Adolescent obesity and related behaviours: trends and inequalities in the WHO European Region, 2002–2014

Observations from the Health Behaviour in School-aged Children (HBSC) WHO collaborative cross-national study

VIDEO

Computer use of two hours or more on weekdays (%)

WHO, 2017

TV-viewing two hours or more on weekdays (%) contd

WHO, 2017

Vigorous-intensity physical activity four or more times a week (%) contd

WHO, 2017

Moderate-to-vigorous-intensity physical activity of 60 minutes or more daily (%) contd

Adolescent obesity and related behaviours: trends and inequalities in the WHO European Region, 2002–2014

WHO, 2017

Daily soft-drinks consumption (%) contd

WHO, 2017

Trends in inequalities in daily soft-drink consumption, 2002–2014, all countries combined (%)

WHO, 2017

Daily sweets consumption (%) contd

WHO, 2017

Daily fruit consumption (%)

Adolescent obesity and related behaviours: trends and inequalities in the WHO European Region, 2002–2014

WHO, 2017

Daily vegetable consumption (%) contd

Adolescent obesity and related behaviours: trends and inequalities in the WHO European Region, 2002–2014

WHO, 2017

Fig. 2.2.

Difference in obesity prevalence between 2002 and 2014, girls

Note: data from 2006 are used as the baseline for countries with no 2002 data (Iceland, Luxembourg and Slovakia). Data excluded as missing values >30% for Belgium (French), Ireland, Israel, Lithuania, Malta, Romania, United Kingdom (England), United Kingdom (Scotland) and United Kingdom (Wales). No trend data were available for Albania, Armenia, Bulgaria, Republic of Moldova and Turkey.

WHO, 2017

Fig. 2.3. Difference in obesity prevalence between 2002 and 2014, boys

Note: data from 2006 are used as the baseline for countries with no 2002 data (Iceland, Luxembourg and Slovakia). Data excluded as missing values >30% for Belgium (French), Ireland, Israel, Lithuania, Malta, Romania, United Kingdom (England), United Kingdom (Scotland) and United Kingdom (Wales). No trend data were available for Albania, Armenia, Bulgaria, Republic of Moldova and Turkey.

WHO, 2017

Obesity prevalence (%) contd

WHO, 2017

Body composition and energy needs

Body composition (%, kg)?

Sex: men Body weight: 70 kg

	Kg	%
Protein		
Water		
Bone		
Fat		

Fig. 1. Mean values of body composition compartments in an healthy human subject of 70 kg (adapted with the permission of the publishers from Kyle et al.³⁰).

Body mass index (BMI) = Queteletov index

BMI = body mass (kg) / height² (m²)

Example: BMI = 70 kg / $(1.75 \text{ m}^2) = 70 / 3.06 = 22.9$

What is my BMI?

Table: The International Classification of adult underweight, overweight and obesity according to BMI

Classification	BMI(kg/m²)		
	Principal cut-off points	Additional cut-off points	
Underweight	<18.50	<18.50	
Severe thinness	<16.00	<16.00	
Moderate thinness	16.00 - 16.99	16.00 - 16.99	
Mild thinness	17.00 - 18.49	17.00 - 18.49	
Normal rango	19 50 24 00	18.50 - 22.99	
Normarrange	10.30 - 24.99	23.00 - 24.99	
Overweight	≥25.00	≥25.00	
Dro oboco	25.00.20.00	25.00 - 27.49	
Pre-obese	25:00 - 29:99	27.50 - 29.99	
Obese	≥30.00	≥30.00	
Obasa class I	20.00 24.00	30.00 - 32.49	
Obese class I	30.00 - 34.99	32.50 - 34.99	
Obasa dasa U	25.00.20.00	35.00 - 37.49	
	35.00 - 59.99	37.50 - 39.99	
Obese class III	≥40.00	≥40.00	

Source: Adapted from WHO, 1995, WHO, 2000 and WHO 2004.

Body Mass Index-for-Age, 2 to 20 Years (Overweight and Obese)

WHR = waist-hip ratio

WHR = waist (cm) / hip (cm)

Not for a children!

"Pear-shaped"

"Apple-shaped"

The National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) states that:

women with waist-hip ratios of more than 0.8, and
men with more than 1.0,

are at **increased health risk** because of their fat distribution.

	Unde	rfat	Healthy	Overfat	Obese
Female 20-39	$ \cdot \cdot \cdot \cdot \cdot \cdot$			100 - E (10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Age 40-59	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $		en en franser	a constante da la constante da	
60-79	$ \cdot \cdot \cdot \cdot \cdot \cdot$			a se se se la se	
	0%	10% 20	3 3	0%	40%
Male 20-39	· · · · [· · ·				
Age 40-59	$ \cdot \cdot$		en en preser	$\{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	
60-79	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $		<mark></mark>	$\{1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1$	
	Underfat	Healthy	Overfat	Obese	

Energy expenditure (EE)

1 J = 1W/s1kJ = 1000 J1 MJ = 1000 000 J

 $1 \text{ kcal} (\text{kcal} = \text{Cal}) = 4,184 \text{ kJ} (\sim 4,2 \text{ kJ})$

1kJ = 0,239 kcal

 A small calorie (sympbol: cal) - 1cal is the amount of energy required to raise one gram of water by one degree Celsius.

 A large calorie (symbol: Cal, kcal) - 1Cal is the amount of energy required to raise one kilogram of water by one degree Celsius.

Energy value of food

Energy value in food

Gross energy of food (heat of combustion) (kcal/g)

Carbohydrates4.10Fat9.45Protein5.20Alcohol7.10

Metabolizable energy (kcal/g)

Carbohydrates4.0Fat9.0Protein4.0Alcohol7.0

Basal Metabolic Rate (BMR or BM)

"The minimum amount of energy required to maintain vital functions in an organism at complete rest, measured by the basal metabolic rate in a fasting individual who is awake and resting in a comfortably warm environment."

• 60 to 75% of the daily energy

Source: http://www.thefreedictionary.com/basal+metabolism

Harris-Benedict equatio

• method used to estimate an individual's basal metabolic rate (BMR) and daily calorie requirements

Men

BM = 66 + (13,8 x weight (kg)) + (5 x height (cm)) - (6,8 x age (years))

Women

BM = 655 + (9,6 x weight (kg)) + (1,8 x height (cm)) - (4,7 x age (years))

What is your BMR?

Harris-Benedict Principle

Little to no exercise	Daily calories needed = BMR x 1.2
Light exercise (1–3 days per week)	Daily calories needed = BMR x 1.375
Moderate exercise (3–5 days per week)	Daily calories needed = BMR x 1.55
Heavy exercise (6–7 days per week)	Daily calories needed = BMR x 1.725
Very heavy exercise (twice per day, extra heavy workouts)	Daily calories needed = BMR x 1.9

$EE = BM \times PAL$

PAL	Source: http://www.dukandiet.co.uk/en/756-this-months-file.html
1	Sleep and siesta, resting in a reclined
1.5	In a sitting position: resting, TV, computer, video games, board games, reading, writing, office work, sewing, using transport, mealtimes
2.2	Standing up: getting washed and dressed, going around the house, cooking, house work, shopping, laboratory work, working as a sales assistant, driving machinery etc.
3	Women: walking, gardening or equivalent, gymnastics, yoga Men: manual work when standing up and moderately intense (e.g. chemical industry, carpentry, etc.)
3.5	Men: walking, gardening, work with high physical intensity (e.g. building, plastering, car repairs etc.)

5 Sport, intense work (e.g. excavation work, work in forests etc.)

My Energy Expenditure

Activity	BM factor	Duration (h)	Energy expenditure (kkal/kJ)
Sleeping			
Learning			
Walking			
Watching TV			
Running			
•••			
Total			

Table: Physical Activity Level

INTENSITY	HEART RATE (beat/min)	VO2 (l/min)	kcal/min	MET*
Low	100	1	5	4.0
Moderate	135	2	10	8.1
High	170	3	15	12.2

*MET – Metabolic Equivalent of Task = 3.5 ml O₂/kg/min)

- 17.1.2010
- Walking (5.1 km/h)
- Distance: 5.74 km
- Time: 1h 7min
- Energy Expenditure: 259 kcal

12.1.2010

- Running (13.17 km/h)
- Distance: 6.58 km
- **Time: 28min 53s**
- Energy Expenditure: 423 kcal

Name	Total Distance	Total Time	Avg Pace	Avg Speed	Max Speed	Total Calories	Avg Heart Rate	Max Heart
💉 12.1.2010 18:	6.58 km	28:53.07	4:23 /km	13.7 km/h	15.8 km/h	423 cal	159 bpm	18
💹 Lap 1 - 18:53:55	1.00 km	4:27.49	4:27 /km	13.5 km/h	14.7 km/h	65 cal	169 bpm	18
💹 Lap 2 - 18:58:23	1.00 km	4:27.75	4:27 /km	13.4 km/h	14.8 km/h	65 cal	158 bpm	169
💹 Lap 3 - 19:02:51	1.00 km	4:30.42	4:30 /km	13.3 km/h	14.5 km/h	65 cal	158 bpm	159
💹 Lap 4 - 19:07:22	1.00 km	4:20.57	4:20 /km	13.8 km/h	14.9 km/h	62 cal	153 bpm	160
💹 Lap 5 - 19:12:19	1.00 km	4:16.36	4:16 /km	14.0 km/h	15.8 km/h	65 cal	1 bpm	163
💹 Lap 6 - 19:16:35	1.00 km	4:19.60	4:19 /km	13.9 km/h	14.7 km/h	64 cal	161 bpm	16
💹 Lap 7 - 19:20:55	580.10 m	2:30.88	4:20 /km	13.8 km/h	14.6 km/h	37 cal	16 2 bpm	164
				1	1 2 1-00	1/		
				1	4,3 KCa	I/IIIIN		

Activities	Energy expenditure (kcal/h)
Walking	200 - 300
Dancing	200 - 400
Gymnastic	200 - 500
Cycling	250 - 700
Step aerobics	300 - 500
Swimming	300 - 700
Tenis	400 - 500
Running	600 - 900

Mayo Clinic Proceedings

Available online 4 September 2018 In Press, Corrected Proof ?

Original article

Various Leisure-Time Physical Activities Associated With Widely Divergent Life Expectancies: The Copenhagen City Heart Study

Peter Schnohr MD, DMSc ^a A A, James H. O'Keefe MD ^b, Andreas Holtermann PhD ^c, Carl J. Lavie MD ^d, Peter Lange MD, DMSc ^{a, e, f}, Gorm Boje Jensen MD, DMSc ^a, Jacob Louis Marott MSc ^a

Patients and Methods

The Copenhagen City Heart Study (CCHS) is a prospective population study that included detailed questionnaires regarding participation in different types of sports and leisure-time physical activity. The 8577 participants were followed for up to 25 years for all-cause mortality from their examination between October 10, 1991, and September 16, 1994, until March 22, 2017. Relative risks were calculated using Cox proportional hazards models with full adjustment for confounding variables.

Results

Multivariable-adjusted life expectancy gains compared with the sedentary group for different sports were as follows: tennis, 9.7 years; badminton, 6.2 years; soccer, 4.7 years; cycling, 3.7 years; swimming, 3.4 years; jogging, 3.2 years; calisthenics, 3.1 years; and health club activities, 1.5 years.

Conclusion

Various sports are associated with markedly different improvements in life expectancy. Because this is an observational study, it remains uncertain whether this relationship is causal. Interestingly, the leisure-time sports that inherently involve more social interaction were associated with the best longevity—a finding that warrants further investigation.