
ar
X

iv
:1

50
1.

01
91

9v
1 

 [
ph

ys
ic

s.
ge

n-
ph

] 
 4

 J
an

 2
01

5

January 9, 2015 1:21 WSPC Proceedings - 9.75in x 6.5in Baryshev-ws-proc page 1

1

Paradoxes of cosmological physics

in the beginning of the 21-st century

Yurij Baryshev∗

Astronomical Institute, Saint Petersburg State University,

Saint Petersburg, 198504, Russia
∗E-mail: yubaryshev@mail.ru

In the history of cosmology physical paradoxes played important role for develop-
ment of contemporary world models. Within the modern standard cosmological model
there are both observational and conceptual cosmological paradoxes which stimulate to
search their solution. Confrontation of theoretical predictions of the standard cosmolog-
ical model with the latest astrophysical observational data is considered. A review of
conceptual problems of the Friedmann space expending models, which are in the bases
of modern cosmological model, is discussed. The main paradoxes, which are discussed
in modern literature, are the Newtonian character of the exact Friedmann equation, the
violation of the energy conservation within any comoving local volume, violation of the
limiting recession velocity of galaxies for the observed high redshift objects. Possible
observational tests of the nature of the cosmological redshift are discussed.
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1. The standard cosmological model

Nowadays the expanding Big Bang cosmological model is generally accepted as the

standard cosmological model (SCM) for description of the structure and evolution

of the physical Universe (Peebles1, Weinberg2, Baryshev & Teerikorpi3). SCM is

based on the geometrical gravity theory (general relativity) and uses the description

of all physical processes in expanding space. The fundamental assumptions of the

SCM are:

• Homogeneous and isotropic matter distribution in the expanding Universe

(ρ = ρ(t); p = p(t); gik = gik(t)) a .

• General relativity is applicable to the whole Universe (gik; ℜiklm; T ik
(m+de)).

• Laboratory physics can be extended into the expanding space.

• Inflation in the early Universe is needed for flatness, isotropy and for initial

conditions of large scale structure formation.

aWe use main definitions and notations similar to Landau & Lifshitz4, so 4-dimensional tensor
indices are denoted by Latin letters i, k, l... which take on the values 0, 1, 2, 3, and the metric has
signature (+,−,−,−).

http://arxiv.org/abs/1501.01919v1
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1.1. Einstein’s cosmological principle

The fundamental basic element of the SCM is the Einstein’s Cosmological Principle,

which states that the universe is spatially homogeneous and isotropic at

enough ”large scales”. The term ”large scales” relates to the fact that the

universe is obviously inhomogeneous at scales of galaxies and clusters of galaxies.

The hypothesis of homogeneity and isotropy of the matter distribution in space

means that starting from certain scale rhom, for all scales r > rhom we can consider

the total energy density ε = ρc2 and the total pressure p as a function of time

only, i.e. ε(r, t) = ε(t) and p(r, t) = p(t) . Here the total energy density and the

total pressure are the sum of the energy densities for matter and dark energy :

ε = εm + εde, and p = pm + pde.

An ideal fluid equation of state p = γ̺c2 is usually considered for cosmological

fluid, where usual matter and dark energy have following partial equations of state:

pm = βεm with 0 ≤ β ≤ 1, and pde = wεde with −1 ≤ w < 0. Recently values

w < −1 also were considered for description the ”fantom” energy.

1.2. Expanding space paradigm

An important consequence of homogeneity and isotropy is that the line element

ds2 = gikdx
idxk may be presented in the Robertson-Walker form:

ds2 = c2dt2 − S2(t)dχ2 − S2(t)I2k (χ)(dθ
2 + sin2θdφ2) , (1)

where χ, θ, φ are the ”spherical” comoving space coordinates, t is synchronous time

coordinate, and Ik(χ) = (sin(χ), χ, sinh(χ)), corresponding to curvature constant

values k = (+1, 0, − 1) respectively. S(t) is the scale factor, which determines the

time dependence of the metric.

The expanding space paradigm states that the proper (internal) metric distance

r to a galaxy with fixed co-moving coordinate χ from the observer is given by

relation r(t) = S(t) · χ and increases with time t as the scale factor S(t).

Note that physical dimension of metric distance [r] = cm , hence, if physical

dimension [S] = cm, then χ is the dimensionless comoving coordinate distance. In

direct mathematical sense χ is the spherical angle and S(t) is the radius of the sphere

(or pseudosphere) embedded in the 4-dimensional Euclidean space. It means that

the ”cm” (the measuring rod) itself is defined as unchangeable unit of length in the

embedding 4-d Euclidean space.

It is important to point out that the hypothesis of homogeneity and isotropy

of space implies that for a given galaxy the recession velocity is proportional to

distance (exact linear velocity-distance relation for all RW metrics Eq. (1)):

Vexp(r) =
dr

dt
=

dS

dt
χ =

dS

dt
·
r

S
= H(t)r = c

r

rH
(2)

where H = Ṡ/S is the Hubble constant (also is a function of time) and rH = c/H(t)

is the Hubble distance at the time t.
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1.3. Geometrical gravity theory

The Einstein-Hilbert field equations of the general relativity have the form:

ℜik −
1

2
gik ℜ =

8 πG

c4
(T ik

(m) + T ik
(de)) , (3)

where ℜik is the Ricci tensor, T ik
(m) is the energy-momentum tensor (EMT) of the

matter, which includes all kinds of material substances, such as particles, fields,

radiation, and T ik
(de) is the EMT of dark energy, in particular, the cosmological

vacuum is described by T ik
(vac) = gikΛ, where Λ is Einstein’s cosmological constant.

Usually T ik
(m) and T ik

(de) are considered as independent quantities, though there are

models with interacting matter and dark energy5.

It is important to note that T ik
(m) does not contain the energy-momentum tensor

of the gravity field itself, because gravitation in general relativity is a property of

space and is not a material field. This is why there is no such concepts as gravity

force and energy of gravitational field in general relativity.

A mathematical consequence of the field equations (Eq. (3)) is that the covariant

derivative of the left side equals zero (due to Bianchi identity), so for the right side

we also have

(T ik
(m) + T ik

(de)) ; i = 0 . (4)

The continuity equation (Eq. (4)) also gives the equations of motion for the con-

sidered matter.b

1.4. Friedmann’s equations

In comoving coordinates the total EMT has the form T i
k = diag(ε,−p,−p,−p) and

for the case of unbounded homogeneous matter distribution given by metric Eq.

(1), the Einstein’s equations (Eq. (3)) are directly reduced to the Friedmann’s

equations (FLRW model). From the initial set of 16 equations we have only two

independent equations for the (0,0) and (1,1) components, to which we must add

the continuity equation (Eq. (4)) which has the form 3Ṡ/S = −ε̇/(ε+ p).

Using the definition of the Hubble constant H = Ṡ/S , the Friedmann’s equa-

tions get the form:

H2 −
8πG

3
̺ = −

kc2

S2
, or 1− Ω = −Ωk , (5)

and

S̈ = −
4πG

3

(

̺+
3p

c2

)

S , or q =
1

2
Ω

(

1 +
3p

̺c2

)

, (6)

b As it was emphasized by Landau & Lifshitz4 the Eq.(4) is not a conservation law of the
energy-momentum of the particles plus gravity system, because T ik

(m)
does not contain the energy-

momentum of the gravity field itself.
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where Ω = ̺/̺crit, ̺crit = 3H2/8πG, Ωk = kc2/S2H2 q = −S̈S/Ṡ2, and Ω, p, ̺ are

the total quantities, i.e. the sum of corresponding components for matter and dark

energy. Solving the Friedmann’s equations one finds the dependence on time the

scale factor S(t) or the metric distance r(t), which is the mathematical presentation

of the space expansion.

1.5. Fundamental conclusions of the SCM

There are many explained astrophysical phenomena in the frame of the SCM, such

as cosmological redshift of distant objects, cosmic microwave background radiation,

large scale structure formation, chemical composition of matter and other. The

main observational conclusions of the SCM are:

• Cosmological redshift (1+z) = λ0/(λ1) = S0/S1 , and the linear velocity-distance

relation Vexp = H × r is the consequence of the space expansion r(t) = S(t)× χ

of the homogeneous Universe.

• Cosmic microwave background radiation is the result of the photon gas cooling

in the expanding space T (z) = T0(1 + z).

• Small anisotropy ∆T/T (θ) of the CMBR is determined by the initial spectrum

of density fluctuations which are the source of the large scale structure of the

Universe.

• The physics of the expanding Universe is described by the LCDM model which

predicts the following matter budget at present epoch: 70% of unobservable in

lab dark energy, 25% unknown nonbaryonic cold dark matter and 5% ordinary

matter . Visible galaxies contribution is less than 0.5%.

2. Observational puzzles of the SCM

In spite of evident successes of the SCM there are also observational facts which

present severe problems for the SCM. We emphasize here several such problems

which were discussed recently in the literature.

(1) Absurd Universe. The visible matter of the Universe, the part which we can

actually observe, is a surprisingly small (about 0.5%) piece of the predicted

matter content and this looks like an ”Absurd Universe”6. What is more, about

95% of the cosmological matter density, which determine the dynamics of the

whole Universe has unknown physical nature. Turner7 emphasized that modern

SCM predicts with high precision the values for dark energy and nonbaryonic

cold dark matter, but ”we have to make sense to all this”.

(2) The cosmological constant problem. One of the most serious problem of the

LCDM model is that the observed value of the cosmological constant Λ is about

120 orders of magnitude smaller than the expectation from the physical vacuum

(as discussed by Weinberg8 and Clifton et al.9). In fact the critical density of

the Ω = 1 universe is ̺crit = 0.853× 10−29g/cm3, while the Planck vacuum has

̺vac ≈ 10+94g/cm3.
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(3) The cold dark matter crisis on galactic and subgalactic scales. There are num-

ber of problems with predicting behavior of baryonic and nonbaryonic matter

within galaxies. It was discussed by Tasitsiomi10 and Kroupa11 that there

are discrepancies between observed and predicted galaxy density profiles (the

cusp problem), small number of observed satellites galaxies (missing satellites

problem), and observed tight correlation between dark matter and baryons in

galaxies, which is not expected within LCDM galaxy formation theory.

(4) The LCDM crisis at super-large scales. The most recent observational facts

which contradict the LCDM picture of the large scale structure formation,

come from: the SDSS and 2dF galaxy redshift surveys (Sylos Labini12), prob-

lems with observations of baryon acoustic oscillations (Sylos Labini et al.13),

existence of structures with sizes ∼ 400 Mpc/h in the local Universe (Gott

et al.14, Tully et al.15)and ∼ 1000 Mpc/h radial structures in the very deep

galaxy surveys (Nabokov & Baryshev16), existence of qso structures with sizes

∼ 500 Mpc/h (Clowes et al.17, Einasto et al.18), alternative interpretation of

the shape of the CMBR fluctuations correlation function (Lopez-Corredoira &

Gabrielli19), lack of CMBR power at angular scales larger 60 degrees and cor-

relation of CMBR quadrupole and octopole with ecliptic plain ( Copi et al.20),

see also recent review by Perivolaropoulos21.

3. Conceptual paradoxes of the SCM

The existence of the mentioned above observational puzzles in the SCM interpre-

tations of the astrophysical data rises a question: Does the contemporary standard

cosmological model present the ultimate physical picture of the Universe?

Philosophical, methodological and sociological aspects of the development of the

science on the whole Universe was recently analyzed by Lopez-Corredoira22, who

emphasized the important role of alternative ideas in cosmology, though usually

they have small funding in modern scientific society. The mathematical and physical

basis for the SCM and alternatives was considered by Baryshev & Teerikorpi3.

As it is natural for progress in physics we should carefully analyze the funda-

mental assumptions laying in the basis of the physical theories. In the Sec.1 we

have formulated several fundamental assumptions in the basis of SCM which have

led us to the serious observational puzzles (Sec.2). As was emphasized by Turner7

for making new cosmology one has to answer a new set of questions and the future

world model will reveal deep connection between fundamental physics and cosmol-

ogy: ”There may even be some big surprises: time variation of the constants or a

new theory of gravity that eliminates the need for dark matter and dark energy” 7.

Intriguingly, besides the mentioned above observational puzzles there are several

deep conceptual problems in the foundation of the SCM. Their solution could open

the door to construction more firmly established future cosmology. Below we present

several such conceptual difficulties/paradoxes of the SCM, which already have been

discussed in the literature:
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• Gravitation field energy paradox: in the framework of the Einstein’s geo-

metrical gravity theory (General Relativity) there is no physical concept of the

energy-momentum density of the gravitational field (also there is no physical con-

cept of the energy quanta of the gravitational field), though field energy exists

for all other fundamental physical interactions.

• 1st Harrison’s paradox: physics of space expansion contains such puzzling

phenomena as continuous creation of vacuum, violation of energy conservation,

violation of limiting velocity by receding galaxies.

• 2nd Harrison’s paradox: the cosmological redshift in expanding space is not

the Doppler effect, but it is a new physical phenomenon which does not tested

in the lab, the global gravitational cosmological redshift should be taken into

account.

• Hubble-de Vaucouleurs’ paradox: in the expanding space the linear Hubble

law is the fundamental consequence of the homogeneity, however modern ob-

servations reveal existence of strongly inhomogeneous fractal large-scale galaxy

distribution at scales at least up to 100 Mpc, while the linear Hubble law starts

from 1 Mpc, i.e. just inside inhomogeneous structure.

3.1. Gravitation theory

Though Einstein’s general relativity solved the old gravitational paradox of the

Newtonian gravity theory, the geometrical gravity leads to the new form of the

paradox at a deep conceptual level - absence of the energy-momentum tensor of the

gravitational field.

According to Landau & Lifshitz4 (paragraph 101 ”The energy-momentum

pseudotensor”) the Einstein’s field equations (Eq.(3)) should contains ”the four-

momentum of matter plus gravitational field; the latter is not included in the ex-

pression for T ik”. This is why Landau & Lifshitz4 claimed that the continuity

equation (Eq. (4): (T ik) ; = 0 ) ” does not generally express any conservation law

whatever”.

The ”pseudo-tensor” character of the gravity field in GR has remarkable history

(see e.g. Baryshev23) and had been discussed from time to time for a century, caus-

ing surprises for each new generation of physicists. Rejection of the Minkowski space

inevitably leads to deep difficulties with the definition of the energy-momentum for

the gravitational field and its conservation.

However this conceptual problem can be solved within non-metric Feynman’s

Field Gravitation approach24 , which is the theory of the symmetric second rank

tensor field (gravitational potentials) in Minkowski space, and which unite gravity

with the other fundamental forces of nature (consistent development of the FG see

e.g. Sokolov & Baryshev25 and Baryshev23). As Feynman24 emphasized: ”geomet-

rical interpretation is not really necessary or essential for physics” (p.113).

The Feynman’s Field Gravitation (FG) theory contains the concept of gravi-

tational EMT and conservation of the total EMT. The geometrical gravity theory
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may be considered as an approximation of the relativistic quantum field gravity

(like geometrical optics for electrodynamics). There are achievable in near future

experiments and astrophysical observations which can distinguish between GR and

FG, like additional scalar gravitational radiation (Baryshev26).

3.2. Physics of space expansion

Mathematically space expansion is a continuous increasing with time of the distance

r(t) between galaxies. It is given by relation r(t) = S(t) · χ where S(t) is the scale

factor from Eq. 1. But what does space expansion mean physically?

Cosmological physics of the expanding space is essentially different from the

lab physics and even contains deep paradoxes which should be studied carefully27.

Physically expansion of the universe means the continues creation of space together

with physical vacuum. Real Universe is not homogeneous, it contains atoms, plan-

ets, stars, galaxies. In fact bounded physical objects like particles, atoms, stars and

galaxies do not expands. So inside these objects there is no space creation. This is

why the creation of space is a new cosmological phenomenon, which has not been

tested yet in physical laboratory.

The first puzzling feature of the space expansion physics is that the Friedmann’s

equations Eq. (6, 5) in terms of the metric distance r(t) = S(t) · χ get the exact

Newtonian form:

r̈ = −
GMg(r)

r2
, and

V 2
exp

2
−

GM

r
= const , (7)

where Mg(r) = − 4πG
3

(

̺+ 3p
c2

)

r3 is the gravitating mass of a ball with radius r(t).

So according to general relativity the dynamics of the whole universe is determined

by the exact Newtonian acceleration and Newtonian kinetic plus potential energy

conservation (here velocity of light c does not change the Newtonian character of

the equations).

The second puzzling fact of the space expanding universe is that in the case of

the equation of state p = γ̺c2 the mass (energy) of any local ball is changing with

time as:

Mg(r) = −
4πG

3
(1 + 3γ)̺r3 ∝ S−3γ(t) . (8)

For example for photon gas γ = 1/3 and the mass-energy of the initially hot radia-

tion is cooling proportional to the scale factor S(t).

In cosmology Eq.(8) gives us a possibility to calculate of how much the energy

increases or decreases inside any finite comoving volume but it does not tell us

where the energy comes from or where it goes. As Harrison emphasized: ”The

conclusion, whether we like it or not, is obvious: energy in the universe is not

conserved” (Harrison28, p.276).

Another puzzling consequence of the Friedmann’s equations Eq. (7) is that in

exact general relativistic expansion dynamics of the universe there is no relativistic
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effects due to the velocity of a receding galaxy. The expansion velocity is larger

than the velocity of light for distances larger than the Hubble distance: Vexp > c

for r > RH , where RH = c/H (see also Eq. (2)).

3.3. The nature of cosmological redshift

In the Sandage’s list of the ”23 astronomical problems”29 the number fifteen (the

first in the extragalactic section) sounds intriguingly:”Is the expansion real?”.

In fact the literature on the SCM contains acute discussion on the nature of

the cosmological redshift3, subject which constantly produces ”common big bang

misconceptions” or the ”expanding confusions”. A summary of such discussions was

done by Francis et al.30 who confronts Rees & Weinberg claim: how is it possible for

space, which is utterly empty, to expand? How can nothing expand? The answer is:

space does not expand. Cosmologists sometimes talk about expanding space, but they

should know better, with the state by Harrison28: expansion redshifts are produced

by the expansion of space between bodies that are stationary in space.

In mathematical language within FLRW space expanding model the cosmolog-

ical redshift is a new physical phenomenon where due to the expansion of space

the wave stretching of the traveling photons occurs via the Lemaitre’s equation

(1 + z) = λ0/λ1 = S0/S1, which is different from the familiar in lab the Dopplers

effect. One can also see this if compare relativistic Doppler and cosmological

FLRW velocity-redshift V(z) relations. The relativistic Doppler relation has the

form VDop(z) = c(2z + z2)/(2 + 2z + z2) and the velocity always less than c, while

expanding space velocity Vexp can be arbitrary large3.

It is important to note that on the verge of modern technology there are direct

observational tests of the physical nature of the cosmological redshift. First crucial

test of the reality of the space expansion was suggested by Sandage31, who noted

that the observed redshift of a distant object (e.g. quasar) in expanding space must

be changing with time according to relation dz/dt = (1+ z)H0 −H(z). In terms of

radial velocity, the predicted change dv/dt ∼ 1 cm s−1/yr. This may be within the

reach of the future 42m ELT telescope32.

Even within the Solar System there is a possibility to test the global expan-

sion of the universe. According to recent papers by Kopeikin33,34 the equations

of light propagation used currently by Space Navigation Centers for fitting range

and Doppler-tracking observations of celestial bodies contain some terms of the

cosmological origin that are proportional to the Hubble constant H0. Such project

as PHARAO may be an excellent candidate for measuring the effect of the global

cosmological expansion within Solar System, which has a well-predicted frequency

drift magnitude ∆ν/ν = 2H0∆t ≈ 4×10−15(H0/70kms−1Mpc−1)(∆t/103s), where

H0 is the Hubble constant ∆t is the time of observations. In the case of the non-

expanding Universe the frequency drift equals zero.
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3.4. Fractality of large-scale galaxy distribution

Modern observations of the 3-dimensional galaxy distribution, obtained from huge

redshift surveys (such as 2dF and SDSS), demonstrate that at least for interval

of scales 1 ÷ 100 Mpc/h there is a power law relation between the galaxy number

density n(R) and the radiuses of spheres R, so that n(R) ∝ R−γ (see reviews by

Sylos Labini12 and Baryshev & Teerikorpi3). Such power law behavior is known

as the de Vaucouleurs law 35. Note that the power law correlation function

is the characteristic feature of the discrete stochastic fractal structures in physics

(phase transitions, strange attractors, structure growth) and has clear mathematical

presentation (e.g. Gabrielli et al.36).

At the same time modern observations of the Hubble law in the local Universe

based on Cepheid distances to local galaxies, supernova distances, Tully-Fisher

distances and other distance indicators, demonstrate that the perfect linear Hubble

law is well established within the same distance interval of scales 1÷ 100 Mpc/h (e.

g. Sandage37, Baryshev & Teerikorpi3).

A puzzling conclusion is that the Hubble law, the strictly linear redshift-distance

relation, is observed just inside strongly inhomogeneous galaxy distribution, i.e.

deeply inside fractal structure at scales 1÷100 Mpc/h. This empirical fact presents

a profound challenge to the standard model where the homogeneity is the basic ex-

planation of the Hubble law, and ”the connection between homogeneity and Hubble’s

law was the first success of the expanding world model” (Peebles et al.38).

However, contrary to this expectation, modern data show a good linear Hubble

law even for nearby galaxies. It leads to a new conceptual puzzle that the linear

Hubble law is not a consequence of the homogeneity. A cosmological model which

can unite the Hubble law with fractality of matter distribution and the cosmic

microwave background radiation was suggested by Baryshev39.

4. Conclusions

The positive role of the physical paradoxes in the science of the Universe is well

known from the history of cosmology3. Even the known phenomena may have dif-

ferent interpretations, each corresponding to a specific choice of the basic framework

able to explain key observations. Theoretical physics is a developing subject and new

physics may offer a variety of new cosmological applications. Finally, observations

and theoretical understanding are always limited, hence even a quite credible world

model has its limitations, too (in current cosmology 99.5% of the needed mass has

unknown nature). These emphasize the importance of crucial observational tests as

the only safe way to decide between alternative cosmological ideas.
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