

Observations from the Health Behaviour in School-aged Children (HBSC) WHO collaborative cross-national study
hbsc

Computer use of two hours or more on weekdays (\%)

Slovenia

TV-viewing two hours or more on weekdays (\%) contd

Adolescent obesity and related behaviours:

Vigorous-intensity physical activity four or more times a week (\%) contd

Moderate-to-vigorous-intensity physical activity of 60 minutes or more daily (\%) contd

Slovenia

Daily soft-drinks consumption (\%) contd

Trends in inequalities in daily soft-drink consumption, 2002-2014, all countries combined (\%)

WHO, 2017

Adolescent obesity and related behaviours:

Daily sweets consumption (\%) contd

Czechia

Slovenia

Adolescent obesity
and related behaviours:
trends and inequalities in the WHO European Region, 2002-2014

Daily fruit consumption (\%)

Daily vegetable consumption (\%) contd

Slovenia

Fig. 2.2.

Difference in obesity prevalence between 2002 and 2014, girls

Fig. 2.3.

Difference in obesity prevalence between 2002 and 2014, boys

Note: data from 2006 are used as the baseline for countries with no 2002 data (Iceland, Luxembourg and Slovakia). Data excluded as missing values $>30 \%$ for Belgium (French), Ireland, Israel, Lithuania, Malta, Romania, United Kinqdom (Enqland), United Kinqdom (Scotland) and United Kinqdom (Wales). No trend data were available for Albania, Armenia, Bulqaria, Republic of Moldova and Turkey.

Obesity prevalence (\%) contd

Adolescent obesity
and related behaviours:
trends and inequalities in the WHO
European Region, 2002-2014

Body composition and energy needs

Body composition (\%, kg)?

Sex: men
Body weight: 70 kg

Fig. 1. Mean values of body composition compartments in an healthy human subject of 70 kg (adapted with the permission of the publishers from Kyle et al. ${ }^{30}$).

Body mass index $(\mathrm{BMI})=$ Queteletov index

$\mathrm{BMI}=$ body mass $(\mathrm{kg}) /$ height $^{2}\left(\mathrm{~m}^{2}\right)$

Example: $\mathrm{BMI}=70 \mathrm{~kg} /\left(1.75 \mathrm{~m}^{2}\right)=70 / 3.06=22.9$

What is my BMI?

Table: The International Classification of adult

 underweight, overweight and obesity according to BMI| Classification | BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right.$) | |
| :---: | :---: | :---: |
| | Principal cut-off points | Additional cut-off points |
| Underweight | <18.50 | <18.50 |
| Severe thinness | <16.00 | <16.00 |
| Moderate thinness | 16.00-16.99 | 16.00-16.99 |
| Mild thinness | 17.00-18.49 | 17.00-18.49 |
| Normal range | 18.50-24.99 | 18.50-22.99 |
| | | 23.00-24.99 |
| Overweight | ≥ 25.00 | ≥ 25.00 |
| Pre-obese | 25.00-29.99 | 25.00-27.49 |
| | | 27.50-29.99 |
| Obese | ≥ 30.00 | ≥ 30.00 |
| Obese class I | 30.00-34.99 | 30.00-32.49 |
| | | 32.50-34.99 |
| Obese class II | 35.00-39.99 | 35.00-37.49 |
| | | 37.50-39.99 |
| Obese class III | ≥ 40.00 | ≥ 40.00 |

Body Mass Index-for-Age, 2 to 20 Years (Overweight and Obese)

WHR = waist-hip ratio

WHR = waist (cm) / hip (cm)

Not for a children!

"Pear-shaped"

"Apple-shaped"

The National Institute of Diabetes,

 Digestive and Kidney Diseases (NIDDK) states that:- women with waist-hip ratios of more than 0.8 , and - men with more than 1.0,
are at increased health risk because of their fat distribution.

©Mayo Foundation for Medical Education and Research. All rights reserved.
(2)
(2)
(2)
(2)
(2)
(10.2

2.3 kg fat

2.3 kg fat

Energy expenditure (EE)

Energy

$$
\begin{aligned}
& 1 \mathrm{~J}=1 \mathrm{~W} / \mathrm{s} \\
& 1 \mathrm{~kJ}=1000 \mathrm{~J} \\
& 1 \mathrm{MJ}=1000000 \mathrm{~J}
\end{aligned}
$$

$1 \mathrm{kcal}(\mathrm{kcal}=\mathrm{Cal})=4,184 \mathrm{~kJ}(\sim 4,2 \mathrm{~kJ})$
$1 \mathrm{~kJ}=0,239 \mathrm{kcal}$

- A small calorie (sympbol: cal) - 1cal is the amount of energy required to raise one gram of water by one degree Celsius.
- A large calorie (symbol: Cal, kcal) - 1Cal is the amount of energy required to raise one kilogram of water by one degree Celsius.

Energy value in food

Gross energy of food (heat of combustion) (kcal/g)

Metabolizable energy (kcal/g)

Carbohydrates 4.10 Fat
9.45

Protein
5.20

Alcohol

Carbohydrates 4.0 Fat
9.0

Protein
Alcohol

Basal Metabolic Rate (BMR or BM)

"The minimum amount of energy required to maintain vital functions in an organism at complete rest, measured by the basal metabolic rate in a fasting individual who is awake and resting in a comfortably warm environment.

- 60 to 75% of the daily energy

Source: http://www.thefreedictionary.com/basal+metabolism

Harris-Benedict equatio

- method used to estimate an individual's basal metabolic rate (BMR) and daily calorie requirements

Men

$\mathrm{BM}=66+(13,8 \times$ weight $(\mathrm{kg}))+(5 \mathrm{x}$ height $(\mathrm{cm}))-(6,8 \mathrm{x}$ age $($ years $))$

Women

$\mathrm{BM}=655+(9,6 \mathrm{x}$ weight $(\mathrm{kg}))+(1,8 \mathrm{x}$ height $(\mathrm{cm}))-(4,7 \mathrm{x}$ age $($ years $))$

Harris-Benedict Principle

Little to no exercise

Light exercise
(1-3 days per week)
Moderate exercise
(3-5 days per week)
Heavy exercise
(6-7 days per week)
Very heavy exercise
(twice per day, extra heavy workouts)

Daily calories needed $=$ BMR $\times 1.2$
Daily calories needed $=$ BMR $\times 1.375$

Daily calories needed $=$ BMR $\times 1.55$

Daily calories needed $=$ BMR $\times 1.725$

Daily calories needed $=$ BMR x 1.9

$\mathrm{EE}=\mathrm{BM} \times \mathrm{PAL}$

1 Sleep and siesta, resting in a reclined
1.5 In a sitting position: resting, TV, computer, video games, board games, reading, writing, office work, sewing, using transport, mealtimes...
2.2 Standing up: getting washed and dressed, going around the house, cooking, house work, shopping, laboratory work, working as a sales assistant, driving machinery etc.

3 Women: walking, gardening or equivalent, gymnastics, yoga Men: manual work when standing up and moderately intense (e.g. chemical industry, carpentry, etc.)
3.5 Men: walking, gardening, work with high physical intensity (e.g. building, plastering, car repairs etc.)

5 Sport, intense work (e.g. excavation work, work in forests etc.)

My Energy Expenditure

Activity	BM factor	Duration (h)	Energy expenditure (kkal/kJ)
Sleeping			
Learning			
Walking			
Watching TV			
Running			
\ldots			
Total			

Table: Physical Activity Level

INTENSITY	HEART RATE $($ (beat/min)	VO2 $(\mathbf{l} / \mathrm{min})$	$\mathrm{kcal} / \mathrm{min}$	MET*
Low	100	1	5	4.0
Moderate	135	2	10	8.1
High	170	3	15	12.2

*MET - Metabolic Equivalent of Task $=3.5 \mathrm{ml} \mathrm{O} 2 / \mathrm{kg} / \mathrm{min}$)

Walking ($5.1 \mathrm{~km} / \mathrm{h}$)

Distance: 5.74 km

Time: 1 h 7 min

Energy Expenditure: 259 kcal

12.1.2010

Running ($13.17 \mathrm{~km} / \mathrm{h}$)

Distance: 6.58 km
Time: 28 min 53 s
Energy Expenditure: 423 kcal

Name	Total Distance	Total Time	Avg Pace	Avg Speed	Max Speed	Total Calories	Avg Heart Rate	Max Heart
宛 12.1 .2010 18:...	6.58 km	28:53.07	$4: 23 / \mathrm{km}$	$13.7 \mathrm{~km} / \mathrm{h}$	$15.8 \mathrm{~km} / \mathrm{h}$	423 cal	159 bpm	18
TLap 1-18:53:55	1.00 km	4:27.49	4:27/km	$13.5 \mathrm{~km} / \mathrm{h}$	$14.7 \mathrm{~km} / \mathrm{h}$	65 cal	169 bpm	18
TLap 2-18:58:23	1.00 km	4:27.75	$4: 27 / \mathrm{km}$	$13.4 \mathrm{~km} / \mathrm{h}$	$14.8 \mathrm{~km} / \mathrm{h}$	65 cal	158 bpm	16
TLap 3-19:02:51	1.00 km	4:30.42	4:30/km	$13.3 \mathrm{~km} / \mathrm{h}$	$14.5 \mathrm{~km} / \mathrm{h}$	65 cal	158 bpm	15
TLap 4-19:07:22	1.00 km	4:20.57	4:20/km	13.8 km/h	$14.9 \mathrm{~km} / \mathrm{h}$	62 cal	153 bpm	16
TLap 5-19:12:19	1.00 km	4:16.36	4:16/km	$14.0 \mathrm{~km} / \mathrm{h}$	$15.8 \mathrm{~km} / \mathrm{h}$	65 cal	1 bpm	16
TLap 6-19:16:35	1.00 km	4:19.60	4:19/km	$13.9 \mathrm{~km} / \mathrm{h}$	$14.7 \mathrm{~km} / \mathrm{h}$	64 cal	10. bpm	16
TLap 7-19:20:55	580.10 m	2:30.88	4:20/km	13.8 km/h	14.6 km/h	37 cal	16) bpm	16
				$14,3 \mathrm{kcal} / \mathrm{min}$				

$\leftarrow \quad$ Planica-Red Bull 2019

Stojan Kostanjevec
14. sep. @ 11:46•Tek

Activities	Energy expenditure (kcal/h)
Walking	$200-300$
Dancing	$200-400$
Gymnastic	$200-500$
Cycling	$250-700$
Step aerobics	$300-500$
Swimming	$300-700$
Tenis	$400-500$
Running	$600-900$

Burn Calories, Not Electricity

Take the Stairs!

Mayo Clinic Proceedings

Available online 4 September 2018
In Press, Corrected Proof ?

Original article

Various Leisure-Time Physical Activities Associated With Widely Divergent Life Expectancies: The Copenhagen City Heart Study

Peter Schnohr MD, DMSc ${ }^{\text {a }} \circ$, James H. O'Keefe MD ${ }^{\text {b }}$, Andreas Holtermann PhD ${ }^{\text {c }}$, Carl J. Lavie MD ${ }^{\text {d }}$, Peter Lange MD, DMSc ${ }^{\text {a, e e, f }}$, Gorm Boje Jensen MD, DMSc ${ }^{\text {a }}$, Jacob Louis Marott MSc ${ }^{\text {a }}$

Patients and Methods

The Copenhagen City Heart Study (CCHS) is a prospective population study that included detailed questionnaires regarding participation in different types of sports and leisure-time physical activity. The 8577 participants were followed for up to 25 years for all-cause mortality from their examination between October 10, 1991, and September 16, 1994, until March 22, 2017. Relative risks were calculated using Cox proportional hazards models with full adjustment for confounding variables.

Results

Multivariable-adjusted life expectancy gains compared with the sedentary group for different sports were as follows: tennis, 9.7 years; badminton, 6.2 years; soccer, 4.7 years; cycling, 3.7 years; swimming, 3.4 years; jogging, 3.2 years; calisthenics, 3.1 years; and health club activities, 1.5 years.

Conclusion
Various sports are associated with markedly different improvements in life expectancy. Because this is an observational study, it remains uncertain whether this relationship is causal. Interestingly, the leisure-time sports that inherently involve more social interaction were associated with the best longevity-a finding that warrants further investigation.

