1

b-a

1

í

ID"1iritior, í(x) dx : mean value of / on the interval a š x š b,
^b

l
a

I"

* IJ",,y)dxdy:

/(s) ds : mean value of f on C

mean value of f on D

(l, : length of C),

(A : area of D).
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We assume the flow to be irrotational, that is, a(x, y) = 0 throughout the flow; thus,

(10)
]Vz _
ax

Av,j:0.
0y

To understand the physical meaning of vorticity and rotation, take for C in (8) a circle.
Let r be the radius of C. Then the circulation divided by the length 2rrr of C is the mean
velocity of the fluid along C. Hence by dividing this by r we obtain the mean angular
velocity r,.16 of the fluid about the center of the circle:

(ůo:#IJ (#- Ť) dx dy : # IJ,r,, y) dx dy.

aV"+ - -0
óy

If we now let r ---> 0, the limit of r,l9 is the value of al at the center of C. Hence a(x, y)
is the limiting angular velocity of a circular element of the fluid as the circle shrinks to
the point (x, y).Roughly speaking, if a spherical element of the flwid were suddenly
solidified and the surrounding fluid simultaneously annihilated, the element would rotate
with the angular velocity a.

(b) Second Assumption: Incompressible. Our second assumption is that the fluid is
incompressible. (Fluids include liquids, which are incompressible, and gases, such as air,
which are compressible.) Then

(11)
óVt

3x

in every region that is free of sources or sinks, that is, points at which fluid is produced
or disappears, respectively. The expression in (11) is called the divergence of Vand is
denoted by div V. (See also (7) in Sec. 9.8.)

(c) Complex Velocity Potential. If the domain D of the flow is simply connected
(Sec. I4.2) and the flow is irotational, then (10) implies that the line integral (7) is
independent of path in D (by Theorem 3 in Sec. I0.2, where F, : VI, Fz : V2, Fg : 0,
and z is the third coordinate in space and has nothing to do with our present z). Hence if
we integrate from a fixed point (a, b) in D to a variable point (x, y) in D, the integral
becomes a function of the point (x, y), say, O(x, y):

(12)
^k. ul
l
l

" <a, bl
Q(.r, y) (V1 dx + V2 dy).

We claim that the flow has a velocity potential @, which is given by (I2). To prove this,
all we have to do is to show that (4) holds. Now since the integral (7) is independent of
Path, Vl dx t Vz dy is exact (Sec. I0.2), namely, the differential of O, that is,

V1 dx t Vzdy: * O* * P ar.
0x í)y J

From this we see that Vt: 6Ql6x andV2: dQ.l6y, which gives (4).
That Ó is harmonic follows at once by substituting (4) into (11), which gives the first

LapIace equation in (5).
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We finally take a harmonic

Also, since the second partial

complex function
F(z) : ó(x, y) * iÝ(x, y)

is analytic in D. since the curves.Ý(x,]).- const.T,: T::*]1i':ii:,:'",;T'::XT";:
:"ilJj'ó""rí,:- ,ors/ (except *t "."'ri 

(e) : 0), we conclude that Ý(x' Y) : Const are
,-:/-\ :^ +1-o nnmnlev nofential Of the

ilJ".TJ#iJJr:":'J:'.ffTr: ;;"- function and F(z) is the complex potential of the
lj-^,,ooinn .rf the imnortant

ffi i['[T# il ;;* oi^in"o..m 1 as well as our discussion of the imPortant
l

conjugate Ý of O, Then

derivatives of Q and Ý
the other equation in (5) holds,

are continuous, we see that the

l
role of complex analysis in compressible fluid flow,

These problems should encourage you to experiment with

various íunctions F(z), many of which model interesting

flow patterns.

1. (Parallet flow) Show that F(z) : -iKz (K positive

real) describes a uniform flow upward, which can be

interpreted as a uniform flow between two parallel lines

(parallei planes in three-dimensional space), See

Fig.4|4.Find the velocity vector, the streamlines, and

the equipotential lines,

FLOW PATTERNS: STREAMLINES,

COMPLEX POTENTIAL

Fig.4l4. Paratlel flow in Problem ]

7. What F(z) would be suitable in E,xample 1 if the angle

of the corner were rrl3?

8. Sketch or graph the streamlines and equipotential lines
" 

; i;l-:-irž. Find V, Find all points at which V is

parallel to the x-axis,

9.FindandgraphtheStreamlinesofF(z):7'2+2z.
Interpret the flow,

10. Show that F(z) : iz,2 models a flow around a corner,

Sketch the streamlines and equipotential lines, Find V,

11. (Potentiat F(z) =, !lz) Show that the streamlines of

F(z) : Llz are circles through the origin,

12. (Cylinder) What happens in Example 2 if you replace
-- 

;;; z2? Sketch unjint",p,et the resulting flow in the

first quadrant.

13. Change tr(z) in Example 2 slightly to obtain a flo1

around a cylinder of iadius 16 that gives the flow in

Example 2 \f rg--> l,

14. (Aperture) Show that F(z) : arccosh z gives confocal

hyperbolas as streamlines, with foci at z, : * 1, and the

flow may be interpreted as a flow through an aperture

(Fig. a15).

15. (Elliptical cylinder) Show that F(z) : arccos z glves

confocal ellipses as streamlines, with foci at Z : lI,
and that the flow circulates around an elliptic cylinder

or a plate (the segment from -1 to 1 in Fig, 416),

Fig.4t5. F[ow through an aperture in Problem ]4

)

3.

(Conformal mapping) Obtain the flow in Example 1

irom that in Prob, 1 by a suitable conformal mapping,

Find the complex potential of a uniform flow parallel

to the x-axis in the positive x-direction,

4. What happens to the flow in Prob, 1 if you replace z

by ze-i; with constant a, e,8,, a : nl4?

5. What is the complex potential of an upward parallel

flow in the direction of y : 2x?

6. (Extension of Example 1) Sketch or graph the flol in

Ě^urnpl" 1 on the whole upper half-plane, Show that

you can interpret it as as flow against a horizontal wall

(the x-axis).

K1

,l
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Fig.416. Flow around a plate in Problem l5

Fig.4l7. Point source

yl
I

I

Fig. 4t8. Vortex flow

16. TEAM PROJECT. Role of the Natural Logarithm
in Modeling Flows. (a) Basic flows: Source and sink.
Show that F(z) : (cl2rr) ln z with constant positive
real c gives a flow directed radially outward (Fig, 417),
so that F models a point source dt 7, : 0 (that is, a
source line x : 0, y : 0 in space) at which fluid is
produced. c is called the strength or discharge of the
source. If c is negative real, show that the flow is
directed radially inward, so that F models a sink at
: : 0, a point at which flLrid disappears. Note that
: : 0 is the singular point of F(;).
(lt) Basic flows: Vortex. Show that F(z) : -(Ki/2rr)ln; with positive real K gives a flow circulating
counterclockwise around z:0 (Fig.4l8).:: 0 is
called a vortex. Note that each time we travel around
the vortex, the potential increases by K.
(c) Addition of flows. Show that addition of the
velocity vectors of two flows gives a í]ow whose
complex potential is obtained by adding the complex
potentials of those flows.

767

(d) Source and sink combined. Find the complex
potentials of a flow with a soulce of strength 1 at
z : - a and of a flow with a sink of strength 1 at
z. : a. Add both and sketch or graph the streamlines.
Show that fbr small |aI these lines look similar to those
in Prob. 11.

(e) Flow with circulation around a cylinder. Add the
potential in (b) to that in Example 2. Show that this gives
a f-low for which the cylinder wall Izi : 1 is a streamline.
Find the speed and show that the stagnation points are

if K : 0 they are at + 1; as K increases they move up
on the unit circle until they unite at z : i (.K : 4rr, see
Fig.4I9), and if K } 4rr they lie on the imaginary axis
(one lies in the field of flow and the other one lies inside
the cylinder and has no physical meaning).

Fig.4l9. Flow around a cylinder without
circulation (/( : 0) and with circulation

iK
4n

,l

x



] 8.5 Poisson's lntegral Formula for Potentials

F(z):*f"!!o,-

, ^2t

F(z): * Í" 
olr*, ;I7 ao

, ^2r

0 : l |-' rrr*l _f , da." 2rrJo -\!/ z-Z*

Here C is the circle z* : Reio (counterclockwise, 0 < c í 2rr), and we assume that F(z*)

is analytic in a domain containing C and its full interior. Since dz* : iReio da : iz* da,

we obtain from (1)

(z* -- Reio, z : ,u").

Now comes a little trick. If instead of z inside C we take a Z outside C, the integrals^(1)

anď (2) are Zeroby Cauchy's integral theorem (Sec. 14.2). We choose Z : z*ž* lz : R2lz,

which is outside C because lzl -_ a't|z| : Rzlr ) R. From (2) we thus have

0: + í]"rrr-r+da: + í:",k*)-1*_"* do

"z
and by straightforward simplification of the last expression on the right,

768 CHAP. 18 Complex Analysis and Potential Theory

So far in this chapter we have seen that complex analysis offers Powerful methods for

modeling and solving two-dimensional potential problems based on conformal maPPings

and complex potentials. A further method results from complex integration. As a most

importani result it yields poisson's integral formula (5) for potentials in a standard domain

(a iircular disk) urrd f.orn (5) a useful series (7) for these potentials. Hence We can solve

problems for disks and then map solutions conformally onto other domains.

poisson's formula will follow from Cauchy's integral formula (Sec. 14.3)

(1)

(2)

We subtract this from (2) and use

calculation (Zz* cancels):

(3)

we then have

(4) (z*

From the polar representations of z and Z* we see

and equal to

R2-r2

the following formula that you can verify by direct

7 7+7+ - 77($! _
<. 1 (z*-z)(Z*-Z)

7+

-:.1.,-1

F(z): L ť"ou-,
7+7+ 

- 
77

<. (, dd

da.
- z)(Z* - Z)

that the quotient in the integrand is real

R2-r2
(Rri. - reiullRe-'ia - re-iq) R2 - ZRr cos (0 - a) -l r2
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sides of (4).take the real part on both

R2-r2
Q(r, 0) O(R, a)

R2 - ZRr cos (0 - a) -l r2
da.

This formula represents the harmonic function Q in the disk lzl < R in terms of its values
Q(R, a) on the boundary (the circle) lel : R.

Formula (5) is still valid if the boundary function ó(R, a) is merely piecewise continuous
(as is practically often the case; see Fig. 40I ín Sec. 18.2 for an example). Then (5) gives
a function harmonic in the open disk, and on the circle 1.1 

: n equal to the given boundary
function, except at points where the latter is discontinuous. A proof can be found in
Ref. [D1] in App. 1.

series for potentials in Disks
From (5) we may obtain an important series development of O in terms of simple harmonic
functions. We remember that the quotient in the integrand of (5) was derived from (3).
We claim that the right side of (3) is the real part of

z*lz _(z*+z)(Z*-Z)
z*-, (r*-z)(Z*-Z)

7+7+ - 77 - 7+7 -Ť 77+

lr* - ,l2!I

We now write F(z) : Q(r, 0) -l iÝ(r, 0) and
Then we obtain Poisson's integral formula2

(5)
7 r2o

I

2n Jn

Indeed,
_-/,/Ť

Now by

(6) : I -| (,/,*)

1 - (zlz*)

the last denominator is real and so is z*Z* - zZ in the numerator, whereas
zZ* : 2i Im (zZ*) in the numerator is pure imaginary. This verifies our claim.
the use of the geometric series we obtain (develop the denominator)

7+-Ť7

+

Since z: reiq. and z* : Reio, we have

ž(*)
:(,-*) žG):

: (;IR, [(žI] 
: Re l*'

*. (*r

(;I-1

,n rn_n-.f

l+2

cos (n0 - na).

On the right, cos (n0 - na) : cos n0 cos na l stn n0 sin na. Hence from (6) we obtain

oo

+2>
n:l

@

+r
n:l

(cos n0 Qos nd i sin n0 sin na).

2snraEoN DENIS POISSON (1781-184O), French mathematician and physicist, professor in Paris from 18O9,
His work includes potential theory, partial differential equations (Poisson equation, Sec. 12.1), and probability
(Sec.24.7').
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This expression is equal to the quotient in (5), as we have mentioned before, and bY

inserting it into (5) and integrating term by term with respect to a from 0 to 2n we obtain

Q(r,0): ao- 
Ž (;I (a,, cos n0-| b.-sinnl)

where the coeffic |the 2 in (6*) cancels

ao: o(R, a) da, an

in (5)]

a) cos na da,

n : I,2,

the 2 in ll(2n)

l -2,IT:'íotn.
7T Jo

:ients are

+í:",

the Fourier coefficients of Q(R, a); see Sec. 1 1.1. Now for r : R the series (7) becomes

the Fourier series of ó(R, a). Hence the representation (7) will be valid whenever the

given Q(R, a) on the boundary can be represented by a Fourier series.

EXAMPLE 1 Dirichlet Problem forthe Unit Disk

Find the electrostatic potential Q(r,0) in the unit disk r ( 1 having the boundary values

o-1 -all

b,, : L I Orn, a) sin na da,
Ťť "o

í -alrr il -t 1 a 10
O1t, al: ]

I alt il O1alt

Solution. Since ó(1, a) is even, bn:0, and from (8) we obtain ag: }and

.t : | l-- |o 9 .o, na da -r f 
'' 

.o, no oo) : + (cos/l' -(ln - ; L- J _n n lUJ 'rq "* Jo ) ,'n'

Hence, an.: _4l(tt2r2; íf n is odd, an: O if n : 2,4, ," , and the potential is

l 4f ,3 ,5
Otr.0l :r- rr|rcos0+ ocos30 l " cos50+

(Fig. 420).

l ).

]

Figure 421 shows the unit disk and some of the equipotential lines (curves @ : const),

Boundary values in Example 1

l

Fig. 42l. Potential in Example 1

77o



]8.6 General Properties of Harmonic Functions
General properties of harmonic functions can often be obtained from properties of analytic
functions in a simple fashion. Specifically, important mean value properties of harmonic
functions follow readily from those of analytic functions. The details are as follows.

THEoREM l Mean Value Property of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then the value of F(7) at a
point zg in D is equal to the mean value oí F(z) on any circle in D with center at zo.

P R O O F In Cauchy's integral formula (Sec.

F(zo)

we choose for C the circle Z : Zo
(1) becomes

F(z :

14.3)

I r FQ.)

-c/_

.,r-: l -ZT|I "C Z - Zo

+ reio in D. Then Z - Zo: ,eio. dz: ireio da. and

l ^2nIl

^ l FQn l rel*) da.
ZŤl 'o

SEC. l8.6 General Properties of Harmonic Functions

1. Verify (3).

2. Show that every term in (7) is a harmonic function in
thediskr{R.

3. Give the details of the derivation of the series (7) from
the Poisson formula (5).

@ HARMoNlc FuNcTtoNs lN A DlsK
Using (7), find the potential Q(r, 0) in the unit disk r 1 I

having the given boundary values O(1, 0). Using the sum
of the first few terms of the series, compute some values
of ó and sketch a figure of the equipotential lines.

4. O(1, 0i) : sin20
5. O(1, 0) : 2 sin2 0

6. O(1, 0) : cos2 50

7. O(1, 0) : 1if -rr 1 01 rr

8. O(1,0):qif 0< 0<2rr
9. O(1, 0) : sin3 20

10. O(1, 0) : cosa 0

11. O(1, 0): 02 if -rr 10 < rr
12. Q(I, 0) : I rf -ir 1 0 /-Lr,

O(1,0):0iflrr<0<3,

13. O(1, 0) : 0if -*Tr 1 0 {in,
O(1, 0) : ŤT - ?if }n < 0 <Žn

14. TEAM PROJECT. Potential in a Disk. (a) Mean
value property. Show that the value of a harmonic
function O at the center of a circle C equals the mean
of the value of O on C (see Sec. 18.4, footnote 1, for
definitions of mean values).

(b) Separation of variables. Show that the terms of
(7) appear as solutions in separating the Laplace
equation in polar coordinates.

(c) Harmonic conjugate. Find a series for a harmonic
conjugate Ý of O from (7).

(d) Power series. Find a series for F(z) : O * i Ý.
15. CAS BXPERIMENT. Series (7). Write a program for

series developments (7). Experiment on accuracy by
computing values from partial sums and comparing
them with values that you obtain from your CAS graph.
Do this (a) for Example 1 and Fig. 42I, (b) for Q in
Prob. 8 (which is discontinuous on the boundary!),
(c) for a Q of your choice with continuous boundary
values, (d) for O with discontinuous boundary values.

(1)

(2)
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772 CHAP. l8 Complex Analysis and Potential Theory

The right side is the mean value of F on the circle (:
length 2rr of the interval of integration). This proves

For harmonic functions, Theorem 1 implies

value of the integral divided by the
the theorem. l

THEoREM 2

P R O O F The first part of the

Q(xo, }o) :

theorem follows from (2) by taking the real parts on both sides,

Re F(xg + lyo) : + J'" Qr*oi r cos (I, !o-1 r sin a) da.

Two Mean Value Properties of Harmonic Functions

Let Q(x, !) be harmonic in a simply connected domain D. Then the value of
O(x, y) at a point (xo, yo) in D is equal to the mean value of Q(x, y) on any circle
in D with center at (xg, yg), This value is also equal to the mean value of Q(x, y)

on any circular disk in D with center (xo, yo). [See footnote 1 in Sec. 18.4.]

The second part of the theorem follows by integrating this formula over r from 0 to ro
(the radius of the disk) and dividing by ro2l2,

(3) ó(xo, }o) : + f" (" *no * rcos a, yo * rsin a) r da dr,

The right side is the indicated mean value (integral divided by the area of the region of
integration). l

Returning to analytic functions, we state and prove another famous consequence of
Cauchy's integral formula. The proof is indirect and shows quite a nice idea of applying
the ML-inequality. (A bounded region is a region that lies entirely in some circle about
the origin.)

THEoREM 3 Maximum Modulus Theorem for Analytic Functions

Let F(z) be analytic and nonconstant in a domain containing a bounded region R
and its boundary. Then the absolute value lrrr>l cannot have a maximum at an
interior point of R. Consequently, the maximum of let.ll is taken on the boundary
of R. If F(z) + O in R, the same is true with respect to the minimum of lF(z)l.

P R O O F We assume that lerr>l has a maximum at an interior point zg of R and show that this leads
to a contradiction. Let |F(zo)|: lrt be this maximum. Since F(z) is not constant, |F(z)l is
not constant, as follows from Example 3 in Sec. 13.4. Consequently, we can find a circle
C of radius r with center at z6 such that the interior of C is in R and lrt.ll is smaller than
Matsomepoint Pof C. Sincelrr.ll iscontinuous,itwill besmallerthanM onanaíc
C1 of C that contains P (see Ftg.422), say,

Irrr>l<M-k (k>0) forall zonCr.
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Fig. a22. Proof of Theorem 3

Let Cl have the length Lr. Then the complementary arc C2 of C has the length 2rrr - L1.
We now apply the ML-tnequality (Sec. I4.I) to (1) and note that 

| 7 - zol: r. We then
obtain (using straightforward calculation in the second line of the formula)

, : |rtz",| = + V",* o,| - + lI",2 r,|

= + (=r),, - * (+) (2rrr - L,) - M - ň < M

that is, M < M, which is impossible. Hence our assumption is false and the first statement
is proved.

Next we prove the second statement. If F(z) + 0 in R, then I/F(2) is analytic in R.
From the statement already proved it follows that the maximum of ll|F(z)| fies on the
boundary of R. But this maximum conesponds to the minimum of |r(z)|. This completes
the proof. l

This theorem has several fundamental consequences for harmonic functions, as follows.

THEoREM 4 Harmonic Functions

Let Q(x, !) be harmonic in a domain containing a simply connected bounded region
R and its boundary curve C. Then:

(I) (Maximum principle) If ó(x, y) is not constant, it has neither a maximum
nor a minimum in R. Consequently, the maximum and the minimum are taken on
the boundary oí R.

(Ií) If @(.r, y) is constant on C, then Q(x, y) is a constant.
(IJI) Ií h(x, y) is harmonic in R and on C and if h(x, y) : O(x, y) on C, then

h(x, y) : O(x, y) everywhere in R.

P R O O F (I) Let 'P(x, y) be a conjugate harmonic function of @(x, y) in R. Then the complex
function F(z) : @(x, y) i iÝ("r, y) is analytic in R, and so is G(z) - ,F().Its absolute
value is

lCCzll : eR" F(z) - r@@, u).

From Theorem 3 it follows that lCr.ll cannot have a maximum at an interior point of R.
Since eo is a monotone increasing function of the real variable Q, the statement about the
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maximum of Q follows. From this, the statement about the minimum follows by replacing

O by -ó.
(II) By (I) the function O(x, y) takes its maximum and its minimum on C. Thus, if

O(x, y) is constant on C, its minimum must equal its maximum, so that Q(x, Y) must be

a constant.

(III) If h and {> are harmonic in R and on C, then h - O is also harmonic in R and

on C, and by assumption, h - O : 0 everywhere on C. By (II) we thus have h - Ó : 0

everywhere in R, and (III) is proved. l

The last statement of Theorem 4 is very important. It means that a harmonic function is

uniquely determined in R by its values on the boundary o/R. Usually, O(x, y) is required

to be harmonic in R and continuous on the boundary of R, that is,

lim Q(x, )) : O(xo, )o), where (xo, )o) is on the boundary and (x, _y) is in R,
Jt+JCg
u+uo

Under these assumptions the maximum principle (I) is still aPPlicable. The Problem of

determining O(x, y) when the boundary values are given is called the Dirichlet Problem
for the Laplace equation in two variables, as we know. From (III) we thus have, aS a

highlight of our discussion,

THEoREM 5 Uniqueness Theorem for the Dirichlet Problem

If for a given region ancl given boundary values the Dirichlet problemfor the LaPlace

equation in two variables has a solwtion, the solution is unique.

1. Integrate |z|2 around the unit circle. Does your result

contradict Theorem 1?

@ VER|FY THEoREM l for the given F(z), zo, and

circle of radius 1.

2. (, + I)3, zo: 2

3.(.- 2)',zo:l
4. I\za, Zo : 0

r VER|FY THEOREM 2 for the given Q(-r, y),

(xo, yo) and circle of radius 1.

5. (.r - 2)(y - 2), (4, -4)
6. x2 - }2, (3, 8)

7. x3 - 3xy2,1I, 11

8. Derive Theorem 2 from Poisson's integral formula.

9. CAS EXPERIMENT. Graphing Potentials. Graph

the potentials in Probs. 5 and ] and for three other

functions of your choice as surfaces over a rectangle

or a disk in the xy-plane. Find the locations of maxima

and minima by inspecting these graphs.

10. TEAM PROJECT. Maximum Modulus of Analytic
Functions. (a) Verify Theorem 3 for (i) F(z) : z2 and

the square 4 < x < 6,25 y É 4, (ii) F(z) : e3' and

any bounded domain, (iii) F(z) : sin z and the unit

disk.
(b) F(x) : cos x (x real) has a maximum 1 at 0,

How does it follow that this cannot be a maximum of

lr(.)l : |cos l| in a domain containing z : 0?

(c) F(z) : 1 + |z|2 is not zero in the disk |zl í 4 and

has a minimum at an interior point. Does this contradict

Theorem 3?

(d) If F(z) is analytic and not constant in the closed

unit disk O: |z.| < 1 and lr(.)l : c : const on the unit

circle, show that F(z) must have a zero in D. Can you

extend this to an arbitrary simple closed curve?



Chapter l8 Review Questions and Problems

lTl-rsl MAXIMuM MoDuLus
Find the location and size of the maximum of |P(z)| in the

unit disk |.| = t.
11. F(z) : z' _ I

12. F(z) : az + b (a, b complex)

13. F(z) : cos 2^z

14. Verify the maximum principle for O(;r, y) : e'cos y

and the rectangle a š x = b, 0 < y < 2t.

1. Why can potential problems be modeled and solved by
complex analysis? For what dimensions?

2. What is a harmonic function? A harmonic conjugate?

3. Give a few examples of potential problems considered
in this chapter.

4. What is a complex potential? What does it give
physically?

5. How can conformal mapping be used in connection with
the Dirichlet problem?

6. What heat problems reduce to potential problems? Give
a few examples.

7. Write a short essay on potential theory in fluid flow
tiom memory.

8. What is a mixed boundary value problem? Where did
it occur?

9. state poisson's formula and its derivation from
Cauchy's formula.

10. state the maximum modulus theorem and mean value
theorems fbr harmonic functions.

11. Find the potential and complex potential between the

plates .y : J and y : ,T -| 10 kept at 10 V and 110 V,
respectively.

12. Find the potential between the cylinde.s |z| : 1 cm
having potential 0 and lzL 

: tO cm having potential 20
kV.

13. Find the complex potential in Prob. 12.

14. Find the equipotential line U - 0 V between the

cylinders |;| : O.ZS cm and lr|: + cm kept at _220y
and220 V, respectively. (Guess first.)

15. Find the potential between the cylinders |z| : 10 cm
and lz| : 100 cm kept at the potentials 10 kV and 0,

respectively.

16. Find the potential in the angular region between the

plates Arg: : 116, kept at 8 kV, and Arg z : t/3,kepí
at 6 kV.

15.

16.
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(Conjugate) Do O and a harmonic conjugate Ý of O in
a region R have their maximum at the same point of R?
(Conformal mapping) Find the location (uy u t) of the

maximum of Qx : e' cos u in R'': |vu| = 1, u ž 0,

where v) : L! i i u. Find the region R that is mapped
onto R" by u, : í(:) : z'. Find the potential in R
resulting from Q* and the location (_rr, .t,r) of the

maximum. Is (u1, u1) the image of (x1, y1)? If so, is
this just by chance?

Find the equipotential lines of F(;) : i Ln z.

Find and sketch the equipotential lines of
F(z):(I+i)lz.
What is the complex potential in the upper half-plane
if the negative half of the x-axis has potential 1 kV and
the positive half is grounded?

Find the potential on the ray ) : x, x } 0, and on
the positive half of the x-axis if the positive half of
the y-axis is at 1200V and the negative half is
grounded.

Interpret Prob. 20 as a problem in heat conduction.

F'ind the temperature in the upper half-plane if the
portion x ) 2 of the x-axis is kept at 50'C and the other
portion at 0'C.

Show that the isotherms of F(z) : - izz -| z are

hyperbolas.

If the region between two concentric cylinders of radii
2 cm and 10 cm contains water and the outer cylinder
is kept aí 20oC, to what temperature must we heat the

inner cylinder in order to have 30'C at distance 5 cm
from the axis?

What are the streamlines of F(z) : ilz?

What is the complex potential of a flow around a

cylinder of radius 4 without circulation?

Find the complex potential of a source aí z : 5. What
are the streamlines?

F'ind the temperature in the unit disk l.| = t in the form
of an infinite series if the left semicircle of |z| : i has
the temperature of 50'C and the right semicircle has the

temperature 0'C.

Same task as in Prob. 28 if the upper semicircle is at

40'C and the lower at 0'C.

Find a series for the potential in the unit disk with
boundary values O(1, 0) : 02 (-rr 10 < n).

17.

18.

19.

20.

21,.

,),)

,l

24.

,t<

26.

27.

28.

29.

STlONS AND PROBLEMS
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(1)

Potential theory is the theory of solutions of Laplace's equation

V2O : 0.

Solutions whose second partial derivatives are continuou, are called harmonic

functions. Equation (1) is the most important PDE in physics, where it is of interest

in two and three dimensions. It appears in electrostatics (Sec. 18.1), steadY-state heat

problems (Sec. 18.3), fluid flow (Sec. 18.4), gravity, etc. Whereas the three_dimensional

iur" ."q,rires other methods (see Chap . t2), two-dimensional potentia1 theory can

be handled by complex analysis, since the real and imaginary parts of an analytic

function are harmoni. (S".. 13.4).They remain harmonic under conformal mapping

(Sec. I8.2), so that conformal mapping becomes a powerful tool in solving

boundary value problems for (1), as is illustrated in this chapter. With arealPotential

Q in (1) we can associate a complex potential

F(z):O+lÝ (Sec. 18.1).

Then both families of curves Q : const and : const have a physical meaning.

In electrostatics, they are equipotential lines and lines of electrical force (Sec. 18.1).

In heat problems, they are isotherms (curves of constant temperature) and lines of

heat flow (Sec. 18.3j. In fluid flow, they are equipotential lines of the velocity

potential and streamlines (Sec. 18.4).

For the disk, the solution of the Dirichlet problem is given by the Poisson formula

(Sec. 18.5) or by a series that on the boundary circle becomes the Fourier series of

the given boundary values (Sec. 18.5).

Harmonic functions, like analytic functions, have a number of general ProPerties;

particularly important are the mean value property and the maximum modulus

property is.". 18.6), which implies the uniqueness of the solution of the Dirichlet

problem (Theorem 5 in Sec. 18.6).

(2)

Complex Analysis and potential Theory
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