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PART ONE

Differential
equations






Introduction

In the study of physical phenomena one is frequently unable to
find directly the laws relating the quantities that characterize a
phenomenon, whereas a relationship between the quantities and
their derivatives or differentials can readily be established. Oue
then obtains equations containing the unknown functions or vector
functions under the sign of the derivative or differential.

Equations in which the unknown function or the vector function
appears under the sign of the derivative or the differential are
called differential equations. The following are some examples of
dlﬂ'erentlal equations:

(l)  Tha —kx is the equation of radioactive disintegration (& is
the dlsmtegration constant, x is the quantity of undisintegrated
substance at time ¢, and % is the rate of decay proportional to
the quantlty of disintegrating substance).

2) m— d‘, =F (t r, :t is the equation of motion of a particle of

mass m under the influence of a force F dependent on the time,
the position of the partlcle (which is determined by the radius

vector r), and its velocity d: The force is'equal to the product of
the mass by the acceleration.
d*u | du  d%u . . , . .
3) T M+F=4np (x, y, 2) is Poisson’s equation, which for

example is satisfied by the potential -u (x, y, 2z) of an electrostati~
field, p(x, y, 2) is the charge density.

The relation between the sought-for quantities will be found if
methods are indicated for finding the unknown functions which are
defined by differential equations. The finding of unknown functions
defined by differential equations is the principal task of the theory
of differential equations.

If in a differential equation the unknown functions or the vector
functions are functions of one variable, then the differential equa-
tion is called ordinary (for example, Egs. 1 and 2 above). But if
the unknown function appearing in the differential equation is a
function of two or more independent variables, the differential
equation is called a partial differential equation (Eq. 3 is an
instance).
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The order of a differential equation is the highest order of the
derivative (or differential) of the unknown function.

A solution of a differential equation is a function which, when
substituted into the differential equation, reduces it to an identity.

To illustrate, the equation of radioactive disintegration

dx
has the solution
x=ce ", (1.L4)

where ¢ ‘is an arbitrary constant.

It is obvious that the differential equation (I.1) does not yet
fully determine the law of disintegration x=x(¢). For a full de-
termination, one must know the quantity of disintegrating substance
x, at some initial instant of time ¢,. If x, is known, then, taking
into account the condition x(#,)=x, from (I.1,), we find the law
of radioactive disintegration:

x=xe ket

The procedure of finding the solutions of a differential equation
is called integration of the differential equation. In the above case,
it was easy to find an exact solution, but in more complicated
cases it is very often necessary to apply approximate methods of
integrating differential equations. Just recently these approximate
methods still led to arduous calculations. Today, however, high-
speed computers are able to accomplish such work at the rate of
several hundreds of thousands of operations per second.

Let us now investigate more closely the above-mentioned more
complicated problem of finding the law of motion r=r(f) of a
particle of mass m under the action of a specified force F (¢, r, r).
By Newton’s law,

mr=F (¢, r, 1) (1.2)

Consequently, the problem reduces to integrating this differential
equation. Quite obviously, the law of motion is not yet fully de-
fined by specifying the mass m and the force F; one has also to
know the initial position of the particle

r(t,)=r, (1.2)

and the initial velocity
r(t,)=r, (1.2,)
We shall indicate an extremely natural approximate method for
solving equation (1.2) with initial conditions (I.2,) and (I.2,); the
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idea of this method can also serve to prove the existence of a so-
lution of the problem at hand.

We take the interval of time ¢ <C¢<CT over which it is required
to find a solution of the equation (I.2) that will satisfy the initial
conditions (1.2,) and (1.2,) and divide it into 2 equal parts of

length h=£—:—t°:
(te, H) [t ta]y «oes [tnons T,
ty=t+kh  (k=1, 2, ..., n—1).

where

For large values of n, within the limits of each one of these small

intervals of time, the force F (¢, r, r) changes but slightly (the
vector function F is assumed to be continuous); therefore it may
be taken, approximately, to be constant over every subinterval
[te_1, t), for instance, equal to the value it has at the left-hand
boundary point of each subinterval. More exactly, on the subinter-
val [¢,, ¢t,] the force F (¢, r, r) is considered constant and equal to
F (¢, r, r,). On this assumption, it is easy, from (1.2) and the
initial conditions (1.2,) and (1.2,), to determine the law of motion
r,(f) on the subinterval [¢,, #,] (the motion will be uniformly va-
riable) and, hence, in par%icular, one knows the values of r,(¢,)

and r,(¢,). By the same method, we approximate the law of motion
r,(¢f) on the subinterval [¢,, ¢,] considering the force F as constant

on this subinterval and as equal to F(¢,, r,(¢,), r,(¢,)). Continuing
this process, we get an approximate solution r,(f) to the posed
problem with initial conditions for equation (1.2) over the whole
interval [¢,, T).

It is intuitively clear that as n tends to infinity, the approxi-
mate solution r,(f) should approach the exact solution.

Note that the second-order vector equation (1.2) may be replaced
by an equivalent system of two first-order vector equations if we
regard the velocity v as the second unknown vector function:

Lev, ®—F(t 1, V). {1.3)

Every vector equation in three-dimensional space may be re-
placed by three scalar equations by projecting onto the coordinate
axes. Thus, equation (I.2) is equivalent to a system of three scalar
cquations of the second order, and system (1.3) is equivalent to a
system of six scalar equations of the first order.

IFinally, it is possible to replace one second-order vector equation
(1.2) in three-dimensional space by one vector equation of the first

order in six-dimensional space, the coordinates here being r,, [
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of the radius vector r(f) and v,, v, v, of the velocity vector v.
Phase space is the term physicists use for this space. The radius
vector R (f) in this space has the coordinates (r,, r,, 7,, v,, v,, U,).
In this notation, (1.3) has the form )

dR

(the projections-of the vector ® in six-dimensional space are the
corresponding projections of the right-hand sides of the system (1.3)
in three-dimensional space)

‘With this interpretation, the initial conditions (1.2,) and (1.2,)
are replaced by the condition

R(t,) =R, (1.4,

The solution of (1.4) R =R (¢) will then be a phase trajectory, to
each point of which there will correspond a certain instantaneous
state of the moving particle—its position r(f) and its velocity v ().

If we apply the above approximate method to (1.4) with
initial condition (I.4,), then on the first subinterval [¢,, ¢,) we
must regard the vector function @ (¢, R (f)) as constant and equal
to ® (¢, R(,)). And so, for {, <t<<t,+h

%r“'o(to’ R(ty))
from this, mwltiplying by dt and integrating between ¢, and ¢, we
get the linear vector function R (¢): .
R()=R(¢,)+D(, R({,)) (1)
In particular for ¢=1¢, we will have
R{)=R({,)+h® ¢, R(,,).
Repeating the same reasoning for the subsequent subintervals, we

get
R(,)=R()+hrD(, R(t)),

Applying these formulas n times we arrive at the value R(T).

In this method, the desired solution R (f) is approximately re-
ptaced by a piecewise linear vector function, the graph of which is
a certain polygonal line called Euler’s polygonal curve.

In applications, the problem for equation (1.2) is often posed
differently: the supplementary conditions are specified at two points
instead of one. Such a problem— unlike the problem with the



INTRODUCTION 17

conditions (1.2,) and (I.2,), which is called an initial-value
problem or the Cauchy problem—is called a boundary-value
problem.

For example, let it be required that a particle of mass m, mov-

ing under a force F (¢, r(f), r(f)) and located at the initial instant
t=t, in the position r=r,, reach the position r=r, at time ¢t =¢,.
In other words, it is necessary to solve equation (I.2) with the
boundary conditions r(¢f,)=r,, r({,)=r,. Numerous problems in
ballistics reduce to this boundary-value problem. It is obvious that
the solution here is frequently not unique, since it is possible to
reach the point r(¢,)=r, from the point r(¢{,)=r, either via a flat
trajectory or a plunging trajectory.

Obtaining an exact or approximate solution of initial-value prob-
lems and boundary-value problems is the principal task of the
theory of differential equations, however it is often required to
determine (or it is necessary to confine oneself to determining) only
certain properties of solutions. For instance, one often has to estab-
lish whether periodic or oscillating solutions exist, to estimate the
rate of increase or decrease of solutions, and to find out whether
a solution changes appreciably for small changes in the initial
values.

Let us dwell in more detail on the last one of these problems
as applied to the equation of motion (1.2). In applied problems,

the initial values r, and r, are almost always the result of measu-
rement and, hence, are unavoidably determined with a certain error.
This quite naturally brings up the question of the effect of a small
change in the initial values on the sought-for solution.

If arbitrarily small changes in the initial values are capable of
giving rise to appreciable changes in the solution then the solution

determined by inexact initial values r, and r, usually has no applied
value at all, since it does not describe the motion of the body
under consideration even in an approximate fashion. We thus come
to a problem, important in applications, of finding the conditions
under which a small change in the initial values r, and r, gives
rise only to a small change in the solution r(f) which they deter-
mine.

A similar question arises in problems in which it is required to
find the accuracy with which one must specify the initial values
r, and r, so that a moving point should —to within specified
accuracy —take up a desired trajectory or arrive in a given
region.

Just as important is the problem of the effect, on the solution,
of small terms on the right-hand side of equation (I1.2)—small but
constantly acting forces.

2 378
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In certain cases, these small forces operating over a large inter-
val of time are capable of distorting the solution drastically, and
they must not be neglected. In other cases, the change in the
solution due to the action of these forces is inappreciable, and if it
does not exceed the required accuracy of computations, such small
disturbing forces may be neglected.

We now turn to methods of integrating differential equations
and the most elementary ways of investigating their solutions.



CHAPTER 1

First-order differential
equations

1. First-Order Differential Equations
Solved for the Derivative

An ordinary first-order differential equation of the first degree
may, solving for the derivative, be represented as follows:

d
3%=,(x' ).
The most elementary case of such an equation
d
Z=f

is considered in the course of integral calculus. In this most
elementary case, the solution

y={Fodete

contains an -arbitrary constant which may be determined if we
know the value y(x,) =y,; then

y=yb+Sf(x)dx-

Later on it will be proved that with certain restrictions placed
on the function f(x, y), the equation

Z_z:f(xr y)

also has a unique solution satisfying the condition y(x,)=y,,
while its general solution (that is, the set of solutions containing
all solutions without exception) depends on one arbitrary constant.

The differential equation %=f(x, y) establishes a relation
between the coordinates of a point and the slope of the tangent
% to the graph of the solution at that point. Knowing x and y,

it is possible to calculate j—z. Hence, a differential equation of the
type under consideration defines a direction field (Fig. 1.1) and

the problem of integrating the differential equation consists in

‘)
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finding the curves, called integral curves, the direction of the
:ang%ntlsé to which at each point coincides with the direction of
he field.

Example 1.
A
=

sl

At each point different from the point (0, 0), the slope of the
tangent to the desired integral curve is equal to the ratio %

which means it coincides with the slope of a line directed from
the coordinate origin to the same point (x, y). The arrows in Fig. 1.2

4y
7) 74 \ t g
/;/ /:' /;f /7 ——— - —_——
o - ~
i 2%
Fig. 1-1 Fig. 1-2

depict a direction field defined by the equation under consideration.
Obviously, in this case the straight lines y =cx will be the integral
curves, since the directions of these lines coincide everywhere with
the direction of the field. ’

Example 2.

dy ___*
i

dx

Note that the slope of the tangent to the desired integral curves
—Z and the slope of the tangent % to the integral curves of
Example 1 at each point satisfy the orthogonality condition:
—=.Z—=—1. Consequently, a direction field defined by the

y x
differential equation under consideration is orthogonal to the
direction field given in Fig. 1.2. [t is obvious that the integral

curves of equation :—i’:—-s— are circles with centre at the origin
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[]

B+y*=c* (Fig. 1.3) (more precisely, semicircles y=}"c* —x*

and y=—V—x).
Example 3.

dy_ v a3
d_x_Vx +y-

To construct a direction field, let us find the locus of points at

which tangents to the desired in-
tegral curves preserve a constant
direction. Such lines are called iso-
clines. We get the isocline equation

by taking %=k, where &k is a con-

stant; V' =k or x* + y =k
Thus, in this case the isoclines are
circles with centre at the origin of
coordinates, and the slope of the
tangent to the sought-for integral
curves is equal to the radius of these
circles. To construct the direction
field, we shall assign certain definite
values to the constant k& (see Fig.

Fig. 1-3

1.4, left). It is now already possible to draw, approximately,

the desired integral curves (see Fig. 1.4, right).

y

Fig. 1-4

Example 4.

y =1+xy.

The isoclines are the hyperbolas k=xy+1 or xy=k—1; when
k=1 the hyperbola decomposes into a pair of straight lines x=0
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and y=0 (Fig. 1.5). For k=0 we get the isocline 1+ xy=0;
this hyperbola partitions the plane into parts, in each of which y’
preserves constant sign (Fig. 1.6). The integral curves y=y(x)
intersect the hyperbola 1+4xy=0 and pass from the region of
increase of the functic y(x) to the region of decrease or, con-
versely, from the region oi decrease to that of increase, and con-
sequently, the points of maximum and minimum of the integral
curves are located on the branches of this hyperbola.

Yy
/y( y<o y’>d
|«
< g z
A LSS
j z
< y>0 y'<o
Y4
V4
Fig. 1-5 Fig. 1-6

Let us now determine the signs of the second derivative in
various regions of the plane:

Y=xy'+y o y=x(I+xp)+y=x+E"+1)y.
The curve x+ (x*4+1)y=0 or
X
Yy=—1rn (1.1)

(Fig. 1.7) partitioné the plane into two parts, in one of which
y’ <0, and, hence, the integral curves are convex upwards, and

y
yll>0
0 —_—

Fig. 1-7

in the other y" >0, and thus the integral curves are concave
upwards. When passing through the curve (1.1) the integg'al curves
pass from convexity to concavity, and, consequently, it is on this
curve that the points of inflection of the integral curves are located.
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As a result of this investigation we now know the regions of
increase and decrease of the integral curves, the position of the
points of maximum and minimum, the regions of convexity and
concavity and the location of the inflection points, and also the
isocline k=1. This information is quite sufficient for us to sketct
the locations of the integral curves (Fig. 1.8), but we could draw
a few more isoclines, and this would enable us to specify more
accurately the location of the
integral curves.

In many problems, for ins-
tance in almost all problems
of a geometrical nature, the
variables x and y are absolu-
tely equivalent. It is therefore
natural in such problems, if
they reduce to solving a diffe-
rential equation

Y_fex o (12

to consider, alongside equation
(1.2), also the equation

y

dx 1
i g R
If both of these equations Fig. 1-8

are meaningful, then they

are equivalent, because if the function y=y(x) is a solution of

the equation (1.2), then the inverse function x=x(y) is a solution

of (1.3), and hence, (1.2) and (1.3) have common integral curves.
But if at certain points one of the equations, (1.2) or (1.3),

becomes meaningless, then it is natural at such points to replace

it by the other equation.

For instance, Z)—y‘=% becomes meaningless at x=0. Replacing it

X

by the equation j—;= 7 the right side of which is already

meaningful at x=0, we find another integral curve x=0 of this
equation in addition to the earlier found solufions y = cx (see page 20).

2. Separable Equations

Differential equations of the form

fs(y)dy=f1 (x)dx (1.4)
are called equations with separated variables. The functions f, (x)
and f,(y) will be considered continuous.
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Assume that y(x) is a solution of this equation; then by
substituting y(x) into (1.4) we get an identity, which when
integrated yields

(hway=Fwar+e, (1.5)

where ¢ is an arbitrary constant.

We obtained a finite equation (1.5) which is satisfied by all
the solutions of (1.4); note that every solution of (1.5) is a solution
of (1.4), because if some function y(x) when substituted reduces
(1.5) to an identity, then by differen.iating this identity we find
that y(x) also satisfies the equation (1.4).

The finite equation @ (x, y)=0, which defines the solution y(x)
of the differential equation as an implicit function of x, is called
the integral of the differential equation under study.

If the finite equation defines all solutions of a given differential
equation without exception, then it is called the complete (general)
integral of that differential equation. Thus, equation (1.5) is the
complete integral of equation (1.4). For (1.5) to define y as an
implicit function of x, it is sufficient to require that f,(y)s<0.

It is quite possible that in certain problems the indefinite

integrals Sfl (x)dx and Sf, (y)dy will not be expressible in terms
of elementary functions; nevertheless, in this case as well we shall
consider the problem of integrating the differential equation (1.4)
as completed in the sense that we have reduced it to a simpler
problem, one already studied in the course of integral calculus:
the computation of indefinite integrals (quadratures). *

If it is required to isolate a particular solution that satisfies the
condition y(x,)=y, it will obviously be determined from the
equation

Y x
sz (y)dy= S fy (x) dx,
Yo Xo
which we obtain from
y x
(h@wdy=(F1mde+e,
Yo Xo

taking advantage of the initial condition y(x,) = y;,.

* Since the term ‘integral’ in the theory of differential equations is often
used in the meaning of the integral of a differential equation, the term ‘quadra-
ture’ is ordinarily used to avoid confusion when dealing with integrals of the

functions S f (x) dx.
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Example 1.
xdx+ydy=0.
The variables are separated since the coefficient of dx is a function

of x alone, whereas the coefficient of dy is a function of y alone.
Integrating, we obtain

Sxdx-{—gydy:c or x*+y*=cl,

which is a family of circles with centre at the coordinate origin
(compare with Example 2 on page 20).

Example 2.
e dx = % .
Integrating, we get
< _ dy
The integrals \ e dx and Sl‘;—y— are not expressible in terms of

elementary functions; nevertheless, the initial equation is consi-

dered integrated because the problem has been reduced to quad-
ratures.

Equations of the type
P, (x) ¥, )] dx= P, (X) P, (y) dy

in which the coefficients of the differentials break up into factors
depending solely on x and solely on y are called differential equa-
tions with variables separable, since by division by P, (y)@, (x)
they may be reduced to an equation with separated variables:

LPACI R VY ()
e FTh 0%

Note that division by ¥, (y)@,(x) may lead to loss of particular
solutions that make the product ¥, (y)-¢,(x) vanish, and if the
functions ¢, (y) and ¢,(x) can be discontinuous, then extraneous
solutions converting the factor

1
P (4) . (x)
to zero may appear.
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Example 3.
dy =%— (compare with Example 1, page 20). Separate the variab-

dx
les and integrate:
dy S'dy S dx
ln|y|—|n(x)+lnc c>0

Taking antilogarithms, we get |y|=c x'. If we speak only of
smooth solutions, the equation |y|= c{x , where ¢>0, is equi-
valent to the equation y=+4cx or y=rcx, where ¢, can take on
either positive or negative values, but ¢, 0. If we bear in mind,
however, that in dividing by y we lost the solution y=0, we can
take it that in the solution y=c,x the constant c, also assumes
the value ¢,=0, in which way we obtain the solution y=0 that
was lost earlier.

Note. 1f in Example 3 we consider the variables x and y to be

equivalent, then equation Zx—y=%, which is meaningless at x=0,

must be supplemented by the equation Z—‘;=% (see page 23), which

obviously also has the solution x=0 not contained in the solu-
tion y=c,x found above.

Example 4.
x(1+y*)dx—y (1 +x*)dy=0.
Separate the variables and integrate:

ydy _ xdx | ydy xdx +ec
(e R s Bl R

n(d+y)=In{1+x)+Inc;; 14+y=c,(1+x.
Example 5.

Z—avx

Find the solution x(#) that satisfies the condition x(1)=1.
Separating variables’ and integrating, we have

X

52t dt, Vx=t x=t'

Example 6. As was mentioned in the Introduction, it has been
established that the rate of radioactive decay is proportional to
the quantity x of substance that has not yet decayed. Find x as
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a function of the time ¢ if at the initial instant ¢=¢, we have
x=x,

The constant of proportionality %, called the decay constant,
is assumed known. The differential equation of the process will be

of the form

dx
T=—kx (1.6)

(the minus sign indicates a decrease in x as ¢ increases, & > 0).
Separating the variables and integrating, we get

d
-x_"=-—kdt; In|x|—In|x,|=— k(t—1t,)

and then
x=xe k-t

Let us also determine the half-life T (that is, the time during
which x,/2 decays). Assuming {—¢ =1, we get x/2=xe"*,
whence T=¥ .

Not only radioactive disintegration, but also any other mono-

molecular reaction is described on the basis of the mass action

law, by the equation %:—kx. where x is the quantity of sub-
stance that has not yet reacted.

The equation
dx

ar =kx, k>0, (1.7)
which differs from (1.6) only in the sign of the right side, des-
cribes many processes of multiplication, like the multiplication of
neutrons in nuclear chain reactions or the reproduction of bacteria
on the assumption of an extremely favourable environment, in
which case the rate of reproduction will be proportional to the
number of bacteria present.

The solution of (1.7) that satisfies the condition x(f))=x, is of
the form x=x,* "1 and, unlike the solutions of (1.6), x(f) does
not diminish but increases exponentially as ¢ increases.

Example 7.
d
T =P(P—2(p—4).
Draw the integral curves without integrating the equation; p and

¢ are polar coordinates.
The equation has the obvious solutions p=0, p=2, and p=4.

For 0<p<2, %>0; for 2<p <4, .:—:<0 and for p >4,
dp
Fq?>0‘
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Consequently, the integral curves are the circles p=2 and
p=4 and the spirals that wind around the circle p=2 as ¢ increases
and that unwind from the circle p=4 as ¢ increases. The closed
integral curves, in sufficiently small neighbourhoods of which the
integral curves are spirals, are called limit cycles. In our example,

the circles p=2 and p=
y are limit cycles.

Example 8. Find the
orthogonal trajectories of
the family of parabolas
y=ax’.

The orthogonal trajecto-
ries of a given family of
curves are the lines that
cut the given family at
right angles. The slopes y;
and y, of the tangents to
the curves of the family
and to the sought-for ortho-
gonal trajectories must at
each point satisfy the
orthogonahty condition

y2————- For the family

of parabolas y=ax® we find

, : _ Y
Yy =2ax, or since a= vl

then y' = —y Thus the
dnﬁerentlal equation  of

Fig. 1-9

the desired orthogonal trajectories is of the form y’=—%/ .

Separating the variables, we find 2ydy+xdx=0 and, integra-
ting, we obtain the family of ellipses

S ty=c
(Fig. 1.9).

Example 9. Let u=xy be the potential of velocities of a plane-
parallel flow of fluid. Find the equation of the flow lines.

The flow lines are the orthogonal trajectories of a family of
equipotential lines xy=c. Find the slope of the tangent to the
equipotential lines: xy’+ y=0, y’=—%. Hence, the differential
equation of flow lines is of the form y'=% or ydy=xdx, integ-

rating, we obtain x*—y*=c or a family of hyperbolas.
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Example 10. A homogeneous hollow metallic ball of inner radius
r, and outer radius r, is in a stationary thermal state; the tempe-
rature on the inner surface is T,, on the outer surface 7,. Find
the temperature T at a distance r from the centre of the ball,
N Kr<r,.

For reasons of symmetry it follows that T is a function of r
alone.

Since the quantity of heat remains invariable between two con-
centric spheres with centres at the centre of the ball (their radii
can vary from r, to r,), the same quantity of heat Q flows through
each sphere. Hence, the differential equation describing thjs pro-
cess is of the form

—ankr T —q,

where k is the coefficient of thermal conduction.
Separating the variables and integrating, we obtain the desired
dependence of T upon r:

4nkd7‘=-—°—,‘f—’:

4nkS dT———QS LA

4nk(T—T,)=Q (l—i).

r r
To determine Q, we use the condition: for r=r,, T=T,

4nk(T,—T,) 4nk(To—T)ryr,
Q= 1 1 = ry—r
LA 1— 7

£ Ty

3. Equations That Lead to Separable Equations

Many differential equations can be reduced to equations with
variables separable by changing variables. These include, for example,
equations of the type

= f (ax + by)
(where a and b are constants), which by the change of variables

2=ax-+by are converted into equations with variables separable.
Indeed, passing to the new variables x and z, we will have

& _ +b ——a+ bf (2)
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or
dz _
a+bf(z)

and the variables are separated. Integrating, we get

dz
”“Sa+wuf+°

dx,

Example 1.
dy _
a—2x+y.
Setting 2=2x+y, we have
dy dz dz _
2;—'d—x—2, d—x-—Q—z.

Separating the variables and integrating, we get

zi_22=dx' In|z4+2|=x+In¢c, z=—2+ce*,

2+ y=—2+ce*, y=ce*—2x—2

Example 2.
dy 1
Franirariub R
Putting x—y =2, we have
dy dz dz 1 .
=l l—z=7+h

:—;=——%, 2dz=—dx, 2=—2x+c¢, (x—y)*=—2x+c.

Also reducible to equations with variables separable are the so-
called homogeneous differential equations of the first order of the

form

dy _+(y
51 (2)
Indeed, after the substitution z=% or y=xz we get
dy dz dz dz dx
L=rnpta rpti=i@. ameET
a2 _ Y=
,(z)_z—-ln]xl-i-lnc, x=ce .

Note that the right side of the homogeneous equation is a homo-
geneous function of the variables x and y (zero degree of homoge-
neity) and so an equation of the form

M(x, y)dx+ N (x, y)dy=0
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will be homogeneous if M(x, y) and N (x. y) are homogeneous
functions of x and y of the same degree, because in this case
dy __ M9 __ ¢y
- Biei(2)
Example 3.

dy _ y y
dx—7+tan ‘;

Putting y=xz, Z—i=x2—;+z and substituting into the initial equa-
tion, we have
coszdz _dx

sinz = x°’

In|sinz|=In|x|+Inc, sinz=cx, sin%=cx.

dz
x&}+z—z+tanz,

Example 4.
(x+y) dr—(y—x)dy =0.
Putting y=x2, dy=xdz+ zdx, we get
(x+x2)dx—(xz2—x) (xdz+2dx)=0,
(14+22—2%)dx+x(1—2)dz=0,
Ooade a0, Lin|1+2—2|+In|x|=-11
i7oz—= T x =0 ghnll+22—2"|+In|x|=+lnc,
(1 +2z2—2%)=¢, X+ 2y—y*=c.
Equations of the form
dy _ fayx+byd-c
= (reare) a.8)
are converted into homogeneous equations by translating the ori-
gin of coordinates to the point of intersection (x,, y,) of the stra-
ight lines
ax+by-+c,=0 and a,x+b,y+c,=0.

Indeed, the constant term in the equations of these lines in the
new coordinates X =x—ux,, Y =y—y, will be zero, the coefficients
of the running coordinates remain unchanged, while %=d—y The

equation (1.8) is transformed to

ay _ p (aX+bY
dax = I'\a,Xx¥05,7

Y
S22 e 3)

a-+b, X

or

and is now a homogeneous equation.
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This method cannot be used only when the lines a,x + b,y +
4+ ¢,=0 and a,x+b,y+c,=0 are parallel. But in this case the

coefficients of the running coordinates are proportional: ;ﬁ_:’,‘ =
1 -“1

and (1.8) may be written as
dy _¢( apxtbyte \_
=1 (rri i) = F @x+by),

and consequently, as indicated on page 29, the change of variab-
les z=a,x+ b,y transforms the equation under consnderatlon into
an equatlon with variables separable.
Example 5.
dy x—y+41

dx  x+y—3"
Solving the system of equations x—y-+1=0, x+y—3=0, we
get x,=1, y,=2. Putting x=X+41, y=Y +2, we will have
dy _X—Y
axX — X+Y°
‘The change of variables z=§ or Y=2X leads to the separable

equation
1—2 (I+2)dz _dX
T1+2° 1—22—22 X'

—% In|1—22—2*|=In| X |—-'—;— Inec,
(1—22—2*) X?=¢, X*—2XY —Y?=g,
X—2y—y* +2x+6y=c,.

z—i—X:

4. Linear Equations of the First Order

A ﬁrst-order linear differential equation is an equation that is
linear in the unknown function and its derivative. A linear equa-
tion has the form

Y p@y=F), (1.9)

where p(x) and f(x) will henceforward be considered continuous
functions of x in the domain in which it is required to integrate
equation (1.9).

If f(x)=0, then the equation (1.9) is called homogeneous linear.
The variables are separable in a homogeneous linear equation:

%yc_*'p(x)y:()’ whence ‘%=—p(x)dx,
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and, integrating, we get

Injy|=— Sp(x)dx+lnc‘, ¢ >0,

-J‘p (x) dx

y=ce ¢=0, (1.10)

In dividing by y we lost the solution y=0, however it can be
included in the set of solutions (1.10) if we assume that ¢ can take
the value 0 as well.

The nonhomogeneous linear equation

* f—;!;’+p(x)y=f(x) (1.9)

may be integrated by the so-called method of variation of parame-
ters. In applying this method, one first integrates the appropriate
(having the same left-hand member, that is) homogeneous equation

di
Z+PxyY=0,

the general solution ot which, as already indicated, is of the form

y=ce-fp (x) dx

Given a constant ¢, the function ceJ 2% is a solution of the ho-
mogeneous equation. Let us now try to satisfy the nonhomogeneous
equation considering ¢ as a function oi x, that is actually perfor-
ming the change of variables

y=cye W,

where c¢(x) is a new unknown function of «x.
Computing the derivative

dy _ dc e—J.nlx) dx

-foxax
e —c(x)p(x)e )

and substituting it into the original nonhomogeneous equation (1.9),

we get
dc —J'p (x) dx —J‘n 1x) dx -J.p (x)dx
Frid —c(x)p(x)e +px)c(x)e =/ (x)
or
% = I(x) efp (x) dx.

whence, infegrating we find

v (x) dx

cwy={1wel " “dxtey
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and consequently
y=c(x)e'fp ) ax =c,e-fp ® dx+e'Jp ) dx Sf(x) eJ PW gy (1.11)

To summarize: the general solution of a nonhomogeneous linear
equation is the sum of the general solution of the corresponding
homogeneous equation

Ce-fp (x) dx
1
and of the particular solution of the nonhomogeneous equation

e-fp (x) dx S'f (X) efp (x) dzdx

obtained from (1.11) for ¢,=0.

Note that in specific cases it is not advisable to use the cum-
bersome and involved formula (1.11). 1t is much easier to repeat
each time all the calculations given above.

Example 1.
dy Yy 2

L=y

dx «x

Integrate the corresponding homogeneous equation

dy__ ¥y _o W_o = =
=0 =% In|y|=In|x|+Inc, y=cx.
dy

Consider ¢ a function of x, then y=c(x)x, E=Z—ix+c(x) and, sub-
stituting into the original equation and simplifying, we get

%y =" or dc=xdx, 0(X)=§+c,.

dx
Hence, the general solution is
y=cx+ 523 .
Example 2.
Z—i—y cotx = 2x sin x.

Integrate the corresponding homogeneous equation

CO.SXd ,
sin x
In|y|=In|sinx|+Inc, y=csinx.

dy =0 ¥_
E;—ycotx-0, =

We vary the constant
y=c(x)sinx, y =c' (x)sinx+ c(x)cosx.
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Substituting into the original equation, we get
¢’ (x) sinx +c¢ (x) cos x — ¢ (x) cos x = 2x sin x,
¢’ (x)=2x, c(x)=x+4c,,
y=x’sinx+c, sinx.

Example 3. In an electric circuit with self-inductance, there
occurs a process of establishing alternating electric current. The
voltage V is a given function of the time V=V (¢); the resistance
R and the self-inductance L are constant; the initial current is
given: [ (0)=/,. Find the dependence of the current /=17 (f) on

the time.
Using Ohm’s law for a circuit with self-inductance, we get

di

The solution of this linear equation that satisfies the initial con-
dition I (0)=1, has by (1.11) the form

[=¢L [10+—ESV(t)eL dt]. (1.12)
0

For a constant voltage V=V, we get

R
v Vo) -1 ¢
=R+ (1)
An interesting case is presented by a sinusoidally varying voltage
V = Asinof. Here, by (I 12), we get

! R,
I= ( %S T’ sinof dt).
0

The integral on the right side is readily evaluated.

Numerous differential equations can be reduced to linear equa-
tions by means of a change of variables. For example, Bernoulli’s
equation, of the form

Y py=F)y", nekl
or
R p )y =f ), (1.13)
is reduced to a linear equation by the change of variables Y=z
Indeed, differentiating y'~*=2, we find (l—n)y'" d—and sub-

3
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stituting into (1.13), we get the linear equation

L2 4 ) e=f(x).

l—ndx
Example 4.
ety
2y%=y§+x*. p=z E=2,
“otir

and further as in Example 1 on page 34.
Equation

Y pWy+q) P =F(x)

is calied Riccati’s equation and in the general form is not integrable
by quadratures, but may be transformed into Bernoulli’s equa-
tion by a change of variable if a single particular solution y,(x)
of this equation is known. Indeed, assuming y=y, +2, we get

Ni+2+p ) (g, +2)+q (0 (y, +2)* =f(x)

or, since y, + p(x)y, + ¢ (x)yi=[(x), we will have the Bernoulli
equation
Z+[px)+29(x)p)z+qx)2*=0.

Example 5.
dy 2
=y'—

In this example it is easy to choose a particular solution u,=% .
. 1 , ’ 1 ' 1 2
Putting y=z+—_, we get y’' =z —55 2 —2=(z+ ) — or

z'=z’+2%, which is Bernoulli’s equation.
F4 2 | du 4
#=gth =7, Z=—%
du 2u du 2dx
=" L 7=—5F. | lu|=—2 In|x|+In ¢,
u="5 _C(:)
X X
¢’ (x) c x 1 c x
o =—1 c(x)=— T+ u=-é—7 —2-=}%—§.’
g X _ 1 3x?
1 ETE YTyt eas
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5. Exact Difierential Equations

It may happen that the left-hand side of the differential equation
M(x, y)dcx+N (x, y)dy=0 (1.19)
is the total differential of some function u(x, y):
du(x, y)=M(x, y)dx+N(x, y)dy
and hence equation (1.14) takes the form
du(x, y)=0.

If the function y(x) is a solution of (1.14), then
du(x, y(x))=0

and consequently
ux, yx)=c. (1.15)

where ¢ is a constant, and conversely, if some function y(x) redu-
ces the finite equation (1.15) to an identity, then, by differentia-
ting the id-ntity, we get du(x, y(x))=0, and hence u(x, y)=c,
where ¢ is an arbitrary constant, is the complete integral of the
original equation.

If the initial values y(x,) =y, are given, then the constant c is
determined from (1.15), c=u(x,, y,), and

u(x, y)=u(xo: Yo) (1151)

is tl = desired particular integral. If g—Z=N(x, y) =0 at the point

(%o, Y,), then equation (1.15,) defines y as an implicit function of x.
For the left-hand side of (1.14)

M (x, y)dx+N (x, y)dy
fo be the total differential of some function u(x, y), it is necessary
and sufficient, as we know, that
OM (x, y) __ 0N (x, y)
= o (1.16)
If this condition, first pointed out by Euler, is fulfilled, then
(1.14) is readily integrable. Indeed,
du = Mdx + Ndy.

On the other hand,
Oou ou
du= I dx + 3 dy.
Consequently,

o, a
5;=M (xr Y) —l;'=N(x’ y)'
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whence
u(x, yy={ M(x, ) dx+c().

When calculating the integral SM(x, y)dx, the quantity y is re-

garded as a constant, and so c¢(y) is an arbitrary function of y.
To determine the function c¢(y) we differentiate the function u (x, y)

with respect to y and, since ‘;-Z:N(x, y), we have

2 ({ M gpax)+o @) =N, 9.

From this equation we determine ¢’ (y) and, integrating, find c (y).

LN (Z.y) Y\ .y (zy
(Zp. %) (28] 7 (Zp.8,)
> > > -
Fig. 1-10

As is known from the course of mathematical analysis, it is
still simpler to determine the function u(x, y) from its total diffe-
rential du=M (x, y)dx+ N (x, y)dy, taking the line integral from
M(x, y)dx+ N (x, y)dy. between some fixed point (x,, y,) and a
‘point with variable coordinates (x, y) over any path:

(x, y)
u(x, y)= S M (x, y)dx+ N(x, y)dy.
(X0, Yo)
In most cases, it is convenient to take for the path of integration

a polygonal line consisting of two line segments parallel to the
coordinate axes (Fig. 1.10). In this case

(x. 'y) (%, Yo) (x, ¥
{ Max+Nay= § mMaxy § Nay
(X0, Yo) (x0. Yo) (x, Yo)
or
(x, ¥) ®o, Y) ]

{ MdxynNdy= § Nay+ § Max.

(X0, Yo) (X0 Yo) (X0, )
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Example 1.
(x+y+1)dx+(x—y*+3) dy =0.

The left-hand member of the equation is the total differential
of some function u (x, y), since

0(x+y+1)__0d(x—y*+3)

ay ox ’
‘_;‘_;=x+y+1- u=’f7,’+xy+x+0(y).

gi;=x+c’(y). x+c (y) =x—y*+3,
¢ @)=—4+3, c@)=—% +3y+c,

u=£;-+xy+x—y3:+3y+c,.

Hence, the complete integral is of the form
3x* + 6xy +6x—2y° + 18y =c,. (1.17)
A different method may also be used to determine the function

ux, o) .

u(x, )= | @+y+1)de+x—y*+3)dy.
(Xo» !/o)
For the initial point (x,, y,) we choose, for instance, the origin of
g\
'(Z.Y)
7 (z.0)
Fig. 1-11

coordinates, and we take the path of integration as shown in
Fig. 1.11 (polygonal line). Then

(x, 0) (x, ¥)
wlr, )= | GADdet | ey +3)dy=5 +x+ry—5 +3y

(0, 0) (x,0)
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and the complete integral is of the form
23
St xtay—G+3y=c

or as in (1.17).
In certain cases when the left-hand side of the equation

M(x, y)dx+N (x, y)dy=0 (1.14)
is not the total differential, it is easy to choose a function p (x, y)
such that after multiplying by it the left side of (1.14) is trans-
formed to the total differential
du=pMdx + pN dy.

Such a function p is called an integrating factor. Observe that
multiplication by the integrating factor p (x, y) can lead to the appe-
arance of extraneous particular solutions that reduce this factor

to zero.

Example 2.
xdx+4ydy+ (* + y*)x*dx =0.

It is obvious that multiplying by the factor p,=;2—_:—_? makes the
left-hand member a total differential. Indeed, multiplying by

p=xT_:_—y2, we get
d d
L+ xtdx =0

or, integrating, %ln(x’+y2)+%= Inc,. Multiplying by 2 and then
taking antilogarithms, we will have

2 3
(+ye? " =c.

Of course it is not always so easy to find the integrating factor.
In the general case, to find the integrating factor it is necessary
to choose at least one particular solution (not identically zero) of
the partial differential equation

ouM _ouN

dy ox °

or in expanded form
‘.’E M +p ‘ﬂ = d_p. N + ‘.’%

whllch when it is d|v1ded by p. and certain terms are transposed,
yields

dlnp alnp _ON oM
S M—GEN =G5 (1.18)
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In the general case, integrating this partial differential equation
is by no means an easier task than integrating the original equation,
though in some cases a particular solution to equation (1.18) may
easily be found.

Besides, if we consider that the integrating factor is a function
solely of one argument (for example, only of x4y or x*44?, or
a function of x alone, or of y only, and so forth), we can then
easily integrate the equation (1.18) and indicate the conditions under
which an integrating factor of the form under consideration exists.
In this way, classes of equations are isolated for which an integra-
ting factor is readily found.

For example, let us find the conditions for which the equation
Mdx+ Ndy=0 has an integrating factor dependent solely on x,
p=p (x). Equation (1.18) is then simplified to
dinp N = ON oM

dx ox oy’
oM _oN
whence, taking % to be a continuous function of x, we get
oM_oN
lnp=SaLNidx+ Inc,
oM _oN
ay dx dx
p=ceS N * (1.19)
We can take c=1, since it is sufficient to have only one integra-
ting factor.
oM _oN
If Oy 0x is a function of x alone, then there exists an integ-

rating factor dependent solely on x and equal to (1.19), otherwise
there does not exist an integrating factor of the form p (x).

The condition for the existence of an integrating factor dependent
solely on x is, for example, fulfilled for the linear equation

%+P(x)y=f(x) or [p(x)y—Ffx)dx+dy=0.

oM _oN
Indeed, —@—Nii-=p(x) and hence p.=e-r P 4% - Quite analogously
we can find the conditions for the existence of integrating factors
of the form

p(y), pxxy), pE*xy?), pxy, p (%), and so forth.
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Example 3. Does the equation
xdx+ydy+xdy—ydx=0 (1.20)

have an integrating factor of the form p=p (x* 4 y%)?
Put x*+4*=2. Equation (1.18), for p=p (x*+4 4*) = p (2), takes
the form

dl N oM
2(My—Nx) %3 "" =
and from this

ln|p|=%5‘cp(z)dz+lnc

or
p= T eed (1.21)
where on_om
JORE =

For the existence of an integrating factor of the given form, it is
necessary and, on the assumption of the continuity of ¢(2), suffi-

oN oM
cient that —X‘/)%' be a function of x*4y* alone. In that case
oN _oM
ox oy _ 2
My—Nx ~— 2442

and hence the integrating factor p=p (x*+4?) exists and is equal
to (1.21). For c=1 we have

1
LY
Multiplying (1.20) by p= + —1—5 reduces it to the form

1
— z —
p=e =

xdx4ydy | xdy—ydx _
Afg T oot =0

or

PoNaY + l+(fy_)z =

X

gt d(4) »

—%d In (x’—l—y’)—l—darctan% =0.
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Integrating, we get
InV x*+ y* = —arctan % +Inc

and after taking antilogarithms we will have

arctan L

Vi+yi=ce x,
or in polar coordinates p=ce-?, i. e. a family of logarithmic spirals.

Example 4. Find the shape of a mirror that reflects, parallel to
a given direction, all the rays emanating from a given point.

Locate the origin at a given point and direct the axis of abscissas
parallel to the direction given by hypothesis. Let a ray fall on the
mirror at the point M (x, y): Consider (Fig. 1.12) the section of the

Y} mey

N-—¢ oy
P

Fiz. 1-12

mirror (cut by the xy-plane) that passes through the axis of abscissas
and the point M. Draw a tangent MN to the section of the surface
of the mirror at the point M (x, y). Since the angle of incidence of
the ray is equal to the angle of reflection, the triangle MNO is an
isosceles triangle. Therefore,
=y =Y
tane =y'= Fvata

The homogeneous equation thus obtained is readily integrable by
the change of variables

=2,

Y
but a still easier way is to rationalize the denominator and write
the equation as )
xdx+ydy=V x*+ydx.
The equation has the obvious integrating factor

_ 1 xdx+ydy= W BT
b=yEm vera 0 VA =t
y'=2x+c

(a family of parabolas).
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Note. This problem is still more easily solved in the coordinates
x and p, where p=)x*44% here the equation of the section of
desired surfaces takes the form

dx=dp, p=x-+-c.

One can prove the existence of an integrating factor, or, what
is the same thing, the existence of a nonzero solution of the partial
differential equation (1.18) (see page 40) in a certain domain if
the functions M and N have continuous derivatives and if at least
one of these functions does not vanish. Thus, the integrating-factor
method may be regarded as a general method of integrating equa-
tions of the form

M (x, y)dx+ N (x, y)dy=0;

however, because of the difficulty of finding the integrating factor
this method is for the most part used only when the integrating
factor is obvious.

6. Theorems of the Existence and Uniqueness of Solution
of the Equation & = f(x, y)

The class of differential equations that are integrable by quadra-
tures is extremely narrow; for this reason, since Euler’s day,
approximate methods have become very important in the theory of
differential equations.

At the present time, in view of the rapid development of com-
putational technology, approximate methods are of incomparably
greater importance.

It is now fréquently advisable to apply approximate methods
even when an equation may be integrated by quadratures. What
is more, even if the solution may be simply expressed in terms of
elementary functions, it will often be found that using tables of
these functions is more cumbersome than an approximate integration
of the equation by computer. However, in order to apply one or
another method of ,aproximate integration of a differential equation,
it is first necessary to be sure of the existence of the desired solu-
tion and also of the uniqueness of the solution, because in the
absence of uniqueness it will not be clear what solution is to be
determined.

In most cases, the proof of the theorem of the existence of a
solution yields at the same time a method for finding an exact or
approximate solution. This elevates still more the significance of
existence theorems. For example, Theorem 1.1, which is proved
below, substantiates Euler’s method of approximate integration of
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differential equations, which consists in the fact that the desired
. integral curve of the differential equation g%=f(x, y) that passes

through the point (x,, y,) is replaced by a polygonal line consisting
of straight lines (Fig. 1.13), each segment of which is tangent to
the integral curve at one of its
boundary points. When applying
this method for the approximate 74
calculation of the value of the
desired solution of y(x) at the
point x =0, the segment x, <x<b
(if b>x,) is subdivided into n 7
equal parts by the points x,, x,, 4 |4
Xyy vey Xp_y, X, Where x,=0. %
The length of each subdivision
x;.a—x;=h is called the interval % R <
of calculation, or step. Denote % %G %
by y, the approximate values of the Fi. 1-13
desired solution at the points x;. g

To compute y,, on the interval
X, < x<x, replace the desired integral curve by a segment of its
tangent at the point (x,, y,). Hence, y, =y, + hy, where yo = f (x,. y,)
(see Fig. 1.13). Insimilar fashion we calculate:

Ya=y, +hy;, where yy=Ff(x,, 4,);
Ys =Yy +hy,, where y,=F[(x,, y,);

Yn="Ynpr+ hyn_y, where yo_,=Ff(x,_1, Yo_1)-

If 6<x, the calculation scheme remains the same, but the
interval of calculation h is negative.

It is natural to expect that as h — O the Euler polygonal curves
approach the graph of the desired integral curve and consequently
Euler’s method yields a more and more precise value of the desired
solution at the point b as the calculation interval h decreases.
Proof of this assertion at the same time brings us to the following
fundamental theorem on the existence and uniqueness of a solution

of the equation Z—z=f(x, y) with the initial condition y(x,)=y, in
extremely general su'ficient conditions imposed on the function

fx, y).
Theorem 1.1 (on the existence and uniqueness of solu-
tion). If in the equation

=l 9 (1.22)



46 I. DIFFERENTIAL EQUATIONS

the function f(x, y) is continuous in the rectangle D:.
Xa—a<x<x+a, Y—b<y<Ly,+bh,
and satisfies, in D, the Lipschitz condition

[Fx, ) —F(x, 9) < N|y,—y.l,
where N is a constant, then there exists a unique solution y=y (x),
x,—H < x<x,+ H, of equation (1.22) that satisfies the condition
Y (%) =Y,, where by
H<mm(a, e ,V> ,
M=maxf(x, y) in D.

The conditions of the theorem require some explanation. It can-

not be asserted that the desired solution y =y (x) of (1.22) satisfying
the condition y (x,) =y, will exist at x,—a <<x<{x,+a, since the

integral curve y=y(x) may leave the rectangle D through the

y
2} b
.;5+b = b
yf:‘l L~/
4% |
‘yﬂ_b 1 %-0 h
i H tonB=—-M
f ;' z a"’"f=M “ z
0| %a z, Z G Zyvd 0| @3 a-h 2, z+hzara
Fig.- 1-14 Fig. 1-15

upper or lower sides y=y,+ b (Fig. 1.14) at a certain value
x=x,, x,—a<x,<x,+a and if x, > x,, then at x > x, the solu-
tion may no longer be defined (if x, < x,, then the solution may
not be defined for x <x,). We.can guarantee that the integral
curve y=y(x) cannot leave the region D for x varying over the
interval x,—H <x<x,+ H, where H is the least of two numbers

a, ;—(Fig. 1.15), since the slope of the tangent to the desired

integral curve lies between the slope M and the slope —M of the
straight lines depicted in Fig. 1.15. If these straight lines, between
which the desired integral curve lies, go beyond the rectangle D
through its horizontal sides y=y, +b, then the abscissas of the

points of intersection of these sides will be x, _-tmb—; consequently
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the abscissa of the point of exit of the integral curve from the
rectangle D can only be less than or equal to x°+X3‘ and greater

than or equal to xo—xl;— .

One can prove the existence of the desired solution on the in-
terval x,—H <x<x,+ H, where H=min (a, ML)' however it
is simpler first to prove the existence of a solution on the interval
x,—H<Lx<x,+ H, where H <min (a, nb-, Tl,—) and then con-

ditions will be indicated in the future such that with their fulfil-
Iment the solution may be continued.
The Lipschitz condition

IF e, y)—F(x, y!)lglel_yQ'

may be replaced. by a somewhat cruder, yet a more easily verifiable
condition of the existence of a partial derivative f, (x, y) bounded
in absolute value in the region D.

Indeed, if in the rectangle D

|Fy (x, 9)| <N,
we get, by the mean-value theorem,
[F e, g)—F@x g l=F, (x &)y —1.]
where £ is a value intermediate between y, and y,. Hence, the
point (x, E) lies in D and for this reason
lf:/(x» E)IQN and ’f(x» yl)—f(x, !/:)I<lel_yzl-
It is easy to give examples of functions f(x, y) (say, f(x,y)=|y|
in the neighbourhood of the points (x, 0)) for which the Lipschitz
condition holds, but the derivative g— does not exist at certain

points and hence the condition I‘;—LIQN is weaker than the
Lipschitz condition.

Proof of the existence and uniqueness theorem. Replace the dif-
ferential equation

Y_f, ) (1.22)

having the initial condition
Y (%) =Y, (1.23)
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by the equivalent integral equation
X

9=+ f(x, pax. (1.24)

Xo

Indeed, if a certain function y=y(x), when substituted, turns
equation (1.22) into an identity and satisfies the condition (1.23),
then, integrating the identity (1.22) and taking into account the
condition (1.23), we find that y=y(x) reduces equation (1.24) to
an identity as well But if some function y =y (x), when substituted,
reduces (1.24) to an identity, it will obviously also satisfy the
condition (1.23); differentiating the identity (1.24), we will find
that y=y(x) also reduces equation (1.22) to an identity.

Construct Euler’s polygonal line y=y,(x) emanating from the

point (x,, Y,) With calculation interval h,,=% on the segment

X, < x<x,+ H, where n is a positive integer (in exactly the same
way we prove the existence of a solution on the interval x, — H <x<x,)
Euler’s polygonal line that passes through the point (x,, y,) can-
not leave the region D for x, <x<x,+H (or x,—H<x<x,),
since the slope of each segment of the polygona! line is less than
M in absolute value.

We break up the subsequent proof of the theorem into three
parts:

(1) The sequence y=y, (x) converges uniformly.

(2) The function y (x)= lim y,(x) is a solution of the integral
eyuation (1.24). _

(3) The solution y(x) of the equation (1.24) is unique.

Proof. (1) By the definition of Euler’s polyzonal line,

Y, x)=[(x, ) for x,<x<x,,,, k=01, ..., n—1
(the right-hand derivative is taken at the corner point.x,), or we
denote

Ya () =[x, y, () + ([t yo) —F(x, y,(x))] (1.25)
as

f(xkv yk)—, (x, Yn (X)) =MNn (X)

By virtue of the uniform continuity of the function f(x, y) in D
we have

I, ()= (s g —F(x, Yy, (x)| <e, (1.26)
tor n> N(e,), where e,— 0 as n— oo, since |x—x,|<h, and
{Yx—Yn 2)| < Mh, and h,,=% —0 as n— oo,
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Integrating (1.25) with respect to x from x, to x and taking
into account that y,(x,)=y,, we get

v =yo+ § F(t. gy dt + (01 at. (1.27)

Here n may take on any positive integer value and so for integer
m>0

x

Unsm O =Uo+ St Ynsm (@) dt+§ mm(tydt.  (1.28)

%

Subtracting (1.27) from (1.28) termwise and taking the absolute
value of the difference, we get

X

|Ynsm(X) =Y (x)|= S'[f(t. Ynem () —F (2, y () dt +
Xo

4+ e dt =m0 at| <

X

Xo
<, Garn)—Ft, ya(0))|dt+

+ $ 1m0 de + § 10,0010t

for x,<<x<x,+H or, taking into consideration (1.26) and the
Lipschitz condition:

Iyn+m (X) =Y, (X)IQN S th-ﬂa (t)—yn (t)ldt+(en+u + en)'H°

Xo

Hence,

max  |Ypom (X)—Yp (x)| <
<K xS xo+H

SN max {14,y () —0, ()|t + (e, +e) H,
Xy

whence
(Cn+m+en)H
‘.<|;n<a§°+ H 'yn+m (X)‘— Yn (X) I g_TTNT <e
for any e > 0 given sufficiently large n > N, (e).
And so

max Yy (X)—y,1x)| <&
Xe S X <".+H
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for n> N, (e), that -is, the sequence of continuous functions y,(x)
converges uniformly for x, <x<x,+ H:

_ Y () =24 (x),
where y(x) is a continuous function.
(2) In equation (1.27) let us pass to the limit as n — oo:
x x

lim y, () =go+ lim §f(x, yo())dx+ lim {n, (0)dx
n-—->o ""Qx. n- Ox.
or
g =yo+ lim (f(x, g, () det lim §n,(0dx.  (1.29)

By virtue of the uniform convergence of y,(x) to y(x) and the
uniform continuity of the function f(x, y) in D, the sequence

f(:i, Yo (0) = f (%, y(x)).

ndeed, _
_lf(xr !/(x))—f(x. yn(x))l < E’
where >0 if |y(x)—y,(x)| <8(e), but |y(x)—y,(x)| <),
if n> N,(6(e)) for all x of the interval x, <x<x,+H.

And so |f(x, y(x))—f(x, y,(x))| <e for n> N, (5 (e)), where N,
is not dependent on «x.

By virtue of the uniform convergence of the sequence f(x, y,(x))
to f(x, y(x)), in (1.29) a passage to the limit is possible under
the integral sign. Besides, taking into account that |v,(e)| <e,,
where e,—0 as n— oo, in (1.29) we finally get

) =w+§Fx, g(x)dx.

Thus, y(x) satisfies equation (1.24).
(3) Assume the existence of two noncoincident solutions y, (x)
and y, (x) of equation (1.24); thus, '

max |y, ()=, (2)] #0.

LX< K+
A termwise subtraction from the identity

n(¥) =y, + S fx, 9, (%)) dx
of the identity "

X

=g+ F(x, 9, (x))dx,

Xo
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yields

B —y (0= [ (x, 4, ) —Fx, v, (x)] dx.
Hence )

max |y, (x)—y, (x)|=

Xo < X & Xo+ H

=  max S [F(x, v () —F(x, ys(x))] dx I <

X K X X+ H Xo
< max |$1Fe ) —f, g (0)dx|.
X< X< xg+H %o

Taking advantage of the Lipschitz condition, we will have

(19 00—y, (1)) dx

Xo

<

max [ 4 (X)— 9, (x) | <N max
Xo K X < Xo+H X0 € x < xo+H
X
<N max |y, (x)—y,(x)|] max de
xo < x KXo+ H Xo & X< x9+H %o
—NH  max |y (0)—4 0],

X < XK Xpt

The inequality obtained
max Hlyl (x)_y: (x)’<NH max Hlyl (x)—y, (x)l (130)

X0 € X Xot X €K X Xo+

is inconsistent if max |y, (x)—y, (x)] 0, since by hypothesis
Xo € x < X+ H ’

H <~ and from (1.30) it follows that NH =1.
The contradiction is eliminated only for
max |y, ()—g, (0| =0,

Xo < X < X0+
that is, if y, (x) =y, (x) for x, <x<x+H.

Note 1. The existence of a solution of equation (1.22) might
have been proved by a different method only if continuity of the
function f(x, y) (without the Lipschitz condition) is assumed; ho-
wever, continuity alone of the function f(x, y) is insufficient for
proving the uniqueness of the solution.

Note 2. The existence and uniqueness of the solution y=y(x)
are proved only on the interval x,—H < x<x,+ H; however, by
taking the point (x,+ H, y(x,+ H)) for the initial point, it is
possible, by repeating the reasoning, to extend the solution over
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an interval of length H, if, of course, the conditions of the exis-
tence and uniqueness theorem are fulfilled in the neighbourhood of
the new initial point. Continuing this process in certain cases, it
is possible to extend the solution over the entire semi-axis x>=x,
or even over the entire axis —oo < x < oo, if the solutions are
also extended in the direction of smaller values of x. However,
other cases are possible even if the function f(x, y) is defined for
any values of x and y.

Y
Y\
____d
0 z
-10) 0 (10] &
Fig. 1-16 Fig. 1-17

It is possible that the integral curve becomes unextendable due
to its approach to a point at which the conditions of the existence
and uniqueness theorem are violated, or the integral curve appro-
aches the asymptote parallel to the y-axis.

These possibilities are illustrated in the following examples:

) %=—%, y(0)=1. Separating variables and integrating, we

L4yt=7, y=xV—2, c=1, y=V1=x.
The solution cannot be extended beyond the limits of the interval
—1 < x <1. At the boundary points (— 1, 0) and (1, 0) the right

side of the equation :—z= —2 is discontinuous. The conditions of

the existence theorem are violated (Fig. 1-16).
2) Z—i=y’, y(1)=1. Separating the variables and integrating,

we get
1 1
y‘:..-—-——-x_c' c=2' y=—x__2

and the integral curve is extendable only up to the asymptote
x=2 (—oo <x<2) (Fig. 1.17).
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At the present time the theorem of the existence and uniqueness
of solutions not only of differential equations but also of equations
of other kinds is very frequently proved by the method of fixed
points. The most elementary theorem on fixed points is the cont-
raction-mapping principle.

Contraction-Mapping Principle. If in a complete metric space*
M we specify an operator A that satisfies the conditions:

(1) the operator A carries the points of the space M into points
of the same space: if yc M then A (y)c M,

(2) the operator A brings the points closer together, more pre-
cisely,

p(Alyl, Alz)<ap(y, 2),

where y and z are any points of the space M, o <1, and is inde-
pendent of the choice of y and z, p(y, 2) is the distance between
the points y and z in the M space, then there exists a unique fixed

point y in the M space, A[y)=y, and this point may be found by

the method of successive approximations, i. e. y= lim y,, where

n -+ o

=A[y,_,) (n=1, ..); the point y, is chosen arbitrarily in
the M space.

Proof. We shall prove that the sequence

yO' !/1- !/2, c .0y y,,,

is fundamental. Evaluate the distance between adjacent terms of
this sequence:

P (Y 1)=p (A [yll. A{yoi)éap Y Yo)»
0 (Ys Y)=p(Aly], Alp) <op (¥ y) <’ (Y1 Yo

P Yn+r YUn) =P (A[Ya), Aly,1]) <
Ko Yns Yn-1) < AP (Y1s Yo),

* The space M is called metric if a function p(y, z) is defined in it of a
pair of points of this space satisfying the following conditions for any points of
the space y and z:

(1) p(y, 2)°=0; note that p(y, y)=0 and from p(y, 2)=0 it follows that

=z

2 ply, =012, y)

3 oy, 2)<<p(y, u)+p (4, 2) (triangle rule). The function p is called the
distance in M space.

A metric space M is complete if every fundamental sequence of pomts of the
space M converges in that space. Recall that a sequence y,, ys,
called fundamental if for every e > 0 there is a number N (e) such “that for
nz= N (e) the distance p (y,, Yn+m) < & for any interval m > 0.
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If we now apply the triangle rule m—1 times and use the ine-
quality (1.31), we get
P Uns Ynsm) <P Wns Yns1) F 0 Ynsrs Ynss)+ -
' oo P Wnim-vs Ynam) <[@"+ 0™ 4. Fam* 2o (y,, y,) =

ol —an+

=————p%wm<£%pMJm<e

| —a

for sufficiently large n. Consequently, the sequence y,, 4,, Y50 - - -, Yy, - -
is fundamental and, by virtue of the completeness of the M space

it converges to a certain element of this space: llm y,,.-y,' yco M.

We will now prove that y is a fixed point. Let A (41 = =y. App-
lying the triangle rule twice, we get
p(y» y)<p(yv yn)+p(ym !ln+1)+P(!/n+v !7)
For any & > 0, we can choose N (g) such that for n >N (e)

M ey <% 3 , since y= lim y,;

n-»o

(2) P Wns Ynsr) <§-, since the sequence y, is fundamental;

@ PWmsnt) =P (A4, Al4) < @p (¥ ) <4, whence
p(y, y) <e, where ¢ may be chosen arbitrarily small. Hence,

0@ y=0 and y=y, Afy] =

It remains to prove that the fixed point y is unique. If there

existed yet another fixed point z, then p (A [y], 4 [2])=p(y, 2), but
this contradicts hypothesis (2) of the theorem.

Let us apply the contraction-mapping principle to the proof of
the theorem of the existence and uniqueness of the solution y(x)

(¥o=—hy < x < X+ hy) of the differential equation = _ = f (x, y) which

satisfies the condition y(x,)=y, on the assumptlon that in the
region D
X, —a<x<xta, Y—b<y<y,+0b

the function f is continuous and hence is bounded |f|<<M and
satisfies the Lipschitz condition

1F e, p—Fx, 2| <N|y—z|.

The number A, << min (a, ':T will be chosen more precisely below.

Consider a complete metric space C whose points are all possible
continuous functions y (x) defined on the interval x, —h, <<x<x, + A,
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whose graphs lie in the region D, and the distance is defined by
the equation
p(y, z)=max|y—z|,

where the maximum is taken for x varying on the interval
Xo—hy <X Xy 1 hy.

This space is often considered in various problems of mathematical
analysis and is called the space of uniform convergence, since con-
vergence in the sense of the metric of this space signifies uniform
convergence.

Replace the differential equation %: f(x, y) having initial con-
dition y(x,)=y, by the equivalent integral equation

y=yo+ { F(x, y)ax. (1.24)

Consider the operator

x

Alyl=v+ S Fex, y))dx,

Xo

which associates with every continuous function y(x) that is specified
on the interval x,—h,<<x<x,+h, and does not go beyond the
region D, a continuous function A [y)] defined on the same interval,

Sf(x, y)dx

The operator A [y] thus satisfies the condintion (1) of the contrac-
tion-mapping principle.

Here, equation (1.24) is written as y=A[y] and hence to prove
the existence and uniqueness theorem it remains to prove the exis-
tence, in the space C, of a unique fixed point y(x) of the operator
A, since in this case y=A[y] and (1.24) is satisfied.

To prove the theorem it remains to check and see whether the
operator A satisfies the condition (2) of the contraction-mapping
principle:

whose graph also lies within D, since < Mh, < b.

Pp(Afy], AlZD<ap(y, 2), a <],
where

p(Aly), Alz)=max |[[f¢x, »)—F(x, 2))dx|.

Xo
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Using the Lipschitz inequality, we get

Sly—ZIdx

%o
x

S dx
Choosing h, so that Nh,<a < 1, we find that the operator A satis-
fies the condition

P(Aly), Alz)<ap(, 2), a<1.

Hence, according to the contraction-mapping principle there exists
a unique fixed point y(x) of the operator A, or, what is the same
thing, a unique continuous solution of the equation (1.24), and it
may be found by the method of successive approximations.

In quite analogous fashion it is possible to prove the theorem of
the existence and uniqueness of the solution y, (x), ¥,(x), ..., Y, (%)
for the system of equations

p(Alg). Alz)<N max <

< N max |y—z|max = Nh,max |y —z|=Nhyp (y, 2).

d .
'a%=f:(x. Yoo Yo oo Uah Yi(X) =Yy (=1,2, ..., n) (1.32)
or

Vi=bYo+ S FE vy o or, g)dx (=1, 2, ..., n)(1.33)

on the assumption that in the region D defined by the inequalities
X—a< A< +a, Yp—b<y <y t+b (=12 ..., n),
the right sides of (1.32) satisfy the conditions:

(1) all the functions f;(x, 4\, Y5 ..., Yy )(i=1, 2, ..., n) are
continuous and hence also bounded, |f;|<< M;

(2) all_the functions f;(i=1, 2, ..., n) satisfy the Lipschitz
condition:

n
Ifl(x; yl' y!’ ey yn)_,i(x' Zlv Zz- co ey Zn)lgngllyi—zil'

Now, a system of n continuous functions (y,, y,, ..., ¥,), i.e.
an n-dimensional vector function Y (x) with coordinates y, (x),
Ys(x), ..., Y,(x) defined on the inteval x,—h,<<x<x,+ h,, where
h, < min | a, —ﬁ. %), will be a point of C space and will
be chosen more exactly below. The distance in C space is defined
by the equation

P (), Z()= X max|y—zl,
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where 2z, z,, ..., 2z, are coordinates of the vector function
Z (x).

It is not difficult to verify that in such a definition of distance,
the set C of n-dimensional vector functions Y (x) turns into a com-
plete metric space. The operator A is defined by the equation

A[Y]=<ym+gf1(x' Yo Yoo ooy Ya)dx,

X
Yo + sz(x’ Yi» Yas - - - y,,)dx. ceor Yot an(xr’yp Yoy« v ey yn)dx>'
Xq Xo
i. e. the action of A on the point (y,, ¥,, ..., y,) yields a point
of the same space C with coordinates equal to the right-hand sides
of the system (1.33).

The point A[Y] belongs to C since all its coordinates are con-
tinuous functions that lie within D if the coordinates of the vector
function Y have not gone beyond the region D.

Indeed,

x

de

X,

<M <Mh0<bb

Sf.-(x, Yo Yoo -ooy Yg)dx

and hence |y;—y;, | < b;.
It remains to verify fulfillment of the condition (2) of the con-
traction-mapping principle:

e (A[Y)), A[Z)=

n
=) max
i=1

X

S[fi(xv Yo Yos «- - yn)_fi(xo 2 2z eeey z,,)]dx

Xo

<

n
< ign max <

S[f,-(x, Yo Yoo -voos Ya)—[ilxy 24, 24, ..., 2,)dx

x

Slgl |yi—2;|dx

X,

n
<N Zl max

<

n

n
<N '21 max |y, —z;| 2 max
it = [}

§dx

Xo

=Nnhp(Y, Z).

Consequently, if one chooses h‘,gf—,‘—, where 0<a< 1, or
Nnh,<a <1, then condition (2) of the contraction-mapping prin-
ciple will be satisfied and there will be a unique fixed pointy, which
may be found by the method of successive approximations. But,
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by definition of .the operator A, the condition y=A(y) is equiva-
lent to the identities

E’Eyio'{"g,i(x’ .l—/-l' -gz' LR gn)dx (‘=lr 2! L ] n)v

Xo

where g—/,(i= 1, 2, ..., n) are coordinates of the vector function _i/',

that is, y is a unique solution of the system (1.33).
Example 1. Find several successive approximations y,, y,, y, to
the solution of the equation

Z—Z:x’_{_y’; y(0)=0, —1<xL], —1<y<l.

y=5(x’+y’)dx, h°=min(l, %) =%.

Putting y,(x)=0, we have

yl=5x’dx=%s, y,=5‘(x"—l—%‘)dx=§+%;— '

; x3 x7\2 x3 x? 2t x8
n={[e+(5+&) ] ar=F+5 (1+5+35)
[
Example 2. Under what restrictions does the linear equation

Y rWy=F®

satisfy the conditions of the existence and uniqueness theorem?

To satisfy the first condition of the theorem it is sufficient
that the functions p(x) and f(x) be continuous on the interval
of variation x, a, <x<Ca,, that we are considering. In this way,
the second condition of the existence and uniqueness theorem will
be fulfilled, since the partial derivative with respect to y of the

right side of the equation Z—g=-——p(x)y+f(x) is —p(x) and, due

to the continuity of the function p (x) on the interval a, <x<a,,
is bounded in absolute value (see page 47). And so if p(x) and f(x)
are continuous on the interval a, < x < a,, then through every point
(%0, Yo) Where a, < x, < a,, and y, is given arbitrarily, there passes
a unique integral curve of the linear equation under consideration.

Theorem 1.2 (on the continuous dependence of a solution
on a parameter and on the initial values). If the right side
of the differential equation

d
T=fxyw (1.34)
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is continuous with respect to p for p,<<p<<p, and satisfies the
conditions of the existence and uniqueness theorem, and the Lipschitz
constant N does not depend on g, then the solution y(x, p) of this
equation that satisfies the condition y (x,) = y, depends continuously on p.

Construct Euler’s polygonal lines y,=y,(x, p) which are conti-
nuous functions of p and, repeating the reasoning on pages 45-51,
we find that the sequence y, (x, p) converges uniformly not only in x
but also in p for x, <x<x,+H, p,<p<p,, since N and H do

not depend on p if H < min (a,m,_‘ N—l) , Where M=>|f(x, y, p)|.

Thus, the solution y=y(x, p) of the equation
y=yo+Sf(x, Yy, w)dx, (1.35)

which is the limit of the sequence y, (x, p), is continuous not only
with respect to x, but also with respect to p.

Note. 1f one applies to equation (1.35) the method of successive
approximations, the successive approximations y=y, (x, p), which
are continuous functions of x and p, uniformly converge to the solu-
tion 7 (x, p) of the equation (1.35) (since = Nh < 1 is not depen-
dent on p). Hence, this method can also be used to prove the conti-
nuous dependence of the solution on x and p.

It is obvious that the proof will not change if the right side of
the equation (1.34) is a continuous function of several parameters,
on the assumption, of course, that the Lipschitz constant N does
not depend on them.

Using the same method under similar conditions it might be pos-
sible to prove the continuous dependence of the solution y (x, x,, y,)

of the equation g§=[(x, y) on the initial values x, and y,; it would

only be necessary to diminish h, somewhat, for otherwise the solu-
tions defined by the initial values close to x,, y, might go beyond
the region D for values of x already lying on the interval x,—h, <
<x< xy+h, .

However, it is still simpler, by a change of variables, to reduce
the problem of the dependence of the solution on the initial
values to the already considered case of the dependence of the
solution on parameters contained on the right side of (1.34).
Indeed, putting z=y(x, %y, Yo)— Yo, ¢t =x—x,, we transform the

e uationd—y=f(x, y) with initial condition y(x,)=y, intod—z=
q dx _ dat

=f(t+x, 2+Y,), 2(0)=0, to which one can then apply the theo-
rem on the continuous dependence of the solution on the para-
meters x, and y,, if the function f is continuous and satisfies the
Lipschitz condition.
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Analogous theorems may be proved by the same methods for
systems of equations.

Observe that the continuous dependence of the solution y, (x, x,, y,),
X, <x<b (or b<<x<x,) upon the initial values x, and y, signifies
that for any e >0, a 8 (e, b) > 0 may be found such that from the
inequalities

| x,—x,| < 8(e,b) and |y,—y,| < 6 (e, b)
there will follow the inequality
1y (x, X0 Yo) —Y (%, X0, 4,) | <& (1.36)
for x, <x<l (Fig. 1.18).
Generally speaking, the number 6 (e, b) decreases with increasing
b, and as b— oo it can approach zero. For this reason, it is by

J

(Zy-Zp)< D1, b)
(4,-4,)<0(e b)
Fig. 1-18

far not always possible to choose a number 8 (e) > 0 for which the
inequality (1.36) would be satisfied for all x > x,, that is, it does
not always happen that solutions which have close-lying initial values
remain so for arbitrarily large values of the argument.

A solution that changes but slightly for an arbitrary but suffi-
ciently small variation of the initial values, given arbitrarily large
values of the argument, is called stable. Stable solutions will be
examined in more detajl in Chapter 4.

Theorem 1.3 (on the analytical dependence of a solution
on a parameter, Poincaré's theorem). The solution x(t, p) of
the differential equation x= f(t, x, p) which satisfies the condition
x(t,) =x,, depends analytically on the parameter p in the neigl.bour-
hood of the value p = p,, if the function f in the given range of t and x
and in some neighbourhood of the point p, is continuous with respect
to t and is analytically dependent on p and x.

An analogous assertion also holds for the system of equations

;i =Ffit, %, x5y .o, X ) (6=1,2,...,n),
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and in this case it is assumed that the functions f; are continuous
with respect to the first argument and are analytically dependent
on all the other arguments.

We do not give a detailed proof of this theorem (and the same
goes for other theorems requiring application of the theory of ana-
Iytic functions) and refer the reader to a paper by A. Tikhonov [4]
which contains the simplest proof of the theorem on the analytic
dependence of a solution on a parameter.

The underlying idea of Tikhonov’s proof is: assuming that p can
take on complex values as well, the existence is proved of the limit

A i, .
lim “ZL ll)=g—‘;-, which thus signifies analytic dependence of the
Ap -0
s:)‘lution on p. The existence of this limit follows from the fact that

A
the ratio —*- satisfies the linear differential equation

AP
A F(, x(tpt AR, pAR)—] (X (L p), p+Ap) 8 (L) I
dt Ap Ax (L, p) Ap
L Ixt et AD—f o x(t ). W) sl B
Ap ’ Ap le=yy,

the solution of which is unique and, as the increment Ap tends to
zero by any law whatsoever, approaches the unique solution of
the equation

dz 9 0

d7=5l;2+(%. Z(t°)=0.

Theorem 1.4 (on the differentiability of solutions). If in

the neighbourhood of a point (x,, y,) a function f(x, y) has continuous
derivatives to the order k inclusive, the solution y(x) of the equation

d
Z=Fx ) (1.37)
that satisfies the initial condition y(x,)=y,, has continuous deriva-
tives to order (k+1) inclusive in some neighbourhood of the point
(X0, Yo)-

Proof. Substituting y(x) into equation (1.37), we get the identity

Y = Fix, y (), (1.37,)

and hence the solution y(x) has a continuous derivative f(x, y (x))
in some neighbourhood of the point under consideration. Then, by
virtue of the existence of continuous derivatives of the function f,
there will exist a continuous second derivative of the solution

dy _of  ofdy o , 0
a_x7—0_x+a_yﬁ_a+@f(x’ Yy (x)).
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If &> 1, then by virtue of the existence of continuous second-order
derivatives of the function f, it is possible, by differentiating the
identity (1.37,) once again, to detect the existence also of a third
derivative of the solution:

ddy & of (of af
ds ax’+ Gxay 6y’f’+ ( f)

Repeating this argument % times, we prove the theorem.
Now consider the points (x,, y,) in the neighbourhood of which

there is no solution of the equation %=f(x, y) that satisfies the

condition y(x,)=y,, or the solution exists but is not unique. Such
points are called singular points.

A curve that consists entirely of singular points is called singular.
If the graph of a certain solution consists entirely of singular points,
then the solution is called singular.

To find singular points or singular curves it is first of all necessary
to find a set of points in which the conditions of the existence and
uniqueness theorem are violated, since only such points can include
singular points. Of course, not every point at which the conditions
of the theorem of existence and uniqueness of solution are violated
is a singular point, since the conditions of this theorem are suffi-
cient for the existence and uniqueness of the solution but are not
necessary.

The first condition of the existence and uniqueness theorem (see
page 45) is violated at the discontinuity points of the function
f (x, y); note that if the function f(x, y) increases without bound in
absolute value upon approaching (by any path) some isolated point
of discontinuity (x,, y,), then in those problems in which the
vanables x and y are equivalent (as we have already agreed) the equa-

tion ———f (x, y) must be replaced by the equation d T for
whlch the right- hand side is now continuous at the pomt (xo, yo) if
it is taken that =0.

f( ’
Hence, in problel?ns in which the variables x and y are equiva-

lent the first condition of the existence and uniqueness theorem is
violated at those points at which both the function f(x, y) and ——

are discontinuous.
One particularly often has to consider equations of the form

dy M(x, y)
=¥y’ (1.38)

where the functions M (x, y) and N (x, y) are continuous. In this

f(x )]
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. M(x,y) N (x,9) . .
case the functions N 5) and Mz 9) will at the same time be

discontinuous only at those points (x,, y,) at which M (x,, y,) =
= N (x,, Y,)=0 and the limits
lim A1 9)

XXy N (x' y)
Ukad /)

and

s N p)
lim
x=x, M%)
UEd ']

do not exist.
Let us consider several typical singular points of the equation

(1.38).
Example 3.

The right sides of this equation and of the equation :—;=2iy are

discontinuous at the point x=0, y=0. Integrating the equation,
we get y=cx?® which is a family of parabolas (Fig. 1.19), and

f!

=

Fig. 1-16. Fig. 1-20

x=0. The singular point at the coordinate origin is called a nodal
point.

Example 4.

&

=-4
< *
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The right sides of this equation and of equation §—5=——"— are
discontinuous at the point x=0, y=0. Integrating the equation,
we get y=%, which is a family of hyperbolas (Fig. 1.20), and

the straight line x=0. The singular point at the origin is called
a saddle point.

Example 5.
dy _xty
dx  x—y '’
The right sides of this equation and of equation :—’—;=:T_z are
discontinuous at the point x =0, y=0. Integrating the homogeneous
7\
'

Fig. 1-21 Fig. 1-22

equation (compare with Example 3 on page 42), we have

arctan L
x

Vi +y =ce
or in polar coordinates p = ce¥, which represents logarithmic spirals
(Fig. 1.21). The singular point of this kind is called a focal point.

Example 6.
dy ___x
.

The right sides of this equation and of the equation Z—;=-—%
are discontinuous at the point x=0, y =0. Integrating the equa-
tion, we get x*+4y*=c* which is a family of circles with centre
at the. coordinate origin (Fig. 1.22). The singular point of this
type, i.e. the singular point whose neighbourhood is filled with a
family of closed iutegral curves, is called a cenfre. In this example
there is no solution that satisfies the condition y(0)=0.

In Chapter 4 we shall return to the problem of singular points
and their classification from a somewhat different point of view.
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The second condition of Theorem 1.1 on the existence and uni-

queness of solution—the Lipschitz condition, or a cruder condition
requiring the existence of a bounded partial derivative %fé is most
often violated at points, upon approaching which %increasawith-

out bound, i.e. at points at which 317=0.

0y
Generally speaking, the equation 'a'lf_=0 defines a certain curve
oy
at points of which uniqueness may be violated. If at points of
this curve uniqueness is violated, then the curve will be singular;

if, besides, the curve turns out to be integral, then we have a
singular integral curve.

The curve -51,—=0 may have several branches, then with respect
oy

to each branch one has to decide whether that branch will be a

singular curve and whether it will be an integral curve.

Example 7. Has the equation g%=y’+x’ a singular solution?

The conditions of the existence and uniqueness theorem are ful-
filled in the neighbourhood of any point; hence there is no singular
solution.

Example 8. Has the equation %= v/ (y—x)*+5 a singular so-
lution?

The right side is continuous but the partial derivative

[}
g—£-=—;‘;—(y—x)"’- increases without bound as it approaches the

straight line y=ux; consequently, uniqueness may be violated on
the straight line y=x. But the function y=x does not satisfy
this equation and therefore there is no singular solution.

Example 9. Does the equation i—i= /(y—x)* + 1 have a singular
solution?
As in the previous example, the equation 7',—=0 is of the form
oy
y=1x, but this time the function y=ux satisfies the given equation.
It remains to find out whether uniqueness has been violated at points of

this straight line. By a change of variables z=y—x we reduce the
initial equation to an equation with variables separable, after which

50378
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it is easy to find the solution: y—_x=(‘2;7c)'. The curves of this

family pass through points of the graph of the solution y=x
(Fig. 1.23). Thus, uniqueness is violated at every point of the
straight line y=x and the function y=x is a singular solution.

yl\

Fig. 1-23

This example shows that continuity alone on the right side of
the equation

Dbt o) yx)=v,

is insufficient for uniqueness of solution of the basic initial
problem, yet it may be proved that in this case the existence of
@ solution is already ensured.

7. Approximate Methods of Integrating
First-Order Equations

In Sec. 6 we investigated two approximate methods of integrat-
ing differential equations: Euler’s method and the method of
successive approximation. However, both methods have essential
drawbacks as a result of which they are comparatively -rarely
used in actual approximate calculations.

The value of an approximate method depends on the accuracy
of the results obtained and the simplicity of calculation. The
demerits of the method of successive approximation are a compara-
tively slow convergence of the approximations to the solution
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and complexity of the computations. A drawback in Euler’s
method is its low accuracy. To increase the accuracy one has to
take an extremely small interval of computation h, which leads to
prolonged computation.

Incidentally, a slight improvement in Euler’s method via so-
called iteration, yields a rather convenient computational procedure.
When applying Euler’s method with iteration, one divides the
interval x,<<x<Cb, on which the solution of the equation

j—%= f(x, y) defined by the condition y(x,) =y, is to be computed,

into equal subintervals of length h=b_,;x°. Denoting x,+ kh=x,,

x,+ kh)=y,, y'(x,+kh)=y’,, we compute y,,, (if y, has al-
rea&y been found), first using Euler’s formula:

Yesr=Yp+hyry oF  AYyp=Yyp.  —Yp=hyk, (1.39)

i.e. on the interval x,+kh <x<x,+(k+1)h the integral curve
passing through the pomt (%4, yg) is replaced by a segment of its
tangent at this point (see Fig. 1.13 on page 45). Then the com-
puted value of y,,, is refined, for which purpose the derivative
Yper =1F (X441, Yp+y) is determined and Euler’s formula (1.39) is
again employed, but in place of y, one takes the arithmetic mean
of the . computed values of the derivatives at the boundary points

-‘ﬂ;yﬁ‘—, i.e. one takes

gk+l=yk+h£%m . (1.40)

The just computed value of _1/,,+l permits computing a new value
of the derivative yr+, =/ (X441, Yp+1): then one again computes the

arithmetic mean of the values of the derivatives y—"'ti,yﬁ-‘-, again

applies formula (1.40)
!;k+1=yk+hﬂj-_2yk_ﬂ'

and continues this process until, within the limits of the given
accuracy, the results of two successive computations of the values
of Y,,, coincide. The same method is then used to compute y,,,,
and so on.

Euler’s method with iteration yields an error of the order of A®
in each interval and is frequently employed in computational work.
However, more precise methods (those of Stérmer, Runge, Miln

h*
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and others) are more often used. They are based on replacing the
desired solution by several terms of its Taylor expansion

» h? hn
Ypor T YpHhYe+ 57 Yo+ -+ 7 o8, (1.41)

i.e., on replacing the desired integral curve by a parabola of order
n having nth order tangency with the integral curve at the point
X=Xp, Y=Y

Direct application of the Taylor formula (1.41) on every interval
leads to involved and diversified computations, and so this formula
is ordinarily used only when calculating a few values close to
x=x, that are needed for applying more convenient computational
schemes, among which Stdrmer’s method should be mentioned first.
Here, the computation is carried out by one of the following for-
mulas depending on the order of the approximating parabola:

|

Yer =%t q+ 5 A0, (1.42)
1 5

B =ht @t 506G +154%.,, (1.43)
1 5 3

Bn=Utqt+5 A‘h-n'*‘ﬁAzqk_,-*—gAaq._,. (1.44)

1 5 3 251
Yer =Ur+ G+ 5 AGs, +]§A2qk—z + gAsqk-s + 720 Ay (1.45)

=y, AGe_y =G —qr1, D'qp_s=AG,_,—Ag,_,,
A"h-s=A"h-:"A"7k-a- A‘q,,_.=A’q,_,—A“qk_‘.

.............................

Stérmer’s formulas may be obtained by integrating the identity
y' =[(x. y(x)) from x, to x,,, in which y(x) is the desired solution:
Xk +1
oo =+ § [, gy ds,

Xy
and using the quadrature formula from the course of mathematical
analysis:
Xk 41
1 5
S px)dx=~h l%:'*‘?A‘Pk-n +'|‘2A"Pk-z +
Xk

+ 5 A%y F o At - (1.46)

It will be recalled that this quadrature formula is obtained by
replacing the integrand ¢ (x) by the approximating polynomial in
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Newton’s interpolation formula and by computing the integrals of
separate terms.

An estimate of the remainder term of the quadrature formula
(1.46) shows that the error in one interval of calculation is of the
order of h* in (1.42), h* in (1.43), h® in (1.44) and A® in the for-
mula (1.45). Now if we take into account that the errors over
several intervals may be cumulative, we have to multiply the eva-

—Xo

luations obtained for one interval by n=" in order to estimate

the error for n intervals of calculation. This can lead to a change
in the above-indicated order of error.

Note. 1t may be demonstrated by direct expansion of the Taylor
formula in the neighbourhood of the point x=x, that the right-
hand side of Stormer’s formula (1.42) coincides, to within terms
containing h to powers above the second, with the first three terms
of the expansion of y,,, in the Taylor series (1.41):

, h® .,
Ye +hye + 55 yw (1.47)

the right side of the next of the Stormer formulas, (1.43), coinci-
des, to within terms containing h to powers above the third, with

. h2 . Ky .
Yo+ hye+ 5r e+ 37 Us
and so forth. For example, for formula (1.42) we get

, 1 . , 1 . ,
Yo thye +5h Ay = Yo +hy + 5 h Y —Yi-r),  (1.48)

or, expanding

y;z—l =y' (xk-l)
in the Taylor series

’ ’ n l rre
Y (o)) =y () —hy" (x) +5h°y" (%) + ...
and substituting into (1.48), we obtain
. 1 , , . 1 o ‘o
Ye+hys +?h(yk_yk—l)=yk+hyk+?hzyk_%hayk +.eh

and consequently the first three terms coincide with three terms
of the Taylor expansion (1.47).

To begin calculations by Stérmer’s formulas, we have to know
the values of the desired function at several points, not one [using
formula (1.42) at two points: x, and x,-+4h, using (1.43) at three
points: x,, x,+h, and x,42h, and so on]. These first few values
may be computed by Euler's method with reduced interval or by
using Taylor’s formula (1.41), or by the Runge method that is briefly
described below.
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For definiteness take the formula (1.44):
1 5 3
Y1 =Ypt s ‘i‘? Aqk-x + 12 Azqk-z + B Aaqk—s

and assume that in addition to the given initial value y, we have
already found y,, y, and y;. Then we can calculate:

Go=1F (%o Yo)h, q.=F(x,, y))h,
9y =[x, Ya)h, Gs=F(xs, ys)h,
and hence also
Agy=9,—q,, A, =9,—q1, Mgy =G5—0,,
A’q,=Aq,—Aqg,, Aq,=Aq,—Aq,, Aa‘]o=AQQ1—Asqo-
Now, using formula (1.44), we compute the value of y,; with
this value we can obtain ¢,, Ag,;, A’q,, A%,. Then, using (1.44)

again, we compute y, and so on.
The results of the computation are entered in a table (see below)

that gradually fills in.

x | y | g | Aqg|Aq| A

X | Y | 9 | Agy | A%q,| A%,

Xy Y q, | Aq, | A%,

X, | Y2 | 9, | Ag.

Ordinarily it is required to compute the value of the desired
solution of a differential equation at some point x =6 with a given
accuracy. The question immediately arises: which of Stérmer’s for-
mulas is most suitable and what interval h guarantees the desired
accuracy and at the same time is not too small (this would lead
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to extra computation). Scme idea of the choice of formula to be
used in the computation and of the choice of interval is given by
the above-indicated orders of error in each interval of calculation.
One must also bear in mind that errors may be cumulative over
a number of intervals. Given a proper choice of interval h, all
differences in the table should vary smoothly, and the last diffe-
rences in formula (1.44) should only affect the reserve digits. A sharp
change of some difference indicates that on the chosen interval A
there may be neglected peculiarities in the variation of the function
on the interval under consideration, and this may lead to appre-
ciable errors in the calculation of y,.,,.

However, all these arguments are not exactly reliable, and more
exact evaluations of the error may turn out to be extremely cum-
bersome and inconvenient. For this reason, the following rather
reliable method is employed: starting out with the above inexact
reasoning, one chooses some interval h, carries out the computations

by one of Stormer’s formulas with interval A and % and compares

the results at common points. If the results coincide to within the
given accuracy, then it is decided that the interval h ensures the
required accuracy of computation; but if the results do not coincide
within the limits of the given accuracy, the interval h is reduced
by a factor of 2 again and the computations are carried out with

the interval % and % and the results are again compared, etc.
It is advisable to carry out the computations with interval h
and g in parallel so as to be able to detect any noncoincidence

of results as early as possible and avoid extra work. This method
of double computation has the further advantage that it almost
completely eliminates errors of calculation, since as a rule they
are revealed immediately when the results of computing with in-

tervals A and % are compared.

For finding the first few values of y; that are necessary to begin
computations by Stormer’s method, one can recommend the Runge
method in addition to the methods we have already mentioned
(Euler’'s method with reduced interval with or without iterations,
or the method of expansion in a Taylor’s series).

In the Runge method, one has to compute four numbers to
find y,,

M= (%as o), ma:f("k-l--g-, yk+m_21h') '

mgh

my=f (%t g et g ) me=F(Bth, gtmb), (1.49)
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and then
h
Y1 = yk+€(m1 + 2m2+2ms+mc)- (150)

Ordinarily, the Runge method is used only to compute the first
few values y,, y,, ..., that are needed to begin computations by
the Stérmer method; however, this method may be used to com-
pute the remaining values as well. Runge’s method, like that of
Stormer, is based on an approximation of the desired integral curve
by a tangent parabola.

If we compare the right side of Runge’s formula (1.50) with
Taylor’s expansion

. 1 - 1 1
yk+x=yk+!/kh+§ykh’+§yk h® 4 T,yivh‘ +en,

it will be seen that terms with powers lower than the fifth coincide.
For this reason, when computing several initial values by the Runge
method, in order. to transfer to computations by the Stormer method
using formulas (1.42), (1.43) and (1.44), one can use the same
interval h; but if Stérmer’s formula (1.45) is used subsequently,
the initial computations by the Runge method must be performed
with a reduced interval of calculation, since for one and the same
interval of calculation, formula (1.50) does not guarantee the same
accuracy as formula (1.45 does. True, rather often the initial
computations are performed by the Runge formulas with reduced
interval even when employing Stérmer’s formulas (1.43) and (1.44),
since even a slight error in computing the initial values for the
Stormer formulas can drastically reduce the accuracy of subsequent
computations. *

Modern digital computers perform the above-described computa-
tions by Stormer’s or Runge’s method very rapidly (up to hundreds
of thousands of operations per second), and the programming pro-
cedure can be substantially simplified by using standard programmes
developed for the methods of Stormer and Runge. Here, in the
approximate integration of the diflerential equation y' =f (x, y),
y(x,)=y,, one has only to compile a subprogramme for computing
the values of y,=f(x,, vy, and to include it in the standard
programme.

Example.
y=x"+y* y(O0)=—1L

Find the value y(0.5) to within 0.01.

* A more detailed description of approximate methods of integrating diffe-
rential equations is given by A. Krylov [6] and l. Berezin and N. Zhidkov (7].
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Taking advantage of the Taylor expansion

, 0 2 e
YW=y +y Ox+LPE L L0

we compute the value y(x) at the points x,=0.1 and x,=0.2:
y(0.1)= —0.9088 and y(0.2)= —0.839

(or in place of y(0.2) we compute y(—0.1), which is even to be
preferred, since the point x, = —0.1 lies closer to the initial point
x,=0 than does the point x,=0.2). The subsequent values are
computed by Stérmer’s formula (1.43) with interval A=0.1, and
the results are entered in the table (without the differences A%j).
After that, or at the same time, we perform the computations with

interval %=0.05. This yields
y(0.5)~ —0.63.

8. Elementary Types of Equations Not Solved for the Derivative
A first-order differential equation not solved for the derivative
is of the form
F(x, y, y')=0. (1.51)
If it is possible to solve this equation for y’, we get one or several

equations
y'=fi(x» y) (l':l. 2, ...).

Integrating these equations that have already been solved for the
derivative, we find the solutions of the original equation (1.51).
By way of an example, let us integrate the equation

Y')—(x+y) y +xy=0. (1.52)

Solving this quadratic equation for y’, we get y'=x and y' =y.
Integrating each one of the equations obtained, we find

y=%+c (1.53)

and
y=ce* (1.54)

(Fig. 1.24). Both families of solutions satisfy the original equation.

Also, the curves composed of an arc of the integral curve of the
family (1.53) and an arc of the integral curve of the family (1.54)
will be smooth integral curves of the equation (1.52) if they have
a common tangent at a common point. Fig. 1.25 depicts an integral
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curve of equation (1.52) composed of graphs of the solutions
y=ﬁ2’—+c for c=-% , —oo<x<Ll and y=ce* for c=e™},
1 <x < o0, and Fig. 1.26 depicts an integral curve of equation (1.52),

)

Fig. 1-24

which is composed of’ the graphs
of the solutions y=-x2— for x<O0

and y=0 for x> 0.
Thus, equation

F(x’ Y, !/')=0 (151)

may be integrated by solving for y’
and by integration of the thus obta-
ined equations y' =f;(x, y) (i=1,
2, ...) that have already been
solved for the-derivative.

However, equatfon (1.51) is not always so readily solved for y’,
and even more infrequently are the equations y’ = f;(x, y) obtained

after solving for y’' easily

.Z'l
5/:—_.
< g
7= 2z
7
Fig. 1-26

integrated. Therefore, one often has

to integrate equations of the
form (1.51) by other methods.
Let us consider a number of cases.

1. Equation (1.51) is of the

form
F(y')=0, (1.55)

and there exists at least one
real root y' =k; of this equation.

Since (1.55) does not contain
x and y, k; is a constant. Conse-
quently, integrating the equation
y ==~k, we get y=~kx+c or
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k= y'x‘c , but &; is a root of the equation (1.55); consequently,

F(y:c)=0 is an integral of the equation in question.

Example 1.
¢V —() +y +3=0.
The integral of the equation is
y—c\'_(y—¢\*, ¥y—c¢ _
(5~ +55 430

X
2. Equation (1.51) is of the form
F(x, y')=0. (1.56)

If this equation is hard to solve for y’, it is advisable to introduce
the parameter ¢/ and replace (1.56) by two equations: x=¢(¢) and
y' =y (f). Since dy=y'dx, in the given case dy=1(t)¢’(t)dt,
whence y=S¢(t)cp’(t)dt+c and, hence, the integral curves of

equation (1.56) are determined in parametric form by the following
equations:
x=9(t),

y={v o @) dt+c.

If equation (1.56) is readily solvable for x, x=¢(y’), then it
is nearly always convenient to introduce y’ =t as parameter. Then

x=q(t), dy=y'dx=to’ (1)dt, y=[t¢' (t)dt +c.
Example 2.

, x=(y'yY—y—1
Put y' =t, then
x=t*"—t—1, (1.57)
dy=y'dc=1t(3t*—1)dt,
3t 2
y=—4—T+Cl. (1.58)

Equations (1.57) and (1.58) define in parametric form a family of
the desired integral curves.

Example 3.
VityT=y.
Put y =tant, —3 <t<3; then
x=sint, (1.59)

dy=y'dx=tant costdt=sintdt,
y=—cost+c, (1.60)
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or, eliminating ¢ from equations (1.59) and (1.60), we get x* +-
+ (y—c,)* =1, which is a family of circles.

3. The equation (1.51) is of the form

F(y, y')=0. (1.61)

If it is difficult to solve this equation for y’, then, as in the
preceding case, it is advisable to introduce the parameter ¢ and
replace (1.61) by two equations: y=¢ () and y =P (¢). Since
dy = y'dx, then dx= (p\p(t()‘)dt whence x= dt +c. Thus,
in parametric form the desired integral curves are defined by the
equations

@ (ndt
KON

As a particular case, if equation (1.61) is readily solvable for y,
it is usually convenient to take y’ as the parameter.
Indeed, if y=¢ (y’), then, putting y’'=¢, we get

dy _ @' ()t
y=o¢(), dex=—= Y T’

_(9@adt
X—S'—t—+c.

y=u""+') +y +5.

+c¢ and y=¢(¢).

Example 4.
Put y’'=t¢; then

g=t"+ 124t +5, (1.62)
_dy _ (B384 1dt 1
de=0 —CEFEA DA —(5t3+3t+7)dt,
5¢4 3t2
x=2C+2 4ln|t|+c. (1.63)

Equations (1.62) and (1.63) are parametric equations of a family
of integral curves.

Example 5.
¥
I+y
Put y'= sinht; then
" y=cosht 1.64)
__dy _ sinhtdt
dx = 7‘ =—sinht dt,
x=t+c (1.65)

or, eliminating the parameter ¢ from (1.64) and (1.65), we get
y = cosh (x—c).
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Now consider the general case: the left-hand side of equation
Fx,y, y)=0 (1.51)

depends on all three arguments x, y, y’. Replace (1.51) by its pa-
rametric representation:

x=¢(u, v), y=9u, v), y=y(u v).
Taking advantage of the dependence dy=gy’dx, we will have

a 0 g
—();—pdu+—a'§dv=x(u, v) [%du-{—%va ;

from this, solving for the derivative —Z%, we get
dp Iy
do XD 5~y
= rra (1.66
o x5

We have thus obtained a first-order equation that is already svlved
for the derivative, and we have thus reduced the problein to one
that has been considered in earlier sections. However, the resulting
equation (1.66) is of course by far not always integrable by quad-
ratures.
[f the equation
F(x, g, y)=0

is readily solvable for y, it is often convenient to take x and ¢’
for the parameters « and v. Indeed, if equation (1.51) is reduced

to the form
y=Fx y), (1.67)
then, considering x and y'=p as parameters, we obtain

g (i)

or
dy  of of dp
=t axe
_of , Of dp

Integrating (1.68) (of course, it is by far not always integrable by
quadratures), we get ®(x, p, ¢)=0. The collection of equations
b (x, p, ¢)=0 and y=f(x, p), where p is a parameter, defines a
family of integral curves.

Note that (1.68) may be obtained by differentiating (1.67) with
respect to x. Indeed, differentiating (1.67) with respect to x and
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assuming y'=p, we get P=% a’ g’ Zi which coincides with
(1.68). For this reason, this method is often called integration of
differential equations by means of differentiation.

In quite analogous fashion, the equation

F(x, y, y)=0,
can frequently be integrated if it is readily solvable for x:
x=f ¥ (1.69)

In this case, taking y and y’ =p for the parameters and using the
relation dy=y’'dx, we get
0, (4]
dy=p [ ! dy+ 5> ' ]
or

1_ o o dp
=5ty (1.70)

Integrating equation {1.70), we get ® (y, p, ¢)=0. This equation
together with x=f (y, p) defines the integral curves of the original
equation. Equation (1.70) may be obtained from (1.69) by differen-
tiation with respect to y.

To illustrate the use of this method, let us consider the follow-
ing equation, which is linear in x and y:

y=x9 (4 )+ v ),
it is called Lagrange’s equation. Differentiating with respect to x
and putting y’'=p, we have
P=0(p)+x¢’ (p) E+ (p) 2 o (1.71)

or
[p— () ==& () +¥ (). (1.72)

This equation is linear in x and d—x and, hence, is readily integr-

able, for example, by the method of variation of parameters. After
obtammg the integral @ (x, p, ¢) =0 of equation (1.72) and adjoin-
ing to it y=ux¢ (p)+ VY (p), we get equations that define the desired
integral curves.

When passing from (1.71) to (1.72) we had to divide by Zp
But in the process we lose solutions (if they exist) for which p is
constant, and hence T=0 Taking p constant, we note that equa-
tion (1.71) is satisfied only if p is a root of the equation p—q (p) =0.
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Thus, if the equation p—¢ (p) =0 has real roots p=p,, then to
the solutions of the Lagrange equation that were found above we

have to add y =xg (p)+ ¥ (p), p=p; or, eliminating p, y=x¢ (p,) +
+ 9 (p,;) are straight lines.
We have to consider separately the case when p—¢ (p)=0 and

hence, when dividing by %E, we lose the solution p=c¢, where ¢ is

an arbitrary constant. In this case, ¢ (y')=y" and the equation
y=xp(y')+¢(y’) takes the form y=xy +v¢(y’), which is
Clairaut’s equation. Putting y’ = p, we have y=xp+ ¢ (p). Differen-
tiating with respect to x, we will have

p=p+xL+v (p) 2
or
(x+ v (p) £=0,

whence either :—f=0, and hence p=c, or x+ ¢’ (p)=0.
In the first case, eliminating p, we get

y=cx+v (o), (1.73)

which is 2 one-parameter family of integral curves. In the second
case, the solution is defined by the equations

y=xp+¥(p) and x+¢' (p)=0. (1.74)

It can readily be verified that the integral curve defined by the
equations (1.74) is the envelope of the family of integral curves (1.73).

Indeed, the envelope of o family ® (x, y, ¢)=0 is defined by the
equations

®(x, y, )=0 and 2 =0, (1.75)

which for the family y=cx+9(c) are of the form
y=cx+¥(), x+¢ (=0

and differ from equations (1.74) (Fig. 1.27) only in the designation
of the parameter.

Note. As we know, besides the envelope, the equations (1.75) can
define the loci of multiple points and sometimes other curves as

well; however, if even one of the derivatives % and %9 is diffe-

Y
rent from zero and both are bounded at points satisfying the equa-
tions (1.75), then these equations define only the envelope. In the
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given case, these conditions are fulfilled: %: —c, %= 1. Con-

sequently, equations (1.75) define an envelope that can degenerate
into a point if the family (1.73) is a pencil of lines.

Example 6.
y=xy’ —y’® is Clairaut’s equation.
A one-parameter family of integral straight lines has the form

7}

1

Fig. 1-27 Fig. 1-28

y=cx—c*. Besides, the envelope of this family, defined by the
equations y=cx—c* and x—2c=0, is an integral curve. Elimina-

ting ¢, we get y=l‘;1 (Fig. 1.28).

Example 7.
y=2xy’—y’" is Lagrange’s equation.
y=p
y=2xp—p’. (1.76)
Differentiating, we get
— dp s dp
p~2p+2x-a —3p i (1.77)

and, after dividing by %i—’, we arrive at the equation

dx

5= —2x+3p*.

Integrating this linear equation, we obtain x=i+%p’. Hence,
the integral curves are defined by the equations y=2xp—p’,
_c 3p?
X = —’;IZ + —4-‘ .
As mentioned above, in dividing by % we lose the solutions
p = p;, where the p; are roots of the equation p—¢ (p) =0. Here, we
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lose the solution p=0 of equation (1.77), to which corresponds,
by virtue of equation (1.76), the solution of the original equation
y=0.

9. The Existence and Uniqueness Theorem
for Differential Equations Not Solved
for the Derivative. Singular Solutions

In Sec. 6 we proved the theorem of existence and uniqueness of
the solution y(x) of the equation %=f(x. y) thal satisfies the con-

dition y(x,)=y, A similar question arises for equations of the
form F(x, y, y’)=0. 1t is obvious that for such equations, gen-
erally speaking, not one but several integral curves pass through
some point (x,, y,), since, as a rule, when solving the equation
F(x, y, y')=0 for y’ we get several (not one) real values y’ = f; (x, y)
(=1 2, ...), and if each of the equations y’=/f;(x, y) in the
neighbourhood of the point (x,, y,) satisfies the conditions of the
existence and uniqueness theorem of Sec. 6, then for each one of
these equations there will be a unique solution satisfying the con-
dition y(x,) =y, Therefore the property of uniqueness of solution
of the equation F (x, y, y’)=0, which satisfies the condition y (x,)=y,,
is usually understood in the sense that not more than one integral
curve of the equation F(x, y, y’)=0 passes through a given point
(x,, y,) in a given direction.

For example, for the solutions of the equation (‘;—f)z—l=0, the
property of uniqueness is everywhere fulfilled, since through every
point (x,, y,) there pass two integral curves, but in different direc-
tions. Indeed,

Z—z=;tl, y=x+c and y= —x+c

For equation (y')*—(x+y)y +xy=0 considered on page 73, the
property of uniqueness is violated at points of the straight line
y=2x, since the integral curves of the (quations y'=x and y'=y
pass through points of this line in the same direction (Fig. 1.29).

Theorem 1.5. There exists a unique solution y=y(x), ..,—h, <
< x<<x,+h, (where h, is sufficiently small) of the equation

F(x, y, y')=0, (1.78)

that satisfies the condition y(x,)=y, for which y'(x,)=1y, where
y, is one of the real roots of the equation F (x,, Yy, y')=0, if in
a closed neighbourhood of the point (x,, Y,, y,) the function F(x, y, ¥’)
satisfies the conditions:

6 --378
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(1) F(x, y, y’) s continuous with respect to all arguments;
(2) the derivative ra exists and is nonzero;

(3) there exists a derivative 3—5- bounded in absolute value:

oF
|5 | <M

Proof. According to the familiar theorem on the existence of an
implicit function, it may be asserted that conditions (1) and (2)

y 5
A y

Fig. 1-29

guarantee the existence of a unique function y’ = f(x, y), continuous
in the neighbourhood of the point (x,, y,), that is defined by the
equation (1.78) and satisfies the condition y,=f (x,, y,). It remains

to verify whether the function f(x, y) will satisfy the Lipschitz
condition or the cruder condition -%— <N in the neighbourhood of
the point (x,, y,), for then it will be possible to assert that the
equation

y=F[(x y) (1.79)
satisfies the conditions of the existence and uniqueness theorem (see

Sec. 6, page 46) and, consequently, that there exists a unique solu-
tion of the equation (1.79) that satisfies the condition y(x,)=y,.
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and there also exists a unique integral curve of the equation (1.78)
that passes through the point (x,, y,) and has, at that point, the
slope of the tangent y,.

In accordance with the familiar theorem on implicit functions, it
may be asserted that if conditions (1), (2) and (3) are fulfilled, the

derivative g—i exists and may be computed by the rule of differen-

tiating implicit functions.
Differentiating the identity F(x, y, y’)=0 with respect to 4 and
taking into account that y' = f(x, y), we get

OF , OF of _

oy =
oF
L
o = T oF
oy’

whence, taking into account the conditions (2) and (3), it follows
that I% < N in a closed neighbourhood of the point (x,, y,).
The set of points (x, y) at which the uniqueness of solutions of

the equation
F(xv Y, y’)=0» (1.78)

is violated is called a singular set.

At the points of a singular set at least one of the conditions of
Theorem 1.5 must be violated. In differential equations encountered
in applied problems, conditions (1) and (3) are usually fulfilled but

condition (2), =+ =0, is frequently violated.
dy

If conditions (1) and (3) are fulfilled, then at the points of a
singular set the equations
F(x, y, y)=0 and 3-=0 (1.80)
must be satisfied simultaneously.
Eliminating y’ from these equations, we get the equation

D (x, y) =0, (1.81)

which must be satisfied by the points of the singular set. However,
the uniqueness of solution of the equation (1.78) is not necessarily
violated at every point that satisfies the equation (1.81), because
the conditions of Theorem 1.5 are only sufficient for uniqueness of
solution, but are not necessary, and hence violation of a condition
of the theorem does not of necessity imply violation of uniqueness.

6%
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Thus, only among points of the curve ®(x, y)=0, called the
p-discriminant curve (since the equation (1.80) is most frequently

written in the form F(x, y, p)=0 and -‘3—5—-—-0]. can there be points

of the singular set.

If some kind of branch y=¢(x) of the curve @ (x, y)=0 belongs
to the singular set and at the same time is an integral curve, it is
called a singular integral curve, and the function y =@ (x) is called
a singular solution.

Thus, in order to find the singular solution of the equation

F(x, y, y')=0 (1.78)

it is necessary to find the p-discriminant curve defined by the
equations

oF
F(x» Y, p)=0) —OTZO'

to find out [by direct substitution into equation (1.78)] whether
there are integral curves among the branches of the p-discriminant
curve and, if there are such curves, to verify whether uniqueness is
violated at the points of these curves or not. If uniqueness is violated,
then such a branch of the p-discriminant curve is a singular integ-
ral curve.

Example 1. Does the Lagrange equation y=2xy’—(y’)* have a
singular solution?

Conditions (1) and (3) of the existence and uniqueness theorem
are fulfilled. The p-discriminant curve is defined by the equations
y=2xp—p*, 2x—2p=0 or, eliminating p, y=x® The parabola
y=x* is not an integral curve since the function y==x* does not
satisfy the original equation. There is no singular solution.

Example 2. Find a singular solution of the Lagrange equation
4, 8
x—y=5 ')V —5) (1.82)

Conditions (1) and (3) of the existence and uniqueness theorem
are fulfilled. The p-discriminant curve is defined by the equations

4 8 8 s
x—y=g p'—5p, P—p)=0.

From the second equation we find p=0 or p=1; substituting
into the first equation, we obtain
y=xor y=x-—-24—7.

Only the second of these functions is a solution of the original equation.
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To find out whether the solution y=x-—24—7 is singular, we have

to integrate the equation (1.82) and find out whether other inte-
gral curves pass through points of the straight line yzx——% in the

direction of this line. Integrating
the Lagrange equation (1.82),
we get 7
(y—c) = (x—c)*. (1.83) y
From (1.83) and Fig. 1.30 it is
seen that the straight liney = x —

—% is the envelope of a family

of semicubical parabolas (y —c)®= >
= (x—c)® and, hence, uniqueness >
is violated at every point of the \

straight line y=x—%: there

are two integral curves in one and \
the same direction —the straight
line y=x— 217 and a semi-

cubical parabola that is tangent to this straight line at the point
under consideration.

Fig. 1-30

4 . . .
Thus, y=x—z is a singular solution.

In this example, the envelope of the family of integral curves
is a singular solution.

If the envelope of the family
D, y, )=0 (1.84)

is a curve which is tangent at each of its points to some curve
of the family (1.84), and to each segment of which are tangent
an infinite set of curves of this family, then the envelope of a family of
integral curves of some equation F(x, y, y')=0 will always be a
singular integral curve.

Indeed, at points of the envelope the values x, y and y° coin-
cide with the values x, y and y’ for the integral curve tangent
to the envelope at the point (x, y), and hence at every point of
the envelope the values x, y and y’ satisfy the equation F (x, y, y’')=0;
that is, the envelope is an integral curve (Fig. 1.31). Uniqueness
is violated at every point of the envelope, since at least two inte-
gral curves pass through the points of the envelope in the same direction:
the envelope and the integral curve of the family (1.84) tangent

’
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to it at the point under consideration. Consequently, the envelope
is a singular integral curve.

Knowing the family of integral curves ®(x, y, ¢)=0 of some
differential equation F(x, y, y’)=0, it is possible to determine
its singular solutions by finding the envelope. As we know from

the course of differential geometry
or mathematical analysis, the
envelope is contained in the c-discri-
minant curve defined by the equa-
tions

®(x, y, =0 and %o,

however, the c-discriminant curve

Fig. 1-31 can include, besides the enve-
lope, other sets as well, for instance, the set of multiple points
of curves of the family under study in which %=%=0. For

some branch of the c-discriminant curve definitely to be an envelope,
it is sufficient that on it:

(1) there exist the following partial derivatives bounded in abso-
lute value:
oD oD .
W gNn I‘aglgNz'

o0 oD

Note that these conditions are only sufficient, and so curves invol-
ving a violation of one of the conditions (1) or (2) can also be enve-
lopes.

Example 3. Given a family of integral curves (y — ¢)* = (x—c)® of
some differential equation (see Example 2 on page 84). Find a
singular solution of this equation.

Find the c-discriminant curve:

(y—c)=(x—c)* and 2(y—c)=3((x—c).

Eliminating the parameter ¢, we get
4

27=0'

y=x and x—y—

The straight line y=x—-24—7 is an envelope since on it are fulfilled

all the conditions of the envelope theorem. The function y=x
does not satisfy the differential equation. The straight line y=x
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is a cusp locus (see Fig. 1.30). The second condition of the enve-
lope theorem is violated at the points of this straight line.

Example 4. Given a family of integral curves

1
ys —x+c=0 (1.85)

of some differential equation of the first order. Find a singular
solution of this equation.

The problem reduces to finding the envelope of the desired fa-
mily. If one applies directly the above-indicated method for find-
ing the envelope, one gets the contradictory equation 1=0,

4
g

Fig. 1-32 Fig. 1-33

whence it would seem natural to draw the conclusion that the
family (1.85) does not have an envelope. However, in this case,

the derivative of the left side of (1.85) with respect to y, %‘%= ‘

4
=-El)- y ° becomes infinite when y=0 and hence there is a possibi-
lity that y =0 is the envelope of the family (1.85) that could not
be found by the general method since the conditions of the enve-
lope theorem were violated on the straight line y=0.

One has to transform equation (1.85) so that the conditions of
the envelope theorem are fulfilled for the transformed equation, which
is equivalent to the original equation. For example, write (1.85)
in the form y—(x—c¢)*=0. The conditions of the envelope
theorem are now fulfilled and, using the general method, we get

y=x—c)®, 5(x—c)*=0

or, eliminating ¢, we will have the equation of the envelope y=
=0 (Fig. 1.32).

Example 5. Given the family of integral curves
y—@x—cy=0 (1.86)
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of some first-order differential equation. Find a singular solution
of this equation.
The c-discriminant curve is defined by the equations

P—@x—c)*=0 and x—c=0
or, eliminating ¢, we get y=0. On the straight line y=0, both

partial derivatives ?%) and %(yl—) of the left-hand side of equation (1.86)
vanish, hence y=0 is the locus of multiple points of curves of
the family (1.86), in the given case, the cusp locus. However, the
cusp locus in this example is at the same time an envelope. Fig. 1.33

depicts the semicubical parabolas (1.86) and their envelope y=0.

PROBLEMS ON CHAPTER 1

1. tanydx--cotxdy=0.
2. (12x +5y—9)dx + (5x+2y—3) dy=0.
3 .\ti—i:_fﬁ—lfxz—fy2
dy L3

4. x g hy=x.
5. ydx—xdy = x’ydy.

dx 52
6. 37+3x—-e‘.
7. ysinx+y cosx=1.
8. y=e.

dx
9. 7=x }-smt
10. x(Inx—Iny)dy—ydx=0.
1L xy (') —(*+ )y + xy=0.
12 (g’)’=

dx
13. &= '+¢
14. 3+ )Y =1.

15. y=uxy’ +%.
16 x=(y')—y +2.
17 dy _y

*dx x+y‘-‘
18. y= (¥')'—')—2
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19. Find the orthogonal trajectories of the family xy=c; i.e.,
}ind lIines that orthogonally intersect the curves of the indicated
amily.

20. Find the curve whose subtangent is twice the abscissa of the
point of tangency.

21. Find the curve whose y-intercept cut by a tangent is equal
to the abscissa of the point of tangency.

22. Find the orthogonal trajectories of the family

x* 4+ y* = 2ax.

23. Considering that the rate at which a body cools in the air
is proportional to the difference between the temperature of the
body and that of the air, solve the following problem: if the air
temperature is 20°C and the body cools from 100° to 60°C in
20 min, how long will it take the body to reach 30°C?

24. A motor boat is in motion in calm water with a velocity
of 10 km/hr. The motor is cut out and in {=20 sec the velocity
falls to v, =6 km/hr. Determine the speed of the boat 2 minutes
after the motor was cut out (assume that the resistance of the
water is proportional to the speed of the boat).

25. Find the shape of a mirror that reflects, parallel to a given
direction, all the rays emanating from a specified point.

26. y*+y*=4.

27. Find a curve whose tangent segment lying between the coor-
dmate axes is divided mto equal parts at the point of tangency.

2y—~x 4
28. . 29. dx le)‘+J_o

dx
30. lntegrate the following equation numerically:

d
T=x+y y(0) =
Determine y(0.5) to within 0.01.
31. Integrate numerically the equation
Y xy 42, y(O)=0.
Determine y(0.6) to within 0.01.
32. y¥ =1.31x—0.24*, y(0)=2.
Form a table of fifteen values of y with interval of computation
h=0.02.
’ 12 dy
33. y=2xy'—y"*. 34. dy = €08 (x=-y).
35. Using the method of isoclines (see page 21), sketch a family
of integral curves of the equation

dy 2
dx—-x ——Y-.
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36. 2x+2y--1)dx+ (x+y—2)dy=0.

37.

Yy’ —y'e*=0.

38. Find the orthogonal trajectories of the parabolas y* + 2ax =a®.
39. Does the differential equation y=5xy’—(y’)* have a singular
solution?

40.

Integrate in approximate fashion the equation

d
a—z=x—y’, y(1)=0

by the method of successive approximations (determine y, and y,).

41.

42.
43.
44,

45.
46,

47.
48.

49.

50.
51.

52.

53.
54.
55.

y'=x’+§%dx.

1
Has the equation y’= 3/x—5y-+2 a singular solution?
(x—y)ydx—x*dy=0.
Find the orthogonal trajectories of the family y*=cx".
x+5x=130t+2 for t=1, x=2.
x +‘:~a for t=2, x=4

i=i
y=xy +y? for x=2, y=—1.
y=xy +y?* for x=1, y=—1.
dy _ 3x—4y—2

dx = 3x—dy—3"
x—xcot!{=4sint.

y=x’+2y'x+y7".
y'—‘%—i—x’y’:O.
y(14+y*)=a.

(' —y) dx + ('y* + x) dy =0.
Find the integrating factor of the equation’

By*—x)dx+ 2y (y* —3x)dy =10

having the form p=p (x+ y*).

56.
67.

58.
59.
60.
61.
62.
63.
64.
65.
66.

(x—y)ydx—x*dy=0.
’ _X+y—3

**—1)y +2xy—cosx=0.

(4;/-{- 2x+3)y' —2y—x—1=0.

Y'—x)y —y+x*=0.

(' —x)y +2xy=0.

3xy’y' + y*—2x=0.

@)+ (x+a)y’ —y=0, where a is constant.
(y')’—2xy’ +y=0.

')+ 2yy cot x—y*=0.



CHAPTER 2

Differential equations of the second
order and higher

1. The Existence and Uniqueness Theorem for an nth Order
Differential Equation

Differential equations of the rith order are of the form

ym=fx 9 4, ..., y*7") @.1)
or, if they are not solved for the highest derivative,
Fx,y, 9y, ..., y)=0.

The theorem of existence and uniqueness for an nth order equa-
tion may readily be derived by reducing it to a system of equa-
tions for which the existence and uniqueness theorem has already
been proved (see page 56).

Indeed, if in the equation y™=f(x, y, ¥’, ..., y*~) we consi-
der as unknown functions not only y but also y’'=y,, y"=y,, ...
ee., Y~V =y, _,, then equation (2.1) is replaced by the system

y’=ylv I

ylx=y2'

. } 2.2)
y;l—-z=yn-n

y;—u =i(xv Yo Yoo+« o3 Yn_a)s J

and we can then apply the theorem of the existence and uniqueness
of solution of a system of equations (see page 56), according to
which if the right sides of all equations of the system (2.2) are
continuous in the region under consideration and if they satisfy
the Lipschitz condition with respect to all arguments, except x,
then there exists a unique solution of the system (2.2) that satisfies
the conditions

Y (Xo) =Yy Y (xo) =Yipp -++» Yna (xo) =Yn-1, o

The right sides of the first n—1 equations (2.2) are continuous
and satisfy not only the Lipschitz condition but even the cruder
condition of the existence of bounded derivatives with respect to
Y, Yi» Y --.» Yo_,. Hence, the conditions of the existence and
uniqueness theorem will be fulfilled if the right side of the last
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equation y,.,=f(, y, y,, ..., yY,_,) is continuous in the neigh-
bourhood of the initial values and satisfies the Lipschitz condition
with respect to all arguments, from the second onwards, or satis-
fies the cruder condition of the existence of bounded partial deri-
vatives with respect to all arguments from the second onwards.

Thus, reverting to the earlier variables x and y, we finally get
the following existence and uniqueness theorem.

Theorem 2.1. There exists a unique solution of an nth order
differential equation y™=f(x, y, y', ..., y*~") that salisfies the
conditions

YE)=Yo ¥ (x)=VYo, Y (X)=Yor ... Y " (x) =y ",

if in the neighbourhood of the initial values (x,, Y,, Yo. ..., Y5"™V)
the function [ is a continuous function of all its arguments and
satisfies the Lipschitz condition with respect to all arguments from
the second onwards.

The latter condition may be replaced by the cruder condition
of existence in the same neighbourhood of bounded partial deriva-
tives of order one of the function f with respect to all arguments
from the second onwards.

The general solution of an nth order differential equation is the
family of solutions consisting of all possible partial solutions.
If the right side of the equation

ym=fx y v, Y. ..., y* ") 2.1

satisfies, in some range of the arguments, the conditions of the
existence and uniqueness theorem, then the general solution of equa-
tion (2.1) depends on n parameters, which can, for example, be
the initial values of the desired function and its derivatives y,, y,,
Yo, ---» YV, In particular, the general solution of the second-
order equation y” =f(x Yy, y') depends on two parameters, for
instance on y, and y,. Now if y, and y, are fixed, that is, if the
point (x,, y,) is given and also the direction of the tangent to the
desired integral curve at this point is given, then a unique integral
curve is defined by these conditions when the conditions of the
existence and uniqueness theorem are fulfilled.

For example, in the equation of motion of a particle of mass in

a straight line under the action of a force f (¢, x, x):
mx=f(t, x, x).

specification of the initial position of the point x(¢,)=x, and the
initial velocity x(f,)=x, will delermine the unique solution, the
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unique law of motion x=x(¢) if, of course, the function f satisfies
the conditions of the existence and uniqueness theorem.

The theorem (considered on page 58) on the continuous depen-
dence of the solution on parameters and on the initial values can
be extended, without altering the method of proof, to systems of
differential equations and hence to equations of the nth order.

2. The Most Elementary Cases of Reducing the Order

In certain cases the order of a differential equation may be re-
duced. This ordinarily simplifies its integration. The following are
some frequently encountered classes of equations that permit reducing

the order.
1. The equation does not contain the desired function and its

derivatives up to order k—1 inclusive:
F(x, gy, yk+d ym) =0, (2.3)
In this case the order of the equation may be reduced to n—=k

by changing the variables: y® = p.
Indeed after changing the variables the equation (2.3) becomes

F(x, p, p', ..., p» ") =0.

From this equation we find p=p(x, ¢, ¢,. ..., ¢,_,) and y is
found from y®=p(x, ¢, ¢, ..., c,_p) by k-fold integration.
In particular, if a second-order equation does not contain y, the change
of variables y’' = p produces an equation of the first order.

Example 1.

. 4 d . .
Assuming g%=p, we get ﬁ-—-—l—p == 0; separating variables and

integrating we have: In|p|=In|x|+Inc, or p=cx, ‘%":=cx, whence
Y =C X%+ € x° 4 Cyx* + € X + .

Example 2. Find the law of motion of a body falling in the air

without an initial velocity. Take the air resistance to be proportio-

nal to the square of the velocity.
The equation of motion is of the form

d?s ds\?
mm—mg——k (E) ,

where s is the distance covered, m the mass of the body, and ¢ the
time. For ¢=0, we have s=0 and % 0.
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The equation does not explicitly contain the unknown function s,
and so the order of the equation may be reduced by taking ‘;—st= v.

Then the equation of motion will be of the form
dv

— — 2
m o =mg—kv’.
Separating the variables and integrating, we get
|4
_ma g gl -1 ko,
mg— R dt; t m:g T tanh i

from this we have v=$tanh (kV gt); multiplying by df ‘and
integrating again. we find the law of motion:

§= ki, Incosh (& V gt).
2. The equation does not contain an independent variable:

F(!/, y'. y', ceey y("))=0.

Here, the order of the equation may be reduced by unity by
the substitution y’ =p, p being regarded as a new unknown func-

R,
tion of y, p=p(y), and, hence, all derivatives ZTZ have to be

expressed in terms of the derivatives of the new unknown function
P (y) with respect to y:

d

2

dy dp dpdy_dp

a3 =dx "dydx —dyP
Py _d(dp \ _d(dp \du_dp . (dp\?
w=z(zr)=5(Gr)L=500 +(%)'»

and similarly for derivatives of higher order. It is obvious here
that the derivatives Z—;—i are expressed in terms of derivatives of
order not higher than £—1 of p with respect to y, which is what
reduces the order by one.

In particular, if a second-order equation does not contain an
independent variable, the indicated change of variable leads to a
first-order equation.

Example 3. ,
V(8) o
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Putting Z—z= P ‘f;y, = p dy we get the separable equation
yp%—p’:O, the general solution of which is p=c,y or % =c,Y.
Again separating variables and integrating we get In|y|=c,x+Inc,
OF Y =C.e*%.

Example 4. Integrate the equation of a simple pendulum

x+a*sinx=0 for initial conditions x(0)= =x,, x(0)=0.
We reduce the order by putting

x=v, 2=v‘2, vdv= —a3sin x dx,
dx
0—2:=a’ (cos x—cos x,), v=4 a J 2(cos x— cos x,),
dx — 1 dx
==+ a V2 (cos x—cos xp), =4 _S —,
dt o aV?2 J ¥V cos x— cos x,

The integral on the right side is not expressible by elementary
functions but is readily reducible to elliptic functions.

3. The left-hand side of the equation

Fix, 9, ,....y™) =0 249
is a derivative of some differential expression of the (n—1)th
order ©®(x, y, ¥', ..., y*~ ).

Here we readily find a so-called first integral, i.e. a differen-
tial equation of the (n— 1)th order contammg one arbitrary cons-
tant. This equation is equivalent to the given equation of the nth
order, so we have reduced the order of the equation by one. In-
deed, (2.4) may be rewritten in the form

icb(x, U Uy e, g 1) =0. (2.4,

lf y(x) is a solution of (2.4,), then the derivative of the function

Ox, y vy, .. y"' b) is |dent1cally zero. Consequently, the func-
tion @ (x, v, y , ~eer Y®7Y) is equal to a constant, and we get
the first integral

(D(xn Y, !/'. ceey y("-l’)=0-

v +(y')=0

This equation may be written as d(yy’)=0, whence yy’'=c, or
ydy=c,dx. Thus, y*=c,x+c, is the complete integral.

Sometimes the left-hand side of the.equation F (x, y, ¥’, ..., y*) =0
hecomes the derivative of the (n—1)th order differential expres-
sion ®(x, y, ¥, ..., y*~ V) only after multxphcatxon by some
factor p(x, ¥, ¥'. ... y"‘“’)

Example 5.
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Example 6.
yy" —(y')*=0.
Multiplying by the factor _.;li, we get yy’y(y ®_0 or

d(y y d
d?(?) =0, whence =6 or Znly|=c,. Hence, In|y|=c¢x +Inc,,

¢, >0, whence y=c,e”*, ¢, #0, as in Example 3 of this section.

Note. When multiplying by the factor p(x, v, y , Yy )
extraneous solutions may be introduced that make thls factor
vanish. [f the factor p is discontinuous, a loss of solutions is possible.

In Example 6, when multiplying by p=y—l,, the solution y=0
was lost. However, this solution can be included in the solution
obtained y= c,es* if it is taken that ¢, can assume the value 0.

4. The equalwn F (x y Y, ..., y™) =0 is homogeneous in the
arguments y, y', .

The order of the followmg equation (which is homogeneous in
y’ y s eee (n))

Flx, 9, 9, ..., ¥ =0, (2.5)
that is, an equation for which the identity
F(x, ky. ky’, ey ky('")=kPF(x» Y, y" ooy ym))

holds, may be reduced by unity by the substitution y=e-r”‘,where
z is a new unknown function. Indeed, differentiating, we get

Y = ej'z dxz'
y=el**(2+2),
g =el** (2 + 322 +27),

y""=e!’d‘¢’(2, 2,2, ..., zk-n)

(that this equality is true can be demonstrated by the method of
induction).
By substitution into (2.5) and by noting that by virtue of

homogeneity the factor e J2 4 may be taken outside the sign of
the function F, we get
e”"‘"i(x, 2,2, ..., 2n=0)=0

plzdx g have

fx 2 2, ..., 27-1)=0,

or, cancelling e
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' Example 7.
yy" —(y')* =6xy.

Putting y=el*%, we get 2 =6x, z=3x+¢, y
y = c’e("*‘cl‘).

]
=ej'(sx +¢,) dx or

Especially frequently encountered in applications are second-order
differential equations that allow for reducing the order.

(1) F(x, y)=0. (2.6)

Here, we can lower the order by the substitution y’=p and we
can reduce it to the equation F gx 2} =0 considered on page 75.

i)
* dx
Equation (2.6) can be solved for the second argument y” =f(x)

and integrated twice, or we can introduce a parameter and replace
(2.6) by its parametric representation

o) x=v()

whence
dy =y dx=9 (¥ ()dt, v =(e®O)V (t)dt+c,
dy=ydx, y= ([(o0v ®dt +c]v @0 dt +c,

@) Fly. y)=0. 2.7

Putting y’ =p, transform (2.7) to equation (1.61), page 76, or re-
present (2.7) parametrically:

Y= (P(t)- y;x = ‘P(t)v

dy @' (Hhdt  _ (o'(Hdt
dx=y' ¢(t) rx— 'Ip(t) + 1

y is then determined by a quadrature:

t { t
dy=y dx= (p(t)q)((t))dt —Sq’()?”“dl+c,.

whence

3 F(y, y')=0. 2.8
The order can be reduced by putting
dy dy dpdy _ dp

=P dx? dydx pd_j'

If equation (2.8) is readily solvable for the second argument y" = f (y),
then by multiplying this equation termwise by 2y’ dx_Qdy, we get

r378
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d(y’)* =2f (y)dy, whence

Y=syo(fwdyte, =y,
z==V 2{iwd+aq JiTear
dy
o=t (.
e S]/QSf(y)dy+cu

Equation (2.8) may be replaced by its parametric representation
y=o¢(t), Y= (t); then from dy' =y"dx and dy=y'dx we get
y' dy =y dy or

AW =v O (DL,
wr=2{v e ®dt+e,.
y==V2fvorewdte,

then from dy=y’dx we find dx and then x:

de e _ o () dt
Ty 2 (vwewats
x= S O & +e. (2.9)
;/2Sw(t)cp' (1) dt +¢,

It is equation (2.9) and y=¢ (f) that define in parametric form a
family of integral curves.

Example 8.
y=2¢ yO)=1, y©O)=1.

Multiplying both sides of the equation by 2y’ dx, we get d (y')* = 4y>dy,
whence (y')*=y*+c¢,. Taking the initial conditions into account,

we find that ¢, =0 and y’ =y®. Hence, ‘;—Z=dx, —%=x+c,, Cg=
_ _ 1

=—li==-

3. Linear Differential Equations of the nth Order

An nth order linear aifferential equation is an equation linear
in the unknown function and its derivatives and, hence, of the form

aQ X))y t+a, X)y"-V+...4a,_, )y +a,(X)y=09(x). (2.10)
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If the right side ¢ (x)=0, then the equation is called homoge-
neous linear since it is homogeneous in the unknown function y
and its derivatives.

If the coefficient a,(x) is not zero at any point of some inter-
val a{x<b, then by dividing by a,(x) we can reduce the homo-
geneous linear equation, for x varying on this interval, to the form

YO P D YD A (DY FPa W Y=0  @.11)

- ‘ipi (x) y =", @11,

If the coefficients p; (x) are continuous on the interval a < x<b,
then in the neighbourhood of any initial values

Y(X%)="Yo» Yo Xo)=Yos oeey YO~V (X)) =y,

where x, is any point of the interval a < x <b, the conditions of
the existence and uniqueness theorem are satisfied.

Indeed, the right side of (2.11,) is continuous with respect to
the collection of all arguments and there exist partial derivatives

5{,7,=—-p,,_,, (x) (=0, 1, ..., (n—1)) bounded in absolute value,
since the functions p,_, (x) are continuous on the interval a << x<<b
and, consequently, are bounded in absolute value.

Note that linearity and homogeneity of the equation are retained
for any transformation of the independent variable x=g¢ (¢),
where @ (f) is an arbitrary n times differentiable function, the de-
rivative of which, on the interval of variation of ¢ under conside-

ration, is ¢’ (£)s%0.

Indeed,
dy __dy 1 _
dx dig' (f)°
@y _dy 1 dy ¢'()
de dt? [¢f () dt[e’(O)*°
k,
A derivative of any order gx—z is a homogeneous linear function of
k
the derivatives %. % y eeey %t!* and, consequently, when substi-

tuted into equation (2.11) retains its linearity and homogeneity.
Linearity and homogeneity are also retained in a homogeneous
linear transformation of the unknown function y(x)=a(x)z(x).

7k
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Indeed, by the formula for differentiating a product,
y(k) — a(x) PAL) + ko’ (X) FaLae li_l_ﬂ!z__l_) ” (X) 2= + ...+ a B (X) 2,

that is, the derivative y® is a homogeneous linear function of z,
2', 2", ..., 2®. Consequently, after change of variables the left
side of the homogeneous linear equation

a, ) y"+a, )y "+...+a,(x)y=0

will be a homogeneous linear function of 2, 2, ..., 2'®.
Let us write the homogeneous linear equation

Y +p Y+ P (1) y=0
in abridged form as
L{y)=
Llyl=y™+p, () y" "+ ... +p, (0 y.

We shall call L([y] a linear differential operator.
A linear differential operator has the following two basic properties:
(1) A constant factor is taken outside the sign of the linear operator:

L [y} =cL [y).

(€)™ +py () @)+ ...
e+ P ) =c[y®+p, () g+ .. 4P (¥) y)
(2) A linear differential operator applied to the sum of two functions

y, and y, is equal to the sum of the results of applying the same
operator to each function separately :

Llpn+u)=L[s)+L[4]).

where

Indeed,

Indeed,
G +9)"+p () (@ +y) ™+ P () (9 +y,) =
=TT+ P ) ] [ P ) TV
° o +pn (X) yz]'
A corollary of properties (1) and (2) is

L[S ew)=Fet o

where ¢; are constants.

Proceeding from the properties of the linear operator L, we shall
prove a number of theorems on the solutions of a homogeneous
linear equation.
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Theorem 2.2. If y, is a solution of a homogeneous linear equ-
ation L[y) =0, then cy,, wherecis an arbitrary constant, is likewise
a solution of that equation.

Proof. Given L[y,]=0. It is required to prove that L[cy,l

Taking advantage of property (1) of the operator L, we ge

L [ey,) =cL [9,] =0.

Theorem 2.3. The sum y,+ Y, of solutions y, and y, of a homo-
geneous linear equation L[y]=0 is a solution of that equation.
Proof. Given L[y,]=0 and L[y,)=0. It is required to prove

that L[y, + y,) =
Taking advantage of Property (2) of the operator L, we get

L{y,+y,)) =L [5])+L[y,]=0.
Corollary to Theorems 22 and 2.3. A linear combination with

arbitrary constant coefficients Zc,y, of solutions y,, Yy .-, Yn

of a homogeneous linear equatzon L{y]=0 is a solution of that
equation.

Theorem 2.4. If a homogeneous linear equation L [y] =0 with real
coefficients p; (x) has a complex solution y (x)=u (x)+ iv(x), then the
real part of this solution u(x) and its imaginary part v (x) are sepa-
rately solutions of that homogeneous equation.

Proof. leen L{u (x)+zv (x))=0. It is required to prove that
L{u)=0 and L[v]=

Taking advantage of Properties (1) and (2) of the operator L,
we get

L{u+iv)=L[u)+iL[v]=0,

whence L [u])=0 and L([v]=0, since the complex function of a
real variable vanishes identically when, and only when, its real and
imaginary parts are identically equal to zero.

Note. We applied Properties (1) and (2) of the operator L to the
complex function u (x)+iv(x) of a real variable, which is obviously
admissible since in proving Properties (1) and (2) use was made
only of the following properties of the derivatives: (cy)’' =cy’, where
¢ is a constant, and (y, +y,)’ = y; + y,, Which hold true for complex
functions of a real variable as well.

The functions y, (x), y,(x), ..., y,(x) are called linearly depen-
dent over a certain interval of variation of x, a<Cx<Cb, if there
exist constant quantities a,, a,, ..., e, such that on this interval

a4y, +ay,+ ... +ay, =0, (2.12)
and at least one ;0. Now if the identity (2.12) holds true only
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for ¢, =0a,=...=0a,=0, then the functions y,, y,, ..., y, are
called linearly independent functions over the interval a<{x<Cb.

Example 1. The functions 1, x, x*, ..., x* are linearly indepen-
dent on any interval a<<x<(b, since the identity

o, +ax+ax+...+a,,,x"=0 (2.13)

is only possible if all the a;=0. If even one «;540, the left mem-
ber of the identity (2.13) would be a polynomial of degree not higher
than n that can have no more than n distinct roots and, hence, vanishes
at no more than n points of the interval under consideration.
Example 2. The functions et*, et:x, .. e*nt, where k&, i 7=k, for
i j, are linearly independent on any interval a<x<b
Suppose that the functions under consideration are linearly de-
pendent. Then
o,efht et - | Ja,efnr =0, (2.149)
where at least one of the ;5 0, for instance, for the sake of definite-
ness, a,s=0. Dividing the identity (2.14) by e** and differentiat-
ing, we get
a,(k,—k) et~k x4 ta (k,—k,)etn=R)x=0, (2.15)

which is a linear relation between n—1 exponential functions of the
form er* with distinct exponents. Dividing the identity (2.15) by
etts-k) x and differentiating, we obtain a linear relation between
n—2 exponential functions with distinct exponents. Continuing this
process n—1 times, we get

o, (ky,—k,) (ky—ky) o.. (B,—Fk,_,)etn=kr=) =0,

which is impossible since a,, by hypothesis, is difierent from zero,
and k; 5 k; when i j.
The proof holds true for complex k.
Example 3. The functions
ek xekix L xMehix
ek:x | xekx | xhighsx,

where k; s~k for i j, are linearly mdependent on any interval
a<x<b
Suppose that these functions are linearly dependent. Then

P, (x)et* + P, (x)e** 4 ...+ P, (x) e*»* =0, (2.16)
where P;(x) is a polynomial of degree not higher than n; and at

least one polynomial, for instance, P,(x), is not identically zero.
Dividing identity (2.16) by e** and differentiating n,+ 1 times, we
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find that the first summand in (2.16) vanishes and we get a linear
relation of the same type but with a smaller number of functions:

Q, (R etk x .. 4 Q, (x) ethp=k)* =0. 2.17)

The degrees of the polynomials Q; and P, (i=2, 3, ..., p) coincide
since on differentiating the product P;(x)er*, p+%0, we get
[P: (x),+ Pi(x)] er*, that is, the coefficient of the highest-degree term
of the polynomial P, (x), after differentiating the product P, (x)er*,
acquires only the nonzero factor p. In particular, the degrees of the
polynomnals P,(x) and Q,(x) coincide, and hence the polynomial
Q, (x) is not 1dentlcally zéro. Dividing (2.17) by et*:-#)* and diffe-
rentlatmg n,+ 1 times, we get a linear relation with a still smaller
number of functions. Contmumg this process p—1 times, we obtain

R, (x) ettp=kp=0 % =0,

which is impossible, since the degree of the polynomial R, (x) is equal
to the degree of the polynomial P,(x) and, hence, thé polynomial
R, (x) is not identically zero.

"The proof does not change in the case of complex k; either.

Theorem 2.5. If the functions y,, y,, ..., y, are lmearly depen-
dent on the interval a << x< b, then on the same interval the deter-
minant

Y Ys eoe Yn
Yo Y2 e Yn
WX)=W(y 45 - tl=|41 4 .t |,

(n=1) (n—1) (n—1)
Y Ys sor Yn

called the Wronskian * is identically zero.
Proof. Given
oYy + 0l + ... +y, =0 (2.18)
on the interval a<Cx<Cb and not all the e; are zero. Differentiat-
ing the identity (2.18) n—1 times, we get
%Y + oyt ...+ay, =0,
oy, + ayi+...4oy, =0,
C;L'/.("':n +.a !;(n.-l)‘_*_. ) :*_Z“n.y(n.-n._._ 0

This homogeneous (with respect to all the a;) linear system of n
equations has a nontrivial solution (since not all the a; are equal
to zero) for any value of x on the interval a<Cx<Cb. Consequently,

(2.19)

* Named after the Polish mathematician G, Wronski (1775-1853).
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the determinant of the system (2.19), which is the Wronskian
W y:, Ya, -, Ya), is equal to zero at every point x of the interval
a<cx<bh

Theorem 2.6. If the linearly independent functions y, y,, ..., Y,
are solutions of the homogeneous linear equation

Y +p, () Yy "+ ...+ p,(x)y=0 (2.20)

with continuous coefficients p; (x) on the interval a < x < b, then the
Wronskian

B B - b
W(X)=?l yi "'yll

(n—-1) (n-1) (n-1)
N Y2 <+« Yn

cannot vanish at any point of the interval a < x<Cb.

Proof. Suppose that at some point x =x, of the interval a<<x<{b
the Wronskian W (x,) =0. Choose constants a; (i=1, 2, ..., n) so
as to satisfy the system of equations

oY, (%)  +ayy, (xo). + ooy, (%) =0,

oY, (xo) +azy; (xo) +... +a,,y;, (xo) =0,

oYY (%) + oy (Xo) + - - L @,y Y (%) =0
and so that not all the a; are zero. Such a choice is possible since
the determinant of the homogeneous linear system (2.21) of n equations
in n unknowns a; is zero, W (x,) =0, and, hence, there exist non-
trivial solutions of this system. In such a choice of «;, the linear
combination

(2.21)

Y=oy, (¥)+ oy, (¥)+ ... + 2y, (%)

will be a solution of the homogeneous linear equation (2.20) that
satisfies, by virtue of the equations of the system (2.21), the zero
initial conditions

y(x)=0, y (x)=0, ..., y»~V(x)=0. (2.22)
Obviously, such initial conditions are satisfied by the trivial solu-
tion y=0 of the equation (2.20) and, by the uniqueness theorem,
the initial conditions (2.22) are satisfied only by this solution.
Consequently, a,y, (¥)+a.y, (x)+ ... +a,y, (x)=0 and the solutions
Yi» Y ---, Yo, despite the hypothesis of the theorem, are linearly
dependent.

Note. 1. From the Theorems 2.5 and 2.6 it follows that the so-
lutions y,, ¥,, ..., y, of equation (2.20), that are linearly indepen-
dent on the interval a<Cx<Cb, are also linearly independent on
any interval a, <x<Cb, located on the interval a<Cx<b.
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Note. 2. In Theorem 2.6, in contrast to Theorem 2.5, it was
assumed that the functions y,, y,, ..., y, are solutions of the
homogeneous linear equation (2.20) with continuous coefficients. It
is not possible to reject this demand and to consider the functions
Yi» Ys ..., Y, arbitrary n—1 times
continuously differentiable  functions. A
It is easy to give examples of linearly
independent functions that are of course
not solutions of the equation (2.20)
with continuous coefficients for which
the Wronskian not only vanishes at

L0 SR ——
&

separate points but is even identically g 7 =
zero. For instance, let there be defined
two functions y,(x) and y,(x) on the Fig. 2-1

interval 0 <x<T2:
() =@x—1) for 021

and
Y, (x)=0 for 1<x<?2
Y, (¥)=0 for 0y

and
Y () =x—1)* for 1 <x<L2

(Fig. 2.1).

Obviously, Y1 920 —0 for 0<<x< 2, since on 0<x<<1 the

1

second column consists of zeros, while for 1 < x<C2 the first column
consists of zeros. However, the functions y, (x) and y, (x) are line-
arly independent on the whole interval 0 < x <2, since, considering
the identity ay,+ oy, =0, 0<<x<<2, first on the interval
0<<x<1, we conclude that @, =0 and then, considering this iden-
tity on the interval 1 <x<{2, we find that a,=0 as well.

Theorem 2.7. The general solution, for a<{x<b, of the homo-
geneous linear equation

Yy 4 p, )y p(x)y=0 (2.20)
with the coefficients p;(x) (i=1, 2, ..., n), continuous on the inter-

n
val a<x<b, is the linear combination y_z .y: of n linearly

independent (on the same interval) partial solutions y;(i=1,2, ..., n)
with arbitrary constant coefficients.

Proof. When a<<{x<b, equation (2.20) satisfies the conditions
of the theorem of existence and uniqueness. Therefore, when

a<x< b, the solution y= Xc,y, will be the general solution, that
is, it will contain all partial solutions without exception if it is



106 1. DIFFERENTIAL EQUATIONS

possible to choose arbitrary constants c; so as to satisfy the arbi-
trarily specified initial conditions

YE)=Yo Y (X)=Yo, -, YV (x) =450,
where x, is any point of the interval a<x<b
If we demand that the solution y= Zc,y, satisfy the initial con-

ditions posed, then we obtain a system of n linear (in ¢;, where
i=1, 2, ..., n) equations

Cilfi (X3) = Yo»

IIN: FN:

yl (Xo) _JO)

iy (x) =yi" 7"

M.

with n unknowns ¢;, with a nonzero determinant of the system,
since this determinant is the Wronskian W (x,) for n linearly inde-
pendent solutions of equation (2.20). Thus, this system is solvable
for c;, given any choice of x, on the interval a<C{x<Cb and for
any kinds of right members.

Corollary to Theorem 2.7. The maximum number of linearly
independent solutions of a homogeneous linear differential equation
is equal to its order.

Note. Any n linearly independent particular solutions of a homo-
geneous linear equation of nth order are called its fundamental
system of solutions. Every homogeneous linear equation (2.20) has
a fundamental system of solutions. To construct a fundamental
system of solutions, arbitrarily specify n* numbers

P ) E=1,2, ..., n k=0, 1, ..., n—1)

subjecting the choice to the sole restriction that
Y1 (%,) Ya () .- Ynlxo)
Y1 (%,) Yo (%) --- Yn(xy)

(n 1) (xo) y(n 1) (xo) . y’(ln—l) (xo)

where x, is any point of the interval a<Cx<Cb. Then the solution
y; (%), defmed by the initial values y{"’ (%) (k 0,1, ..., n—1,
i=1, 2, ..., n), foom a fundamental system, since their Wron-
skian W (x) at the point x=x, is nonzero and, consequently, on
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the basis of Theorems 2.5 and 2.6 the solutions y,, y,, ..., y, are
linearly independent.

Example 4. The equation y"—y=0 has obvious linearly inde-
pendent particular solutions y,=e* and y,=e~* (see page 102,
Example 2); consequently the general solution is of the form
y=c,e*+c,e”*.

Example 5. The solution y=c,e*+c,coshx+c;sinhx of the
equation y'’'—y’ =0 is not the general solution since the solutions
e*, coshx, sinhx are linearly dependent. The linearly independent
solutions are 1, coshx, sinhx, and consequently

y=c, +c,cosh x+c;sinh x,
where ¢,, ¢, and ¢, are arbitrary constants, will be the general
solution of the equation under consideration.

Knowing one nontrivial particular solution y, of the homogeneous
linear equation

Y +p )y 4.+ p, () y =0, (2.20)
it is possible, by the substitution y=y,Sudx, to reduce the order
of the equation and retain its linearity and homogeneity.

Indeed, the substitution y= yISudx may be replaced by two
substitutions: y=y,z and 2’ =u. The homogeneous linear transfor-

mation
Y=y (2.23)
preserves the linearity and homogeneity of the equation (see pages 99-100)
consequently, (2.20) is thus transformed to
a, (x) 2™ +a, (x) 2" Y+ ... 4a,(x) 2=0, (2.24)
and by virtue of (2.23) the solution z=1 of (2.24) corresponds to
the solution y=y, of (2.20). Substituting z=1 into (2.24), we get
a, (x)=0. Hence, equation (2.24) has the form
a,(x) 2" +a, (x)2*V+...4a,_,(x) 2’ =0,
and the substitution z’ =u reduces the order by one:
a,(x)u*V4a (HurP4...4a,_,(x)u=0.

Note that the same substitution y=y, S udx, where y, is a solu-

tion of the equation L[y]}=0, also reduces by unity the order of
the nonhomogeneous linear equation L [y]=/f(x), since this substi-
tution does not affect the right-hand side of the equation.
Knowing % linearly independent (on the interval a < x<Cb) solu-
tions y,, Ya, ..., Y Of a homogeneous linear equation, it is possible
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to reduce the order of the equation to n—#% on the same interval
a<lx<b.
Indeed, reducing the order of the equation

L{y]=0, (2.20)

by unity by the substitution y=ykSudx, we again get a homo-
geneous linear equation
a,(x)urV4a, (x)um P+ ... +a, ,(x)u=0 (2.25)

of order n—1, and we know k—1 of its linearly independent
solutions,

TRY [73% Yr-1\
w=(%). w=(5). - wa=(42),

which we obtain by substituting y= =Y Y=Yp - Y=Yp in
/
succession into y = y,,Sudx or u= K— [Note that the trivial so-

lution u=0 of the equation (2.25) corresponds to the solution
y=y, of (2.20) that we have already used for reducing the order

of the equation.}]
The solutions u,, u,, ..., u,_, are linearly independent, since if

there existed a linear relation between them on the interval
a{x<b,
QU 0l + .oy, =0

o () 4 (3) 4o () =0 o

where at least one a; = 0, then, by multiplying by dx and integrat-
ing the identity (2.26) from x, to x, where a<Cx<Cb, and x, is
a point of the interval [a, b], we will have

or

.'/1(4‘)_'_ z.‘/a(x)_l_.”_i_ak lyk 1(x)

Y () Yr (x) Yr (x)
- Y1 (%0) Y2 (Xo) Yr—1(x0)] __
[ v o) T % ) T T 1T ) ]—O'

or, by multiplying by y, (x) and putting

_ Y1 (%) Yz (Xo) Yr-1(x) | _
[ o) T gt T T Ty ] s

we will get, despite the initial assumption, a linear relation bet-
ween the solutions y,, y,, ..., Y,
Y+ %Y+ . Y, =0,

where at least one a;s<0. Thus, by utilizing a single particular
solution y, we reduced the order of the equation by unity and re-
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tained its linearity and homogeneity; also, we know &—1 linearly
independent solutions of the transformed equation Thus, the same
method may be used to reduce the order by one more unit; em-
ploying still another solution and continuing this process % times,
we get a linear equation of order n—=%.
Example 6.

xy"—xy +y=0. (2.27)
This equation has an obvious particular solution y,=x. Reducing
the order by the substitution

y=xSudx, Yy =xu+ S udx, y" =xu' +2u,

we reduce (2.27) to the form
2w 4+ 2—x)xu=0,

whence
'—?:x:(‘)dx, u=clg, y=xSudx=x[cleT:dx+c,].
Lemma. Two equations of the form
Y +p () YT+ 4 p, () y =0, (2.28)
Y+ g, () "+ +q, (x) y =0, (2.29)
where the functions p;(x) and q;(x) (i=1, 2, ..., n), continuous
on the interval a << x < b and having a common fundamental system
of solutions y,, Y,, ..., Y,, coincide, that is p,(x)==g;(x) (i=1,
2, ..., n) on the interval a<<x<b.

Proof. Subtracting (2.29) termwise from (2.28), we get a new
equation:

[Py () =g, ()] Yy + [P () — g2 ()] g2+ ...
oo H [P (M) —q,(0)]y=0, (2.30)

the solutions of which are the functions y,, y,, ..., y, that satisfy
the equations (2.28) and (2.29) simultaneously.

Assume that at least one of the coefficients of equation (2.30)
[p; (x)—g; (x)] is different from zero at least at one point x, of the
interval a <{x<{b. Then, by virtue of the continuity of the func-
tions p;(x) and g;(x), this coefficient is different from zero in a
certain neighbourhood of the point x, and, consequently, in this
neighbourhood the functions y,, y,, ..., y, are linearly indepen-
dent solutions of the homogeneous linear equation (2.30) of order
not higher than n— 1, which contradicts the corollary to Theorem 2.7.
Hence, all the coefficients of the equation (2.30)

pi(x)—q;(x) =0 (t=1,2, ..., n),
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that is p;(x)=gq;(x) (i=1, 2. ..., n) on the interval a<Cx<b.
Thus, the fundamental system of solutions y,, y,, ..., y, fully
determines the homogeneous linear equation

Y +p () Y+ . 4 p, (0) y=0, (2.28)

and, consequently, we can pose the problem of finding the equation
(2.28) that has the specified fundamental system of solutions

ylv y2v cey yn'
Since any solution y of the desired equation (2.28) must be
linearly dependent on the solutions y,, y,, ..., y,, the Wronskian

W (Y Ysy +++» Yo y)=0. We write this equation in expanded form:

h Y2 coe Yn y

% R

.'i'l !/z e .’/n .t/” 20’

y(ln—l) y;n-l) . !/f;"_n y(n—l)

y(ln) 1 :(zn; .. y;'m y(u)

or, expanding the elements of the last column,
% Y .- Yu
Y Ys  ++. Yn _
L T 7 yn 4 . =0.

y(n—z) ygn-z) y(’l-“)
vy y"

2.31)

The equation obtained, (2.31), is the desired homogeneous linear

equation having the specified fundamental system of solutions

Y Yoy - Yu(since fory =y, (i=1,2,...,0) Wy, Y5, .-, Yn, y]=0).

Dividing both sides of (2.31) by the nonzero coetficient W [y,, y,, ...

..., Y,] of the highest derivative, we reduce it to the form (2.28).
From this it follows, in particular, that

oo b e bn
Y, Y, e Yy
g yo-n L ynw
p (x) - y(lm yfzn) e y;{!)
! LAZ8 Ya2» <eer Yl




2. DIFFERENTIAL EQUATIONS OF THE SECOND ORDER AND HIGHER 1]

Note that the determinant

Yy Yy eee Yy
Y Y .- Yn
.......... (2.32)

(n=2) (n—2) (n-2)

A
is equal to the derivative of the Wronskian Wy, 4,. ..., y,)
Indeed, by the rule for differentiating a determinant, the derivative

Y Y cee Yn
d |9 Y cee Yn
dx ;/;nlz>' y'(2n—'z> o 'y,('}:-b

y;n-l) y(zn-l) v y:lll"l)
is equal to the sum over ¢ from | to n determinants differing
from the Wronskian in that in them the elements of the ith row
have been differentiated while the remaining rows of the Wronskian
are preserved without change. In this sum, only the last determi-
nant, for i{=n, which coincides with the determinant (2.32),
can be different from zero. The other determinants are zero, since
their ith and i+ Ist rows coincide.

Consequently, p, (x)= _%. Whence, by multiplying by dx and
integrating, we get
In|W|= —Spl(x)dx+lnc, W=ce P10

or
- I Py (x) dx
W=ce % . (2.33)
For x=x, we get c=W (x,), whence
- fpt (x) dx
Wx)y=W(x,)e * . (2.34)

Formulas (2.33) or (2.34), which were first derived by M. Ostro-
gradsky and, independently, by Liouville, are called Ostrogradsky-
Liouville formulas.

The Ostrogradsky-Liouville formula (2.34) may be employed for
integrating a second-order homogeneous linear equation

Y +p,x)y +p,(x)y=0, (2.35)

if a single nontrivial solution of this equation, y,, is known. Accord-
ing to the Ostrogradsky-Liouville formula (2.34), any solution
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of (2.35) must also be a solution of the equation

Y Yy l ~fpxrax
’ =ce
vy t
or
by — gy, =cie™I PO,

This linear equation of the first order is most easily integrated by
the integrating factor method.

Multiplying by p=§l,_,—, we get

1

A (L) bpTrnax
dx y2

Y1
whence
—j' Py () dx

y c,e

E'—S_ v dx +cy,
or

—j Py (x) dx
Y= Cl) + 4, S_T dx.

4. Homogeneous Linear Equations with Constant Coefficients
and Euler’s Equations

1. Homogeneous linear equations with constant coefficients. i in
a homogeneous linear equation

Ay +ayr "+ . +ay=0 (2.36)

all the coefficients a; are constant, then its particular solutions may
be found in the form y=e**, where k is a constant. Indeed, put-
ting into (2.36) y=e** and y'P==kre** (p=1, 2, ..., n), we
will have

a,k"e** +akr e ... t-a,ef=0.

Cancelling the nonvanishing factor e**, we get the so-called charac-
teristic equation

ak*+a k" '+ ... 4a,_k+a,=0. (2.37)

This equation of degree n determines those values of £ for which
y=e** is a solution of the original homogeneous linear equation
with constant coefficients (2.36). If all the roots &,, k,, ..., &,
of the characteristic equation are distinct, then we have thus found n
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linearly independent solutions e**, e**, ..., ek* of the equa-
tion (2.36) (see page 102, Example 2). Consequently

y=cet* e+ ...+,
where ¢; are arbitrary constants, is the general solution of the ori-
ginal equation (2.36). This method of integrating linear equations
with constant coefficients was first employed by Euler.
Example 1.
y"—3y +2y=0.
The characteristic equation is of the form k*—3k+2=0, its roots

are k=1, k,=2. Hence, the general solution of the original
equatxon is of the form y—c,e"-{-c,e"‘

Example 2.
ylﬂl __yl i 0'
The characteristic equation #*—%k=0 has the roots k,=0, k,=1,
k;= —1. The general solution of the equation under discussion is

y=c, +c,e*+ce”*.

Since the coefficients of (2.36) are assumed real, the complex
roots of the characteristic equation can appear only as conjugate
pairs. The complex solutions e**B?* and e'=~B"* that correspond
to the pair of complex conjugate roots

k,=a+fi and k, =a—Bi,

can be replaced by two real solutions: the real and imaginary parts
(see page 101) of one of the solutions

e'e+BN* — gax (cos Bx + ¢ sin x),
or

e'e~BN* — g% (cos fx—i sin Px).
Thus, to the pair of complex conjugate roots %k, ,=a 4 pi there
correspond two real solutions: e** cospx and e**sin Bx

Example 3.
y"+4y’ +5y=0.

The characteristic equation is of the form k* 4 4k+45=0; its roots
are k, ;= —2 4. The general solution is

y=e"** (¢, cos x +c, sin x).
Example 4.
" + a2y _— 0
The characteristic equation k*+a’=0 has the roots k,,,= = ai.
The general solution is
Yy=c, cosax -+ c, sin ax.
R -37R
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If there are multiple roots among the roots of the characteristic
equation, then the number of different solutions of the form e** is
less than n and, hence, the lacking linearly independent solutions
have to be sought in a different form.

We shall prove that if a characteristic equation has a root &; of
multiplicity a;, then the solutions of the original equation will be
not only e** but also xe**, x®ekix,..., x%i—lekix,

First suppose that the characterlstlc equatlon has a root k;=0
of multiplicity o;. Hence, the left-hand side of the characteristic
equation (2.37) has a common factor k% in this case, i.e. the coef-
ficients an=an-1= ... =an-q;+1 =0 and the characteristic equation
is of the form

aok" +a k-4 ... -}-a,,_a,,.k“i=0.

The corresponding homogeneous linear differential equation
aoy™ + a1y 4 ... +ap_qy® =0

obviously has the particular solutions 1, x, x2, ..., x%-! since
the equation does not have derivatives of order lower than a;. Thus,
to the multiple root k;=0 of multiplicity e; there correspond «;
linearly independent (see page 102, Example 1) solutions

1, x, x2, ..., xs—1,

If the characteristic equation has a root k; =0 of multiplicity «;,

then a change of variables
y=ekirz (2.38)

reduces the problem to the already considered case of a zero mul-
tiple root.

Indeed, as was pointed out on pages 99-100,a homogeneous linear
transformation of the unknown function 2. 38) preserves linearity
and homogeneity of the equation. In the change of variables (2.38)
the coefficients are also held constant, since

Y = (ze%*)P) = ghix (z(p)+pz(p ng, 4 L= p(p—l) 2P-Df2 -, +zk”>

and after substitution into equation (2 36) and cancelling of e#*
only constant coefficients remain in 2, 2, ..., 2™,

And so the transformed equation will be a homogeneous linear
equation of the nth order with constant coefficients

b,2" 4 b,2" "+ ... +b,2=0, (2.39)
and the roots of the characteristic equation
ak"+a,k* '+...+a,=0 (2.37)
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differ from the roots of the characteristic equation for the trans-
formed equation (2.39)

bop"+bp" '+ ... +b,=0 (2.40)
by the summand k; since between the solutions y=e** of (2.36)
and z=er* of (2.39) there must be a relation y = ze** or ek* = er*ekiv,
whence k=p-k;. Therefore, to the root k==k; of (2.37) there
corresponds the root p;=0 of equation (2.40).

It is easy to verify that in this correspondence the multiplicity
of the root will be preserved as well, i.e. the root p;,=0 will have
multiplicity a;.

Indeed, the multiple root %; of equation (2.37) may be regarded
as the result of the coincidence of different roots of this equation
when its coefficients are changed; but then, by virtue of the rela-
tion k=p-+k; the o; roots of (2.40) will coincide with p=0.

To the root p 0 of multiplicity a; there correspond particular
solutions z2=1, z2=x, ..., z=x%"1, Hence by virtue of the rela-
tions y= zekix, to the root k; of multiplicity e; of (2.37) there will
correspond o; particular solutions

y=ekx, y=uxekx, ..., y=x%-lekx (2.41)

It remains to show that the solutions
ek xekix, ., xu-lekxr (i=1, 2, ..., m), (2.42)
where m is the number of distinct roots k; of the characteristic
equation, are linearly independent, but this was already proved

in Example 3, page 102.
Thus, the general solution of equation (2.36) is of the form

m
Y =[zl(COI+CliX+Czix2 +... +Ca1-l,1x“""l)eki",

where ¢,; are arbitrary constants.
Example 5.
y''—3y" +3y’'—y=0.

The characteristic equation k*—3k*+3k—1=0 or (k—1)*=0 has
the triple root k,,,, ;=1. Hence, the general solution is of the form
Y= (€, +Cox + X% €%,

If a characteristic equation has a multiple complex root p+gi
of multiplicity a, the solutions
e(p+qi)x, xe(p+qi)x, xﬁe(p+qi)x' cee, xa~letptgi x
that correspond to it may be transformed by means of Euler’s

formulas ‘
eV+9) * = eP* (cos gx + i sin gx)
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and, separating the real and imaginary parts, one can obtain
2a real solutions:

eP* cos gx, xeP*cos qx, x°eP* cos qx, ..., x*~ eP* cos qx,
eP*singx, xeP*singx, x’eP*singx, ..., x*~'eP*singx.

} (2.43)
Taking the real parts and the imaginary parts of the solutions

corresponding to the conjugate root p—gi of the characteristic

equation, we will not get any new linearly independent solutions.

Thus, to the pair of complex conjugate roots p+¢qi of multipli-

city o there correspond 2a linearly independent real solutions (2.43).
Example 6.

YV 42y +y=0.

The characteristic equation &*+42k'41=0 or (k*+1)*=0 has
double roots +i. Hence, the general solution is of the form

Y= (c; + c.x) cos x+ (c; + ¢,x) sin x.
2. Euler’s equations. Equations of the form
ax"y™ +axm"Vy=H L ta,_xy' +a,y=0, (2.44)

where all the a; are constants, are called Euler’s equations. An
Euler equation can be transformed, by changing the independent
variable x=e¢'*, into a homogeneous linear equation with constant
coefficients.

Indeed, as was shown on page 99, the linearity and homogeneity
of an equation are preserved during transformation of an indepen-
dent variable, and the coefficients become constant because

d;”:.@.e't

dx  dt ’

Py -a (DY dy
de ez dt)?

dty _ —wtfp Y d*y dty
e (Bldt_*_ﬂ’dt’ + “'+B'=,uk)’ (2.45)
where all B, are constants; upon substitution into equation (2.44)
the factors e~** and x* =e** cancel.

The validity of (2.45) can readily be proved by the method of
induction. Indeed, assuming that (2.45) is true and differentiating
it once again with respect to x, we prove the truth of equality

* Or x=—et if x < 0; for the sake of definiteness, we will henceforth con-
sider x > 0.
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(2.45) for Zk::f as well:
X

dk'”.‘/_ -(k+ 1)t dy d3y dk+l!/
= (Bt )~

e (b S

dk+1y
— p— (kt D1t
=ée ( 1+Ya dt2+ -t Vo4 'k“>

where all the y; are constants.

Thus, the validity of the formula (2.45) is proved and, conse-
quently, the products with constant coefficients

dky dy d2y
k__Bl +ﬁz dt3+ +ﬁkdtk

that linearly enter into the Euler equation

2 a,_ 1t "xy (2.44")

are linearly (with constant coefficients) expressed in terms of the
derivatives of the function y with respect to the new independent
variable ¢. From this it follows that the transformed equation will
be a homogeneous linear equation with constant coefficients:

d
Odlu+bl di" =1 + +b,,-1;!;+b,,y=0. (246)

Instead of transforming the Euler equation into a linear equation
with constant coefficients, the particular solutions of which are of
the form y=e*t, it is possible immediately to seek the solution of

the original equation in the form y=x*, since
ekt = xk,
The resulting equation (after cancelling x*)
akk—1)...(k—n+1)+akk—1)...(k—n+2)+...
ee.t+a,=0 (2.47)
for a determination of % should coincide with the characteristic

equation of the transformed equation (2.46). Hence, to the roots &;
of (2.47) of multiplicity a; there correspond the solutions

kit tekit, ekt . fei-1ghkt

of the transformed equation or
xki, xkilnx, xkiln®x, ..., xtiln®-1x
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of the original equation, and to the complex conjugate roots p 4 ¢i
of (2.47) of multiplicity o« there correspond the solutions

ert cos qt, teP‘cosqt, ..., t%—1ertcosgt,
e* singt, ter! singt, ..., t*=1er! sinqt
of the transformed equation or
xPcos(glnx), x?Inxcos(qinx), ..., x?In®*-1xcos (¢lnx),
xPsin(gInx), xPInxsin(glnx), ..., x°In®*-1xsin(gInx)
of the original Euler equation.
Example 7.
x’y"+%xy’—y=0.
We seek a solution in the form y=x* k(k—l)—}-%k—-l:O,

whence k,=—;—, k,=—2. Hence, the general solution for x > 0 is

of the form
1
y=0cx3 +cx
Example 8.
2y —xy +y=0.

We seek a solution in the form y=x* k(k—1)—k+1=0, or
(k—1)*=0, k,, s=1. Hence, the general solution for x > 0 will be

y=(c,+c¢cInx)x.
Example 9.
'y +xy +y=0.
We seek a sclution in the form y=ux* k(k—1)+k+1=0, whence
ky, s = +i. Hence, the general solution for x > 0 is of the form

y=c,coslnx+c,sinlnx.
Equations of the form

a, (ax+b)" y™ +a, (ax+b)*~lyn~V 4, .,
eo.+ta,_,(ax+b)y' +a,y=0 (2.48)

are also called Euler’s equations and may be reduced to the equa-
tion (2.44) by a change of the independent variable ax+4b=x,.
Hence, particular solutions of this equation may be sought in the
form y=(ax+b)*, or the equation (2.48) may be transformed to
a homogeneous linear equation with constant coefficients by chan-
ging the variables ax - b=e!(or ax+b=—¢, if ax+b6 <0).
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5. Nonhomogeneous Linear Equations

A nonhomogeneous linear equation is of the form
a, () 4 +a, () y" "+ .. +a, () y=0(x).

If a,(x) 0 on the interval of variation of x, then after division
by a,(x) we obtain

YO 4o () Y+ L+ pa () y =T (x). (2.49)
We write this equation briefly as (retaining earlier notation)
L{y]=F(x).

If for a<<x<Cb all the coefficients p;(x) in equation (2.49) and
the right-hand side f(x) are continuous, then it has a unique solu-
tion that satisfies the conditions

Yy (x,) =y (=0, 1, ..., n—1),

where y{® are any real numbers and x, is any point of the inter-
val a<x <b.
Indeed, the right side of the equation

Y =—p, () y" P —p, () YV — ... —p, () y+ [ (x) (2.49,)

in the neighbourhood of the initial values under consideration
satisfies the conditions of the existence and uniqueness theorem:

(1) the right-hand side is continuous with respect to all argu-
ments;

(2) it has bounded partial derivatives with respect to all
y®»(k=0, 1, ..., n—1), since these derivatives are equal to the
coefficients —p,_,(x) which by assumption are continuous on the
interval a <<x<Cb. Once again we observe that no restrictions are
imposed on the initial values y{®.

From the two basic properties of a linear operator

L [ey] =cL[y],
Ly, +y.]=L[n]+L[y]
where ¢ is a constant, there immediately follows:
1. The sum of§+y, of the solution y of the nonhomogeneous
equation
Lly)=F() (2.49)
and of the solution y, of the corresponding homogeneous equation
L[y]=0 is a solution of the nonhomogeneous equation (2.49).
Proof. : _
Lly+u)=L[y]+L[p)



120 I. DIFFERENTIAL EQUATIONS

but L{y)=f(x), and L[y,)=0; hence,
L [.l;'*'yl] = [(x).
2. I y; is a solution of the equation L[y =f;(x) (i=1,2, ..., m),
then y=‘2 a;y; is a solution of the equation
=1

L(y)= ‘gl af; (%),
where the a; are constants.
Proof .

L [‘=21 aiyi] Ei=21 Lley)= 1—21 oL (4:), (2.50)
but L [y;) = [;(x), hence,
m m
L [1§1 aiyi] = 1=21 of; (%).
This property is often called the principle of superposition and

obviously holds true also for m— oo if the series Y a,y; converges
i=1

and admits of an n-fold termwise differentiation, since in this case
a passage to the limit is possible in identities (2.50).

3. If equation L[y)=U (x)+ iV (x), where all the coefficients p;(x)
and functions U (x) and V (x) are real, has a solution y=u(x)+
+ iv(x), then the real part of the solution u(x) and the imaginary
part v (x) are, respectively, solutions of the equations

Lly]=U ), L[y)=V®).
L{u+iv)=U (x)+iV (x)

Proof.

or

L[u)+iL[v]=U (x) + iV (x).
Hence, separately the real parts L[u]=U(x) and the imaginary
parts L [v]=V(x) are equal.

Theorem 2.8. The general solution, on the interval a <x<b,
of equation L[y)l=f(x) with continuous (on the same interval)
coefficients p;(x) and with right side f(x) is equal to the sum of the
general solution lZc,-y, of the corresponding homogeneous equation

=1

and of some particular solution y of the nonhomogeneous equation.
Proof. We have to prove that

y= lglci!/i'i‘!;, (2.51)
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where ¢; are arbitrary constants and y;(i=1, 2, ..., n) are line-
arly independent solutions of the corresponding homogeneous equa-
tion, is the general solution of the nonhomogeneous equation
L[y} =/ (x). Taking into account Item (1)(see pages 119-120)and that
the existence and uniqueness theorem holds with regard to this
equation, it is necessary to prove that by choosing the constants ¢,
in (2.51) it is possible to satnsfy the arbitrarily specified initial

conditions
y® (x,) =y® (=0,1, 2, ..., n—1), (2.52)

where a<{x,<{b. By requiring that the solution (2.51) should
satisfy the initial conditions (2.52), we arrive at the following system
of equations

3\

1y4 (xo) + _l/ (xo) = Yo»

1yl (xo) +y (xo) - yov
(2.53)

"M’ nM: "N’

clyl (%) + .’/ (%)= Yo,

/

This system of n equatlons, which is linear with respect to the
constants ¢;, in n unknowns with arbitrary right-hand sides admits
of a unique solution for the ¢; (i=1, 2, ..., n), since the deter-
minant of the system (2.53), being the Wronskian W [y,, y,, ..., y,)
for the linearly independent system of solutions of the correspond-
ing homogeneous equation, is different from zero for any values
of x on the interval a<{x<Cb and, in particular, for x=x,.

Hence, integration of a nonhomogeneous linear equation reduces
to finding one particular solution of the equation and to integrat-
ing the corresponding homogeneous linear equatlon

Example 1.
y+y=x.
A particular solution of this equation, y=x, which is obviously
the general solution of the corresponding homogeneous equation, is
of the form
Yy=c,Cos x+¢, sinx (see page 113, Example 4).
Thus, the general solution of the original nonhomogeneous equa-
tion is
Yy=1c,cos x+c, sinx+x.
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If choice of a particular solution of the nonhomogeneous equation
is difficult, but the general solution of the corresponding homoge-
n

neous equation y= Xcy, is found, then it is possible to integrate
i=1

the nonhomogeneous linear equation by the method of variation of

parameters.
In applying this method, we seek the solution of the nonhomo-

geneous equation in the form y= Zc,(x) Y, that is, in place of
the unknown function y we actually mtroduce n unknown functions

¢; (x). Since the choice of functions c;(x) (=1, 2, ..., n) has to
satisfy only one equation
Y +p, () Y+ p (D y=[(0), (2.49)

we can demand that these n functions ¢;(x) should satisfy some
other n—1 equatlons which we choose so that the derivatives of

the function y= 2,0, (%) y, (x) should be, as far as possible, of the

form that they have in the case of constant ¢;, Choose the c;(x) so
that the second sum on the right of

¥ = e (x) i (1) + 2ci (x) 9, (%)
should be equal to zero,

n
26 (0 41 (9 =0,
and, consequently,
n
y' = ()i ),

that is, y’ is of the same form as in the case of constant ¢;. In
the same fashion, we demand that the second sum in the second
derivative

w=gqmw+gdmw

vanish and we thus subject ¢, (x) to the second condition:

n

,Z ¢; (x) y; =0.

=1

N
Continuing to evaluate the derivatives of the function y= X¢; (x)y;
i=1
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up to order n—1 inclusive and demanding each time that the sum

2 ¢;(x) y® (¥) vanish,

Zc,(x)y""(x)=0 (k=0,1,2, ..., n—2), (2.54)

we get
gc () 4
y = g (x) yb
y, = I=2 (X) !/h } (255)

m-l) — Zc (x)ytn—u

n
ym= S e @+ ey,

In the last equation, we cannot demand that Zc,y""” 0 since

the functions ¢;(x) are already subject to the ln—l conditions
(2.54), and we still have to satisfy the original equation (2.49).

Substituting y, ¥, ..., y™® of (2.55) into the equation
YO +p ()Y I+ P () y=f(x), (2.49)
we get the equation we need to determine c;(x)(i=1, 2, , n).

And it is obvnous here that in the left-hand member of (2 49) only
the sum Ec, (x) y*~v will remain, since all the other terms are of
the same form as in the case of constant c;, and when the ¢; are
constant the function y=‘=zlc,-y,' satisfies the corresponding homo-

geneous equation.
We can also convince ourselves of this by means of direct cal-
culation:

n n n n
2™ + Bew +p () Be + py () Dol 0+ ..
= = = =1

cot+ Pa (x)lglciyl =[(x)



124 I. DIFFERENTIAL EQUATIONS

or
n n

ey + By +pi YU+ +p Myl =) (256)

All the y; are particular solutions of the corresponding homoge-

neous equation, consequently, yi® +p,(x)y" P+ ...+ p,(x)y; =0
(i=1, 2, ..., n) and equation (2.56) takes the form

42'1 ciyi* ™ =f(x).

To summarize, then, the functions ¢;(x) (i=1, 2, ..., n) are deter-
mined from the system of n linear equations

n )
.§ ¢ () y; =0,
lglc; (x) yl =V,
g]lci (x) 47 =0, (2.57)

n-1) (n—1) (n-1)
v Yz s+ Yn

is the Wronskian for linearly independent solutions of the cor-
responding homogeneous equation. Having deterinined all the
& (x)=@;(x) from (2.57), we find, using quadratures,

)= o;(x)dx +c.

Example 2,

” _ 1
Y +Y=cgz*
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The general solution of the corresponding homogeneous equation is
of the form y=c, cos x+¢,sinx. We vary ¢, and ¢,

Yy =2¢,(x) cos x+¢, (x) sin x.
¢, (x) and ¢, (x) are found from the system of equations (2.57)

¢, (x)cos x +¢; (x) sinx=0,

—c; (x)sinx+c, (x)cos x = !

cos x’
whence
GW=—335.  a®=In|cosx]|+¢;
c(x)=1, ¢, (x)=x+c,.

The general solution of the original equation is
y=c,cosx+ ¢, sinx+cos xIn|cos x|+ xsinx.

Example 3. i
x+a’x=f().

The general solution of the corresponding homogeneous equation is
of the form x=c,cosat+c,sinat. Varying the constants x =
= ¢, (t) cosat +c, (t) sin at, we obtain

¢, (t) cosat +c;, () sinat =0,
—ac, () sin at 4-ac;, (t) cos at = f (),

and from this

t
6 ()= —~f(t)sinat, ¢,(t)=—= Sf(u) sinaudu 4,

]

t
&)= % f(t) cosat, c,(t) = % S f (u) cosaudu + c,,

sin

t
aat Sf(u) cosaudu +
1)

a

t
x(t)= __cosat Sf (u) sin audu +

+ ¢, cosat +c, sinat,
or

t
x(f) = % S f () [cos au sin at — sin au cos at) du + ¢, cos at +c, sin at,
0
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whence we finally get
t
x(t) = -‘I;-Sf(u) sina (f—u)du + c, cos at +c, sinat.
o

Note that the first summand on the right is a particular solution
of the original equation that satisfies the initial conditions x(0)=0,
x(0)=0.

Thus, a knowledge of n linearly independent particular solutions
of the corresponding homogeneous equation permits us, by usigg
the method of variation of parameters, to integrate the nonhomo-
geneous equation

Ly)=f).
Now if only k, where k< n, linearly independent solutions
Yy, Yy ---» Yp of the corresponding homogeneous equation are

known, then, as pointed out on pages 107-108, a change of variables
permits reducing the order of the equation to n—#% while retaining
its linearity. Observe that if k=n—1, then the order of the equa-
tion is reduced to the first, and a first-order linear equation can
always be integrated by quadratures. _

In similar fashion we can utilize the % solutions y,, ¥,, ..., y, of
the nonhomogeneous equation, since their differences are already
solutions of the corresponding homogeneous equation. Indeed,

Lly)=Ff(), Llg)=F)
consequently
L{y;—y,)=Lly)—L[y,)=F(x)—f(x)=0.
If the particular solutions of the corresponding homogeneous equation
G—0) G—90), s Gros—90) (2.58)
are linearly independent, then the order of the equation L (y)=f(x)
may be reduced to n—(k—1). Obviously, the other differences
Y,— y'P are linear’ combinations of the solutions (2.58)
!;/—Z/p=(!;/—!;k)—(!7p"!7;)
and consequently cannot be employed for further reduction of the

order.
There is also the so-called Cauchy method for finding a particular
solution of a nonhomogeneous linear equation

L{y®)]=Ff (). (2.59)
In this method, it is assumed that we know the solution K (x, s)
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(dependent on a single parameter) of the corresponding homogeneous
equation L[y (x)]=0, which solution satisfies the conditions
K(s, s)=K'(s, s)=...=K"»"%(s, \=0; (2.60)
K=1(s, s)=1. (2.61)
It is easy to verify that in this case

X

y(x)={ K(x, 5[ (s)ds (2.62)

will be a particular solution of the equation (2.59), which solution
satisfies the zero initial conditions
Y=y (x)=...=y"""(x,)=0.
Indeed, differentiating (2.62) and taking into account the condi-
tions (2.60) and (2.61), we obtain

X

y )= K. (x, 5)[(9)ds,

Xo
x

y (0= K:(x, 5)f(s)ds,
................ (2.63)

x

yo ()= (Ko (x, 9)f(s)ds,

Xo

y (x) =\ K (x, 8) [ (s) ds+f (x)

X, /

Putting (2.62) and (2.63) into (2.59), we get

X

(LK (x, ) F(s)ds+F(x)=F(x),

%o

since K (x, s) is a solution of the corresponding homogeneous equa-
tion and L[K (x, s)]=0.
The solution K (x, s) may be isolated from the general solution

y=i ¢;y; (x) of the homogeneous equation if the arbitrary constants
i=1
c; are chosen so as to satisfy the conditions (2.60) and (2.61).

Example 4. The general solution of the equation
Y +a'y=Ff(x) (2.64)
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is y=c, cosax+c,; sinax;, the conditions (2.60) and (2.61) lead to
the following equations:
¢, cosas+ ¢, sinas=0,
—ac, sinas+ac;cosas=1.

Hence,
sinas cos as

a '’ G a

Cl=—
and the sought-for solution K (x, s) is of the form
K (x, s)=711- sina (x—s).

According to (2.62), the solution of (juation (2.64) that satisfies
zero initial conditions is representable as

1 (.. -
y(x)=-;$sma(x—s)[(s)ds.
X
For x,=0, this solution coincides with the one obtained earlier
(see pages 125-126) by a different method.

We can give a physical interpretation to the function K (x, s)
and to the solution of the linear equation with right-hand side in
the form (2.62). It will be more convenient here to denote the inde-
pendent variable by ¢.

In many problems the solution y(f) of the equation

Y +p )y "+ .+ pa () y=[(?) (2.65)
describes the displacement of some system, while the function f (¢)
describes a force acting on the system, and £ is the time.

First suppose that when ¢ <s the system was at rest and its
displacement is caused by a force f,(¢) that differs from zero only
in the interval s<¢ <s+e, and the momentum of this force is
unity:

s+ée

S f.(x)dr=1.
Denote by y,(¢) the solution of the equation

YR +p )Y+ P () y=1.(0).

It is easy to verify that there exists a limit y, (/) as e — 0 that
does not depend on the choice of the function f, (£) on the assumption
that it does not change sign. Indeed,

t
9.(8) =§ K, s)f.(s)ds.
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Applying the meau-value theorem for ¢t > s+ ¢, we get
§+¢€

n®=K(t, s+e) § fLmdi=Kt, s+e),

where 0 < &* < &; hence,
lim g, ()= K (L, s).

20

It is therefore natural to call the function K (¢, s) the influence
function of instantaneous momentum at time ¢=s.
Partitioning the interval (¢,, £) by points s; (i=0, 1, ..., m)

into m equal parts of length As=l——m-—t°, we represent the function

f(t) in (2.65) as a sum of the functions f;(f), where f,(¢) is diffe-
rent from zero only on the ith interval s;,_, <t <s;, on which it
coincides with the function f(¢):

=2t ).

By virtue of the superposition principle (page 120) the solution
of the equation (2.65) is of the form

ym=§ww

where y;(¢) are solutions of the equations
Y +p Dy (D y=f; (D)

with zero initial values. If m is sufficiently great, the solution y; (¢)
may be regarded as the influence function of instantaneous momentum
of intensity f;(s;) As. Consequently,

yw%EKmmMM&

Passing to the limit as m —oo, we get the solution of the equation
(2.65) with zero initial conditions in the form

t

y=SKU.$H9w.

t

which indicates that the effect of a constantly acting force may be
regarded as the superposition of the influences of instantaneous
momenta.

9 378
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6. Nonhomogeneous Linear Equations with Constant Coefficients
and Euler’s Equations

In many cases, when solving nonhomogeneous linear equations
with constant coefficients, it is possible to select without difficulty
certain particular solutions and thus to reduce the problem to inte-
gration of the appropriate homogeneous equation.

For example, let the right-hand side be a polynomial of degree s
and hence the equation will be of the form

ay™ +ay* "+ ... ta, Yy tay=
=AxX +Ax 4.+ A, (2.66)
where all the a, and A; are constants.

If a,50, then there exists a particular solution of the equation
(2.66) that also has the form of a polynomial of degree s. Indeed,
putting

y=Bx*+Bx"'+ ... +B,
into equation (2.66) and comparing the coefficients of identical deg-
rees of x in the left and right members, we get, for a determina-
tion of the coefficients B;, the following system of linear equations
which is always solvable if a, < 0:

a,B,=A,. B‘,=dg ,
anBl + san—lBo = Av
whence B, is determined,
anBz+(s—l)an-lBl +s(s— l)an—zBo = sz
whence B, is determined,

whence B, is determined.

Thus, if a,5<0, then there exists a particular solution in the
form of a polynomial, the degree of which is equal to the degree of
the polynomial in the right-hand member.

Now suppose that a,=0; for the sake of generahty, suppose also
thata,_,=a,_,=...=0a,_,,,=0 but a,_,540, that is, k=0 is the
a-fold root of the characteristic equation, not excepting the case
of a=1. Then equation (2.66) takes the form

ay"+a,yr V4. ta, YyP=Ax+Ax "+ ...+ A, (2.67)

Assuming y'@ =2, we arrive at the preceding case and hence there
«xists a particular solution of the equation (2.67) for which

Yy =B+ B '+ ... +B,
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and so y is a polynomial of degree s+a; also, the terms beginning
with degree a—1 and lower in this polynomial will have arbitrary
constant coefficients which, in the particular case, can be chosen
equal to zero. Then a particular solution will have the form

y=x*(Bx*+B,x* '+ ...+ By).
Example 1.
Y +y=x"4=x. (2.68)
A particular solution is of the form
y=Byx*+ B.x+ B,.
Putting this into (2.68) and comparing coefficients of identical
degrees of x, we obtain
B,=1, B,=1, B,=—2, y=x*4+x—2.
The general solution is
Yy=c,cosx+c,sinx+x* +x—2.
Example 2.
Yy +y =x—2.
We seek a particular solution in the form
y=x(B,x+ B,).

Putting that in the equation and comparing the coefficients of iden-
tical degrees of x in the left-hand and right-hand members of the
resulting identity, we find

B,=5, B,=—3, g=x(—;x—3).

The general solution is

y=c,+c,e *+ x(%x—B) .

Let us now consider a nonhomogeneous linear equation of the form
ay"+ayr "+ ... tay=er (A +Ax T+ .. 4 A)), (2.69)

where all the a, and A; are constants. As has been shown above
(see page 114), the change of variables y=eP*z transforms equation
(2.69) to the form

eP* [by2 ™+ b 2"Vt ... bz =eP* (A +AX T 4. .+ A)
or '
b2™ +b,2* V4 ...+ b2z=Ax +Ax "+ ...+ A, (2.70)

where all the b, are constants.
9:::



132 1. DIFFERENTIAL EQUATIONS

A particular solution of (2.70), if b,540, is of the form
2=Bx*+Bx"'+ ... 4B,
and, hence, a particular solution of (2.69) is
y=eP*(Bx*+ B,x*"'4 ... +B,).

The condition b,40 means that £#=0 is not a root of the charac-
teristic equation

bk +bk* 4 ... +b,=0, 2.71)
and hence k=p is not a root of the characteristic equation
akr+ak* '+ ... 4+a,=0, (2.72)

since the roots of these characteristic equations are connected by the
relationship k=k+p (see page 115).

Now if £=0 is a root of multiplicity a of the characteristic equa-
tion (2.71), in other words, if £2=p is a root of the same multi-
plicity a of the characteristic equation (2.72), then the particular
solutions of the equations (2.70) and (2.69) are, respectively, of the
form

z=x*(Byx*+Bxx*"'+...+B,),
y=x¢"*(Byx*+B,x*"*+ ... +B,).

To summarize, then: if the right-hand member of a linear diffe-
rential equatiorn with constant coefficients is of the form

er (A + A1+ ...+ A,

then, if p is not a rool of the characieristic equation, a particular
solution is to be sought in the same form:

y=er* (B,x* + Bx* '+ ...+ B,).
But if p is a root of multiplicity a of the characteristic equation
(this case is called singular or resonance), then a particular solu-
tion has to be sought in the form
y=uxer*(Bx*+ Byx* '+ ... +B,).
Example 3.
Yy +9y=¢e"*.
A particular solution has to be sought in the form
y= Be**
Example 4.
Y +y=e*(x—2).
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A particular solution has to be sought in th< form

y=e** (Byx+ B,).
Example 5.
Yy —y=e*(x*—1).

A particular solution has to be sought in the form
y=xe* (Byx*+ B.x+ B,),

since £=1 is a simple root of the characteristic equation.

Example 6.
Y +3y"+ 3y +y=e"*(x—5).

A particular solution has to be sought in the form
y=x'e"* (Byx+B),
since k=—1 is a triple root of the characteristic equation.

Observe that our arguments hold true for a complex p as well,
therefore if the right-hand member of a linear differential equation
is of the form

eP* [P (x) cos gx + Q, (x) sin gx], (2.73)

where one of the polynomials P, (x) or Q(x) is of degree s, and
the other is of degree not higher than s, then, transforming the tri-
gonometric functions by Euler’s formulas to the exponential form,
we obtain on the right.

ePtanx R (x) 4P =T (x), (2.74)

where R,(x) and T, (x) are polynomials of degree s.

The rule mentioned above can now be applied to each term on
the right, namely, if p 4= ¢i are not roots of the characteristic equa-
tion, then a particular solution may be sought in the same form as
the right-hand side of (2.74); but if p 4 gi are roots of multiplicity «
of the characteristic equation, then a particular solution acquires the
factor x* as well.

If we again return to trigonometric functions, this rule may be
formulated as follows:

(@) If pgqi are not roots of the characteristic equation, then
a particular solution has to be sought in the form

y=eP*[P(x) cos gx + Q,(x) sin gx],

where Py (x) and Q,(x) are polynomials of degree s with undetermined
coefficients.

Note that if one of the pelynomials P (x) or Qs (x) is of degree
lower than s or even, in particular, is identically zero, then, still,
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both the polynomials P,(x) and Q,(x) will, generally speaking, be
of degree s.

(b) If ptqi are a-fold roots of the characteristic equation (the
resonance case), a particular solution must be sought in the form

y = xeP* [P, (x) cos gx + Q, (¥) sin gx].
Example 7.
Yy +4y’ + 4y = cos 2x.

Since the numbers +2i are not roots of the characteristic equation,
we seek a particular solution in the form

y= A cos 2x+ B sin 2x.
Example 8.
y" + 4y =cos 2x.

Since the numbers 4- 2/ are simple roots of the characteristic equa-
tion, we seek a particular solution in the form

y=x(Acos2x+ Bsin2x).
Example 9.
' YV +2y"+y=sinx.
Since the numbers 4-i are double roots of the characteristic equa-
tion, we seek a particular solution in the form

y=x*(Acosx+ Bsinx).
Example 10.
Y +2y +2y=e~*(xcosx+3sinx).

Since the numbers —14-i are simple roots of the characteristic
equation, we seck a particular solution in the form

y=xe *[(Ayx+ A,) cos x + (B,x + B,) sin x}.

In many cases it is advisable to pass to exponential functions
when finding particular solutions of linear equations with constant
coefficients with right-hand members of the form (2.73).

For example, in the equation

Yy —2¢y +y=cosx

we can transform cosx by Euler’s formula or, more simply, we can
consider the equation

y" _le _{_ y= eix. (2'75)

the real part of the solution of which must satisfy the original
equation (see page 120).
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A particular solution of equation (2.75) may be sought in the form
y=Ae”*.
Then
A= % , y=%(cosx+isinx).

A particular solution of the original equation is
y,=Rey=—%sin X.

In many cases, the operator method is very convenient for finding
particular solutions of nonhomogeneous linear equations with con-
stant coefficients.

The operator method of solving linear differential equations with
constant coefficients. For derivatives of order k& we introduce the
notation .

d% _ pr
T D*y.
Using this notation, we write the equation
ay'™+ay" v+ ... +a,,y=f(x)
as
a,D"y+a D" 'y + ... +ay=Ff(x)

(aD*+a,D*'+ ... +a,_,D+a,)y=f(x). (2.76)
The expression
aD*+a, D" '+ ... +a,_,D+a,
is called the operator polynomial. We denote this operator polyno-
mial briefly as F(D); the equation (2.76) can be written in the form
F (D) y=f(x).
It is easy to establish the truth of the following identities by
direct verification:
1. F(D)e**=e**F (R),
2. F(D*sinax=sinax F (— a?),
3. F(D* cosax=cosax F (—a?),
4. F(D)e**v(x)=e** F(D+k)v(x).
Indeed:
1. F(D)e**=(a,D"+a,D" '+ ... +a,) e =
=e** (g k" +ak '+ ... +a,) =e**F (k).
2. F(D%sinax=(a,D** -q,D**~*+ ... +a,_,D®+a,) sin ax=
=[a,(—a’)"+a,(—a®)*"'+... +a,_,(—a’)+a,]sinax =
=sinax F (—a?®).

or
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Identity (3) is proved in analogous fashion:
F (D*) cos ax = cos ax F (— a?).

4. F(D)e**v(x)= éo a,_p, D? (e** v (x)) =
o=

=ekx Y Qe p [k!’v (%) + pkr ' Dv 4
p=0
+—————-p(p2’-l) kP D*v+ ...+ DPul| =

— gkx Zoan-p (D+ k) v=e** F (D + k) v (x).
p=

The sum of the operators F,(D) and F,(D) is the operator
[F,(D)+ F,(D)], whose operation on a certain function f(x) is
determined by the equality

[Fl(D)‘f‘ Fz(D)]f(x)=Fl(D)f(x)+Fz(D)f(x)-

From this definition it follows that

¥ a,_,D” + Zb,. ,DF = Z(an p+b,_,) D,

p=0

since the operation of the left and right members of this equality
on a certain n times differentiable function f(x) leads to one and
the same result, that is, the rule of adding operator polynomials
does not differ from the rule of adding ordinary (nonoperator)
polynomials.

The product of two operators F,(D)-F,(D) is an operator whose
operation on a certain function f(x) differentiable a sufficiently
large number of times is determined by the equality

(F\(D)-F, (D) [[ (x)=F, (D) [F, (D) f (x)],

that is, the function f(x) is first operated on by the right-hand
factor and then the result of the operation of the right-hand factor
on the function f(x) is operated on by the left-hand factor.

On the basis of this definition, it is easy to see that the rule for
multiplication of operator polynomials does not difler from that of
ordinary (nonoperator) polynomials. Indeed,

m m

n -
Zau » DP 2 Dun -q D7 —= 2 Z an—-pb:/1~qDP+q’ (2.77)
p=

0 ¢=0
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since
Il‘ m
2» an-pDP 2 bm-quf(x) =
p=0 q=0
n m n m
= 2 a, D" [ 2, by_o [ (x)] =32 2, b, of 77 (0),
p= q=0 p=0 ¢g=0
which coincides with the result of operating on f (x) with the operator

2 2 m-qDP+q°

From (2.77), in particular, it follows that multiplication of ope-
rators is commutative:

F,(D) F,(D)=F,(D) F,(D).
The validity of the distributive law
F(D)[F,(D)+ F,(D)]=F (D) F,(D) + F (D) F, (D)
follows directly from the rule of differentiating a sum. Hence, the
operations of addition and multiplication of operator polynomials
do not differ from the same operations involving ordinary (non-
operator) polynomials.

1
Now let us define the operator AR

The result of the operation of operator F i D) on a certain contin-
uwous function f(x) is the solution y=F(D)f(x) of the equation
F(D)y=[(x), (2.78)

Consequently,
F (D) [ﬁ)-) fo] =Fw. (2.79)

It might be considered that (D f(x) is the solution of equation

(2.78) defined by some specific, say zero, initial conditions; however

for our purposes it is more convenient to consider that —= D f(x)

is one of the solutions (which one is immaterial) of equatlon (2 78)
. 1

and, hence, the operation of the operator Fpy o0 2 certain func-

tion f(x) is defined only up to a summand equal to the solution
of the corresponding homogeneous equation.
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In that meaning of the operation of the operator the equation

| F (D)
753 F O )= (0 (2.80)
will be valid, since f(x) is obviously a solution of the equation
F(D)y=F (D) (x).
The product of the operators @ (D) byF—(]D—) is determined by the
equation
O (D) 755/ (1) =@ (D) [ 5551 9)]-
Similarly ,
7153 QD) (9 = 515 [ (D) ().

Therefore, in formulas (2.79) and (2.80) the brackets may be dropped.

Also observe that N
Fin={{...[fwaw,

since —f(x) is, by definition of the operator —— F(D)’ a solution of

the equatlon DPy=f(x).
Let us verify the following properties of the operator ﬁ:
1 1
(1 'F(—D)kf(x)=kﬁ§)f(x).
where k is a constant factor, since
| 1
F(D)kmf(x)=kF(D)mf(x)_kf(x)-

|
@) F(D)e’u—m, if F(k)70.

Rx
Indeed, F’m is a solution of the equation F(D)y=e**, since by
formula (1), page 135,

ekx  F(k)ekx .
FO rm="Fm =*
_l : ___sinax . .
3) Fom S0 = T if F(—a )%0_

Indeed, ‘?" a’:) is a solution of the equation F (D?) y=sinax,
since by formula (2), page 135,

F(D’) smax E |

o .
F(-—a'l)F( a®) sin ax = sin ax.
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4) F_(ID'27 cos ax—l_,c:’s a:,) , ifF(—a*=%0,

since by formula (3), page 135,

F (Dz) Fc(os ‘:fz) =rc ! F (— a®) cos ax =cosax.
(5) FOOT (D) —= e (x) = ek* m)— v (x).
Indeed, e** F—'(DW v (x) is asolution of the equation F (D) y=e**v (x),

since by formula (4), page 135,

F(D)e""mv(x)=e’“‘F(D+k)mL_mv(x)Ee*‘v(x).

| 1 1
6) Fw;[fl(x)’i‘fz(x)]=ﬁ5$f1(x)+mft(x)-
This equality is a corollary to the principle of superposition (page 120).
| 1 1
0 ror RO (O =FoRG @
that is,
1 |
v=ro |Fm @] (2.81)
is a solution of the equation
F,(D)F,(D)y=[(x). (2.82)

Indeed, substituting (2.81) into (2.82), we get
| 1 1
F,(D) F, (D) g=p; [mf(x)] = F, (D) gy f () = [ (x).

Some examples of finding particular solutions of nonhomogeneous
linear equations with constant coefficients by the operator method
are given below:

() ¥y +4y=e*, or (D* + 4) y =e*, whence

1 ex
Y=mri® =%
2) y"’+y=2cos3x or (D* + 1) y=2cos 3x,
y—w 2cos3x = 2c;;?:l 4llC053x
Q) ¥y +99y= 5§|nx (D* +9)y=>5sinx,
5sinx 5

5sinx= sin x.

y= D2+9 —i§9° 8
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@) ¥’ —4y +4y=xe™  (D—2)'y=x"",

N 1 v z,\»_l_ 2 __ xfi
Y=ol = =
(5) ylll_3y”+3y’_y=ex, (D—'l)sy:exr
1
y:: ——(D— l)"’ e‘.

F (k)=0, and so in place of the second formula we use formula (5)
(page 139), regarding e* as the product e*-1:
J— l X X l —_— xxa
y~me l=e B;l—e 6"
6) ¥y’ —y=sinx,

(D*—1)y=sinx. (2.83)
y=ﬁ sin x. Since the operator contains odd degrees of D, for-
mula (4) cannot be employed. Therefore in place of the original
equation we consider the equation (D*—1)y=e"* or

(D*—1)y=-cosx+isinx. (2.84)

The imaginary part of the solution of (2.84) will be the solution
of the original equation (see page 120):

__ 1! oi% = elx _—81" __ (—=14i)(cos x4isinx)
Y=pp ¢ =1 T1Fr 3 =

=— %(cosx+ sin x) 4+ -12— {(cos x—sin x).

cos x—sinx

The imaginary part of the solution 5

is a solution of the equation (2.83).

of equation (2.83)

) Yy’ +y=cosx, (D*+1)y=cosx, y=b?l?7cosx.

Formula (3) (page 138) cannot be applied since F(— a*)=0; and
so once again in place of the given equation we consider the equation

y' +y=e* or y+y=cosx-tisinx

and take the real part of its solution

2 i — 1 ix _. 1 ! ix
D+ 1Ny=e~, y—Dz.*_]ex_(D—i)(D-{-i)ex__
| eix  eix | __e*x _x(cos x+isinx)

D—i2 — 2D '~ 2 2

Taking the real part of the thus found solution of the auxiliary
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equation xsg‘x we obtain the solution of the original equation,
®) YV —y=es, (D'—ly=e*. y=per=
1 1 1 ex 1 1 xe*
= ex= —=——ex—l=—-—_
D—1 (D4 1)(D*+1) D—1 4 4 D 4

Now let us find out how the operator
lynomial

F(D') operates on the po-

P,(x)=AxP+AxP 14 ...+ A,
We formally divide 1 by the polynomial
F(D)=a,+a,_,D+ ... +a,D" a,+#0,

arranged in increasing powers of D, by the rule of division of
ordinary (nonoperator) polynomials. We stop the process of division
when the quotient is an operator polynomial of degree p:

b,+0,D+ ... +b,07=Q, (D).
Then the remainder will be the polynomial
R(D)=Cp.“DP+1 +cp+2DP+2+ . +cp+nDp+n’

which contains the operator D to powers not lower than p+1.
By virtue of the relationship between the dividend, divisor, quotient
and remainder, we get

F(D)Q,(D)+ R (D)=1. (2.85)

This identity holds true for ordinary (nonoperator) polynomials,
but since the rules of addition and multiplication of operator
polynomials do not differ from the rules of addition and multipli-
cation of ordinary polynomials, the identity also holds true for
operator polynomials. Operating with the right side and left side
of the identity (2.85) on the polynomial A x?+ Ax?~'4 ... + A,
we get

(F(D)Q,(DY+R (D) (AxP +ApxP~ '+ ...+ A) =
=AxP+AxP '+ ..+ A,
or, taking into account that
R(D)(ApxP 4+ Axr™ '+ ...+ A,) =0,

since R (D) contains D to powers not lower than p+4 1, we will
have

F(D)[Q,(D)(Apx? +AxP™ ...+ A4)]=
=AxP+ AxP7 L.

A,
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that is, Q,(D)(Ax?+AxP~'+ ...+ A, is a solution of the
equation
FD)y=Axr+AxP '+ ... +A,
And so

F(|D) (AP + AP 4+ L+ A) =Q (DY (AP + AP + ...+ A)).

For example:
9 Y+y=x*—x+2, (D*+1)y=x"—x+2,
Y=g (P —x+2).
Dividing 1 by 14 D? we get Q,(D)=1—D?* Hence,
y=(1—=D)(x*—x+2)=x"—x.
(10) Y +2y +2y=x"e"%, (D*4-2D +2) y = x’e"*,

xe *=e~ =e*(1—D% x*=e"*(x*—2).

1 . |
Y=Drrop+2 DT F1
(11) Yy +y=xcosx, (D*+1)y=xcosx.
Let us pass over to the equation (D®*+41)y==xe’* and then take
the real part of the solution

— 1 ix ix_l—, —_ fx_l_, _l_ _2) —_
y=prrr *"=¢"poyrom *=¢ pl\at7)*=
1 [x 1 x2 x

=e’*—5(§+1) =e'* (—ﬁ+%) = (cos x - i sin x) (:—:+T) .

Taking the real part ’;—2 sin x + %cos x, we get the desired solution.

Note. The last example indicates how one should operate on the
polynomial with the operator i-“(l_m if a,=0. Representing F (D)
in the form Ds® (D), where the absolute term of the polynomial
® (D) is no longer zero, we operate on the polynomial first with
the operator 6__(1_5) and then with the operator bl—; . .

The nonhomogeneous Euler equations

a X"y +ax* 'y n T L day=f(x) (2.86)
or
a,(ax+ by +a,(ax+ by V... +ay=Ff(x) (2.87)

may be integrated by solving the corresponding homogeneous
equations (see page 120) and by choosing one particular solution
of the nonhomogeneous equation, or by applying the method of
variation of parameters. However, it is ordinarily simpler at first
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to integrate the homogeneous equation and, for choice of a parti-
cular solution, to transform the Euler equation (2.86) by the
change of variable x=+e¢' [for equation (2.87) ax+b=+e¢'] to
an equation with constant coefficients for which methods of finding
particular solutions have been thoroughly developed.
Example 11.
Xy (x)—xy (x)+y(x)=xIn*x. (2.88)

We seek the solution of the corresponding homogeneous equation
in the form y=x*
k*—2k+1=0; (2.89)

ky,.=1; hence, the general solution of the homogeneous equation
is"of the form y=(c,+c,Inx)x. The change of variables x=e¢'
transforms equation (2.88) to an equation with constant coefficients
y(t)—2y(t) 4+ y =t [the left-hand side of this equation can
straightway be written in accordance with the characteristic equation
(2.89)]). Using the operator method, it is easy to find a particular
solution of the transformed equation'
elts xIndx

3_ 3 —
Yy=mop=1m0 n)ﬂ"’" ‘" sl =9 Y="5

Consequently, the general solution of equation (2.88) is of the form
Y= (c,+c,lnx+";0x)

7. Integration of Differential Equations by Means of Series

The problem of integrating homogeneous linear equations of the
nth order

Po () Y™ 4Py (1) Y* O+ ... 4P, (1) y=0 (2.90)

reduces to choosing n or at least n—1 linearly independent parti-
cular solutions. However, particular solutions are readily selected
only in exceptional cases. In more involved cases, particular solu-

tions are sought in the form of a sum of a certain series ) a;@;(x),
i=1

especially often in the form of the sum of a power series or a
generalized power series.

The conditions under which there exist solutions in the form of
the sum of a power series or a generalized power series are ordi-
narily established by methods of the theory of functions of a
complex variable, with which we do not assume the reader is
familiar, and so the basic theorems of this section are given
without proof as applied to second-order equations most frequently
encountered in applications.
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Theorem 2.9 (on the analyticity of a solution). If p,(x),
p. (x), p,(x) are analytic functions of x in the neighbourhood of the
point x=x, and p,(x,) #0, then the solutions of the equation

Po (X) Y + Py (X) Y + py (x) y=0 (2.91)

are also analytic functions in a certain neighbourhood of the same
point, and, hence, the solutions of (2.91) may be sought in the form
Y=ay+a,(x—x,)+a,(x—x,)* + ... +a,(x—x,)"+ ...

Theorem 2.10 (on the expansibility of a solution in a
generalized power series). If equation (2.91) satisfies the con-
ditions of the preceding theorem, but x=x, is a zero of finite order s
of the function p,(x), a zero of order s— 1 or higher of the function
py(x) (if s> 1) and a zero of order not lower than s—2 of the
coefficient of p,(x) (if s> 2), then there exists at least one non-
trivial solution of the equation (2.91) in the form of a sum of the
generalized power series

Yy=a,(x—x)f +a, (x—x, )+ ... +a,(x—x)*"+ ..., (2.92)
where k is some real number that may be either integral or fractional,
either positive or negative.

The second solution, linearly independent with respect to (2.92),
is also as a rule in the form of a sum of a generalized power
series, but sometimes may also contain the product of the gene-
ralized power series by In(x—ux,).

However, in specific examples one can dispense with the two
theorems just formulated, all the more so since these theorems
(as they are stated) do not establish the domains of convergence
of the series under consideration. In concrete problems the most
used procedure is to choose a power series or a generalized power
series that formally satisfies the differential equation; that is, such
that if substituted turns the equation (2.90) of order n into an
identity if one assumes convergence of the series and the possibility
of n-fold termwise differentiation. Having formally obtained a
solution in the form of a series, the next step is to investigate the
convergence and the possibility of n-fold termwise differentiation.
In the region where the series converges and admits an n-fold
termwise differentiation, it not only formally satisfies the equation,
but its sum is indeed the desired solution.

Exarnple 1.
Yy —xy=0. (2.93)

We seek the solution in the form of a power series:

Y= > axn.

n=0
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Proceeding from Theorem 2.9 or formally differentiating this series
termwise twice and substituting into (2.93), we get

dann—1)xr*—x Y ax=0.

n=2 n=0

Comparing the coefficients of identical powers of x in the left-hand
and right-hand members of the identity, weget: ¢, =0, 3-2a,—a,=0,

whence a3=2if%; 4.3a, —a, =0, whence 0425‘%; 5.-4a,—a,=0,

whence a5=41_25,. .., n(n—1)a,—a,_,=0, whence a,,=(~'i?£‘«l‘;—n,....
Consequently
n1=0, 80 =535 5 @3

= 4 —
An+1=37.6.7 . @i+ D) (n=1,2 ...)
a, and a, remain arbitrary. Thus,
l x3 x0 x3n +
y=6 |l +53tsa3sst - - T3355 @i ] +

x3n

x x7
ta s+ 3gtarert ot Trer e b | - 299)

The radius of convergence of this power series is equal to infinity.
Therefore, the sum of the series (2.94) is, for any values of x,
a solution of the equation under consideration.

Example 2.

2y +xy + (x—n*)y=0. (2.95)

This equation is called Bessel’s equation of order n, although it
first appeared in the works of Euler and Bernoulli. Many prob-
lems of mathematical physics reduce to the Bessel equation, and
so we shall investigate it in somewhat more detail.

By Theorem 2.10, at least one nontrivial solution of the Bessel
equation can be found in the form of the sum of the generalized
power series

®
y= 2 ax**P.
p=0

Diflerentiating this series twice term-by-term and substituting into
equation (2.95), we get

x* X a, (k+p) (k+p—1) x*+P=2 4
p=0

+x X a,(k4p) 2P 4 (x* —n?) T axtr =0,
p=0 p=0 P

10 378
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Comparing the coefficients of identical powers of x in the left and
right members of the equation, we obtain

a, [k* —n®*]| =0,
a, [(k+ 1)’ —n?)=0,
[(k+2)*—n*)a, +a,=0,
[(k+3)*—n’)as+a,=0,
(¢e+p)'—n']a, + g, =0.
Since the coefficient a, of the lowest power of x may be considered
nonzero, .the first equation reduces to
k*—n®=0, whence k= + n.
For definiteness we will meanwhile regard £=n_>0; then from
the second equation a, [(n+ 1)*—n®]=0 we get a, =0 and, hence,
all the a,,,,=0,

o G0
S S AN
a, = ay Qs Qo
ST T =T T 2492 B+ D+l2’
a..... .(_.l);a;...
2¢.pl(n+1)(n+2)... (n+p) *
For k=—n we get, in quite analogous fashion,
a,,,,=0, a,,= (=1)Pa,
1 T 2pl (—nt 1) (—n4-2)...(—ntp) °

For k=n we have the solution
_ - (—1)P x2P+n
Y= ; PPl (a+ (A +2) .. (AP
This solution may be written more conveniently if one takes the

arbitrary constant a,,=W(:l+—l), where I' is Euler’s gamma func-
tion. Recall that

F(p)=(e=xr-tdxior p>0, F(p+1)=pl (p).
0
Then

2p+n
- 2‘“"’” . 299

pIC(n+p+1)
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This solution is ordinarily written as J,(x) and is called Bessel’s
function of the first kind of order n.

1
For k= —n, and for a, chosen as g, =

we similarly

2-"T (—n £1)’
get Bessel’s function of the first kind of order —n:
® [ x \2P=n
—DP 5
_yper(s)”
J_,(x) = "E:OP’F(—n-l—ﬂH)' (2.97)

The series (2.96) and (2.97) converge for any values of
x[in (2.97) x0] and admit two-fold termwise differentiation;
hence, J,(x), J_,(x) are solutions of Bessel’s equation (2.95).

For nonintegral n the solutions J,(x) and J_,(x) are obviously
linearly independent, since their expansions in series begin with
difierent powers of x and, consequently, the linear combination
a,J, (x)+ea,J_,(x) can be identically zero only when a,=a,=0.

Now if n is some integer, then, since for integral negative values
of p and for p=0 the function I' (p) becomes infinite, expansions
in series of the functions J,(x) and J_,(x) begin with the same
powers of x and, as is readily verifiable, the functions J,(x) and
J_,(x) will exhibit the following linear relation:

J_p(x)=(—1"J, (x).

Hence, when n is integer, one must seek, in place of J_,(x),
another solution that would be linearly independent of J,(x). Such
a solution may be obtained by various methods; for instance, it is
possible, knowing a single particular solution of J,(x), to reduce
the order of the equation (2.95) by the substitution indicated on
page 107, or to seek straightway a solution in the form of the sum
of a generalized power series and the product of a generalized power
series into Inx. The solution [linearly independent of J,(x)] obtai-
ned by any one of these procedures in the case of a completely
definite choice of the arbitrary constant factor is called Bessel’s
function of the second kind and is denoted as Y, (x).

However, Y, (x) is most often defined as follows: taking n non-
integral, consider the solution Y ,(x) of the Bessel equation, which
solution is a linear combination of the solutions J,(x) and J_, (x):

_dalx)cosnn—J_,(x),
Ya(x)= sin nn '

then, passing to the limit for n approaching an integer, we get a
particular solution [which is linearly independent of J,(x)] of the
Bessel equation Y, (x), which is now defined for integral values of
n as well.

10%
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Thus, the general solution of Bessel's equation for n a noninteger
is of the form

y=cJ,(x) +c,J _, (%)
and for n an integer,
y = Cl"u (X) + C-zyn (X),

where ¢, and ¢, are arbitrary constants.

Bessel’s functions of the first and second kind have been studied
in great detail; in particular, detailed tables of their values have
been compiled. For this reason, if a problem has been reduced to
Bessel’s functions, then it may be considered solved to the same
extent that we consider as solved a problem in which the answer
is given for example in trigonometric functions.

The following equation is frequently encountered in applications:

B2y +xy +(m*x*—n*)y=0. (2.98)
This equation may be reduced to Bessel’s equation by a change
of variables x, =mx. Indeed, given such a change of variables,
dy  dy dx, _ dy dly __ dy

dx ~ dx, dx  dx; m, g = dx?

and equation (2.98) turns into the Bessel equation:

d%y

8 g (=) y =0,

'}'hus, the general solution of (2.98) for n a noninteger is of the
form
y=cl']n (mx)+cz -n (m)C)
and for n an integer,
y=c,J,(mx)+cY, (mx).
Example 3.
2. /+ 4 2 _9_\ ‘0
Yy +xy ( X—gs/!/— .
The general solution of the equation is of the form
y=0cJ 3 20 +c,J 5 (2%).
b

:
Example 4.
2y’ +xy +Bx*—4)y=0.
The general solution is

y=c,J, (ng) +¢Y, (x 1’/3)
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Example 5. Integrate the equation
" ’ // 2 1
2y +xy' + 1 4x ——9—>y=0

provided that the solution must be continuous at the point x=0
and y (0.3)=2.
The general solution has the form

y=cJ L 2x)+cd 1 (2x).
3 3
The function J , (2x) is discontinuous at x=0 since the series

3
(2.97) begins with negative powers of x. Hence, the solution y is
continuous at the point x=0 only for ¢,=0:
y=0cJ 1 (2%).
3
Satisfying the second condition, y(0.3) =2, we get
2
“9=7,08

1
3

Tables of Bessel’s functions yield J , (0.6) = 0.700; thus, ¢, ~ 2.857 and

8

Yy~ 2.857J , (2x).
3

Applied problems frequently demand finding periodic solutions of
some differential equation. In this case it is ordinarily advisable
to seek the solution in the form of the sum of some Fourier series:

x(t)=%+ n}=:l (A,,cos nTn t+ B, sin Plﬂt)

Observe that if the equation
XW=F(t X, % ..., X7 (2.99)

has a periodic solution x,(¢f) with period T, then the right side of
(2.99) along the integral curve under consideration is a periodic
function of the period T with respect to the first argument. Indeed,
substituting into equation (2.99) the periodic solution x=x,(£), we
get the identity

P @) =F (@, % (1), %), ..., x5V (@)
If in this identity we replace ¢ by ¢+ T, we will not — by

virtue of the periodicity of the function x,(f) and its deriva-
tives — alter the left-hand member of the equation and will not



150 1. DIFFERENTIAL EQUATIONS

change the arguments of the right-hand member beginning with the
second; hence '
F(t, x,(8), %, (F), ..., X@ V()=
=F(+T, %), %@, ..., %),

that is, the function F along the integral curve x=x,(f) has a
period T with respect to the explicitly appearing argument ¢.
Therefore, if the right side of equation (2.99) is not a periodic
function [for any choice of x,(¢)] with respect to the first argument,
then no periodic solutions exist either. If the function F is not
explicitly dependent on ¢, that is, it is constant with respect to
the argument ¢, then F may be regarded as a periodic function
(with respect to #) of any period and therefore the existence of
periodic solutions of any period whatscever is not excluded.
For example, let it be required to find the periodic solutions of
the equation
x+a*x=f(t). (2.100)

For a periodic solution to exist we have to assume that f is a
periodic function. Without any essential loss of generality it may
be taken that f(f) is a periodic function with period 2=, since if
the function f(#) had a period T, then after transformation of the

independent variable t1=2—7‘.‘t the right side would become a func-

tion with period 2n with respect to the new independent variable #,.
Further suppose that the function f(f) is continuous and can be
expanded in a Fourier series:

F()y=22+Y" (a,cos kt +bsin k). 2.101)
k=1
We seek the periodic solution in the form
x(8) =252+ X, (A, cos kt + By sin k). (2.102)
k=1

FormaMy differentiating the series (2.102) termwise twice and sub-
stituting into equation (2.100), we get

—Zk’ (A, coskt + B, sinkt) 4

k=1

+a* [%9 +2 (A, cos kt + B, sin kt)] =
k=1

32". + kz (a, cos kt + b, sin kt),
=1
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whence, if a is not an integer, we determine the coefficients of the
series (2.102):

atA a a
F=%. A=l l
(@ =) Ay=a,,  Ap=525, (2.103)
b
(az—kz)B,,-—:b, Bkztﬁ__kk_é'

Consequently, the equation (2.100) is formally satisfied by the
series

%'*‘Z ay, cos kt 4 by, sin kt' (2.104)
k=1

a—R?

Obviously, series (2.104) converges and admits of twofold termwise
differentiation since the series (2.101) converges uniformly by virtue
of the continuity of f(f), and the coefficients of the series

Z k2 (ap, cos Izt+b,, sin kt) (2.105)

made up of the second derivatives of the terms of the series (2.104),
difler from the coefficients a, and b, of the series (2.101) solely in

the factor —%, which does not depend on ¢ and monotoni-

cally approaches 1 as & — oo (this proof is not sufficiently rigo-
rous). Consequently, the series (2.105) converges uniformly and,
hence, the series (2.104) may be differentiated termwise twice. And
so the series (2.104) not only formally satisfies the equation (2.100),
but its sum x(¢) exists and is a periodic solution of the equation
(2.100).

If a differs but slightly from an integer n and a,+0 or 4,0,
then resonance sets in; this consists in a sharp rise, as a appro-
aches n, of at least one of the coefficients

A,= B,=

But if a=n and at least one of the coefficients a, or b, is not

zero, then no periodic solutions exist since to the resonance terms
a,cosnt +b, sinnt

in the right-hand member of equation (2.100), as indicated on page
134, there corresponds, in accordance with the principle of super-
posntlon a nonperiodic term of the form

t (A, cosnt + B, sinnt),

b,

nz ’ ac—nt
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in the general solution of the equation (2.100), whereas the other
summands in the general solution of the equation will be periodic
functions. Consequently, for a=n, a periodic solution of the equa-
tion (2.100) exists only if there are no resonance terms a, cosnt +
+ b,sinnt in the right-hand member, that is in the case of

n 2n
a,,=?l‘—§/(t)cosntdt=0, b,,=—nl—5 f(t)sinntdt=0. (2.106)

0

In the latter case, i.e. when a=n, a,=0,=0, a periodic solution
of the equation (2.100) exists, and for k==n, the coefficients are
determined from the formulas (2.103), while the coefficients A, and
B, remain arbitrary, since A, cosnt+ B, sin nt is, for arbitrary A,
and B, a solution of the corresponding homogeneous equation.

Example 6. Determine the periodic solution of the equation

@®

~ sin kt
X+ 2x= %—.

k=]

We seek the solution in the form of a series,

A
x(t) =40+

[s

(A, cos kt + B, sin kt)

x>
i

and, determining the coefficients A, and B, from formulas (2.103),
we get

8

. sin kt
| R (2—k2) "’

x()=Y

x>
]

Example 7. Determine the periodic solution of the equation
X+ 4x=sin’t.

Since the conditions of the existence of the periodic solution (2.106)
are not satisfied,

2n
{ sin®¢sin2¢dt =0,
0

but
F%13
S sin® ¢ cos 2t dt 0,
0

no pericdic solution exists.
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Example 8. Determine the periodic solution of the equation

- “\ cos kt
Xtx=3

k=2

The resonance terms a,cosf-+b,sint are absent in the right-hand
member. Therefore, a periodic solution exists and is determined by
the formulas (2.103):

kt
x(f)= S‘ kgc(‘l)s o cos t+c, sint,
where ¢, and ¢, are arbltrary constants.

8. The Small Parameter Method and Its Application
in the Theory of Quasilinear Oscillations

In the preceding section we indicated a method for finding perio-
dic solutions of linear equations of the torm

x4 a*x=f ().

In many practical problems it is necessary to find the periodic
solution of an analogous equation, but having a small nonlinear
term in the right-hand member:

x+ax=f({t)+pF (¢, x, x p), (2.107)

where p is a small parameter.

If we discard the term pF (¢, x, x, p), i.e. if we consider p=0
in the equation (2.107), then we have a linear equation

it+ax=[(1),

which is known as the generating equation for (2.107).

One of the most effective methods of finding periodic solutions
of an equation of nonlinear oscillations with a small nonlirearity
(2.107) is that devised by Poincaré and Lyapunov—a method
of expanding the solution in a series of powers of a small parame-
ter p, which is widely used at present in solving a great diversity
of problems.

Proceeding from the theorem on the analytic dependence of a solu-
tion on a parameter (see page 60), which theorem is readily gene-
ralized to equations of the second and higher orders, it may be
asserted that the solutions x (f, p) of equation (2.107) will be ana-
lytic functions of the parameter p for sufficiently small absolute
values of w, if the function f(¢) is continuous and the function
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F(t, x, x, p), continuous with respect to f, is analytically depen-

dent on the remaining arguments: on x and x in the region in which
these variables will in future continue to vary, and on p for suffi-
ciently small absolute values of p.

Assuming that these conditions are fulfilled, we seek the periodic
solution x(f, p) in the form of the sum of the series

(L, 1) =2y (1) +pox, () 4+ B () + ...+ pox, () + ... .
We differentiate this series twice term by term:
x(t, W=x (O +ux O+ +px,O+. ..,
x(t, p)=x,(O)+px, O+ ... +p"%, (O)+ ...,

and substitute into equation (2.107), in which the function
F(t, x, x, p) has first been expanded in a series of powers of
x—x, x—x, and p:

xt+aix=[(t)+p|F(, x, x, 0)+( ) n(x-—xo)+

oF F
+ (a—i){‘:% (x—x) + (a—p)x={.p+ . " . (2.108)
iF

Comparing the coefficients of identical powers of p in the left and
right members of (2.108), we get

x,+aix,=[(8),
x,+a’x,=F(t, X,, ,ico, 0),

;’Jragx?:(g) . ”‘+(‘ZTF) ) xl+<‘;_i) i } (2.109)

xX=x, x=1x, x=1x,
n=0 n=0 n=0

----------------------------

The first of these linear equations coincides with the generating
equation. Integrating it and substltutmg the obtained solution
x,(t) into the second equation, we again get a linear equation for
determmmg x; (t), and so forth.

For the determination of «x,(f) we also get a linear equation,
since the right-hand member of this equation will contain only
x, and x, with indices less than n because, due to the presence of

the factor p in F, the terms containing x, and x, on the right,
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and all the more so x, and x, with large indices, will have the
factor p to a power of at least n+ 1.

In this section we consider only the problem of finding periodic
solutions, and so it is natural to impose on the right-hand side of
the equation

f+ax=f)+pF(, x x, p),

in accordance with the note on pages 149-150, yet another restric-
tion; we require that the right-hand side be a periodic function
with respect to the explicitly- occurring argument ¢£. Without any
essential loss of generality, it may be taken that the smallest period
of the right side, if the right side is explicitly dependent on ¢, is
equal to 2m; then if f(#) is not equal to a constant quantity, the
periodic solutions of the equation (2.107), if they exist, can only
have periods equal to 2n or that are multiples of 2n, given suffi-
ciently small p (see page 150).
To find the periodic solution of equation (2.108) in the form

x(t, W=x,O)+pu @)+ ... +px, O+ ... (2.110)

it is necessary to determine the periodic solutions ¥, (f) of equa-
tions (2.109). Indeed, if the solution x (¢, p) has a constant period 2n
(or 2mn, where m is an integer) for any sufficiently small absolute
value of p, then

X, +px, )+ ... +pux, )+ ... =x,(t+2n)+
+px, (t+20)+ ...+ px, (4 20) ... . (2.11])

Hence, the coefficients of identical powers of p in the right and
left members of the identity (2.111) must be equal, that is,

x, (t)=x, (t+ 2n),

and this signifies the periodicity of the functions x,(f) (n=0, 1,
2, ...). That the coefficients of identical powers of p in the left
and right members of the identity (2.110) coincide may be seen,
for example, by differentiating the identity (2.110) n times with
respect to p; then, assuming p=0, we get

X, (2n+t)=x,(%) (n=0, 1, 2, ...).

Thus we have to find the periodic solutions of the equations
(2.1?9). Here it is advisable to consider the following cases sepa-
rately.

1. Nonresonance case: a is not an integer. If a is a noninteger,
the first of the equations (2.109) has a unique periodic solution
X, =, (£), which is found by the method of the preceding section
(see page 150). Then find x,(¢), x,(¢), etc. by the same method.
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If, using this method, we found the general term of the series
(2.110), and if we established the convergence of the series and the
validity of its twofold term-by-term differentiation, then the sum of
the series (2.110) would be the desired periodic solution with pe-
riod 2n. However, finding the general term of the series (2.110) is
usually an exceedingly complicated problem, and so one has to
confine oneself to computing only the first few terms of the series,
which would be-sufficient for an approximation of the periodic solu-
tion if we were confident that the series converges and its sum is
a periodic solution.

Of great importance in this connection are the theorems of Poin-
caré on the existence of periodic solutions. In particular, these
theorems permit finding the conditions under which there definitely
exists a unique periodic solution of the equation (2.107) that appro-
aches the periodic solution of the generating equation as p — 0.

If the conditions of Poincaré’s theorem are fulfilled and, hence,
there exists a unique periodic solution of equation (2.107) that
approaches a periodic solution of the generating equation as p — 0,
then the sum of the unique series with periodic coefficients (2.110),
which series formally satisfies the equation (2.107), must exist and
must coincide with the sought-for periodic solution. It is not neces-
sary then to seek the general term of the series (2.110) for investi-
gating the series for convergence and it is possible, after finding the
first few terms of the series (2.110), to state that, given a small p,
their sum is approximately equal to the desired periodic solution.

Poincaré’s theorems are based on information from the theory of
analytic functions and are rather involved. We therefore give only
the most elementary of these theorems at the end of this section,
but even so it will permit us to assert that in the nonresonance
case under consideration equation (2.107) always has a unique perio-
dic solution for sufficiently small p.

Example 1. Determine approximately the periodic solution of the
equation .
x4 2x=sint 4 px?,
where p is a small parameter [determine two terms of the series
(2.110)]. We seek the solution in the form

@t W=x,O+px, @)+ ... +px, E)+....
We find the -periodic solution of the generating equation
x,+2x, =sint, x,(f)=sint.
The periodic solution of the equation

- . " l— cos 2t
X+ 2%, =sin’t or X, +2x, =—;
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is of the form
x1=—;:~-}—22—2{.
Hence, the periodic solution
x (¢, p)zsint-}-% (1+cos 2f) p.
2. Resonance case. The small-parameter method may also be

employed in the resonance case, i.e. in the case when in equation
(2.107) a is equal to an integer n or tends to an integer n as

p—0.
If in the equation (2.107) a differs but slightly from an integer n,
more precisely, the difference a®—n® is of an order not lower than p,

a’—n*=ay, (2.112)

where a, is bounded as p — 0, then the equation

x+4ax=f (t)+pF(, x, x, p)
may be rewritten in the form

x+nix=f(t)+(n"*—a")x+pF (I, x, x, p),
whence, by virtue of (2.112),

x+4nx=f(t)+nF, (¢, x, x, p),

where the function F, satisfies the same conditions which by assump-
tion are satisfied by the function F.

Hence, in the resonance case we can henceforth consider a equal
to an integer:

x+n'x=f(t)+pF (¢, x %, p).

Applying the small-parameter method, we seek the periodic solu-
tion in the form of a series

x(t, p)=x,(O)+px,(O)+ ... +prx ) +....

To determine the functions x,(f) we again get equations (2.109),
in which a®=n® but in the given case the generating equation

X, + nx, = f (f) (2.113)

has a periodic solution only if there are no resonance terms in the
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right-hand member, that is, if the conditions (see page 152)

S f(¢)cosntdt =0,
o (2.106)
§ Ftysinntdt=0 |
0 J

are fulfilled.

If these conditions are fulfilled, then all solutions of the equa-
tion (2.113) will be periodic with a period 2n (see page 152):
X, (t) =c,, cOs nt +c,, sin nt + @, (£).

The function x, (f) is determined from the equation
X, +nx, =F (¢, x, X, 0). (2.114)

This equation also has periodic solutions only if resonance terms
in the right-hand member are absent, i.e. if the following condi-
tions are fulfilled:

2n
SF(t, Xy, Xy, 0)cosntdt =0, ]

o (2.115)
SF(t, X,, X,, 0)sin nt dt =0.

0

Equations (2.115) contain ¢,, and c¢,, which, generally speaking,
are determined from this system.

Let ¢,, and c,, satisfy the system (2.115); then all solutions of
(2.114) have the period 2mn:

x, (£) = ¢, cos nt +c,, sin nt +q, (t), (2.116)

and c,, and ¢,, are again determined from the two conditions of
the absence of resonance terms in the following equation of (2.109):

X, +n'x, = (?Ti) T (z_g);ﬁ 2t (%)"_‘={‘"

X=X X=X X=X,
u.=0° u=0° u=0°

and so forth.
Consequently, not to every periodic solution

Xy = €y COS Nt +-C, Sin nt + ¢, (¢)
of the generating equation but only to some [the values ¢,, and c,,

of which satisfy the equations (2.115)] do there correspond periodic
solutions of equation (2.107) for small p. Of course, in the resonance
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case as well, in order to be sure [without finding the general term
of the series (2.110)] that a periodic solution will be found by the
indicated process it is first necessary to prove the existence theorem
of periodic solutions. This observation also refers to the cases des-
cribed in Items 3 and 4.
3. Resonance of the nth kind. Occasionally in systems described
by the equation
x+alx=f({)+pnF({, x, x, p), (2.107)
which satisfies the conditions given above, intensive oscillations are
observed when the proper frequency differs but slightly from 1/n,
where n is an integer. This phenomenon became known as resonance
of the nth kind.
From the mathematical viewpoint, this means that for a differing
only slightly from 1/n, where n is an integer greater than unity,
equation (2.107) may have periodic solutions with a period 2nn,

which are not periodic solutions with a period 2x.
Let

i+ arx=[(O)+pF(, x % p) (2.117)

(if a differs only slightly from 1/a, more precisely a’—%=pal,
where a, remains bounded as p — 0, then, transposing the term
(a’—%)x to the right side and including it in pF(t, x, x, p),

we get an equation of the form of (2.117)).
We seek the periodic solution of equation (2.117) with a pe-
riod 2nn in the form of a series

x(t, W=x, ) +px, )+ ... +p"x, )+ ... . (2.110)

Putting (2.110) into (2.117) and comparing coefficients of identical
powers of p, we get the equations (2.109) in which a=—. To de-
termine x,(f) we obtain the generating equation

%o + 25 %o = () (2.118)

1
n

which has a periodic solution with a period 2nn only in the absence
of resonance terms in the right-hand member, i.e. for

2nn

27n
S f () cos indt =0 andS f(#) sin ni dt=0.
0 0

1f these conditions are fulfilled, then all solutions of the equation



160 1. DIFFERENTIAL EQUATIONS

(2.118) have the period 2nn:
t . ¢
Xo==C19 COS — +Cyy SIN =+ @ ),

where ¢,, and c,, are arbitrary constants.
The equation which determines x,,

. ] .
X +og X =F(t % % 1), (2.119)

will have periodic solutions with a period 2nn only in the absence
of resonance terms in the right members, i.e. when the conditions
2nn

SF(t, X4y Xo» p)cos%dt=0,
. (2.120)

2nn

SF(t, X4y Xp, B) SiN ;—dt=0

§ )

are fulfilled. Generally speaking, ¢,, and c,, are determined from
these conditions.

If conditions (2.120) are satisfied, then all solutions of equa-
tion (2.119) have the period 2nn:

¢ t
X, =¢,, COS —l:l—+c" sin _n—+q)l (®).

To determine the arbitrary constants c,, and c,,, we make use of
the two conditions of the absence of resonance terms in the follow-
ing equation of (2.109):

. 1 oF oF oF
e G IR & MR o) B

X=X, X=X, X=X,
n==0 u=0 u=0

and so forth.

4. Autonomous case. Let us assume that the right-hand side of
equation (2.107) is not explicitly dependent on ¢, and the equation
is of the form

x+a*x=pF (x, x, p), (2.121)

where the function F satisfies the conditions posed above. At first
glance it would seem that an investigation of (2.121) should be
simpler than an investigation of equation (2.107), in which the
right side depends on the argument ¢, however the absence of f in
the right member of the equation actually complicates the problem.

If the right side is explicitly dependent on ¢, then, as has already
been pointed out, the possible periods of the solutions are known,
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since the periods of the solutions can be only equal to, or multiples
of, the period of the right-hand member along the solutions with
respect to the argument ¢ that occurs explicitly.

Now if the right-hand side does not contain ¢, it may be regarded
as a periodic function of an arbitrary period, and, hence, the pos-
sibility remains of the existence of solutions of any period; the
period of solutions, generally speaking, will be a function of the
parameter p. In view of the fact that the period of the solution
x(1, p) is, generally speaking, a function of p, it would not be
advisable to seek the solution in the form of the series

x(t, W=x,O)+px, )+ ... +n0"%, O+ ..., (2.110)

since each one of the functions x, (f) taken separately does not ne-
cessarily have to be.a periodic function and, hence, the func-
tions x, (¢) could not be found by the methods given above. It is
therefore necessary to transform equation (2.121) to a new indepen-
dent variable so that the equation now has a constant period with
respect to the new variable, and then seek the solutionin the form
of the series (2.110).

First, for purposes of simplification, we transform equation (2.121)
by a change of the independent variable ¢, =at to the form

dt* ZX bx= pF, (x, x, p). (2.122)
Each solution of the generating equation x,(¢,) =c¢, cos (t, —1,) will
have a period 2n and the periodic solutions of the equation (2.122),
when p 540, if they exist, will have the period 2n+ a(p), and it
may be proved that a(p) is an analytic function of p for suffi-
ciently small p. -

Expand o (p) in a series of powers of p; then

mta(p)=2n(1+hp+hp*+ ... +hp"+...), (2.123)

where h, are certain constant quantities that we do not yet know.

Transform the variables so that the periodic solution x (¢, p) of
the equation (2.122) has a constant period 2n and not the pe-
riod 2n+a(p). This is attained by the change of variables

ti=t, (1 +hp+hp ... +hp"+ .0, (2.124)

since, by virtue of the relationship (2.123), the new variable ¢,
varies from 0 to 2rn when ¢, varies from 0 to 2n+a(p). In the
process. equation (2.122) is transformed to

X+ +hp+ . hp . )P x=
=p(Il+hp+. . +hp+ . ) Fi(x, Q+hp+...
cor R )T Xy, 1) (2 125)
11—378
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We seek the periodic solution of this equation in the form

x(ty W)=2x, () +px,(t)+ ... +p"%, (L) + ..., (2.126)

where x,(f,) are periodic functions of the argument ¢, of period 2m.
Putting (2.126) into equation (2.125) and comparing the coefficients
of identical powers of p in the left and right members of the
equality, we get

%o+ %, =0, whence x,=ccos(f,—1,),
X+ x = —2hxy+ F, (%, %,, 0)
or
x,+x, = —2h, ccos ({,—t,) + F, (c cos ({,—1,),
—csin ({,—1,), 0) (2.127)

For equation (2.127) to have periodic solutions, it is necessary
and sufficient that resonance terms [see (2.106)] be absent in its
right-hand member, that is, that

2n
{ Fy(ccos (t,--1,), —csin (t,—1,), 0) sin (,—1,)dt, =0,
o

2n
— oo+ [ Fiecos(t,— 1), —csin(t,—1,), 0)x 2.128)
0

x €os (t,—t,)dt,=0. )

The first of these equations permits finding the values of ¢, and
the second, those.of h,; having determined them, we find those
solutions of the generating equation x,=ccos({,—¢,) in the neigh-
bourhood of which, for smail p, there appear periodic solutions of
the equation (2.122); and we approximately determine the period
of the desired solution

on +a (p) ~ 20 (1 + ).

Knowing ¢ and h,, it is possible to determine x, ({;) and, if ne-
cessary, to compute by the same method x, (£,), x, (f,), and so forth.
Example 2.

X+ x=px(9—x%. (2.129)

Determine the solutions of the generating equation to which the
periodic solutions of the equation (2.129) approach as p — 0.

The solutions of the generating equation are of the form x =
=ccos({—1,). To determine the desired values of ¢, we take ad-
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vantage of the first equation of (2.128):

2n
S c(9—c’cos® (t—1,)) sin® ({ —¢,) dt =0

0

or nc(g—L:):O, whence ¢,=0, ¢, ;= +6.

For ¢,=0 we get the trivial solution x=0 of the generating
equation, which remains a solution of the equation (2.129) for any p.

For ¢, =46, we get x=4 6cos({—1,).

Let us prove the most elementary of Poincaré’s theorems on the
existence and uniqueness of a periodic solution tending to a periodic
solution of the generating equation as p— 0, as applied to an
equation of the form

x=f(t % x, p) (2.130)

where the function f satisfies the conditions of the theorem on the
analytic dependence of the solution upon the parameter p for suffi-
ciently small absolute values of p. Besides, let us assume that the
function f is explicitly dependent on ¢ and has a period 2x with
respect to £. Also assume that the generating equation x=f(¢, x,
x, 0) has a unique periodic solution x=q, (f) with a period 2=x.

The solution of the equation (2.130) which 'satisfies the initial
conditions

X (t0) =P (8) +Bor  %(t0) =P (o) +B1»

will be denoted by x(¢, u, Bo, B,). Thus, p, and B, are deviations
of the initial values of the solution x(f, u, B,, B,) and its deriva-
tive x(¢t, u, By, B,) from the initial values ¢, (Z,) and g, (,) of the
periodic solution of the generating equation.

The problem is to indicate the conditions under which for each
sufficiently small absolute value of p there exists a unique periodic
solution x (¢, u, B, PB,) of the equation (2.130), which approaches
a periodic solution @, (?) of the generating equation as p — 0.

If the solution x(¢, p, B,, P, is periodic with a period 2=,
then the following conditions should obviously be satisfied:

x.(2“' K, ﬁo’ 61)—X(0, K, Bov ﬁl)=0’ }
x(2x, p, o, B1)—x(0, 1, Bo, B.)=0.

Denoting the left members of these equations by @, (p, B,, B,) and
@, (1, Bo» Pu), respectively, we write the system (2-131) in the form

@, (1, By 1) =0,
@, (4, Bor Br)=0. } (2.132)

(2.131)
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The conditions (2.132), called the conditions of periodicity, are
not only- necessary but also sufficient for periodicity of the soluti-
on x(t, u, By, P.) of the equation (2.130). Indeed, by virtue of the
periodicity of the right side of (2.130) with respect to ¢, this right
side takes on identical values at the points (¢, x, x), ( +2=, x, x), ...
in the intervals 0 <t <C2n, 2n<Ct<C4m, .... Thus, if at the po-
ints £=0 and ¢t=2n we specify identical initial values x, and x,,
then they determine, in the intervals 0<C¢{<C2n and 2n <t < 4n,
absolutely identical integral curves (Fig. 2.2); more precisely, curves
that are periodic continuations of one another.

By the theorem on implicit functions it may be asserted that

if the Jacobian
D (Oor (Dl)

DB B) 7
at the point p=0, p,=p,=0, then for every sufficiently small
absolute value of p there exists a unique pair of functions f,(n)
and B, (n) that satisfy the conditions of periodicity (2.132) and that

/\/—\/4

0 on 47

Fig. 2-2
tend to zero as u — 0, i.e., under the indicated conditions for every
sufficiently small u there exists a unique periodic solution of the
equation (2.130) that tends to the periodic solution of the genera-
ting equation as p — 0*. It is this assertion that is the essence of
Poincaré’s theorem.
Example 3. Prove that in the nonresonance case, the require-
ments of the theorem on the existence and uniqueness of a periodic
solution are fulfilled for the equation

x+ax=Ff(t)+pF(t, % x p), (2.107)
where f and F satisfy the above-indicated conditions (see pages 153-154).

* See I. Malkin [3]for more details on existence theorems of periodic solutions,
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We seek the solution x (¢, p, B,, P.}, Which is an analytic func-
tion of the last three arguments for sufficiently small values of
these arguments, in the form

x(t, my Bor B =2, (8) 42y (£) B+ xyo (1) By + 205 () + ... (2.133)
Putting (2.133) into equation (2.107) and comparing coefficients of
identical powers of p, B, and f,, we get the following equations .

for determining x,, and x,,:
%u +a'x, =0, %, (0)=1, ;‘n (0)=0, }
bata, =0,  x,0=0, %,©0=1[ &3

(the initial values are obtained from the conditions
'_t(tov 1, Bos ﬁx)'_“{o (2o) + Bos
x (L By Bor Bi)=x,(t)+ By,
whence

1 .
X, =cosat, X, = sinat.
The conditions of periodicity (2.132) have the form
(cos 2an— 1)B°+-"75in 2anf,+...=0,

—asin 2anf, + (cos 2an—1) B, + ... =0,

where the unwritten terms do not affect the magnitude of the de-
terminant

D(wlh q)l) _ _ _
D (ﬁo; ﬂl) for p= ﬂo = ﬁl =0.
The determinant
D (9, Dy) _ e e
D (o, By) u=ﬂ.=3,=o_(c°5 2an—1)*+ sin® 2an

is not zero, since a is not an integer.
9. Boundary-Value Problems. Essentials

As was mentioned .in the introduction, in addition to the basic
initial-value problem, one often has to solve so-called boundary-value
problems. In these problems the value of the sought-for function is
given not at one but at two points bounding the interval on which
it is required to determine the solution. For example, in the prob-
lem of the motion of a particle of mass m under the action of a

given force F (¢, r, r) it is frequently necessary to find the law of
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motion if at the initial time #=¢, the particle was located in a
position characterized by the radius vector r, and at time ¢=¢, it
has to reach point r=r,.
The problem reduces to integrating the differential equation of
motion
dtz ——F(t r,

with the boundary conditions r(¢,)=ry; r(f,)=r,.

Note that this problem, generally speaking, does not have a
unique solution; if one is speaking of a ballistic problem and about
points on the earth’s surface, then one and the same point may be

reached by a plunging trajectory
and a flat trajectory (Fig. 2.3);
what is more, given very large
initial velocities it is possible
to reach the same point even
after a single or a multiple orbi-

p; 7 ting of the globe.

A similar  boundary-value

Fig. 2-3 problem may be posed for a ray

of light passing through a refra-

cting medlum to find the direction in which the ray of light must
emanate from point A in order to reach another specified point B.

It is obvious that such a problem does not always have a solu-
tion and if solutions exist, then there may be several or even an
infinity of solutions (for example, if the rays emanating from A are
focussed at B).

If it is possible to find the general solution of the differential
equaticn of a boundary-value problem, then to solve the problem
one has to determine the arbitrary constants contained in the gene-
ral solution proceeding from the boundary conditions. Of course, a
real solution does not always exist, and if it does, it need not be
the only one.

To illustrate the possibilities that arise here, let us consider the
following boundary-value problem:

Find the solution of the equation

y+y=0 (2.135)

that satisfies the conditions: y(0)=0, y(x,)=uy,.
The general solution of (2.135) is of the form

Yy=1c,COSX+C,sinx.

The first boundary condition is satisfied for ¢, =0; here y =c, sin x.
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If x,5=nn, where n is an integer, then from the second boun-
dary condition we find y, =c, sin x,, C’=?i%' Hence, in this case
the solution of the boundary-value problem is unique:

y= 21

= <in x sin x.

But if x,=nn and y,=0, then all the curves of the bundle
y=c,sinx are graphs of solutions of the boundary-value problem.

For x,=nmn, y,#0, the boundary-value problem has no solu-
tions, since not a single curve of the bundle y=c, sin x passes through
the point (x,, y,) where

xl=nn’ y!?éo'

We consider in somewhat more detail the boundary-value prob-
lems for second-order linear equations:

Y4+p )y +p,(0)y=0x), (2.136)
Y(x)="Yo, Y (%)=, (2.137)
By the linear change of variables

_ Y1—Yo
Z=y—5 — —X)—1,

the boundary conditions (2.137) reduce to zero conditions z(x,) =
=2 (x,)=0; the linearity of the equation (2.136) is not violated.

By multiplying by eI PP the linear equation (2.136) is re-
duced to

2 PWY)+emy=F(n, (2.138)

where p (x) —eJ P @ Therefore, without any essential loss of ge-
nerality it is possible to replace the study of the boundary-value
problem (2.136), (2.137) by the study of the boundary-value problem
for equation (2.138) with the boundary conditions

Y (x) =y (x,) =0. (2.139)

First consider the boundary-value problem (2.138), (2.139), where
f(x) is a function, localized at the point x=s, with unit momen-
tum. More precisely, we consider the equation

L (PN Y+ y=F.(x, 5) (2.140)

with the boundary conditions y(x,)=y(x,)=0, where the function
f.(x, s) is zero over the entire interval [x,, x,] with the exception



168 1. DIFFERENTIAL EQUATIONS

of the e-neighbourhood of the point x=s, s—& <x <s+e, and
s+e
S fo(x, s)dx=1.
s—-e
Denote by G,(x, s) the continuous solution of this boundary-
value problem and pass to the limit as e — O:

lirg G,(x, s)=G (x, s). (2.141)

It would not be difficult to prove the existence of this limit,
which does not depend on the choice of the function f,(x, s), but
this is not necessary, since so far our reasoning has been of a heu-
ristic nature, and on page 169 we will give a precise definition of
the function G (x, s).

The function G (x, s) is called the influence function or Green’s
function of the boundary-value problem under consideration. Just
as on pages 128-129 the solution of the boundary-value problem
(2.138), (2.139) with continuous right side in (2.138) may be regarded
as a superposition of the solutions of the boundary-value prob-
lems that correspond to functions, localized in a point, with mio-
menta f(s;JAs, where the s; are points of division of the interval

[%0» x,] into m equal parts, As=—"‘—'m'-’i. More precisely, an appro-

ximate solution of the boundary-value problem (2.138), (2.139) is
equal to the integral sum

2 G (x, 5) f (s)) As,

and the limit of this sum as m — oo,

y(x)= S G(x, s)f(s)ds, (2.142)

Xo

is the solution of the boundary-value problem (2.138), (2.139) at
hand.

The physical meaning of the influence function G(x, s) and of
the solution (2.142) will become still clearer if in equation (2.140)
one regards y(x) as the displacement of some system under the in-
fluence of a force f(x) continuously distributed over the interval
[%o, %) [say, the deviation of a string from the equilibrium posi-
tion under the effect of a distributed load with density f(x)]. Hence,
G (x, s) describes the displacement caused by a unit concentrated
force applied at the point x=s, and the solution (2.142) is regar-
ded as the limit of the sum of solutions corresponding to the con-
centrated forces.
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Green’s function has the following properties that follow from
its definition (2.141):

1. G(x, s) is continuous with respect to x for fixed s and x, <<
SAKSX, X <5< X,

2. G(x, s) is a solution of the corresponding homogeneous equation

7,;(p(x)y’)+q(x)u=0

over the entire interval [x,, x,] with the exception of the point x=s
(since outside this point, in the case of a function localized in the
point x=s, the right side is zero).
3. G(x, s) satisfies the boundary conditions:
G (%o, 5)=0G (x,, 5)=0.
4. At the point x=s the derivative G, (x, s) must have a dis-
continuity of the first kind with a jump-pl—s). Indeed, one should

expect a discontinuity only at the point of localization of the
function, that is, at x=s. Multiplying the identity

2 ()G (x, N+q(x)Gelx, )=fe(x, 5)

by dx and integrating from s—e to s+e, we get

s+e

P0)Ge(x, 90+ § (0 Ge (v, 9dx=1

and, passing to the limit as e — 0, we have
' ' =t
[G" (s+0, s)—G’' (s—0, s)] =6
All these arguments regarding Green’s function have been of a
heuristic nature. Let us now invest them with the necessary rigour.

Definition. Green’s function G (x, s) of the boundary-value prob-
lem (2.138), (2.139) is a function that satisfies the above-indicated
conditions (1), (2), (3), (4).

Direct substitution into equation (2.138) verifies that

Xy

gy =G, 9fs)ds (2.142)

Xo

is a solution of this equation [the boundary conditions (2.139) are
obviously satisfied by virtue of Property (3)].
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Indeed,
v =G, 9 fs)ds= G (x, ) f(s)ds+ § Gux, 9)F(s)ds;

v W= Gx, )f(s) ds+G; (x, x—0) f (1) +
+ (G 9F(©)ds—G,(x, x+0) f()=

= (G, 9 (9)ds+[G, (x+0, ) =G (x—0, )] f (x).

Xo

Putting (2.142) into (2.138), we get

(P0G, )40 (0 Go(x, )4+ (0) G (x, )] dx+

' +p () [Gy (x+0, 9—G (x—0, )] () =F(x)

by virtue of the conditions (2) and (4).

We now consider a method for constructing Green’s function,
from which we will also obtain a sufficient condition for its exi-
stence.

Consider the solution g, (x) of the equation

d /
ZPXY)+qx)y=0 (2.143)
defined by the initial conditions
y(£)=0, ¥ (x)=y, 0.

This solution, generally speaking, does not satisfy the second boun-
dary condition y(x,)=0. The case y, (x,)=y, (x,)=0 is exceptional
and we shall not consider it here.

It is obvious that the solutions c,y, (x), where ¢, is an arbitrary
constant, likewise satisfy the boundary condition y(x,)=0. Simi-
larly we find the nontrivial solution y, (x) of the equation (2.143)
that satisfies the second boundary condition g, (x,)=0; this same
condition is satisfied by all the solutions of the family c,y, (x),
where ¢, is an arbitrary constant.

We seek Green’s function in the form

[y (x) for x,<x<s,

G(x, s)=\02y2(x) for s<x<x,
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and we choose the constants ¢, and ¢, so that conditions (1) and (4)
are fulfilled, i.e., so that the function G (x, s) is continuous with
respect to x for fixed s and, in particular, is continuous at the
point x=s:

€14, (8) =Y, (3), (2.144)
and so that G} (x, s) at the point x=s has a jump IOk
€.ty (8)— €yt (8) = 1= (2.145)

p(s)”

By the hypothesis that y, (x,) 5= 0, the solutions y, (x) and y, (x)
are linearly independent since all solutions linearly dependent
upon y, (x) are of the form ¢y, (x) and, hence, for ¢, 0 do not
vanish at the point x, at which the solution y, (x) vanishes. There-
fore, the determinant of the system (2.144) and (2.145), which is
the Wronskian W (y, (x), y.(x))=W (x) at the point x=s, is not
zero and the constants ¢, and ¢,, which satisfy the system (2.144)
and (2.145), are readily determined:

c. =204 ® . — Y108 4 ()
TV E 6’ PWEee)
whence

W (s) p (s)
Y1 (5) ys (%)
W (s)p(s)

Ys (8) 41 (%) for x. <x <s
0~ ’
Gx, s)= : (2.146)

for s<x<x,.

Example. Find Green’s function of the boundary-value -problem

¥ ) +yx)=Ffx), y©0)=0, y(g)=o,

The solutions of the corresponding homogeneous equation which
satisfy the conditions y(0)=0 and y (%) = 0 have the form y,=
=c¢, sinx and y, =c, cos x, respectively, and so, according to (2.146)
—cosssinx for 0<Cx<s,

G(x, s)={

. 1
—sinscos x for s<xL< 5.

Note. We presumed (page 170) that there does not exist a non-
trivial solution y(x) of the homogeneous equation (2.143) satisfying
the zero boundary conditions y(x,))=y(x,)=0. This condition
guarantees not only the existence and uniqueness of the. boundary-
value problem (2.138), (2.139), but also the uniqueness of Green’s
function.
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Indeed, if one assumes the existence of two different Green’s
functions G, (x, s) and G,(x, s) for the boundary-value problem
(2.138), (2.139), then we get {wo different solutions of this problem:

n®= {6 (x 9f(ds
Xy
and
v, ()= G, (x, 9)f(9)ds,
the difference of which

[ 16,6, 9—G,(x, 9] F(9as,

contrary to hypothesis, will be a nontrivial solution of the corres-
ponding homogeneous equation, which solution satisfies the zero
boundary conditions.

PROBLEMS ON CHAPTER 2

. y"—6y +10y=100, for x=0, y=10, y =b.
. X+ x=sint—cos 2¢.

. yfylll_3(yn)z=0.

) yn+y=sin3x'

. Xy —4xy' 4+ 6y=2.

y" +y=cosh x.

p 2 ’

Y+ 1= =0

L e L ¢
J+y" + ') +1=0.
PP 1=0.

YV —16y =x*—e*.
WY+ =1
dx_dx
drs  dis

dix d2x 2
L2 tx=0-3.
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15. y” +4xy=0; integrate by means of power series.

16. x*y" +xy' + (Qx2 —l> y=0; integrate by reducing to Bessel’s
equation.

17. ¢ +(y')’=1, y(0)=0, ¥ (0)=1.

18. y=3Vy, y(0)=1, y (0)=

19. " +y=1———.
d?u 2 du
20. drt +7ar r dr =0.

21. Find the velocity of a body falling to the earth’s surface
from an infinitely great height, assuming the motion is due solely
to the earth’s gravity. Consider the radius of the earth 6,400 km.

22. Find the law of motion of a body falling without initial
velocity, assuming that the resistance of the air is proportional to
the square of the velocity and that the velocity has as its limit
75 m/sec for t — oo.

23. A chain of length 6 metres slides off a table. At the initial
instant of motion 1 metre of the chain was hanging from the
table. How long will it take the whole chain to slide off? (Disre-
gard friction.)

24. A chain is thrown over a smooth nail. At start of motion,
one side is hanging down 8 metres, the other side, 10 metres. How
long will it take the whole chain to slide off the nail? (Ignore
friction.)

25. A train is in motion on a horizontal track. The train weighs P,
the thrust of the locomotive is F, the force of resistance when in
motion W =a+bv, where a and b are constants and v is the speed
of the train; s is the path traversed. Determine the law of motion
of the train assuming that s=0 and v=0 for {=0.

26. A load of p kg is suspended on a spring and has stretched
it a cm. The spring is then stretched another A cm and is released
without initial velocity. Find the law of motion of the spring dis-
regarding the resistance of the medium.

27. Two identical loads are suspended from the end of a spring.
Find the law of motion of one of the loads if the other breaks.
It is given that the elongation of the spring under the effect of one
of the loads is a cm.

28. A particle of mass m is repulsed from a centre O with a
force proportional to the distance. The resistance of the medium
is proportional to the velocity of motion. Find the law of motion.

29. Find the periodic solution, with period 2=, of the equation
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where the function f(f)=n®*—1¢* for —n <{<{n and is continued
periodically.
” na__ Yy
30. yy" +W')' = Vite
3L yy'y" =WV + (')
32. x+9x=1¢sin3t.
33. ¥+ 2y’ + y=sinhx.
34. Yy —y=e.
35. y"—2y’ + 2y = xe*cos x.
36. (x*—1)y"—6y=1. A particular solution of the correspon-
ding homogeneous equation has the form of a polynomial.
37. Find the solution u=u(x*+ y*) of the equation
0%u J%u
ot o =0
that depends solely on x*+ 4°.
38. Find the solution u=u(x*+ y*+ 2% of the equation
0%u 02u 0%u
e topta =0

which is a function of x* 4 y® + 2.

39. A material particle is slowly sinking into a liquid. Find the
law of motion on the assumption that in slow submersion the re-
sistance of the liquid is proportional to the speed of submersion.

40. Integrate the equation of motion mx=f({ x, x)on the
assumption that the right side is a function only of x or only of x:

(a) mi=/(x),

(b) mx=f(x).

41, Yy =3y + 3!V —y""' =x.

42, xV 4 2x" +~x=cos .

43. 1+x’y"+(1+xy +y=2cosIn(l +x).

44. Determine the periodic solution of the equation

~

§+2x+2x=2 §i:‘"t.
n=|

45. Find the periodic solution of the equation
x+ax+ a,x=f (),

where a, and a, are constants and f(f) is a continuous periodic
function with period 2n that can be expanded in a Fourier series,
a, %0 and a,5<0.
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46. x4 3x=cost+px’, p is a small parameter. Give an appro-
ximation of the periodic solution.

47. x*y" —xy’ +y=0; integrate the equation if y,=x is a parti-
cular solution.

48. Find the homogeneous linear equation with the following

fundamental system of solutions: y, =x, y,=—)—l‘- .

49, xV4x=1¢°. '

50. x=("Y +y" +1.

51. x4 10x 4 25x =21 4 te™®,
52. xyy"—x(y')*—yy =0.
53. yV'—y=¢é*.

54. yV' 420"V 4+ y" =x +-€*.
55. 6y"y'V—5(y’"")* =0.

56. xy" =y’ ln%l .

57. y"+ y=sin3xcos x.

58. " =24, y()=1, y'(1)=1.
5. v — (') =y



CHAPTER 3
Systems of differential equations

1. Fundamentals

The equation of motion of a particle of mass m under the action
of a force F(¢, r, r)
mEZE_F@ r, )
dlz ’ ’
can be replaced by a system of three scalar equations of second
order by projection on the coordinate axes:

mEE=X({ x y, 2 % 4 2),
m%=)’(t, X, U, 2 X Y 2),
m%:—:—=Z(t, X, Y 2z XY, 2),

or a system of six equations of the first order, if for the unknown
functions we take not only the coordinates x, y, z of the moving

particle, but also the projections x, y, z of its velocity %tr—:

f=u,
y=v,
=W,

mu=X(t, x, y, 2, u, v, W),
mo=Y (¢, x, vy, 2, u, v, W),
mo=2Z({, x, y, 2, u, v, W).
It is then usual to specify the unitial position of the point
x(t)=2x, y(t,)=y, z(t)=2, and the initial velocity u(f))=u,,
v (L) =10,, w(t,)=uw,.
This basic problem with initial values has already been conside-

red in Sec. 6, Chapter 1 (page 56). There, proof was given of the
theorem of existence and uniqueness of the solution of a system
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of differential equations

dx‘—f, (£, X3, X3 «vvy X)),
d
x“—-f,(t Xiy Koy ouey X)), 3.1
d_xﬂ—fn(t X1y Xy ’ n)'
which satisfies the initial conditions
x-,-(to)=x,-0 (i=l, 2, EEE) n). (3.2)

We recall that the sufficient conditions for the existence and
uniqueness of solution of a system (3.1), given initial conditions
(3.2), are:

(1) continuity of all functions f; in the neighbourhood of the
initial values;

(2) fulfillment of the Lipschitz condition for all functions f; with
respect to all arguments, beginning with the second one in the same
neighbourhood.

Condition (2) may be replaced by a cruder condition by requir-
ing the existence of partial derivatives beunded in absolute value:

of; —
5% ¢ j=1, 2, ..., n).

The solution of the system of differential equations x, (¢),
x,(8), ..., x,(¢) is an n-dimensional vector function which we will
briefly desngnate as X (f). In this notation, system (3.1) may be
written as

dX
SL=F(t, X),

where F is a vector function with coordinates (f,, f,, ..., f,) and
the initial conditions are in the form X (¢,) = X,, where X, is an
n-dimensional vector with coordinates (x,5, X59, .., Xpo)-

The solutions of the system of equations

5=x,(), x,=x,(), ..., X,=x,(t)

or, briefly, X=X (f) defines in Euclidean space with coordinates
t, x,, X, ..., X, a certain curve called the integral curve. Upon
fulfillment of the conditions (1) and (2) of the theorem of existence
and uniqueness, a unique integral curve passes through every point
of this space and the assemblage of such curves forms an ‘n-para-
meter family. As parameters of this family, one can, for example,
take the initial values x,,, X, ..., X,.

12 -378
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A different interpretation of the solutions
x1=x1(t)» x,=x%0), ..., x,=x,(),

or, briefly X = X (#), is possible; it is particularly convenient if the
right sides of (3.1) do not depend explicitly on £.

In Euclidean space with rectangular coordinates x,, x,, ..., x,
the solution x,=x,(¢), x,=x,(¢), ..., x,=x,(t) defines a law of
motion of some trajectory depending on the variation of the para-
meter £, which in this interpretation will be called the time. In

such an interpretation, the derivative —— X will be the velocity of

dt
dx, dxy dx,
dt > Tdt o dt
of the velocity of that point. Given this interpretation, which is
extremely convenient and natural in many physical and mechanical
problems, the system

Bt fith s Xy ooy k) (=1,2, i) 3.1)

motion of a point, and will be the coordinates

or
dX
SF=F(t X)

is ordinarily called dynamical, the space with coordinates x,,
Xy ..., X, is called the phase space, and the curve X=X () is
called the phase trajectory.

At a specified instant of time ¢, the dynamical system (3.1)
defines a field of velocities in the space x,, x,, ..., x, If the
vector function F is explicitly dependent on ¢, then the field of
velocities varies with time and the phase trajectories can intersect.
But if the vector function F or, what is the same thing, all the
functions f;, are not dependent explicitly on £, then the field of
velocities is stationary, that is to say, it does not vary with time,
and the motion will be steady.

In the latter case, if the conditions of the theorem of existence
and uniqueness are fulfilled, then only one trajectory will pass
through each point of the phase space (x,, x,, ..., x,). Indeed, in
this case an infinite number of different motions X = X (¢+4¢),
where ¢ is an arbitrary constant, occur along each trajectory
X=X (t); this is easy to see if we make a change of variables
t,=t+c after which the dynamical system does not change form:

dX

and consequently X = X (¢,) will be its solution, or, in the old
variables, X = X (f +¢).
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If in the case at hand two trajectories passed through a certain
point X, of the phase space,

X=X,(t) and X=X,(0), X,(E)=2X,(t)=X,

then, taking on each of them that motion for which the point X,
is reached at time ¢=¢{,, i.e., considering the solutions

X=X,(t—t,+%) and X=X,(t—t,+1),

we obtain a contradiction with the existence and uniqueness theo-

rem, since two different solutions X, (t—¢,+%,) and X, (t—t,+1,)
satisfy one and the same initial con-

dition X (¢,)= X,. Y
Example. The system of equations
dx dy
a9 w#=x (3.3)

has the following family of solutions
(as may readily be verified by direct

%

AN

substitution): J z
x==c, cos (t—c,);
Yy =—c¢, sin ({ —c,).

Regarding ¢ as a parameter, we get a
family. of circles on the phase plane
x, y with centre at the origin of coordi- Fig. 3-1

nates (Fig. 3.1). The right member of

(3.3) is not dependent on ¢ and satisfies the conditions of the
existence and uniqueness theorem, and so the trajectories do not
intersect. Fixing ¢,, we get a definite trajectory, and to different c,
there will correspond different motions along this trajectory. The
equation of the trajectory x*+y®=c? does not depend on ¢, so
that all the motions for fixed ¢, are executed along one and the
same trajectory. When ¢, =0 the phase trajectory consists of
a single point called in this case the rest point of the system (3.3).

2. Integrating a System of Differential Equations by Reducing
It to a Single Equation of Higher Order

One of the main methods of integrating a system of differential
equations consists in the following: all unknown functions (except
one) are eliminated from the equations of the system (3.1) and from
the equations obtained by differentiation of the equations that make
up the system; to determine this one function, a single differential
equation of higher order is obtained. Integrating the equation of

2%
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higher order, we find one of the unknown functions; the other
unknown functions are determined (if possible without integrations)
from the original equations and from the equations obtained as
a result of their differentiation.

The following examples will serve as an illustration.

Example 1.

dx _ dy

a=Y% a=*
Diﬂ'erentiate one of these equations, for instance the ﬁrst, ‘dit: Zi’ ;
ehmmatmg 5 by means of the second equation, we get dt“‘ —x=0,

whence x = ce' + c,e”t. Utilizing the first equation, we get
Y =‘;—‘:=cle'—c,e“.

We determined y without integrations by means of the first
equation. If we had determined y from the second equation

£;—yi=x=c,e'+t:2e“, y=ce'—c,e !+,
we would have introduced extraneous solutions, since direct substi-
tution into the original system of equations shows that the system
fs satisfied by the functions x=c,e*+c,e~t, y=c,e'—c,e”t+c, not
ior an arbitrary ¢, but only for ¢;=0.

Example 2. 4
7=3x—2, 3.4)
=2x—y. (3.4,
Differentiate the second equation:
d’y dx dy
w25 (3.5)
From (3.4,) and (3.5) we determine x and Zl:
1 (dy

7=z (@ +ir):

Substituting into (3.4,) we get

dzy dy _

Integrate the resulting homogeneous linear equation with constant
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coefficients y=e' (¢, 4 c,t); substituting into (3.6), we find x(¢):
x= -;—e’ (2c, + ¢, + 2¢,1).

Example 3.
d2x d?y
aw==Y g=*
Differentiating the first equation, we get z:—f=§:§ and, substituting

into the second equation, we have %:%=x. Integrating this homoge-

neous linear equation with constant coefficients, we obtain
x=ce'+cet+c,cost+c,sint

and, substituting into the first equation, we find
y=c,e'+ce t—cycost—c, sint.

Now we shall describe more exactly the process of eliminating
all unknown functions except one from the system of equations.

First we will show that one of the unknown functions, say, x, (¢),
which is a component of the solution x, (¢), x,(¢), ..., x,(f) of the
system of differential equations:

‘id?=f1 (¢ Xy Xy oeey %),

dx,

'd—tz_—-fz(t, xn xv M ] x,,), (31)
ﬁ ..........

dt =f,,(t, xl’ xzy ooy xn),

satisfies a certain nth order equation; here we assume that all the
functions f; have continuous partial derivatives up to order n—1
inclusive with respect to all arguments. Substituting some solution
x, (), x,(¢), ..., x,(t) into the system (3.1), we reduce all the
equations of the system to identities. In particular, the first equa-
tion of the system,

dx.
'd_tl=f1(t, Xy Xgy ooy xn)’

will be reduced to an identity.
Differentiate this identity with respect to ¢:
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or
‘::;1 1+ E of, fb (3.7‘;)

and designating the right side of the latter identity by F,(¢, x,,

Xy ...y X,), We get
d3x,
ar

Again diflerentiating this identity:

=F, (L, Xy Xgr -r %) 3.7

&%, _ OF, OF, dx;
s = +20x, at

or
dsx, OF oF. a
=+ N5t (3.79)

and denoting the right side of the latter identity by Fs(¢, x,,
Xy ...y X,), We get
dx,

e =Fs(t, %, %, ..., x,). 3.79)

We again differentiate this identity; continuing the process n—2
times, we finally get the identity

dn—1

dtT—xl‘=Fn—l(t’ Xy Xz on ey xn)' (3-73—1)

which, when differentiated once again and when the identities (3.1)
are taken advantage of, yields

%=F,,(t, Xyy Xgy ooy Xp)-
We thus have n—1 identities
%‘=h () Xy Xay ovny X (3.7,)
F=R n n o x), (3.7,) 3.2
d".";c, .................

Tn-_l=Fn—l (t' X1 Xgs ooy xn) (3'7n—1)/

and one more identity

drx,

i =F,(t, %, X3 «ov, X). 3.8)
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Suppose that in the given range of the variables the determinant
D(fy, Fy, Fs, ..., Fn_y)
Dl(xz,zxs 3x4. ceey Jt,,)l +0.
Then the system (3.7) may be solved for x,, x,, ..., x, by expres-
n-1
sing them in terms of the variables ¢, x,, %1, cees %t—,,fxl‘. Put-

ting into the last equation (3.8) the variables x,, x,, ..., x, found
from the system (3.7), we get an equation of the nth order:

dan d dan-1
dtf'n_q)(t, nE, L T";) (3.8,)
which is satisfied by the function x, (f), which by hypothesis was a
function x, (¢) of the solution x, (¢), x, (¢), ..., x, (¢) of the system (3.1).
Now let us prove that if we take any solution x, (¢) of this nth

order equation (3.8,), put it into the system (3.7) and determine
from this system x, (£), x; (¢), ..., x, (), then the system of functions

xl (t)» Xy (t)v ceey Xy (t) (3'9)

will be the solution of the system (3.1).

We put this system of functions (3.9) into (3.7) and thus reduce
all the equations of the system to identities; in particular we obtain
the identity

dxl

a=ht x, % ..., X)) (3.7,)

Differentiating this identity with respect to ¢, we will have
d2x, df of, dx;
= ‘+E o ar (3.10

In this identity it is not yet possible to replace wnth the func-

tions f;, since we have not yet proved that the functlons iy Xgy oov g Xp
obtained by the above-mentioned method from the equation (3. 8)
and the system (3.7) satisfy the system (3.1); what is more, it is
precisely this assertion that is the aim of our proof.

Subtracting identity (3.7,), taken in the expanded form (3.7%),
termwise from the identity (3.10), we get

Z (;);11 (dx, )

0

or, by virtue of (3.7,),

0.

lll

2 (811
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In analogous fashion, differentiating identity (3.7,) and subtracting
(3.79), and then differentiating identities (3.7,) and subtracting (3.79),

and so on, we obtain
OFy (dx;
Eaxf (% —h)=0.

" OF ey (&) -o0.

=2 0.\:,'

Since the determinant of the homogeneous linear system of equa-
tions

%(%_f‘_)=o, ' (3.11)

Tt (%—r) =0,

consisting of (n—1) equations in n—1 unknowns ( dx; fl)
(=2, 3, ..., n) coincides with the nonzero functional determmant
D(fy, Fao ..., Fp_ ,)#=0

D(xy, x3, ..., X,)

the system (3.11) has only trivial solutions at each point of the
region under consideration:

dx L—f=0 (=23, ..., n).

Taking into account also (3.7,), we find that the n functions x,,
Xy, ..., X, are the solution of the system of equations
dﬁ_f,(l Xy, Xgy o0ey Xy) (i=1,2, ..., n).

Note. 1. This process of eliminating all functions except one pre-
supposes that

D(fl. Fz- [EE] Fn-l) ?(__0' (312)

D(x3, X3, o0y Xp)

If this condition is not fulfilled, then the same process may be
employed, but in place of the function x, take some other one of



3. SYSTEMS OF DIFFERENTIAL EQUATIONS 185

the functions x,, x,, ..., x, that make up the solution of the
system (3.1). Now if the condition (3.12) is not fulfilled for any
choice of some function x,, x;, ..., x, in place of x,, then various

exceptional cases are possible. We illustrate them in the following
examples.

Example 4.

d
di;=f1(t, xl)!

d;_tz=fa (¢, X,),

d
'di; = f a(t, x5).

The system has disintegrated into quite independent equations, each
of which has to be integrated separately.

Example 5.
d
—3‘ = fl (t- xl)v
0f,

dx.
d_tzzfz(t’ X,, xa)v Et;7l:09

%xtl=,a (l, Xz xa)-

The latter two equations may be reduced to one equation of the
second order in the manner indicated above, but the first equation,
which contains the unknown function x, that does not appear in
the other equation, has to be integrated separately.

Note. 2. 1f we apply the above-indicated process of eliminating
all unknown functions except one to the system

n
d. .
ff-=§ai,(1)x, (=12, ..., n),

called a homogeneous linear system, then, as is readily verifiable,
the nth order equation

dr d dn-1

=0 (L x, G ) 3.8)
will also be homogeneous linear, and if all the coefficients a,, were
constant, then the equation (3.8,) as well will be a homogeneous
linear equation with constant coefficients. A similar remark holds
true for the nonhomogeneous linear system

dditi=§ai/(t)x/+/i(1) (=12, ..., n),
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for which the equation (3.8,) will be a nonhomogeneous linear equa-
tion of the nth order.

3. Finding Integrable Combinations

Integration of the system of differential equations

S hilt B s %) (=1,2, ., m) ()

is often accomplished by choosing so-called integrable combinations.

An integrable combination is a differential equation which is a
consequence of the equations (3.1) but one which is readily inte-
grable, for example an equation of the type

do (¢, x,, x,, ..., x,)=0

or an equation that, by a change of variables, reduces to some kind
of integrable type of equation in one unknown function.

Example 1.
dx dy

a=¥
Adding the equations term by term, we find a single integrable
combination

=X.

d(x+y)__ d(x+y) _

T-x—{—y or 7ty =dlt,
whence

In|x+y|=t+1nc, x+y=ce.

Subtracting termwise the second equation of the system from the
first, we get a second integrable combination

d(x—y) __ d(x—y) _
T——(x—-y) or W-— dt, )
Injx—y|=—1t+Inc, x—y=ce".

We have thus found two finite equations
x+y=ce and x—y=ce™t,

from which the solution of the original system can be determined,

X= _;‘ (cxe’ +Cze_t)t y= _;‘ (cle"_c:e-t)

or

x=cel +ce”t, y=ce —ce .
One integrable combination permits obtaining one finite equation
O, (L, x5, Xy oy X)) =0y,
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which relates the unknown functions and the independent variable;
such a finite equation is called a first integral of the system (3.1).
Thus, the first integral

D¢, x,, X3 ..., X)=C 3.13)

of the system of equations (3.1) is a finite equation that is converted
into an identity for some value ¢ if the solution of the system (3.1)
is substituted in place of x;(¢) (i=1, 2, ..., na).

The left-hand member @ (¢, x, x,, ..., x,) of equation (3.13) is
often also called a first integral, and then the first integral is defined
as a function not identically equal to a constant, but retaining
a constant value along the integral curves of the system (I).

Geometrically, the first integral ® (¢, x,, x,, ..., x,)=c for fixed
¢ may be interpreted as an n-dimensional surface in (n + 1)-dimensional
space with coordinates ¢, x,, x,, ..., x,, the surface possessing
the property that each integral curve having a common point with
the surface lies entirely within the surface. For variable ¢, we get
a family of nonintersecting surfaces possessing the same property,
that is consisting of the points of some (n—1)-parameter family of
integral curves of the system (3.1).

If & integrable combinations have been found, we get & first
integrals:

D, (¢, %, X5 <., X)=0y,
D, (¢, %, X5 oevy X)) =0y, (3.14)

D, (¢ %, X3 ..., X,)=Cp.
If all these integrals are independent, i.e., if at least one determinant

D (®,, ©,, ...,Dp) 0
D (xl-l, Xjo eeen Xj) +0,

where x;, Xj, ..., Xj are certain k functions made up of x,,
X, ..., X, then it is possible to express the £ unknown functions
of the system (3.14) in terms of the others; substituting into (3.1),
we reduce the problem to integration of a system of equations with
a smaller number of unknowns. If 2=n and all the integrals are
independent, then all the unknown functions are determined from
the system (3.14).

Example 2.

dx _ dy_, o dz _ .
a=—Yy— at = ’ a=x*Y

Adding the equations of this system term by term, we get
dx  dy | dz d _
37+3+3=0 or Z(x+y+2)=0
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and from this we have
xX+y+z=c.

The first integral that has been found permits expressing one of the
unknown functions in terms of the remaining variables and this
enables us to reduce the problem to integration of a system of two
equations in two unknown functions. However, in the given case it
is easy to find one more first integral. Multiply the first equation
termwise by x, the second by y, the third by z and add:

dx dy dz
xgtYutig =0,
or, multiplying by 2, we get
L+t +2) =0,
whence
Lt+y+22=c,.

Using the two first integrals thus found it is possible to express the two
unknown functions in terms of the other variables and thus to reduce
the problem to integration of one equation in one unknown function.

Example 3.
dp dg dr

where A, B and C are constants (this system is encountered in the
theory of motion of rigid bodies). Multiplying the first equation by p,
the second by ¢, the third by r and adding, we get

d d d
Ap 25+ Bq5-+Cr =0,

whence we find the first integral

Ap*+ Bg*+Cr*=c,.
Multiplying the first equation by Ap, the second by Bg, the third
by Cr and adding, we have

A'p L+ BYg G+Cir G =0,
and then integrating we get yet another first integral,
A*p*+ B*¢*+C*r’ =c,.
1f we exclude the case of A= B=C, in which the system is integrated
directly, the first integrals that have been found are independent and,

hence, it is possible to eliminate the two unknown functions by taking
advantage of these first integrals; to determine the third function we

get one equation with variables separable.
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When finding integrable combinations, it is often convenient to use
the so-called symmetric form of writing the system of equations (3.1):

dx _ dx, _
(Pl(t' X1y Xgy ooy xn)—?g(t, X1y Xgy <oy xn)— ¢
— dx, _ dt
.o -(pn(t, X1y X2y ceey xn)~¢o(t, X1y X3y o0ny x")) (3-15)
where
_ 9 (t- X1y Xgy vy Xp) -
fi(t, Xy, Xy ooy xn)—(po(t, X1, Xgy ...y Xp) (l—l, 2, ey n).

The variables are involved equivalently in a system given in sym-
metric form, and this sometimes simplifies finding integrable com-
binations.
Example 4.
dx dy  dz (3.16)

B—yt—22 2y 2’
Integrating the equation
dy ~ dz
2y 2z’
we find ‘!z!‘=01- Multiplying numerators and denominators of the first
of the relations of the system (3.16) by x, the second by y, the
third by z and forming a derived proportion, we get

xdx+ydy+zdz __d_y
x(x*+y2+2%) T 2y

In(x*+4¢*+2*)=In|y|+Inc,

and from this

or
¥ty 2
— o
The independent first integrals thus found,
!— = Cl and M — cz'
z y

determine the desired integral curves.

4. Systems of Linear Differential Equations

A system of differential equations is called linear if it is linear
in all unknown functions and their derivatives. A system of n li-
near equations of the first order written in normal form looks like

=T OO (=12 .om @D
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or, in vector form,

where X
x, (8), .

FL (), f, (),

X
A —AX+F,

is an n-dimensional vector with coordinates x, (¢),
.» X,(¢#), F is an n-dimensional vector with coordinates
, f.(f), which it will be convenient to regard in

future as one-column matrices:

According to the rule of matrix multiplication, the rows of the
first factor must be multiplied by the column of the second; thus,

AX=

The equality of any matri

ments, hence the one

X,
Xq

f
s
, F= ’
2 .
dt
&y dr
G| ax_|°
’ dt
a’lll' M
dr,
dt

AX+F=

ices implies the equality of all their ele-

matrix equation (3.18) or

dry
dt
dry
dt

e
dt

oooooo

n
’§ anjxj+ fn

is equivalent to the system (3.17).
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1f all the functions a;,(f) and f;(#) in (3.17) are continuous on
the interval a<C¢<Cb, then in a sufficiently small neighbourhood
of every point (f,, Xy, X,0, « « «» Xno), Where a < ¢, <b, the conditions
of the existence and uniqueness theorem are fulfilled (see page 177)
and, hence, a unique integral curve of the system (3.17) passes
through every such point.

Indeed, in the case at hand the right-hand members of the system
(3.17) are continuous and their partial derivatives with respect to
any x, are bounded, since these partial derivatives are equal to the
coefficients a;, (f) which are continuous on the interval a<C#<Cb.

We define the linear operator L by the equality

L(X]=%_ax,
then equation (3.18) may be written still more concisely as
L[X)=F. (3.19)
If all the f,({)=0 (i=1, 2, ..., n) or, what is the same thing,

the matrix F=0, then the system (3.17) is called homogeneous
linear. In abridged notation, a homogeneous linear system is of the

form
L[X]=0. (3.20)
The operator L has the following two properties:
(1) L[cX])=cL[X],
where ¢ is an arbitrary constant.

(2 L [X1+X2] =L[X1]+L [le'
Indeed,

d(cX dX
X A ex)=c [E—AX] ,

SRR A+ X = (G- AX )+ (T AX)

A consequence of Properties (1) and (2) is

L[ $ c,-X,-] = 3 oLiX],

i=1 i=1
where ¢; are arbitrary constants.

Theorem 3.1. If X is a solution of a homogeneous linear system
L[X])=0, then cX, where ¢ is an arbitrary constant, is a solution
of the same system.

Proof. Given L[X]=0; it is required to prove that L [cX]=0.
Taking advantage of Property (1) of the operator L, we have
L[cX]=cL[X]=0.
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Theorem. 3.2. The sum X,+ X, of two solutions X, and X, of
a homogeneous linear system of equations is a solution of that system.

Proof. Given L[X,]=0 and L [X,]=0.
It is required to prove that L [X,+ X,] =0.
Using Property (2) of the operator L, we obtain

L[X,+ X, =L[X,]+L[X,]=O0.
Corollary to Theorems 3.1 and 3.2. A linear combination
m
D) ¢, X;with arbitrary constant coefficients of the solutions X,, X,, . ..,
=1
X, of a homogeneous linear system L [X] =0 isa solution of that system.

Theorem 3.3. If the homogeneous linear system (3.20) with real
coefficients a;;(t) has a complex solution X=U-iV, then the
real and imaginary parts

u, v,
u! 02
U=|" and V=
un v’l

separately are solutions of that system.
Proof. Given L[U+iV]=0. It is required to prove that
L[U)}]=0 and L[V]=0.
Using Properties (1) and (2) of the operator L, we get
LU+ V] =L[U]+iL[V]=0.

Hence, L [U]=0 and L[V]=0.
The vectors X,, X,, ..., X,, where

x,; (1)
Xy (1)
X, = * ,
xru'(t)
are called linearly dependent on the interval a<{¢<<b if there
exist constants a,, @,, ..., a, such that
aX,+aX,+...+2,X,=0 (3.21)
for a<t<Cb;, and at least one o;5=0. But if the identity (3.21)
holds true only for a,=a,=...=a,=0, then the vectors X,,

Xg ..., X, are termed linearly independent.
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We note that the single vector identity (3.21) is equivalent to
n identities:

axl, ()=0,

lx!i(t)——o

||M= lIM;

| 3.21,)

n
D ax,, (1) =0.
i=1

If the vectors X; (i=1, 2, ..., n) are linearly dependent and
thus there exists a nontrivial system a; (i.e., not all a; are zero)
that satisfies the system of n homogeneous (with respect to a;)
linear equations (3.21,), then the determinant of the system (3.21,)

Xy Xyg eee Xqp

We|¥n ¥ oo Xa

.......

must be zero for all values of { of the interval a<{t<b. This
determinant of the system is called the Wronskian determinant of

the system of vectors X,, X,, ..., X,.

Theorem 3.4. If the Wronskian W of the solutions X,, X,, ..., X,
of the homogeneous linear system of equations (3.20) with coefﬁczents
a;;(¢) continuous on the interval a<(t< b is zero at least in one
pomt t=t, of the interval a < t< b, then the solutions X,, X,, ..., X,
are lznearly dependent on that mterval and, hence, W =0 on that
interval.

Proof. Since the coefficients a;,(¢) (i, j=1, 2, ..., n) are con-
tinuous, the system (3.20) satlsﬁes the condltlons of the existence
and uniqueness theorem. Hence, the m1t1al value X (¢,)=0 [or n
more detail, x,(¢,)=0, x,(t,)=0, ..., (to)—O] determines the
unique solution of this system, and this solution is obviously the
trivial solution of the system (3.20) X (£)=0 [or, in more detail,
x, (=0, x,(t)=0, ..., x,(¢)=0]. The determinant W (¢,)=0.
Hence, there exists a nontnwal system ¢, ¢, ..., ¢, that satis-
fies the equation

6, X, (b)) o Xs(to) + ... 4+, X, (¢,)=0,

since this single vector equation is equivalent to a system of n
homogeneous (with respect to ¢;) linear equations with the zero

13--378
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determinant
2, cixy (1) =0,
i=1
n
lzl C,'xzi (to) = 0,
Z Cix,i (8,)=0.
i=1
The solution of the equation (3.20) X (f)= X ¢;X;(f) that corre-
i=1
sponds to this nontrivial system ¢, ¢, ..., ¢, satisfies the zero

initial conditions X ({,) =0 and, consequently, comcndes with the
trivial solution of the system (3 20):

2 C,-X,'(t) EO,
=1

e., the X; are linearly dependent
Note. As the most elementary examples show, this theorem does
not extend to the arbitrary vectors X,, X,, ..., X, which are not

solutions of the system (3.20) with continuous coefficients.
Example 1. The system of vectors

2

x,=”f“ and  X,=|"

is linearly independent, since from

a, X,+a,X,=0

or
{a,t +a,t*=0,
a,l +a212§0

it follows that a,=a2=(2) (see page 102, Example 1). At the same
time the Wronskian : fz is identically zero. Hence, the vectors X,

and X, cannot be solutions of one and the same homogeneous linear
system (3.20) with continuous coefficients a,;(¢) (i. j=1, 2)

Theorem- 3.5. The linear combination ZcX of n linearly

independent solutions X,, X,, ..., X, of the homogeneous linear
system (3.20) with coefficients a;;(t) continuous on the interval
a<{t<b is the general solution of the system (3.20) on that interval.

Proof. Since the coefficients a;, (f) are continuous on the interval
a<<t<b, the system satisfies the conditions of the existence and
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uniqueness theorem and, hence, to prove the thecrem it is sufficient
to notice that by proper choice of the constants ¢; in the solution

n

X c:X, it is possible to satisfy arbitrarily chosen initial conditions
(=1

X(t,)=X,,

Y10
x20

X,=| |
.

where ¢, is one of the values of ¢ on the interval a<<f <, i.e.,
it is possible to satisfy the single vector equation

,_21 Cixl (to) =.xn

or the equivalent system of n scalar equations:
n
L—Zl CiXyi (L) = X1,

n
I—Zl CiXgi (L)) = Xy,

n
2 Gt (b)) = Frg:

This system is solvable for ¢; for any x;, since the determinant of
the system is the Wronskian determinant for a linearly independent

system of solutions X,, X,, ..., X, and, hence, does not vanish
at any point of the interval a<<{<b.
Example 2.
=y
dt—
dy } (3.22)
ﬁ——x.

It may readily be verified that the system (3.22) is satisfied by
the solutions

x,=cost, yy=—sint and x,=sint, y,=cost.
These solutions are linearly independent since the Wronskian

cost —sint 1
sint cos |
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is not zero. And so the general solution is of the form

x=c,cost+c,sint,
y=—c¢,sint+c,cost,

where ¢, and ¢, are arbitrary constants.
Theorem 3.6. If X is a solution of the nonhomogeneous linear

system
L[X])=F, (3.19)

and X, is a solution of the corresponding homogeneous system L [X] =0
then the sum X,+ X is also a solution of the nonhomogeneous system
L(X]=
Proof. leen L[X])=F and L [X,]=0. Prove that L [X, + X] =
Using Property (2) of the operator L, we get

L(X,+X)=L[X)+L[X)=

Theorem 3.7. The general solution, on the interval a<{t<b,
of the nonhomogeneous system (3.19) with coefﬁaents a;, () contmuous
on that interval and wzth right sides f;(t) is equal to the sum of

the general solution Z c;X; of the corresponding homogeneous system
=1

and the particular solution X of the nonhomogeneous system under
consideration.

Proof. Since the conditions of the existence and uniqueness theorem
are fulfilled (see page 191), to prove the theorem it will suffice to
notice that by means of a proper choice of arbitrary constants ¢,

n
in the solution X = X ¢,X;+ X it is possible to satisfy arbitrary
=1

specified initial conditions
xlo
x'zo

X(t)=X,=

o
“no

i.e., we have to prove that the one matrix equation

ZaX t)+ X (t)=X
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or an equivalent system of equations

M=

Ci%y; (to) +;l (to) = x40,
1

to) + X, (L) = Xy,
lc,x,, ( o) +x8 ( 0) ) \ (323)

...........

n

M=

-
0

CiXpi (to) + ;‘n (to) =Xno
i=1

always has the solution ¢,, ¢,, ..., ¢,, no matter what the right-
hand members. But in this form this assertion is obvious, since the
determinant of the system (3.23) is the Wronskian at the point

t=t, for the linearly independent solutions X,, X,, ..., X, of
the corresponding homogeneous system and, by Theorem 3.4, is not
zero. Hence, the system (3.23) has the solution ¢, c,, ..., ¢, for

any right-hand members.

Theorem 3.8 (the principle of superposition). The solution
of the system of linear equations
Fi (®)

f:i (t)
LIX]=3F. Fi=|

fni.(t)
is the sum § X; of the solutions X; of the equations
- L(X))=F, (i=1,2, ..., m).
Proof. Given L[X;J]=F, (i=1, 2, ..., m). Prove that

L [2 XI]EZ Fi'
=1 i=1
Taking advantage of Property (2) of the operator L, we obtain
i=1 = =1

Note. Theorem 3.8 can, without any change in the proof, be

®

obviously extended to the case when m — oo, if the series > X
i=1

converges and admits term-by-term differentiation.



198 1. DIFFERENTIAL EQUATIONS

Theorem 3.9. If the system of linear equations

L[X)=U+V,
where
|| 0,
U, Vs
U=| . , V= ,
Uy v,

with real functions a;;(¢), u;(t), v;(f) (i, j=1, 2, ..., n) has the
solution

U, l_;x

A 78 | vs
X=0+4+iV, 0= , ,

“, v,

then the real part of the solution U and its imaginary part V are
respectively solutions of the equations

L[{X]=U and L[X)=V.
Proof. Given L[U+iV)=U+iV; prove that L[U]=U,
L[V])=V.
Using Properties (1) and (2) of the operator L, we get
LIU+iV)=L{O)+iL[V]=U+iV.

Hence, L{U)=U and L[V]=V.

If the general solution of the corresponding homogeneous system
L(X)=0 is known, and one cannot choose a particular solution of
the nonhomogeneous system L (X)= F and, consequently, one can-
not take advantage of Theorem 3.7, then the method of variation
of parameters may be applied.

Let X = ¢;X; be the general solution of the corresponding ho-
i=1
mogeneous system
X ax=0

for arbitrary constants ¢;, and, hence, X; (i=1, 2, ..., n) are li-
nearly independent particular solutions of the same homogeneous
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system. We seek the solution of the nonhomogeneous system
dX
in the form
n
x = 2 C,' (t) X,,
i=1

where the ¢; (f) are new unknown functions. Substitution into the
nonhomogeneous equation yields

Zc,(t)x,+2c(t) a=A Ec,(t)x +F,

or, since %—_—:AX,, we have

Qici(t) X;=F.
=1

This vector equation is equivalent to a system of n equations:

,(t) xu=F @)

&° (3.24)

........

All the c(¢) are determmed from this systern of n equations in

n unknowns ¢; (!) (i=1, 2, ..., n) with the determinant of the
system W coinciding with the Wronskian for the linearly indepen-
dent solutions X,, X,, ..., X, and, consequently, not zero:

ca(@)=9; () (i=1,2, ..., n),
whence, by integrating, we find the unknown functions c; (f):

a={e®ad+c =12 ..., n.
Example 3.
dc _dy b
a=Y% #=*tcsi-

The general solution of the corresponding homogeneous system

dx dy

d—f=y’ -d—t=—x
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is of the form x=c,cost+c,sint, y=—c,sint+4c,cost (see page
195, Example 2). We vary the constants

x=c,(f)cos t+c,(t)sint,

y=—c,(f)sint+c, (f)cost.

¢, (¢t) and c;(¢) are determined from the system (3.24), which, in
this case, is of the form

¢ (t)cost+c,(t)sint =0,
—c; (t) sint4c; (t) cos t = !

cost *
whence

’ i t ’
G =—3157 GO=1
Therefore, _
¢ (H)=In|cost|+c,,
Ce (t) =1 +C_a
and we finally get

x=c,cost +c,sint+costin|cost|+¢sint,
y=—c,sint +c,cost—sintIn|cost|+ ¢ cost.

6. Systems of Linear Differential Equations with Constant
Coef ficients

The linear system of equations
Yo Nax+h)  (=1,2 ... 0
i=1

is a linear system with constant coefficients. In the vector form it is
dX
T =AX+F,

in which all the coefficients a;, are constant or, what is the same
thing, the matrix A is constant.

A system of homogeneous or nonhomogeneous linear equations
with constant coefficients is most simply integrated by reducing it
to a single equation of higher order. As was noted on page 185,
the resulting equation of higher order will be linear with constant
coefficients.

However, it is possible directly to find the fundamental system
of solutions of a homogeneous linear system with constant coeffici-
ents.
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We will seek the solutions of the system

dx,
4 =t Fa %+ .. tay,x,,

dx,
_a_ = @,,X, +anxs +... + Ay Xy, ! (325)

..............

dx
#’:a",x, +a, Xt . +a,,x,, )

where all the a;; are constant, in the form
x,=a.ef, x,=aef ..., x,=o.e

with constants a; (j=1, 2, ..., n). Substituting into the system
(3.25), cancellmg e* and transposmg all terms to one side, we get

@,—~kr o, +a,2,+ ... +0a,,2,=0,

@0 + (@ —k) 0y + . . . +a,,2, =0, (3.26)

a0, +a,%+...+(@,,—k)a,=0.

For this system of n homogeneous linear equations in n unknowns

; (=1, 2, ..., n) to have a nontrivial solution, it is necessary
and sufficient that the determinant of the system (3.26) be zero:
a,,—k Qg - a,,
Qy, a,,—k... a,, —o. (3.27)
.a.m. . .‘.ZM. . .a.,,,,.—.k

From this equation of degree n we determine the values of & at
which the system (3.26) has nontrivial solutions @, (j=1, 2, ..., n).
Equation (3.27) is called the characteristic equatton If all the roots
k; (i=1, 2, ..., n) of the characteristic equation are distinct, then,
by putting ‘them into the system (3.26) in succession, we determine
the corresponding nontrivial values af’ (i, j=1, 2, ..., n) and,
consequently, we find the n solutions of the ongmal system (3. 25)
in the form

X0 = aigtit, i =gkt . x —oett (i=1,2, ..., n), (3.28)

where the upper index indicates the number of the solution and
the lower index, the number of the unknown function.
Using vector notation, we get the same result more compactly:

dX i
= AX; (3.25,)
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202
we seek the solution in the form
al
a2
X = Ae*, where A= R
a,
Akett = AAekt
or N
(A—kE)A=0, (3.29)
where E is a unit matrix:
100 ...0
Ee 010...0
000 ...1
So that the equation (3.29) is satisfied by the nontrivial matrix A
0
0
A ||,
0

it is necessary and sufficient that the matrix A—k&E should be
singular, i.e., that its determinant be zero: |A—k&E|=0. For each
root k; of this characteristic equation |A—kE|=0 we determine,

from (3.29), the nonzero matrix A% and, if all roots &, of the cha-
racteristic equation are distinct, we get n solutions:

X, =Ahekt, X,=A@ekst, .., X,=AMWeknt,
where
i
ol
(4
o’

;h
®n

It is easy to show that these solutions are linearly independent.



3. SYSTEMS OF DIFFERENTIAL EQUATIONS 203

[ndeed, if there were a linear dependence

ﬁ:ﬁi Ahgkit —(
=1 g

or, in expanded form,

2 ﬁ au)ek t=0,

i=1

n

2 pader =0, | (3.30)
é ﬁ a(l)ek ! — 0

then, by virtue of the linear independence of the functions e*#
(=12, ..., n)(see pages 101-102) it would follow from (3.30) that

pias? =0,

{) ___
Brai’ =0, (=12 ..., n). 3.31)
o

But since for every i, at least one of the of", af, &

=1, 2, ..., n) is dlfferent from zero, it follows from (3.31) that
;=0 (i=1, cee, N).

And so the solutions AVt (i=1, 2, ..., n) are linearly
independent and the general solution of the system (3.25) is of the
form

M-

X=

{

c; A@erit

1
or

n
x/=,§lcia‘i”eki’ (i=1,2 ..., n),

where the c¢; are arbitrary constants.

The constants o (j=1, 2, .., N)are ambiguously determined
from the system (3. 26) for k=~Fk;, since the determinant of the sys-
tem is zero and, hence, at least one equation is a consequence of
the others. The ambiguity in the determination of a{® is due to
the fact that a solution of the system of homogeneous lmear equa-
tions remains a solution of the same system when it is multiplied
by an arbitrary constant factor.
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To the complex root k;=p-qi of the characteristic equation
(3.27) there corresponds the solution

X,=ADers (3.32)

which, if all the coefficients a;, are real, can be replaced by two real
solutions: the real part and imaginary part of the solution (3.32)
(see page 192). A complex conjugate root &,,,=p—gqi of the cha-
racteristic equation will not yield any new linearly independent
real solutions.

If the characteristic equation has a multiple root %, of multi-
plicity y, then, taking into account that the system of equations
(3.25) can be reduced (by a process indicated on pages 181-183) to a
single homogeneous linear equation with constant coefficients of or-
der n or less (see Note 2 on page 185), it is possible to assert that
the solution of the system (3.25) is of the form

XWO=AQ+APt4 ... 4 AP 1v-1)erst, (3.33)
where
o
o
A ;S) = ’
a;,,‘,-’

afp are constants.

It should be noted that even in cases when the system of n
equations (3.25) is reduced to an equation of order lower than n
(see Note 1 on page 184), the characteristic equation of the latter
necessarily has roots that coincide with the roots of the equation
(3.27) [since the equation to which the system was reduced has to
have solutions of the form et where the &, are the roots of the
equation (3.27)]. But it may be that the multiplicities of these
roots, if the order of the equation obtained is less than n, will be
lower than the multiplicities of the roots of the equation (3.27)
and, hence, it may be that in the solution (3.33) the degree of the
first factor will be lower than y—1, i.e., if we seek the solution
in the form of (3.33), it may turn out that some of the coefficients

A®, including the coefficient of the highest-degree term, vanish.
Thus, we have to seek a solution of the system (3.25), which
solution corresponds to a multiple root of the characteristic equa-
tion, in the form of (3.33). Putting (3.33) into (3.25,) and demand-
ing that it become an identity, we define the matrices A{; some

of them, including A, as well, may turn out equal to zero.
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Note. There is a more precise way of indicating the type of
solution of the system (3.25) that corresponds to a multiple root
of the characteristic equation (3.27). Transforming the system
(3.25) by means of a nonsingular linear transformation to a system
in which the matrix || A—k&E || has the Jordan normal form and
then integrating the resulting readily integrable system of equations,
we find that the solution which corresponds to the multiple root %,
of multiplicity y of the characteristic equation (3.27) is of the form

Xt = (AP + APt + ... + ALY e,

where B is the highest degree of the elementary divisor of the matrix
| A—RE || corresponding to the root k,.

Example 1.
dx dy __
d—t=x+2y, -57-—4x+3y.

The characteristic equation

'TF 20 o m—tk—5=0
has roots k2, =5, k,=—1. Hence, we seek the solution in the form
X, = a(ll ’651, Yy= ol 'edt
x’ —_ a(lz)e“!’ Yy = a(zz)e—t. (334)

Putting (3.34) in the original system, we get —4a{" +2a’ =0,
whence aft =2a{; a{’ remains arbitrary. Consequently,

x,=ce", y,=2ce, c,=al.

For determining the coefficients a{® and «{® we get the equation

204 4 20» =0, whence a{® =—a{¥; the coefficient a{* remains
arbitrary.
Hence,

X, =Ce”l, Yp=—0Ce ", ca=a).

The general solution
x=c,e5 +cet,
y=2ce —cet.
Example 2.

dx
dt_x—sy’

—=2x—y

The characteristic equation

| —k —5

- t,g—
9 —l1—&k =0 or k*4-9=0
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has roots k,,=43i, x,=ae", y =ae", (1—3i)a,—>5x,=0.
This equation is satisfied, for example, by a,=5, a,=1—3i.
Therefore,

x, = 5e*" = 5(cos 3¢ -+ i sin 3{),

y, = (1—3i)e*" = (1 —3i)(cos 3t + i sin 37).

The real part and the imaginary part of this solution are likewise
solutions of the system at hand, and their linear combination with
arbitrary constant coefficients is the general solution:

x =5¢, cos 3¢ + 5, sin 3¢,
y=c, (cos 3t + 3 sin 3¢) + ¢, (sin 3t — 3 cos 3f).

Example 3.
t.j_x =X — y
a } (3.35)

The characteristic equation

I—k —1|_ . _
' T% sTh|=0 or K—tka=0

has a multiple root k, ,=2. Hence, the solution is to be sought

in the form
x=(a, +p,f) e,
y= (o, +Pt) e }
Putting (3.36) into (3.35), we get
2a,+B,+2,t =a,+B,t —a,—B,,
ﬁz=_ﬁl~

a2=_al_ﬁh

(3.36)

whence

@, and B, remain arbitrary. Denoting these arbitrary constants by
¢ and c,, respectively, we get the general solution in the form

X = (C, +Czt) 621’
y=—(c,+c,+ct) e,

G. Approximate Methods of Integrating Systems
of Differential Equations and Equations of Order n

_All the methods (given in Sec. 7, Ch. 1) of approximate integra-
tion of differential equations of the first order may be carried over,
without essential changes, to systems of first-order equations and
also to equations of order two and higher, which are reduced in
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the usual manner to systems of first-order equations (see
page 91).

1. Successive approximation. As was pointed out on page 56, the
method of successive approximations is applicable to systems of
equations

i fik, Yo oo oor i) G=1,2, ..., n) (33D
with initial conditions y; (x,) =y, (=1, 2, ..., n) if the functions
f; are continuous in all arguments and satisfy the Lipschitz condi-
tions with respect to all arguments, from the second onwards.

The zero approximation y;, (x)(i=1, 2, ..., n) may be chosen
arbitrarily as long as the initial conditions are satisfied, and further
approximations are computed from the formula

X

Yi, k1 ) =Y+ S [i Yigs Yopo -+ s Yu)dx (=1, 2, ..., n)
Just as for one equation of the first order, this method is rarely
applied in practical calculations due to the relatively slow conver-
gence of the approximations and the
complexity and diversity of the compu- %
tations.

2. Euler’s method. An integral curve
of the system of differential equations

dy;

dx i(x' Y Yo -+, ,l/,.)
=12, ..., n),

defined by the initial conditions y; (x,) = /”
4

=y,o(i=1, 2, ..., n) isreplaced by a
polygonal line that is tangent, at one of
the boundary points of each segment,
to the integral curve passing through the Fig. 3-2

same point (Fig 3.2 depicts Euler’s poly-

gonal line and its projection only on the xy,-plane). The interval
X, < x<<b on which the solution has to be computed is partitioned
into segments of length 4, and the computation is performed using
the formulas

Yi (Xp 1) = Y1 (Xp) + Ay (x,) (i=1,2, ..., n).

The convergence of Euler’s polygonal lines to the integral curve
as h — 0 is proved in the same way as for a single first-order equa-
tion (see page 48). lteration may be employed to increase the
precision.
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3. Expansion by means of Taylor’s formula. Assuming that the
right-hand members of the system of equations (3.37) are differen-
tiable £ times (in order to ensure differentiability of the solutions
k+ 1 times), we replace the desired solutions by the first few terms
of their Taylor expansions:

(x—x)?

Yi (%) = y; (X0) + Yi (o) (B—%0) + Y (Xo) =+ - .«

e S =1, 2, L, n),

The error may be estimated by estimating the remainder term in
Taylor’s formula

— xp)kH2

Riyy=y+" [x,+6 (x—x")](xT-I'-_l)l_ , where 0<0<I.

This method yields good results only in a small neighbourhood
of the point x,.

4. Stormer’s method. The interval x, <<x<Cb is partitioned into
subintervals of length A, and the computation of the solution of the
?ystem (3.37) is performed on the basis of one of the following
ormulas:

1
Yi,pe1=Yir+ 9+ 7A‘7i,k-p (3.38)
1 5
Yi, g1 = Yin T Gin +3Aqi,k_1+l—§Aaqi,k-m (3.39)
1 5 ., 3
Y1 =Y+ 9ix+5 89, ko1 + 58, kst 5 A%, 2-sr (3:40)

where
=1, 2 ..., n), Yir=1Y: Xp)-
X, =x,+kh, Gir="Yi (%) b,
AGi, k-1=qir— 1, -1 DG g s =BG, po1—AG; s
Asqi)k-8=Azqiyk-z—Azqipk-a'

The formulas (3.38), (3.39), and (3.40) may be obtained in exactly
the same way as for one equation of the first order (see page 68).
When using these formulas the order of error remains the same as
for one equation. ‘

To start computations by means of Stormer’s formula, one has to
know the first few values y;(x,) which may be found by a Taylor
expansion or by Euler’s method with a diminished interval; just

as in the case of one equation, the precision may be enhanced by
applying iteration (see pages 67-68) or by Runge’s method.
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5. Runge's method. The following numbers are computed

mn=fi (*r Y1rr Yap» - - > ynk)
h h h hm,,
miz=fi(xk+?’ y1k+%l—l9 !/zk+ mm coesr Yt " 1)
h h h h 2
mis=fi (xh+§‘v ylk+'%!’ Yor + m22” coor Yt 5 2\
M= f; (X, +h, Y+ hmyg, Yo +hmy,, ..., ynk+hmn3)

Knowing these numbers, we find y; ,,, from the formula
h .
Yi, k1 =Y+ g (M + 2myy+2myy + myy) (=12, ..., n).

The order of the error is the same as for one equation.

Depending on the required precision of the result, the interval
(step) A is roughly chosen with account taken of the order of errors
in the formulas used and is improved by means of trial computa-

tions with step 4 and % The most reliable approach is to perform

the computations with A and —’2'— of all required values of y;(x,), and

if the results all coincide within the limits of the given precision,
then A is considered to ensure the given accuracy of computations,
otherwise the step is again reduced and the computations are per-

formed with step % and 7’;-, etc. With a properly chosen step A,

the differences Ag;,, A%, ... should vary smoothly, and the last
differences in Stérmer’s formulas should affect only reserve decimals.

hd PROBLEMS ON CHAPTER 3
dx d

.=y d—‘l:=—x, x(0)=0, y@O0)=1.
d? d2 .

2. E=x, ;,f—z—x,, %(0)=2 %(0)=2

Xy (O) =2, x'.- (0) =2

@Y = x
dx | dy dx ay
. a+"i—t——x+y+3» a—a=xty—3

dx — ot d =2,
3.‘—ﬂ+5x+y—-e, F Tt —3y=e
dx _ dy dz _
4. a?—y, 'd—t—-Z, dt—-x.
5 dx dy _
6

14—378
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7.%_2 4z
dx x* dx
8 dx _ dy _ dz

‘z—y x—2z y—x'

dx dy dz _ _
9. Et——x+y+z, Ei—x—-y+z. a=xty—z

dx

dx _ _y ‘i!!__.‘f_
‘2'?1—;Ty’ =iy
13. x+y=cost, y+x=sint
4. x+3x—y=0, y—8x+y=0. x(0)=1, y(0)=4.

d20 . n do
15. dt—,-|—sm9=0 for ¢t =0, 0=3-5, Ti?=0'

slnl

Determine 0 (1) to within 0.001.

16. x()=ax—y, y({)=x+ay, a is a constant.
17. x4+ 3x +4y=0, y+2x+5y=0.
18. x-—-—-5x—2y y= x-—?y
19 x=y—2, y=x+y, 2=x+2
20 x—y+2=0, y—x—y=1, z—x—z=L_.
21 dx — dy — dz
x(y—2) y@—x) z(x—y)’
929 dx dy dz
CX(P—2) y(@—1) (=)

and A—”2 —J ”

X,

23. X=AX, where X =

2



CHAPTER 4

Theory of stability

1. Fundamentals

In order to make a real phenomenon amenable to mathema-
tical description, one unavoidably has to simplify and idealize it,
isolating and taking into account only the more essential of the
influencing factors and rejecting all other less essential factors.
Inescapably, one is confronted by the question of how well the
simplifying suppositions have been chosen. It may very well be that
ignored factors produce a strong effect on the phenomenon under
consideration, substantially altering its quantitative and even quali-
tative characteristics. The question is finally resolved by practice —
the correspondence between the conclusions obtained and experimen-
tal findings—yet in many cases it is possible to indicate the con-
ditions under which certain simplifications are definitely impossible.

If a phenomenon is described by the following system of diffe-
rential equations

Y.t gy Y o y) (=1,2 ..., 0 (41
dt

with initial conditions y;({,)=y, (=1, 2, ..., n), which are
ordinarily the results of measurements and, hence, are inevitably
obtained with a certain error, the question naturally arises as to
the effect of small changes in the initial values on the desired
solution. _

If it turns out that arbitrarily small changes in the initial
data are capable of producing a substantial change in the solution,
then the solution defined by the chosen inaccurate initial data is
ordinarily devoid of any practical meaning and cannot describe the
given phenomenon even approximately.

This brings us to the important question of finding the condi-
tions under which a sufficiently small change in the initial values
brings about an arbitrarily small change in the solution.

If ¢ varies on a finite interval ¢, <{¢{<CT, the answer to this
question is given by the theorem on the continuous dependence of
solutions on the initial values (see pages 58-59). But if ¢ can take
on arbitrarily large values, then the problem is dealt with by
the theory of stability.

14+
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The solution @, (f)(i=1, 2, ..., n) of the system (4.1) is called
stable, or, more precisely, Lyapunov stable, if for any € >0 we
can choose a § (g) > 0 such that for any solution y; (£) (i=1, 2, ..., n)
of that system the initial values of which satisfy the inequalities

lg: (L) —a:i (8| <B8(e)  (i=1,2, ..., n),
for all t=¢,, the inequalities
ly: () —o: ()| <e (=12, ..., n) 4.2)

hold true; that is, solutions that are close for initial values remain
close for all t>1,.

Note. 1f the system (4.1) satisfies the conditions of the theory
on the continuous dependence of solutions upon the initial values,
then in the definition of stability we can write £ >T =, in place
of t>t, since by virtue of this theorem the solutions on the
interval ¢, <<t < T remain close for sufficiently close initial values.

If, given an arbitrarily small 8 > 0, the inequalities (4.2) are
not fulfilled for at least one solution y;(¢f)(i=1, 2, ..., n), then
the solution ¢;(f) is called unstable. Unstable solutions are rarely
of interest in practical problems.

If a solution @;(¢)((=1, 2, ..., n) is not only stable but, in
addition, satisfies the condition

Jim|y, ()= (0] =0, (4.3)

if |y (t)—9;(2,)] < 8,, 8, >0, then the solution ;(f)(i=1,
2, ..., n) is called asymptotically stable.

Note that the stability of a solution @;({)(i=1, 2, ..., n) does
not yet follow from the single condition (4.3).

Example 1. Test for stability the solution of the differential
equation% =—a’y, a0, defined by the initial condition y (¢,) = y,.
The solution

y = !/oe'“' (t—1,)
is asymptotically stable since

Iyoe—a’ U_t")_goe-a’ (t=t0) | =e-a' (t-to) | yo_!—/-o l <e
for t>t, if |yo—y,| <ee-**% and
lim e=a' U=t |y —y |=0.

t > @

Example 2. Test for stability the solution of the equation
%:a’y, a0, defined by the condition y (¢,) = y,.
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The solution y=y,es =% is unstable since it is lmpossxble to
choose a 6§ >0 so small that there should follow from the inequ-

ality |go—y,| < 8 (e)
l!_/oe”' U=t _y ea* U-ta)| L g
or -
e’ =1 |y, —y, | < e
for all t>1t,.

Investigating the stability of some solution
=y, (t) (=12, ..., n)
of the system of equations

Yo @ity oo Yoo -en b)) (=12, . n) (4D

may be reduced to investigating the stability of a trivial solution:
a rest point located at the coordinate origin.

Indeed, transform the system of equations (4.1) to new variables,
putting

xi=y;—y;(t) =12, ..., n). 4.9)

The new unknown functions x; are the deviations y;—y; (¢) of the
earlier unknown functions from the functions y,(¢) that define the
solution being tested for stability.

By virtue of (4.4), the system (4.1) in new variables takes
the form

Gy LDt kB (B Sab GO eeer Ttk G (D)

dt
(i=1, 2, ..., n). (4.5)
It is obvious that to the solution (being tested for stability)
yi=y;t(i=1, 2, ..., n) of the system (4.1) there corresponds the
trivial solution x;,=0 (i=1, 2, ..., n) of the system (4.5) by
virtue of the dependence x;=y;—y;(¢f); investigating the stability
of the solution y,=y,;(¢)(i=1, 2, ..., n) of the system (4.1) may
be replaced by the stability testing of the trivial solution of the
system (4.5). Therefore, henceforward we can take it, without loss
of generality, that we test for stability the trivial solution or,
what is the same thing, the rest point of the system of equations
located at the coordinate origin.
Let us formulate the conditions of stability as applied to the

rest point x;=0(i=1, 2, ..., n).
The rest point x; _—_ﬂ(t=1 2, ..., n) of the system (4.5) is
stable in the sense of Lyapunov if for each e >0 it is possible to
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choose a8 (e) >0 such that from the inequality

|x; (L) |<d(e) (i=1,2, ..., n)
there follows

lx; ()| <e (i=1,2 ..., n) for t=T>t,.

Or, somewhat differently: the rest point x;=0(i=1, 2, ..., n)
is stable in the sense of Lyapunov if for every e >0 it is possible
to choose a 8, () >0 such that from the inequality

n

) <8

there follows

é"x} () < &*

for t >T; that is, the trajectory, whose initial point lies in the
8,-neighbourhood of the coordinate origin for £> T, does not go
beyond the e-neighbourhood of the origin.

2. Elementary Types of Rest Points

We investigate the position of trajectories in the neighbourhood
of the rest point x=0, y=0 of a system of two homogeneous linear
equations with constant coefficients:

dx
a =a,,x+ a,,Y.
4.6)
d (
'E';L =0y, X+ ayY,
where
a;; Gy

a!l an

We seek the solution in the form x =a,e*, y = a,e* (see page 201).
To determine & we get the characteristic equation

a,—*k a, ’ =0
an Ay —k

0.

or
k*—(a,, + a,,) k4 (a,10,,—a,,a,,) =0.

To within a constant factor, a, and a, are determined from one
of the equations:

(a,—k)a, +a,a,=0, } @.7)

a,o, +(a,,—k) o, =0.
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We consider the following cases:
(a) The roots k, and k, of the characteristic equation are real
and distinct.

The general solution is of the form

x = ¢,k ¢ f ekt }

Y = cyaeft +c,Byetst, *.8)
where a; and f; are constants determined from equations (4.7) for
k=k, and for k=k,, respectively, and ¢, and c, are arbitrary
constants.

We then have the following cases:

(1) If kB, <0 and k,<<O0, then the rest point x=0, y=0is
asymptotically stable, since due to the presence of factors e*:* and
e* in (4.8) all the points lying in any &-neighbourhood of the

Fig. 4-1 Fig. 4-2

origin at the initial time {=¢  pass into points lying in an arbitra-
rily small e-neighbourhood of the origin (given sufficiently large ¢),
and as £ — oo they tend to the origin. Fig. 4.1 depicts the arran-
gement of trajectories about a rest point of the type under conside-
ration; it is called a stable nodal point. The arrows indicate the
direction of motion along the trajectories as ¢ increases.

(2) Let £, >0, k£, >0. This case passes into the preceding one
when ¢ is replaced by —f. Hence, the trajectories have the same
shape as in the preceding case, but the point moves along the
trajectories in the opposite direction (Fig. 4.2). It is obvious that
as ¢t increases, points that are arbitrarily close to the origin recede
from the e-neighbourhood of the origin—the rest point is unstable
in the sense of Lyapunov. This type of rest point is called an
unstable nodal point.
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(3) If k. >0, k,<<O0, then the rest point is also unstable, since
a point moving along the trajectory

x=coekt,  y=ca,.ekt 4.9)
for arbitrarily small values of ¢, goes out of the e-neighbourhood
of the origin as ¢ increases.

Note that in the case under consideration there are motions
which approach the origin, namely:

x=cp. et  y=c,B,et.
Given different values of c,, we get different motions along one and

the same straight line y=- By x. As t increases, the points on this
straight line move in the direction of the origin (Fig. 4.3). Note

ﬁ/;

Fig. 4-3

further that the points of the trajectory (4.9) move, as ¢ increases,
along the straight line y=%x receding from the origin. But if

¢, %0 and c,5=0, then both as ¢ — co and as £ — —oo, the.
trajectory leaves the neighbourhood of the rest point.

A rest point of this type is called a saddle point (Fig. 4.3)
because the arrangement of trajectories in the neighbourhood of
such a point resembles the arrangement of level lines in the neigh-
bourhood of a saddle point of some surface

z=f(x, y).
(b) The roots of the characteristic equation are complex.
kyo=p£qi, q++0.

The general solution of this system may be represented in the
form (see page 204)
x =eP! (c, cos gt 4 ¢, sin qt),
t(l. q+z..4) } (4.10)
y=eP* (c; cos gt 4c; sin gi),

where ¢, and c, are arbitrary constants and c¢j and c; are certain
linear combinations of these constants.
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The following cases are then possible:
(1) kyy=pxgqi, p<0, q¢50.

The factor ert, p <0, tends to zero with increasing ¢, and the
second one, the periodic factor in equations (4.10), remains bounded.
If p were equal to zero, then the trajectories would, by virtue
of the periodicity of the second factors on the right side of (4.10),
be closed curves circling round the rest point x=0, y=0 (Fig. 4.4).
The presence of the factor e”*, p <0, tending to zero as ¢ increases

1

Fig. 4-4 Fig. 4-5
converts the closed curves into spirals, which, as ¢ — oo, asym-
ptotically approach the coordinate origin (Fig. 4.5); given a suffi-
ciently large ¢, the points which at f{=1{, were located in any
6-neighbourhood of the origin go into a specified e-neighbourhood
of the rest point x=0, y=0, and tend to therest point as ¢ in-
creases further. Hence, the rest point is asymptotically stable; it is
called a stable focal point. A focal point differs from a nodal point
in that a tangent to the trajectories does not tend to a specific
limit as the point of tangency approaches the rest point.

(2) ky,o=p=xqi, p>0, g0

This case passes into the preceding one when ¢ is replaced by —¢.
Consequently, the trajectories do not differ from the trajectories of
the preceding case, but motion along them occurs in the opposite
direction as ¢ increases (Fig. 4.6). Because of the presence of the
increasing factor ert, points which at the initial instant were arbit-
rarily close to the origin leave the e-neighbourhood of the origin
as t increases; the rest point is unstable. It is termed an unstable
focal point.

(3) ky,s==4qi, ¢+0.

As has already been mentioned, due to the periodicity of the
solutions, the trajectories are closed curves containing within them
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the rest point (Fig. 4.4), which in this case is called a centre. The
centre is a stable rest point, since for a given & >0 it is possible
to choose a & > 0 such that closed trajectories whose initial points
lie in the &-neighbourhood of the origin do not go out of the
e-neighbourhood of the origin or, what is the same thing, it is

possible to choose such small ¢, and c, that the solutions
x=2c, cos gt +¢, sin gt¢,

. q+i.q} 4.11)

y=c} cos gt 4 c; sin gt

will satisfy the inequality
() +y () < el

Note, however, that there is no asymptotic stability in this case,
since x(¢) and y(£) in (4.11) do not tend to zero as { — oo.

Fig. 4-6 Fig. 4-7

(¢) Roots that are multiples of k, =k,.
(1) k, =k, <0.
The general solution is of the form

x(t)=(c,o, + Cant) ek,
y () =(c,a, +Czﬂ-z” ek,

the possibility of p,=p,=0 is not excluded, but then «, and a:
will be arbitrary constants.

Due to the presence of the factor e’ rapidly tending to zero as
t — oo, the product (c,a; +c,B;f) e** (i =1, 2) tends to zero as { — oo,
and for a sufficiently large ¢ all the points of any §-neighbourhood
of the origin enter the given e-neighbourhood of the origin, and,
hence, the rest point is asymptotically stable. Fig. 4.7 depicts this
type of rest point, which [like in Case (a) of (1)] is called a stable
nodal point. This nodal point occupies an intermediate position
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between the nodal point (a) (1) and the focal point (b) (1), since
for an arbitrarily small change in the real coefficients a,,, a,,, a,,, a,,
it can turn either into a stable focal point or into a stable nodal
point of type (a) (1) because in the case of an arbitrarily small change
in the coefficients the multiple root can pass either into a pair of
complex conjugate roots or into a pair of real distinct roots. If

,=PB,=0, we again get a stable nodal point (the so-called proper
node) deplcted in Fig. 4.8.

24 y}

S —
e

Fig. 4-8 Fig. 4-9

(2) If k,=k, >0, then changing ¢ to —¢ leads to the preceding
case. Hence, the trajectories do not differ from the trajectories of
the preceding case shown in Figs. 4.7 and 4.8, but motion along
them occurs in the opposite direction. In this case the rest point is
called an unstable nodal point, like in case (a) (2).

Thus all the possibilities have been exhausted, since the case
k,=0 (or k,=0) is excluded by the condition

all al2
0.
a2) a-'.’2 #
Note 1. 1f
all alz =O’
Ay Ay
then the characteristic equation
au"_k a,, =0
as ag,—k

has a zero root k, =0. Assume that k2, =0, but k,540. Then the
general solution of the system (4.6) will be of the form

x=c,o, +c,p,e*,
Y =004+ C,f %",
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Eliminating ¢, we get a family of parallel straight lines
B, (y—c %) =P, (x—c,a,). When ¢, =0 we get a one-parameter family
of rest points located on the straight line o,y =<a,x. If £, <O, then
as t — oo the points on every trajectory approach the rest point
x=c0,, y=ca, lying on this trajectory (Fig. 4.9). The rest point
x=0, y=0 is stable, but there is no asymptotic stability.

But if k£, > 0, then the trajectories are arranged in the same way,
but points on the trajectories move in the opposite direction, and
the rest point x=0, y=0 is unstable.

But if &, =k,=0, then two cases are possible:

1. The general solution of the system (4.6) is of the form x=c,,
y=c,—all the points are rest points and all the solutions are stable.

2. The general solution is of the form

x=c¢,+ct, y=ci+cit,
where ¢} and c; are linear combinations of arbitrary constants ¢, and c,.
The rest point x=0, y=0 is unstable.
Note 2. The classification of rest points is closely associated with

the classification of singular points (see pages 62-64).
Indeed, in the case under consideration the system

Z’% =0y, X+ Gy,Y,

dy } (4.6)
dr = duX + a.qy,

where

Gy Gy,

Oy Gy

may be reduced, by eliminating ¢, to the equation

#0,

dy __ G5 X+ a9y

dx  apx+apy’ (4.12)
the integral curves of which coincide with the trajectories of motion
of the system (4.6). Here, the rest point x=0, y=0 of the system
(4.6) is a singular point of the equation (4.12).

It will be noted that if both roots of the characteristic equation
have a negative real part [cases (a) (1); (b) (1); (c) (1)), then the
rest point is asymptotically stable. But if at least one root of the
characteristic equation has a positive real part [cases (a) (2); (a) (3);
(b) (2); (c) (2)], then the rest point is unstable.

Similar assertions hold true also for a system of n homogeneous
linear equations with constant coefficients:

d; v .
%:i:zlai,x, (=12 ...,n). (4.13)
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[f thereal parts of all roots of the characteristic equation of the system
(4.13) are negative, then the trivial solution x;=0(i=1, 2,...,n)
is asymptotically stable.

Indeed, the particular solutions corresponding to a certain root k;
of the characteristic equation are of the form (pages 201 and 203)

xX;=ouekd (i=1,2,...,n)

if k, are real,
x,=eP¢ (B,cos gt + v, sin g,t)

if k,=p,+q. and, finally, in the case of multiple roots, the solu-
tions are of the same kind, but multiplied by certain polynomials
P,(?). It is obvious that all solutions of this kind, if the real parts
of the roots are negative (p, <O, or if &, is real, then &, < 0) tend
to zero as ¢ — oo not more slowly than ce™™!, where c is a constant
factor and —m < 0 and greater than the greatest real part of the
roots of the characteristic equation. Consequently, given sufficiently
large ¢, the trajectory points whose initial values lie in any 6-neigh-
bourhood of the origin enter an arbitrarily small e-neighbourhood
of the origin and, as { — oo, approach the origin without bound:
the rest point x;,=0(i=1, 2, ..., n) is asymptotically stable.

But if the real part of at least one root of the characteristic
equation is positive, Re k;=p; >0, then a solution of the form
x;=ca et corresponding to this root, or in the case of a complex &;,
its real (or imaginary) part ce?# (B,cos g, +vy,sing;t)(j=1,2, ...,n),
no matter how small the absolute values of ¢, increases in absolute
value without bound as ¢ increases; and, consequently, the points
located at the initial moment on these trajectories in an arbitrarily
small 8-neighbourhood of the origin leave any specified e-neighbour-
hood of the origin as ¢ increases. Hence, if the real part of at least
one root of the characteristic equation is positive, then the rest point
x,=0(j=1,2,...,n) of the system (4.13) is unstable.

Example 1. What type of rest point does the following system

of equations have?

de _
dt - y’

dy
7 =2x+ 3y.

The characteristic equation
1—k —1 0
2 3—kl=

or
k*—4k+5=0
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has' the roots &, ,=2 4+ i, hence, the rest point x=0, y=0 is an
unstable focal point.

Example 2. ¥ = —a’x—2bx is the equation of elastic oscillations
with account taken of fr.ction or resistance of the medium (for 6 > 0).
Going over to an equivalent system of equations, we have

x=y,
y= —a*x—2by.
The characteristic equation is of the form
—k 1 . .
—a —%b—p =0 or R42bk+a*=0,

whence k, ,= —b+ Vb —d’.

Consider the following cases:

(1) 6=0, i.e., the resistance of the medium is ignored. All motions
are periodic. The rest point at the origin is a centre.

(2) b®*—a® <0, b>0. The rest point is a stable focal point. The
oscillations die out.

(3) ®—a*>0, b>0. The rest point is a stable nodal point.
All solutions are damped and nonoscillating. This case sets in if
the resistance of the medium is great (b= a).

(4) b< 0 (the case of negative friction), 6*—a* < 0. The rest
point is an unstable focal point.

(5) b<0, b®*—a*=>0 (the case of large negative friction). The rest
point is an unstable nodal point.

Example 3. Test for stability the rest point of the system of
equations

dx
a7=2y—z’
dy _
Ei—Sx—?z,
dz
The characteristic equation is of the form
—k 2 —1
5 —4 —k
or
k®*—9k +8=0.

In the general case it is rather difficult to determine the roots
of a cubic equation; however, in the given case one root k,=1 is
readily found, and since this root has a positive real part, we may
assert that the rest point x=0, y=0, 2=0 is unstable.
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3. Lyapunov’s Second Method

At the end of last century, the celebrated Russian mathematician
Aleksandr Mikhailovich Lyapunov elaborated an extremely general
method for investigating the solutions of a system of differential
equations for stability:

i filty Xy Xy oees X)) (=1, 2,00, 0). (4.14)

It became known as Lyapunov’s second method

Theorem 4.1 (Lyapunov’s stability theorem). I there exists
a differentiable function v(x,, x,, ..., X,), called Lyapunov’s func-
tion, that satisfies the following conditions in the neighbourhood of
the coordinate origin:

(l) U(Xy, Xy ..., X,) >0 and v=0 only for x;=0 (i=1, 2,
n) i.e., the iunctton v has a strict mtmmum at the orzgm,

@ dt Zax Fo(t. xy ouey x)<<O for t>1,

then the rest point x;=0 (i=1, 2, , n) is stable.

In condition (2), the derivative % is taken along the integral

curve, i.e. it is computed on the assumption that the arguments x;
(=1, 2,..., n) of the function v (x,, %, ..., x,) are replaced
by the solution x;(¢f) (i=1, 2, ..., n) of the system of differential
equations (4.14) " . .
Indeed, on this assumption %=:§=:|‘%07% or, replacing % by

the right sides of the sys'em (4.14), we finally get

n
dov v
dt =§-‘a—x,.f1(f’ Xy, Xgp oeny X,)

Proof of Lyapunov’s stability theorem. In the neighbourhood of
the origin, as also in the neighbourhood of any point of a strict
minimum (Fig. 4 10), the level surfaces v(x,, x,, ..., x,)=c of
the function v (x,, x,, ..., x,) are closed surfaces," inside of which
is located a minimum point, the coordinate origin. Given &€ >0
For a sufficiently small ¢ >0 the surface of the level v=c lies
completely in the e-neighbourhood of the origin, * but does not pass
through the coordinate origin; hence, a 6 > 0 may be chosen such
that the 8-neighbourhood of the origin completely lies inside the

* More precisely, at least one closed component of the surface level v=c lies
in the e-neighbourhood of the origin.
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surface v=c; and in this neighbourhood v < ¢. If the initial point
with coordinates x;(¢,) (i=1, 2, ..., n) is chosen in the 6-neigh-
bourhood of the origin (Fig. 4.11) and, hence, v(x, (¢,), %;(Z,), - ..
coo X, (t))=c¢, <c, then for ¢ >1¢, the point of the trajectory
defined by these initial conditions cannot go beyond the limits of
the e-neighbourhood of the origin and even beyond the limits of the

Az
——Z=v(zyzy)
Z)

” 1 ~,
#
\ (] 7
RN
1 1
I H 7y I' d
— = r 2
£,

i
]
' Z,
H s = i Nalg
Z X ,:,'4)/ i 7
— P N
v) > (Z(5,5(5))
2
Zy
Fig. 4-10 Fig. 4-11

level surface v=c, since, by virtue of condition (2) of the theorem,
the function v does not increase along the trajectory and, hence,
for t =t,

00 (1), K (1) ..., % () <c, <c.

Note. Lyapunov proved the stability theorem on more general
assumptions; in particular, he assumed that the function v can be
dependent on ¢ as well: v=v(¢, x,, x,, ..., x,). Then, to make
the stability theorem hold, the first condition has to be replaced
by the following:

v(t, X, X5 o0, X)) ZW(%,, X5 ..., X,) =0

in the neighbourhood of the origin for ¢ > {,, where the continuous
function w has a strict minimum at the coordinate origin, v(¢, 0,
0, ..., 0)=w(0, 0, ..., 0)=0. and the second condition remains

unchanged, %’ < 0; however, in this case

n

dv dv ov

a=-a—t+2'ézf(t, Xyy Xgy eoey Xp)
i=)

The scheme of the proof remains the same, except that now we
must take into account that by virtue of condition (1), the level
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surface v (¢, x,, X,, ..., X,)=¢, which moves as ¢ varies, remains
within the surface of the level w(x,, x,, ..., x,)=c¢ for all varia-
tions of ¢ > 1, (Fig. 4.12).

Fig. 4-12

Theorem 4.2 (Lyapunov’s theorem on asymptotic stability).
If there exists a differentiable Lyapunov function v(x,, X4 «.., X,)
that satisfies the conditions:

1) vix, x, ..., x,) has a strict minimum at the origin:
v (0, O, =
2) the derwatwe of the function v, compuled along the inlegral
curves of the system (4.14)

n

dv__ (t, x,, X5 oo, X,) <0,

w3 5 2 filt, %, %, )
and outside an arbitrarily small neighbourhood of the origin, that
is, for Zx, =8>0, t=>T,>1t, the dervative %° dt\ —p <0,

where fS lS a constant, then the rest point x;,=0 (i=1, 2, ..., n)
of the system (4.14) is asymptotically stable.

Proof. Since the conditions of the stability theorem are fulfilled,
it follows that for every e >0 a 6 (e) > 0 may.be chosen such that

15—378
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the trajectory, the initial point of which lies in the 8-neighbourhood
of the origin, does not, for £ >¢,, leave the e-neighbourhood of the
origin. Hence, in particular, condition (2) is fulfilled along such a
trajectory for £ > T,, and for this reason, the function v monotoni-
cally decreases along the trajectory as f increases, and along the
trajectory there is a limit to the function v as ¢ — oo:

‘lim v(t, x, (f), x,(£), ..., x,({))=a>=0.

We have to prove that a=0, since if a=0, then from condi-

tion (1) it follows that lim x;(#)=0(i=1, 2, ..., n), i.e. the rest
t-> o

point x;=0 (i=1, 2, ..., n) is asymptotically stable. Suppose

a > 0; then the trajectory, for ¢ > ¢,, lies in the region v >a, and

therefore outside a certain 8,-neighbourhood of the origin; that is,

where we have, by condition (2), %<—ﬁ <0 for t =T, Multi-

plying mequahty dt < —p by df and integrating along the trajectory
from T, to ¢, we get
v, (), % (8), oooh X () =0 (X2 (To), % (To)s -y £, (TQ)) <
g_ﬂ(t_ro)
or
v(x, (1), %, (8, ...y X, ()<
KU (To)s %2 (To)y -+ .. 45 (To))—P ((—T).

Given a sufficiently large ¢, the right side is negative, and hence
also v (x, (), x,(¢), ..., x,(!)) <0, which contradicts condition (1).

Note. The theorem on asymptotic stability is generalized to the
case of the function v dependent on ¢, x,, x,, ..., x, if the first
condition, as in the preceding theorem, is replaced by the following:

v(t, X, Xy ooy X)) ZW(Xy Xy ..., X,) =0,

where the function w has a strict minimum at the origin and,
besides, if we ask that the function v(¢, x,, %,, ..., x,) uniformly
n

approach zero in ¢ as 2)6,*—»0.
i=1

Theorem 4.3 (Chetayev’s instability theorem). If there is
a differentiable function v(x,, x,, ..., x,) that satisfies the follow-
ing conditions in a certain closed h-neighbourhood of the coordinate
origin (1) in an arbitrarily small neighbourhood U of the origin
there exists a region (v> 0) in which v>0, and v=0 on a part
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of the boundary of the region (v > 0) lying in U; (2) in the region
(v> 0) the derivative

n
d du
d_?=25x_,f‘(t' Xy Xoy ooy xn)>0!
i=1
and in the region (v=a), o> 0, the derivative dt/|3>0 then

the rest point x;=0 (i=1, 2, ..., n) of the system (4.14) is un-
stable.
Proof. We take the initial point x, (¢,), x,(¢,), ..., x,(¢) in an

arbitrarily small neighbourhood of the coordinate origin in the

region (v>0),v(x, (¢,), X5 (£o)s- - -
, X, (t,))=a >0 (Fig. 4.13). z

Smce Zt >0 along the trajecto- //
ry, the function v does not dim- 2 /

inish along the trajectory and / 2
hence as long as the trajectory //
lies inside the A-neighbourhood 7<g //,/

of the origin we are interested

0 e
in (where the conditions of ‘the 0 /
1I /

theorem are fulfilled), the traje-
ctory must lie in the region

&

(v=ca). Assume that the traje- g /
ctofy does not leave the h-neigh- //
bourhood of the origin. Then, )

by virtue of condition (2), the Fig. 4-13

derivative Z—;’}B >0 along the trajectory for #>¢,. Multiply-
ing this inequality by df and integrating, we get

P00 (D)) X (D), -y Xn (D) =0 (6, L)y %3 (L), - -+, X (1)) =P (E—1,),
whence it follows that as £ — oo the function v increases without
bound along the trajectory; but this runs counter to the assumption
that the trajectory does not leave the closed A-neighbourhood of the
origin, since the continuous function v is bounded in this A-neigh-
bourhood.

Note. N. G. Chetayev proved the instability theorem on the
assumption that v can also depend on #; then the hypothesis is
somewhat modified; in particular, we have to demand that the
function v be bounded in the region (v>0) in the A-neighbourhood
under consideration of the origin.

Example 1. Test for stability the trivial solution of the system:

dx dy
T —y—x, =y
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The function v (x, y)=x*+y* satisfies the conditions of Lyapu-
nov’s theorem on asymptotic stability:

(1) v(x, v =0, v(0, 0)=0;
(2) Z—‘:=2x(—y—x3)+2y(x_y’)=_2(xc+y4)<0'

Outside the neighbourhood of the origm, dt\ —p < 0. Consequently,
the solution x=0, y=0 is asymptotically stable.

Example 2. Test for stability the trivial solution x=0, y=0
of the system

The function v(x, y)=x"+y* satisfies the conditions of the Lya-
punov stability theorem:

(1) v(x, Y)=x'4+y'>0, v(0, 0)=0;

(2) % = —4x'y* + 4x*y* =0.

Therefore, the trivial solution x=0, y=0 is stable.

Example 3. Test for stability the rest point x=0, y=0 of the
system of equations

d
___ y

dy

HT“" +4".

The function v=x*—y* satisfies the conditions of Chetayev's
theorem:

(1) v>0 for |x|>]yl;
@ =42 (4 + ) —4y° (x’+y°)=4(x°—y’) >0
for |x|>|y|; and for v=a >0, dt =P > 0. Hence, the rest po-

int x=0, y=0 is unstable.

Example 4. Test for stability the trivial solution x;=
=0(=1, 2,..., n) of the system of equations
dx; _ 0u(xy, X3, ..., X,) .
= L 5x‘_ (l—l, 2,..., ﬂ)

if it is given that the function u(x,, x,, ..., x,) has a strict
maximum at the coordinate origin.
For the Lyapunov function we take the difference

V(X X5 ovey X)=u(0, 0, ..., O)—ux;, X5 0., x,),
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which obviously vanishes when x;,=0(i=1, 2, ..., n), has a
strict minimum at the origin, and, hence, satisfies condition (1) of
Lyapunov’s stability theorem. The derivative along the integral

curves
n
Ou_ dx; _ ou \?
2 o At ;('a'x' ,) <0.

Thus, the conditions of Lyapunov’s stability theorem are fulfilled
and so the trivial solution is stable.

Example 5. Test for stability the trivial solution x;=
=0@=1, 2, ..., n) of the system of equations

dﬁ'——Zau(t)x/, where a;, ()= —a; ({) for i
and all a;(¢)<0.
The trivial solution is stable since the function v=1‘:V_‘l x} satis-
fies the conditions of Lyapunov’s stability theorem:
(1) v=0 and v(0, 0, ..., 0)=0;
2) —37"=2i2n:lx,~%— 2}:Za,,(t)xx,—22a“(t)x <0.

i=lj=

4. Test for Stability Based on First Approximation

When testing for stability the rest point x,=0(=1, 2, ..., n)
of the system of differential equations

‘ﬁ_f,(t Xy Ky eeey X)) (=1, 2, ..., n), (4.14)

where f; are functions differentiable in the neighbourhood of the
coordinate origin, frequent use is made of the following method:
taking advantage of the differentiability of the functions
f: (¢, %, x4, ..., x,), we represent the system (4.14) in the neigh-
bourhood of the origin x;,=0 (i=1, 2, ..., n) in the form

dy % .

%=§au(t)x/+R,.(t, Xy Xgy ooy X)) (i=1, 2, ..., n), (4.15)
where the R, are of an order higher than first with respect to
l/i}x}, and in place of the rest point x;,=0(i=1, 2, ..., n)

of the system (4.15) we test for stability the same rest point of
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the linear system
‘EL_EaU(t)x/ (i=1,2 ..., n), (4.16)

which is called a system of equations of first approximation for the
system (4.15). The conditions for the applicability of this method,
which was used for a long time without any substantiation, were
investigated in detail by A. Lyapunov and were later extended in
the works of many mathematicians, particularly by O. Perron,
[. Malkin, K. Persidsky, N. Chetayev.

Testing for stability a system of equations of first approximation
is of course a much easier task than testing the original, generally
speaking, nonlinear system; however, even testing the linear system
(4.16) with variable coefficients a; (t) is an extremely comphcated
problem. But if all the a;, are constant that is, the system is
stationary to a first approximation, then the stablllty test of the
linear system (4.16) does not encounter any fundamental difficulties
(see pages 220-221).

Theorem 4.4. If the system of equations (4.15) is stationary to
a first approximation, all the terms R; in a sufficiently small
neighbourhood of the coordinate origin for t =T >1t, satisfy the

1

n —+a

inequalities |R;|<N < 2x,’> , Where N and o are constants, and
i=1

a>0 <i.e., if the R, do not depend on t, then their order is

n
greater than first with respect to 21 x,?> and all the roots of the
characteristic equation B

a,,—k Qy, ... G,
a a,,—k a,,
T (.17)
a a a,,—k

have negative real parts, then the trivial solutions x;=0(i=1,2,...,n)
of the system of equations (4.15) and the system of equations (4.16)
are asymptotically stable; hence in this case a test for stability based
on a first approximation is permissible.

Theorem 4.5. If the system of equations (4.15) is stationary to
a first approximation, all the functions R; satisfy the conditions of
the preceding theorem, and at least one root of the characteristic
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equation (4.17) has a positive real part, then the rest points
x=0(=1, 2,..., n) of the system (4.15) and the system (4.16)
are unstable; consequently, this case too permits testing for stability
on the basis of a first approximation.

Theorems 4.4 and 4.5 fail to embrace only the so-called critical
case with respect to restrictions imposed on the roots of the cha-
racteristic equation: all real parts of the roots of the characteristic
equation are nonpositive, and the real part of at least one root
is zero.

In the critical case, the nonlinear terms R; begin to influence the
stability of the trivial solution of the system (4.15) and, generally
speaking, it is impossible to test for stability on the basis of a
first approximation.

Theorems 4.4 and 4.5 are proved in Malkin’s book [2].

To give the reader an idea of the methods of proof of such the-
orems, we prove Theorem 4.4 on the assumption that all the roots
k; of the characteristic equation are real and distinct

k‘<0 (l=l, 2,...,"), k‘9—l‘—k1 fO!‘ l#i.

In vector notation, the system (4.15) and the system (4.16) are
respectively of the form

X —AX+R, (4.15,)
X
X -~ ax, (4.16))
where
X, R,
X, y Gyp - .- Gy R,
x=| I, A e @ | r=Il - I.

a,, Q9 ...4,,

n

With the aid of a nondegenerate linear transformation with constant
coefficients X = BY, where

A
by byy ... by, Y,
B— by byy ... by, ' y=|l" |,
By bug - By :
Yn

we transform the system (4.16,) to B % = ABY or %—: B-'ABY.
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We choose the matrix B so that the matrix B='AB is diagonal:
k, 0 .0

R

00 .k

<=«?"oc:o

Then the system (4.16) becomes
=k"y1 (i‘:-‘l, 2, 0oy n)

and the system (4.15) passes, in the same transformation, into
———k;y.+R,(t Yoo Yoo ---2 ¥a)  ((=1,2,..., n), (4.18)

/ -_;—+a

where |R; l<Nk , N is a constant, @ >0, t>T.

Relative to the System (4.18), the Lyapunov function that satis-
fies the conditions of the asymptotic stability theorem is

v= /g yi.
Indeed,

(l) v(yl! y’ sy l/n)>0 v(o 0 0)
d
@2 22 y= 2Zk,y1 + 2}_‘.k.y,R,< Zk.y, <0

for sufficiently small y;, since all k, <0, and the double sum
n

2 2 k;y;R; may, for sufficiently small y,, be made less, in absolute
i=

value, than the sum _n kys.
Finally, outside the_neighbourhood of the coordinate origin

dv ﬂ<0

Example 'y,l Test for stability the rest point x=0, y=0 of the
system : '

Z‘; =x—y+x*+y*sint,
4.19)

dy
27=x+y—y .
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The nonlinear terms satisfy the conditions of FTheorems 4.4 and
4.5. Test for stability the rest point x=0, y=0 of the first-appro-

ximation system
-
dt - Y, }

‘ (4.20)
G=x+y.

The characteristic equation |lTk l__lk|=0 has the roots %, ,=

=144, and so, by virtue of Theorem 4.5, the rest point of the
systems (4.19) and (4.20) is unstable.

Example 2. Test for stability the rest point x=0, y=0 of the
system

%=2x+85iny, (4.21)
& —2—es—3y—cosy. |

Expanding siny, e* and cosy by Taylor’s formula, we represent
the system as

%=2x+ 8y+ Ry, %= —x—3y+R,,

where R, and R, satisfy the conditions of the Theorems 4.4 and 4.5.
2 —k 8

The characteristic equation —1 —3 —&k =0 for the first-
approximation system
dx d
F=2%+8y, F=—x—3y (4.22)

has roots with negative real parts. Consequently, the rest point
x=0, y=0 of the systems (4.21) and (4.22) is asymptotically
stable.

Example 3. Test for stability the rest point x=0, y=0 of the

system i

4.23)
d (
Fg-— = 3x.—y'_

The characteristic equation I—g :z =0 for the first-approxi-
mation system has pure imaginary roots, which is the critical case.
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A first-approximation investigation is impossible. In this case it is
easy to choose a Lyapunov function

v=23x"+4y>.
(l) U(X, y)>0v U(O, 0)=0:
@) % bx (—4y—x’) + 8y (Br—y”) = — (6* + 84") <O;

note that outside a certain neighbourhood of the origin “%’g—ﬁ <0,

hence the rest point x=0, y=0 is asymptotically stable by the
theorem of the preceding section.

Let us examine this example in somewhat more detail. The
first-approximation system of equations

dx

d

had the centre at the origin. The nonlinear terms in the system (4.23)
converted this centre into a stable focal point.

The general case too exhibits a similar but somewhat more comp-
licated geometrical pattern. Let the first-approximation system of
the system

d

%1. = allxl + anx, + R1 (xll xz)’

@ (4.25)
—d-t— = aﬂxl + azzx'z + R2 (xl’ x2)

have a rest point of the centre type at the origin. As on page 229,
assume that the nonlinear terms R, (x,, x,) and R, (x,, x,) are of
order higher than first with respect to }/x?+x2. These nonlinear
terms are small, in a sufficiently small neighbourhood of the origin,
in comparison with linear terms, but still they somewhat distort
the direction field defined by the first-approximation linear system.
For this reason, a trajectory emanating from some point (x,, y,) is
slightly displaced (after a circuit of the origin) from the linear-sys-
tem trajectory passing through the same point, and, generally speak-
ing, does not arrive at the point (x,, y,). The trajectory is not
closed.

If after such a circuit of the origin all the trajectories approach
the origin, then a stable focal point arises at the origin; but if the
trajectories recede from the origin, an unstable focal point develops.

An exceptional case is possible in which all the trajectories of
the nonlinear system which are located in the neighbourhood of the
origin remain closed; however, the most typical case is that in which
only certain closed curves (or, possibly, none) remain closed, while
the others are converted into spirals.
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Such closed trajectories in the neighbourhood of which all tra-
jectories are spirals are called limit cycles.

If the trajectories close to the limit cycle are spirals that approach
the limit cycle as {-—oo, then the limit cycle is called stable
(Fig. 4.14). If the trajectories close to the limit cycle are spirals
receding from the limit cycle as # —o0, then the limit cycle is called
unstable. And if the spirals approach the limit cycle from one side
as t —oo, and recede from it on the other side (Fig. 4.15), then
the limit cycle is called half-stable.

Fig. 4-14 Fig. 4-15

Thus, transition from the first-approximation system (4.16) to
the system (4.25), generally speaking, leads to a transformation of
the centre into a focal point surrounded by p (the case p=0 is not
excluded) limit cycles.

On pages 160-161, when studying the periodic solutions of the
autonomous quasi-linear system

§+a2x=l‘f (x, X., P'): (426)

we encountered a similar instance. Indeed, replacing (4.26) by an
equivalent system, we get

k=y,
y=—a’x+ pf(x, y, p. } (4.27)

The corresponding linear system:

x=y, GJ=—ax
has a rest point of the centre type at the origin; the addition of
small (for small p) nonlinear terms converts the centre, generally
speaking, into a focal point surrounded by several limit cycles whose
radii were found from the equation (2.128), page 162.

The only difference between the cases (4.25) and (4.27) consists
in the fact that the terms R, and R, are small only in a sufficiently
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small neighbourhood of the origin, whereas in the -case (4.27)
the term pf(x, y, p) can be made small, for a sufficiently small p,
not only in a sufficiently small neighbourhood of the coordinate
origin.

In Example 2 (page 162), a limit cycle appears, for small p,
in the neighbourhood of a circle of radius 6 with centre at the co-
ordinate origin, which circle is the trajectory of the generating

equation.

In applications, stable limit cycles are usually found to corres-
pond to auto-oscillatory processes, i.e. periodic processes in which
small perturbations practically do not alter the amplitude and fre-
quency of the oscillations.

5. Criteria of Negativity of the Real Parts of All Roots
of a Polynomial

In the preceding section, the problem of the stability of a tri-
vial solution of a broad class of systems of differential equations
was reduced to investigating the signs of the real parts of the roots
of the characteristic equation.

If the characteristic equation has a high degree, then its solu-
tion is complicated; for this reason, very important are methods
which permit establishing (without solving the equation) whether
all its roots have a negative real part or not.

Theorem 4.6 (Hurwitz’s theorem)*. A necessary and suffi-
cient condition for the negativity of the real parts of all the roots
of the polynomial

"4a2"" '+ ... +a,_,2+a,
with real coefficients is the positivity of all the principal diagonals
of the minors of the Hurwitz matrix
a, 1 0 0 ... O
a, a, a, 1 ... 0
ab al an az
a, a, a, a,

The principal diagonal of the Hurwitz matrix exhibits the coeffi-
cients of the polynomial under consideration in the order of their
numbers from a, to a,. The columns alternately consist of coeffici-

* The proof of the Hurwitz theorem may be found in courses of higher
algebra (for example, A. Kurosh Course of Higher Algebra).
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ents with odd only or even only indices, including the coefficient
a,=1; hence the matrix element b, =a,;_,. All missing coefficients
(that is, coefficients with indices greater than n or less than 0) are
replaced by zeros.

Denote the principal diagonal minors of the Hurwitz matrix:

a 1 a 1 0
Al=|a1|, A,= a: a, . A8= Za Z’ Zl y oo
5 (] 3
g, 10 ... 0
Qs Ay A ceeeen
, A =[G G, Q3 ceove.
0 0 O a

Observe that since A,=A,_,a,, the last of the Hurwitz condi-
tions A, >0, A,>0, ..., A,>0 may be replaced by the demand
that a, > 0*.

Let us apply the Hurwitz 1%
theorem to polynomials of se-
cond, third, and fourth degree.

(a) 2*+-a,z +a,.

™ |

a;

Region
of staglzitl'ty\\

\

Fig. 4-16 Fig. 4-17

The Hurwitz conditions reduce to a, > 0, a, > 0. These inequa-
lities define the first quadrant in the space of the coefficients a,
and a, (Fig. 4.16). Fig. 4-16 depicts the region of asymptotic sta-
bility of a trivial solution of some system of differential equations

* Note that from the Hurwitz conditions it follows that all the a; > 0;
however, the positivity of all coefficients is not enough for the real parts of all
roots to be negative.
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that satisfies the conditions of Theorem 4.1, provided that z* -+a,z+
+a, is its characteristic polynomial.

(b) 2*+a,2* +a,z+a,.

The Hurwitz conditions reduce to a, >0, a,a,—a, >0, a; > 0.
The region defined by this inequality in the coefficient space is
depicted in Fig. 4-17.

(c) 2*+a,2*+a,2* +a,2+a,.
The Hurwitz conditions reduce to
a,>0, aa,—a,>0, (aa,—a)a,—a%a,>0, a,>0.

The Hurwitz conditions are very convenient and readily verifi-
able for the polynomials we have just considered. But the Hurwitz
conditions rapidly become complicated as the degree of the poly-
nomial increases, and it is often more convenient to apply other
criteria for the negativity of the real parts of the roots of a poly-
nomial.

Example. For what values of the parameter « is the trivial

solution x, =0, x,=0, x,=0 of the system of differential equations
dx, dx, 3 dx.
1

=%y g T > =, + 2%, — X,

dt

asymptotically stable?

The characteristic equation is of the form
—k 0 1
—3 —k 0

a 2 —1—%k
By the Hurwitz criterion, a, >0, a,a,—a; >0, a, > 0 will be the

conditions of asymptotic stability. In the given case, these condi-
tions reduce to —a—6 > 0, whence a < —6.

=0 or k*+ k2 —ak+6=0.

6. The Case of a Small Coefficient of a Higher-Order Derivative

The theorem on the continuous dependence of a solution upon
a parameter (see pages 58-59) asserts that the solution of the differen-
tial equation x(f)=Ff(¢, x(¢), p) is continuously dependent on the
parameter u if in the closed range of #, x and p under considera-
tion, the function f is continuous with respect to the collection of
arguments and satisfies the Lipschitz condition with respect to x:

IF(t, & w—Ft x wI<N|x—x],
where N does not depend on £, x and p.
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The conditions of this theorem are ordinarily fulfilled in prob-
lems of physics and mechanics, but one case of the discontinuous
dependence of the right side on a parameter is comparatively often
encountered in applications. This section is devoted to a study of
the given case.

Consider the equation

pg=Ft », (4.28)

where p is a small parameter. The problem is to find out whether
for small values of |u| it is possible to ignore the term p,-Z—’; , i.e.
whether it is possible to replace approximately a sotution of the
equation p%f:f(t, x) by a solution of the so-called degenerate

equation
f(t, x)=0. (4.29)

We cannot take advantage here of the theorem on the continuous
dependence of a solution on a parameter, since the right side of
the equation

=%f(t, x) (4.28,)

is discontinuous when p=0.

For the time being, let us assume for the sake of simplicity that
the degenerate equation (4.29) has only one solution x= g (f); also
assume for definiteness that p > 0. As the parameter 1) tends to

zero, the derivative Z of the solutions of the equatlon f(t x)

will, at every point at which f(f, x)5%0, increase wnthout bound
in absolute value, having a sign that coincides with the sign of
the function f (¢, x). Consequently, at all points at which f (¢, x) 540,
tangents to the integral curves tend to a direction parallel to the
x-axis as p— 0; and if f(¢, x) >0, then the solution x(f, n) of
the equation (4.28,) increases with increasing ¢, since %—> 0, and
if f(¢, x) <0, then the solution x (¢, p) diminishes with increasing ¢,
since j—’: <0.

Let us consider the case (a) shown in Fig. 4-18 in which the
sign of the function f(¢, x) changes (with x increasing and ¢ fixed)
from + to — when crossing the graph of the solution x= ¢ (¢) of the
degenerate equation.

The arrows indicate the direction-field of tangents to the integrai

curves for sufficiently small p The direction-field is in the direction
of the graph of the root of the degenerate equation. Therefore, no
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matter what the initial values x(f,)=x,, the integral curve defined
by these initial values, while almost parallel to the x-axis, tends
to the graph of the root of the degenerate equation, and as ¢ in-
creases can no longer leave the neighbourhood of this graph. Hence,
in this case, given {>¢, >, and a sufficiently small p, we can,
approximately, replace the solution x(f, p) of the equation (4.28)
by the solution of the degenerate equation. In the case at hand,
the solution x=¢(f) of the degenerate equation is called stable.

Consider case. (b): the sign of the function f (¢, x) changes from
— to + when passing across the graph of the solution x=¢ () of
the degenerate equation for increasing x and fixed ¢. Fig. 4-19 shows

I
) 11z CIZZVYY
(4.2) (i

**{‘** X,‘!Jﬂ*) f}ffff 44!* ‘Z‘:(F(t(t‘a,ﬂ‘:dl‘*
H*H* ””(tg-léa” *\HH (Hi
» et TIERSEAM ST
H AL \B 27 K1 MM
ey ,

g Y el g

Fig. 4-18 Fig. 4-19

the field of directions tangent to the integral curves for a sufficiently
small u. It is obvious in this case that no matter what the initial
values x(¢,)=x, which satisfy the condition f(¢,, x,) =0 alone, the
integral curve defined by these values (for a sufficiently small p)
having a tangent almost parallel to the x-axis recedes from the
graph of the solution x =g (¢) of the degenerate equation. In this
case, the solution x=¢({) of equation (4.29) is called unstable.
In the unstable case, one cannot replace the solution x=x (¢, p)
of the original equation by the solution of the degenerate equation.

In other words, one cannot ignore the term p 51:— in the equation

Pj—;=f(1. x), no matter how small p is.

A third, so-called half-stable, case is possible: case (c). The sign
of the function f(¢, x) does not change when passing across the
graph of the solution of the degenerate equation. Fig. 4.20 shows
the direction-field in the case of a half-stable solution x=¢ (f).

As a rule, in the half-stable case it is also impossible to appro-
ximately replace the solution of the original equation, x=x(¢, p)
by the solution of the degenerate equation, since, firstly, the integral
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curves defined by the initial values lying on one side of the graph
of the solution x = (¢) recede from this graph, secondly, the integral
curves approaching the graph of the solution x=¢({) can- cross it
to the unstable side (Fig. 4.20) and then recede from the graph of
the solution x=¢ (£). Finally, even if the integral curve x=x (¢, p)
remains in the neighbourhood of the graph of the solution on the
stable side, the inevitable perturbations that occur in practical prob-
lems can throw the graph of the solution x=x (¢, p) to the unstable
side of the graph of the solution of the degenerate equation, after
which the integral curve x=x (¢, p) will recede from the graph of
solution x= ¢ (¢).

i1
H

m
i

'y f
by *4 P!

o1%0%,2,) I -

Fig. 4-20

Note that if on the graph of the solution of the degenerate equ-
ation — 0’ <0, then the solution x=¢(f) is definitely stable; but

if a’ >0 then the solution x=¢ (f) is unstable, since in the first

case the function f decreases with increasing x in the neighbourhood
of the curve x =@ (¢) and, hence, changes sign from 4 to —, whereas
in the second case it increases with increasing x and, hence, the
function f changes sign from — to + when crossing the graph of
the solution x= ¢ (¢).

If the degenerate equation has several solutions x=;(#), then
each one of them has to be investigated for stability; depending
on the choice of the initial values, the integral curves of the initial
equation may behave differently as p — 0. For example, in the case
depicted in Fig. 4.21 of three solutions x=¢,(?) (i=1, 2, 3) of
the degenerate equation, the graphs of which do not intersect, the

16—378
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solutions x=x (¢, p), p > 0, of the original equation defined by the
initial points lying above the graph of the function x=g¢, (f) tend
to a stable solution of the degenerate equation x=¢,(f) as p— 0
for ¢ > t,, while the solutions x=x (¢, p) defined by the initial
points lying below the graph of the function x=g, (f) tend to the
stable solution x=gq,(¢f) of the degenerate equation as p — 0 for
{ > t, (Fig. 4.21).

f<o
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Fig. 4-21

Example 1. Find out whether the solution x=ux(f, p) of the
equation p%= x—1t, p > 0 satisfying the initial conditions x (¢,)=x,
tends to the solution of the degenerate equation x—¢=0 as p -0
for t > ¢,. ‘

The solution x=x (¢, p) does not tend to the solution of the de-
generate equation x =1, since the solution of the degenerate equation
is unstable because ﬂxa—;i= 1 >0 (Fig. 4.22).

Example 2. The same with respect to the equation

p% = sin® { — 3e*.
The solution of the degenerate equation x=2In|sin¢|—In3 is
2§ __3eX
stable since W: —3e* < 0. Hence, the solution of the

original equation x = x (¢, p) tends to the solution of the degenerate
equation as p — 0 for ¢ > ¢,.
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Example 3. The same with respect to the solution of the equation

B2 x (P —x 1), B> 0, x(t) =1,

-Of the two solutions x=0 and x=1¢*+1 of the degenerate equa-

tion x (£*—x-+1)=0, the first is unstable, since ———ax(ﬂ;x+” =0
o ) . Ox (f2—x+1)
=t*+1>0 and the second is stable, since o lep=

. =—1'—1<0.

If the initial point (¢,, x,) lies in the upper half-plane x>0,
then the integral curve of the original equation as p — 0 approaches
the graph of the solution x=1¢*+41 of the degenerate equation
(Fig. 4.23) and remains in its neighbourhood.

Z|
2z
A A
Y
ro0_J
%) (4, z3)
0 f<o \
1 )
Fig. 4-22 Fig. 4-23

But if the initial point lies in the lower half-plane, x <0, the
lim x(¢, p)= —oo for ¢t > ¢, (Fig. 4.23).

-0
’ The problem of the dependence of a solution on a small coef-
ficient p of the highest derivative also arises in regard to nth-order
equations

pe® () =f(t, x, x, x, ..., x"°D),

and systems of differential equations.

An equation of the nth order may, in the usual manner (see
page 91), be reduced to a system of first-order equations, and hence
the principal problem is to investigate the system of first-order
equations with one or several small coefficients of the derivatives.
This problem has been studied in detail by A. Tikhonov [4] and
A. Vasilieva.

16%
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7. Stability Under Constantly Operating Perturbations

If the system of equations being investigated

dx;
d_xt=fi (L, X4y Xgy o vvy X), x; (8) =%, (4.30)
(=12, ..., n)
is subjected to small brief perturbations, then, for a small range

of t, {,<<t<{,, the system (4.30) should be replaced by a per-
turbed system:

deti—':fl'(t’ Xy Xgy o0n )y, xn)+Ri(t’ Xpy Xgy eee sy x")’ } (431)
n),

x(E)=x({) (=12 ...,
where all the R;(¢, x,, %,, ..., x,) are small in absolute value;
when ¢ >1, the perturbations cease and we again revert to (4.30),
but with somewhat altered initial values at the point ?,, x; (z,) =

=x;(t,)+06;(i=1, 2, ..., n), where x;(f) (i=1,2, ..., n) is
z the solution under investigation

A of the system (4.30), and all the

S §; are small in absolute value for

small | R;| by virtue of the theo-
rem on the continuous depen-
dence of a solution upon a para-
meter (Fig. 4.24).

Consequently, the operation of
short-time perturbations ultima-
tely reduces to perturbations of

Fig. 4-24 the initial values, and the prob-

lem of stability with respect to

such short-time or, as they are often called, instantaneous perturba-.

tions reduces to the above-considered problem of stability in the
sense of Lyapunov.

But if perturbations operate constantly, then the system (4.30)
must be replaced by the system (4.31) for all £Z>¢, and a com-
pletely new problem of stability arises under constantly acting pertur-
bations. This problem has been investigated by I. Malkin and
G. Duboshin.

As in the investigation of stability in the sense of Lyapunov, it
is possible, by a change of variables x;=y,—@; (¢) (i=1, 2, ..., n),
to transform the solution under investigationy; =¢@; () (i=1,2, ..., n)
of the system %L_,(t, 4, 4o ... . 42 (=12, ..., n) into
the trivial solution x;=0 (i=1, 2, ..., n) of the transformed
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system. Therefore, from now on it may be assumed that, given cons-
tantly operating perturbations, we test for stability the trivial so-
lution x;,=0 (i=1, 2, ..., n) of the system of equations (4.30).

The trivial solution of the system (4.30) is called stable with
respect to constantly operating perturbations if for every e >0 it
is possible to choose 6, >0 and 6, > 0 such that from the inequa.

lities X} R} < 82 for t>1, and X x < 62 it follows that
i1

=1

n

Yxi()<e for t>=t,

=1

where x; (f) (i=1, ..., n) is the solution of the system (4.31)
defined by the mltlal conditions x; (f,)=x, (i=1, e.., n).

Theorem 4.7 (Malkin's theorem). If for the system of equ-
ations (4.30) there exists a differentiable Lyapunov function v (¢, x,,
X,) which satisfies the following conditions in the neigh-

bour.h;x')d of the coordinate origin for t >t

1) o, x, %,, ..., XP)=2wW, (%, X5 ..., x,)=0, v(¢, O,
0, ..., 0)=0, where w, is a continuous function that only vanishes
at the origin;

(2) the derivatives -a%(s= 1, 2, ..., n) are bounded in absolute
s

value;
(3) the derwatwe = +2 —w, (%, Xy ..., %,) <0,
where the continuous function w, (xl, s -, X,) can vanish only at

the origin, then the trivial solution of the system (4.30) is stable
with respect to constantly operating perturbations.

Proof. Observe that by virtue of the boundedness of the deriva-
tives a%(s= 1, 2, ..., n) the function v tends to zero uniformly
s

n
in ¢ for t>>t, as X x} -0, since by the mean-value theorem
=1

n
ov a e L
v(t, X, X3 «o. ,,)—Z_(ax ) x;, where (a—:) are derivatives

computed for certain intermediate [between 0 and x; (i=1, 2, ..., n)]
values of the arguments x,, x,, ..., x,.
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Note also that outside a certain &-neighbourhood of the origin,
(i.e., for 2 x} > 62> 0) and for ¢ >1,, by virtue of conditions (2)
and (3), the denvatlve

dv v —
i ='§[+§ -a_x;fi+‘2_:l'52}'Ri<_k<0

for sufficiently small absolute values of R; (i=1, 2, ..., n).

Let us specify € >0 and choose some level surface (or one of
its components) w, =1, { >0, lying wholly in the e-neighbourhood
of the coordinate origin.

By virtue of condition (1), the moving (given a variable ¢ >1¢,)
level surface v(¢, x,, X,, ..., x,)=1 lies inside the level surface
w, = I, whereas, by virtue of the fact that the function v tends

to zero uniformly in ¢ as 2 x} -0, it lies outside a certain 0,-

i=1
neighbourhood of the origin in which v<<! and, hence, on the level
surface v(¢, x,, x,, ..., x,)=1[, given any {>¢, the derivative

dv B | e 00 > o
g,—=5,—+2—a;;f,-+i§_‘?WR,-<—k<0,

if 2 R} < 8,, 6,>0, where §, is sufficiently small. The trajectory

deﬁned by the initial point x;(¢,)=x;, (i=1, ..., n) lying in
the above-indicated o‘-nelghbourhood of the ongm cannot, given
t>1,, go beyond the e-neighbourhood of the origin, since, by virtue
of the choice of 8,, v(¢,, X100 Xz0r ... Xno) <<l and, hence, if for
>, the trajectory went beyond the e-neighbourhood of the origin
or at least beyond the level surface w, =1, then it should, at some
value t=T, cross the level surface v (¢, x,, x,, ..., x,)=1{ for the
first time; and the function v should, in the neighbourhood of the
point of intersection, increase along the trajectory but this contra-

dicts the condition d” G S—k<<0 along the trajectory at points

of the level surface v(t Xy, Xgy ou., X)=1L.

Comparing the conditions of the’ Malkm theorem with those of
the Lyapunov theorem on asymptotic stability (see note on page 226),
we see that they nearly coincide; the additional feature of Mal-
kms theorem is the demand of boundedness of the derivatives

(s-l 2, ..., n) so that asymptotic stability and stability

wnth respect to constant perturbatiors are extremely close properties,
though they do not coincide.
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Example 1. Is the trivial solution x=0, y=0 of the system of
equations

dx 2 3
dt =ay X,
dy ’
==,

where a and b are constants, stable with respect to constantly ope-
rating perturpbations?

The Lyapunov function that satisfies all the conditions of the
Malkin theorem is v=~b*x*+a’y®.

Thus the rest point x=0, y=0 is stable with respect to cons-
tantly acting perturbations.

Example 2. Do we have a stable rest point x;,=0 (i=1, 2,
., n) of the system

dx,-

dt =Eai/x/+Ri(tv Xys Xgy eeey Xp) (=12, ..., n) (432
i=1

with respect to constantly operating perturbations if all the a;; are
constant and the R; satisfy the conditions of the Lyapunov theorem,

n 1
page 230, that is ]Ri|<N<lzle>? ** @>0, N is constant, and

all the roots of the characteristic equation of the first-approximation
system are distinct and negative?

On page 231, after a change of variables that reduced the linear
parts of equation (4.32) to the canonical form, a Lyapunov function

v= ), y} was indicated that satisfied all the conditions of Malkin’s
i_.

=1
theorem; hence, the rest point x;=0 (i=1, 2, ..., n) is stable
with respect to constantly operating perturbations.

The same result may be obtained on the assumption that the real
parts of all the roots of the characteristic equation (multiple ones
may also occur among them) are negative; only in this case the
choice of the Lyapunov function is substantially more involved.

PROBLEMS ON CHAPTER 4

1. Test for stability the rest point x=0, y=0 of the system
dx

= —2x—3y + %,

d
=xt+y—y.
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2. Test for stability the rest point x=0, y=0, z=0 of the
system
d d
F=r*—y—z -E!;—=x+y—3z -%=x—5y—32.

3. For what values of a is the rest point x=0, y=0, z2=0 of

the system %’:—=ax—y, —Ety—=ay—z, -Z—:—=az—-x stable?
4. For what values of a does the system
dx
F=y+a‘x—x°o
dy
=y

have a stable rest point x=0, y=0?
5. To what limit does the solution of the differential equation

B (L= (=), x(1)=]
tend ag p— 0, for p>0, ¢>1?
o. ’I‘p what limit does the solution of the differential equation

p%’:—=x—t+5. x(2)=>5 tend as p -0, for p>0, £t >2?

7. Test for stability the rest point x=0, y=0 of the system of
equations

dx

-ﬁ=x+e¥—cosy,
; dy .

au= X—y—siny.

8. Is the solution x=0, y=0 of the following system of equa-
tions stable with respect to constantly operating perturbations:

ﬂ——2y—x‘,
dy

9. Is the solution x=0 of the equation

X+ 5x+2x4+20=0
stable?
10. Is the solution x==0 of the equation

X+ 5x+6x+x=0
stable?



4. THEORY OF STABILITY 249

I1. What type of rest point x=0, y=0 does the system of equa-
tions i g
X = LY 5x—
m—-x+3y. i =bx—y
have?

12. Determine the periodic solution of the equation x + 2x + 2x =sin ¢
and test it for stability.

13. x42x+5x+3x=cost. Is the periodic solution of this equa-
tion stable?
14. Test for stability the rest point x==0, y=0 of the system

x=y'+x, y=x4+4"
15. Test for stability the solutions of the system of equations
x=3y—2x+e,
y=5x—4y+2.
16. Test for stability the trivial solution of the equation
X+ 2%+ 3x+ 7sinhx=0.
17. Test for stability the trivial solution of the equation
X+(@—1)x+ (4 —a*)x=0,

where a is a parameter.
18. Is the solution x=0, y=0 of the system

x=3y—x, y=—4x—34

stable for constantly operating perturbations?
19. Is the trivial solution stable of the system

Xty=AX (),
where X (f) is a vector in three-dimensional space, and
1 2 0\

A= 01 1]}?
\1 3 1
20. Test the solutions of the equation

X+ 4x+ 5% =t
for stability.
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21. Test the solutions of the equation

x+4+9x=sint
for stability.
22. x+4x=cos?. Find the periodic solution and test it for sta-
bility.
23. Find the region of stability of
x+ax+(1—a)x=0.

24, x+ X+ a’x+5ax=0. Find the region of stability.



CHAPTER 5

First-order partial differential
equations

1. Fundamentals

As was pointed out in the introduction (page 13), partial diffe-
rential equations are differential equations in which the unknown
functions are functions of more than one independent variable.

Very many physical phenomena are described by partial differen-
tial equations. The equation

ou \? ou\? ou\?
(W) +<”5y—) +<W> =n(x, ¥y, 2)
describes the propagation of light rays in an inhomogeneous medium
with refractive index n(x, y, 2); the equation

W u
ot~ ox®

describes the temperature variation of a rod; the equation
Pu_ o Pu
9 =% G

is the equation of the vibration of a string; the Laplace equation

2u %u d%u
o T gt o7 =0

is satisfied by a field potential in regions devoid of charges, and
so forth.

In this chapter we will deal briefly only with methods of inte-
grating first-order partial differential equations, the theory of which
is closely associated with the integration of certain systems of ordi-
nary equations.

Higher-order partial differential equations, which are integrated
by quite different methods, are taken up in another book of this
series.

We consider a few elementary examples.

Example 1.

0z (x,
Ll =y+x.
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Integrating with respect to x, we get
2
2(x, Y)=xy+%5+o)

where ¢ (y) is an arbitrary function of y.

Example 2.
9% (x, y) =0 or g {E} =0.

Ox Oy ox | oy

Integrating with respect to x, we get —%=cp(y), where @ (y) is an
arbitrary function of y. Then integrating with respect to y, we have

z={ o) dy+e (2
where ¢, (x) is an arbitrary function of x. Or, writing

{ewdy=e. (),

we finally get
2(%, =0, () +¢,(y),

where @, (y), by virtue of the arbitrariness of the function ¢ (y),
is likewise an arbitrary differentiable function of y.

The foregoing examples suggest that the general solution of a
partial differential equation of the first order depends on one arbi-
trary function; the general solution of a second-order equation
depends on two arbitrary functions, and the general solution of a
pth-order equation most likely depends on p arbitrary functions.

These assumptions are true, but they require a more precise
statement. To refine them, we formulate a theorem of S. Kova-
levskaya on the existence and uniqueness of the solution of a par-
tial differential - equation.

Theorem 5.1 (Kovalevskaya’s theorem). There is a unique
analytic (in the neighbourhood of the point x,5, Xs5, .y Xn)
solution of an equation solved for one of the derivatives of maxi-
mum order

v I S N R
(;;‘7— X1y xzy LR xrn 2, axl) axnlzr se ey ax,ly—l’ axzv 0x16x2'

Ze .. ""’) (A)

axz’ oxh

that satisfies the conditions, for x=x,,,

0z
2=y (X5, X3, ..., Xp,), E=(p,(x,, Xy voey Xp)y oee

or-1z
...,axTT=(Pp_l(x3, X3y ooey x,,),
1
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if the functions @,, ¢, -« Qp_1 are analytic functions in the
neighbourhood of the initial point x,,, Xg, ..., X, and [ is an
analytic function in the neighbourhood of the initial values of its
arguments Xy, Xzgy «--r Xpos 20 =00 (X205 X305 +++» Xno)s

0z 0Pz 0P,
=— ) =@, (Xagy «vr Xpp)y o0y (—) =(—5 .
<ax1)o ¥ (¥ ) <0xﬁ>o ( oxn >x;=xu

The solution is given by specifying the initial functions ¢, ¢,,

.+» @p_y; by arbitrarily varying them in the class of analytic
functions, we get a collection of analytic solutions of the original
equation (A) that depends on p arbitrary functions.

We do not give the proof of this theorem which requires invok-
ing the theory of analytic functions.

2. Linear and Quasilinear First-Order Partial
Differential Equations

A nonhomogeneous linear equation or a quasilinear first-order
partial differential equation is an equation of the type

0z 0z
X, (%, X5y «ovy X, 2) Ev_,'{'X?(xl' Xgy oeny Xy 2) a—x,+"°

o2 (5.1)
e+ X, (X, Xy o, X, 2) E:Z(xl, Xy uey X 2).
This equation is linear in the derivatives but can be nonlinear in
the unknown function z.
If the right side is identically zero and the coefficients X; are not
dependent on 2, then the equation (5.1) is called homogeneous linear.
To make the geometrical interpretation more pictorial, we first
consider a quasilinear equation in two independent variables:

Pix, 1, 05+Q 4 9F=RE 4 2. 6.1

The functions P, Q and R will be considered continuous in the
range under consideration of the variables and not vanishing simul-

taneously.
Consider the continuous vector field

F=P(x, y, 2)i+Q(x, y, 2)j+ R(x, y, 2)k,

where i, j, k are unit vectors directed along the coordinate axes.

The vector lines of this field (i.e., lines, the tangent to which
at each point is in a direction coinciding with the direction of the
vector F at that point) are determined from the condition of
collinearity of the vector t=idx+jdy+kdz directed along the
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tangent to the desired lines, and of the field
//I;’ vector F:
// dx dy dz
ly

Pix,v2) Qv 4.2 R(x 4y 2"

1 Surfaces made up of vector lines, or, to be
more precise, surfaces completely containing vector
lines which have at least one point in common
Nf Hf with the surface, are called vector surfaces
(Fig. 5.1).
T It is obvious that vector surfaces may be
, obtained by considering the set of points lying
Fig. 51 on an arbitrarily chosen (continuously parameter-
dependent) one-parameter family of vector lines.
A vector surface is characterized by the fact that a vector N
directed normally to the surface is, at any point of the surface,
orthogonal to the field vector F:

(N-F)=0. (5.2)
If a vector surface is given by the equation z=f(x, y), then
the vector R R
r4 Z .,

and condition (5.2) takes the form
P(x, 4, D5+Q(x 4, DFE=R( 4 2. (6.3)

If a vector surface is given by the equation u(x, y, 2)=0 and
hence the vector N:Z—'; i+g—; j+% k, then the equation (5.2)
assumes the form

P(x,y D5+Q(x 4 25 +R(x 4, 5=0.  (.4)

Consequently, in order to find the vector surfaces, one has to
integrate the quasilinear equation (5.3) or the homogeneous linear
equation (5.4), depending on whether one seeks the equation of
the desired vector surfaces explicitly or implicitly.

Since vector surfaces may be made up of wvecfor lines, integra-
tion of equations (5.3) [or (5.4)] reduces to integration of a system
of ordinary differential equations of the vector lines.

Form a system of differential equations of the vector lines:

dx — dy dz
Px,yo2) Qx. 0.2 R(x 42" (5.5)
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Let ¥,(x, y, 2)=c, and YP,(x, y, 2)=c, be two independent
first integrals of the system (5.5). In arbitrary fashion we isolate
from the two-parameter family of vector lines ¥, (x, y, 2)=c,,

. (%, Yy, 2)=c,, which are called characteristics cf the equation
(5 3) [or (5.4)], a one-parameter family, thus establishing some kind
of continuous relation @ (c,, c,) =0 between the parameters ¢, and

.. Eliminating the parameters ¢, and ¢, from the system

P, (xv Y, Z)=Cl, P, (x- Y, 2)=Cz, (D(Cl, C,)=0,
we get the desired equation of vector surfaces:
@ (\Pl (x’ Y, Z), 1Pz (x’ Y, Z)) = 0: (5-6)

where @ is an arbitrary function. We have thus found the integral
of the quasilinear equation (5.3) that depends on an arbitrary
function.

If it is required to find not an arbitrary vector surface of a field

F=P(x, y, z)i+Q()f, Yy, 2)j+R(x, y, 2)k,

but a surface passing through a given line defined by the equa-
tions @, (x, y, 2)=0 and @, (x, y, z) =0, then the function @ in
(5.6) will no longer be arbitrary but will be determined by elimi-
nating the variables x, y, z from the system of equations

D, (x, y, 2)=0, D,(x, y, 2)=0.
Y (%, ¥, )=c P (%, Y, 2)=0,,

which must simultaneously be satisfied at the points of the given
line ®,=0 and ®,=0, through which we draw the characteristics
defined by the equations ¢, (x, y, 2)=c,, P,(x, y, 2)=c,.

Note that the problem becomes indeterminate if the given line
D, (x, y, 2)=0, O, (x, y, 2)=0 is a characteristic, since in this
case one may include the line in various one-parameter families of
characteristics and thus obtain various integral surfaces passing
through this line.

And so the integral of the quasilinear equation

Px, 4 25+Qx 4 9 =R(x 4, 2)

which depends on an arbitrary function, may be obtained in the
following manner: we integrate the auxiliary system of equations

dx dy dz
P(x,y.2) Q(x, 4.2 R(x, 4,2

and, finding two independent first integrals of this system
Y, (%, ¥, 2)=¢cy, Yy (x, ¥, 2)=¢y,
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we obtain the desired integral in the form ® (Y, (x, y, 2),
¥, (x, y, 2))=0, where @ is an arbitrary function.

The equation of the integral surface of the same quasilinear equa-
tion which passes through the given line defined by the equations
D, (x, y, 2)=0 and @, (x, y, 2)=0 may be found by taking the
above-mentioned function @ not arbitrarily, but by determining
the function @ (c,, ¢,) via elimination of x, y, z from the equations

@, (x. y. =0, @,(x, y. 2=0,

¥, (x, y, 2)=¢y, Y, (x, Yy, 2)=c,,
as a result of which we obtain the equation ®(c,, ¢,) =0, and the
desired integral will be ® (Y, (x, y, 2), ¥, (x, y, 2))=0.

Example 1. Determine the integral, dependent on an arbitrary
function, of the equation

xTay™
Form an auxiliary system of equations:
dx=dy=dz.

Its first integrals will be of the form x—y=c,, z—x=c,. The
integral of the original equation ®(x—y, z—x)=0, where @ is
an arbitrary function, or as solved for z: z-—x+(p(x—J) where ¢
is an arbitrary differentiable function.
Example 2. Find the integral surface of the equation
0z 0z 0
A
passing through the curve x=0, z=4"
Integrate the system of equations
A Ox Oy dz
—y x 0’
whence z=c¢,, x*+y*=c,. Eliminating x, y and z from the

equations

L4 yt=c,, z2=c, x=0 z=p

we get ¢, =c,, whence z= x*+44*.
Example 3. Find the integral surface of the same equation
62
X 5= y Ox =0

passing through the circle
z=1, FP+y=4 (5.7)

Since the given line (5.7) is a vector line (characteristic), the
problem is indeterminate. Indeed, the integral surfaces of the
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equations are all possible surfaces of rotation z=®@ (x*+y*), the
axes of rotation of which coincide with the z-axis. There obviously
exist an infinity of such surfaces of rotation passing through the
circle (5.7); for example, paraboloids of revolution z=x*+4y*—3,
lfiz=x’+y’. 2= —x"—y*+5, the sphere x*+y*+2*=5, and so
orth.

If the equation of the curve through which it is required to pass
an integral surface of the equation (5.1,) is given in parametric form:

X=Xy (). Yo=Yo(5), 2Z,=2,(s), (B)
then ordinarily the solution is conveniently sought in the paramet-
ric form:

x=x(, s), y=y(, s), z=z(t 9).
We introduce a parameter ¢ into the system (5.5) that defines the
characteristics, assuming

dx _ dy _ dz _

Px,yo2) Qxy. 2) R(x. gy 2
So that the characteristics should pass through the given curve,
we seek the solution of the system (5.5,) that satisfies, for ¢t =0
(or t=t,), the initial conditions

x=x,(s), y=1y,(s), z2=2,(s).

For such initial conditions and given s fixed, we get a characteris-
tic that passes through the fixed point of the curve (B). Given a
variable s, we get a family of characteristics

dt. (5.5,)

x=x(t, s), y=y(t, s), z2=2(t, s) (&)

that pass through points of the given curve (B) (it is assumed
here that the given curve (B) is not a characteristic). The set of
points lying on this family of characteristics (C) is what forms the
desired integral surface.

Example 4.
o0z
ox" oy
Fingi the iantegral surface that passes through the curve x,=s,
Y,=5", z,=5s
*The sygtem of equations that determines the characteristics is of
the form
dx= —dy=dz=dt.
Its general solution is
x=1t+c¢, Y= —1t+4q,, Z2=1+4c,.

17--378
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Using the initial conditions, we determine the arbitrary cons-
tants and finally get

x=t+s, y=—t-+s', z=t+4s

Let us now pass to the case of n independent variables. It is na-
tural to expect that the above-indicated solution scheme for the
three-dimensional case may be extended to the (n - 1)-dimensional
case as well.

Let us begin with a study of the homogeneous linear equation

0 )
Xl(xl’ Xy eeey x'l)a_:l-l_xl(xl’ Xgy ceoy xn)(')_;"" cee
e Xy K e, ) =0, (6.8)

where the continuous functions X;(x,, x,, ..., x,) do not vanish
simultaneously at any point of the region under investigation and
in that region have bounded partial derivatives.

We form an auxiliary system of equations

dx, _ dx, _ . dx,
Xy (xp X0 o0 x5)  Xo(Xyy X0 oovy %) 777 XXy, Xgh ..., X))

(5.9)

which, given the restrictions indicated above, satisfies the condi-
‘ions of the existence and uniqueness theorem.
We find the n—1 independent first integral of the system (5.9)

Py Xy, Xy oen, xn)=c1»
‘pz (xlv xz» LA ] x,,)=c,,

' wn—l(xh x?' AR | xn)=cn—l'

In a space with the coordinates x,, x,, ..., x,, this system of
integrals defines an (n—1)-parameter family of lines called the
characteristics of the equation (5.8) We shall prove that the left
side of any first integral ¢ (x,, x,, ..., x,)=c of the system (5.9)
is a solution of the original homogeneous linear partial differential
equation (5.8).

Indeed, the function y=c along any integral curve of the sys-
tem (5.9). Hence,

n
dyp=Y 3—}; dx; = 0. 5.10)
=1

along any integral curve But along the integral curve of the sys:
tem (5.9), the difierentials dx; are proportional to the functions X;;
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hence, since the left member of the identity

Z dx,:O

i=1

is homogeneous in dx,, the differentials dx;, may be replaced by the
quantities X;, which are proportional to them; and we then find
that along the integral curves of the system (5.9)

ap
;axlx =0. (6.11)

The integral curves of the system (5.9) pass through every point
of the given range of variables x,, x,, ..., x, and the left-hand
member of the identity (5.11) is not dependent on the constants
¢, €, ..., ¢,_, and, consequently, does not vary from one
integral curve to the next; hence the identity (5.11) holds true not
only along a certain integral curve but throughout the whole consi-
dered range of the variables x,, x,, ..., x, and this means that
the function ¢ is a solution of the original equation

n
Exi%=

It is obvious that @ (y,, ¥, .. P,_,)=c, where ® is an
arbitrary function, is a first integral of the system (5.9), since all
the functions ¢,, ¥, ..., ¥,_, are turned into constants along
the integral curve of the system (5.9); consequently, @ (y,, ¥

VP,_,) too becomes a constant along the integral curve of the
system (5.9). Hence, z= (p,, VYo o+ s Ppoy), Where @ is an
arbitrary differentiable function, is a solution of the homogeneous
linear equation (5.8).

We will prove that

z=®(1‘pl (xl- crc xn)’ ‘Pl (xn cee xn)v \Pn-l (xl.r te xn»
is the general solution of the equation (5.8).

Theorem 5.2. z=® (Y,, ¥,, ..., P,_,), Where ® is an arbit-
rary function, is the general solution of the equation

gxl(xl' Xgy ceey ,.)——-0 (5.8)

that is, a solution containing all the solutions of the equation with-
out exception.

17*
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Proof. Assume that z=1vy(x,, %, ..., x,) is some solution of
the equation (5.8) and prove that there is a function @ such that
1|>=(D(1P,, Yy, .o 1pn-l)- . .

Since Y and ¥,, ¢, ..., ¥,_, are solutions of the equation (5.8),
it follows that

n
o __
Z Xi ax,-'— 0'
=1
S
2 X Ga=0,
i=1
n s (512)

Regarding the system (5.12) as a homogeneous linear system of n
equations in X,;(é=1, 2, ..., n) and noting that this homogene-
ous system at every pomt Xy, X4 ..., x, of the given interval
has a nontrivial solution, since X;(x,, x,, ..., x,), by hypothesis,
do not vanish sxmultaneously, we come to the conclusion that the
determinant of this system

N oy w
ox, 0x, '°° 0x,
o o9, O
Ox; O0x, """ 0dx,
My Oy Oty
0xl OXQ 6xn
09—y 0Pn—y OPn-1
0x, Ox, ox,
is identically zero in the interval under consideration. However,
the fact that the Jacobian of the functions v, ¥,, ¥, y Ppoa

vanishes identically shows that there is a functional relation bet-
ween these functions:

F(‘Pv "Pl’ wl' e ‘pn—l)=0' (5'13)
By virtue of the mdependence of the first integrals ¥, (x,, x,, ...
x,)=¢; (i=1, 2, ..., n—1) of the system (5.9), at least

one of the minors of the (n— 1)th order of the Jacobian
DY, ¥, $ar .- ¥n-1)

D (x;, %3, X3, .00, Xp)
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of the form
D1y $2r --- 0 )

D (xy,s Xqp -+ Xgp_y)

is nonzero. Hence, equation (5.13) may be given in the form
‘J’:(D(‘pn Pgy eees \pn-l)-
Example 5. Integrate the equation

n

> x 2 <o (5.14)
i=1 t
The system of equations defining the characteristics is of the form
dx, dx, _ __dx,
}‘— = Y; = ... = Z .
The independent first integrals of this system are
;_:=cl) :—:=czv ceey x';_":l=cn—l'

The general solution of the original equation
X x Xp-
=05 o )
is an arbitrary homogeneous function of degree zero.

Euler’s theorem on homogeneous functions asserts that homogene-
ous functions of degree zero satisfy the given equation (5.14); we
have now proved that only homogeneous functions of degree zero
possess this property.

A nonhomogeneous linear equation of the first order

EX.,-(xl, Xgy ooey Xp, z)g—;=l(x,, Xgy veo, X, 2), (5.15)
i=1

where all the X; and Z are continuously differentiable functions that
do not vanish simultaneously in the given range of the variables
Xy, Xy ..., X, 2, is integrated by reducing it to a homogeneous
linear equation.

For this purpose, as in the case of three variables, it suffices to
seek the solution z of the equation (5.15) in implicit form:

U(Xy, Xg9 200y X, 2)=0, (5.16)
where g—:;&o.

Indeed, assuming that the function z=z(x,, x,, ..., x,) is de-
termined from the equation (5.16), and differentiating the identity

WXy Xg0 ooy Xy 2(%y, Xgy o0, X,))=0
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with respect to x;, we get

ou 02
ax, +a o =0
whence
du
0z Ox;
ox; o’
9z

Substituting —zf into (5.15), multiplying by -—3—': and transposing

all terms to the left-hand side of the equation, we get the homo-
geneous linear equation

3 o
in(xv Xy cve v Xpy z)g_;‘,+z(xp Xgy ooy Xy 2)5’;‘=0‘ (517)

which the function u« must satisfy; however, this only on the
assumption that z is a function of x,, x,, ..., x, defined by the
equation u(x,, %, ..., x,, 2)=0.

Thus, we have to find the functions u that reduce the hLomo-
geneous linear equation (5.17) to an identity by virtue of the
equation

U(xy, X5 oov, X, 2)=

First find the functions u that reduce the equation (5.17) to an
identity, given independently varying x,, x,, ..., x, 2. All such
functions u are solutions of the homogeneous equation (5.17) and
may be found by a method we already know: we form a system
of equations that defines the characteristics

dxy _ dx, _
Xy(%yy X0 oons X, 2) Xa(xy, Xo0 ... X5 2) "7
dx,, B da . (5.18)
=X, Cr Xar s X 2) Z(xy, Xy ..., X 2)°

we find n independent first integrals of this system:

P, (%, X3 o0y X, 2)=0¢y,
‘pl (xl' Xgy oeey Xp Z)"—‘Cz,

............

¥, (X, X5y ...y X, 2)=Cp
then the general solution of (5.17) is of the form

u=® by Yo -o- . V),
where @ is an arbitrary function.
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The solution 2z of equation (5.15), which depends on an arbit-
rary function, is determined from the equation

w(x, X .-, X, 2)=0 or O(Y,, ¥;, ..., P,)=0.

However, besides the solutions found by this method there may
be solutions z which are determined from the equations u (x,, x,, ...

., X, 2)=0, where the function « is not a solution of the
equatnon (5.17), but reduces this equatlon to an identity only by
virtue of the equation wu(x,, x,, ..., %, 2)=0. Such solutions
are called special.

In a certain sense, there are not very many special solutions;
they cannot even form one-parameter families.

Indeed, if the special solutions formed a one-parameter family
and were defined by the equation

uX,, X5 ..., X, 2)=¢, (5.19)

where ¢ is a parameter, ¢, <<c<Cc,, then the equation (5.17) should
reduce to an identity by *virtue of the equation (5.19) for any c.
But since (5.17) does not contain ¢, it cannot reduce to an identity
by virtue of (5.19), which contains ¢, and, hence, must be an
identity with respect to all the variables x,, x,, ..., x,, z which
vary independently.

The last statement admits of a simple geometrical interpretation.
When we say that the equation (5.17) reduces to an identity by
virtue cf the equation u(x,, x,, ..., x, 2)=0, we assert that
(5.17) reduces to an identity at points of the surface u=0, but
cannot reduce to an identity at other points of the space
X, Xy ..., X, 2z But if equation (5.17), which dces not con-
tain ¢, reduces to an identity by virtue of the equation u=c,
where ¢ is a continuously varying parameter, then this means that
the equation (5.17) reduces to an identity on all surfaces u=c,
¢, <c<c, that donot intersect and that fill a certain part D of the
space X, X, ..., X,, 2 and, hence, (5.17) reduces to an identity
in the domain D for mdependently varying x,, X,, ..., X,, 2.

In concrete problems it is ordinarily required to find the "solu-
tion of the equation (5.15) that satisfies some other initial condi-
tions as well, and since there are comparatively few special solu-
tions in the above-indicated meaning, only in quite exceptional
cases will they satisfy the initial conditions; for this reason it is
only in rare cases that they need to be allowed for.

Example 6. Integrate the equation

n
‘_le, a;—pz, (5.20)
where p is a constant.
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The system of equations

$1_ *a _ fn-1__ 2 _
xn—'cb X, c’» ’ X, el 7S ¢ xz'—cn'
Hence, solution z of the original equation is determined from the
equation
X X Xp— 4
(D —l. —z, cee o n—l, ‘—p =0,
Xn Xp Xn Xa
whence
X X X
=xPp (X2 X X n-1
z x,.mp(x", T )

And so the solution is an arbitrary homogeneous function of degree p.
It may be proved that the equation (5.20) does not have special
integrals and, hence, Euler’s theorem on homogeneous functions is
invertible, that is, only homogeneous functions of degree p satisfy
the equation (5.20).
The concept of a characteristic can be extended to systems of
quasilinear equations of the following special type:

P(x, y, u, v)?,—‘;+Q(x. Y, u, v)g—;=ll'?. (*, 4 u, ),

dv v D)
P, y, u, v)5+Qex ¥ 4, v)@=R,(x, Y, u, V).
The characteristics of this system are the vector lines of a vector
field in the four-dimensional space
F=P(x, y, u, V) i+Q(x, y, u, V) j+ Ry(x, y, u, v) k; + Ry(x, y, 4,0) k,,
where |, j, k,, k, are unit vectors along the respective axes (x, y u and v).
The characterisctics are defined by the system of equations
dx _ dy _ du _ du (E)
P(Z. Y, u, U)—Q(x, !/: u, v)—Rl(xt Yy, u, U)—R’(x. Y, 4, U) ’

The system of equations (D) is written as follows in vector
notation:

(F-N,)=0 and (F-N,)=0,
where N, and N, are vectors with the coordinates (g—:, g—:, —1,0)

and (3, 52,0, —1) and directed normally to the desired three-

dimensional cylindrical surfaces u=u (x, y) and v=v(x, y), res-
pectively.
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Hence, from the geometrical point of view, integration of the
system (D) reduces to finding two three-dimensional cylindrical
surfaces u=u(x, y) and v=v(x, y), the normals to which are
orthogonal to the vector lines at the points of intersection of the
surfaces.

It is obvious that this condition will be fulfilled if the two-
dimensional surface S, on which, generally speaking, the three-
dimensional cylindrical surfaces u=u (x, y) and v=v(x, y) inter-
sect, consists of vector lines, since these vector lines will lie simul-
taneously on the surfaces u=u(x, y) and v=v(x, y) and, conse-
quently, will be orthogonal to the vectors N, and N,. If we take
any two—independent of u and v—first integrals @, (x, y, u, v)=0
and @, (x, y, u, v)=0 of the system(E), inother words, if we take
two three-dimensional vector surfaces, we will, generally speaking, get,
at their intersection, the two-dimensional surface S, which consists
of vector lines; for if a certain point belongs simultaneously to the
vector surfaces @, (x, y, u, v)=0 and @, (x, y, u, v)=0, then the
vector line passing through this point also lies in each of these
surfaces.

Solving the system of equations @, (x. y, 4, v)=0 and
D, (x, y, u, v)=0 for u and v, we get the equations of two three-
dimensional cylindrical surfaces u=u(x, y) and v=uv(x, y) that
intersect along the same two-dimensional surface S which consists
of vector lines. Hence, the functions thus found, u=u(x, y) and
v=uv(x, y), will be solutions of the original system.

The solution of the system (D) which is dependent on two arbit-
rary functions may be found by applying the same method, but
taking the first integrals of the system (E) in the most general
form:

ml (wl (x’ y’ u' v)' \I;.,_(x, y' u’ v)’ \ps (x' y' ut v))=0t} (F)
O, (Y, (x, 9, u, V), Yy (%, Y, 4, V), ¥, (x, y, u, v))=0,
where ¥, (x, y, ¥, V), P, (x, y, u, v) and P, (x, y, u, v) are inde-
pendent first integrals of the system (E), and @, and @, are arbitrary
functions (see page 259).

The equations (F) define the solutions u(x, y) and v(x, y) of
the system D as implicit functions of x and y, which are dependent
on the choice of arbitrary functions ®, and ®,, if the composite
functions @, and ®, are independent with respect to u and v.

3. Pfaffian Equations

In Sec. 2 we considered two problems that arose naturally in
the study of the continuous vector field

F=P(x, y, 2)i+Qx, y, 2)j+R(x, y, 2)k.
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These were the problems of finding vector lines and vector surfaces.

A problem that arises almost as frequently is that of finding the
family of surfaces U (x, y, z)=c that are orthogonal to the vector
lines. The equation of such surfaces is of the form (F-t)=0,
where t is a vector lying in the plane tangential to the desired
surfaces:

t=idx+jdy+kdz,

or, in expanded form,

P(x, y, 2)dx+Q(x, y, 2)dy+R(x, y, 2)dz=0. (5.21)

‘Equations of the form (5.21) are called Pfaffian equations.
If the field F= Pi+Qj+ Rk is potential:

. au ou au
F=gradU, i.e. P=g -, Q=5y_, R=%;,

then the desired surfaces are level surfaces U (x, y, 2)=c of the
potential function U. Here it is not difficult to find the desired
surfaces, since

* ¥

2)
U= S Pdx4-Qdy+Rdz,

(X0, Yos 20)

where the line integral is taken along any path between the chosen
fixed point (x,, y,, 2,) and the point with variable coordinates
(x, y, 2), for example, along a polygonal curve consisting of straight-
line segments parallel to the coordinate axes.

But if the field F is not potential, then in certain cases it is
possible to choose a scalar factor p(x, y, 2) such that when it is
multiplied by the vector F the field becomes potential.

If such a factor exists, then pF =grad U or

ou ou ou
pP =5 BR=5 . BR=5
and, consequently,
0(pP) _0(pQ) 0(nQ)_9(#R) 9 (rR)_9(nP)

dy ox ° 0z dy ° ax oz °*
or
®_0_1(gk _p
dy O0x n ox ay)’
90Q_ R _ 1 [pop  op
0z oy p (Ray—Q?ﬁ) ’
9R oP 1 op ou
ox oz ——(PEE_REt)

Multiplying the first of these identities by R, the second by P and
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the third by Q and adding all three identities termwise, we get
the necessary condition for the existence of the integrating factor p.:

() + {32 + o)

or (F-rot F)=0, where the vector rot F—the field rotation—is
defined by the equality

o F= (18] 1+ (2 20) 1+ (B

If this condition, known as the condition of fotal integrability
of the equation (5.21), is not fulfilled, then there does not exist a
family of surfaces U (x, y, 2z) =c that are orthogonal to the vector
lines of the field F(x, y, 2).

Indeed, if such a family U (x, y, z)=c existed, the left side of
(5.21) could differ from

ou ou au

solely in a certain factor p(x, y, 2), which would then be an
integrating factor for the equation (5.21).

Thus, for a family of surfaces U (x, y, z2)=c orthogenal to the
vector lines of a vector field F to exist, it is necessary that the
vectors F and rot F should be orthogonal, that is (F-rotF)=0.

Note. The condition (F-rot F)=0 is also called the condition for
integrability of the Pfaffian equation P dx 4+ Qdy+ Rdz=0 by one
relation U (x, y, 2)=c.

Sometimes it is not the surfaces orthogonal to the vector lines
of the field F that have to be determined, but the lines that have
the same property; in other words, it is necessary to integrate the
Piaffian equation by two relations, not one:

U (%, y 9)=0 and U,(x, y, 2)=0. (5.22)

To find such lines, one can arbitrarily specify one of the equations
(5.22), for example,
U,(x, y, 2)=0, +(5.23)

and, with the aid of (5.23), eliminating from (5.21) one of the
variables, say z, we get a differential equation of the form

M (x, yydx+ N (x, y)dy=0;

integrating this equation we find the desired lines on an arbitrarily
chosen surface U, (x, y, z)=0.

We shall show that the condition (F-rotF)=0 is not only ne-
cessary but also sufficient for the existence of a family of surfaces
that are orthogonal to-the vector lines.
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Note that on the desired surfaces U (x, y, z)=c, the equation
Pdx+Qdy+Rdz=0

must reduce to an identity or, what is the same thing, on these
surfaces the line integral

(Pdx+Qdy+Rdz (5.24)
L

must be zero over any path (including open paths).

Let us consider all possible rotation surfaces, that is, wvector
surfaces of the field rot F. Quite obviously, by virtue of the Stokes
theorem

SF dr=SSrotF-ndo,
C D

where dr=idx+4jdy+kdz, and the integral (5.24) is zero over
any closed path on the rotation surface (since the scalar product
of the unit vector of the normal to the surface n and the vector
rot F is zero) Now, from among the rotation surfaces let us choose
those on which all the integrals

SFdr:Sde-f—Qdy-{-Rdz

L L

are likewise zero over open paths. To construct such a surface that
will pass through a given point M (x,, y,, 2,), draw through this
point M a line that is orthogonal to the vector lines of the field F.
Such lines are defined by the equation

Pdx+Qdy+ Rdz=0, (5.21)

to which is added the equation of an arbitrary surface z=f(x y),
passing through the point M (the equation of this surface is most
often taken in the form of z=f,(x) or z=f,(y) or even in the
form of z=a, where a is a constant). Putting z=f (x, y) into (5.21),
we get an ordinary equation of the form

M (x, y)dx+N (x, y)dy=0,

by integrating this equation and taking into consideration the ini-
tial condition y(x,) =y, we get the desired curve ! which passes
through the point M (x,, y, 2,) and which is orthogonal to the
vector lines (Fig. 5.2).

If this line is not a rotation line, then by drawing a rotation
line through each point of the line !, we get the desired surface S,
which is orthogonal to the vector lines of the field F.
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Indeed, taking any unclosed curve L on the surface S(Fig. 5.2)
and drawing rotation lines through its boundary points to intersection
with the curve ! at the points p, and p,, we get a closed contour
consisting of the segment of line ! between p, and p,, the curve L
and two rotation lines.

The line integral Ssz+Qdy+ Rdz taken along this closed
c
path C is zero, since the path lies on the rotation surface while
the same integral taken in a segment of the arc / and over segments
of the rotation lines is zero,
since the arc ! and the rota-
tion lines are orthogonal to
the vector lines of the field
F (therotation lines are ortho-
gonal to the vector lines of
the field F by virtue of the
condition (F -rot F) = 0). Hence

the integral § Pdx+Qdy +

L
+ Rdz along an arbitrarily

chosen open path L is zero,

i.e., the surface S is an integ-

ral surface of the equation Fig. 52

(5.21) passing through the

given point M.

This method for proving the sufficiency of the condition (F-rotF)=0
for the existence of a family of surfaces orthogonal to the vector
lines of the field F also points a way (true, not the shortest) to
find these surfaces.

Example 1.
2dx + (x—y)dy+2ydz=0.

The condition (F-rot F)=0, where F=zi+(x—y)j+yzk, is
not fulfilled, hence, this equation cannot be integrated by means
of one relation.

Exampie 2.
(6x + yz) dx + (xz2—2y) dy + (xy +22) dz =0,
Since rot F =0, where F = (6x+ y2)i+ (xz2—2y) j + (xy + 22) k, it
follows that F=grad U, where

x, 4, 2)

U= (6x+yz)dx+(xz2—2y)dy + (xy + 22) dz.
0, 0, 0)
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For the path of integration we choose a polygonal line the segments
of which are parallel to the axes of coordinates. Integrating, we
get U =3x*—y*+ 2*+ xyz and, hence, the desired integral is

o —y + 22 4 xyz=c.
Example 3.
yzdx+2xzdp + xydz=0,
F =yzi + 2x2j + xyk, rot F=— xi+ 2k.

The integrability condition (F-rotF)=0 is fulfilled. On some
surface, say on the plane z=1, we find curves that are orthogonal
to the vector lines:

z=1, ydex=2xdy=0, xy*=a.

Through the curves of the family z=1, xy*=a we draw rotation
surfaces; to do this we integrate the system of equations of rotation
lines:

dx ___dy dz
== T)-——, y=¢C, x2=¢,

Eliminating x, y and z from the equations z=1, xy*=aqa, y=c,,
xz=c¢,, we cet cic,=a. Hence, the desired integral of the original.
equation is of the form xy’z=a.

Note. Another common way of integrating the Pfaffian equation
P(x, y, 2)dx+Q(x, y, 2)dy+ R (x, y, 2)dz=0 (5.21)
is to temporarily consider z (or some other variable) fixed and in-
tegrate the ordinary equation
P(x, y, 9ydx+Q(x, y, 2)dy=0, (5.25)
in which z plays the role of a parameter.
Having obtained the integral of the equation (5.25)
U, y, 2)=c(2), (5.26)
in which the arbitrary constant may be a function of the parame-

ter z, we choose this function c¢(2) so that equation (5.21) is satis-
fied. Diﬂerentiating (5. 26), we get

Lar+ % dJ + [———c' (z)] dz=0 (5.27)

The coeffiicients of the dnﬂerentlals of the variables in the equa-
tions (5.21) and (5.27) must be proportional:

oUu 9u U
ox ay 0z

P Q R

—c (2)
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LT
From the equation %=25—?—- it is possible to determine ¢’ (2)

since one can prove that, provided the condition (F-rotF)=0 is
fulfilled, this equation contains only 2, ¢’ (2) and U (x, y, 2) =c(2).

4, First-Order Nonlinear Equations

First let us consider a case where the desired function depends
on two independent variables. First-order partial differential equa-
tions in three variables are of the form

F(x, y, 2, p, =0, (5.28)
where
__ 0z __ 0z
p""a_xi q""@’

The differential equation (5.28) establishes, at every point
(%, y, 2) of the region in which the first three arguments vary, the
relation @ (p, g)=0 between
the numbers p and ¢ which
define the direction of the
normal N (p, g, —1) to the desi-
red integral surfaces 2=z (x,y)
of equation (5.28).

Thus, the direction of the
normal to the desired integral
surfaces at a certain point
(x, y, 2) is not defined exa-
ctly; there is only isolated a
one-parameter family of pos
sible directions of normals—a
certain cone of admissible Fig. 53
directions of the normals
N (p, g, —1), where p and ¢ satisfy the equation ¢ (p, g) =0 (Fig. 5.3).

Thus, the problem of integrating the equation (5.28) reduces to
finding the surfaces z=2z(x, y), the normals to which would, at
every point, be directed along one of the permissible directions of
the cone of normals at that point.

Proceeding from this geometric interpretation, we shall indicate
a method of finding the integral of the equation (5.28) which de-
pends on an arbitrary function, if its integral @ (x, y, 2, a, b)=0
that depends on two parameters a and b is known.

The integral ®(x, y, z, a, b)=0 of (5.28), which depends on
two essential arbitrary constants a and b, is called the complete
integral.
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Since the original differential equation (5.28) imposes restrictions
solely on the direction of the normals to the desired integral sur-
faces, every surface, the normals to which coincide with the nor-
mals to the integral surfaces at the same points, will be an inte-
gral surface. Consequently, the envelopes of a two-parameter or
one-parameter family of integral surfaces will be-integral surfaces,
since the normal to the envelope coincides with the normal to one
of tile integral surfaces of the family passing through the same
point.

The envelope of a two-parameter family of integral surfaces, on
the assumption of the existence of bounded partial derivatives

%—%, %!;, %‘z—) not vanishing simultaneously, and the existence of the
derivatives ‘-2% and %%, is defined by the equations
@ (x, y, 2, a, b)=0, % =0, %—obi=0. (5.29)

We also obtain an integral surface by isolating from the two-
parameter family of integral surfaces @ (x, y, 2, a, b)=0, in arbit-
rary fashion, a one-parameter family (to do this, we take b as an
arbitrary differentiable function of the parameter a); and in finding
the envelope. of the one-parameter family ®(x, y, 2, a, b (a@))=0,
we also obtain an integral surface. Assuming that bounded deriva-
tives of the function @ exist with respect to all arguments and that

the derivatives 9 90 9D 45 not vanish simultaneously, the enve-

ox ' oy ' o0z
lope of this one-parameter family is ziven by the equation

D (x, y, 2, a, b(a))=0 and a%{(D(x, Yy, 7 a, b@}=0

or

®x, 5,20 b@=0 and 2+ %p@=0 (530

These two equations define a set of integral surfaces that depends
on the choice of an arbitrary function b=0b(a). Of course, the pre-
sence in equation (530) of an arbitrary function does not permit
us to assert that the equations (5.30) define the set of all integral
surfaces of the original equation (5.28) without exception. For
example, this set, generally speaking, does not contain the integral
surface defined by the equations (5.29), but still the presence of an
arbitrary function in (5.30) is usually sufficient for one to isolate
an integral surface that satisfies the given initial Cauchy condi-
tions (see page 252).

Thus, knowing the complete integral, it is possible to construct
an integral that depends on an arbitrary function.



5. FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 273

In many cases, it is not at all difficult to find the complete
integral, for instance:

(1) 1f equation (5.28) is of the “form F(p, 9=0or p=9¢(q),
then by putting ¢=a, where a is an arbitrary constant, we get

p=¢(a), dz=pdx+qdy=e¢(a)dx+ady,
whence
z2=¢q(a)x+ay+b
is the complete integral.
(2) If equation (5.28) can be reduced to the form ¢, (x, p) =

= @, (y, q), then, putting ¢,(x, p)=e,(y, g§)=a, where a is an
arbitrary constant, and solving (if this is possible) for p and ¢, we

get p=¢| (x, a)» q=1p: (yv a)v
dz=pdx—+qdy=1, (x, a)dx+ 9, (y, a)dy,
z={ 4, (x. 9)dx+ (b, (¢, @)y +b

is the complete integral.
(3) If the equation (5.28) is of the form F(z, p, g)=0, then by
putting z=2z(u), where u =ax+y, we obtain
dz dz
F(z a, g du) =0.
Integrating this ordinary equation, we get z=® (u, a, b), where b
is an arbitrary constant, or
z=® (ax+y, a, b)
is the complete integral.
(4) If the equation (5.28) is of a form resembling the Clairaut
equation:
z=px+qy+9(p, 9,
then, as may be readily verified by direct substitution, the comp-
lete integral is
z=ax+by+e(a, b).
Example 1. Find the complete integral of the equation p=23¢®
g=a, p=23da®, dz=3a’dx+ady,
2=23a’x+ay+b.

Example 2. Find the complete integral of the equation pg=2xy.
§=Y-o poan o= di-arariYay

x g
ax?

z=—-+ +b

18--378
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Example 3. Find the complete integral of the equation 2*= pq®.

dz dz
2=2(u), where u=ax+y, P=a4., 4=—g>

1

s—a (%) or ¥ =az where a,=a” ¥
T=a\du du~ © 17 ’

In|z|=a,u+Inb, z=0ben,
()
z=be \%1 /|
Example 4. Find the complete integral of the equation
z=px+qy+p'+q".
The complete integral is
z2=ax+by+a*+b.
In more complicated cases, the complete integral of the equation

F(x, y, 2, p, =0

is found by one of the general methods.
The simplest idea is that underlying the method of Lagrange and
Charpit. In this method, an equation

Ui, y, 2, p q)=a (5.31)
is chosen for the equation
F(x, y, 2, p, 9=0 (5.28)

so that the functions p=p(x, y, 2, @) and g=gq(x, y, 2, a), which
are determined from the system of equations (5.28) and (5.31),
should lead to the Pfaffian equation that is integrable by a single
relation

az=p(x, y, 2,a)dx+q(x, y, 2, a)dy. (5.32)

Then the integral of the Pfaffian equation ®(x, y, z, a, b)=0,
where b is an arbitrary constant appearing during integration of
(5.32), will be the complete integral of the equation (5.28). The
function U is determinad from the integrability condition of the
equation (5.32) by single relation:

(F-rotF)=0, where F=p(x, y, 2 a)i+q(x, y, 2, a)j—Kk,
that is, in expanded form, from the equation

09 op Op , 9q
P 9% % + 5, =0 (5.33)
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The derivatives 94, %2, %2 94 gp, computed by differentiating the

dx' Oy’ 9z O¢
identities
F(x, y, 2, p, 9=0, }
5.34
Ux, y, 2, p, 9=a, (6:34)

in which p and ¢ are regarded as functions of x, y and 2z, which
are defined by the system (5.34).
Differentiating with respect to x, we get

OF dp , OF 9q
+i')p ox Togax=0
dp , 90U 9q
-0_x+0p xtoa=0
whence
D (F, U)
9 __ __ D x
0x D(F, U) °
D(p. 9
Similarly, defferentiating (5.34) with respect to y and determining
g—;’, we have
D (F, U)
0'.1 D (!l, q)
By D(F, v) -’
D(p, 9)
Differentiating (5.34) with respect to z and solving for g—:, gg. we
will have )
D (F, U)
dp _ D (z, 9)
0z D(F, U’
D(p, q)
D (F, U)
99 _ D(p, 2)
9z ~ D(F O)
D(p. 9)

Substituting the computed derivatives into the integrability condi-
tion (5.33) and multiplying by the determinant QD(—(I;'—:?, which
we assume to be different from zero, we get '

OFoU O0F U OF 0U  oF oU

(o—5a)+e(F 535+

/dF oU 0FOU)+(0FOU r)FdU)_O

\oy 9 ~og 9y ) T \ox 9p —3p ox
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or

OF 3U | OF oU oF . 9F\aU
op 3% 737 0y+(p35+q53>'0_

2
—(F+ry) 55— +am) 5 =0 (5 35)

To determine the function U we obtained a homogeneous linear
equation (5.35), which may be integrated by the method indicated
in Sec. 2 of this chapter: an equation of the characteristics is
formed:

dx __dy __ dz _ dp _ dg
9F T OF 6F+ oF — ~ OF N oF — ~ OoF oF ' (5.36)
@ 9 Py Ti%g ox TP oy T9%z

then at least one first integral of the system (5.36) is found,
Ui(x, 9, 2, p, 9)=a,
and if the functions F and U, are independent of p and gq, i.e.
‘l’)‘::‘{;)’;eo, then the first integral U, (x, y, z, p, q) will be the
desired solution of the equation (5.35).
Thus, by determining p=p(x, y, 2, @) and ¢g=4q(x, y, 2, a) from
the system of equations
F(x’ Y, 2, p, Q)=O.
Ul (xo !/. Z, P» q)=a
and substituting into
dz=p(x, y, 2, a)dx+q(x, y, 2, a)dy,
we get the Pfaffian equation integrable by a single relation, which,
when solved, yields the complete integral of the original equation:
D, y 2 a b)=0

Example 5. Find the complete integral of the equation

yzp* —q=0. (56.37)
The system (5.36) is of the form
dx —dy = 2 ___dp ___ dp
Wz~ W =g T Ty T it

Taking advantage of the original equation, we simplify the deno-
minator of the third ratio and obtain the integrable combination

dz dp
—— =— ——, whence
plyz pPY

p= ; ) (5.38)
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From equations (5.37) and (5.38) we find p=%, q="—zy, whence
dz=%dx+%y—dy. Multiplying by 2z and integrating, we find the
complete integral of the original equation z*=2ax- a’y*+ .
Knowing the complete integral ®(x, y, 2, a, b)=0 of the
equation
F(x, y, 2, p, 9=0,

it is, generally speaking, possible to solve the basic initial prcblem
(see p. 252) or even the more general problem of determining the
integral surface that passes through a given curve,

x=x(t), y=y (), z=2z(). (5.39)
Define the function b=20(a) so that the envelope of the one-para-
meter family
D(x, y, 2, a, b(a)=0, (5.40)
defined by the equations (5.40) and
a |, 00 ,,
S+t (@) =0, (5.41)

should pass through the given curve (5.39).
At points of the given curve, both equations (5.40) and (5.41)
with respect to ¢ reduce to identities:
O (x(t), y(&), 2(¢), a, b(a))=0 (5.42)
and

90 (x (1), %‘(zt), a, b(a))+0® (x (), y(%.bZ(l), a, b(a) b'(a)=0. (5.43)
However, it would be rather complicated to determine the function
b=0b(a) from these equations. It is much easier to determine this
function from the system of equations (5.42) and

SrO+Ly 0+ 7 w=0. (5.44)
or in abbreviated notation
(N-t)=0.
where t is the vector of the tangent to the given curve
x=x(t), y=y (), z=2(1), (5.39)

and N is the vector of the normal to the surface ® =0, and hence
also to the desired envelope at the appropriate points. The condi-
tion (5.44) is geometrically obvious, since the desired surface must
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pass through the given curve and, consequently, the tangent to
this curve must lie in the plane tangential to the desired surface.

Example 6. Find the integral surface of the equation z=px+
+qy+£§- that passes through the curve y=0, z=x

The complete integral of this equation (see case (4) on page 273)
is of the form z=ax+by+%. The equation of the given curve

may be written in parametric form x=¢, y=0, z=1¢>.
To determine the function b=b(a), we form a system of
equations (5.42) and (5.44), which in the given case are of

the form t"=at+9¢f and 2f{ =a, whence b= —a, z=a(x—y)—%2 .
The envelope of this family is determined by the equations

rmae— -2

and
x—y——;—=0.
Eliminating a, we get z=(x—y)".

If the system (5.36) (page 276) is easy to integrate, then the
method of characteristics (Cauchy's method—see below) is very con-
venient for solving the generalized Cauchy problem that has been
posed.

The integral surface z=z(x, y) of the equation

F(x, y, 2, p, 9=0

that passes through the given curve

Xo=X,(S), Yo=1Ys(S), 2,=2,(5)

may [as in the case of the quasilinear equation (see page 256)] be
pictured as consisting of points lying on a certain one-parameter
family of curves

x=x(t, s), y=y(t, s), z=2(t, 9),

where s is the parameter of the family, called characteristics.

First we find the family of characteristics that depends on seve-
r?l t{)arameters, and then, drawing the characteristics through points
of the curve

X, =X, (5), Yo=Y, (), 2,=2,(5)

and satisfying certain other conditions as well, we isolate the one-
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parameter family of curves in which s may be taken as the para-
meter:
x=x(t, s), y=y(t, s), z2=2z(t, s)

(Fig. 5.4). The set of points lying on these curves is what forms
the desired integral surface. That in brief is the underlying idea
of Cauchy’s method.

Let z=2z(x, y) be the in-
tegral surface of the equation

F(x, y, 2z, p, 9)=0. (5.45)
Then, by differentiating the

identity (5.45) with respect z=(Ls)
to x and with respect to y, {,’;{,’,‘53
we get
dp 99 __ -
Fx+sz+FPa_x+Fq5;—0| Z=%/"I)
2,=25(8,
Fy+qF.+F, 2+ F, 2 =0, ’
or, since g—z-:%’-, we have Fig. 54
op ap
F.+F,p +FP&+an—y= ,
F,+Fq+F % 4+F % _g (5.46)
y Zq+ pax+ q ay *

The equations of the characteristics for the system of equations
(5.46), which is quasilinear in p and ¢, and z is considered a known
function of x and y, are of the form (see p. 264)

dx dy dp dq

=dt. (5.47)

F, _ F, FetpF,~ — F,¥qF,
Since 2z is connected with p and g by the equation
dz=pdx+qdy, (5.48)
it follows that, along the characteristic,
d dx d
o =P G99 =pF,+qF,
or
- _dt 5.49
PPt aF, .49)

which enables us to supplement the system (5.47) with yet another
equation (5.49).
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Thus, assuming that z=2z (x, y) is the solution of equation (5.45)
we arrive at the system
dx __dy _ dz dp
Fq pr+qu Fx+sz y+qF
From (5.50) it is possible, without knowing the solution z=2z(x, )

of the equation (5.45), to find the functions x=x(f), y=y(¢),
z=2(t), p=p(t), g=q(¢); that is, we can find the curves

x=x(), y=y), z=z(),

called characteristics, and in each point of a characteristic we can
find the numbers p=p(¢f) and ¢ =gq(¢) that determine the direction
of the plane

—dt. (5.50)

Z—z=p(X—x)+q(Y—y). (5.51)

The characteristic, together with the plane (5.51) referred to each
of its points, is called a characteristic strip.

We shall show that it is possible, from characteristics, to form
the desired integral surface of the equation F(x, y, 2, p, q)=0.

First of all note that the function F retains a constant value
along the integral curve of the system (5.50):

Fx, y, 2z, p, 9)=c,
in other words, the function F(x, y, 2, p, q) is a first integral of

the system (5. 50)
lndeed along the mtegral curve of the system (5.50).

d
F(x Y, 2, p, 9=F x4l +Fy +F‘df+FPd7+ th
=Fpr+ F,Fy+ F, (pF ,+qF))—F ,(F,+pF,)—F, (F, +qF,)=0
consequently, along the integral curve of the system (5.50),
F(x, y, 2, p, 9=c, where c=F(x, Yo. 2o, Po q0)-

In order that the equation F (x, y, 2, p, q)=0 should be satis-
fied along the integral curves of the system (6.50), the initial
values X, (s), Yo (5), 2, (S), Po(S), go(s) must be chosen so that they
will satisfy the equation

F (%o Yo» 20r Por o) =0.
lntegratmg the system (5.50) for initial values x,=x,(s), y,=
=Y, (5), 2,=2,(5), Po=P,(5), qo g, (s) that satisfy the equation
F (%0, Yor 2o Py 9,)=0, we get x=x(t, s), y=y(t, s), z2=2(t, 3),
p=p(t, s), g=q(t, ).
For a ﬁxed s we will have one of the characteristics

x=x(, s), y=y(, s), z=z(t, s);



5. FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 281

varying s, we get a certain surface, in each point of which, for
p=p(t. s), g=q(t s), the equation F(x, y, z, p, 9)=0 is satis-
fied, but it is also necessary to find out whether, in the process,

p ——g% and q——- or, what is the same thing, whether dz = pdx+
+gdy or

dz=p(Stds+grdt)+q(qhds+5rdt) =gt s+t dt, .

which is equivalent to the two conditions

P as gL —=0, (5.52)
dy _
p>= a, r a5 —07._0. (5.53)

The latter of these equations obviously reduces to an identity,
since we have already required, when forming the system (5.50),
that dz=pdx+qgdy along the characteristic. Incidentally, this is
quite evident from direct inspection, if one takes into account
that by virtue of the system (5.50).

7] 0.
st =Fp 5-=F, 5 =pF,+qF,
(m (5.50) in place of =~ t , gty , %zt we wrote df , Zty , Zf , since

we considered s ﬁxed).

- In order that the equation (5.52) may be satisfied, it is necessary to
impose certain other restrictions on the choice of the initial values
%o (8), Yo (5), 2,(8), Po(s), qo(S)- Indeed, put

pEpqe_Z_y (5.54)

ds  0s

and prove that U==0 if the initial value U|,_,=0, whence it
will follow that if the initial functions

%0 (8), Yo (s). 2,(S), Po(5)s Go(S)
are so chosen that
Po (5) X4 (8) + 4o (8) 95 (5)—2, (5) =0,
then U=0 for all ¢.
Differentiating (5.54) with respect to ¢, we get
aU _ dp ox dq oy +q Oy 92

S =oras =P atas+a: os T9 3105 —aias
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and, taking into account the result of differentiating the identity
(5. 53) with respect to s:

dp Ox 9g 9y 0%y 9%z
R Rl e )

we will have

U _op dx 29 0y dp 3x_ 09 0y

o T os Tatos os of 0s o
or, by virtue of the equahons (56.50),

ov ap ad
S =— (Fet pF) S —(Fy+qF,) - —F, L —F, 3 =
= (*03+Y65+F’0s+FP +F763>
5}
—F(pat+egt—)=— = P —FU=—FU,

since F=0, and hence the total partial derivative %{F}:O.
From the equation

U
w5 =—FU (5.55)
t
—[ra
we find U= U, . Hence if U,=0, then U=0, which inci-
dentally follows also from the uniqueness of the solution U =0 of
the linear equation (5.55), which satisfies the condition U|,_,=0.

Thus, when integrating the equation
F(x, y, 2, p, q)=0 (5.45)

with initial conditions x,=x,(S), Yo =1, (5)y 2,=2,(5), use the
Cauchy method to determine the functions p,= p,(3) and g, =g, (s)
from the equations

d F (x5 (S), Yo (5). 20(S), Po(S). Go(s))=0
an
Po (S) %3 (S) + o (S) Yy (5)—24(5) =0

and then integrate the system of equations

dx _dy  dz ____d __ d¢
Fq PFp+qu Fyx+pF, Fy+qF, =dt (550)

with the mltlal conditions: for {=0
x=%,(8), Y=Yo(8), 2=2,(S), P=p,(5), §=4,(s)-
The three functions
x=x(t, s), y=y(t, s), 2=z(t, s)
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of the solution of the system (5.50) yield in parametric form the

equation of the desired integral surface of the equation (5.45).
The foregoing is readily generalized to nonlinear partial differen-

tial equations with an arbitrary number of independent variables

F(x,, X3 ..., X, 2, D1y Py -+, Pn)=0, (5.56)
where the s
'p,=a—:’_ (i=1,2, ..., n).

It is required to determine the integral n-dimensional surface
2=2(x, X, ..., x,) of the equation (5.56) that passes through
a given (n— l)-dimensional surface:

Xio = X0 (sl’ Sgy - ey sn-l) (l= lo 2!_ ceey n)' (557)
2,=24(Sy, Sg, ---» Sp_y)-

For the time being suppose that we know the initial values of
the functions

Pio="Pio (S, Sa -1 Sn_y) =12, ..., n) (5.58)
then, integrating the auxiliary system of equations

dxy _dx, _ _dx,  dz _
Fp~Fp = TF o
Py Ps Pn zpin‘
i=1
9 o _ 4
-~ T, (5.59)

with initial conditions (5.57) and (5.58), we get
X;=x; (L, Sy Sz vy Sy_1)s
2=2(, Sy, Sgy +vey Sp_1)s (=12, ..., n). (56.60)
P{=P((t- 81, Sgp v ey Spoy) }
For fixed s,, s,, ..., s,_,, the equations (5.60) define, in a space
with coordinates x,, x,, ..., x,, 2, curves called characteristics, to

each point of which are also referred the numbers p,=p;(t, s,,
S -+ Sy_,) that define the direction of certain planes

Z—z= Elp, (X;—x). (5.61)

The characteristics together with the planes (5.61) form so-called
characteristic strips.
Changing the parameters s,, s,, ..., s,_, yields an (n—1)-para-
meter family of characteristics
X=X (t, 8y, ..., Sy_y)s z=z(, s, .... 8 )

that pass through the given (n— I)-dimensional surface (5 57).
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We shall show that for a definite choice of the functions

pxo=pio(slt Sgy - -ty sn—l) (i=l, 2» A ] n)
points lying on the characteristics of the family (5.60) form the
desired n-dimensional integral surface. Hence we have to prove that
for a definite choice of the functions p;, (s,, S ---, Sp_y):

(1) F(x; (%, Sty + ooy Sp_1)y ooy X, (8, 84y < vy Sp_1)s
2(8, Sy, -vey Sp_1)y Pty Spy evey Sp_q)y v es Pully Sqy ooy Sp_q)) =0,

2) p,=2:— (i=1,2, ..., n) or, what is the same thing,

n
dz= 2 p; dx;.

It can be readily verified that the function F(x,, x,, ..., x,
Pyi» Pas - -y Pn) is a first integral of the system of equations (6 59)
Indeed, along the integral curves of the system (5.59),

d
a_IF(xn Xay «ovy Xmy 2o Pry Par «vvy Pp)=

—Lsz‘Z' +F'dt+2‘p”‘dp‘_

EZFtin,+ F,Zp,Fp,.—ZFpi(in—l—p,-F,)EO
i=1 (=1

=1
and, hence, along the integral curves of the system (5.59)
F(x,, X5, ..., X5y 2, Py, Pay «+ s Pu)=C,

where ¢ is a constant equal to F (x,4, X505 --» X0 Z20s P1o> P20s +-+» Pro)-

In order that .the functions (5.60) should satisfy the equation
(5 56) along the integral curves of the system (5.59), one has to
choose the initial values p;, (s,, Sg -+, S,_,) SO that

F(X30(Syy -«cy Suet)y ooy XSty oo oy Spn)s 2(Spy v vy Su_yi)s
Pi(Syy <oy Spucy)y cees Pu(Syy ««-y Spoy))=0.
n

It remains to verify that dz=2p,.dx,. or

02 ;, <=0 Y (3 ' ox;
édt+§£ds,—=—i§p,(x dt+2 < ds/)

This identity is equivalent to the following:

0 n
é—Zp, =0 (5.62)

i=1
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and

0z <~ Ox; :
(%_Zpl.‘%so (i=12 ..., n—1). (5.63)

i=1

The validity of identity (5.62) becomes obvious if one takes into
account that by virtue of the system (5.59)

gf=2piF,,, and %:F,,,. (t=1,2, ..., n)

in place of and " we write the partial derivatives since all

the s; in the system (5 59) were assumed to be fixed).
To prove the indentities (5.63), which are true only for a defi-
nite choice of the initial values p, (s,. s, ..., 5,_,) We put

0z 1 Ox;
Uy=gz—XPigy (=12 ....n—1)
i=1
and, differentiating U, with respect to ¢, we get
o, o7 O Op, % »

i=o

Taking into account the result of dlﬁerentiating the bidentity
(6.62) with respect to s,

0%z d’x, op; 9x;
ot aS/ 2 ’af aS/ Zas/ at —0

i=o

we can rewrite the equation (5.64) as

0pi 9% _ N~ 0pi 9%y
2 aS/ ot (?l 68/ ’
=0

i=o

Taking advantage of the system (5.59), we have

Z"”‘ r,,,+z(p,,,+p, o=

OF 0x;  OF ap,.> L OF o A
—Z 0x; 0s; ap,- os;) "0z s; as/ Z {93

=a;/—{F} —F,U,.
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The total partial derivative aa/ {F} =0, since F=0 and, hence,

the functions U, are solutions of the homogeneous linear equations
a;’: —F,U;, which have the unique solution U,=0 if U,|t=o=0

Consequently, if the initial values p;(s;; S5 ..., S,_,) (=1,

n
2, ..., n) are chosen so that U,|=o=0 or (%—Zp,%) =0
t=o0

i=1

(i=1,2, ..., n—1), then

o ax, _
as] 2 'Bs, =0 (]—l) 29 co ey n—l)

i=1

n
a
and, hence, on the surface (5.60) dz= Zp,-dx,. i.e., P1=a—:,
i=1,2, ..
Thus, to ﬁnd the mtegral surface of the equation F(x,, x,, ...,
X, 2, P1» Ps, ---» Ps)=0 passing through the (n— 1)-dimensional
surface

xi0=xi0 (slr Sz’ LICIE ] sn—l) (i= lo 2’ ceey n);
2,=2,(5y, Sg1 ++- Sp_1)s

it is necessary to determine the initial values p; (s, Sg -+.s S5_y)
from the equations

F(xlor Xa0s +++s Xpgr 22 Pros Poor -+ s p,,o)=0,
(6.65)

020 " axlo : .
__Zp =0 Gj=1,2, ..., n—=1)

as/ i as,

=
then, integrating the system (5.59) (page 283) with initial conditions
Xio=Xio (S1» S -+« Spy)s
2,=2y(S;, Sg» ++ .y Spoy)s =12, ..., n),
Pio="Pio(S1y Sg» -+ o1 Sp_1)
we get
X=x; (¢, Sy, Sgy -y Sp_y) =12, ..., n),
2=2(t, 85, S3 -y Sp_1)s (6.66)
pi=pi(t, 81 S3y .oy Sp_y) =12, ..., n). (5.67)

The equations (5.66) and (5.67) are the parametric equations of
the desired integral surface.

Note. We assumed that the system of equations (5.65) was sol-
vable for p,, and also that the system (5.59) satisfies the condi-
tions of the existence and uniqueness theorem.
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Example 1. Find the integral surface of the equation z=pq pas-
sing through the straight line x=1, z=y.

Write the equation of the straight line x=1, z=y in paramet-
ric form, x,=1, y,=s, z,=s. Find p,(s) and g, (s) from the equa-
tions (5.65): s=p,q,, 1—¢q,=0, whence p,=s, ¢,=1. Integrate
the system (5.59):

7P 2¢ P 4
p=ce', y=ce', x=0'+c;, Yy=0€+c, 2=c,c,e"+c,,

Taking into account that for £{=0

x=1, y=s, z=s, p=s, ¢g=1,
we have
p=se!, g=¢€', x=¢e', y=se', z=se".

Consequently, the desired integral surface is

2!

x=¢é', y=se', z=se" or z=uxy.

. 0z\? 0z\? .
Example 2. Integrate the equation (5;> +(@) =2 provided
that for x=0, z=y, or in parametric form x,=0, y,=s, z,=s.
Determine p,(s) and g, (s):
pg+q;=2' l_qo=00

whence ¢,=1, p,==+1
Integrate the system of equations (5.59):

dr_ay_dz_dp_dg_
2 2 4 =o=0o=4%
p=c¢c, q=¢,, x=2t+c,, y=2it+c,, z=4t+c,;

using the initial conditions p,=+1, ¢,=1, x,=0, y,=s, z,=s,
we obtain p=+1, g=1, x=22¢, y=2t+s, z=4t+s. The last
three equations are the parametric equations of the desired integral
surface. Eliminating the parameters { and s, we get z=y 4 x.

In problems of mechanics one often has to solve the Cauchy
problem for the equation

v
3 +H (2, Xy, X4y ooy Xy, P1y Pas « -y Pu)=0, (5.68)

where the p,-=%, which is a special case of the equation (5.56)
(p. 283). The Cauchy method, which, as applied to equation (5.68),
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is frequently called Jacobi's first method, yields the system of

equations
dt:f_i__i‘ﬁz_= _9x, _ _ dp,
oH ~9H — """ 9H oH
op, 9p, 0p, ox
= dpy _ dp, dv
TTO9H T "= 7T08H T
— pukl OH  dv
0xy ox, ; N7 a; + 3
=0
whence
dx; _OH dp; _ OH _
T Fe—m =12
and
dv <~ O0H &
dr Z {ap + 5
i=1
or

.. n) (5.69)

(5.70)

The system of 2n equations (5.69) does not contain v and may be
integrated independently of equation (5.70); then the function v is
found from (5.70) by a quadrature. Therein lies the specificity of
applying Cauchy’s method to equation (5.68). Besides, in this case
there is no necessity of introducing an auxiliary parameter into
the system (5.50), since that role can be successfully played by the

independent variable ¢.

PROBLEMS ON CHAPTER §

1 E-F=0.
2 g—:+%—:=2z.
3 xg;=z.

4. zg‘%—yg—;=0.

5. yg—:=z for x=2, z=y.

o

dz 0z
RF ra Frial for y=1, z=23x.
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be

19

0z , 0z
7. yza—x+@=0 for x=0, z=¢".

8. Find surfaces that are orthogonal to the surfaces of the
family z=axy.
9. Find surfaces that are orthogonal to the surfaces of the fa-
mily xyz=a.

10 x0z yoz —5.

11. =
ou ou ou

Pz (x, y)
13. 3 =0.

0z dz _ .3
14. &_2x5§-0 for x=1, z=4".

15. Can the equation
@'+ 2'—xY)dx+x2dy +xydz=0

integrated by one relation?
16. Integrate by one relation the equation

(y+32")dx+ (x + y)dy + 6xz dz =0.

17. Find the complete integral of the equation
pq=x'y".

18. Find the complete integral of the equation

z=px+qy+p’q.

19. Find the complete integral of the equation
pq =92

20. Find the complete integral of the equation

p=sing.

21. Find the surfaces that are orthogonal to the vector lines of
the vector field

F = (2xy—3yz)i + (x*—3x2)j —3xv k.

=378
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22. Find a family of surfaces that are orthogonal to the vector
lines of the vector field

F=@2x—y)i+By—2)j+(x—2yk.
23. Find the vector lines, the vector surfaces and surfaces that
are orthogonal to the vector lines of the field
F = xi 4 yj—2k.
24. z=pqg+1 for y=2, z2=2x+ 1.
25. 2z=pq—3xy for x=5, 2=15y.
26. 42=p*+¢*® for x=0, z=4".



PART TWO

The calculus
of variations






Introduction

Besides problems in which it is necessary to determine the ma-
ximal and minimal values of a certain function z=f(x), in phy-
sics there are often encountered problems where one has to find the
maximal and minimal values of special quantities cailed functionals.

Functionals are variable quantities whose values are determined
by the choice of one or several functions.

| [
5{‘2'11 .W

Alz0,4) y=ylz]

Fig. A Fig. B

For example, the arc length ! of a plane (or space) curve con-
necting two given points A (x,, y,) and B (x,, y,) (see Fig. A) is a
functional. The quantity / may be computed if the equation of the
curve y=y(x) is given; then

Hyw) =S VIFEyar

Xo

The area S of a surface is also a functional, since it is deter-
mined by the choice of surface, i.e., by the choice of the function
2(x, y) that enters into the equation of the surface z=2z(x, y). As
is known,

S(z(x, y)]= SS l/ 1+ (3—;)’+ (%>2dxdy,

where D is a projection of the surface on the xy-plane.
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Moments of inertia, static moments, the coordinates of the centre
of gravity of a homogeneous curve or surface are also functionals,
since their values are determined by the choice of the curve or
surface, i. e. by the choice of functions that enter into the equa-
tion of the curve or surface.

I all these examples we have a relationship that is characteris-
tic of functionals: to a function (or vector function) there corres-
ponds a number, whereas when we specify a function z=f(x),
to a number there corresponds a number.

The calculus of variations investigates methods that permit fin-
ding maximal and minimal values of functicnals. Problems in which
it is required to investigate a function for a maximum or a mini-
mum are called wvariational problems.

Numerous laws of mechanics and physics reduce to the statement
that a certain functional in a given process has to reach a minimum
or a maximum. Thus stated, such laws are termed variational pri-
nciples of mechanics or physics. The following are some variational
principles or elementary consequences of them: the principle of least
action, the law of conservation of energy, the law of conservation
of momentum, the law of conservation of angular momentum, va-
rious variational principles of classical and relativistic field theory,
Fermat’s principle in optics, the principle of Castigliano in the
theory of elasticity, and so forth.

The calculus of variations began to develop in 1696 and became
an independent mathematical discipline with its own methods of
investigation after the fundamentai works of Euler (1707-1783),
whom we may justifiably consider the founder of the calculus of
variations.

Three problems exerted a considerable influence on the deve-
lopment of the calculus of variations:

The problem of the brachistochrone. In 1696 Johann Bernoulli
published a letter in which he advanced the problem of the line of
quickest descent (brachistochrone).In this problem it isrequired to find
the line connecting two specified points A and B that do not lie
on a vertical line and possessing the property that a moving par-
ticle slides down this line from A to B in the shortest time
(Fig. B). :

It is easy to see that the line of quickest descent will not be
the straight line connecting A and B, though.that is the shortest
distance between the two points, because the velocity of motion in
a straight line will build up comparatively slowly; whereas if we
take a curve that is steeper near A, even though the path becomes
longer, a considerable portion of the distance will be covered at a
greater speed. The problem of the brachistochrone was solved by
Johann Bernoulli, Jacob Bernoulli, Leibnitz, Newton, L’Hospital.
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It turned out that the line of quickest descent is a cycloid (see
pages 316-317).

The problem of geodesics. It is required to determine the line oi
minimum length connecting two given points on a surface ¢ (x, y, 2) =0
(Fig. C). Such shortest lines are termed geodesics. This is a typical
variational problem involving the so-called connected or conditional
extremum. We have to find the
minimum of the functional Az

Xy

1=V TFyT+72x,

apnd the functions y(x) and
2(x) are subject to the condi-
tion ¢ (x, y, 2)=0. This prob- .
lem was solved in 1698 by Jacob 0
Bernoulli, but a general method
for solving such problems was
only given in the works of Euler T
and Lagrange. )

The isoperimetric problem. It Fig. C
is required to find a closed line
of given length [/ bounding a maximum area S. This is the circle,
as was known even in ancient Greece. In this problem one has to
find the extremum of the functional S with the auxiliary peculiar
condition that the length of the curve must be constant; that is,
the functional

t,
I=S V@)Y +y@)ydt
to

retains a constant value. Conditions of this kind are called isope-
rimetric. General methods for solving problems with isoperimetric
conditions were elaborated by Euler.

Methods will now be presented for solving a variety of varia-
tional problems; in the main the following functionals which are
frequently encountered in applications are investigated for extrema:

(Fex, yo. v 0 dx,

S Fx, yx), ¥ (x) ,..., y™ (x))dx,

Xo
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SF(x. () oees Yo (), 1 (0) ..., Yn () dx,

X;SF (% v 205, ), X ), dy,

in which the functions F are given, while the functions y (x), y, (x),. ..

eeus Yo (X), 2(x, y) are arguments of functionals.



CHAPTER 6

The method of variations in problems
with fixed boundaries

1. Variation and Its Properties

Methods of solving variational problems, i. e. problems invol-
ving the investigation of functionals for maxima and minima, are
extremely similar to the methods of investigating functions for ma-
xima and minima. It is therefore worth while recalling briefly the
theory of maxima and minima of functions and in parallel intro-
duce analogous concepts and prove similar theorems for functionals.

1. A variable z is a function
of a variable quantity x [writ-
ten z=f(x)] if to every value of
x over a certain range of x there
corresponds a value of z; i.e.,
we have a correspondence: to the
number x there corresponds a
number 2.

Functions of several variab-
les are defined in similar fashion.

2. The increment Ax of the
argument x of a function f(x) is
the difference between two values
of the variable Ax=x—x,.
If x is the independent variable,
then the differential x coincides
with the increment, dx = Ax.

3. A function f(x) is called
continuous if to a small change
of x there corresponds a small
change in the function f(x).

1. A variable quantity vis a
functional dependent on a func-
tion y(x) [written v=uvly (x)]] if
to each function y(x) of a cer-
tain class of functions y(x) there
corresponds a value v, i.e. we
have a correspondence: to the
function y(x) there corresponds
a number v.

Functionals dependent on se-
veral functions, and functionals
dependent on functions of seve-
ral independent variables are si-
milarly defined.

2. The increment, or variation,
Oy of the argument y(x) of a
functional vy (x)] is the differ-
ence between two functions 6y =
= y (x)—y, (x). Here it is assumed
that y(x) varies in arbitrary
fashion in some class of functions.

3. A functional v [y (x)] is cal-
led continuous if to a small change
of y(x) there corresponds a small
change in the functional v [y (x)].

The latter definition requires some explanation, for the question
immediately arises as to what changes of the function y(x), which
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is the argument of the functional, are called small or, what is the
same, what curves y=y(x) and y=y, (x) are considered close or
only slightly different.

It may be taken that the functions y(x) and y, (x) are close if
the absolute value of their difference y(x)—y, (x) is small for all
values of x for which the functions y(x) and y, (x) are prescribed;
that is, we can consider as close such curves as have close-lying
ordinates,

However, for such a definition of proximity of curves, the func-
tionals of the kind

oly@]=Fx y, v)dx

that frequently occur in applications will be continuous only in
exceptional cases due to the presence of the argument gy’ in the
integrand function. For this reason, in many cases it is more na-
tural to consider as close only those curves which have close-lying
ordinates and are close as regards the directions of tangents at the
respective points; that is, to require that, for close curves, not only
should the absolute value of the difference y(x)—y, (x) be small,
but also the absolute value of the difference y’ (x)—y; (x).

It is sometimes necessary to consider as close only those func-
tions for which the absolute values of each of the following diffe-
rences are small:

y(xX)—y, (), Yy (x)—yi(x),
Y (xX)—4; (%), ..., ¥ @x)—yP (x).

This compels us to introduce the following definitions of proximity
of the curves y=y(x) and y=y, (x).

The curvesy =y (x)and y =y, (x) are close in the sense of zero-order
proximity if the absolute value of thedifference y(x)—y, (x) is small.

The curves y=y(x) and y=y, (x) are close in the sense of first-
order proximity if the absolute values of the differences y(x)—y, (x)
and y' (x)—y; (x) are small.

The curves

y=y(x) and y=y,(x)

are close in the sense of kth order proximity if the absolute values
of the differences

Y (©)— 1, (%),

¥ (x)—y1 (%),

YR (x) —yi® (x)
are small.
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Fig. 6.1 exhibits curves close in the sense of zero-order proximity
but not close in the sense of first-order proximity, since the ordi-
nates are close but the directions of the tangents are not. In Fig. 6.2.
are depicted curves close in the sense of first-order proximity.

7

A

AY

)
Y
Yo

Fig. 6-1 Fig. 6-2
From these definitions il follows that if the curves are close in
the sense of kth order proximity, then they are definitely close in
the sense of any lesser order of proximity.
We can now refine the concept of continuity of a functional.

3’. A function f (x) is continuous
at x=ux, if for any positive &
there is a &>0 such that
|f(x)—f(xo)| < e for|x—x,| <8.

is assumed here that x takes
on values at which the function
f(x) is defined.

3’. The functional v[y(x)] is
continuous at y=y,(x) in the
sense of kth order proximity if
for any positive e there is a
6>0 such that |ov[y(x)]—
— vy, (x)]| < e for

|9~ (1) <8,
Iy' (x)_yo (x)l < 6'

.........

[4® () —y? ()] < 8.

It is assumed here that the
function y(x) is taken from a
class of functions on which the
functional v [y(x)] is defined.

One might also define the notion of distance p(y,, y,) between
the curves y=y, (x) and y=y. (x) (x, <x<x,) and then close-lying
curves would be curves with small separation.
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If we assume that

P (Y1, Y,)= max ,yl(x)'—'yz(x)lp
Xo K X< Xy

that is if we introduce the space metric C, (see pages 54-55), we
have the concept of zero-order proximity. If it is taken that

k

P )= 2

max

|91 () —y3” ()]

P=lxo<x<x

(it is assumed that y, and y, have continuous derivatives up to
order k inclusive), then the proximity of the curves is understood
in the sense of kth order proximity.

4. A linear function is a func-
tion I (x) that satisfies the following
conditions:

l(cx)=cl (x),

where ¢ is an arbitrary constant,
and
l (xx + xz) =1 (xl) +1 (xz)~
A linear function of one variable
is of the form
[ (x) =kx,
where & is constant.

5. If the increment of a func-

tion
Af=f(x+Ax)—f(x)
may be represented in the form
Af=A (x) Ax+Pp (x, Ax)-Ax,

where A (x) does not depend on
Ax, and B (x, Ax) - 0as Ax— 0,
then the function is called diffe-
rentiable, while the part of the
increment that is linear with
respect to Ax— A (x) Ax—is called
the differential of the function
and is denoted by df. Dividing

4. A linear functional is a func-
tional L [y(x)] that satisfies the
following conditions

L[cy(x)] =cL [y (%)),

where ¢ is an arbitrary constant
and

Ly, x)+y,(x) ] =
=L[y, ()] +L[y. ()]

The following is an instance
of a linear functional:

Liy®]={ 0wy+qwy)ds.

5. If the increment of a func-
tional

Av=uv [y (x)+ dy] —v [y (x)]
may be represented in the form
Av=L[y(x), dy)+

+B (y (x), dy)max|by]|,

where L [y (x), 8y] isa functional
linear with respect to &8y, and
max |dy| is the maximum value
of |8y| and B (y(x), 8y)— 0 as
max |8y| — 0, then the part of
the increment of the functional
that is linear with respect to
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by Ax and passing to the limit &y, i.e. L[y(x), 8y], is called
as Ax-—0, we find that the wvariation of the functional
A (x)=f'(x) and, hence. and is denoted by 6v.

df =f' (x) Ax.

Thus the variation of a functional is the principal part of the increment
of the functional, which part is linear in 8

In the examination of functionals, the variation plays the same
role as the differential does in investigations of functions.

Another, almost equivalent definition of the differential of a function
and the variation of a functional may be given. Consider the value of
the function f(x+aAx) for fixed x and Ax and varying values of
the parameter @. For ¢ =1 we get an increased value of the func-
tion f(x+ Ax), for a=0 we get the initial value of the function
f(x). It may be readily verified that the derivative of f(x+aAx)
with respect to o for a=0 is equal to the differential of the func-
tion f(x) at the point x. Indeed, by the rule for differentiating
a composite function

S Fr+adn) amo=F (x+abs)lx=o=F (x) Ax=df (x).

In the same way, for a function of several variables
2=[(x, Xg ..y X,)
one can obtain the differential by differentiating
f(x, +alAx,, x,+alAx,, ..., x,+aAx,)
with respect to a, assuming a=0. Indeed,

(%f(xl—l-anl, X+ aldx,, ..., %, +0AX,)|a= O—Zaf Ax;=df.

Likewise, for functionals of the form v [y (x)] or more complicated
ones depending on several unknown functions or on functions of
several variables, it is possible to determine the variation as a
derivative of the functional v[y(x)+ady] with respect to a for
a=0. Indeed, if the functional has a variation in the sense of
the principal linear part of the increment, then its increment will
be of the form

Av=v[y(x)+ady] —v[y (x)]=L(y, ady)+PB(y, ady)|a|max]|byl|.
The derivative of v[y+a6y] with respect to @ at =0 is

Ly, aby)+Bly(x), aby]|a|max|8y| _

lim -——hm — =lim o

Aa—»OA a0 & a—+0
= lim Ly, “65’)+1im ﬁ[!/(x):aéy‘]l|a|max|5!l|=L(y, ay)

a-0 a-0
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since by virtue of linearity
L(y, ady)=oaL (y. 8y)

and
lim BlG) abyliaimax|dy| _ B [y (x), @dy]max|dy|=0
=0 @ a-0
because B [y (x), @ 8y] — 0 as a— 0. Thus, if there exists a varia-
tion inthesenseof the principal linear part of the increment of the
functional,then there also exists a variation in the sense of the derivative
with respect to the parameter for the initial value of the parameter,
and both of these definitions are equivalent.

The latter definition of a variation is somewhat broader than the
former, since there are instances of functionals, from the increments
of which it is impossible to isolate the principal linear part, but
the variation exists in the meaning of the second definition.

6. The differential of a function 6. The variation of a functio-
f(x) is equal o nal v[y(x)] is equal to
d
2 fx+aa-o. 2 o[y )+ dy) o,

Definition. A functional v([y(x)] reaches a maximum on a curve
Yy =1y, (x) if the values of the functional v[y(x)] on any curve close
to y =y, (x) do not exceed v [y, (x)]; thatis Av=v [y (x)]—v [y, (x)] <O.

If Av<<0, and Av=0 only for y(x)=y, (x), then it is said that
a strict maximum is reached on the curve y=y,(x). The curve
Y=y, (x), on which a minimum is achieved, is defined in similar
fashion. In this case, Av >0 for all curves close to the curve y =y, (x).

7. Theorem. If a differentiable 7. Theorem. If a functional
function [(x) achieves a maximum v ([y(x)] having a variation achie-
or a minimum at an interior point ves a maximum or a minimum at
x =x, of the domain of definition y=y, (x), wherey (x)is an interior
of the function, then at this point point of the domain of definition

df =0. of the functional, then at y = y, (x),

Sv=0.
Proof of the theorem for functionals. For fixed y,(x) and Oy

v[y, (x)+ady] =¢ () is a function of @, which for @=0, by
hypothesis, reaches a maximum or a minimum; hence, the derivative

, (7]
A‘P(O):O*’ and a_av[yo(x)-}-aﬁy]la___o::o’

* a can take on either positive or negative values in the neighbourhood
ol the point a=0, since yo(x) is an interior point of the domain of definition
of the functional.
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i. e. 5u=0. Thus, the variation of a functional is zero on curves
on which an extremum of the functional is achieved.

The concept of the extremum of a functional must be made more
specific. When speaking of a maximum or a minimum, more preci-
sely, of a relative maximum or minimum, we had in view the
largest or smallest value of the functional only relative to values
of the functional on close-lying curves. But, as has already been
pointed out, the proximity of curves may be understood in diffe-
rent ways, and for this reason it is necessary, in the definition of
a maximum or minimum, to indicate the order of proximity.

If a functional v[y(x)] reaches a maximum or a minimum on a
curve y=y,(x) with respect to all curves for which the absolute
value of the difference y(x)—y,(x) is small, i.e. with respect to
curves close to y=y,(x) in the sense of zero-order proximity, then
the maximum of minimum is called strong.

However, if a functional v[y(x)] attains, on the curve y =y, (x),
a maximum or minimum only with respect to curves y =y (x) close
to y=y,(x) in the sense of first-order proximity, i.e. with respect
to curves close to y=y,(x) not only as regards ordinates bhut also
as regards the tangent directions, then the maximum or the mini-
mum is termed weak.

Quite obviously, if a strong maximum (or minimum) is attained
on a curve y=y,(x), then most definitely a weak one has been
attained as well, since if the curve is close to y=y,(x) in the
sense of first-order proximity, then it is also close in the sense
of zero-order proximity. It is possible, however, that on the
curve y=y,(x) a weak maximum (minimum) has been attained,
yet a strong maximum (minimum) is not achieved; in other words,
among the curves y=y(x close to y=y,(x) both as to ordinates
and as to the tangent directions, there may not be any curves for
which v [y (x)] > v [y, (x)] (in the case of a minimumv [y (x)] < v[y,(x)]),
and among the curves y=y(x) that are close as regards ordinates
but not close as regards the tangent directions there may be those
for which v[y(x)] >v [y, (x)] (in the case of a minimum v [y (x)] <
<v[y, (x)]). The difference between a strong and weak extremum will
not have essential meaning in the derivation of the basic necessary
condition for an extremum, but it will be extremely essential in
Chapter 8 in studying the sufficient conditions for an extre-
mum.

Note also that if on a curve y=y,(x) an extremum is attained,

then not only 5% v [Y, (x) + aby] L= o =0, but also a—‘;— v [y (x,2)] L o =0,

where y(x, @) is any family of admissible curves, and for =0
and a=1 the function y(x, «) must, respectively, transform to
Yo (x) and y, (x)+8y. Indeed, v[y(x, )] is a function of a since
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specifying o« determines a curve of the family y=y(x, @), and
this means that it also defines the value of the functional v [y (x, @)].

It is assumed that this function achieves an extremum at a=0,
hence, the derivative of this function vanishes at ¢ =0.*

Thus, a—g-v[y (x, a)] L=o=0, however, this derivative generally

speaking will no longer coincide with the variation of the function
but will, as has been shown above, vanish simultaneously with v
on curves that achieve an extremum of the functional.

All definitions of this section and the fundamental theorem
(page 302) can be extended almost without any change to functio-
nals dependent on several unknown functions:

0[5 (%), 4a(x)s . ..s Ya(x)]
or dependent on one or several functions of many variables:
v[z(xy Xy over X)),
U2, (X3 X3y ooey X)s 29(%y, Xgy ..y X,), v 2 (Xys X3y .o ey X))
For example, the variation 8v of the functlonal v[z (x, y)] may be
defined either as the principal part of the increment
Av=v[z(x, y)+b8z]—v(z(x, y)],

linear in 8z, or as a derivative with respect to the parameters for
the initial value of the parameter

%v[z(x, y)+a b2] |u=0

and if for z=2(x, y) the functional v attains an extremum, then
for z=2z(x, y) the variation dv=0, since v[z(x, y) + adz] is a func-
tion of a, which for a=0, by hypothesis, attains an extremum
and, hence, the derivative of this function with respect to a for

a =0 vanishes, a%v[z (x, y)+a6z]|a=°=0 or du=0.

2. Euler's Equation
Let us investigate the functional

oly@)=§ F(x, y(), v () ax ®.1)

* It is assumed that a can take on any values close to =0 and
oy (x, @)

exists.
da a=0
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for an extreme value, the boundary points of the admissible curves
being fixed: y(x,)=y, and y(x,) =y, (Fig. 6.3). We will consider
the function F(x, y, y’) three times differentiable.

We already know that a necessary condition for an extremum is
that the variation of the functional vanish. We will now show how
this basic theorem is applied to the functional under consideration,
and we will repeat the earlier argument as applied to the func-
tional (6.1). Assume that the extremum is attained on a twice-
differentiable curve y=y(x) (by only requiring that admissible

Ay Y
B
A
4
Y
N xz
0 To % o >
Fig. 6-3 Fig. 64

curves have first-order derivatives, we can prove by a different method
that the curve which achieves the extremum has a second deriva-
tive as well). 3

Take some admissible curve y=y(x) close to y=y(x) and in-
clude the curves y=y(x) and y=T7(x) in a one-parameter family
of curves

y(x, a)=y(x)+a(y(x)—y (x));

for a=0 we get the curve y=y(x), for a=1 we have y=7(x)
(Fig. 6.4). As we already know, the difference 7 (x)—y (x) is called
the variation of the function y(x) and is symbolized as dy.

In variational problems, the variation 8y plays a role similar to
that of the increment of the independent variable Ax in problems
involving investigating functions f(x) for extreme values. The va-
riation 6y=T7 (x)—y(x) of the function is a function of x. This
function may be differentiated once or several times; (8y)’ =79’ (x) —
—y'(x)=08y’, that is, the derivative of the variation is equal to
the variation of the derivative, and similarly

Oy =7" (x)—y" (x)=0y",

20--378
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We consider the family y=y(x, &), where y(x, &)=y (x)+ ady,
which for @=0 contains a curve on which an extreme value is
achieved, and which for a=1 contains a certain close-lying ad-
missible curve, the so-called comparison curve.

If one considers the values of the functional

vy x)] = S F(x, y, y)dx

Xo

only on curves of the family y=y(x, @), then the functional be-
comes a function of a:

v[y(x. a)]l=0(a),

since the value of the parameter o determines the curve of the
family y=y(x, o) and thus determines also the value of the func-
tional v{y(x, «)]. This function ¢ () is extremized for a=0 since
for ¢ =0 we have y=y(x), and the functional is assumed to have
achieved an extremum in comparison with any neighbouring ad-
missible curve and, in particular, with respect to curves of the fa-
mily y=y(x, a) in the neighbourhood. A necessary condition for
the extremum of the function ¢ (a) for a=0 is, as we know, that
its derivative for «=0 vanish:

@' (0)=0.
Since
@ ()= S F(x, y(x, @), yx (x, @) dx,
it follows that _ '
A 5
0} (a):S [Fyaay(x, a)-[—Fy.(ﬁy (x, a)] dx,

X,

where

Fy=a%F(x. yx, a), ¥y (x, o),

Fr=35F (5 y(x, @), ¢ (x, a),
or since

,%y‘(x. a)=£[y(x)+a6y]=6y
and

a%y' x, @)= 50; [v' (%) +ady’ )= by,
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we get

Xy

o @={[F, @ y@x @), v @)dy+
° +Fyp(x, y(x, @), ¥ (x, @))by’]dx;

¢’ (0)=S[Fy *x, y(x), ¥y NSy + Fu (x, y(x), ¥ (x))Oy']dx.

As we already know, ¢’ (0) is called the variation of the func-
tional and is denoted by 8v. A necessary condition for the extre-
mum of a functional v is that its variation vanish: 8u=0. For the
functional

Xy

oly@) = Fx, u, ) dx

Xo

this condition has the form
§ [F,8y+F, 8y) dx=0.
Xy

We integrate the second term by parts and, taking into account
that 8y’ = (dy)’, we get

Sv={F, sy];;+x§ (F,—% Fy) by dx.
But "

8y| x=x, =-!; (x)—y(x)=0 and dy| x=x =.7/. (%) —y (x)=0,

because all admissible curves in the elementary problem under
consideration pass through fixed boundary points and, hence,

60=§ (Fy— 5 Fo) 8y ds.
Thus, the necessary condition for an extremum takes the form

?(F},—Ed; F,,.) 8y dx =0, 6.2)
Xo

the first factor F,—:—x F, on the extremizing curve y=y(x) is a

given continuous function, while the second factor 8y, because of
the arbitrary choice of the comparison curve y=T7(x), is an arbit-
rary function that satisfies only certain very gencral conditions,

207
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namely: at the boundary points x=x, and x=ux, the function 8y
vanishes, it is continuous and differentiable once or several times;
dy or 8y and 8y’ are small in absolute value.

To simplify the condition obtained, (6.2), let us take advantage
of the following lemma.

The fundamental lemma of the calculus of variations.
If for every continuous function m(x)

Sld)(x)n(x) dx =0,

where the function ® (x) is continuous on the interval (x,, x,], then

D x)=0
on that interval.

Note. The statement of the lemma and its proof do not change
if the following restrictions are imposed on the functions: n(x,) =
= 1n(x,)=0; n(x) has continuous derivatives to order p, |0 (x)| <
<e(s=0,1, ..., g ¢g<p).

Ay

Fig. 6-5

Proof. Assuming that at the point x=x lying on the interval
x, <x<<x,, O(x)5*0, we arrive at a contradiction. Indeed, from
the continuity of the function ®(x) it follows that if ®(x)£0,
then @ (x) maintains its sign in a certain neighbourhood (}o<x<

< x,) of the point x; but then, having chosen a function n (x), which
also maintains its sign in this neighbourhood and is equal to zero
outside this neighbourhood (Fig. 6.5), we get

fownma={ownmd o,
Xo X
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since the product @ (x)n(x) does not change sign on the interval
(xo<x< x,) and vanishes outside this interval. We have thus
arrived at a contradiction; hence, @ (x)=0. The function n(x)
may for example be chosen thus: m(x)=0 outside the interval
(x, <x<x,); M (x) = k(x—x,)*" (x—x,)** on the interval, (x, <x < x,),
where 7 is a positive integer and & is a constant factor. It is obvious
that the function 7 (x) satisfies the above conditions: it is continu-
ous, has continuous derivatives up to order 2n—1, vanishes at the
points x, and x, and may z
be made arbitrarily small in !
absolute value together with
its derivatives by reducing the
absolute value of the con-

stant k.
Note. Repeating this argu-
ment word for word, one can 0 >y

prove that if the function

®(x, y) is continuous in the
region D on the plane (x, y)
andSS @ (x,y) 0 (x, y)dxdy=0 <

D

for an arbitrary choice of the Fig. 66
function n (x, y) satisfying only certain general conditions (continuity,
difierentiability once or several times, and vanishing at the
boundaries of the region D, |n|<e, |n;|<e, |y | <€), then
®(x, y)=0 in the region D. When proving the fundamental lemma,
the function n(x, y) may be chosen, for example, as follows:
n(x, y)=0 outside a circular neighbourhood of sufficiently small
radius e, of the point (x, y) in which ®(x, y)%0, and in_this
neighbourhood of the point (x, y) the functionn(x, y) =k [(x—x)* +
+ (y—y)*—e?)** (Fig. 6.6). An analogous lemma holds true for
n-fold multiple integrals.

Now let us use the fundamental lemma to simplify the above-

obtained condition (6.2) for the extremum of the elementary func-
tional (6.1)

K‘(F, _2 Fy,) 8y dx = 0. 6.2)

All conditions of the lemma are fulfilled: on the extremizing curve
the factor (Fy _Tfi ,,.) is a continuous function, and the varia-

tion 8y is an arbitrary function on which only restrictions of a
general nature that are provided for by the fundamental lemma have
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been imposed; hence, Fy——% Fuy=0 on the curve y=y(x) which

extremizes the functional under consideration, i.e. y=y(x) is a
solution of the second-order differential equation

d
Fy -_ d_x Fy’ = 0,
or in expanded form
Fy—Fxy—Fyyy — Fyyy”=0.
This equation is called Euler’s equation (it was first published

in 1744). The integral curves of Euler’s equation y=y(x, C,, C,)
are called extremals. It is only on extremals that the functional

oy = Fx y, v)dx

Xo

can be extremized. To find the curve that extremizes the func-
tional (6.1), integrate the Euler equation and determine both
arbitrary constants that enter into the general solution of this
equation, proceeding from the conditions on the boundary y(x,) =
=Y, Y(*)=y, Only on extremals that satisfy these conditions
can the functional be extremized. However, in order to establish
whether indeed an extremum (and whether it is a maximum or a
minimum) is achieved on them, one has to take advantage of the
sufficient conditions for an extremum given in Chapter 8.
Recall that the boundary-value problem

d
Fy—a F!I' =0) Y (xo) =yo’ Yy (xl)=yl

does not always have a solution and if the solution exists, it may
not be unique (see page 166).

Note that in many variational problems the existence of a solu-
tion is obvious from the physical or geometrical meaning of the
problem and if the solution of Euler’s equation satisfying the
boundary conditions is unique, then this unique extremal will be
the solution of the given variational problem.

Example 1. On what curves can the functional
7

o[yl = vy —ds yO =0, y(3)=1
0
be extremized? The Euler equation is of the form y"+y=0; its
general solution is y=C, cosx+C,sinx. Utilizing the boundary
conditions we get C,=0, C,=1; hence, only on the curve y=sinx
can an extremum be achieved.
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Example 2. On what curves can the functional
1

o[y @] = () +12x5] dx, y(© =0, y(1)=1

be extremized? Euler’s equation is of the form y”—6x =0, whence
y=x*+Cxx+C, Using the boundary conditions, we get C,=0,
C,=9; therefore, an extremum can be achieved only on the curve
y=x°

In these two examples, Euler’s equation was readily integrable,
but that is by far not always so, since only in exceptional cases
can second-order differential equations be integrated in closed form.
We consider some elementary cases of the integrability of the Euler
equation.

(1) F is independent of y':

F=F(x, y).

The Euler equation has the form F,(x, y)=0, since F,=0. The
solution of the finite equation F,(x, y)=0 thus obtained does not
contain any arbitrary elements and therefore, generally speaking,
does not satisfy the boundary conditions y(x,)=y, and y (x,) =y,.

Consequently, there does not, generally speaking, exist a solu-
tion of this variational problem. Only in exceptional cases when
the curve

Fy(x, y)=0

passes through the boundary points (x,, y,) and (x,, y,) does there
exist a curve on which an extremum can be attained.
Example 3.

Xy

vy (x)]= S yrdx; y(x,) =y,

Yy () =4,
Euler’s equation has the form
F,=0 or y=0.
The extremal y=0 passes through the boundary points only for
Y,=0 and y,=0 (Fig. 6.7). 1f y,=0 and y, =0, then, obviously,
the function y=0 minimizes the functional v= S y*dx since

v(y(x)) =0, and v=0 for y=0. But if at least one of the y,
and y, is not zero, then the functional is not minimized on conti-
nuous functions, which is understandable since it is possible to
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choose a sequence of continuous functions y,(x), whose graphs
consist of an arc of acurve more and more steeply descending from
the point (x,, y,) to the axis of abscissas, then of a segment of

AY A}y
8
A
A B z
0 z, z, 5 Y=5pl) z
z, z,
Fig. 6-7 Fig. 6-8

the axis of abscissas that almost coincides with the entire segment
(x,, x,) and, finally, of the arc of the curve which near the point
x, rises steeply to the point (x,, y,) (Fig. 6.8). It is obvious that

on the curves of such a sequence the
§y values of the functional differ from
zero by arbitrarily small values and
hence the lower bound of the values
A of the functional is zero; this lower
] A bound, however, cannot be attained on

B
q

Y% a continuous curve, since for any con-
} _r tinuous curve y=y(x) different from an
0 o z, o Xy

identical zero, the integral S y*dx>0.

Fi. 69 This lower bound of values of the
functional is attained on the discontinuous function (Fig. 6.9)

Y (%) =Y,
y(x)=0 for x, <x<x,,
y(x)="u

(2) The function F is linearly dependent on y':
Fix, y, y)=Mx 9)+Nx )y

oyl =§ [Mee, 9+Nx, 9] ds.

The Euler equation is of the form

oM oN , d
o Ty~ =0
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or
oM , ON , N N ,
Wty oy ¥=0
or
OM__ON _ .
gy ox
but again, as in the preceding case, this is a finite, not a diffe-

rential, equation. Generally speaking, the curve ‘g—:—-g—z’=0 does

not satisfy the boundary conditions; consequently, the variational
problem does not, as a rule, have any solutions in the class of

continuous functions. But if %A;_%gl_ =0, then the expression
Mdx+ N dy is an exact differential and

v=3=(M—|—NZ—z>dx=3=(de+Ndy)

is independent of the integration path, the value of the functional v
is constant on admissible curves. The variational problem becomes
meaningless.

Example 4. |
oly@)={ @ +2)de y(©=0, y(l)=a.
0
oM N

Euler’s equation is of the form Z~——==0 or y—x=0. The first

boundary condition y(0)==0 is satisfied, but the second boundary
condition is satisfied only for a=1. But if as<1, then there is no
extremal that satisfies the boundary conditions.

Example 5.
v[y(X)]=S(y+xy')dx or v[y(x)]=S(ydx+xdy);

Y(X)=Yor Y(*) =V,
Euler’s equation reduces to the identity 1=1. The integrand is an
exact differential and the integral does not depend on the path of
integration:

v[y(x)]= S d (xy) = %,4,— XoYo»
no matter which curve we integrate along. The variational problem
is meaningless.
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(3) F is dependent solely on y'
F=F ().
Euler’s equation is of the form F, ,y"=0, since F,=F,y = F,,=0.
Whence y"=0 or F,, =0. If y"=0, then y=C,x+C, is a two-
parameter family of straight lines. But if the equation F,, (y')=0
has one or several real roots y' =k;, then y=kx+C and we get
a one-parameter family of straight lines contained in the above-

obtained two-parameter family y=C,x+C,. Thus, in the case of
F=F(y’'), the extremals are all possible straight lines y=C,x+C,.

Example 6. The arc length of the curve
Hy )=V 14y ax
has for extremals the straight lines y=C,x+C,.

Example 7. The time ¢ [y(x)] spent on displacement along a cer-
tain curve y=y(x) from the point A (x,, y,) to the point B (x,, y,)

if the velocity g§=v(y') is dependent solely on y’, is a functional
of the form

Vity”
t[y(xn—f AT
ds _ _ds_V1+y"dx_ _tVigs”
<M‘”“'“‘uw— 0a) "‘va)dx

Hence the extremals of this functional are straight lines.
(4) F is dependent solely on x and y':
F=F(x,y).

Euler’s equation takes the form B%F v (%, y)=0 and, hence, has

a first integral F, (x, y’)=C,; and since the first-order equation
F, (x, y')=C, thus obtained does not contam y, the equation may
be integrated either by direct solution for ¥’ and integration, or by
means of introducing a properly chosen parameter (see p. 75).

Example 8. The functional

o= | L g

(t is the time spent on translation along the curve y=y(x) from
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one point to another if the rate of motion v=yx, since if g; =X,

X

Xy —_—
then df =% and ¢t= S -‘fl;fy_’dx>. The first integral of the Fuler

equation F,=C, is of the form —L=Cl. This equation is
Vity?
most readily integrated if one introduces a parameter putting

y' =tan ¢; then

1 Yy 1.
—1_¥ _Llsint
ClV1+y12 Cl
or x=C, sint, where (:‘_;=—Cl;
1

Y _tan t; dy=tan tde=tan t. C,costdt =C,sint di;

integrating, we get y= —C,cost+C,.

Thus, x=C,sin¢, y—C,= —C, cos ¢
or, eliminating ¢, we have x*+(y—C,)*=C?, which is a family of
circles with centres on the axis of ordinates.

(5) F is dependent on y and y' alone:

F=F(y,y)

Euler’s equation is of the form: F,— F,, y'—F,,y" =0, since
Fry=0. If we multiply this equation termwise by y’, then, as is
readily verifiable, the left-hand side becomes an exact derivative

d '
d_x(F_y Fy).
Indeed,
d ’ ’ ” ” ,”2 .
G F—YF)=F,y+Fyy—yFy—Fyy —Fyuy'y =

=y (Fy—Fyy y'—Fyyy").
Hence, Euler’s equation has the first integral
F'—'y,Fy'=Ch

and since this first-order equation does not contain x explicitly, it
may be integrated by solving for y’ and separating the variables,
or by introducing a parameter.

Example 9. The minimum-surface-of-revolution problem: find
a curve with specified boundary points whose rotation about the
axis of abscissas generates a surface of minimum area (Fig. 6.10).

As we know, the area of a surface of revolution is

S[yx)]=2n S y V1 +y"dx.

Xo



316 II. THE CALCULUS OF VARIATIONS

The integrand is dependent solely on y and y’ and, hence, a first
integral of Euler’s equation will have the form

F—y'F,=C,
or in the given case
2

yVivy — 2 —c,

Vl—l-y”
Ay
B
A
\
‘|
) ! >Z
T >
]
1
[}
/
z
Fig. 6-10
After simplification we have Y __—C,. The simplest way to
Vigy?

integrate this equation is by the substitution y’=sinh ¢, then
y=C, cosh ¢, and
_dy_Cysinhtdt e
dx-——y— T_Cldt' x—-C,t-}—C,,
And so the desired surface is formed by revolution of a line, the
equation of which, in parametric form, is

x=C,t+C,,
y=C, cosh ¢.

Eliminating the parameter ¢, we get y=C, cosh 2= , a family of

catenaries, the revolution of which forms surfaces called catenoids.
The constants C, and C, are found from the condition of the passage
of the desired line through given boundary points (depending on
the position of the points A and B, there may be one, two or
zero solutions).

Example 10. The problem of the brachistochrone (see page 294):
find the curve connecting given points A and B which is traversed
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by a particle sliding from A to B in the shortest time (friction and
resistance of the medium are ignored).
Put the coordinate origin at A, make the x-axns horizontal and

the y-axis vertical. The speed of the particle is — —V2gy, whence
we find the time spent in moving from A (0, 0) to B (x,, y,):

ty x) = Vtz jV"}L_” deg,  y(0)=0, yx)=y.

Although in this case the integral is not proper, it is easy to estab-
lish that here as well we can take advantage of the preceding
theory. Since this functional also belongs to the most elementary
type and its integrand does not contain x explicitly, the Euler
equation has a first integral F—y’F,=C or in the given case

Visg s
Vy Vy( +¢9
1

Vyt+sh
Introduce the parameter ¢, putting y’ =cot £, then we have

whence, after simplification, we get =C or y(1+y"")=C,.

(of . C
y=T+_c::ff7=C‘ sin®t =3} (1 —c0s2¢);

dy 2C,sintcostdt .
dx——y——-———l—ca'tT——-——2C sin®tdt=C (l—COS2t)dt,

x=C, (t—s'"2‘)+c =& @t—sin2y +C,.

Consequently, in parametric form the equatioﬁ of the desired line is
x—C,=% @t—sin2), y=3(1—cos20).
If the parameter is transformed by the substitution 2¢=¢, and if
we take into account that C,=0, since x=0 for y=0, then we
get the equation of a family of cycloids in the ordinary form:
x=c—‘(t —sint,),

y—-—(l—cost ),

where C—;- is the radius of a rolling circle, which is found from the

condition of passage of the cycloid through the point B (x,, y,).
Thus, the brachistochrone is a cycloid.
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3. Functionals of the Form

SF(x, Vi Yo vees Yoo Vi Yo eoe, Yn)dx

In order to obtain the necessary conditions for the extremum
of a functional v of a more general type

X,
U[th Yo - oo 2 Un)= SF(JC, Y Yor + o2 Y Y1s Yoo + o » Yn) X

Xo
for the given boundary conditions of all functions

Y1 (%) =Y10r  Ya (o) =Ysos «++s Y (X6) = Yno»
U () =Y, Y (X)) =UYss, « -, Yo (%) =Ypys

we shall vary only one of the functions
yx) (=1, 2,...,n),

holding the other functions unchanged. Then the functional
v[Y, Yy -, Y,) Will reduce to a functional dependent only on
a single varied function, for example, on y;(x),

v[yu Yap - oy yn]=5[yl]

of the form considered in Sec. 2, and, hence, the extremizing
function must satisfy Euler’s equation

d
F"i—d_x F yll =0.
Since this argument is applicable to any function y,(i=1, 2, ..., n),
we get a system of second-order differential equations
4 g

Fyl_a 0 (i=11 2: °°‘yn),

Yi
which, generally speaking, define a 2n-parameter family of integral
curves in the space x, y,, y,, ..., y,—which is the family of ext-
remals of the given variational problem.

If, for example, the functional depends only on two functions
yY(x) and 2(x):

Xy
vly(®), z@)]= S F(xv9, 2y, 2)dx

Y (%) = Yo, 2(x,) = 2,, y(x,)=1y,, z2(x,) =2z,

that is to say, it is defined by the choice of space curve y =y (x),
z==2z(x) (Fig. 6.11), then by varying y(x) alone and holding z(x)
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constant we can change our curve so that its projection on the
xz-plane does not- change, i.e. the curve all the time remains on

the projecting cylinder z=2(x) (Fig. 6.12).

4
) B
=y(z)
A 317
0 l/ o
Z
Fig. 6-11
} Z
B, y-y(z) _p
\fzz-z Z) -5
M=
= ———
)
(1] 39
) .oB'
A, WS y=y(z)
v

* Fig. 6-12

Similarly, by fixing y(x) and varying z(x), we vary the curve
so that all the time it lies on the projecting cylinder y=y (x).
We then obtain a system of two Euler’s equations:

Fy— £ Fy=0 and F,—ir, =0
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Example 1. Find the extremals of the functional

v[y (x), Z(x)]=§[y"+z"+2yz]dx, 4(0)=0, y(%):l.

t
2(0) =0, 2(3)=— L.
The system of Euler’s differential equations is of the form
y'—2z2=0,
7 —y=0.

Eliminating one of the unknown functions, say 2, we get y'v¥ —y=0.
Integrating this linear equation with constant coefficients, we obtain

y=C,e*+C,e *+Cycosx+C,sinx;
z=y", 2=C,e*+C,e*—C,cosx—C,sinx.
Using the boundary conditions, we find
C,=0, C,=0, C,=0, C,=1;

hence, y=sinx, z=—sinx.
Example 2. Find the extremals of the functional

oly), zw)={Fw, 2)dr

The system of Euler’s equations is of the form
Fypy' +Fyz2"=0; Fyry + Frr2"=0,

whence, assuming Fy, Fzr—(Fy )’ 0, we get y"=0 and 2”=0or
y=Cx+C,, z=Cyx+C, are a family of straight lines in space.

Example 3. Find the differential equations of the lines of propa-
gation of light in an optically nonhomogeneous medium in which
the speed of light is v(x, y, &).

According to Fermat's principle, light is propagated from one
point A (x,, y,) to another B(x,, y,) along a curve for which the
time T of passage of light will be least. If the equation of the
desired curve y=y(x) and z=2z(x), then

X,
7= | ViEree
X

v(x, y, 2)
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For this functional, the system of Euler’s equations

0-31/1+yl!+21! +-‘1 yl =O
T T E e
dv V1+y”+z" d z =0
9z vl -

& Vit
will be a system that defines the lines of light propagation.

4. Functionals Dependent on Higher-Order Derivatives

Let us investigate the extreme value of the functional
vy (x)]= S F(x, yx), ¥y (x), ...,y (x))dx,

Xo

where we consider the function F differentiable n+2 times with
respect to all arguments and we assume that the boundary conditions
are of the form

.‘/(xo)'_‘yo» Yy’ (xo)=y£n e y("—l)(xo)=y=3n_“;
YD) =y ¥ %) =4n .., ¥ (x) =y,
i.e. at the boundary points are given the values not only of the

function but also of its derivatives up to the order n—1 inclusive.
Suppose that an extremum is attained on the curve y=y(x), which

is 2n times differentiable, and let y=y(x) be the equation of some
comparison curve, which is also 2n times differentiable.
"Consider the one-parameter family of functions
Y@ @)=y +aly®)—yx) or yx a)=yx)+ady.

For a=0, y(x, a)=y(x) and for a=1, y(x, a)=y(x). If one
considers the value of the functional v(y(x)] only on curves of the
family y=y (x, @), then the functional reduces to a function of the

parameter a, which is extremized for @ = 0; hence,%v (y(x, @)] ‘ aco =0.

According to Sec. 1, this derivative is called the variation of the
functional v and is symbolized by &v:

a=0

6o=[;—aSF(x, yx ), ¥ (x a), ..., ¥ (x, “))d"] =

=S(F"6y+FV'6y’+Fy"6y”+...+Fy(") 6y(n))dx.
%o
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Integrate the second summand on the right once term-by-lterm

X, I X, i
S F, by dx =(F, éy]:;-—s =7 Fv Sy dx,

the third summand twice:
s . , d A (o
SF,.Gy dx=(F, by )a— [717 F"’Gy],.'i'g'iﬁ' F,. bydx,
Xy Xo

and so forth; the last summand, n times:

Xo

SFW” by dx = [Fym by ”]n [—d; Fymby'n= 2)] + ...

(— l )" y(") BL/ dx

Taking into account the boundary conditions, by virtue of which
for x=x, and for x=ux,, the variations dy=0y =06y"=...=
=6y~ V=0, we finally get

¢ d d2 . dn
60=S(Fu—g; Fy+—oz Fr+...+ (=)' 5= Fw‘)) bydx.
Since on the extremizing curve we have
Xy . d"

b= (Fymte Pyt Pt o4 (1 o P by =0
for an arbitrary choice of the function 8y and since the first factor
under the integral sign is a continuous function of x on the same

curve y=y(x), it follows that by virtue of the fundamental lemma
the first factor is identically zero:

d d? dan
F,—-Et- Fy'-}--F Fb"'+ N +(——1)" dxn Fyl")EO.

Thus, the function y=y(x), which extremizes the functfional

Xy

vly(X)]=SF(x, Yy Y ., Y™ dx,

Xe

must be a solution of the equation

dz dn
F ——-—F,-{ dx’F' ...—f—(——l)"It,—‘Fy(")‘—"O.
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This differential equation of order 2n is called the Euler-Poisson
equation, and its integral curves are termed exfremals of the varia-
tional problem under consideration. The general solution of this
equation contains 2n arbitrary constants. which, generally speaking,
may be determined from the 2n boundary conditions:

y(xo)=y0v y’ (xo)=y:» ey !/m-h (xo)=y3”"”;
yx)=y4, ¥ %)=y, ... ¥V (x)=y"".

Example 1. Find the extremal of the functional
1

oly]=§ 1 +yax
0

y©0)=0, 4y O)=1 yH=1 ¢y D=L
The Euler-Poisson equation is of the form %(25{’):0 or y'V=0;

its general solution is y=C,x*+ Cyx* 4- C,x +C,. Using the boundary
conditions, we get

C,=0, C,=0, C,=1, C,=0.
And so the extremum can be attained only on the straight line y==x.
Example 2. Determine the extremal of the functional

T
oly ()= (" —y*+ ) dx,
0
that satisfies the conditions
yO=1, ¥ ©=0.y(5)=0. v (F)=—1

The Euler-Poisson equation is of the form y'V—y=0; its general
solution is y=C,e*+C,e~*+C,cos x +C,sinx. Using the boundary
conditions, we get C,=0, C,=0, C,=1, C,=0. And so the extre-
mum can be achieved only on the curve y=cosx.

Example 3. Determine the extremal of the functional

v[y(x) = 5{ (% wy™ + py) dx,

-1
that satisfies the boundary conditions
y(—=hn=0. ¢y (=)=0 yO=0. ¥ (=0

This is the variational problem to which is reduced the problem
of finding the axis of a flexible bent cylindrical bean fixed at the

20
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ends. If the beam is homogeneous, then p and p are constants and
the Euler-Poisson equation has the form

dz »
P+ Wy =0 or yV=—2,

whence

y=— 24p‘—|-C.wc +Cx*+Cex+C,.
Using the boundary conditions, we finally get
=202+l or y=— — ),

y=—= 24p 24p. (*—

If the functional v is of the form
Xy
o[y, z)=§Fex v, 4's coos g™ 2, 2 L., 2™ dr,

then by varying only y(x) and assuming z(x) to be fixed, we find
that the extremizing functions y(x) and z(x) must satisfy the Euler-
Poisson equation

Fymt Pyt oo (=1 Fym =0,

whereas by varying z(x) and holding y(x) fixed we find that the
very same functions must satisfy the equation

d
Fz"""d_x"Fz‘ +(""1) Fz"'>=0

Thus, the functions z(x) and y(x) must satisfy a system of two
equations:

Fymt Pyt oo (=1 o Fym =0,
d dn
Fi—ar Fr + ... +(—1)" 75 Foom=0.

We can argue in the same fashion when investigating for the
extremum of a functional dependent on any number of functions:

Uy Yoo -oer Yu)=

X1

=S F(x, Yy Yo ooen Y™ Y y;v cees Y9,
Xo
ey Yy Y oo Y dx.
Varying some one function y;(x) and holding the others fixed, we
get the basic necessary condition for an extremum in the form

d d" R
F{"—.a;Fy;+..'+(—.l)nlEleF”m=0 (l=l, 2, ceey m).

Ve
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5. Functionals Dependent on the Functions
of Several Independent Variables

Let us investigate the following functional for an extremum:
d d
v(z (x, y)]=SSF (x. Y, 2, 'E;"' {y—) dx dy;
D

the values of the function z(x, y) are given on the boundary C of
domain D, that is, a spatial path (or contour) C is given, through

r4
A z=2(zy)

Fig. 6-13

which all permissible surfaces have to pass (Fig. 6.13). To abbre-
viate notation, put '%;‘=P, —g—zy—=q. We will consider the function F
as three times differentiable. We assume the extremizing surface

z2=2(x, y) to be twice differentiable.
Let us consider a one-parameter family of surfaces z=2z(x, y, @)=

=z(x, y)+adx, where 6z=2z(x, y)—z(x, y), including for
a=0 the surface z=2z(x, y) on which the extremum is achieved,

and for @=1, a certain permissible surface z=2(x, y). On functions
of the family z(x, y, @), the functional v reduces to the function a,
which has to have an extremum for a=0; consequently,

a—‘l—v[z(x, Y, @))|ame=0. If, in accordance with Sec. 1, we call

the derivative of v[z(x, y, )] with respect to @, for a=0, the
variation of the functional and symbolize it by v, we will have

60={%SSF(x, Y, 2(x, y, @), p(x, ¥, @) , 4(x, v, a))dxdy}a=o=
° -_-SS [F,0z + F,0p+ F,6q] dx dy,
n
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where
z(x. y, a)=2z(x, y)+abz,
pix, y, a)=92_(%cy'_a)=p(x' y)+abp,
0z (x, v,
g,y ) =2EL D g(x ) taby.
Since

d 9

o (Fpb82y=—7-{F,} 62+ F, op,

0 ad

W{Fqﬁz}=—07{f’q}62+1’qéq,
it follows that
SS(FP6p+Fq6q)dxdy=
D

ad d
= (V[ 5 tF 021+ 2 (F, 62 ] drdy—
D
d , 0
~{ § |55 F b5y {F.}|6zdxdy,

where —— a =5 {Fp} is the so-called total partial derivative with respect
to x. When calculating it, y is assumed to be fixed, but the depen-

dence of z, p and ¢ upon x is taken into account:

Ox {FP}— px+szax+Fprax+quT
and similar]y
a {Fq}"' qy+quax+quay+quay'

Using the familiar Green’s function

(G +50) dxdy={ Wdy—Maz)
b c

we get
SS[O% {Fp62}+-50!7 {F, 62}]dxdy=S(dey—qux) 6z=0.
D Cc

The last integral is equal to zero, since on the contour C the varia-
tion 82=0 because all permissible surfaces pass through one and
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the same spatial contour C. Consequently,
(§1r,00+F, 09 dxdy = —SS[-"—{F}+—"-{F} Szdxd
14 q 9 Y= ox P dy q9 Y»
D D
and the necessary condition for an extremum,
SS(F,62+Fp6p+Fq6q)dxdy=0,

D
takes the form

SS (F,-—_‘%- {Fp}-% {Fq}) 8zdxdy =0.

Since the variation 8z is arbitrary (only restrictions of a general
nature are imposed on 8z that have to do with continuity and
differentiability, vanishing on the contour C, etc.) and the first
factor is continuous, it follows from the fundamental lemma (page 308)
that on the extremizing surface z=2z(x, y)

2 /]
Fz_a_x{FP}_'ﬁ{Fq} =0.
Consequently, 2(x, y) is a solution of the equation
i) 7}
Fz_a; {Fp}_a? {Fq} =0.

This second-order partial differential equation that must be satisfied
by the extremizing function z(x, y) is called the Ostrogradsky equa-
tion after the celebrated Russian mathematician M. Ostrogradsky
who in 1834 first obtained the equation (for rectangular domains
D it had already appeared in the works of Euler).

Example 1. s X
ot 1= [ (2 + (%)

the values of the function z are given on the boundary C of the
domain D: z= f(x, y). Here the Ostrogradsky equation is of the form
0%z 0%z
aa T =0
or, in abbreviated notation,
Az=0,

which is the familiar Laplace equation; we have to find a solution,
continuous in D, of this equation that takes on specified values on
the boundary of the domain D. This is one of the basic problems
of mathematical physics, called the Dirichlet problem.
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Example 2.
vz (. y)]=SS [(%>2+(3—;>2+22f(& y)] dxdy,
D

a function 2z is given on the boundary of a domain D. Here, the
Ostrogradsky equation is of the form

Pz | 9%
73;22—'{—#’—‘“'\7- Y)

or, in abbreviated notation,

Az=f(x, y).
This equation is called Poisson’s equation and is also frequently
encountered in problems of mathematical physics.

Example 3. The problem of finding a surface of minimal area
stretched over a given contour C reduces to investigating the func-
tional

Stee, o= [{ Y 1+ (&) +(&) deay

‘D
for a minimum. Here the Ostrogradsky equation has the form

9%z 9z \? dz 0z 0% | 9% . [ 0z2\%] _
a1+ (5) | =20 et 5 [+ ()] =0,
i.e. at every point the mean curvature is zero. It is known that

soap bubbles stretched on a given contour C are a physical reali-
zation of minimal surfaces.

For the functional

or

vlz(x,, %, ..., x,)]=
=SS.D.. SF(x,, Xgy eoen Xy 2, Pyy Pay oovy Ppy)dx,dx, ... dx,,

where p,~=%, in quite the same fashion we obtain, from the

basic necessa;"y condition for an extremum, v=0, the following
Ostrogradsky equation:

"~ 0
Fo— 255, {Fad =0,
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which the function
2=2(x,, X5 ... X,)

extremizing the functional v must satisfy.
For example, for the functional

o= §{1E) + (5) + (5) Jarasee

the Ostrogradsky equatlon is of the form
0%u
0x2 r + 5 =0

If the integrand of the functional v depends on derivatives of
higher order, then, by applying several times the transformations
used in deriving the Ostrogradsky equation, we find, as the necessary
condition for an extremum, that the extremizing function has to
satisfy an equation similar to the Euler-Poisson equation (pages
322-333).

For example, for the functional

0z 0z 0%z 0%
v(z(x, !/)]=SSF(x, Y 2 50 By oxt axog” ay,,)dxdy
D
we get the equation

d (7] 02 o2 02
Fz_a{Fp}’—a{Fq}'{"})_if{Fr} +W{Fs} +’@? {F,}=0,
where
__ 0z __ 0z 92z _ 0%z f— %z
P=%x 953 "=8a> STmoy 'Top
This fourth-order partial differential equation must be satisfied by

the function extremizing the functional v.
For example, for the functional

o= (S1(5) + (5GR) +2 (%) Jexaw

the extremizing function z must satisfy the so-called biharmonic
equation

F4 4
o T 25t o =0

which is ordinarily written briefly as AAz=0.
For the functional

o= [ [(Z5) + (5 2 (25—t ]
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the extremizing function 2z(x, y) must satisfy the equation
AAz=f(x, y). ’
The biharmonic equation is also involved in extremum problems

of the functional 22 &
U—XS (6::i 0y§> drdy

or the more general functlonal

o= [J1(F 5 20w 3 G- (55 ) v

where p is the parameter.

6. Variational Problems in Parametric Form

In many variational problems the solution is more conveniently
sought in parametric form. For example, in the isoperimetric problem
(see page 295) of ﬁndmg a closed curve of given length / bounding
Ay a maximum area S, it is incon-

venient to seek the solution in
the form y=y(x), since by the
very meaning of the problem the
function y(x) is ambiguous (Fig.
6.14). Therefore, in this problem
it is advisable to seek the solu-
tion in parametric form: x = x (¢),
y=y(t). Hence, in the given
case we have to seek the ext-
Fig. 6-14 remum of the functional

T

|\ (xy—yx)dt

0

Y

. 1
S[x®), yt)]=
T c————

provided that I= S V¥ &4 di, where [ is a constant.

0 N
In the investigation of a certain functional

v[y(x)]—SF(x Y, y)dx

for an extremum let it be more advisable to seek the solution in
the parametric form x=x(f), y=y(f); then the functional will be
reduced to the following form:

t, .
olx 0, y01= [ F (x@. v, £0) ket

to
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Note that after transformation of the variables, the integrand

y() )\ :
F(xuxya»-zs>x0)

does not contain ¢ explicitly and, with respect to the variables
x and y, is a homogeneous function of the first degree.
Thus, the functional v[x(¢), y(#)] is not an arbitrary functional

of the form
t

fo, x@), y@), @), gy ar

to

that depends on two functions x (f) and y (¢), but only an extremely
particular case of such a functional, since its integrand does not
contain ¢ explicitly and is a homogeneous function of the first
degree in the variables x and y.
If we were to go over to any other parametric representation of
the desired curve x=x(t), y=y(t), then the functional v[x, y]
T, .
would be reduced to the form S‘F(x, Y, y—‘) x.dt. Hence, the in-
x‘!
tegrand of the functional v do?es not change its form when the
parametric representation of the curve is changed. Thus, the functional
v depends on the type of curve and not on its parametric represen-
tation.
It is easy to see the truth of the following assertion: if the in-
tegrand of the functional
4
olx(®), y )= O, x®), y@O), xO), §O)dt

to

does not contain ¢ explicitly and is a homogeneous function of the

first degree in x and y, then the functional v[x(f), y(¢)] depends
solely on the kind of curve x=x(f), y=y(f), and not on its para-
metric representation. Indeed, let

4
vhULyUH=§®uULyU%kULQM)M.

where ) o
D(x, y, kx, ky)=kD(x, y, x, y).

Let us pass to a new parametric representation putting

1=¢(f) (9(t)+0), x=x(1), y=yE).
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Then

1, 4" d
O E®.5(0.50, § @)t = [OGE, y(©), £EHO. 100 .
[ To

By virtue of the fact that @ is a homogeneous function of the first
degree in x and y, we have

CD()C, Y, ;\’1‘.19, ytcp)chq)(x: Y, x'v !j-:),
whence

t T,
S‘D(xv Y, "ttv yt)dt= S‘D(x’ Y, X _I./,)d‘l,',
to To

that is, the integrand has not changed with a change in the para-

metric representation.
4

The arc length SV x*+4y* dt * and an area bounded by a certain
t

t
curve -;—S (xy—yx)dt are examples of such functionals.

A
In order to find the extremals of functionals of this kind,

t
v[x(2), y(t>1=tS<D< X, Y, % y)dt,

where @ is a homogeneous function of the first degree in x and y',
and also for functionals with an arbitrary integrand function

@, x, y, x, y), one has to solve a system of Euler’s equations:

d d
— D=0, @, —2-D;=0.

However, in the case under consideration, these equations are not
independent, since they must be satisfied by a certain solution
x=x(t), y=y(t) and also by any other pairs of functions that
yield a different parametric representation of the same curve, which,
in the case of Euler’s equations being independent, would lead to
a contradiction with the theorem of the existence and uniqueness

()

* The function V ¥2+g? is a positive homogeneous function of the first degree:
i.e., for it the condition F (kx, ky)=kF (x, y) is satisfied only for positive k.
However, this is quite sufficient for the theory described in this section to hold

true, since upon changing the variables T=g (f) we can assume ¢ (f) > 0.
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of a solution of a system of differential equations. This is an indi-
cation that for functionals of the form

4
olx(8), y(t)]={ O, 4 % g,
lo

where @ is a homogeneous function of the first degree in x and y,
one of the Euler equations is a consequence of the other. To find
the extremals, we have to take one of the Euler equations and
integrate it together with the equation defining the choice of para-

meter. For example, to the equation @, — —d—t—(D,-, = 0 we can adjoin

the equation x*+ y*=1, which indicates that the arc length of the
curve is taken as the parameter.

7. Some Applications

The basic variational principle in mechanics is the principle of
least action of Ostrogradsky and Hamilton, which states that from
among the possible motions of a system of particles (i. e. those
consistent with constraints) that motion is accomplished which gives
a stationary value (i.e. a value corresponding to an argument for
which the variation of the function is zero) to the integral

4
{(T—v)at,
to
where T is the kinetic and U the potential energy of the system.
Let us apply this principle to a féw problems in mechanics.

Example 1. Given a system of particles with masses m;
(i=1, 2, ..., n) and coordinates (x;, y; 2;) acted upon by forces
F, that possess the force function (potential) —U, which is depen-
dent solely on the coordinates:

o U U

Fix:’_Wi- w=—§ﬂ’ F(Z"—‘_a_z‘.'

where F,., F, F. are the coordinates of the vector F; acting on
the point (x;, y; 2;). Find the differential equations of motion of
the system. In this case the kinetic energy

T =g 2om; (i + 53+ 20,
i=1

and the potential energy of the system is equal to U. The system
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of Euler’s equations for the integral

L4

fr—uv)at
‘n
is of the form
_o 40T o, _O0U__doT_, _OU_d T _
ax;  dt ox; ’ oy,  dt dy; ' dz;  dt 0z

mi;t'i— Fi==0; m,-:x),-—— F,=0; m,-é‘,--— F.=0
(i=1, 2, ..., n).

If the motion were subject to still another system of independent
constraints

(P/(t’ xp xao c ey x", yp yg) LECICR ] !/m 21) zm sy Zn)=0
(i=l' 2' LI ] m) m<3n)'

then from the constraint equations it would be possible to express m
variables in terms of 3n—m independent variables (not counting

the time ¢) or express all 3n
AU variables in terms of 3n—m new
(already independent) coordinates

i G <o Gan-m

. Then T and U might also be
u-u(zt) - regarded as functionsof ¢,, ¢,, ...
0 T - Gm-m and ¢: .
T=T(qn 2 s Qsn.m qu
Fig. 6-15 qp- .oy q:;n -m» t)»

U=U(ql' qzr st qan—m’ t)'
- and the system of Euler’s equations would have the form

9T—U) d oT
041' dt at]‘

=0 (=1, 2 ..., 3n—m).

Example 2. Let us derive the differential equation of free vibra-
tions of a string.

Put the coordinate origin at one of the ends of the string. When
in a state of rest under tension, the string lies on a certain straight
line along which we shall direct the axis of abscissas (Fig. 6.15). .
Any deviation from the equilibrium position u(x, f) will be a
function of the abscissa x and the time ¢.
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The potential energy U of an element of the absolutely flexible
string is proportional to the extension of the string. A segment dx
of the string in the deformed state is of length ds=V1 +u’idx to
within higher order infinitesimals, and hence, the elongation of an

element is (]/ l+u'§—1) dx. By Taylor’s formula, ]/l+u'iz

~1 +%u'i.

Assuming u, to be small and neglecting higher powers of uj,
we find that the potential energy of an element is equal to ]?ku’i dx,

where k is a proportionality factor, and the potential energy of
the whole string is

1

1 /3
T ku xdx.
The kinetic energy of the string is

1
%Spu"rdx,
o "
where p is the density. The integral S(T—U)dt is, in this case,
t

of the form
l

v= KS [-;—- pu”—% ku'i] dx dt.
i

0

The equation of motion of the string will be the Ostrogradsky
equation for the functional v. Thus, the equation of motion of the
string has the form

(/] . a ,
o (pue) — 5 (kuy) =0.

If the string is homogeneous, then p and & are constants, and the
equation of a vibrating string is simplified:
. P L ?

o 55—k 53 =0.

Now assume that the string is also acted upon by an external
force f(¢, x) which is perpendicular to the string when the latter
is in the equilibrium position and is calculated per unit mass. As
is readily verifiable, the force function of this external force ac-
ting on an element of the string is pf(#, x)udx; consequently, the
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ty
Ostrogradsky-Hamilton integral S(T—U)dt is of the form

to

SS[ pu’ “‘— ku'%+pf (¢, x)u] dx dt,

and the equatnon of forced vibrations of the string is
0. , 0 ,
g(Put)—’a (kux)—Pf (¢, x)=0,
or, if the string is homogeneous,
likg k o?
'a_tg—?;a_xui=f(ts x)
We can similarly obtain the equation of a vibrating membrane.

Example 3. Let us derive the equation of vibrations of a rec-
tilinear bar. Direct the axis of abscissas along the axis of the bar
in the equilibrium position. A deviation from the equilibrium po-
sition u (x, ¢) will be a function of x and of the time ¢, the ki-
netic energy of a bar of length [ is

!

1 .
T=5Spu,’dx
0

We assume the bar to be inextensible. The potential energy of an
elastic bar with constant curvature is proportional to the square
of the curvature. Consequently, the differential dU of the potential
energy of the bar is

ﬂ- 2
1 0x?
dU =<k { [l-{—(—g%)‘a]'/' } ,

and the potential energy of the whole bar, the curvature of the
axis of which, generally speaking, is variable, will be

d%u

= S{ [1+(M N }:,x_

Suppose that the deviations of the bar from the equilibrium posi-
. ou\? . .

tion are small and the term (5;) in the denominator may be
neglected; then
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The Ostrogradsky-Hamilton integral is of the form
1l
SS [% pu;’—%ku}i] dxdt.
Consequently, in the case of the free vibrations of an elastic bar
we will have the following equation of motion:

3
a7 (pu)) -+ 55 (kie) = 0.

If the bar is homogeneous, then p and %k are constants, and the
equation of vibrations of the bar is transformed to
0%u d4u
0o+ kga =0
If the bar is acted upon by an external force f(¢, x), then we
also have to take into account the potential of this force (see
preceding example).

The principle of least action may be applied in deriving field
equations. Consider the scalar, vector or tensor field w=w(x, y,
Uy

2z, t). The integral S(T—U)dt here will, generally speaking, be

IO
equal to the quadruple integral taken over the space coordinates x,
y, z and the time ¢ of some function L, called the density of the
Lagrange function or the Lagrangian.

. . . . . dw Jw Jw
Ordinarily, the Lagrangian is a function of w, o oy oz
dw |
at *

L=L(waw o Aw Gw)’

'Ox ’ Oy * 9z ' ot
and, therefore, the action is of the form

(582 (w 550 50 5 57 ) dedydzat. (6.3)
D

According to the principle of least action, the field equation is
the Ostrogradsky equation for the functional (6.3):

0 a d 0
Lw _F; {Llh} —d—y {Lpz} - —a-; {Ll’s} - 7 {LPa} =0’

where
oo o 0w ow

P=n Pe= Gy Ps= g Pe=gre
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PROBLEMS ON CHAPTER 6

1. Find the extremals of the functional
IR ACTE
oly(0)= | LT ax.

Xo

2. Test for an extremum the functional
vy (x)]= S (& +2xyy')ydx; Yy () =Ys Y(5,)=y,

3. Test for an extremum the functional
1

oly] = (y+* =2 de; y(O) =1 y(l)=2.

0

4. Find the extremals of the functional

X

v[y(x)]=Sy’(l+x’y’)dx-
5. Find the extremals of the functional

vy (x)]= S (y'* + 2yy’ — 164%) dx.

%

6. Find the extremals of the functional

oly (0] = § oy +y?)dx.

7. Find the extremals of the functional

vy (%)) =S-‘—:—#’-dx-

8. Find the extremals of the functional
Xy

v(y(x)]= S (y* +y'*—2y sin x) dx.

Xo

9. Find the extremals of the functional

X,

o[y )= § (16y* —y + #*) dx.

Xa
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10. Find the extremals of the functional

vy (0)] = { @xy+y ") dx.

%o

i1. Find the extremals of the functional

X,

v[y(x), z(x)]= S (2yz —2y* +y'*—2"*)dx.

%o

12. Write the Ostrogradsky equation for the functional

e 1= () (5] war

13. Write the Ostrogradsky equation for the functional

u(x, y, 2)]= SSS [(o"\2 ( )—{-(g:) +2uf (x, y, z)]dxdydz

14. Find the extremals of the functional

X g
v[y ()= \zdx

X
15. Find the extremals of the functional

Xy

o[y )= { (&* +y"+2ye) dx.

16. Find the extremals of the functional

X,

U[_/ (%)= S y*—y'*—2ysin x)dx.

Xo
17. Find the extremals of the functional

N

olyl = [s+ 1+ 5] ax.

18. Find the extremals of the functional

X,

y) = { (& (') + 2 + 2xy) dx.

X0
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19. Find the extremals of the functional

Xy

ofy 0] = (v —2() +y*—2y sinx] dx.

20. Find the extremals of the {uncticnal

Xy

vlyx) = {{(5"") +y*—2yx) dx.

Xy



CHAPTER 7

Variational problems with moving
boundaries and certain other problems

1. An Elementary Problem with Moving Boundaries

When we investigated the functional

v={F(x, y,y)dx
in Chapter 6 it was assumed that the boundary points (x,, y,) and
(x,, y,) are given. Now let us suppose that one or both of the
boundary points can move. Then the class of permissible curves
is extended: in addition to the comparison curves that have com-
mon boundary points with the curve under investigation, we can
now also take curves with displaced boundary points.

Therefore, if on a curve y=y(x) an extremum is reached in a
problem with moving boundary points, then the extremnum is all
the more attained relative to a narrower class of curves having
common boundary points with the curve y=y(x) and, hence, the
basic condition for achieving an extremum in a problem with fixed
boundaries must be fulfilled —the function y(x) must be a solution
of the Euler equation

d
Fy‘—'a;'py' =0

Thus, the curves y=y(x) on which an extremum is achieved in
the moving-boundary problem must be extremals.

The general solution of the Euler equation contains two arbitrary
constants, for the determination of which we need two conditions.
In the problem with fixed boundary points, these conditions were

y(x)=y, and y(x)=y,
In the moving-boundary problem, one or both of these conditions
are absent and the missing conditions for a determination of the
arbitrary constants of the genera! solution of Euler’s equation have
to be obtained from the basic necessary condition for an extremum

which is that the variation v be equal to zero.
Since in the moving-boundary problem an extremum is attained
only on solutions y =y (x, C,, C,) of the Euler equation, from now
on we can consider the value of the funciional only on functions
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of this family Then the functional v[y(x, C,, C,)] is reduced to
a function of the parameters C, and C, and of the limits of
integration x, and x,, while the variation of the functional coincides
with the differential of this function. For the purpose of simplifi-
cation, we shall assume that one of the boundary points, say (x,, y,),
is fixed, and the other (x,, y,) can be moved and passes to point
(x, + Ax,, y,+ Ay,) or, as ordinarily denoted in the calculus of
variations, (x, +6x,, y, + 8y,).

(2,+87,, y+6y) We will call the permissi-
ble curves y=y(x) and y=

(4] =y (x)+ 08y neighbouring if
the absolute values of the va-
p riations 8y and Oy’ are small,
and the absolute values of

the increments 8x, and 6y, are

also small (the increments 6x,

Ay

= and 8y, are ordinarily called
o variations of the limit values
x, and y,).

Fig. 7-1 The extremals  passing

through the point (x,, y,) form
a pencil of extremals y=y(x, C,). The functional v [y (x, C,)] on the
curves of this pencil is reduced to a function of C, and x, If the
curves of the pencil y=y (x, C,) in the neighbourhood of the extremal
under consideration do not intersect, then v[y(x, C,)] may be
regarded as a one-valued function of x, and y, since specification
of x, and y, determines the extremal of the pencil (Fig. 7.1) and
thus determines the value of the functional.

Let us compute the variation of the functional v[y(x, C,)] on
the extremals of the.pencil y=y(x, C,) when the boundary point
is displaced from the position (x,, y,) to the position (x, -+ &x,,
y, + 0y,). Since the functional v on the curves of the pencil is
reduced to a function of x, and y,, its variation coincides with
the differential of this function. From the increment Av, remove
the principal part that is linear in Ox, and Oy,:

X, +0x. Xy
Av = S F(x, y+ by, y’+6y’)dx-—s Fx, y, y)dex=
X0 Xo
Xy +0x,

= S F(x, y+by, y +8y)dx +
X

4 S (Fx, y+0y, v +6y)—F(x, y, y)]dx 7.1

Xeo



7. VARIATIONAL PROBLEMS WITH MOVING BOUNDARIES 343

Using the mean-value theorem, transform the first term on the
right:

x4 +0x,

F(x, y+ 08y, vy +8y)dx=F |r=r,+00x 0x,, where 0<0 <1,

by virtue of the continuity of the function F we will have
F'x:x,+06x, = F(x, Y, y’) 'x=x, +&,,

where &, — 0 as 6x, — 0 and 6y, — 0.
Thus

x,+0x,

F(x’ y+6!/, y’+6y,)dx=F(x- y) !/)’x:x, 6xl+8' 6xl.

X

We transform the second term on the right-hand side of (7.1) by
means of Taylor’s expansion of the integrand:

CIF(, y+8y, v +8y)—F(x, y, y))dx=

Xo
X,

=S (F,(x, y, ¥)Oy+ Fy(x, y, y) Oy )dx+R,.

Xo

where R, is an infinitesimal of higher order than 6y or 8y'. In
turn, the linear part

S (Fy6y+ Fy8y)dx

may be transformed, by integrating by parts the second summand
of the integrand, to the form

(Fu8yis+ { (Fy— g Fu) 8y dx.

The values of the functional are only taken on extremals, hence
Fy—%Fy'EO. Since the boundary point (x,, y,) is fixed, it
follows that 8y|¢=x, =0. Hence

S (Fy8y+ Fy by')ds=[Fy 8y] |x=x,.

Note that 8y|.=r, is not equal to 8y, the increment of y,, since
8y, is the increment of y, when the boundary point is displaced
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to tne position (x, + 6x,, y, +8y,), and 8y |i=,, is the increment of

the ordinate at the point x, when going from the extremal passing

through the points (x,, y,) and (x,, y,) to the extremal passing

through the points (x,, y,) and (x,+ 6x,, y, + 6y,) (Fig. 7.2).
From the figure it is clear that BD =08y |~,,; FC=dy,;

EC~y (x,)0x,;, BD=FC—EC
or
6!/ lx=x. =~ 6!/1_!/, (x!) 6x1~

Here, the approximate equality holds true to within infinitesimals
of higher order.

Y Clabz, 405y) And so we finally have
D =3 X, +06x,
——4F S Fdx ~ Fix:x, 6X1;
B/J',_l,,, Xy
A §(F(x, g+8y, o +8y)—
Xo
z —F(x, y, ¥)]dx=
0 Il II*SII ~ Fy' {x:x, * (Gy]_y, (‘xl) axl)r
Fig. 7-2 where the approximate equali-

ties likewise hold true to with-
interms higher than the first in 6x, and 8y,. Hence, from (7.1) we get

bv=F| =, 5J'C, + Fy |e=x, 8y, — ¥’ (x,) Ox,) =
= (F—_l/ FU’) 'X=1\ 6xl + F!/' L":Xl 6yl'
or

d(—’(xl, yl)= (F_y’Fy’) |x=x‘ dxl + Fy’ 'x:x‘ dyl’

where v(x,, y,) is a function into which the functional v was
transformed on the extremals y=y(x, C,), and dx,=Ax,=0dx,
dy, = Ay, =08y, are increments of the coordinates of the boundary
point. The basic necessary condition for an extremum Sv=0 takes
the form

(F—y Fy)|x=x, 62, + Fy |x=x, 8y, =0. (7.2)

If the variations 8x, and 8y, are independent, then it follows that
(F—=Y'Fy)lx=x, =0 and Fylx=y, =0.

However, more often one has to consider the case when the variations
6x, and 8y, are dependent.
For instance, allow the right boundary point (x,, y,) to move
along a certain curve
=9 ().
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Then 8y, ~ ¢’ (x,)6x, and, consequently, the condition (7.2) takes
the form [F+(¢’—y')F,]8x,=0 or, since 8x, varies arbitrarily,
it follows that LF+(‘P'—!/')Fy']x=x. =0. This condition establishes
a relationship between the slopes of ¢’ and y’ at the boundary
point. It is called the transversality condition.

The iransversality condition together with the condition y, = ¢ (x,)
generally speaking enables us to determine one or several extremals
of the pencil y=y(x, C,) on which an extremum may be achieved.
If the boundary point (x,, y,) can move along some curve y, =y (x,),
then in the very same way we will find that the transversality
condition

[F+ (' —Y) Fyle=x, =0

must be satisfied also at the point (x,, ¥,)-

Example 1. Find the transversality condition for functionals of
the form

v=§A(x, y)1/l+y"dx.

The transversality condition F+4 Fy (¢’—y’)=0 is in this case of
the form

TL L A9y A »A+9Y)_q.
Ax, Y 1+y*'+ 522 (9 —y)=0 or R LLTFI) 0,
l/ Vl+‘ y;! Vl+y:!
assuming that A(x, y)=0 at the boundary point, we get
14+y'¢"=0 or y=— —; that is, the transversality condition is

in this case reduced to the orthogonality condition.
‘T
Example 2. Test for an extremum the functional gl/l—;-y—dx

o

0

given that y(0)=0 and y, =x,—5 (Fig. 7.3). The integral curves
of the Euler equation (Problem 1, page 338) are the circles
(x—C,)*+y*=C?: The first boundary condition yields C,=C,.
Since for the given functional the transversality condition reduces
to the orthogonality condition (see preceding example), it follows
that the straight line y, =x,-—-5 must be a diameter of the circle,
and, hence, the centre of the desired circle lies at the point (0, 5),
where the straight line y, =x,—5 meets the axis of abscissas.
Consequently, (x—5)2+4*=25 or y=+)}10x—x*. And so, an
extremum can be achieved only on arcs of the circle y=} 10x —x*
and y=—V10x—x".
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If the boundary point (x,, y,) can move only along a vertical
straight line (Fig. 7.4) and hence 8x,=0, then the condition (7.2)
passes into F,[c=x, =0.

For example, in the problem of the brachistochrone (see pages
316-317) let the left boundary point be fixed and the right allowed to

¥
j

B 1
B
0 /
yi

/ 7 g

Fig. 7-3. Fig. 7-4

|

move along a vertical straight line. The extremals of the functional

Xy ——-,T
o=\ Vigy?
b V!l
dition y(0)=0 is taken into consideration, will be of the form
x=C, ({—sint),
y=C, (1 —cost).

dx are cycloids, the equations of which, if the con-

To determine C,, use the condition F,|;-,, =0, which in the given
case is of the form
y =0,

Vy Vit

whence y’ (x,)=0; that is, the desired cycloid must intersect the
straight line x=x, at right angles and, hence, the point x=x,,
y=y, must be a cusp of the cycloid (Fig. 7.5). Since to the cusp

there corresponds the value ¢ ==, it follows that x, =Cm, C,-—-—-i:‘-‘— .
Hence, an extremum can be achieved only on the cycloid

x=%(t—sin t);, ¢ =%(l —cos ).
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If the boundary point (x,, y,) in the problem of the extremum
Xy

of the functional v=SF (x, y, y')dx is permitted to move along

Xo

0 =
/’\\ -
/7 \
/I \\
Pd \\
’/
- ——
B
‘y Z=Z,
Fig. 7-5

the horizontal straight line y=y,, then 6y,=0 and the condition
(7.2), or the transversality condition, takes the form

[F—y'Fylsms, =0.
2. The Moving-Boundary Problem for a Functional

of the Form SF(x. »a2y, 2)dx
If in investigating the functional -
v=SF(x, Y, 2, 4, 2')dx
%o

for an extremum, one of the boundary points, say B(x,, y,, z,)
is moved, and the other, A (x, Y, 2,), is fixed (or both boundary
points are movable), then it is obvious that an extremum may be
achieved only on the integral curves of the system of Euler’s
equations

d d
Fy—E;Fy'=0; F,—d—sz'=0.

Indeed, if on a certain curve C an extremum is achieved in the
moving-boundary problem, i.e. a maximum or minimum value
of v is obtained compared with the values of v on all close-lying
permissible curves, which include both those curves that have com-
mon boundary points with the extremizing curve C and also those
curves whose boundary points do not coincide with the boundary
points of C, then an extremum is surely achieved on the curve
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C with respect to a narrower class of neighbouring curves having
common boundary points with the curve C.

Hence, the necessary conditions for an extremum in the problem
with fixed boundary points must be satisfied on the curve C, and
in particular, the curve C must be an integral curve of a system
of Euler’s equations.

The general solution of the system of Euler’s equations contains
four arbitrary constants. Knowing the coordinates of the boundary
point A (x,, y, 2z,), which we consider to be fixed, it is possible,
generally speaking, to eliminate two arbitrary constants.

To determine the other two arbitrary constants we have to have
another two equations, which will be obtained from the condition
6u=0; note that in computing the variaticn we will now assume
that the functional is specified only on solutions of the system of
Euler’'s equations, for an extremum is attainable only on them.
Then the functional v is reduced to the function ®(x,, y,, 2,) of
the coordinates x,, y,, 2, of the point B(x,, y,, 2z), and the
variation of the functional is reduced to the differential of this
function. *

The calculation of the variation of v may be performed exactly
as indicated on pages 342-344:

2, +0x,

Av= S F(x, y+ 0y, 2482, ¢y +0y', 2/ 4+82")dx—

Xo
Xy

—SF(x. Y 2 Y

%o

', 2)dx=
x4 +0x,

= S F(x, y+8y, 2+62, ¥ +by', 2’ +62)dx+

+§(Fe y+8y, 2482, y+ 8y, 2 4+62)—
* —F(x, gy, 2, ¥y, 2')]dx.

Apply the mean-value theorem to the first integral and take
advantage of the continuity of the function F; in the second
integral isolate the principal linear part by means of Taylor’s
formula. These transformations yield
Xy
80=F |cax, 8%, +  [F, 8y + F, 62+ F, 8y + F, 82')dx

X

* The function @ will be single-valued if the extremals of the pencil
centred at 4 do not intersect, for then the point B(x,, y,, 2;) uniquely defines
an extremal.
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Integrating by parts the last two terms under the integral sign
yields
dv=F Ix:x. le +[Fy' 6!,/]x=x, +[Fz' 62]:::, +
! d d ,
+S [(Fy——EFyf) 6y+(F,—a;Fz:) 82 ] dx.
Since the values of v are calculated only on extremals, it
follows that

d . dp _
Fy——a["ylEo, F,—F‘xpzl=0

and hence,
80 = F |xax, 0%, + [Fy 8y)x=s, + [Fo 82)x=x,.
Arguing in the same way as on page 344, we get
Oy |x=x, & Oy, —y (x;) 6x, and 0z|i=,, =~ 62,—2'(x,)0x,,
and, consequently,

8v=[F —y'Fy —2'F;)xex, 0%+ Fy |x=x, 84, + Fz |x=x, 62, =0.

If the variations O&x,, &y, 6z, are independent, then from the
condition du=0 we have
[F—y'Fy—2'Fulr=x,=0; Fyli=x, =0 and Fz |z=y, =0.

If the boundary point B(x,, y,, 2,) can move along some curve
H=9 () z=v(x), then 8y, =¢'(x)dx,, and 6z, =1’ (x,)bx,
and the condition 6uv=0 or

[F—y Fy—2"Fy)ges, 0%, + Fy |x=x, 84y + Fz |x=x, 62, =0
passes into the condition
[F+ (@ —y)Fy + (W' —2) Fr]ems, 6x, =0,
whence, by virtue of the arbitrariness of 6x,, we have
(F+(©@ —y)Fy+($'—2') For)sms, = 0.
This condition is called the fransversality condition in the problem
of investigating the functional

X4q

v=SF(x, Yy, 2, 4y, 2)dx

Xo

for an extremum. Together with the equations y, =@ (x,), 2, =¥ (x,),
the transversality condition yields the equations needed to determine
the arbitrary constants in the general solution of the system of
Euler’s equations,
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If the boundary point B(x,, y,, z,) can niove over some surfaces
2, =9 (x,, ), then 8z, = @, 6x, + ¢,,0y, and the variations 8x, and

8y, are arbitrary. Consequently, the condition dv=0 or, in expan-
ded form,
[F—y' Fy —2'F2)xex, 82, + Fy | x=4, 0y, + Fzr | =4, 82, =0
is transformed to the condition
[F—y' Fy —2 Fz 4+ @iF 2)xes, 82,4 [Fy + F 79})c=s, 8y, =0.
Whence, since 8x, and Oy, are independent, we get
[F=y'Fy +(@x—2)Fzlear,=0, [Fy+ Fr@y)i=y, =0.

These two conditions, together with the equation 2z, =¢(x,, y,),
generally speaking, enable one to determine two arbitrary constants
in the general solution of the system of Euler’s equations

If the boundary point A (x,, Y, 2,) is moving, then by the same
method at this point we get similar conditions.

If we consider the functional

Xy

v=SF<x, Yo Yoo =os Yno Yis Yoo .., Ya)dx,

Xo

then, without changing the proof procedure, we find that in the

case of the moving point B(x,, Y., Yer» ---» Y,) at this point
(F_ 2 yiF y’> bx, + 2 F, by, =0.
i=1 i) | x=x, i=] Yi| x=x,

Example 1. Find the transversality condition for the functional

"=SA(x. y DV 1§y +27dx if =0 (x,, y).
%o

The transversality conditions
(F=Y'Fy +(@:—2) Frlens,=0 and [Fy+F @ylier, =0
in this case are of the form 14 ¢,2’ =0 and y’ + ¢,2'=0 for x=1x,

’ ’

or — == =— for x=x,, that is, they are the condition for

parallelism of the vector of the tangent #(1, y’, ') to the desired
extremal at the point (x,, y,, 2,) and the vector of the normal

N (9y, 95 — 1) to the surface z= ¢ (x, y) at the same point. Hence,
in this case, the transversality condition becomes an orthogonality
condition of the extremal to the surface z=¢(x, y).
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Example 2. Find the extremal distance between two surfaces
2=, y) and z=vy(x, ).
Xy

In other words, find the extremum of the integral / = SV 1+y* 42" dx,

provided that the coordinates of one of the boundary points
(x4 Yo. 2,) satisfy the equation z,=¢q(x,, y,) and the coordinates
of the other boundary point (x,, y,, 2,) satisfy the equation z, = ¢ (x,, y,).

Since the integrand depends solely on y’ and z’, the extremals
are straight lines (Example 2, page 320). Since the functional

Si’ l14+y*+2"dx is a particular case of the functional

SA(x, y, 2) V1 +y” + 2" dx considered in the preceding example,

the transversality conditions both at the point (x,, y,, z,) and at
the point (x,, y,, 2,) pass into orthogonality conditions. Hence, an
extremum can be achieved only on straight
lines that are orthogonal both to the sur-
face z=¢(x, y) at the point (x,, y,, 2,)
and to the surface z= 1 (x, y) at the point
(%, 9, 2,) (Fig. 7.6).

Example 3. Test for an extremum
the functional v = S(y"+z"+2yz) dx given

that y(0)=0; 2z(0)=0, and the point
(%, Y,. 2,) can move over the plane x=x,.
The system of Euler’s equations has the
form 2"—y=0; y"—2=0, whence y'v— )
—y=0; y=C, cosh x+ C, sinh x+4C, cos x + Fig. 7-6
+C,sinx, z=y"; 2=C, cosh x 4+ C, sinh x—

—Cycosx—C,sinx. From the conditions y(0)=0, and z(0)=0
we get: C,+Cy=0 and C,—C,=0, whence C,=C,=0. The con-
dition at the moving boundary point

(F—y'Fy—2'Fp)sex, 0%, + F | x=x, 8y, + F | x=x, 62, =0
passes into the conditions
Fylei=x,=0 and Fz|y=y =0,
since dx, =0 and 8y, and 62, are arbitrary. In the example under
consideration, F, =2y’; F, =22’, hence
y (x,)=0 and 2z'(x,)=0
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or
C,coshx+C,cosx,=0 and C,coshx—C,cosx,=0.

If cosx, 0, then C,=C,=0 and an extremum may be achieved
only on the straight line y=0; z=0; but if cosx,=0, i.e.,

x,=%+nn, where n is an integer, then C,=0, C, is an arbitrary

constant, y=C,sinx, z=—C,sinx. It is easy to verify that in
the last case the functional v=0 for any C,.

3. Extremals with Corners

Up till now we have considered variational problems in which
the desired function y=y(x) was assumed continuous with a con-
tinuous derivative. However, in many problems the latter require-

ment is not natural; what is more,

B(z,4,) in certain classes of variatio-
nal problems the solution is, as a
rule, attained on extremals ha-
Clz,y) ving corner points. Such problems
include for instance problems

z involving the reflection and ref-
[ o raction of extremals, which are
a generalization of the corres-

Fig. 7-7 ponding problems involving the
reflection and refraction of light.

The reflection-of-extremals problem. Find the curve that extremizes

L

Alz,,4,)

the functional v=§F(x, Y, y')dx and passes through the given

points A(x,, y,) and B(x,, y,); the curve must arrive at B only
after being reflected from a given line y=¢ (x) (Fig. 7.7).

It is natural to assume that at the point of reflection C(x,, y,)
there can be a corner point of the desired extremal and, conse-
quently, at this point the left-hand derivative y’ (x,—0) and the
right-hand derivative y’ (x, +0) are, generally speaking, distinct. It
is thferefore more convenient to represent the functional v(y(x)] in
the form

v[y(x)]=SF(x, Y y’)dx+SF(x, Yy, ¥')dx;
F ) X,

here, on each of the intervals x, <x<Cx, and x, <x<x, the de-
rivative ¢’ (x) is assumed continuous and, hence, we can take ad-
vantage of the results given above.
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The basic necessary condition for an extremum, 8v= 0, takes the form

X, X3
dv=29 S F(x, y. y’)dx-{-SSF(x, Y, y')dx=0.
Xo Xy -
Since the point (x,, y,) can move along the curve y =g (x), it fol-
lows that in calculating the variations & S F(x, y, y)dx and

Xo
Xy

8 S F(x, y, y')dx we are involved in the conditions of the problem

with 2 boundary point moving along a given curve and we can
make use of the results of Sec. 1 (page 341). It is obvious that the
curves AC and CB are extremals. Indeed, on these segments y =y (x)
is a solution of the Euler equation, since if we assume that one of
these curves has already been found and if we vary the other one
alone, then the problem reduces to finding the extremum of the

functional SF dx<or SF dx) in the problem with fixed boundary
X, Xy

points. For this reason, when calculating the variation of the func-
tional we will assume that the functional is considered only on
extremals having the corner point C. Then

GSF("» Y, ¥)dx=[F+ (@ —Y') Fy)r=x,-o 0x,

and
8§ Fix, y, y)dx=—[F+ @ —¥) Folimrsobx,

(see page 345), where the signs x =x, —0 and x=x, +0 signify that
we take the limiting value of the quantity in the parentheses as
the point x, is approached in the first case from the left (from the
side of values of x less than x,) and in the second case from the
right (from the side of values of x greater than x,). Since only the
derivative y’ is discontinuous at the point of reflection, it follows
that in the first case we should take the left-hand derivative at the
corner point and in the second case, the right-hand derivative.
The condition u=0 takes the form

[F4 (@ —Y) Fy)smr=0 8%, — [F + (@ —Y') Fy]xmx,+0 0%, =0
or, since dx, varies arbitrarily, then
(F+ (@ —¢)Fylamn-o=[F + (@ —¥) Fylx=x+o
23378
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or

F(xu Y1 .’/' (x,-—O))—]—(cp' (xl)—
=Y (6—=0)Fy(xy, 41, ¥ (5, —0)=F (x,, 91, ¥ (x,+0))+
+(@" (x)—y (X, +0)) Fy (x,, 4. ¥ (x,4-0)).

This condition of reflection acquires a particularly simple form for
functionals of the type

o={ A0 9V 14y dr,

namely:

X=Xy—0

=Ax, 1) [Vl gt gy ”']
V | +y" X=X,4+0

or, simplifying and cancelling A(x,, y,) on the assumption that
A(x,, y,)0, we have

1497y’ __1t+o¥
l.l-{-y" x=x,-0 V1+y" x=x,+0

Designating the angle between the tangent to the curve y=¢(x)
and the axis of abscissas by the letter «, and the slopes, to the

Clz.4)
lqu,,y.)
T
0 -
Fig. 7-8 Fig. 7-9

abscissa axis, of the left and right tangents to the extremal at the
point of reflection C as P, and B,, respectively (Fig. 7.8), we get

Yy (x,—0)=tanB,, vy’ (x,+0)=tanp,, ¢’ (x,)=tana.
The condition at the reflection point takes the form

|4tana-tanf, 14tana-tanf,
—secB, . sec B,
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or, after simplification and multiplication by cosa:

—cos (@ —B,) = cos (z—B,)-

Whence follows the equality of the angle of incidence and the
angle of reflection.

If a point is in motion in some medium with velocity v(x, y),
the time ¢ spent on moving the point from the position A (x,, ,)

>
Fig. 7-10
2
to the position B(x,, y,) is equal to the integral SV(L"':) dx

which belongs to the type of functional SA(x y)Vl+y dx under

consideration and, hence, for any law of varlatlon of velocity v (x, y),
at the point of reflection the angle of incidence is equal to the
angle of reflection.

If the points A, B and C were arranged differently, for example,
as in Fig. 7.9, then in order to obtain the:same condition  at the
point of reflection, it would be more convenient, due to the two-
valued nature of thé function y=y(x), to carry out the investiga-
tion in parametric form.

Refraction of extremals. Let us suppose that in the region under

investigation the integrand of the functional v= S F(x, y, y')dx has

a discontinuity line y=¢q(x), and the boundar;r points A and B
are located on different sides of the discontinuity line (Fig. 7.10).

23
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Represent the functional v in the form

v={F(x, y yrde+ (F(x, v, ) dx,
X X

where F, (x, y, y')=F (x, y, y') is on one side of the discontinuity
line, and F,(x, y, y')=F (x, y, y¥') is on the other side.

Suppose that F, and F, are three times differentiable. It is na-
tural to expect a corner point at the point C of the intersection
of the desired curve with the discontinuity line. Arcs AC and CB
are obviously extremals (this again follows from the fact that by
fixing one of these arcs and varying the other alone we get a prob-
lem with fixed boundary points). For this reason, for the compari-
son curves we can take only polygonal lines consisting of two arcs
of extremals, and then the variation, because of the movable nature
of the boundary point C(x,, y,) that is translated along the curve
y=o¢(x), will take the following form (see page 345):

X3

60=6SF,(x. Y, y')dx—{—GSF,(x. Y, y)dx=
=[Fy+ (@ —¥') Fry)x=x,-0 0%, — [Fs+ (9" —y") F ay)x=x,+0 O%,,

and the basic necessary condition for an extremum, 6v=0, reduces
to the equality
[Fi+ (@ —Y) Fiylr=xi—0=[Fs + (@' —¥') Fay) x=x,+0-

Since only y’ can be discontinuous at the point of refraction, this
refraction condition may be written as follows:

Fl (X,, Y1 yl (Xl—O))-i-
+ (@ (X)) =y (5, —0) Fop (x4, 41, ¥ (x,—0)) =
= F,y (%, Y, ¥ (x,+0))+
+ (@ () =y (%, 4 0)) Fay (%1, 410 ¥ (5, +0)).
The refraction condition, together with the equation y,= ¢(x,),

makes it possible to determine the coordinates of the point C.
If, in particular, the functional v is equal to

SA(x. V14 ytde=

= A eV T4y a4 A, )V Ty dx,
X, X3
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then the refraction condition takes the form

l+¢lyl l+¢ly'

A (%, ) =A, (x, y) —==

1 y Vl +yll ¢ Vl +yll

or, retaining the notation of pages 354-355, y’(x,—0)=tang,,

Y (x,+0)=tanp,, ¢’ (x,)=tane; after simplifying and multiplying
by cosa we get

’
x=x,-0 x=x.+0

11
cos (@—By) _ Ay (11, ) sin [?“(““p"J — At )
cos (a—Ps) Ay (x, 1) sin [%—(a— ﬁ’)] Ay (x1, ¥y)

which is a generalization of the familiar law of the refraction of
light: the ratio of the sine of the angle of incidence to the sine of
the angle of refraction is equal to the ratio of the velocities

1 1
v, (%, y)=m and oy, (x, y)=m (compare page 354)

in media, on the boundary between which the refraction occurs.

One should not think that extremals with corners only occur in
problems of refraction or reflection of extremals. An extremum may
be achieved on extremals with corner points even in extremum

Xy

problems of the functional v= S F(x, y, y')dx, where the function

F is three times differentiable, and the permissible curves must pass
through the boundary points A and B without any supplementary
conditions whatsoever.

Let us investigate, say, the functional

v= Sy"(l—y’)’dx. y0)=0;, y(2)=1.

Since the integrand is positive, v>0 and hence if the functional
v=0 on some curve, it follows that on this curve there will defi-
nitely be achieved the absolute minimum of the functional v, that
is, the least value of the functional on the permissible curves.
It will readily be seen that on the polygonal line y=x for 0<Cx<1
and y=1 for 1 <x<{2 (Fig. 7.11), the functional v=0 since on
this polygonal line the integrand is identically zero. Consequeritly,
the absolute minimum of the functional is achieved on this poly-
gonal line.

The absolute minimum of the functional v=0 is also reached
on the polygonal lines depicted in Fig. 7.13. On the other hand
it is clearly seen that on smooth curves the values of the functional
are strictly greater than zero, though they may be made arbitrarily
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close to zero. Indeed, the integrand vanishes only when y=x+C,
or for y=C,, but the lines which are composed of segments of the
straight lines of these families and which pass through the points
A0, 0) and B(2, 1), can only be polygonal lines. However, by
smoothing the salient points by means of an appropriate variation
of the function in an arbitrarily small neighbourhood of these points
we can obtain a smooth curve, the value of the functional of which
differs by an arbitrarily small

value from the wvalues of the 2
functional on the polygonal B
¥ Cfr,,yE/§7
b8y d “l s )
3 '
r 4
] > 0 o
Fig. 7-11 Fig. 7-12

line. Thus, v=0 is the greatest lower bound of the values of the
functional v on smooth curves, but this greatest lower bound is not
attained on smooth curves, it is attained on piecewise smooth
curves.

Let us find the conditions that must be satisfied by solutions
with corner points of the extremum problems of the functional

v[y(x)]=SF(x, Y, y')dx. It is obvious that the separate smooth

arcs which make up  the broken-line extremal must be integral cur-
ves of the Euler equation. This follows from the fact that if all
the segments (except one) of the polygonal line are fixed, then the
problem reduces to the most elementary problem with fixed boun-
daries, and, hence, this segment must be an arc of the extremal.

Assuming that the broken-line extremal has only one corner point
(this is to simplify the notation),* we find the conditions that must
be satisfied at the corner point:

V= S F(x,y, y)dx= K F(x,y, y)dc+ SF(x, y, y')dx,
Xo Xo Xy

where x, is the abscissa of the corner point (Fig. 7.12). Taking it
that the curves AC and CB are integral curves of the Euler equa-

* If there are several corner points, then the same argument applies to
each one.
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tion and that the point C can move in arbitrary fashion, we get
(according to Sec. 1, page 344):
Sv=(F—Yy'Fy) |e=x,- 0%, +

+ Fy’ |x=xl-0 ‘5!/1 —(F—y’Fy’) lx=r|+0 6x1 —F.l/’ ]x=x.+0 6!/1 = Ov
whence

(F—Y'Fy)lx=x,-0 8%, 4+ Fy lx=x,~0 8y, =

=(F—Y'Fy)|e=x,+0 8%, + Fy |x=x,+0 Oy,
or, since 8x, and 8y, are independent, we have
(F=Y'Fy)lx=x—o =(F—Y Fy) lx=x,+0
and
F_c/ lz=x.—o = Fy lx:x.+o-

These conditions, together with the continuity conditions of the
desired extremal, permit determining the coordinates of the corner
point.

Example 1. Find the broken-line extremals (if they exist) of the
functional v-—.S(y’“—y’)dx. Write the second of the conditions

(1]
that must be fulfilled at the point of inflection, Fy |x=x,-0 =
= F |x=x,+0 or, in the given case, 2y’ (x,—0)=2y"(x,+0), whence
Y (x;—0)=y’ (x,+0); that is, the derivative y’ at the point x, is
continuous and there is no point of inflection. Hence, in the prob-
lem at hand an extremum may be reached only on smooth curves,

Example 2. Find the broken-line extremals of the functional
v=gy'a(l__y')"‘dx. Since the integrand depends only on y’, the

extrc:mals are the straight lines y=Cx+-C (see page 314). In this
case the conditions at the point of deflection take the form

=y (1=¢) (1 =3y lemry—0= —¢" (1 —4") (1 —3¢") lx=s, +0
and
20" (1 =y ) (1 =2¢") lr=x,-0 =2¢' (1 — ') (1 —2') |x=s, +0.
These conditions, if one disregards the trivial possibility
y' (xl—o) = yl (xx +0)v

are satisfied for

!/, (x| —0) =0
and

Y (x, +0)=1
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or

Yy (x,—0)=1
and
Yy (x,+0)=0.
l}y
(1) 3(z1)
I
= >
Fig. 7-13

Consequently, broken-line extremals may consist solely of segments
of straight lines that belong to the families y=C, and y=x+0C,
(Fig. 7.13).

4. One-Sided Variations

In certain variational problems involving an extremum of a func-
tional v(y(x)], a restriction may be imposed on the class of per-
missible curves that prohibits them from passing through points of

Fig. 7-14

a certain region R bounded by the curve @ (x, y)=0 (Fig 7.14).
In these problems the extremizing curve C either passes completely
outside the boundaries of the region R, and then it must be an
extremal, since in this case the presence of the prohibited region
R does not in the least affect the properties of the functional and
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its variations in the neighbourhood of the curve C, and the argu-
ments in Chapter 6 hold true, or C consists of arcs lying
outside the boundary of R and also consists of parts of the boun-
dary of the region R. In this latter instance, a new situation
arises; only one-sided variations of the curve C are possible on
parts of the boundary of the region R, since permissible curves
cannot enter the region. Parts of the curve C that lie outside the
boundary of R must, as before, be extremals, since if we vary
the curve C only on such a segment that permits two-sided varia-
tions, the presence of the region R will not affect the variations
of y, and the conclusions of Chanter 6 continue to hold true.

Fig. 7-15

Thus, in the problem under consideration, an extremum can be
reached only on curves consisting of arcs of extremals and parts cf
the boundary of the region R, and hence, in order to construct the
desired extremizing curve we have to obtain conditions, at the
points of transition of the extremal to the boundary of the region
R, which permit determining these points. In the case depicted in
Fig. 7.15, it is necessary to. obtain conditions at the points M,
N, P and Q. Let us, for instance, obtain a condition at the point
M. In quite analogous fashion one could obtain conditions also at
other points of transition of the extremal to the boundary of the
region.

When calculating the variation v of the functional

% x x
v={F(x, 9. 9)de=(F(x, 9, 9)dx+( F(x, y, y)dx
X Xo x

we can consider that the variation is caused solely by the displace-

ment of the point M (x, y) on the curve @ (x, y)=0, i.e. it may
be taken that for any position of the point M on the curve
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@ (x, y)=0, the arc AM is already an extremal, and the segment
MNPQB does not vary. The functional

X

o= {F(x, y, y)de

"
Xo

has a boundary point moving along the boundary of the region R,
whose equation is @ (x, y)=0, or in the form solved for y in the
neighbourhood of the point M: y= ¢ (x).

Thus, according to Sec. 1 (page 344)

6v, = [F+(9'—y') Fyle=7 bx.

The functional v, = S F(x, y, y')dx also has a moving boundary
point (x, y). However, in the neighbourhood of this point the curve
on which an extremum y=gq(x) can be achieved does not vary.
Consequently, the variation of the functional v, in the translation
of point (x, y) to the position (x-+8x, y+8y) only reduces to a
change in the lower limit of integration and

Xy X1
Av,= { F(x, gy, y)de—( F(x, g, y)de=
x+0x x
*+0% T40x

F(x, 9, y)dx=— { F(x, 9(x), ¢’ (0)dx,

+

X

% |

since y=g (x) on the interval (x, x-+ 6x).
Applying the mean-value theorem and taking advantage of the
continuity of the function F, we get

sz = —‘F(x, TP(X), (P' (X)) IX =4_t 6;'*_ BGED
where 6 — 0 as 6x—0. _
Consequently, fv,= —F (x, @ (x), ¢ (x))|«=x 0%,
60:601+602=[F(xn Y, y')+
+((p'_y’) F!/ (x' yD y,)]X=;6;-F(x’ y9 ‘P’)lx=;6}=
=[F(x, 4, ¥Y)—F(x, y, ¢)— ¢ —¢') Fy (x, y, ¥')]x=x6%,
since y(X) = (¥).

Due to the arbitrary nature of 8x, the necessary condition for an
extremum, 8v=0, takes the form

[F(x, y, ¥)—Fx, y, ¢ )—(' —¢) Fy (x, y, 'y’)Jx=;=0.
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Applying the mean-value theorem, we obtain
(yl_(p,)[F!/ (xv Y, q)—Fy’ (x’ Y, !/')]x=?=0.

where ¢ is a value intermediate between ¢’(x) and y’ (x). Again
applying the mean-value theorem, we get

' —¢)q—Y) Fyy (%, 4 )= =0,

where ¢ is a value intermediate between ¢ and y’ (x).

Suppose Fy, (%, y, §)5 0. This supposition is natural for many
variational problems (see Chapter 8). In this case the condition at
the point M is of the form y (x)=¢'(x) (g=y’ only when
y' (x)=09’(x), since ¢ is a value intermediate between y’(x) and

" (x))-

? gingce, at the point M the extremal AM and the boundary
curve MN have a common tangent (the left tangent for the curve
y=y(x) and the right tangent for the curve y=¢(x)). Thus, the
extremal is tangent to the boundary of the region R at the point M.

PROBLEMS ON CHAPTER 7

1. Find a solution with one corner point in the minimum prob-
lem of the functional

4

oy@]={ @ =@ +1)de y(©0)=0 y4)=2

0

2. Do solutions with corner points exist in the extremum prob-
lem of the functional

o[y ={ @ +2y—gdx y) =y yx)=y?

3. Are there any solutions with corner points in the extremum
problem of the functional

o[y ()] ={ (" '—6yYdx; y(©0)=0; y(x)=y?

o0
4. Find the transversality condition for the functional

oly)={ A, pesetanv )/ 14y de, A, y)#0.

Xo
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5. Using the basic necessary condition for an extremum, 6v=0,
find the function on which the functional can be extremized

1
oly@l={ " =2 dx y©O) =y ©)=0,

y(l)=lL20; y’' (1) is not given.

6. Find curves on which an extremum of the functional
10
vly)]={y"de; y(©=0; y(10)=0

can be achieved, provided that the permissible curves cannot pass
inside a circle bounded by the circumference

(x—5"+y'=9

7. Find a function on which an extremum of the functional
N

sly@]={ @ —yMdr; y(0)=0

can be achieved if the other boundary point is permitted to slide
along the straight line x=%.

8. Using only the basic necessary condition §v=0, find the curve
on which an extremum of the functional

v{y(x)]=§f'—y+—”"dx; y(0)=0

can be achieved if the second boundary point (x,, ) can move
along the circumference (x—9)® + y*=9.



CHAPTER 8

Sufficient conditions for an extremum

1. Field of Extremals

If on anxy-plane, one and only one curve of the family y=y(x, C)
passes through every point of a certain region D, then we say that
this family of curves forms a field, more precisely, a proper field,
in the region D. The slope of the tangent line p(x, y) to the curve
of the family y=y(x, C) that passes through the point (x, y) is
called the slope of the field at the
point (x, y).

For instance, inside the circle
*+y*<<1 the parallel straight

J
lines y =x +C form a field (Fig. 8.1),
the slope of which is p(x, y)=1. On
the contrary, the family of parabo- ///0
% |

las y=(x—a)*—1 (Fig. 8.2) inside
the same circle does not form a
field since the parabolas of this
family intersect inside the circle.

[f all the curves of the family
y=y(x, C) pass through a certain
point (x,, y,), i.e. if they form a Fig. 8-1
pencil of curves, then they defi-
nitely do not form a proper field in the region D, if the centre of
the pencil belongs to D. However, if the curves of the pencil cover
the entire region D and do not intersect anywhere in this region,
with the exception of the centre of the pencil, i.e. the requirements
imposed on the field are fulfilled at all points other than the centre
of the pencil, then we say that the family y=y(x, C) also forms
a field, but in contrast to the proper field it is called a central field
(Fig. 8.3). :

For example, the pencil of sinusoids y=Csinx for 0 <x <a,
a<<n forms a central field (Fig 8.4). The very same pencil of
sinusoids forms a proper field in a sufficiently small neighbourhood
of the segment of the axis of abscissas 6 << x<Ca, where § >0,
a<<n (Fig. 8.4). The very same pencil of sinusoids does not form
a field in the neighbourhood of the segment of the axis of abscissas
0<x<a,, a,>n (Fig. 8.4).
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If a proper field or a central fieid is formed by a family of

extremals of a certain variational problem, then it is called an
extremal field.

Fig. 82

The field concept is extended almost without any changes to the
case of a space of any number of dimensions. The family y;,=

=y;(x, C,, ..., C))(i=1, 2, ..., n) forms a field in the region D
of the space x, y,, ..., y, if through every point of D there passes
Ay
by

|Z-a,
Fig. 8-3

Fig. 5-4

one and only one curve of the family y;=y;(x, C,, ..., C,). The
partial derivatives of the functions y;(x, C,, C,, ..., C,) with res-
pect to x calculated at the point (x, y,, 4., ..., y,) are called
functions of the slope of the field p; (x, 4y, Y5y .. -» ¥s) (=1, 2, ..., n);
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hence, to obtamn p;, v,, Y5 ..., Y, one has to take %yi (x, C,,

C, ..., C,) and replace C,, C,, ..., C, by their expressions given
in terms of the coordinates x, y,, ¥,, ..., y,. The central field is
defined in similar fashion.

Let the curve y=y(x) be an extremal of a variational problem
involving the extremum of an elementary functional

vy ()= S F(x, y, y')dx,
Xy

and let the boundary points A(x,, y,) and B(x,, y,) be fixed. We
say that the extremal y=y(x) is included in the extremal field if

by

A y=y(z)

|

Fig. 85 Fig. 86

a family of extremals y=y(x, C) has been found that forms a field
containing the extremal y=y(x) for some value C=C,, and the
extremal y=y(x) does not lie on the boundary of the region D in
which the family y=y(x, C) forms the field (Fig. 8.5). If a pencil
of extremals centred at the point A(x,, y,) forms a field in the
neighbourhood of the extremal y=y(x) that passes through this
point, then the central field including the given extremal y==y(x)
has thus been found. In the given case, for the parameter of the
family we can take the slope of the tangent line to the curves of
the pencil at the point A (x,, y,) (Fig. 8.6).

Example 1. Given the functional
a

§ "=y dx;

0

it is required to include the arc of the extremal y=0 that conmects
the points (0, 0) and (a, 0), where 0<<a<Cm, in the central field
of extremals. The general solution of the Euler equation y"+y=0
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(see page 310, Example 1) is of the form y=C, cos x + C, sin x. From
the condition of the passage of extremals through the point (0, 0)
we get C,=0, y=C,sinx, and the curves of this pencil form a
central field on the interval 0 <x<{a, a<<n including, for C,=0,
the extremal y=0. The parameter of the family C, is equal to
the derivative y, at the point (0, 0). But if in the same problem
az=>n, then the family y=

Ay = C,sin x does not form a field

a* (see page 365).

Alzoy, It is known that two infini-
» tely close curves of the family
Bz, 4) F(x, y, C)=0 intersect at
points of the C-discriminant
curve defined by the equations

0 Zo Tz F(x, y, C)=0; %—=O‘
Fig. 87 Recall that the C-discrimi-

nant curve includes, among

other things, the envelope of the family and the lccus of multiple
points of the curves of the family. If F(x, y, C)=0is the equation
of the pencil of curves, then the centre of the pencil likewise
belongs to the C-discriminant curve. Therefore if we take a pencil
of extremals y=y(x, C) passing through the point (x, y,) and de-
termine ts C-discriminant

A9 B(z,,y) curve @ (x, y)=0, then
a* close-lying curves of the
H(zo4s) \ family y=y(x, C) will

. intersect near the curve
®(x, y)=0 and, in parti-
cular, the curves of this
family that are close to the
extremal under considera-
tion y=y(x) that passes
through the points A (x,, y,)
Fig. 8-8 and B (x,, y,), will intersect
: at points close to the points
of tangency (or intersection) of the curve y=y (x) with the C-discrimi-
nant curve (see Fig. 8.7, where the C-discriminant curve is depicted by
a heavy line). If the arc AB of the extremal y=y(x) does not have
common points (different from A) with the C-discriminant curve of
the pencil of extremals that includes the given extremal, then extre-
mals of the pencil sufficiently close to the arc AB do not intersect;
that is to say, they form, in the neighbourhood of the arc AB, a
central field that includes this arc (Fig. 8.8).

|

0 <o 5 oz
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If the arc AB of the extremal y=y(x) has a point A* (different
from A) in common with the C-discriminant curve of the pencil
y=y(x, C), then curves of the pencil close to y= y(x) can intersect
among themselves and with the curve y=y(x) near the point A*;
generally speaking, they do not form a field (Fig. 8.7). The point
A* is called a point that is conjugate to the point A.

The result obtained may be formulated as follows: to construct a
central field of extremals with centre atl the point A, which field
contains the arc AB of the extremal, it is sufficient for the point A*,
conjugate to A, not to lie on the arc AB. This condition of the
possibility of constructing a field of extremals including a given
extremal is called the Jacobi condition.

This condition may be readily stated analytically as well. Let
y=y(x, C) be the equation of a pencil of extremals with centre at
the point A, the parameter C being, for definiteness, considered as
coinciding with the slope y’ of the extremals of the pencil at the
point A. The C-discriminant curve is defined by the equations

o x, C
y=yx, C; L& =0,

dy (x, C)
aC
dy (x, C)

Along every fixed curve of the family, the derivative is a
function of x alone. Denote this function briefly by u: u=

Jda
0% (x, C .
gc(.xax ). The functions y=y(x, C)

are solutions of the Euler equation. Therefore

where C is given; whence u,=

Fy(x, y(x, C), 4y (x, C)— 1= F, (x, y(x. C). g (x, C)=0.

Differentiating this identity with respect to C and putting @—g‘é*c) =u,
we get
) d ’
Fyu+F,u —'a;(F.uy'“ + Fyyu’)=0

or

d d ’
(Fyy"Z'tFy.u’) u—=(Fypu')=0.

Here, F ), (x, 4, '), Fyy (x, Y, ¥'), Fyy (x, y, y') are known functions
of x, since the second argument y is equal to a solution of Euler’s
equation y=y(x, C) taken for the value C=C, that corresponds
to the extremal AB. This homogeneous linear equation of the second
order in u is called Jacobi's equation.

dy (x. C)

If the solution of this equation u= o which vanishes at
the centre of the pencil for x=x, (the centre of the pencil always

24 378
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belongs to the C-discriminant curve) also vanishes at some point of
the interval x, <<x<{x,, then the point conjugate to A defined by
the equations

dy(x, C) _
T-—O or u=0

y=y(x, C)) and
lies on the arc AB of the extremal.* But if there exists a solution
of the Jacobi equation that vanishes for x=ux, and that does not
further vanish at any point of the interval x, <<x<Cx,, then there
are no points conjugate to A on the arc AB: the Jacobi condition
is fulfilled, and the arc AB of the extremal may be included in the
central field of extremals centred at the point A.
Note. 1t may be proved that the Jacobi condition is necessary for
achieving an extremum,; i. e. for the extremizing curve AB the point
conjugate to A cannot lie in the interval x, <x<<x,.

Example 2. Is the Jacobi condition fulfilled for the extremal of

the functional v=S(y"—y’)dx that passes through the points

A0, 0) and B(a, 0)?
The Jacobi equation has the form

—2u—£(2u’)=0 or u"+u=0,

whence
u=C, sin (x—C,).

Since u (0)=0, it follows that C,=0; u=C,sinx. The function u
vanishes at the points x=#kxn, where % is an integer, and, hence, if
0<<a<<m, then on the interval 0 <<x<Ca the function u vanishes
only at the point x=0 and the Jacobi condition is fulfilled. But
if a=>n, then on the interval 0 <Cx<Ca the function u vanishes in
at least one more point x== and the Jacobi condition is not ful-
filled (compare with Example 1, page 367).

Example 3. Is the Jacobi condition fulfilled for extremal of the
functional

oly) = "+ + M dx,

that passes through the points A (0, 0) and B(a, 0)?
The Jacobi equation is of the form «”—u=0. We take its general
solution in the form u=C, sinhx+C,coshx. From the condition

* Note that all nontrivial solutions of the second-order homogeneous linear
differential equation that satisfy the condition u (x,)=0 differ from one another
solely in a constant nonzero factor and, hence, vanish simultaneously.
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u(0)=0 we find C,=0, u=C,sinhx. The curves of the pencil
u=C,sinhx intersect the x-axis only at the point x=0. The Jacobi
condition is fulfilled for any a.

2. The Function E(x, y, p. y')

Suppose that in the most elementary problem involving an extre
mum of the functional

Xy
o={F, 4 y)dx

y(xo) = yo) y(xl) =yl
the Jacobi condition is fulfilled and, hence, the extremal C that

passes through the points A (x,, y,) and B(x,, y,) can be included
in the central field whose slope is p(x, y) (Fig. 8,9).* To determine

Fig. 89

the sign of the increment Av of the functional v when passing from

the extremal C to some close permissible curve C, we transform the

increment Av=SF(x, ¥ Y) dx—SF(x, Y, y')dx to a form more
ol (4

c
convenient to investigate. (The symbols
SF(x, Y, Yy')dx and SF(x, Y, y)dx
F ¢
Xy
represent values of the functional v= S F(x, y, y')dx taken along

the arcs of the curves € and C respeétoively.)
Consider the auxiliary functional

S[F *, 9, p)+(§—§—p) Fp(x v, p)] dx,
¢

* It might be assumed that the extremal is included in the proper field and
not in the central field.

24%
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which turns into SF(x y, y')dx on the extremal C, since d—y—p

on extremals of the field. On the other hand, the very same auxi-
liary functional

V[Fes o p+ (G—p) Fotx, v, p)| ax
c
or

([F(x. 4. D—pF,(x, 4, Pldx+F,(x, y. ppdy (8.1
¢

is the integral of an exact differential. Indeed, the differential of

the function v (x, y), into which the functional v [y (x)] is transformed
on the extremals of the field, has the form, according to Sec. 1,
Chapter 7 (page 344),

do=[F(x, y. ¥)—y'Fyx, y, ¥))dx+Fyp(x, y, y)ay

and differs from ihe integrand in the auxiliary integral under consi-
deration (8.1) solely in the designation of the slope of the tangent
line to the extremals of the field.

Thus, on the extremal C the integral S[F (x, 4, p)+(y —p) F,)dx

o
coincides with the integral SF (x, y, y’)dx, and since the functional
C

S[F (x, y, p)+ (' —p) F,]dx is the integral of an exact differential

¢
and, hence, does not depend on the path of integration, it foilows
that

SF(){. Yy, y)dx= S (Fx 4. P+ —p) Fy(x, y, p)dx
c ¢
not only for €=C but for any choice of C as well.
Hence, the increment
Av = S F(x, y. y')dx-—SF(x. Yy, ¥')dx
bl c
may be transformed to
F(x) U Y dx—S[F(xv Y, P )+(y,—p)Fp(x» R p)]dx:

ll

Ou./— Ore—

) [F (%, v, y)—f(x. Yy, p)—' —p) F,(x, y, p)dx.
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The integrand is called the Weierstrass function and is denoted by
E(x, 4. p, ¥'):

Ewx, g, p, ¥)=Fx y, y¥)—Fx, y p)—y —p F,(x, 4. p).
In this notation,

AL‘=§E(x, Y, p, y')dx.

Xo

Obviously, a sufficient condition for the functional v to achieve a
minimum on the curve C is the nonnegativity of the function £,
since if £E>0, then also Av>0, and a sufficient condition for
a maximum will be E <CO0, since in this case Av<CO0 also. Here,
it issufficient for a weak minimum that the inequality E (x, y. p, ') >0
(or E<CO in the case of a maximum) be fulfilled for values of x, y
close to the value of x, y on the extremal C under study, and for
the values of g’ close to p(x, y) on the same extremal; for a strong
minimum, the same inequality must hold for the same x, y, but
now for arbitrary y’, since, in the case of a strong extremum, close-
lying curves may have arbitrary directions of tangent-lines and in
the case of a weak extremum the values of ¥’ on close-lying curves
are close to the values of y'=p on the extremal C.

Consequently, the following conditions will be sufficient for a func-
tional v to achieve an extremum on the curve C:

For a weak extremum.

1. The curve C is an extremal that satisfies the boundary con-
ditions.

2. The extremal C may be included in the field of extremals.
This condition may be replaced by the Jacobi condition.

3. The function E (x, y, p, y’) does not change sign at any point
(x, y) close to the curve C and for values of y’ close to p(x, y).
In the case of a minimum, E >0, in the case of a maximum,
E <O0.

For a strong extremum:

1. The curve C is an exiremal satisfying the boundary conditions.

2. The extremal C may be included in the field of extremals.
This condition may be replaced by the Jacobi condition.

3. The function E(x, y, p, y’) does not change sign at any of
the points (x, y) that are close to the curve C and for arbitrary
values of y’. In the case of a minimum, E >0; in the case of
a maximum, E <C0.

Note. It may be proved that the Weierstrass condition is neces-
sary. More precisely, if in a central field including the extremal C,
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the- function E has opposite signs at points of the extremal for cer-
tain y’, then a strong extremum is not achieved. If this property
occurs for values of y’ arbitrarily close to p, then even a weak
extremum is not achieved.

Example 1. Test for an extremum the functional
a
v={y"dx; y(0)=0,
[1]

y(@=b,a>0 b6>0.

The straight lines y=C,x+C, are extremals. An extremum may
be achieved only on the straight line y=%x. The pencil of straight
lines y=C,x centred at the point (0, 0) forms a central field
It that includes the extremal y=7’:— x

(Fig. 8.10).
B(a,6) The function
E(x, y, p, ¥)=y"—p"—
—3p* (' —p)=("—p)" (v +2p).

- On the extremal y= %x, the slope of

o " the field p=% >0, and if y' assumes

Fiz. 8-10 values close to p=7b,-, then EZ>0,

and, hence, all the conditions that

are sufficient for achieving a weak minimum are fulfilled. Thus,
a weak minimum is achieved on the extremal y=% x. But if

y' takes on arbitrary values, then (y'+2p) may have any sign
and, hence, the function E changes sign, and the conditions suf-
ficient for achieving a strong minimum are not fulfilled. If we takeinto
account the note on pages 373-374, it will be possible to assert that

a strong minimum is not achieved on the straight line y =%x.
Example 2. Test for an extremum the functional

{6y —y“+yy)ds; y(©)=0; y@=b a>0 and 6>0
[}

in the class of continuous functions with continuous first derivative.
The extremals are the straight lines y=C,x+C,. The boundary

conditions are satisfied by the straight line y=%x. which is inclu-
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ded in the pencil of extremals y=C,x that form the central field.
The function

Ex, y, p, y)=6y"—y" " +yy'—6p* + p'—yp—(y'—p) X
X(12p—4p*+y)=—('—p)’ [y"* +2py’ — (6—3p")].
The sign of the function E is opposite that of the last factor
y*+2py’ —(6—3p%).

This factor vanishes and can change sign only when y’ passes through
the value y'= —p + V'6—2p*. For 6—2p*<0, or p=>V'3 for any
y’ we have [y"*+2py’ —(6—3p*)] =0 but if 6—2p*>0o0r p < V'3,
then the expression [y’*+ 2py’ —
—(6—3p®)] changes sign. But
if, in the process, y’ differs by
a sufficiently small amount from
p, then the latter expression does
not change its positive sign for
p>1 and its negative sign for
p<l

Consequently, for p=% <lor
b < a, wehavea weak minimum,
since E>0 for values of y
close to p; for p=%> lorb>a Fig. 811
we have a weak maximum. For

p=% = V3 we have a strong maximum since E <0 for any values of

y'. For p =% < V'3, on the basis of the note on pages 373-374, there
is neither a strong minimum nor a strong maximum (Fig. 8.11).

Even in the above very simple examples, testing the sign of the
function E involved certain difficulties and for this reasom it is
advisable to replace the condition of retaining the sign by the func-
tion E by a more readily verifiable condition. Suppose that the
function F(x, y, y') is three times differentiable with respect to the
argument y' By Taylor’s formula we get

F(x' Y, Y)= ,
=Fx, y, )+ —p)Fp(x, 4, p)+‘”—;’1'1“w * 9 9)
where g lies between p and y'.
The function
Ex, 9, p, ¥)=F(x, y, y¥)—F(x, 4. p)— @' —p)F,(x, 4, p),
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after replacement of the function F(x, y, y’) by its Taylor expan-
sion, takes the form

' p)?
E(xr v p, .’/’):(L'frm- Fy'y' (X, Y, q)

From this we see that the function E does not.change sign if
Fy.,.(x, y, q) doesn’t. When investigating for a weak extremum,
the function F,,. (x, y, gq) must retain sign for values of x and y
at points close to the points of the extremal under study, and for
values of g close to p. If Fy ., (x, y, y')5=0 at points of the extre-
mal C, then by virtue of continuity this second derivative maintains
sign both at points close to the curve C and for values of ¥’ close
to the values of ¥ on the curve C. Thus, when testing for a weak
minimum, the condition E >0 may be replaced by the condition
Fy., <0 on the extremal C, and when testing for a weak maximum
the condition E<C0 may be replaced by the condition F,., <0 on
the curve C. The condition F,.,. >0 (or F,, <O0) is called the
Legendre condition.*

When testing for a strong minimum the condition £ >0 may be
replaced by the requirement F,.,. (x, y, ¢) =0 at poinis (x, y) close
to points of the curve C for arbitrary values of g. Here, of course,
it is assumed that the Taylor expansion

F(x- Y, y,)=
' __n)2
=F(x 4, P+ —p)F, (6, 4o p)+L 5 Fpp(x, 4, @)

holds true for any y’. When testing for a strong maximum, we get
the condition F,., (x, y, q)<<0, for the very same assumptions
regarding the range of the arguments and the expansibility of the
function F(x, y, y"V in Taylor’s series.

Example 3. Test for an extremum the functional

vly@)={ @ —y"dx, a>0; y(0)=0, y(@)=0.

The Euler equation has the form y”+y=0, its general solution
is y=C,cosx + C,sinx. Using the boundary conditions, we get
C,=0 and C,=0, if as«kn, where k is an integer.

Thus, for a4 kn an extremum may be achieved only on the
straight line y=0. If a <&, then the pencil of extremals y=C, sinx
with centre at the point (0, 0) forms a central field. For a > n, the
Jacobi condition is not fulfilled (see page 365).

* The condition Fy.y > 0 (or Fyry < 0) is often called the strong Legendre
condition, while the Legendre condition is the inequality Fyry» =0 (or Fyyr << 0).



Summary of Sufficient Conditions for a Minimum of the Elementary Functional *

£y

vy@l={F@ 3y dx y =)= y(x)=2

*o

Weak minimum

Strong minimum

Weak minimum

Strong minimum

Weak minimum

Strong minimum

d
l. FJ’_‘T}FU'=0

2. Jacobi condition

3. Fyyr >0
on the extremal
under study

d
. Fy—d—x- Fy'=0

2. Jacobi condition

3. Fyyr (x,9,9)=0

for points (x, y)
close to points on
the extremal under
study and for arbit-
rary values of y'.
It is here assumed
that the function
F (x, y, y’) is three
times differentiable
with respect to y’
for any values of y*

d
1. Fy—a Fy'=o

2. Jacobi condition

3. E(x,y,p,y)=0

for points (x, y)
close to points
on the extremal
under study and
for y' close to
p(x, y)

1.
2.

d
Fy—2-Fy=0

Jacobi condition

. E(x,y,p,y)=0

for points (x, y)
close to points
on the extremal
under study and
for arbitray y’.

a
1. F’—Tx
2. An. extremal field
exists that includes
the given extremal

Fyp=0

B. E(x, 9, p, y)=0

for points (x, y)
close to the points
on the extremal un-
der study and for
y' close to p(x, y)

¢ To obtain the sufiicient conditions for a maximum, take the inequalities, given here. in the oppos::ie sense.

d

. Fy—Z F.=0

Y odx

. An extremal field

exists that inclu-
des the given
extrema!

. E(x,y,p,4')=0

for points (x, y)

close to the
points on the
extremal under
study, and for

arbitrary y’
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Since the integrand lS three times differentiable with respect to
y' for any values of ¥’ and F,,=2>0 for any values of y’, it
follows that on the straight line y=0 a strong minimum is achieved
for a <. If we take into account the note on page 370, it may be
asserted that for a > n a minimum is not achieved on the straight
line y=0.

Example 4. Test for an extremum the functional

frwdx’

vy (x)]= y(0)=0, y(x)=y,

(see the problem of the brachistochrone, pages 316-317). The extre-

mals .are the cycloids
x=C,({—sint)+C,,
y=C,(1—cost).

The pencil of cycloids x=C, ({—sint?), y=C, (1 —cos?) with centre

A Z

Fig. 812

in the point (0, 0) forms a central field including the extremal
x=a(t—sint), y=a(l —cost),

where a is determined from the condition of the passage of a cyc-
loid through the second boundary point B(x,, y,), if x, <2na

(Fig. 8.12).

We have
Fp=—Y ' F,.= ! 0
VeV Y >

for any y'. Hence, for x, < 2na, a strong minimum is achieved on

the cycloid
x=a(t—sint), y=a(l—cosi).
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Example 5. Test for an extremum the functional
a
v[y(x)]=Sy”dx: y(0)=0, y(@=>b, a>0, b>0.
(]

This example was solved on page 374, but we can now simplify the
investigation with respect to a weak extremum.
The extremals are straight lines. The pencil y=Cx forms a cent-

ral field that includes the extremal y=%x. On the extremal
y=—z—x, the second derivative Fy.y.=6y’=6%>0. Hence, the

straight line y=%x achieves a weak minimum. For arbitrary ',

the second derivative F,.,, =6y’ changes sign; thus the above-indi-
cated sufficient conditions for achieving a strong minimum are not
fulfilled. However, one cannot conclude from this that a strong
extremum is not achieved.

Example 6. Test for an extremum the functional
a
oly@)={Lde yO© =1, y@=ba>0,0<b<1.
(/]

The first integral of the Euler equation (see case (5), page 315)
is of the form

, 2 ’
!%+y yTy,=C or y*=4Cy;

extracting the root, separating the variables and integrating, we get
y=(C,x+C,)*, which is a family of parabolas. From the condition
y(0)=1 we find C,=1. The pencil of parabolas y=(Cxx+1)*
with centre in the point A(0, 1) has a C,-discriminant curve
y =0 (Fig. 8.13). Two parabolas of this pencil pass through
the point B(a, b). On the arc AB of one of them (L,) lies the
point A*, which is conjugate to the point A, on the other (L,)
there is no conjugate point and, hence, the Jacobi condition is
fulfilled on the arc L,, and an extremum can be achieved on this
arc of the parabola. In the neighbourhood of the extremal under

study F,,.,,=%>O for arbitrary y’; however, on this basis we

cannot assert that a strong minimum is achieved on the arc L,,

since the function F(x, y, y')=i, cannot be represented in the form
y

F(x, y, ¥)=F(x, y, p)+ (' —p)F,(x, 9, p)+(y';”)’F,,'¢(x. Y, q)

for arbitrary values of y' due to the presence of a discontinuity of
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the function F(x, y, y’) when y'=0. One can only assert that a
weak minimum is achieved on L,, since for values of y’ close to
the slope of the field on the curve L, we have an expansion of the
function F(x, y, y’) by Taylor’s formula. A full investigation of
this function for an extremum involves considering the function
E(x, 9. p, ¥):
Nn_Y_ Y ,2% ., _yu—p?Qy+p)
E(x9 y. p’ !/ )"— y,, pz+p3 (!/ p) - y,,ps .
Since the factor (2y’ + p) changes sign for arbitrary y’, on the basis

of the note on pages 373-374 we can assert that a strong minimum
is not achieved on the arc L,.

Fig. 8-13

The foregoing fheorem can, without substantial modifications, be
extended to functionals of the form

X,

U4 Yoo - y,.]=SF(x. Yo Yoo «or Yuo Yoo Yor -+, Yn)dX;

yi(x0)=yi0' yi (xx)'—"!/n (i= l! 21 cs ey n)-
The function E takes the form

E=F(x7 Y1, Yar « o5 Yns y;' y:.!v s ey l/;l)_
—F, gy Yoo covs Yno Pis Pas oonh Pu)—

n
_—IZI (y;—px)FD (x, Yis Y -« Yn» P1y Par o pn)'

where the p; are functions of the slope of the field, on which certain
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restrictions are imposed (under these restrictions it is called a special
field).

The Legendre condiiion Fy,. >0 is replaced by the following
conditions:

Fy;y; Fll; y; e e F»'/;"r:
’ , .
., F , .. F e PR
Yy, vy Yy, Yy v, Y4 Y, Y. Yo Y
Fu;y;>0’ F"F12>O""' AR -1
’ ’ ’ ’ . . .
R N
Ynt "ny; Yn¥n

Both in the elementary problem and in more complicated problems,
the sufficient conditions for a weak minimum may be obtained by
a different method based on a study of the sign of the second
variation.

Using the Taylor formula, transform the increment of the function
in the elementary problem to the following form:

X,

do=([F(x, y+8y, v +8)—Fx 4, y))dz=

Xo

- S (F, 8y+F, 8y dx + & S [F,,85* +2F,,. 848y’ + F,. 65| dx+ R,

where R is of order higher than second in 6y and 8y’. When inve-
stigating for a weak extremum, &y and &y’ are sufficiently small,
and in this case the sign of the increment Av is determined by the
sign of the term on the right containing the lowest degrees of 8y and 8y'.
On the extremal, the first variation

X,

§ (F,8y+F,8y")dx=0

X

and, hence, the sign of the increment Av, generally speaking, coin-
cides with the sign of the second variation

o=\ (F,, 84" +2F,, 8y by + F,.,. 8y dx.
X,
The Legendre condition and the Jacobi condition together are the
conditions that ensure constancy of sign of the second variation, and

thus also constancy of sign of the increment Av in the problem
involving a weak extremum.
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Indeed, consider the integral
{ [0 (x) 8y +20 (x) 8y 851 ax, (8.2)

where o (x) is an arbitrary differentiable function. This integral is
equal to zero:
Xy

{ (@ (x) 85* +20 (x) 8y 8y’ ) dx = S d (0 8y*) dx = [ (x) 8], =0

Xo

(because 8y, =8y|,, =0).
Adding the mtegral (8.2) to the second variation, we get

&' = S [(Fyy +o’) Gy’ +2 (Fyy' + o) 6_{/ ﬁy' + Fy.y, 6_1/"] dx.
o

Choose the function o (x) so that the integrand, to within a factor,
is transformed into a perfect square, for which purpose the function
o (x) must satisfy the equation

Fyopo(Fy,+0")—(F,,. +©)*=0.

For such a choice of the function o, the second variation takes
the form

6’v=t§‘ F,,,,(&y' +f—’;_.";—'j:£ 6y)’dx
x

and, consequently, the sign of the second variation coincides with
that of Fyp.

However, such a transformation is possible solely on the assumption
that the differential equation

Fyy (@ + Fy)—(Fy +0)*=0

has a differentiable solution ® (x) on the interval (x,, x,).
Transforming this equation to new variables by the substitution

ul
o=—Fy—Fu., —,
where « is a new unknown function, we get
d ,
(Fu— g5 Fu ) u— g2 (Fypw') =0,

which is Jacobi’s equation (see page 369).
If a solution of this equation exists that does not vanish for
x, < x<x, ie. if the Jacobi condition is fulfilled, then for the
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same values of x there exists a continuous and differentiable solution

of the equation
Fyy (Fyy+0)—(Fyy + ©)*=0.

Thus, the Legendre condition and the Jacobi condition guarantee
that the sign of the second variation does not change and, hence,
they are sufficient conditions for a weak minimum (Fy,,,.>0) or
maximum (F,.,.<0).

3. Transforming the Euler Equations to the Canonical Form
A system of n Euler equations (see page 318)
Fu—%ZF, ;=0 (=12 ..,n (8.3)

may be replaced by a system of 2n first-order equations. Putting
in (8.3)

Fpo=q (k=12 ..., n), (8.4)
we obtain

d oF

;; En k=1, 2, ..., n). (8.5)

Solve the system of equations (8.4) for y, (to make such a solution
possible, assume that

D FV;' Fy;. coer l'y:)

D ( y; y;, . yn) 7': 0)) y; = mk (x’ yS’ q.’)! (8'6)

where
mk(x' ys' qs)=mk(x' yl! yli eesy !/,.» qp qp e ey q,.),

and substitute (8.6) into (8.5). We then get a system of 2a first-
order equations in the normal form:

d
dyxk mh (x ys) qs)v }

dq,, {aF}
yp
Here and henceforward the braces signify that in place of y; they

contain o, (x, y,, q,).
With the aid of the function

H (x, y, Qs)=2l ©;q; —{F}

8.7
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the system (8.7) may be written in the canonical form:

dy,, oH
T 0qy -
qu_— kaH } k=12, ..., n). (8 8)
dx — ~ Oyp
Note that if the function F(y,, ¥, ...y Y Y1» Yo» - ., Yn) does

not depend exphcntly on x, then the system ("8 8) has a first integral
H =C. Indeed, in this case

H=3 oq—(F)
does not contain x explicitly either and, hence,
o3y P
By virtue of the equations (8.8) we get
H 0, H=C
along the integral curves of the system (8.8).

This first integral was already obtained on page 316 for the elemen-
tary problem.

Example 1. Law of conservation of energy. The function

H=[2=“l w‘q‘—{F}

for the functional
¢ n
{r—vat, T=3 m G4+ 2),
t. i=]

where the notation is that of Example 1, page 333 (T is the kinetic
energy of a system of particles and, U is the potential energy), is
of the following form:

H=l2,| m;(xt +yt+2)—(T—U)=T+U
is the total energy of the system. Apply the principle of least action.
If the potential energy U does not depend explicitly on ¢, i.e. the

system is conservative, then Euler’s equations for the functional
]

S(T—U)dt have a first integral H=C, T + U =C.
¢
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Thus, the total energy of a conservative system remains constant
when the system is in motion.

Integration of the canonical system (8.8) is equivalent to integra-
tlon of the partial differential equation

+H(x Yo 6y) 0, 8.9)

where

ov ov Ov ov
H(x‘ Ys» a—_l/—_,>=H(x' Yy Yoy coey Ynm W» B_‘;;- ...’aTn)'

Equation (8.9) is called the Hamilton-Jacobi equation.
If a one-parameter family of its solutions v(x, y,, @) is known,

then the first integral %=B of the system (8.8) is known; P is an
arbitrary constant. Indeed,

n
v \ 0% dy, 0%
I (aa )= ﬁx % Edy, Ja9x —oxoa T 2 37, aaaq, (8.10)

Differentiating the identity

dﬂf'ag‘—'a)s—ﬁ (x, y,,al(%-yyf'—a—)) with respect to a,
we get
0H %
ax ox Z 99 Oy 0t (8.11)

and, substituting (8.11) into (8.10), we get an identical zero on the
right of (8.10). Thus
(%)=,

dx \oa
whence

=P
Hence, if the complete integral of the Hamilton-Jacobi equation
U=0(X, Yy, Ypo +ovy Yn» Oy, Qg ..., @)
is known, then we also know the n first integrals of the system (8.8):
%-_—s, i=1,2 ..., n). 8.12)
If the Jacobian of the system (8.12) is ‘nonzero

Oy/ 0“1 l =0,

25—378
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then the system (8.12) defines the y; as functions of the remaining
arguinents:

.‘/{=_l/,-(x, al' az' A am bv ﬂzn ce ey ﬂn)
(i=1.2 ..., nl) (8.13)

We have thus obtained a 2n-parameter family of extremals. It
may be proved that (8.13) is the general solution of the system of
Euler’s equations. and the functions

Yix 0. ..., @, By ...y Bo)
and

__du(x,ys, ) :
Q=" i=1,2, ..., n

are the general solution of the system (8.%)

Example. Find the equation of geodesics on a surface on which
the element of length of the curve is of the form

ds* = (g, (x) + @, (v)] (dx® + dy*),
that is, find the extremals of the functional

S= S Vig, @)+ o, (T + "™ dx

123

Since
H= V(p;/(f)jtﬁz Y _yeomre. o VIi=¢,
Y
9= Vly+y'l » H'+¢' =9, (0 + ¢, (),

it follows that the Hamilton-Jacobi equation has the form

(%) + (%) =0 0 +9.0)
or

dv\? ov\?
(&) — ¢, (x) =@, (y)—(b;)-
For equations of this type (equations with separated variables)
do o
@ (= 5) = (s §)
the first integral is easily found. Putting

(%) —o.=c and @,0)—(3)=a
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or
0‘ ———
£=V@Aﬂ+a
and
d f———————e
5=V ew—a
we find

o={VomFad+ (Vo —ady;
consequently, the equation of geodesic lines %=ﬁ in this case
has the form

~n

j‘ dx _ dy
Vo +a 5V%M—a
Note. The Hamilton-Jacobi equation can be approached by
different reasoning as well. Consider a central field of extremals
with centre in the point A (x,, y,) for the functional
X

vly ()= S F(x, y, y')dx.

Xo

On extremals of the field, the functional v[y(x)] is transformed

into the function v (x, y) of the coordinates of the second boun-
dary point B(x, y). As was pointed out on page 385,

o0 v
w=—H& oy g, =9

Eliminating q, we get

v dv
—57=—H (x, Y, -a;) .
And so the function v(x, y) is a solution of the Hamilton-
Jacobi equation. Quite analogous arguments also hold true for the
functional

X

SF(x, Yo Yoo o Yu» Yoo Y2o oy Yn)dx.

Yo

PROBLEMS ON CHAPTER 8

Test the following functionals for extrema:
2
Loyl = S(xy’+y")dx; y(0)y=1; y(2)=0.

25+
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2. vly(x)]=S(y"-|-2yy'-—16y“)dx; a>0; y(0)=0; y(a)=0.
0
2
3 olwwi= (v +xy)de y—1)=1; y@ =1
-
2
4. o[y )=y (1 +2%)dx; y(1)=3; y(2)=5.
1

2
5. 0[yl= g 0 +xy)de y(—)=y@)=1.
-1

:
6. vly (1= § '~y + 8y dx; 4O =—1; y{ L) =o0.
2
7. oly = § (9" + 12" dx; y () =1; y(2)=8.
1
8 vly (= W+ +2edn yO=—1; yy=—en

l:a A YO

1
9. vly(x)= S(y’—l/"+6.llsin2x)dx; y(0)=0; y(-ﬁ—):[,
¢

10. vly(x)]=S%;; y(0)=0; y(x)=y,; x,>0; y, >0.
0

x,d
11. vly(x)l=S'y%= Yy =0; y(x,)=y,; x,>0; y, >0.
0

2

12. vly )=

|

s
y—,.‘dx; y(H=1, y(2=4.

3

13. v[y(x)]=§(l2xy+y")dx; y(1)=0; y(3)=26.
i
2

14. vly(x)1=&ly‘+(y')’—2xy1dx; y(0)=0; y(2)=3.



CHAPTER 9

Variational problems
involving a conditional extremum

1. Constraints of the Form @(x, y,, ¥, ..., y,)=0

Variational problems involving a conditional extremum are
problems in which it is required to find an extremum of a functi-
onal v; certain constraints are imposed on the functions on which
the functional v is dependent. For example, it is required to in-
vestigate for an extremum the functional

Vlyy Yoy ooy y,,l=SF(x, Yo Yoo ~oos Yns Y1o Yoo --, Yn)dx
Xo
given the conditions
Q% Y Yoo -ooy Yp)=0 (i=1,2, ..., m; mIn).

Recall the solution of a similar problem dealing with the in-
vestigation cf the function z=f(x,, x,, ..., x,) fcr an extremum
given the constraints

Q;(x, Xy ..y, x,)=0 (i=1,2, ..., mi m<n).
The most natural way is to solve the system
Q; (X, X3 ..., x,)=0 =1, 2, ..., m),

the equations of which we shall call independent with respect to some
kind of m variables, say x,, x,, ..., x,:

X, =X (Kpypo Xmyns - ooy Xn)s
x2=x2(xm+|‘ xm+2, e e ey x");

X=Xy (X1 Xy +oor X,),

and with respect to the substitution of x,. x,, ..., x, into f(x,
X3 ..., X;). Then the function f(x,, x,, ..., x,) becomes a func-
tion (D(x,,,“, Xmysr +o+y X,) only of the n—m variables x,,,,

Xm4gs +++s X, Which are already independent, and so the problem
has reduced to investigating the function ® for an unconditional
extremum. This approach can also be used, of course, to solve the
above variational problem. Solving the system Q; (X, Yyy Yoy + o1 Yu) =0
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(i=1,2, ..., m)for y,, ¢, -.., Y, (01 any other m functions y;)
and substituting their expressions into vly,, y,, ..., y,], we get
the functional Wly,.,, Ynte» ---» Y,) Which depends only on n—m

arguments that are already independent, and, hence, the methods
given in Sec. 3, Chapter 6, can now be applied to the functional W.
However, both for functions and for functionals a different and
more convenient method is commonly employed, that of undeter-
mined coefficients, which retains complete equivalence of all variab-
les. As we know, when investigating a function z=f(x,, x,, ..., x,)
for an extremum, given the constraints ¢;(x, %, ..., x,)=0
(=1, 2, ..., m), this method consists in constructing a new auxi-
liary function

Z*=f+ 2 Lo,
i=1

where the A; are certain constant factors and the function z* is now
investigated for an unconditional extremum; that is, we form a

*

system of equations g:=0 (j=1, 2, ..., n) supplemented by the

constraint equations ¢;=0 ({=1, 2, ..., m) from which all the
n+m unknowns x,, x,, ..., X, and A, A,, ..., A, are determined.
Also the problem involving a conditional extremum for functional
is solved in similar fashion, namely if

v=SF(x. Yo Yoo ooy Yns Yo Yoo ooy Yn)dx

and
‘P,'(x, Yoo Yay oo yn)=0 (l=l' 2’ coey m),
then the functional

=1

v* = S(F—{— il,{x)q;,-)dx and v*= S F*dx
is constructed, where
F*=F+ 3 h(0) e,

which is now investigated for an unconditional extremum; that is
to say we solve the system of Euler’s equations

Fo —4F.=0 (j=1,2 ..., n)

j dx Yi 19 l)

supplemented by the constraint equations e
q)‘.=0 i=1,2, ..., m.
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Generally speaking, the number of equations m +n is sufficient to
determine the m+n unknown functions y,, 4, ..., y, and A,
Ay ..., A, and the boundary conditions y, (x,) =y, and y,(x,) =y,
(j=1, 2, ..., n), which must not contradict the constraint equa-
tions, will, generally speaking, permit determining the 2n arbitrary
constants in the general solution of the system of Euler’s equations.
It is obvious that the curves thus found on which a minimum
or maximum of the functional v* is achived will be solutions of the
original variational problem as well. Indeed, for the functions

Aix) i=1, 2, ..., m) and y, (j=1,2, ..., n)

found from the system (9.1), all the ¢,=0 and, hence, v*=v, and
if for y;=y,(x) (j=1, 2, ..., n) determined from the system (9.1)
there is achieved an unconditional extremum of the functional v*,
that is, an extremum relative to all close-lying curves (both those
that satisfy the constraint equations and those that do not), then,
in particular, an extremum is also achieved with respect to a nar-
rower class of curves that satisfy the constraint equations.

However, it does not by any means follow from this argument
that all solutions of the original problem involving a conditional
extremum will yield an unconditional extremum of the functional
v* and, consequently, it is still not clear whether all solutions can
be found by this method. We shall confine ourselves to the proof
of a weaker assertion.

Theorem. Given the conditions
QX Yy Yy o 4)=0  (i=1,2, ..., m; m<n)
the functions y,, y,, ..., y, that extremize the functional

v=SF(x. Yio Yo voos Yno Yo Yoo o oo, Ya)dx

X

satisfy— given an appropriate choice of factors A;(x) i=1,2, ..., m)—
Euler’s equations formed for the functional

X, m X,
vt = S<F+ zx,(x)¢,>dx=SF*dx.
Xo i=1 Xo
The functions X, (x) and y;(x) are determined from Euler’s equations

F;i———F'=0 (j=l, 2. ooy n)

and
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The equations @; =0 can also be considered Euler’s equations for
the functional v* if we consider as arguments of the functional
not only the functions y,, y,, ..., y, but also A, (x), A, (x), ...,
A, (x). The equations @, (x, ¥, Y3, ..., Y)=0 (=1,2, ..., m)
are assumed independent, i.e. one of the Jacobians of order m is
different from zero, for instance,

Dy, @20 .-\ Pm) 0
D Y2 - . Ym) 70

Proof In the given case, the basic condition of an extremum,
6v=0, takes the form
S 2(F,,}6y,+ F”;Gy,')dx=0.
5 =1
Integrating by parts the second terms in each parenthesis and noting
that
(by)'=06y; and (8y))x=x,=0; (6Y,)x=x,=0,
we get
%

§3 (Fy,—5 F,y) busde=0.
x, =1

Since the functions y,, y,, ..., Yy, are subject to m independent
constraints

q’l(x’ Yis Yar eoey yn)=0 '(l=l’ 21 csey m)o
it follows that the variations 8y, are not arbitrary and the funda-
mental lemma cannot as yet be applied. The variations 8y, must

satisfy the following conditions obtained by means of varying the
constraint equations @, =0: .

n % _ _ .
;ay,ay/_o (i—l, 2! ceey m)

* More exactly, applying Taylor’s formula to the difference

X n+oy, ooy Yt 0YR)—@i(x, 1y ooe s Yn)

of the left-hand sides of the equations @; (x, ¥;+6y, «e.y Yn+06y,)=0 and
@; (%, Y1y +ee» Yp)=0, we should write

n
~ 0
2_. 3y; by;+ Ri =0,

i=1
where the R; are of order higher than first in 8y;(j=1, 2, ..., n). However,
as may readily be verified, the terms R; do not exert any appreciable influence
on subsequent reasoning, since when calculating the variation of the functional
we are only interested in first-order terms in dy j=1, 2, ..., n)
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and, hence, only n—m of the variations 8y, may be considered
arbitrary, for example 6y,.,1, 0Ym4er -, Oy, while the resc are
determined from the equations that have been obtained.

Multiplying each of these equations term by term by A, (x)dx
and integrating from x, to x,, we get

Ski(x)g%ﬁy,dx=0 (i=1,2 ..., m).
X, =

Adding termwise all these m equations, which are satisfied by the
permissible variations 8y,, with the equation

X, n d
S IE . (Fy,—m- FO;) 6y,dx= 0.
we will have *

tlor & op; d OF B
SZ[T!H-*-;M(”%—I‘@_;T Gy,dx...o,

X, i=1

or, if we introduce the notation
m
F*=F+ 12‘ A(x) @

we get

[ R
(3 (F; =4 Fy ) bu,dx =0.
X, i=)
Here too it is impossible as yet to employ the fundamental lemma
due to the fact that the variations 8y, are not arbitrary Choose m
factors A, (x), Ag(%), ..., Ag(x) so that they should satisfy the m
equations
. d p.
Fy,_IFu}'_"o =12, ..., m),
or
OF | xa opy d OF
Ey—/+l‘é‘x,(x)a—y,—ﬁa—w=o (i=12 ..., m.
These equations form a system that is linear in A, with a nonzero
determinant

D((P], (P!r .oy q”m) .
D(ylv ‘/2: LY ‘/m) $0‘

hence this system has the solution
}"l (X), )\8 (x)t eeocy }‘n (X).
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Given this choice of A, (x), A,(x), ..., A,(x), the basic necessary
condition for an extremum

Xy n
S,Z( vy dx yl)ﬁy,dx 0
Xy j=
takes the form
x n 4
§ > (F—5Fy)yde=o0.
Xo [=m+1
Since, for the extremizing functions y,, y,, ..., y, of the functi-

onal v, this functional equation reduces to an identity already for
an arbltrary choice of &y, (j=m+1, m+2, ..., n), it follows
that the fundamental lemma is now applicable. Putting all the 8y,
equal to zero in turn, except one, and applying the lemma, we obtain

F;,_KF;}=0 (j=m+1, m+42, ..., n).
Taking into account the above obtained equations

FU/ EF;[_O (i=lo 2» ""m),

we finally find that the functions which achieve a conditional ext-
remum of the functional v, and the factors A;(x) must satisfy the
system of equations

d

Fy—aFyp=0 (j=1,2 ..., n),

G(X Yoo Yoo ooy Y)=0  (i=1,2, ..., m).

Example 1. Find the shortest distance between two points A (x,,
Yo 2,) and B (x,, y,, 2,) on the surface @ (x, y, 2)=0 (see the
problemr of geodesics, page 295). The distance between two points
on a surface is, as we know, given by the formula

l=‘§ Vl +y"+ 2tdx.

Here we have to find the minimum of / provided ¢ (x, y, z)=0.
According to the foregoing, we take the auxiliary functional

l*=S [Vl +y' 2" A () @ (x, y, 2))dx

Xo
and write the Euler equations for it:
d Y
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Vitrte
?(x, y, 2)=0.
From these three equations we determine the desired functions
y=y(x) and z=2(x)
on which a conditional minimum of the functional v can be
achieved, and the factor A (x).

Example 2. Using the Ostrogradsky-Hamilton principle (see page
333), find the equations of motion of a system of particles of

mass m; (i=1, 2, ..., n) with coordinates (x;, y;, 2;) acted upon
by forces having the force function —U, given the constraints
Ot Xy Xgy cees Xpy Yio Yoo coe s Ymo 2 23 oeny 2,)=0

(Jj=12, ..., m).
The Ostrogradsky-Hamilton integral

ty
v={(T—U)at
to

is here of the form

S‘[ Zml(x: +yl +2)— U]

i=1

and the auxiliary functional

v=S[ Zm(x¢+y:+21’) U+Zl,(t)q>/]dt

The equations of motion will be the Euler equations for the func-
tional v*. They will have the following form:

. au /
m%; = —a—n+,§%<‘> 3
. U | oy
my;= “'5;;'*‘2_:1/(‘) el

mz;= —Oz L’* 0 72 az,
(=1,2 ..., n)
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2. Constraints of the Form

(X, Yis Yar coes Y Yo Yo» ooy Yn)=0
In the preceding section we examined the problem of investiga-

ting the functional for an extremum:

v=SF(x. Yso Yo voes Yno B1s Yoo ooy Ya)dX;

Yy (X)) =y, y,x)=y, =12, ..., n)
given the finite constraints

Q& Yi g oo Ya)=0 (I=1,2, ..., m). (9.2)

Now ' suppose that the constraint equations are the differential
equations

q)l(xv Yi» Yss ooy Yny y;: !I;. seey !/::)*0 (l=l| 2; ceey m)

In mechanics, constraints of this type are called nonholonomic,
while constraints of the-type (9.2) are called holonomic.

-In this case too we can prove the rule of factors, which consists
in the fact that a conditional extremum of a functional v is achie-
ved on the same curves on which is achieved an unconditional
extremum of the functional -

X i=1 Xe
where

However, the proof is considerably more complicated than in the
case of finite constraints. _

But if we confine the proof to the weaker assertion that the
curves on which the conditional extremum of the functional v is
achieved, given an appropriate choice of A, (x), are extremals for the
functional v*, then the proof given in the preceding section may,
with slight modifications, be repeated for the given case as well.

Indeed, suppose that one of the functional determinants of order
m is difierent from zero, say,

D(9y, P20 -- -+ Pm)
b 1 0.
D(y|. You . ym)

This guarantees independence of the constraints.
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Solving the equation @;(x, Yy, Ysy --+» Yur Yis Yar «++s Ya)=0
for y;, Y4 ..., Ym, which is possible since

D@1 9s .- 9m) .
DU bt T

we get yi=1P;(X, Y1, Ys» s Yns Ymsrs Yme - Yn) (=1, 2, ..., m).
If we consider Y,,:» Ym+s ---» Y, arbitrarily specified functions,
then y,, ¥;, ..., Y, are determined from this system of differential
equations. Thus, Y,.1» Yms+s» ---» Yo, are arbitrary differentiable
functions with fixed boundary values and, hence, their variations
are arbitrary in the same sense.

Let y,, ¥,y ..., Y, be an arbitrary permissible system of func-
tions that satisfies the constraint equations ;=0 (i=1, 2, ..., m).
Vary the constraint equations

n‘a_(&_ n 6& . - .
12=-10y/6y/+f§ag}6y’ 0 (i=1,2, ..., m*
Multiply term by term each of the equations obtained by the
(as yet) undetermined factor A,(x) and integrate from x, to x,;
this yields

x n - Xy n 30,
Sk,(x)za—y;éyjdx+ S}., (x)z 5‘/—;6y}dx=0;
%o I=1 % i=1

integrating each term of the second integral by parts and taking
into consideration that 8y;=(8y,) and (6y))x=x, = (04 )x=¢, =0, we
will have

32 f-: [’"" (x) tﬁ/‘_dix (l‘i (x) g';%l)] 8y,dx=0. (9.3)
X [=1 .

From the basic necessary condition for an extremum, 6v=0, we
have

SZ(FW‘%"}; )‘Sy/dx=0, (9.4)
since %o l=1
X n P
S0= 3" (Fy 8y, +Fy; Sy dx = [ 3 (F,,,—%, Fy; ) 8y,dx.
Xo =1 Xo j=1

* Here too (as on page 392), summands containing terms of erder higher than

first in Oy; and 8y; (j=1.,2, ..., n) should be included in the left-hand sides
of the equations; i{ is now cpnsiderably more difficult to take into account the
effect of these nonlinear terms.
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Adding termwise all the equations (9.3) and equation (9.4) and
m

introducing the notation F*=F+ XA, (x)p; we will have
i=1

3 (F; — F;;) 8y, dx =0. (9.5)

i=1

St

Since the variations 8y, (j=1, 2, ..., n) are not arbitrary, we
cannot yet use the fundamental lemma. Choose m factors A, (x),
Ay (%), ..., Ag(x) so that they satisfy the equations

d .,
F—&Fi=0  (i=1,2 ... m),

When written in expanded form, these equations form a system of
linear differential equations in

A;(x) and %
which, given the assumptions we have, has the solution A, (x),
Ay(x), ..., Ay(x), which depends on m arbitrary constants. With
this choice of A, (x), A4(x), ..., A,(x) the equation (9.5) is redu-
ced to the form

(=12, ..., m.

S‘ 3 (F5,—%Fs; ) 8y dx=0,
Xo [=m+1

where the variations 8y, (j=m+1, m+2, ..., n) are now arbit-
rary, and hence, assuming all variations 6y;,=0, except some one
8y;, and applying the fundamental lemma, we obtain

« 4 re
Fﬂ:"'d_xF”; =0 (j=m+1, m+2, ..., n).

Thus, the functions y, (x), y,(x), ..., y,(x) that render the func-
tional v a conditional extremum, and the factors A, (x), A,(x), ...,
An (x) must satisfy the system of n+m equations:

Fy—f£Fyp=0 (=12 ....n)

and
¢;=0 =12, ..., m),

that is they must satisfy the Euler equations of the auxiliary
functional v*, which is regarded as a functional dependent on the
n+m functions

yl' yv e 00y y,p )Nv A., co ey A-.
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3. Isoperimetric Problems

In the strict sense of the word, isoperimetric problems are prob-
lems in which one has to find a geometric figure of maximum area
for a given perimeter.

Among such extremum problems, which were even studied in
ancient Greece, were also variational problems like the one on
page 295 (to find a closed curve, without self-intersection, of a
given length bounding a maximum area).* Representing the curve in
parametric form x=x(¢), y=y(¢), we can formulate the problem
as follows: maximize the functional

ty t
S=§xydt or S=—,i,—§(xy——yx)dt
provided that the functional

[y 7r7a
[

maintains a constant value:
t,

(y/ #+ga=1
t
We thus have a variational problem involving a conditional extre-

t
mum with a peculiar condition: the integral S]/ *+y*dt main-
‘0

tains a constant value.

At the present time, isoperimetric problems embrace a much
more general class of problems, namely: all variational problems
in which it is required to determine an extremum of the functional

o=( F (X 40 Yoo o1 Yo Yo Yo - U)X

Xo
given the so-called isoperimetric conditions
Xy

SF,(x. Yir Yoo ~o s Yo Yio Yss « o os Yn)dx=1,

* (i=1,2 ..., m),
where the [, are constants, m may be greater than, less than or equal to
n; and also analogous problems for more complicated functionals.

* Though the solution of this problem was known in ancient Greece, its
peculiar variational nature was understood only at the end of the seventeenth
century.
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Isoperimetric problems can be reduced to conditional-extremum
problems considered in the preceding section by introducing new
unknown functions. Denote

(Fdr=z00 (=12 ..., m)

Xo
Xy

whence z;(x,)=0 and from the condition SF,- dx=1; we have
Xo
z;(x,) =1
Differentiating 2; with respect to x, we get
z;(x)=F,-(x, Yis Yoo -+ o5 Yn» y'n y;- LR !/;l)
(i=1,2, ..., m).

Xy
In this way, the integral isoperimetric constraints SF,Adx-:l,-

Xo

are replaced by the differential constraints:

Zi=F (X, Ys» Yar s Yn» Y1» Y2s « o Yn)
(i=1,2, ..., m)

and hence the problem is reduced to the problem considered in the
preceding section.

Applying the factor rule, it is possible, given the constraints
Fi—2z;=0 (i=1, 2, ..., m), to replace an investigation of the

functional v=SF dx for a conditional extremum by an investiga-

tion of ‘he fur?ctional
= S [F+ Z A;(x) (F,—z,f)] dx= S F*dx
X, =) Xo

for an unconditional extremum; here
F*=F+ X\ (x)(F,—2)
i=1
The Euler equations for the functional v* are of the form
. d e .
F,,,—d—xFy;=0 (j=12, ..., n),

L] d . { —
F,‘——F(; =0 (i=1,2, ..., m),
or

“S d -~
F,,+}_MF1,,,*'I¥<F,, +2_7~ipiy;>=0
t=1
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(j=1,2, ..., n),
Irnm=0 (=12 ..., m).

From the last m equations we find that all the A; are constant
and the first n equations coincide with Euler’s equations for the
functional

Xy

u~=S<F+z‘:xiF,.> dx.

x

We thus get the following rule: to obtain the basic necessary
condition in an isoperimetric problem involving finding an extre-

mum of a functional v= S Fdyx, given the constraints SF,. dx = (;
(=12, ..., m, it is n?cessary to form the auxiliaryxofunctional

Xy

v“=S<F+§:A‘-F,>dx,

Xo

where the A; are constants, and write the Euler equations for it.

The arbitrary constants C,, C,, ..., C,, in the general solution
of a system of Euler’s equations and the constants i,, 4,, ..., A,
are determined from the boundary conditions

y/(xo)=y/ov Y, (%) =Yy, =12 ..., n)
and from the isoperimetric conditions

Xy
(Fide=1, (=12, ..., m)
The system of Euler’s equations for the functional v** does not

vary if v** is multiplied by some constant factor p, and, hence, is
given in the form

(X

m
P’ov** = lzo p’lFidxv

»

where the notations F,=F, p,=Ap,, j=1, ..., m have been
introduced. Now all the functions F; enter symmetrically, and there-
fore the extremals in the original variational problem and in the

Xy

problem involving finding an extremum of the functional SF,dx,

Xo

20 347N
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given the isoperimetric conditions

X

Xo

(Fidx=1, (=0,1,2 ..., s—1,5+1, ..., m)

coincide with any choice of s (s=0, 1, ..., n).
This property is called the reciprocity principle. For example,

Ly y=ylz!

|

Fig. 9-1

Xy

the problem of a maximum area
bounded by a closed curve of given
length, and the problem of the mi-
nimum length of a closed curve
bounded by a given area are recip-
rocal and have common extremals.

Example 1. Find the curve
y=y(x) of given length [, for which
the area S of the curvilinear tra-
pezoid CABD depicted in Fig. 9.1
is a maximum.

Investigate for an extremum the
functional

S=Sydx. Y (X)) = Yy

Xo

y(x,)=y,, given the isoperimetric condition

Xy

Vit tax=1

Xo

First form the auxiliary functional

s*=((y+rV 145 dx.

Since the integrand does not contain x, Euler’s equation for
S** has a first integral F—y'F,=C, or, in the given case,

whence
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Introduce the parameter ¢, putting y’ =tan¢; this yields

y—C,= —Acost;

dy dy  Asintdt

= tanf, whence dx= Gri= el = Acos tdt,
x=2»Asint+C,.
Thus, the equation of the extremals in parametric form is
x—C,=M\sint,
y—C,= —Ahcost,
or, eliminating ¢, we get (x—C,)*+ AY

+(y—C,)*=A* or a family of

1)
circles. The constants C,, C, and A \3“5( >4
are determined from the conditions
y(xo)=!/o, A y"f/‘r}

yx)=y, and (VigyTae=1.
Example 2. Find a curve AB of
given length | bounding, toge- 0
ther with a given curve y= f(x),
the maximum area cross-hatched Fig. 9
in Fig. 9.2. ig. 9-2
It is required to determine an extremum of the functional

S=S(y—f(x))dx;

Xo

Y.

. . y(xo) = yov l/ (xl) = yl
given the condition
S Vity de=1t.
Xo
Form the auxiliary functional

St* oz S(y—-/(x) AVt y')dx.
The Euler equation for this functional does not differ from the

Euler equation of the preceding problem and so in the given pro-
blem the maximum may be achieved only on arcs of circles.

Example 3. Find the form of an absolutely flexible, nonexten-
sible homogeneous rope of length / suspended at the points 4 and B
(Fig. 9.3).

26#
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Since in the equilibrium position, the centre of gravity must
occupy the lowest position, the problem reduces to finding the mi-
nimum of the static moment P about the x-axis, which is assumed
to be horizontal. Investigate for an extremum the functional

P= S 7 V1 + y'* dx provided that S V14 y*dx=1. Form the auxi-

hary functional

Ay 5
S VT
A *o
for which Euler’s equation has a
first integral
F—y' F,=C
5 »% or, in the given case,
—s Y 2
WMV iy DL ¢
Fig. 9-3 Vity

whence y+A=C, V1 +y". Introduce a parameter putting y’ =sinh¢,
whence Vi +y*=cosht and y-+A=C,cosht; §%= sinh ¢;

=Cdt: x=Cit+C, or, eliminating ¢ we get

dx = smh t

y--A=C, cosh a 2 which is a family of catenaries.

The foregoing rule for solving isoperimetric problems can also be
extended to more complicated functionals.

We shall mention one more problem involving a conditional
extremum—the problem of optimal control. Consider the differen-
tial equation

G=Fit, x(t), u()) (9.6)

with the initial condition x(f,) = x,.

Besides the unknown function (or vector function) x(f), this
equation also contains a so-called control function (or vector func.
tion) u (¢). The control function u (f) has to be chosen so that the

given functional
ty
=V Fe@), uyat
te
is extremized.
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The function y(f) which yields the solution of this problem is
called the optimal function or optimal control.

This problem may be regarded as a problem involving a condi-
tional extremum of a functional v with differential constraints (9.6).
However, in practical problems the optimal functions frequently lie
on the boundary of a set of admissible control functions (for example,
if the control function is the engine power to be switched on, then
obviously this power is bounded by the maximum power output of
the engines; and in the solutions of optimum problems it is often
necessary to run the engines at peak-power output, at least over
certain portions).

Now if the optimal function lies on the boundary of a set of
admissible control functions, then the foregoing theory of problems
involving a conditional extremum and presuming the possibility of
two-sided variations is not applicable.

For this reason, other methods worked out by L. Pontryagin
(see [8]) and R. Bellman (see [9]) are ordinarily applied in solving
problems of optimal control.

Example. In the system of differential equations
dx ®© (¢ is the time), 9.7)

a=Yv @

which describe the motion, in a plane, of a particle with coordi-
nates x, v, determine the control function u(f) so that the point
A(x,, v,) moves to the point B (0, 0) in a least interval of time;

lu] <1 (since u=‘d£’;. it follows that « may be considered a force

acting on a particle of unit mass).

The control function u(f) is piecewise continuous. To simplify
our reasoning, let us assume that it does not have more than one
point of discontinuity, though the final result holds true even
without this assumption.

It is almost obvious that on optimal trajectories u= 41, since

for these values |%| and I‘-idi;l attain maximum values and, hence,

the particle moves with maximum speed. Putting u=1 in (9.7)
we get

v=t+C, x=%5+Cl+C,
or v'=2(x—C) and similarly for u= —1:

=—1+4C, x=—%5+4Ct+C, v'=—2(x—C).
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Figures 9.4 and 9.5 depict these families of parabolas, the arrows
indicating the direction of motion as ¢ increases. If the point
A(x,, v,) lies on arcs of the parabolas

v=—Vx or v=V —x (9.8)

(Fig. 9.6) passing through the coordinate origin, then the optimal
trajectory is an arc of one of these parabolas connecting the point

v v

TR N AN
N P

Fig. 9-4 Fig. 9-5

§)

A with the point B. But if A does not lie on these parabolas, then
the optimal trajectory is the arc AC of the parabola passing
through A, and the arc CB of one of the parabolas (9.8) (see
Fig. 9.6 which indicates two pos-
sible positions of the points A
and C).
¢ | a In this problem, the time T of
translation of the point from posi-
] \ : tion A to position B is a functio-

/4

4Y

nal defined by the first of the equa-

\\‘ p tions (9.7); the second equation of

p; A (9.7) may be regarded as a const-

i raint equation. It would, however,

Fig. 9-6 be difficult to apply to this prob-

lem the earlier described classical

methods of solution, since optimal control lies on the boundary of

the region of admissible controls |u|<1 and two-sided variations

are impossible here; moreover, the solution is sought in the class

of piecewise continuous controls.

Both of these circumstances are extremely characteristic of most

practical problems involving optimal control.
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PROBLEMS ON CHAPTER 9
l Find the extremals of the isoperimetric problem v(y(x)] =
]

_S(y + x*)dx given that Sy'dx~2 y(0)=0; y(1)=0.

2 Find the geodesics of a circular cylinder r=R.

Hint. 1t is convenient to seek the solution in cylindrical coor-
dinates r, ¢, 2

3. Find the extremals of the isoperimetric problem

X, X,

v[y ()= S y” dx given that Sydx=a,

%y X,

where a is a constant.
4. Write the differential equation of the extremals of the iso-
perimetric problem involving extremization of the functional

oly)= §lpoy +qmytldx
0

given that Sr(x)!/’dx= 1: y(0)=0. y(x,)=0.

0
5. Find the extiremal in the isoperimetric problem of the extre-
mization of the functional

1
v[y(x); z(0)]= S (y’2 42 —4x2' —42)dx
0

given that

1
(' —wy —2dx=2 gy =0 2@)=0 y()=1 z(1)=1.
0



CHAPTER 10

Direct methods in variational
problems

1. Direct Methods

Differential equations of variational problems can be integrated
in closed form only in exceptional cases. This naturally gives rise
to the search for other methods of solution. The basic idea of the
so-called direct methods consists in the following: the variational
problem is regarded as a limiting case of a certain extremum pro-
blem of a function of a finite number of variables. This extremum
problem of a function of a finite number of variables is solved by
ordinary methods, then a passage to the limit yields the solution
of the appropriate variational problem.

The functional v[y(x)] may be regarded as a function of an infi-
nite set of variables. This assertion becomes quite obvious if we
assume that the admissible functions can be expanded in power
series:

yx)=a,+ax+ax*+...+ax"+...,

or in Fourier’s series:
y(x)=%+}: (a, cos nx + b, sin nx),
n=1
or in some other kind of series of the form

y(x)= ,.go a,9,(x),

where ¢, (x) are given functions. To specify a function y(x) that
can be represented in the form of a series y(x)= 21) 2P (%), it is

sufficient to give the values of all the coefficients a,, and, hence,
the value of the functional v[y(x)] in this case will be given by
specifying an infinite sequence of numbers: a,, a,, a,, ..., a,,

i.e. the functional is a function of an infinite set of variables:

viy(x) =9, a,, ..., a, ...)

Consequently, the difference between variational probiems and
extremum prol lems of functions of a finite number or variables is
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that in the variational case one has to investigate, for an extremum,
functions of an infinite number of variables. Therefore, the basic
idea of the direct methods which consists, as has already been
stated above, in regarding the variational problem as a limiting case
for the extremum problem of functions of a finite number of va-
riables, is quite natural.

During the first period of investigations into the field of the
calculus of variations, Euler employed a method which is now cal-
led the direct method of finite differences. For a long time this
method was not in use at all and only during the past three deca-
des was revived and successfully used in the works of the Soviet
mathematicians L. Lyusternik, 1. Petrovsky, and others.

Another direct method, called the Ritz method, in the develop-
ment of which a very substantial contribution has been made by
the Soviet mathematicians N. Krylov, N. Bogolyubov, and others,
finds wide application in the solution of various variational problems.

A third direct method, proposed by L. Kantorovich, ‘is appli-
cable to functionals that depend on the functions of several inde-
pendent variables and is finding ever broader uses in areas in which
the Ritz method is employed.

We shall examine only these three basic direct methods (the
proofs of many of the assertions will not be given). The reader who
wishes to study more closely the direct methods now in use is re-
ferred to L. Kantorovich and V. Krylov [10] and S. Mikhlin [I1].

2. Euler’s Finite-Difference Method

The underlying idea of the method of finite differences is that the
values of a functional v [y(x)], for example,
SF(x. Y, y)dx, y(x)=a, y(x,)=0,
are considered not on arbitrary curves that are admissible in the
given variational problem, but only on polygonal curves made up
of a given number n of straight-line segments with specified abscis-
sas of the vertices:

x, +Ax, x,+2Ax, ..., x,+(n—1)Ax, where
Ax=£‘:—x° (Fig. 10.1).

On such polygonal curves, the functional v[y(x)] is transformed
into a function ¢ (y,, ¥, ..., y,-,) of theordinates y,, y,, ..., y._,
of the vertices of the polygonal curve, since the curve is completely
defined by these ordinates.
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We choose the ordinates y,, y,, ..., y,_, so that the function
@ (Y1s Yg» - - -+ Yn_,) is extremized, that is we determine y,, y,, ..., y,_,
from the system of equations
% _o %_ % _
Oyn_o' 0yz—0’ e 0.'/,.-:'"0'

and then pass to the limit as n— oo. Given certain restrictions
imposed on the function F, we obtain, in the limit, the solution
of the variational problem.

Ay

y # y yn- .‘/ / ‘tf,

U]

0 I, ItAT - gynyaz

Fig. 10-1

However, it is more convenient to calculate approximately the
value of the functional v[y(x)] on the above-indicated polygonal
curves; for instance in the most elementary problem it is best to
replace the integral

Xy n=1%Xet(k+1)Ax
SF(x. Y, y")dxz X S F (x. Y, yL“-&—x—y")dx
Xo k=0 «<y+kAx

by the integral sum
n Ay,
Flx,y, =)Ax.

By way of an illustration, let us derive Euler’s equation for the
functional

vly)=§ F(x, v, y)dx.

In this case, on the polygonal curves under investigation

n~1

v[y(x)]zq)(yp Ygr oeey yﬂ—l}'——z F (x‘.' Yir yi+3:yl') Ax.

i=1
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Since only two terms of this sum, the ith and the (i—1)th,
depend on the y;:

F(xi. Yis y—’*‘l;T_yl) Ax and F(x,._l, y‘,_nyi:ii—n) Ax,

it follows that the equations ;ﬂ;;o (i=1,2 ..., n—1) take the
form '

F, (x,-,' Y y_,%;-_y,) Ax+F, (xi’ Yir %&\) ('_Kl}) Ax +
+F, (x,._,, Yior ”"_y"“)zl;Ax=0 (=12, ..., (n—1),

Ax
or

Ay; . . Ayi—l)
F l/ Ay[ Fyr(xl' Yir Ax ) Fy’ (xl"l' yl—l' Ax y —0
y\¥i Yo Ay )T Ax =5
or

Ay; AF,
F, (x,., Yis ‘AT')—T=°~

Passing to the limit as n — oo, we get Euler’'s equation
d
Fy— Fr=0

which must be satisfied by the desired extremizing function y(x). In
similar fashion it is possible to obtain the basic necessary extremum
condition in other variational problems.

If we do not pass to the limit, then from the system of equations
%:0 (i=1, 2, ..., n—1) it is possible to determine the desired
ordinates Yi» Ya» - -» Ya_, and thus obtain a polygonal curve which
is an approximate solution of the variational problem.

3. The Ritz Method

The underlying idea of the Ritz method is that the values of a
functional v[y(x)] are considered not on arbitrary admissible curves
of a given variational problem but only on all possible linear com-

binations y,,=ﬁ a,W,(x) with constant coefficients composed of n
i=1
first functions of some chosen sequence of functions
W, (x), W,(x), ..., W,(x), ...

The functions y,,=2n‘,a,~l¥/,-(x) must be admissible in the problem at
=)
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hand; this imposes certain restrictions on the choice of sequence of
functlons W, (x). On such linear combinations, the functional v [y (x))
is transformed into a function ¢ (e, &, ..., a,) of the coefficients
a,, a,, ..., o, These coefficients a,, u,, ..., a, are chosen so that
the function cp(a,, a, ..., @,) is extremized; hence, a,, a,, ..., «,
must be determined from the system of equations

-———-—0 i=1,2, ..., n).

da;
Passing to the limit as n — oo, if the limit exists, we get the

o«
function y= ¥ a;W;(x), which (for certain restrictions imposed on

the function'azl v[y(x)] and on the sequence W, (x), W,(x), ...,
W,(x), ...) is the exact solution of the variational problem at
hand. If we do not pass to the limit and confine ourselves only to

the first n terms of y,= ZaW/ (x), then we obtain an approximate

solution of the vanatlonal problem

If this method is used to determine the absoluie minimum of the
functional, then the approximate value of the minimum of the func-
tional is obtained in excess, since the minimum of the functional on
any admissible curves does not exceed the minimum of the same
functional on parts of this class of admissible curves, on curves of

the form y,,="2a,l¥/,-(x). When maximizing the function by the
=)

same method, v've get (for the same reasons) an approximate value of
the maximum of the functional in defect

For the functions y,= ZaW/ (x) to be admissible, it is first of

all necessary to satisfy the boundary conditions (one should not of
course forget about other restrictions that may be imposed on
admissible functions, say requirements involving their continuity or
smoothness). 1f the boundary conditions are linear and homogeneous,
for example, in the elementary problem y(x,)=y(x,)=0 or

ﬁijy(xj)"i_ﬁzjy‘ (x,')=0 (j=0, 1),
where the B, are constants, then the simplest thing is to choose
also coordinate functions such as WI” satisfy these boundary condi-
tions. Quite obviously, then, !/,,=2,a,~W,- (x) will also satisfy the
=1

same boundary conditions for any a;. For example, let the boundary
conditions have the form y(x,)=y(x,)=0, then for the coordinate
functions we can choose

W, (x) = (x—x,) (x—x,) ¢; (x),
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waere the ¢; (x) are some continuous functions, or
W, (x)-sm"""‘—-’ k=1, 2, ...),
0

or some other functions that satisfy the conditions
Wi(x)=W;(x)=0.

If the conditions are nonhomogeneous, for example Y (%) = Yo
y(x,)=y,, where at least one of the numbers y, or y, is different
from zero, then it is simpler to seek the solution of the variation
problem in the form

U= SV, () + W, (),

where W (x) satisfies the given boundary conditions W, (x,)=y,,
W, (x,)=y, and all the remaining W,(x) satisfy the corresponding
homogeneous boundary conditions, i.e. in the case at hand, W;(x,)=
=W,(x,)=0. It is obvious that in such a choice, for any a, the
functions y,(x) satisfy the given boundary conditions. For the
function W, (x) we can choose, say, the linear function

W (x) =222 (x—x0) + .

Generally speaking, it is a very complicated problem to solve the
system of equations =°~=0 (i=1, 2, ..., n). This problem is
appreciably simplified if we test for an extremum a functional v that
is quadratic in the unknown function and its derivatives, for in this

case the equations Q’L—O (i=1, ..., n) are linear in a;.

The choice of the sequence of functlons W, W, ..., W, .
called coordinate functions, affects very appreciably the degree “of
complexity of subsequent calculatlorls and for this reason the success
of the method depends largely on a proper choice of the coordinate
system of functions.

The foregoing fully applies both to the functionals v [z(x,, x,, ...
..., X,)] (in this case of course the functlons W; must already be
functions of the variables x,, x,, ..., x,) and to functionals depen-
dent on several functions.

The Ritz method is frequently employed for exact or approximate
solutions of problems in mathematical physics. For example, if it is
required, in some domain D, to find a solution of the Poisson
equation

9%

3,,2 + dyz f(x' y)
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for specified values of z on the boundary of D, this problem may
be replaced by the variational problem on the extremum of a func-
tional for which the given equation is the Ostrogradsky equation
(see page 328). In the case at hand, this functional will be

SS () + (%) +2ef v, 9] axa.

The extremizing function z of this functional may be found by any
one of the direct methods.

Problems of mathematical physics ordinarily reduce to investiga-
ting, for an extremum, functions that are quadratic in the unknown
function and its derivatives, and hence, as already indicated, the
use of the Ritz method is then simplified.

The question of the convergence of the approximations (obtained
by the Ritz method) to the desired solution of the wvariational
problem, and also of evaluating the degree of accuracy of the
approximations is extremely complicated. We shall therefore confine
ourselves to only a few remarks and refer the interested reader tc
texts by Mikhlin [11] and Kantorovich and Krylov [10].

For the sake of definiteness, we will have in view the functiona

Xy

oy = F(x, g0, v (x)dx

Xo

and assume that we are interested in its minimum. We will consider
the sequence of coordinate functions W, (x), W,(x), ..., W, (x), ...
complete in the sense that each admissible function can be appro-
ximated to any degree of accuracy in the sense of first-order proxi-

mity by the linear combination Z";aku"k(x) of coordinate -functions,
k=

where n is sufficiently large. Then, obviously, the Rilz method may
be used to obtain the functions y,, y,, ..., Yu ..., Where y,=

=ﬁ a, W, (x), which form a so-called minimizing sequence, i.e., a
k=1
sequence for which the values of the functional
v[gd, vig) -..s v[ya)s

converge to the minimum or to the lower bound of values of the
functional v([y(x)]. However, from the fact that lim vy, (x)]=

=minv [y (x)] it does not in the least follow that llmy,,(x)— (x).

A minimizing sequence may not tend to the extremlzmg function
in the class of admissible functions.
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Indeed, the functional

X

v [y (0] = § F(x y,(x), yn(x))dx

Xo

may differ but slightly from

Xy

oly@] = Flx, y(x), ¥ (xNdx

Xo

not only when throughout the interval of integration y,(x) is close
in the sense of first-order proximity to y(x), but also when, over
sufficiently small portions of y
the interval (x,, x,), the fun- _
ctions y, (x) and y(x) or their y:ys
derivatives differ radically, y:y(:rl
though remain close on the
rest of the interval (x,, x,)
(Fig. 10.2). For this reason,
the minimizing sequence y,,
Yoo «. ., Y, may not even have
a limit in the class of admis- ¢
sible functions, though the fun-
ctions y,, Y, ..., 4, will Fig. 10-2

themselves be admissible.

The conditions of convergence of the sequence y,, obtained by
the Ritz method, to a solution of the variational problem and the
evaluation of the speed of convergence for concrete, frequently
encountered functionals have been worked out by N. Krylov and
N. Bogolyubov. For instance, for functionals of the type

1z),

H e - —— - —— - ——

~

o=y +9W v +i (0 y)dx y(©0)=y(1)=0,

where p(x) >0; g (x) >0, which are often met with in applications,
not only has the convergence been proved of approximations (obtained
by the Ritz method) to the function y(x) that minimizes the
functional, given the coordinate functions

W/,,(x)=l/_§sink:tx k=12, ...),

but extremely precise error estimations |y(x)—uy,(x)| have been
given.
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We give one of these estimations of the maximum |y (x)—y, (x)]

on the interval (0, 1):
'/-Sf 2 (x) dx
max q (x)

1
<ATT [n1axp(x)+(n+l)11z < X
72 V2 [minp (x)] *
*
X [max | p’ (x)[+%maxq(x) +n minp(x)] .

max | y—y,

Even in this comparatively simple case, the estimation of error
is very complicated. For this reason, to estimate the accuracy of
results obtained by the Ritz method or by other direct methods,

one ordinarily uses the following pro-

A cedure, which is of course theoretically

imperfect but sufficiently reliable in a

practical way: after calculating y, (x) and

Yn 1 (x), @ comparison is made between

7 — them at several points of the interval

[x,, x,]). If their values coincide within

’ the limits of accuracy required, then

it is taken that to within the required

Fig. 10-3 accuracy the solution of the variational

problem at hand is y,(x). But if the

values of y,(x) and y,,,(x) do not coincide even at some of

the chosen points within'the limits of the given accuracy, then

Yns+e (x) is calculated and the values of y,,,(x) and y,,,(x) are

compared. This process is continued until the values of y,,,(x) and
Yn v k41 (x) coincide within the limits of the given accuracy.

Example 1. In studying the vibrations of a fixed wedge of cons-
tant thickness (Fig. 10.3), one has to test for an extremum the
functional

1
———S(ax’ " —bxy?®) dx, y()=y' (1)=0,
o

where a and b are positive constants. For the coordinate functions
satisfying the boundary conditions we can take

'(x—l)’, (x—1)x, (x—1)%3% ..., (x—1)x*""1, ...,
hence,

Y= i @y (‘t— l)?xk—l.

* Sce Kantorovich and Krylov [10].
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Confining ourselves ouly to the first two terins, we get
v (v 1),
then
v, -vfm)- { [ax® (bre,x = 20 — A — D (- D e, x ) dxe -

2 ! [y . Sy, oan

Y .
=a [W‘—Q""ir Ay —20) - lw.;{ B S T g B

oy
Here, the necessary conditions for an extremum, —===.0,
) s

take the form

[/ bN_ (2 h
{ —— o L0 . 0
RO S T
-and
/(2 N 2 bt
S = 4 = d—, o, -0
T 1 S W S~ | B

To obtain solutions different from the solution =, = =, -0, which
corresponds to the absence of vibrations of the wedge, it is neces-
sary that the determinant of this homogeneous linear system of
equations be zero:

la—? 2o P |
1973 5 0% | _,
I 2 b2 b
[59 05 5 9980
or
LBNIZo AN 72 b
043 w0, TR 103 !

This equation is called the [requency equation. It defines the fre-
quency b of natural vibrations of the wedge, which are described
by the function

u(x, )y=u(xycosht.
The smuller of the two roots b, and b, of the frequency equation
vields an approximate valve of the frequency of the fundamental
fore «f vibrations of the wedsc.

Example 2. In problems associated with the torsion of a cylinder
of prism, one huas to investigate the functional

U I TR S Y
vlzix, ) = \\ [ Ci—w e \(‘Iz’ 4x | dvdy

[
1

froan oxtremum Foroa evlinder with an elliptical  cross-section
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the integration domain D will be bounded by the ellipse Z—:+—g;=l.
In this case, taking only one coordinate function xy, we get

z=axw, v[z]=0v,="2 [(a+ 1 a +@—1)8).

The necessary condition for an extremum, %—-0, in this case
takes the form (a4 1)a® 4 (a—1)5* =0, whence

b2 —a? b2 —a?

e R A s

Example 3. If in Example 2 the domain D is a rectangle with

sides 2a and 2b, —a<<x<a; —b<y<b then, taking for the
coordinate functnons xy, xy*, x*y, that is, putting

2, = o, xy + a.xy’ + o x’y,

o=

we get

L

3a 3 ]

b* (, — 1)* + 4ab® (T"‘T) a2+ 4a’h ("7+3Lg—)a;+
+% a'b (o, + l)’—l—-g—ab5 (@, —a, +—g~a°b (e, +1)a,—
—-%a‘b (@, +1a, ——-:—a“b’ (@ + b’) a as——a—a’b’ (ot — 1)et,.

The necessary conditions for an extremum =0 —0, % =0,

’ aa, * Jag
permit calculating a,, a,, a,:
7 (a8 — b%) + 135a2b? (a? — b2)

& = T (@ F 5% F 107a%2 (@@ b%) °
- 7a? (3a% + 35b%)
% = ST (@ F %)+ 321a%° (@ 1 b°) *
o = 7b% (354 + 3b%)
,=—

21 (a®F 5%+ 321a%6? (a® 1 b°) °
Example 4. Find a solution of the equation

02

i =l

inside the rectangle D, 0 <x<<a, 0 <<y<b, that vanishes on the
boundary of D. The function f(x, y) is assumed to be expansible
(inside this rectangle) in a uniformly convergent double Fourier
series:

f(x, y)=2-_ Z—_ﬁpqsmp b smqb .
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This boundary-value problem may be reduced to a variational
problem—that of finding a functional for which the given equation
is an Ostrogradsky equation; and'®then, using one of the direct
methods, find the function that extremizes this functional, and thus
find the solution of the original boundary-value problem. As can
easily be verified,

02
Oxi +0y2 =f(x, y)
is the Ostrogradsky equation for the functional

oz (x, y)]—ﬁ[ ) (%) +2ed v, )] dxdy

(see page 328). The boundary condition is maintained: z=0 on the
boundary of the domain D. Let us investigale this functional for
an extremum by the Ritz method. For a system of coordinate
functions take
sinm%sinn% (m, n=1, 2, ...).

Each of these functions and their linear combinations satisfy the
boundary condition z=0 on the boundary of D. These functions
also possess the property of completeness. Taking

n m
~ . nx. . ny
= 2‘1 Z} g Sinp—-sing ==,
p: q:

we will have

+22,, Y B, sin p——squy]dxdt/—
p=1 ¢g=1
n m m
n2ab ~ [ p?
=73 2 (F+b2) "+22-)-aqﬂpq
p=1 qg=1
This result is readily obtained if we take into account that the
coordinate functions sinp%sin q—’;—y (p, g=1, 2, ...) form in.D
an orthogonal system, i.e. e .

SS sinp % sing V:;y_ sin p, %’5 sin g, -’;5 dx dy~0
D

n
~I
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for any positive integral p, g, p,, ¢,, with the exception of the
case p=p,, ¢=¢q,. For p=p, and g=g,, we get
“ sin*p %‘3 sin ¢ —'-;5-'» dxdy = ‘—? i

Therefore, of all the terms under the sign of the double integral,
equal to vl|z,,], only those are taken into account that contain
squares of the functions sinp = sinq—'}“. sinp =¥ cosq =L and

cosp 3—‘3 sianl. Obviously, v(z,,] is a function ¢(a,, a,,..
<y ,,,,,) of the ccefficients e,,, @,,. ..., @,,, which are determined
from the basic necessary condition for an extremum

U———am-m()(p—l 2, ..., n qg=1,2 ..., m.

In the given case, this system of equations is of the form

‘ p? 2 ”
aw/\g'-’ ‘*"gz">ﬂ-+ﬁpq=0 (p=1.2 .... m
qg=1i, 2, ceey 'n)v

whence
Bra
Qpy = — —F 5 ¢
e (P + 9
k a? b2
Consequently,
n m
1 v e B e k141 ay
Z,",, = e— ?l‘.g L ,}-j I‘*a_‘ sin p -sin q - b .
p=1 ¢g=1 _‘;_E._I_ b.‘r

Proceeding to the limit as n and m approach infinity, we obtain
an exact solution here:

9
I v Bog . ax ay
= —5 2 T sinp e s g -F .

4. Kantorovich's Method

When applying the Ritz method to functionals v [z (x,, x,, ..., x,)]
that depend on functions of several independent variables, a coor-
dinate system of functions is chosen

W, X ooy X)), Woix, X0 ooy X)), -nn,
i W, (x, X, oovy X)), ..



,
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and an approximate solution of the variational problem is sought
nr
in the form z,,,=k}_:l 2, W, (X, X, ..., x,), Where the coeflicients a,

are constants,
The Kantorovich methed also requires choosing a coordinate system
ol functions

Wi, Ko oo s ), Wt xo ooou )y oo W e cony X0 e

and an approximate solution is also sought in the form
i
Al /)
Za= X, ()W, (x,, X, ..., X))
k=1

however, the coeflicients e, (x;) are not constants but are unknown
functions of one of the independent variables. On the class of
functions of the type

m

Zn = k}:l o (X;) w’k (IS AN )

the functional o{z] is transformed to the functional v[a, (x;),
a,(x;). ..., %,(x;)], which depends on m functions of one inde-
pendent variable

al(xi)' 2, (%) .ol @y, (%)

The functions o, (x;). @,(x;), ..., @,(x;) are chosen so as to
extremize the functional o

If after that we pass to the limit as m -- oo, then under certain
conditions it is possible to obtain an exact solution, but if a
passage to the limit is not perforimed, then this method will yield
an approximate solution and, generally speaking, one substantially
more exact than when using the Ritz method with the same coor-
dinate functions and the same number of terms /m.

The greater precision of this method is due to the fact that the

"

. A\l . .
class of functions z,,= X o, (x) W, (x,, x,. .... x,) with variables

k=
o, (x;) is considerably broader than the class of Tunctions
"
Al
zm = ’}_l allW/'\‘(xl' X..., sy 'Y'x’
for constant o, and, hence, among functions of the type
m

A\l
Z,,, = 2‘_ (/"s'(xi’ W,{'(xl Xas vy xn)

o == 4

it is possible to find functions that approximate better the solution



422 Il. THE CALCULUS OF VARIATIONS

of the variational problem than among functions of the form

> W, (x, %, ..., x,) where the a, are constant.

For example, let it be required to investigate for an extremum
the functional
Xy @z (x)

0z
v= F(x, Y 2 5, ay)d dy,
Xe @3 (X)

extended over the domain D bounded by the curves y=g,(x),
y=¢,(x) and two straight lines x=x, and x=x, (Fig. 10.4).
Values of the functions z(x, y)

Ly - o2 are given on the boundary of
the domain D.
Choose a sequence of coordinate

D functions:
e Wl (X, y)» W,(X. !/). ceey
Y=z W,.x v, ...
z For the time being we confine
0 z, z,  ourselves to the first m functions
of this sequence and seek the
Fig. 10-4 solution of the variational pro-

blem in the form of a sum of
the functions z,= 20:,, (x)W, (x, y) or, changing the notation
a, (x) to u,(x), we get
2, (% ) =u, (x) Wi(x, ) +u,(x) Wo(x, Y+ ... +ua () W,(x, y),

where the W, are the functions we chose, and u, are unknown
functions that we difine so that the functional v is extremized.
We have

Xy 42 (9
0. 5}
olzntx, ) ={dx § F(x 5 2000 ), G2 G2 )ay
X, @ (x)

Since the integrand is a known function of y, integration with
respect to y may be performed and the functional v(z, (x, y)] will
be a functional of the form

v [zm (x’ y)] = S (p (x’ ul (x)’ AR ] ul’l (x)' u’l’ A u;’l)dr

Xo

The functions u, (x), u,(x), ..., u,(x) are chosen so that the
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functional v(z,(x, y)] is extremized. Hence, u;(x) must satisfy the
system of Euler’s equations

d
Pu, — 75 P

The arbitrary constants are chosen so that z,(x, y) satisfies the
given boundary conditions on the straight lines x=x, and x=x,.

Example 1. Investigate for an extremum the functional

o= § S5+ (5) 2] arar

on the boundary of the integration domain z=0. The integration
domain is a rectangle —a<{x<Ca; —b<<y<Cb. We seek a solution
in the form z,=(6"—y®)u(x); then the boundary conditions on
the straight lines y =+ b will be satisfied. The functional

vz,)= S" lg bu” +—§—b’u’—%b’u‘|dx.

Euler’s equation for this functional

w5 5
W —pld="1pn

is a linear equation with constant coefficients, the general colution
of which is of the form

u=C, cosh )/i;’— %-}—C,sinh —g—%‘-—{——;-.
The constants C, and C, are determined from the boundary -condi-

tions z(—a)=2z(a)=0, whence C,=0, C,=—

and we finally get
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424
hence,
,.-'”;";- X \
) . . . cosh ' 5 5
= W=y N— )
2 / 5 a
\ cosh ' 5

I a mcre exact answer is required, the solution may be sought in

the form
2, =(0*— ) u, (x) 4 (B  — ') u, ().

Example 2. Find a centinucus solution of the equation Az =—1
in the domain D. which is an isosceles triangle bounded by the

straight lines = == -'-'—,%-3— x and x=10b (Fic
g vanishes on the boundary of the domain.
4 The equation Az = —1 is the Ostrog-
radsky equation for the functional

10.5), which solution

b —
=8 _x  0s] — fdz’? | oz V0, !
0 ——J 4 [4] ——5 5 lr.\”,x i T+ .\”! j 2z | dx 2478
A B
AN
&’c\p\ 2
34 .
! Qe and on the boundary of the intecra-
Fie. 10 & tion domain z=:0. Proceedine by the
=~ - v .
Kantorovich method, we shall secic the

frst oproximation in the form

| YT N } .
S PP AR
R e X i” (x).
I'er such @ choice-of 2 the boundary conditions on the straight

4
: b3 T
flues ¢ = 1LY R are satistied.

== ]

After intecration with respect to y, the functional v{z,] takes
the form

b
T T O . . s e s
vz, == —»!l,,-» \ 20 - loxtu - 30070~ 15X ) dx
AR

o
. . . S . e s w el = 15
Euler's equation for this functional will be x%” - Sy’ —5du == 3
Lincar eauations of this tvpe ore colled Luler's equations in the
theory of differentinl cquitions {page 116).
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One particular solution of this nonhomogeneous equation is obvious:
u= —%. We seek a solution of the corresponding homogeneous
equation in the form u=x* and finally get u=Clx+C,x"——":— .
Since near the point x=0 the solution u must be bounded, it
follows that C, should be chosen equal to zero, and from the con-

dition u (b)=0 we get C,=—4%. Thus,

wm=3(1-5) (=4 2).

Note. Boundary-value problems are approximated by yet another
direct method (which is not variational). It is called Galerkin’s
" method (B. Galerkin). This method is particularly convenient
in the solution of linear boundary-value problems, but can be also
applied to many nonlinear problems. For the sake of definiteness
we give Galerkin’s method as applied to frequently encountered
linear equations of the second order

Y +p()Y +qx)y=Ff(x) (10.1)

with homogeneous boundary conditions y(x,)=0, y(x,)=0 (the
nonhomogeneous boundary conditions y(x,)=y, y(x,)=y, by the
change of variables

Nh—"Y% ., __
Xy — Xo (x xo)

2=Y—Y—

are readily reduced to homogeneous conditions).
Equation (10.1) can be written briefly as

L(y)=[(x).

On the interval [x,, x,] let us choose a complete system of con-
tinuous linearly independent functions

W, (X), Wy(X), ..., Wo(X)y ooty (10.2)

that satisfy the boundary conditions w, (x,) =w, (x,)=0(n=1,2,...).
We will seek an approximate solution of the boundary-value problem
in the form of a linear combination of the first n functions of the
system (10.2):

M:

Yn= @ ; (x ) .

i=1

28—-378
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Substitute y, into equation (10.1) and choose the coefficients
o;(i=1, 2, ..., n) so that the function

L (,gl o w; (x)>-—f(x)

is orthogonal on the interval [x,, x,] of each of the functions
w;(x)(i=1,2, ..., n)

Xy

S[L(lg ami(x)>—f(x)]wi(x)dx=0 (=12, ..., n). (10.3)

Xy

It is natural to expect that y, tends to the exact solution

y=

"N s

= ow; (X),

as n— oo, since if the series obtained converges and admits two
times termwise differentiation, then the function L (y)—f(x) is
orthogonal on the interval [x,, x,] of each function w;(x) of the
system (10.2), and since the system (10.2) is_complete, it follows
that L(y)—f(x)=0, and this signifies that y is a solution of the
equation (10.1). Obviously, y also satisfies the boundary conditions
y(x)=y(x,)=0 [since all the w, (x,)=w;(x,)=0].

Only very rarely is it possible to determine all the a; from the
system (10.3) that is linear in them and to pass to the limit as
n— oo; for this reason, one ordinarily confines oneself to a finite
(very small) number n(n=2, 3, 4,5, and sometimes even n=1).

Here, of course, one has to choose only n functions w;(x), and
so the condition of completeness is discarded and one has only to
choose them linearly independent and satisfying the boundary con-
ditions

w; (xo)——'wi (x1)=0-

Very often, for these so-called coordinate functions we take the
polynomials
(x—'xo)(x—'xx)9 (x_'xo)z(x_xx)» (x_xo)’ (x—xl)! see

ey (X=X )" (x—x,), ... (10.4)
[it is convenient here to transfer the coordinate origin to the
point x,, and then in (10 4) x,=0] or the trigonometric functions

nm(x—xg)
X1—X%p

sin (n=1, 2, ...).
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This method is applicable to equations of any order n, to systems
of equations, and to partial differential equations.

PROBLEMS ON CHAPTER 10

1. Find an approximate solution of the equation Az=—1 inside
the square —a < x<<a, —a << y <<a, which vanishes on the boundary
of the square.

Hint. The problem reduces to investigating for an extremum the

functional
SS [(g;)"" (%).—QZ] dxdy.
D

An approkimate solution may be sought in the form
' 2, =a(x*—a’) (y* —a®).

2. Find an approximate solution of the problem of the extremum
of the functional

1
vly () = § Py 4 100xy* —20xp) dx; ¥ (1) =y’ (1)=0
0

Hint The solution may be sought in the form
Yo ) =(x—1) (@, +ax+ ... +ax");

carry out the calculations for n=1.
3. Find an approximate solution of the problem of the minimum
of the functional

1
v[y(x)]=S(y”—y’—2xy)dx; y(0)=y(1)=0,
0
and compare it with the exact solution.
Hint. The approximate solution may be sought in the form
Yp=x(1—x)(a+ax+ ...+ a,x");

carry out the calculations for n=0 and n=1.
4. Find an approximate solution of the problem of the extremum
of the functional

2
ol = (o' —EF ¢ —20y) v y(1)=y@)=0,

1
and compare it with the exact solution.

28
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Hint. The solution may be sought in the form

y=a(x—1)(x—2).

5. Using the Ritz method, find an approximate solution of the
problem of the minimum of the functional

2
oly) = "+ + 2 dr; y(0)=y(2) =0,
0

and compare it with the exact solution.

Hint. See Problem 3.

6. Using the Ritz method find an approximate solution of the
differential equation y" + x’y =x: y(0)=y(1)=0. Determine y, (x)
and y, (x()) ?nd compare their values at the points x=0.25, x=0.5,
and x=0.75



Answers to problems

CHAPTER 1
1. sinycos x=c. 2 642+ 5xy+y2—9x — 3y=c. 3. 2 —2cy=
3
4. y=%+%—. —-+——c 6. x=ce-”+%e2'. 7. y=ccos x-}sin x.

8. eXx—eV=c. 9. x:ce'——é-(cost—{-sin ). 10. Homogeneous equation: x=

-X
=yeV+l, Il.y=cx and y*—x2=c. 12. 13. In|t|=c—e ¢.

, 1
¥ =@xFo

‘ x—sint

14. A parameter may be introduced, putting y =cost\ +sm 2t te.
1 f x= p’—p+2

- —_ i i 2 p? . .

16. y=cx+ T singular solution y2=4x. 16. \ =—p‘ —|—c. 17. Equa

3 a_._.

tion is linear in x and Z—x, x=cy+!2—. 18. {x 3P P e, 19 Hy-

Y y=p*—pi— 2.

perbolas x2—y2=c. 20. The differential equation of the required curves is

2%:_:/’. Ans. y2=2cx. 21. The differential equation of the required curves is

y—xy' =x. Ans. y=cx—xIn|x| 22. x24y>—2cy=0. The problem is solved
very simply in polar coordinates. 23. The differential equation of the problem

is —%:k(’l‘-—%). Ans. In one hour. 24. The differential equation of the

problem is %’;—:kv, where v is the velocity. Ans. v~0.466 km/hr. 25. If the
origin is put in the given point and the x-axis directed parallel to the direction
given in the problem, then the differential equation of the curves, the rotation
_—xt Ve
y
—d, =0, where p= ¥ x2-F y?). Ans. The axial section of the desired surface is
defined by the equation y2=2cx4-c2?, the surface is a paraboloid of revolution.
26. y=2sin(x—c). 27. The differential equation of the desired curves is
y’=—%. Ans. Hyperbolas xy=c. 28. (x+y+1p@¥=c(x—y+3). 29. y=

_2(+x) - - \ - .
= o W yOH=0I 3y 06007 82 y(002)~1.984;

y(0.04)<1.970; y(0.06)~1.955; y(0.08) ~ 1.942; y(0.10)=~1.930; y(0.12)~
zl‘917; y (0.14) = 1.907, y(0.16)=~1.896; 4 (0.18)~1.886; ¢ (0.20) ~ 1.877;

of which forms the desired surface, is of the form y’ (or dx —
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y(0.22) =~ 1.869; y(0.24) =~ 1.861;, y(0.26) ~ 1.854; y (0.28) =~ 1.849; y (0.30)~
c 2 )
~ 1.841. 33. { ¥=2T73 and y=0. 3. xtcot*"¥=c  36. (x+y+

y=2px—p? 2
+1)3—ce2"+y 37. y—-c, y=e*+tc, y——e"—}-c 38. y2=2cx+c® 39. No.
40. -1, X "l __lx_*_ﬁ_—x 41. y=2x2—x. 42. No
h= 2 » Y= +15 6 2 ° - Y= . . .

X

43. x=ce?. 4. x’-{-—%:cz. 45. x=2t. 46. x=1. 47. y— —x+1 and

3
y=———x4—-‘ 48. A real solution does not exist. 49. 3x—4y+4 1 =ce*-J.

3 — 2
50. x=(4f+4c)sint. 5. y=cx+c 3 and the singular solution y= —ux3.

3
52. y=xZL+c' y=0. 53. x-—c=%(2t—sin 2{), yz%(l—cos 2t) is a family

of cycloids. A singular solution is y=a. Hint: it is convenient .to introduce

¢
a parameter ¢, putting y’'=cot?. 54. 3 (x? xy3=cx. B85 p=-—m-—.

P ) putting y (x*+y) +xy P=F T
- 1
—rp Y 2 —_—y2— — = = —— =

56. x=ce? . 57. x4+ 2xy—y?—6x—2y=c. 58. y Feoxfinx and y=0.
59. (x2—1)y—sinx=c. 60 8y+4x+5—ce‘x'3}' =4 61, P34+ a8—3xy=c.
62. y=c (x2+y?). 63. y3= x+—. 64. y=c (x+a)+c? and a singular solution

syt 2408 o =0, y=- 3 66. y=
is y= rt 65. r== t+ a y=2xt—t?* and y=0, y=75x 66. y=
-t
“ltcosx®
CHAPTER 2
1. y =5e3* sin x4 10. 2. x=¢, cost.—}-c,sint—}-% cos2-t~—t cgst'
3 2 = . 4. y=c¢, co ¢, sinx coszx_ l 5. y=cyx2+
. (y—Cg)P=01x+¢C. 4 y=¢,C08 X+C, +sinx 2smx . Y=y
1 . 1
3 — = -— . == o ==
4 Cpx +3. 6. y cISInxfc,cosx+ coshx. 7.y clx+c2+l 8. x
132! 1 cg+1
=t @t al) +g— b+ 0. —-——+ ‘+ 1n]14cyx|+co 10,
+1=c} (t )% 1. y=cle”‘+c,e—2"+c3cos2x+c‘sin2x——+15

x
12. y=cos (x+—¢;)+Cex+c5 13. y=c‘e"+c,e"x+c,x3+c4x’+c.5x+c,——-2—4—-.

: 4x8 4258
14. x=¢' (c;,+cst) e~ (cs+cet) 4 1+12. 15, y=co’§l—ﬁ+m—

(_.l)k4kxak ) _L 4257 _
-+ 3355 (3k—l)3k+ ) tals—37 t 337~ -+

‘_"k“k"”“ 6 J, @) +ed | 3 17
-|-3 167 3/2(3/2-1—1) ) 16. y=¢, %( x) + ¢ _%( X). cYy=x
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4
18. y=(-;—x+l>. 19. y=c,cos x+cysin x4 14 xcos x—sinx In|sinx]|.

2
20. u=f’L+c,, 21. The differential equation of the problem is Ztr ’,:
P A0k
o=
v is the velocity, and k=—6400% g. Ans. v~ 1l km/s. 22. The differential

2
equation of motion is z:, —g+k (%’E) . Ans. -—lgs—-lncosh £ ¢ 23. The

where 7 is the distance from the centre of the earth to the body,

75
differential equation of motion is %j—i-:k(s—}-l) or Z:: =(s+1.
F—a

InO+ V80). 25. s= -

{—

Ans. t= % In (64 V 35). 24. t= V"

_be, —_
i—;L)E ( —e P ) 26. x=Acos £ t. 27. x=acos £ t.
b’ a V <

28. The differential equation of motion is X4k x—kx=0, &, > 0.
2 k2
(¥ E0) e (2VEL)
Ans. x=cqe 2 +cqe 2 ‘ .29, x

,22‘11’ IS (o Y TFE I et VTFR 4o

=

‘=¢, cos 3t 4 ¢, sin 3¢ 1 12 cos 3t +§—16 sin 3¢.

31. y=c,e 5

33. y=e—"(c,+c,x——l-x)+—e-‘ 4. y=ce*te v (c,cos V3 x4+

xe* cos x  x3¥sinx
2 .

+ ¢4 sin ‘/23 x)+%xe-". 35. y=e* (¢, cos x} ¢, sin x) 4

36 y=c,(x—x8)+c,[4—ex=+3(xa._x)]1n|:—£—:|]—-6-. 87. u=

Cy

=¢ In(x3+y?)+c,. 38. u=——m__yﬁ+c, 39. The differential equa-
. . 2 - §
tion of motion is mx=mg—k«. Ans. kg l—m—g(l—e m ) .
3 dx vdy
40 (a) t—tyg= . (b)) x— xo—me(v) —tp=

e
l/ v"+T:-Sf(x)dx
X

?d—-— where v=1x. 41, y=oc;+ cox -} c3x® + €% (c4+c,x+c,x’)—-§—§ .

Xo

=m

FCe—a
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42.  x=(cy+cst) cos t + (c3+¢,4t) sin t—-g— t?cost. 43. y=c,cosIn(l-4x) 4

n?) sin nt — 2n cos nt

+cysinin(l +x)+In(14x)sinIn(14x). 44. x—2(2 [(@—r®? T anZ] n¥

—(n®—a,) a,—ayn .
45. x= —+ 2 [ :n“—Z:;’ﬁ"-a‘l-'zI’ B cos nt + -1 al(’:;”;—a-)g—_*:—:f')f” sin nt

where a,, a,, B, are Fourier’s coefficients of the function f (¢). 46. x=3;—t.+

1

+ 2-—': (143 cos 2¢). 47. y=cx+cxe * . 48. X2y +xy’' —y=0.

Ve 5 5 vy -
t -
9. x=e?® (c;cos ’22 t+ ¢ sin '/22 l)+e : (c,cos V22—t+

')+"'5°"="+'+l,y=1t°+3) Otgitt(atg) e+

+ ¢4 sin
2! (3¢t

+ ¢yt +-c5. 51 x=(c;+cst)e~" —}-(54_'"2)2 —5 " 52.  y=cef*¥

F 4 —_— —
53. y=¢:|e"-|-¢,'2¢z""+e-T (c,cos '/2 x4 ¢4 sin V—x)-{-e B (c,cosl;—sx-}-

. V3 e2x .
+c,sme +ﬁ" 54. y=(c,x+c;) cos x4 (cgx+¢4) sin x+c5+ cox +

x 1
+ 24 e 8 y=(artetaxte. 5. y=e‘""(?,—c—z)+%-
1
sin 2x  sin 4x _ 1 e 1
57. y=c, cos x+}cy sin x— 5 30 .&.y_—m.SQ.y_c,e' -}-c—l.

CHAPTER 3
1. x=sint, y=cost. 2. x =2 x,=2" 3 x=cel-1+V18)¢

+ cpel=1-V18) ’+l—2]e'+-:3—e2'; we find y from the first equation:
Ly =3 Y
y=e —‘—;—':—Sx 4 x=ce'+e ? (c,cos V23 t 4cgsin -'/2?—1>; y and 2
2
are found from the equations y=:%. z=%t—':. 5. x=c.e; ETRX
6. x=clcosl+c25:int+3; y=—cysint4cycost. 7. y=cy,Jo(x)+cY, (x);
z=x[c,Jo (x)+ Yo (x)]. 8. x+y+2z=c,, x2+ytt22=c3 9. x=ciel+coe2t,
y=ce' +cse=?; z=cie' —(c,+cz) e~ 10. x=cll+ct—’; y= —clt—{-it"— .
11 x=c,costtcysint—tcostsintin|sint|; y is delermined from the

equation y-%‘ — 112, a2—yt=c,, y—x—1=c, 13. x=cye'}cye=!+4sint;
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yo:—cel el 14 x el y=14e'.15. 0 (1) ~ 0.047. 16. x==e4' (¢, cos L -}-¢, sin 1),
y-=e4! (¢ sint—cycost). 17, x=2ce~t4ce-?, y=—cie-tfce-t
18. x=e~%!(2c, cos t +2c, sin t), y=e—% |(c,—c,) cos £ +(cy - cz) sin 1),
19. x=cel+c, y=(cttcy)e—t—1—c, z=y—cel. 20. x4ytz=c,,

. _ et et
xyz=c,. 21. x-+y-+z2=cf, XYz =¢,. 22. X=| cie‘+32cze"“'

CHAPTER 4
1. The rest point is asymptotically stable. 2. The rest point is unstable.

3. For a<— -;—. the rest point is asymptotically stable, for a=—% stable,

and for a>——;—unstable. 4. For a<C0, the rest point is asymptotically

stable, for @ > 0 unstable. 5. For | < ¢ < 2x(¢, p) - V4—t3; for 2<t <
< 3x(t, p) —>—VO9—1%; for t > 3x(t, p) — . 6. x(f, p) > . 7. The rest
point is unstable. 8. The rest point is stable. 9. The rest point is unstable.
10. The rest point is stable. 11. Saddle point. 12. The periodic solution

x:—lg—sinl——:-cost is asymptotically stable. 13. All solutions, including pe-
riodic solutions, are asymptotically stable. 14. The rest point is unstable. The
function v=x4—y4 satisfies the conditions of the Chetayev theorem. 15. All
solutions are unstable. 16. The solution x =0 is unstable. 17. For | <a <2
the solution x =0 is asymptotically stable. For @=1 and for @=2 the solu-
tion x=0 is stable. For a > 2 and for @ < | the solution x =0 is unstable.
18. The solution x=0, y=0 is stable for constantly acting perturbations.
The function v=4x2{3y? satisfies the conditions of Malkin’s theorem. 19. The
solution x(f)=0 is unstable. 20. All solutions are stable, but there is no
asymptotic stability. 21. All solutions are stable, but there is no asymptotic

stability. 22. The periodic solution x= %Lnt is unstable. 23. The region

of stability is 0<<a<C1, the region of asymptotic stability is 0 <a < 1.
24. The region of stability is @ =>5, the region of asymptotic stability is & > 5.

CHAPTER 5
A X
1. 2-———(1)(x—}-y).5 2. z2=e2X® (x—y). 3. z=e* D (x). 4. 0(2, ye? )=0.
—51 D (%) _ y z
5. 2—5'*'_;5—' 6. u=o((x—y, y—2). 7. u=x'\d r ?’)'

x-2

8 =0 ()L Dyy). 9. z=(+y—D% 10 z=ge ? . 1L z=3r
12. z=(y2_2z_f) 218 @40, iiy)=0. 14 B (A—2, B3—yt)=0,

3
15. No. 16. 2xy+y24-6x22=c. 17 z=ax3+4 g—& + b (other answers are also

possible). s 18. z=ax-|-by+4a%3 (other answers are also possible).
— (a*x+y)

19. 2=0be? (other answers are also possible). 20. z=xsina4ay+b

(other answers are also possible). 21. x2y —3xyz=c. 22. There is no such family

of surfaces, since the condition (F - rot F)=0 is not fulfilled. 23. The equations

of the vector lines are %:cl, xz=c,. The equation of the vector surfaces is
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z=—:‘-<b(—-) . The equation of surfaces orthogonal to vector lines is
x24yt—2t=c. 24. z=xy+1. 25. z=3xy. 26. z=x24 42,

CHAPTER 6
The extremals are the circles (x—C;)?4-y2=C3. 2. The integral is inde-

pendent of the path of integration. The variation problem is meaningless. 3. An
extremum is not achleved in the class of continuous functions. 4. The extremals are

the hyperbolas y=7+C2. 5. y=C,sin (4x—C,). 6. y.——.—-—T+C,x-{—C,.

4. u=sinh (C;x+C,). 8. y=C,ex+C,e“+%sinx. 9. y=C,e2* 4 Coe—2* 4

-l— Cg cos 2x+ Cy sin 2x. 10. =x—:+C x84 Coxt+ C3x3+ Cyx?+ Cyx -+ C.

_(C1x+(,2) cos x4 (Cyx+ C,,)sm x, 2=2y-+y”", whence z is readily deter-
mined. 12. dxi g;; =0 13. 012—{- 0y2+ (;zz f(x, y, 2). 14. y=Cx*+C,.
15. =-;- xe* 4+ Cye* 4 Cye—*. 16 y=— xcosx+ C, cos x+C, sin x.
17. y=C,coshx 4 Cysinh x 4 xsinhx —coshxIncoshx. 18. y=C,x+x—a+§xln|xl.
19. y=(C,+C,x)cos x+(C3+C,x) sin x_x’s;in:_c‘ 20. y=C,e*+Coe=* +

X

+e _ (C_,cos V—x—{—C,sm —V—§—x>+e 2 (C.cosV—x +Cg sin -———x +x3.

CHAPTER 7

. y=—x for 0<x<<!; y=x—2 for 1 <x<4 and y=x for 0<x< 3,
y= —x+6 for 3 < x<<4. The functioral achieves an absolute minimum on both
polygonal lines. 2. No. 3. The polygonal lines passing through the given boundary

pomts are composed of rectilinear segments with slopes }'3 and —V3.

4. ;P +_y’yq; -=1, i.e., the extremals must intersect the curve y,_(p(x,), alon