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Archimedes then describes some theorems that he has found and mentions
that he has included the proofs. He continues

Text 8: The Method of Archimedes. From T. L. Heath, ed. (1953). The Works of
Archimedes with the Method of Archimedes. New York: Dover Publications, pp. 12–21.
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This is followed by some theorems about centers of gravity and the
argument for the above mentioned theorem. This argument concludes with
the following remark:
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Chapter 1 

Techniques of the Calculus, 1630--1660 

Kirsti M011er Pedersen 

1.1. Introduction 

During the first six decades of the 17th century mathematics was in a 
state of rapid development. In this period ideas were born and de
veloped which were to be taken up later by Isaac Newton and G. W. 
Leibniz. Many me.thods were developed to solve calculus problems; 
common to most of them was their ad hoc character. It is possible to 
find examples from the time before Newton and Leibniz which, when 
translated into modern mathematical language, show that differentiation 
and integration are inverse procedures; however, these examples are 
all related to specific problems and not to general theories. The special 
merit of Newton and Leibniz was that they both worked out a general 
theory of the infinitesimal calculus. However, it cannot be said that 
either Newton or Leibniz gave to his calculus a higher degree of mathe
matical rigour than their predecessors had done. 

As the ideas which were the basis of the methods preceding the work 
of Newton and Leibniz came to bear fruit, the methods themselves fell 
into oblivion. In this chapter, therefore, great importance will be 
attached to the earlier ideas, and the methods will be illustrated by simple 
examples. The picture of what the mathematicians of the time achieved 
may thus appear somewhat distorted, but a rendering of the more 
complicated examples would be all too easily submerged in calculations. 
That it is possible to find simple problems is due to the fact that it was 
the practice of the mathematicians of the time to verify their methods by 
applying them to problems of which the solutions were known before
hand. Then the next step was to find new results by means of these 
methods. 

It is impossible to deal comprehensively with this topic in a single 
chapter. My approach will be to exemplify the calculus of the period 
by relatively few methods, which are described in some detail. This 
implies that the methods of many important mathematicians will have 

10 

Text 9: K. M. Pedersen (1980). “Techniques of the Calculus, 1630–1660”. In: From the
Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by I. Grattan-Guinness.

Princeton and Oxford: Princeton University Press. Chap. 1, pp. 10–48.
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1.1. Introduction 11 

to be left unmentioned. A more general survey giving a more profound 
impression of the development of the calculus from 1630 to 1660 may 
be found in the rich literature on this subject. 1 I have made my choice 
on the assumption that to give even a tolerably satisfactory general survey 
in a single chapter would mean listing names and outlining techniques 
in a way which could not possibly give a proper impression of the methods 
and style of the time to a reader who is not acquainted with the period. 

One criterion for the selection of methods has been that they should 
render a picture of the way in which the mathematicians of the time did 
actually solve the problems with which they were most heavily engaged; 
another has been that they should inform the reader of the ideas which 
were to become sources of inspiration for later methods. Where dif
ferent methods are based on similar ideas, I have tried to select the 
writer who first formulated the idea. 

Of the period 1630-1660, no less than of all other periods, it holds 
true that if you really want to set its mathematics into relief then you 
must know the mathematics which preceded it. The mathematics of 
the period in question were greatly influenced by classical Greek 
mathematics 2 and also by that of the previous period. The reason for 
the importance of Greek mathematics was that during the 16th century 
it had become usual for the mathematicians to acquire a knowledge of 
this discipline, and it formed a basic element in the mathematical equip
ment of most of them. Greek mathematics was especially admired for 
its great stringency. But its methods were not heuristic; they were 
not well-fitted to suggest ideas as to how to attack a new problem, a 
fact which will be illustrated later in connection with quadratures and 
cubatures. 

It was natural, therefore, to search for other methods which, if they 
could not live up to the Greek requirement of exactness, were at least 
able to suggest ideas as to the solution of problems. The seeds of such 
methods are to be found in the previous period, the end of the 16th 
and the beginning of the 17th centuries, which was a fertile time for the 
exact sciences as a whole. Astronomy made great progress through the 
work of J ohannes Kepler; Simon Stevin contributed much to statics 
with his treatise De Beghinselen der Weeghconst (' The elements of the 
art of weighing': 1586a). In mechanics Galileo Galilei's deduction of 
the laws of freely falling bodies and of the parabolic paths of projectiles 
meant a break with Aristotelian physics and the beginning of a new 
epoch, where mathematics was to be extensively used in physics. 

1 See, for example, Baron 1969a, Boyer 1939a and Whiteside 1961a, and their 
bibliographies. 

2 There are excellent bibliographies of Greek mathematics in Boyer 1968a and Kline 
1972a. 

Text 9: K. M. Pedersen (1980). “Techniques of the Calculus, 1630–1660”. In: From the
Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by I. Grattan-Guinness.

Princeton and Oxford: Princeton University Press. Chap. 1, pp. 10–48.
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12 1. Techniques of the calculus, 1630-1660 

Kepler made use of infinitesimal methods in his works. The 
interest he took in estimating the volumes of wine casks resulted in the 
book Nova stereometria doliorum vinariorum (' New measurement of 
large wine casks': 161Sa). There he considered solids of revolution 
as composed in various ways of infinitely many constituent solids. 
For example, he regarded a sphere as made up of an infinite number of 
cones with vertices at the centre and bases on the surface of the sphere. 
This led to the result that the sphere is equal in volume to the cone which 
has the radius of the sphere as altitude and as base a circle equal to the 
surface of the sphere, that is, a circle with the diameter of the sphere as 
radius (Kepler 161 Sa, ,Prima Pars, Theorem 11; Works l , vol. 4, 563, or 
Works2 , vol. 9, 23 f.). 

Galileo planned to write a book on indivisibles, but this book never 
appeared; however, his ideas had a great influence on his pupil 
Cavalieri, with whose work we shall deal later. 

1.2. Mathematicians and their society 

A great many mathematicians of the 17th century were not mathe
maticians by profession. This tendency was especially noticeable in 
France; there only GiBes Personne de Roberval occupied a chair of 
mathematics, while great mathematicians like Pierre de Fermat, Rent~ 
Descartes and Blaise Pascal worked without any official connection 
with their discipline. Like the mathematician who inspired him, 
Franc;ois Viete, Fermat was a lawyer, and worked as such in Toulouse 
for most of his career. Descartes and Pascal were men of private means 
and, apart from mathematics, were also occupied with physics and 
philosophy. Descartes spent a large part of his time outside France, 
living for long periods in Holland and elsewhere. 

This stay of Descartes in Holland served to inspire several Dutch 
mathematicians, among whom was Frans van Schooten. He was a 
member of the School of Engineering at Leyden, while his more im
portant pupils, whose treatises he published along with his own, mostly 
worked professionally outside mathematics. However, the most 
illustrious of his pupils, Christiaan Huygens, devoted his whole life to 
mathematics and physics. In 1666 the Academie des Sciences was 
founded in Paris, and Huygens was offered a membership which he 
accepted. As a member of the Academie he received an ample stipend. 
In Italy, the most outstanding mathematicians and physicists, such as 
Galileo Galilei, Bonaventura Cavalieri and Evangelista Torricelli, held 
offices within their own fields, partly at universities and partly as court 
mathematicians. 

Text 9: K. M. Pedersen (1980). “Techniques of the Calculus, 1630–1660”. In: From the
Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by I. Grattan-Guinness.

Princeton and Oxford: Princeton University Press. Chap. 1, pp. 10–48.
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1.3. Geometrical curves and associated problems 13 

The development of that part of mathematics with which this chapter 
is concerned started later in England than on the Continent. Hence 
the only English mathematician with whom we shall deal in this chapter 
is John Wallis, who was Savilian Professor of Geometry at Oxford from 
1649. It should be mentioned that in Thomas Harriot England had a 
brilliant scientist whose work both in algebra and the calculus preceded 
some of the methods discussed in this chapter. But only his Artis 
analyticae praxis (' Practice of the analytical art': 1631a), which con~ 
tains his less important work, was published (posthumously) at this 
time; thus his unpublished results will not be considered. 

The period provides several good examples of the independent and 
almost simultaneous discovery of methods with striking resemblance, 
which often gave rise to disputes about priority and charges of plagiarism. 
Today, we are able to establish that as a rule these charges 'were un
founded; but at the time this was not possible, since it was not common 
to publish one's treatises. For this there were two principal reasons. 
First, after 1640 publishers were reluctant to print mathematical litera~ 
ture, which was not very profitable; and second, mathematicians were 
reticent about publishing their new methods, wanting to release the 
results only. Many treatises had to wait a very long time for their 
publication: several were left unprinted until the end of the 19th and 
the beginning of the 20th centuries, and some remain unpublished to 
this day. 

Not until the last third of the 17th century did scientific periodicals 
come into existence; before that time mathematicians communicated 
by letter. Here the Frenchman Marin Mersenne played an important 
part, for he kept in touch with many European scientists by corres
pondence and meetings which he held at his convent in Paris. To the 
mathematicians he sent the problems which he could not solve himself, 
and took care that the results and manuscripts he received were circu
lated among those interested in them. 

1.3. Geometrical curves and associated problems 

In the 17th century the calculus was closely bound up with the in
vestigation of curves, since there was as yet no explicit concept of the 
variable or of functional relationships between variables. The first 
curves to be dealt with were those inherited from the Greeks: the conic 
sections, Hippias's quadratrix, the Archimedean spiral, the conchoid 
of Nlcomedes, and the cissoid of Diocles. (For the definition and the 
history of these and the following curves see, for example, Loria 1 902a.) 

As the century went on, these curves were augmented by, among 

Text 9: K. M. Pedersen (1980). “Techniques of the Calculus, 1630–1660”. In: From the
Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by I. Grattan-Guinness.

Princeton and Oxford: Princeton University Press. Chap. 1, pp. 10–48.
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14 1. Techniques of the calculus, 1630-1660 

others, the cycloid, the higher parabolas and hyperbolas (ym = kxn and 
kymxn = 1 respectively, m and n being natural numbers and k a constant), 
the spiral of Galileo, and the conchoid to a circle, also termed 'the 
limayon of [Etienne] Pascal', which is in turn a variant of the curves 
called ' the ovals of Descartes '. 

Next to the conic sections the cycloid, the curve traced by a point on 
the circumference of a circle which rolls along a horizontal line, was the 
curve most often investigated. Its early history is connected with a 
problem called' Aristotle's wheel' (see Drabkin 1950a). When solving 
this problem Roberval generalised the motion which generates the curve, 
and considered the curtate and the prolate cycloid (which are traced by 
points on a radius and respectively outside and inside the circle) as well 
as the ordinary cycloid. In 1658 Blaise Pascal arranged a competition 
designed to find the area of a section of the cycloid, its centre of gravity, 
the volumes of solids obtained by revolving the section about certain axes, 
and the centres of gravity of these volumes (Pascal 1658a and 1658b). 

In La geometrie (1637a) Descartes introduced his oval as a curve 
involved in the solution of various optical problems. One of these 
problems was to determine the form of a lens which makes all the rays 
that come from a single point or that are parallel converge at another 
unique point, after having passed through the lens (Descartes 1637a, 
362; 1925a, 135). 

Similarly, Galileo's spiral was the attempted solution of a physical 
problem concerning the path of a body which moves uniformly around a 
centre and at the same time descends towards the centre with constant 
acceleration. The recognition of the shape of another of Galileo's 
curves, namely, the catenary, caused the mathematicians many diffi
culties. This curve has the form of a chain suspended from two points 
(see section 2.8). 

The three last-mentioned curves are examples of an interplay be
tween physics and mathematics. Before discussing this topic further 
we shall answer the question: what kind of problems concerning curves 
did the mathematicians solve in the period before 1660 ? 

Pascal's competition of 1658 relates to certain typical problems 
which were solved. Other problems consisted in finding tangents, 
surface areas and extreme values; furthermore, some inverse tangent 
problems (that is, to find a curve which has tangents with a specific 
property) were considered. Finally, about the middle of the century, 
the rectification of arcs became a question of interest. Although there 
are earlier examples of rectifications, Christopher Wren's rectification 
of the cycloidal arc in the late 1650s was the first widely known one. 
He sent the result to Pascal outside the competition (see Wren 1659a, 
or Wallis Works, yoJ. 1, 532-541). 

Text 9: K. M. Pedersen (1980). “Techniques of the Calculus, 1630–1660”. In: From the
Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by I. Grattan-Guinness.

Princeton and Oxford: Princeton University Press. Chap. 1, pp. 10–48.
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1.4. Algebra and geometry 15 

Even though the solutions to these problems could be applied both 
to physics and to astronomy, their inspiration owed more to Greek 
mathematics than to physics and astronomy. The Greeks had worked 
on all the types of problem mentioned above; one may therefore 
consider work on them as a continuation of the tradition of the Greek 
mathematicians. This does not mean that there was no correlation 
between mathematics and physics. This continued to happen, if for 
no other reason than that in this period important physicists were often 
also important mathematicians. It is nevertheless difficult to point 
unambiguously to a concrete physical problem which inspired the 
mathematicians to take up the above-mentioned problems. In the 
late 1650s, however, a new mathematical problem cropped up which 
sprang from physics, namely the study of evolutes, which was started 
by Huygens in connection with his work on the pendulum clock. 

1.4. Algebra and geometry 

When the Greeks came to realise the exi~tence of incommensurable 
magnitudes, which meant that the rational numbers are not sufficient 
for purposes of measurement, they made geom~try the foundation of 
that part of mathematics which was not number theory, the straight line 
being a substitute for a continuous field of numbers. This attitude 
resulted in the geometric algebra on which Euclid, Archimedes and 
Apollonius based their calculations. 

In the course of time the theory of equations became separated from 
geometry, and a good deal of symbolism was gradually developed for this 
discipline. Viete contributed much to the introduction of symbols 
with his work In artem analyticen isagoge (' Introduction to the analytic 
art': 1591a), in which he emphasised the advantage of using symbols 
to indicate not only unknown but also known quantities (Viete 1591a, 
ch. V, 5; Works, 8, or 1973a, 52). In this way he could deal with 
equations in general. 

Viete also connected algebra and geometry by determining the 
equations which correspond to various geometrical constructions. He 
only employed this technique when the geometrical problems were 
determinate and led to determinate equations in one unknown quantity. 
The next step was to use an indeterminate equation in two unknown 
quantities when solving problems concerning geometriG loci. Fermat 
and Descartes took this step almost simultaneously. 

Fermat's treatise Ad locos pIanos et solidos isagoge (' Introduction 
to plane and solid loci': 1637 a) contains a pedagogic introduction 
to analytic geometry and some of its applications. However, the 
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16 1. Techniques of the calculus, 1630-1660 

treatise did not have any great influence, for the simple reason that 
Descartes's La geometrie Was published before it was generally known. 
La geometrie treats many subjects with supreme skill, but it starts with 
an introduction to analytic geometry that was not easy for the uninitiated 
to follow. Notwithstanding this fact, the work had a tremendous in
fluence, especially after van Schooten had published it in Latin transla
tion and with commentaries in 1659. Its success was mainly due to 
Descartes's notation, which bore the hallmark of genius. It will not 
surprise the modern reader, as it is the beginning of the notation still 
in use; but for the time it was revolutionary. There is no doubt 
that the notation and the thoughts embodied in La geometrie had a 
positive-if only indirect--influence on the development of the calculus. 

1.5. Descartes's method of determining the normal, and Hudde's rule 

In La geometrie Descartes described his technique of determining the 
normal to an algebraic curve at any point. He attached great importance 
to the method, as can be seen from the following introductory remarks 
(1637a, 341; 1925a, 95) : 

This is my reason for believing that I shall have given here a 
sufficient introduction to the study of curves when I have given a 
general method of drawing a straight line making right angles with 
a curve at an arbitrarily chosen point upon it. And I dare say that 
this is not only the most useful and most general problem in 
geometry that I know, but even that I ever desired to know. 

Let the algebraic curve ACE be given and let it be required to draw 
the normal to the curve at C (see figure 1.5.1). Descartes supposed the 
line CP to be the solution of the problem. Let CM x, AM = y, 

Figure 1.5.1. 
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1.5. Descartes on determining the normal, and Hudde's rule 17 

AP=v and CP=s. Although he always used a particular example, 
for the sake of convenience we &hall suppose the curve to have the 
following equation: 

x=f(y). (1.5.1) 

We shall also modernise his notation to some extent. 
Besides the curve, Descartes considered the circle Cl' with centre at P 

and passing through C; that is, the circle with the equation 

(1.5.2) 

This circle will touch the curve CE at C without cutting it, whereas the 
circle cQ 

(1.5.3) 

with centre at a point Q different from P and passing through C will 
cut the curve not only at C but also in another point. Let this point 
be E. This means that the equation obtained x from 
(1.5.1) and (1.5.3), 

(1.5.4) 

has two distinct roots; 1 but' the more C and E approach each other, 
the smaller the difference of the two roots, and at last, when the points 
coincide, the roots are exactly equal, that is to say when the circle through 
C touches the curve at the point C without cutting it ' (Descartes 1637a, 
346-347; 1925a, 103-104). 

Thus the analysis has brought Descartes to the conclusion that CP 
will be a normal to the curve at C when P (that is, v) is so determined 
that the equation 

(f(y»2 + (v - y)2 - S2 = 0 (1.5.5) 

has two roots equal to Yo (or the corresponding equation with y elimi
nated has one pair of equal roots). With modern conceptions it is not 
difficult to realise that this requirement gives the correct expression, 

(1.5.6 ) 

for the sub-normal MP. 
Descartes illustrated his method by finding, among other things, 

the normal to the ellipse (1637a, 347; 1925a,104). Putting its equation 
in the form 

r 
x2=ry-- y2, 

q 

he found the equation corresponding to (1.5.5) to be 

(1.5.7) 

1 Descartes only considered curves for which (j(y»2 is a polynomial in y or y2 a 
polynomial in x. 
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18 1. Techniques of the calculus, .1630-.1660 

(
rq - 2vq) qv2 

-- qs2 
y2+ y+ =0. 

q-r q-r 
(1.5.8) 

This equation has two roots equal to Yo when 

rq-2vq.. 2 
q-r -:Yo and (1.5.9) 

because the point C is given, the value Yo is known, and from (1.5.9) 
the sub-normal v --Yo can be determined: 

r r 
v-Yo=:z-qYo. (1.5.10) 

Although an indication, not to say a full account, of what happens 
when the two points C and E coincide would involve limit-considera
tions,l Descartes, by taking the double contact of the circle with the 
curve as a characteristic of the normal, has avoided the use of in
finitesimals and obtained an algebraic method. His correspondence 
indicates that in solving some of his problems he did employ methods 
which involved the use of infinitesimals. However, he did not consider 
them precise enough to be published. 

In principle, Descartes's method is applicable to any algebraic curve. 
But when the equation of the curve is not a simple algebraic equation, 
the method becomes tedious because of the laborious calculations which 
it is necessary to carry out in order to determine v by comparing the 
coefficients. 

The Dutch mathematician (later Burgomaster of Amsterdam) 
Johann Hudde invented a rule for determining double roots. He 
described his method in a letter to Frans van Schooten, who published 
it in his 1659 Latin edition of Descartes's La geometrie (Hudde 1659a, 
507) : 

If in an equation two roots are equal, and if the equation is 
multiplied by any arithmetical progression in such a way that the 
first term of the equation is multiplied by the first term of the 
progression and so on, I say that the product will be an equation 
in which the given root is found again. 

1 If we let the coordinates of E be (Yo+Ll.Y,!(Yo+Ll.y», then the requirement that 
C and E be on the same circle with centre at Q on the axis gives us the condition: 

AQ= + Ll.y + (!(yo+Ll.y)-!(yo») (!(yo+Ll.Y)+f(Yo») 
Yo 2 Ll.y 2' 

(To obtain this result, let F be the mid-point of CE and note that QF ..L CE.) P and v 
are then determined by the coincidence of the points C and E, that is : 

v = AP = lim A Q = !'(yo)f(yo) + Yo. 
LJ.y-..O 
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1.5. Descartes on determining the normal, and Hudde's rule 19 

Fot this rule Hudde gave a proof which in modern notation may be 
rendered as follows. Let x = Xo be a double root in the polynomial 
p( x), that is, 

n 

p(x)=(X-XO)2 L Cl(iXi 
;=0 

n 

L Cl(i(Xi+·2 - 2xOxi .. j-l.+ X0
2Xi ), 

;=0 
(1.5.11 ) 

and let a, a+d, ... , a+(n+2)d be an arbitrary arithmetical ",",,,,.,.,,,Q 
We then multiply the constant term Cl(OX02 in p(x) by a, the term of the 
first degree by a + d, and so on. Let the result of this procedure be 
denoted by (p(x), a, d); that is, 

n 

(p(x), a, d)= L Cl(i{(a+(i-I-2)d)xi+2-2(a+(i+ l)d)xoxi +l 
;=0 

(Note that 

(p(x), a, d) = ap(x) + dxp'(x), (1.5.13) 

where p' (x) is the derivative of p(x) and ' dx ' means d x x.) If we put 
Xo x, the expression in curled brackets in (1.5.12) vanishes. We 
therefore have (p(xo), a, d) = O. 

This necessary condition for a polynomial to have one pair of equal 
roots made Descartes's method easier to apply, because one might so 
arrange the arithmetical progression that a difficult term might be 
multiplied by O. We see that in his studies in autumn 1664 Newton 
found the sub-normal to a curve by using a combination of Descartes's 
method and Hudde's rule (Newton Papers, vol. 1,217 H.). 

Hudde applied his rule to the determination of extreme values, 
acting on the assumption that if C(. is a value which makes p(x) extreme, 
then the equation p( x) = p( C(.) has two equal roots (see Haas 1956a, 
250-255). He also extended his procedure to a rule for determining 
sub-tangents (1659b). He did not prove this rule, but it is interesting 
because it is one of the first general rules. Let the equation of the 
curve be p(x, y) = 0, where p is a polynomial in x and y; Hudde's rule 
then states that the sub-tangent t to a point (x, y) is given by 

-x(p(x,y), a, d)y 
t= . 

(p(x, y), a, d)x 
(1.5.14) 

The subscripts mean that in the numerator p(x, y) is to be considered 
as a polynomial in y and in the denominator as a polynomial in x. 
From (1.5.13) we have 
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20 1. Techniques of the calculus, 1630-1660 

t= -x(ap(x, y) + dypy' (x, y» 
ap(x, y) + dxpx'(x, y) 

(1.5.15 ) 

(where the prime indicates differentiation with respect to the subscript 
variable), or, since p(x, y) =0, 

t= -ypy'(x, y). 
Px'(x, y) 

(1.5.16) 

Hudde's method was not forgotten after the introduction of the 
differential calculus; for example, l'Hopital commented on it in his 
1696a, ch. 10, para. 192 (see also section 2.5 below). 

1.6. Roberval's method of tangents 

In the late 1630s Gilles Personne de Roberval and Evangelista Torricelli 
independently found a method of tangents which used arguments from 
kinematics. In 1644, in his Opera geometrica, Torricelli published an 
application of his method to the parabola (Torricelli 1644a, 119-121 ; 
Works, vol. 2, 122-124). In the same year Mersenne, in his Cogitata 
physico mathematica (' Physico-mathematical thoughts '), mentioned 
Roberval's method and applied it also to the parabola (Mersenne 1644a, 
115-116; see Jacoli 1875a). One of Roberval's pupils, Franyois du 
Verdus, wrote a treatise on Roberval's method. It was eventually 
published in 1693 (Roberval Observations) and became quite well
known, so the kinematic method came to bear Roberval's name. 

The method rests on two basic ideas. The first is to consider a 
curve as the path of a moving point which is simultaneously impressed 
by two motions. The second is to consider the tangent at a given point 
as the direction of motion at that very point. If the two generating 
motions are independent, then the direction of the resultant motion is 
found by the parallelogram law for compounding motions. However, 
Roberval also applied his method to curves like the quadratrix and the 
cissoid, where the generating motions which he considered were de
pendent. He ingeniously compensated for the dependence when com
pounding the motions, as we shall see. 

Roberval succeeded in determining the correct tangents to all the 
curves which were generally considered at his time. For the conic 
sections, however, the tangents were not determined correctly, because 
he took the generating motions to be the motions away from the foci or 
from the focus and the directrix, and wrongly used the parallelogram 
rule in compounding these motions (see Pedersen 1968a, 165 ff.). 
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1.6. Roberval's method of tangents 

H 

Figure 1.6.1. 

21 

To illustrate the method, we shall first see how Roberval determined 
the tangents to the cycloids (Roberval Works2a, 58-63). Let ABC be 
a cycloid generated by the circle AD; that is, ABC is the path of the 
point A when the circle makes one turn on the line AC (compare figure 
1.6.1, where the ordinary cycloid is drawn). The motion of A is then 
compounded of a uniform motion with direction AC or and a uni
form rotation about the centre of the generating circle, the direction of 
this at a point E being the tangent to the generating circle at E or the 
line FH. The ratio between the speeds of these motions is equal to 
the ratio between AC and the perimeter ADA, so if the point H is 
determined by 

EF: FH =AC: perimeter ADA, (1.6.1) 

then EH will be the tangent to the cycloid at E. For the ordinary 
cycloid, the ratio on the right hand side is equal to unity, and Roberval 
proved geometrically that EH is parallel to FB. 

Thus the method is easily applied to the cycloid; but to see how 
general it is, let us also consider Roberval's determination of the tangent 
to the quadratrix. In figure 1.6.2 we let the two sides AD and CD 
of a square ABCD move simultaneously, AD being rotated uniformly 
about A and CD being paralleledly displaced in such a way that AD 
and CD coincide with AB at the same time. The point of intersection 
between the two lines will then describe a quadratrix DFH. Let F~ 
the point of intersection between IN and ADl~be one of the points of 
the quadratrix and let us see how he determines the tangent at F. 
(Actually he considers a point on DFH's prolongation, but the principle 
is the same.) 

Robcrval starts by letting the line FK represent the velocity of the 
line IN. From the definition of the quadratrix follows that F describes 
the line FK in the same time as D1 describes the arc DiB, whence arc 
DIB represents the speed of D1's circular motion. As 
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R 

s 

Figure 1.6.2. 

(the speed of the circular motion of F) : (the speed of the 
circular motion of DI ) = AF: ADI arc FG : arc D1B, (1.6.2) 

the arc FG represents the speed of F's circular motion; and further, as 
the direction of this latter motion is perpendicular to AF, the circular 
motion of F will be represented by the line-segment F R on the per
pendicular with length equal to arc FG. To obtain F's direction of move
ment he then draws the line RS through R parallel to AF and seeks the 
point of intersection, M, between RS and AB (which is the line through 
K parallel to IF) and connects F and M. FM will then be the tangent. 

Roberval used this general approach in other cases too. His argu
ment for it is not quite clear, but it has a great deal in common with the 
following. F's motion s;an be considered in two ways: 

(1) F's motion on the quadratrix is compounded of the motion F 
has by taking part in AF's motion (with the instantaneous velocity FR) 
and the motion F has on AF because it has to be the point of inter
section; the direction of the last motion is AF or RS. By compounding 
these two motions we see that the line of direction of the movement of F 
starts at F and ends on the line RS. 

(2) Similarly, it is realised, by compounding the motion F has when 
it takes part in the motion of IF with its motion on IF, that its direction 
of motion is a line starting at F and ending on AB. 
As both the conclusion of {I) and (2) must be fulfilled, the above con
struction follows. 

By taking the instantaneous direction of motion as known, Roberval 
and Torricelli had avoided the use of infinitesimals in their method. 
Their method had the further advantage of being applicable to curves 
which are not referred to a Cartesian coordinate system. The method, 
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1.7. Fermat's method of maxima and minima 23 

however, was not general as long as the velocities could not be generally 
determined. 

It is interesting to note that Newton's method of tangents from 1666 
is inspired by the same ideas as Roberval's. For algebraic curves 
Newton only had to use the method once to obtain the sub-tangent 
expressed by a formula; but for transcendental curves like the quadra
trix he found the tangent in almost the same manner as had Roberval 
(Newton Papers, vol. 1,416-418). 

1.7. Fermat's method of maxima and minima 

About 1636 there was circulated among the French mathematicians a 
memoir of Fermat entitled Methodus ad disquirendam maximam et 
minimam (' Method of investigating maxima and minima': Methodus). 
It was remarkable, for it gave the first known general method of deter
mining extreme values. It contained another striking feature, namely, 
the idea of giving an increment to a magnitude, which we might interpret 
as the independent variable. 

The memoir opens with the sentence: 'The entire theory of de
termining maxima and minima is based on two positions expressed in 
symbols and this single rule'. The rule is the following: 

I. Let A be a term related to the problem; 
11. The maximum or minimum quantity is expressed III terms 

containing powers of A ; 
II I. A is replaced by A + E, and the maximum or minimum is then 

expressed in terms involving powers of A and E ; 
IV. The two expressions of the maximum or minimum are· made 

, adequal " which means something like 'as nearly equal as 
possible' ; 1 

V. Common terms are removed; 
VI. All terms are divided by a power of E, so that at least one term 

does not contain E; 
VII. The terms which still contain E are ignored; 

VIII. The rest are made equal. 

The solution of the last equation will give the value of A which 
makes the expression take an extreme value. Fermat illustrated his 
method by finding the point E on the line-segment AC which makes 
the rectangle AE. EC a maximum. Let AC b and let us replace 
Fermat's A by x (so that AE=x), and his E bye; we then have to 

1 Fermat used the word' adaequo '. Mahoney has translated this as ' set adequal ' 
(1973a, 162). The idea of ad equality derives from Diophantus (ibid., 163-165). 
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24 1. Techniques of the calculus, 1630-1660 

maximize the expression x( b - x). In accordance with the method, we 
have 

(x+e)(b-(x+e)) ~x(b-x), (1.7.1) 

where ~ signifies the adequality. Removing common terms, we have 

and dividing bye, 
b ~2x+e. 

Finally we ignore the term e and obtain b = 2x. 

(1.7.2) 

(1.7.3) 

It is tempting to reproduce Fermat's method by letting A x, 
E = !'ix, and the quantity = f( x); the rule then tells us 

IV, V 

VI 

VII, VIII 

f( x + !'ix) - f( x ) ~ 0, 

f( x + !'ix) - f( x) '"" 0 
!'ix ~ , 

(
f(X+!'iX) f(X)) =0. 

!'ix L>x = 0 

(1.7.4) 

(1.7.5) 

(1.7.6) 

For differentiable functions this might be interpreted in modern terms 
as if the x which makes f(x) a local extreme value is determined by the 
equation 

f(x)= lim {f(X+!'iX)--f(X~} =0. 
L>x--+O !'ix 

(1.7.7) 

However, this would be to read too much into the method. Primarily, 
Fermat did not think of a quantity as a function. Secondly, he did not 
say anything about E being an infinitesimal, or even a small magnitude, 
and the method does not involve any concept of limits; it is purely 
algebraic. Thirdly, the statement in VI makes no sense in this in
terpretation, as we always have to divide by E to the first degree. 
Nevertheless, his examples show us that on occasion he divided by 
higher powers of E than one. The reason for this is that, if the quantity 
contained a square root, he squared the adequality before applying the 
last steps of the rule. Note that he did not emphasise that his method 
gave only a necessary condition. 

Few results in the history of science have been so closely examined 
as Fermat's method of maxima and minima. He wrote about a dozen 
short memoirs where he explained and applied his method. Historians 
have been puzzled by his very short descriptions, and disagree about the 
dating of the memoirs and about the order of his ideas. To me it seems 
probable that he developed his ideas in the way that he intimated in his 
manuscript 'Syncriseos et anastrophes' (Syncriseos; see Mahoney 
1973a, 145-165). 
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1.7. Fermat's method of maxima and minima 25 

Fermat says here that he got the idea of a process for determining 
extreme values by studying Viete's theory of equations and combining it 
with the expression' fLovrxX6, , used by Pappus to characterise a minimal 
ratio (see Pappus Collections, book VII, theorem 61). Fermat takes 
, fLovrxxo, , to mean' singular' in the sense of ' unique' (see his Works, 
vol. 1, 142, 147), and gives an illustrative examplc of what he meant. 
The line-segment of the length B has to be divided by a point so that 
the product of the segments is maximum. The required point is the 
midpoint which makes the maximum equal to B2/4. If Z < then 
the equation 

X(B--X)=' Z (1. 7.8) 

will have two roots. Let them be A and E. Following Viete, Fermat 
obtains 

A(B--A)=E(B E) (1.7.9) 
or 

(1.7.10) 

By dividing by A -- E, it is seen that B = A + E. The closer that Z 
approaches B2/4, the smaller will be the difference between A and E; 
at last, when Z = B2/4, A will be equal to E, and B = 2A, which is the 
unique solution leading to the maximum product. In other words, to 
find the maximum you have to equate the two roots. 

As it can be complicated to divide by the binomial A - E, Fermat 
chose to let the two roots be A and A + E; then he divided by E, 
and finally equated the two roots by putting E = O. After these con
siderations he repeated his procedure from Methodus sketched in I-VIII 
at the beginning of this section. In this procedure he did not put E = 0, 
but ignored the terms still containing E. However, the process is the 
same, and it became common practice to put E, or a corresponding 
magnitude, equal to 0 when his method was applied. 

Until it was realised that the important process is 

lim {f(X + t.x) - f(X)}, 
L'.x--+O t.x 

(1.7.11) 

the procedure that involved dividing by E and putting E = 0 was a 
thorn in the mathematicians' side. They were severely criticised for it, 
and they admitted that it was unsatisfactory. 

Huygens who knew, applied and simplified Fermat's method, tried 
in vain to justify it logically (manuscript from 1652 printed in Huygens 
Works, vol. 12, 61). Instead he found another method, and one of 
which he could give a proof (ibid., 62 ff.). This method combined 
Fermat's idea of an extreme value as unique with Descartes's idea of a 
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double-root which he used in his method of normals. Briefly and in 
modern terms: Let p(x) be a polynomial and let p(xo) be a maximum; 
when a <p(xo), the equation p(x)=a has two roots which will be equal 
when a = P(xo). By a comparison of coefficients, Xo may then be 
determined from the relation 

(1.7.12) 

where Pl(X) is again a polynomial. As the applicability of this method 
is very limited, and as it is intricate to use, Huygens admitted that 
Fermat's method was easier to operate, and he himself accepted it. 

Among others, Pierre Brulart requested Fermat to give a proof of 
his method. In his answer 1643a F ermat took another line, considering 
the coefficients of the powers of E in the development of f(A ± E). 
Although he could not prove it rigorously, he made it seem plausible 
that a maximum or minimum can be determined from the equation 
obtained by putting the coefficient of E equal to O. Further, he showed 
that he understood that the coefficient of E2 must be smaller than 0 for a 
maximum and greater for a minimum. 

To Fermat it was more important to see that a method worked in 
practice than to give an exact proof of it. The method of maxima and 
minima had proved its value, for it gave the correct results when applied 
to a series of problems. Among these was the determination of the 
points of inflection of a curve in the manuscript' Doctrinam tangentium ' 
(Fermat Works, vol. 1, 166-167). 

Fermat, however, did not stop at that; he extended the use of the 
procedure II I-VI II from Methodus to other fields. This enabled 
him to determine tangents to curves (as will be seen in the next section), 
centres of gravity (1638a), and the sine law of refraction (1662a). 

1.8. Fermat's method of tangents 

In Methodus, Fermat made a determination of the tangent to the para
bola, and presented this as an application of his method of maxima and 
mmIma. Before discussing the method we shall consider the example 
(Fermat Works, vol. 1, 134-136). Let the parabola DB with axis DC 
be given as in figure 1. 8.1. Fermat wants to find the tangent at B ; 
suppose it to be BE, and let the sub-tangent be EC. He takes an 
arbitrary point 0 on BE and draws 10 parallel to the ordinate BC. 
Let P be a point of intersection of 10 with the parabola. 

From the inequality 10> lP, and from the property of the parabola 

DC: DI=CB2: IP2, (1.8.1) 
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1.8. Fermat's method of tangents 

Figure 1.8.1. 

it follows that 
DC: D1> CB2: 102 • 

Since the triangles E10 and ECB are similar, we have 

CB2 : 102 = EC2 : E12. 
Thus 

DC: D1> EC2: E12. 

27 

(1.8.2) 

(1.8.3) 

(1.8.4) 

Let DC = x (x is known since the point B is given), EC = a (the unknown 
quantity) and 1C=e. Then (1.8.4) becomes 

x: (x-e»a2 : (a-e)2, 
or 

Fermat replaces this inequality by the adequality 

(1.8.5) 

(1.8.6) 

(1.8.7) 

By using the procedure of the method of maxima and minima he obtains 
a = 2x, and thereby determines the tangent. 

In a letter to Mersenne of January 1638 Descartes objected to this 
determination, maintaining that it did not solve the problem of an 
extreme value (see Fermat Works, vol. 2, 126-132, or Descartes Works, 
vol. 1, 486-493). He also accused Fermat of not having used the 
specific property of the curve, so that the determination would give the 
same result for all curves. The last objection is clearly wrong, and may 
be ascribed to the hostile attitude which Descartes took to Fermat after 
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Fermat had criticised his Dioptrique (1637a). The first objection, 
however, is worth examining. 

The inequality 10> IP holds for curves concave with respect to 
the axis, and the inequality 10 < IP for convex curves. For curves 
without points of inflection it is possible from these inequalities to find a 
magnitude depending on a - e and x - e which has an extreme value for 
x-e=x (see Itard 1947a, 597, and Mahoney 1973a, 167). As x( =DC) 
is known, a may be determined from the requirement for an extreme 
value. Neither in Methodus nor in Fermat's later writings, however, 
is there any indication that this was the way he related his method of 
tangents to his method of maxima and minima. In the memoir 
1638b of June 1638, Fermat, after having explained his method, wanted 
to show that there was a relation between the method of maxima and 
minima and that of tangents. However, by solving a problem of 
extrema he did not find the tangent to the curve, but rather the normal. 
This gave an algorithm quite different from the one used in Methodus 
and explained in the memoir. He is therefore not likely to have used 
this relation when he established his method of tangents. (By the way, 
the problem of extreme values which Fermat solved was suggested by 
Descartes in his first attack on Fermat's method.) So Descartes was 
right after all in raising the objection that the method of tangents was 
not a direct application of the method of maxima and minima. 

When, in the memoir just mentioned, Fermat explained his method of 
tangents to Descartes, he clearly showed that he used only the procedure 
drawn from the method of maxima and minima. Descartes thereafter 
accepted the method. In modern notation Fermat's explanation can 
be reproduced in the following way. Let B be the point (x, y) on the 
curve f(x,y)=O and let DI=x-e (see figure 1.8.1). From the similar 
triangles EOI and EBC we obtain 

(1.8.8) 

Since 10 is almost equal to PI, Fermat writes 

(1.8.9) 

This is the adequality to which he applied his procedure from the method 
of maxima and minima. It is not difficult to see that it will lead to an 
expression for a corresponding to 

a = _yfll' 
f:c' . (1.8.10) 

rb 
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1.8. Fermat's method of tangents 

If we have the parabola ax=y2, we obtain from (1.8.9) 

y2(a-e)2 
a(x e)---2 --::::00, 

a 
or 

and since y2 = ax, then 

which is (1.8.7). 
As the method requires a development of 

( 
y(a-'-.e)) f x--e, --a-- , 

29 

(1.8.11) 

(1.8.12) 

(1.8.13) 

it was in its original presentation only applicable to curves 
(because in Fermat's time only algebraic functions were developed). 
However, in 'Doctrinam tangentium' Fermat extended its field of 
application to include some transcendental curves. He introduced two 
principles (Fermat Works, vol. 1, 162), stating that it was allowed 

(1) ... to replace the ordinates to the curves by the ordinates 
to the tangents [already] found ... 

(2) ... to replace the arc lengths of the curves by the corres-
ponding portions of tangents already found . .. . 

These two principles enabled him to determine the tangent to the cycloid 
(ibid., 163). Let HCG be a cycloid with vertex C and generating circle 
CMF (figure 1.8.2), and RB be the tangent at an arbitrary point R. 
For the sake of convenience we reproduce his analysis with use of some 
modern symbols. Let CD=x, RD=f(x), MD =g(x), and the magnitude 
to be investigated DB a. The specific property of the cycloid is the 
following: 

f(x)=RM+MD=arc CM+g(x). (1.8.14) 

Let DE = e, and draw NE parallel to RD intersecting RB at N and the 
circle at 0; as usual in the method of tangents, we have that 

NE=f(x)(a e) ::::of(x e), 
a 

(1.8.15) 

where 

f(x-e)=arc CO+g(x-e)=arc CM--arc OM+g(x-e). (1.8.16) 

Let MA be the tangent to the circle at M intersecting NE at V, and let 
MA=d and AD=b. 
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30 1. Techniques of the calculus, 1630-1660 

A 

Figure 1.8.2. 

From the first principle Fermat obtains 

(1.8.17) 

and from the second 

(1.8.18) 

Thus 

f( ) CM 
de g( x)( b - e) 

x e ::::oarc 7;+ b ' (1.8.19) 

which together with (1.8.14) and (1.8.15) gives 

(arc CM + g(x»(a - e) CM de g(x)(b - e) 
a ::::0 arc -7;+ b . (1.8.20) 

Hence, by the standard procedure, 

arc CM + g(x) d + g(x) 
a b 

(1.8.21) 

or 
f(x) d+g(x) 

a b 
( 1.8.22) 

Geometrically it is seen that 

- iOn 
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1.9. The method of exhaustion 

d+g(x) g(x) 
---b - =---;;-

so that the tangent at R is parallel to MC. 

1.9. The method of exhaustion 

31 

(1.8.23) 

The method of geometrical integration which was considered in the 
first part of the 17th century to be ideal was the exhaustion method, 
which had been invented by Eudoxus and improved by Archimedes. 
The name is unfortunate because the idea of the method is to avoid the 
infinite, and the method therefore does not lead to an exhaustion of the 
figure to be determined, as will be seen from the following outline of the 
idea behind it (see Dijksterhuis 1956a, 130-132). 

The method aims at showing that an area, a surface or a volume to 
be investigated, X, is equal to a known magnitude of the same kind K 
(for example, X may be the surface of a sphere and K four circles 
on the sphere). A monotone ascending sequence In and a monotone 
descending sequence Cn of, respectively, inscribed and circumscribed 
figures to X are constructed. Thus we have the result : 

for all n, In < X < Cn' (1.9.1) 

It is then shown either that for any magnitude € > ° there exists a number 
N such that 

(1.9.2) 

or that for any two magnitudes of the same kind fk and v where fk > v> 0, 
there exists a number N such that 

and further that 
for all n, In < K < Cn' 

(1.9.3 ) 

(1.9.4 ) 

From (1.9.1), (1.9.2) or (1.9.3), and (1.9.4), it follows by a reductio ad 
absurdum that K = X. 

This last demonstration always proceeds in the same manner, inde
pendent as it is of the magnitudes in question. Nevertheless, whenever 
applying the method, the Greek mathematicians wrote out the argument 
down to the last detail. The reason may be that they did not have a 
notation which made it easy for them to deal with the general case. 
Furthermore, it is rather complicated to establish the basic inequalities 
of the proof, especially (1.9.4), and the method can be used only if K 
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is knQwn in advance. This means that it needs to. be supplemented by 
anQther methQd, if results are to. be prQduced. 

AmQng the mathematicians Qf the early 17th century there was a 
desire to. find such a methQd Qf Qbtaining results which, in CQntrast to. 
the methQd Qf exhaustiQn, WQuld be direct. It WQuld be as well if the 
new methQd, apart frQm giving results, CQuld be used to. prQve the 
relatiQns achieved. Such a direct methQd might have been obtained 
had it been realised that 

lim Cn = lim In' (1.9.5) 
n-+CiJ n-rOO 

and had X been put equal to. that limit; hQwever, this was nQt within 
the style Qf expressiQn and PQwer Qf abstractiQn Qf 17th-century mathe
maticians. 

The path which they fQllQwed was that Qf an intuitive understanding 
Qf the geQmetric magnitudes. They imagined an area to. be filled up, 
fQr example, by an infinite number Qf parallel lines. When, in 1906, 
Heiberg fQund Archimedes's The method, it was discQvered that 
Archimedes tQQ had adQpted this PQint Qf view in his search fQr results. 
HQwever, he did nQt regard it as sufficiently rigorous to be applied in 
proofs. Kepler, too., had used techniques invQlving such intuitive CQn
siderations, and it was the purpose of the first systematic expositiQn of 
the methQd Qf indivisibles to legitimise such techniques. This exposi
tiQn, Geometria indivisibilibus continuorum nova quadam ratione promota 
(' GeQmetry by indivisibles of the cQntinua advanced by a new method' : 
1635a, hereafter referred to. as Geometria), by Cavalieri, appeared in 
1635, when he was a professor Qf mathematics at the University of 
Bologna. The ideas that it contained were developed in 1627, as can 
be seen in a letter from Cavalieri to. Galileo. (Galileo Works, vol. 13, 
381 ). 

The mathematicians differed on the importance to attach to a proof 
by the methQd Qf indivisibles. Most of those who thought about the 
matter regarded the method of indivisibles as heuristic, and thQught that 
an exhaustion proof was still necessary. The exhaustion method was 
therefore mQdified and extended during the 17th century (see Whiteside 
1961 a, 333-348). In many cases, hQwever, mathematicians confined 
themselves to the remark that the results achieved by the method Qf 
indivisibles could be easily demQnstrated by an exhaustion proof. 

1.10. Cavalieri's method of indivisibles 

Geometria, and Cavalieri's later wQrk Exercitationes geometricae sex 
(' Six geometrical exercises': 1647a), became well-known among 
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1.10. C avalieri' s method of indivisibles 33 

mathematicians. The works inspired many of them to find their own 
methods, whereas others like Fermat and Roberval found their integra
tion methods independently of Cavalieri. 

Cavalieri presented two methods of indivisibles in his Geometria, 
and called them the 'collective' and the 'distributive' methods re
spectively. The first six of the seven books of Geometria embody the 
collective method, and a summary of it is given in Exercitationes, Book I. 
The framework of this section cannot possibly allow for a full account of 
the wide spectrum of concepts and ideas which Cavalieri introduced 
and developed in these six books, but th~ following outline gives a 
rough idea of his approach. 

Figure 1.10.1. 

Let there be given a plane figure F = ABC limited by the curve 
ABC, and the straight line AB, called the 'regula' (figure 1.10.1). 
Cavalieri imagined that a straight line starting along AB is uniformly 
displaced parallel to AB, and considered the bunch of parallel line
segments which made up the section between F and the line during the 
motion. He named these line-segments' all the lines of the given figure' 
(' omnes lineae propositae figurae '), 'and sometimes referred to them as 
, the indivisibles of the given figure'; let us denote them by (f)F(l). 

Expressed in modern terms, Cavalieri constructed a mapping 

(1.10.1 ) 

from the set of plane figures into a set consisting of bunches of parallel 
line-segments. He then extended Eudoxus's theory of magnitudes (see 
book V of Euclid's Elements) to include his new magnitudes {(f) F(l)}. 
Thereafter he established-although not in a mathematically satisfactory 
manner-the fundamental relation 

(1.10.2) 

between two plane figures (Cavalieri 1635a, Book Il, Theorem 3). 
By letting the regula be a plane he obtained in a similar way the relation 
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34 1. Techniques of the calculus, 1630-1660 

SI: S2={9S,(P): (9S2(P), (1.10.3) 

where Si is a solid and (9s,(p) all the planes belonging to it, i = 1, 2. 
Cavalieri's aim was to find the ratio on the left hand side of (1.10.2) 

by calculating the ratio on the right hand side. In doing so he was 
greatly helped by a postulate which leads to 'Cavalieri's theorem' 
(described below), a skilful use of previous results, theorems about 
similar figures, and the concept of powers of line-segments. 

The postulate (1635a, Corollarium to Theorem 4 of Book II) states 
that if in two figures Fl and F2 with the same altitude every pair of cor
responding line-segments (that is, line-segments at equal distances from 
the common regula) has the same ratio, then {9 Ji'1 (I) and (9 Ji',(l) have this 
ratio too. In modern notation and using figure 1.10.2, 

Figure 1.10.2. 

if fl(x): f2(X)=b: c for all x O<x<a, 
then (9Ji'JI): (9Ji',(l)=b: c. (1.10.4) 

This, together with (1.10.2), immediately gives' Cavalieri's theorem': 

If fl(x): f2(X)=b: c for all x O<x<a, 

(1635a, Book II, Theorem 4). 
Cavalieri's skilful employment of his previous results may be illus

trated by a simple example. It is easily realised from figure 1.10.3 
that 

From these relations follows the theorem that the parallelogram ACDF 
is the double of each of the triangles ACF and CDF. However, 
Cavalieri was capable of interpreting them in a more general way. 
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1.10. Cavalieri's method of indivisibles 35 

Figure 1.10.3. 

By setting AC = CD and using concepts which we cannot go into here 
he obtained a result which he could use every time he needed a propor
tion corresponding to 

a a 

J X dx: J a dx = 1 : 2 (1.10.7) 
o 0 

(1635a, Corollarium I I to Theorem 19 of Book I I: compare figure 
1.10.4). 

Figure 1.10.4. 

Cavalieri found an alternative to integrating x 2 by introducing the 
squares of line-segments. If, instead of considering the line-segments 
of (l)F(I), we take their squares situated in parallel planes, we obtain 
what he called' all the quadrates of the given figure' (' omnia quad rata 
propositae figurae '); this aggregate will be denoted by (l)F( Ol). 

Let us illustrate the use of this concept by an example. For each I 
in the parallelogram ACGE in figure 1.10.5 we have 

OR,T,+ OTIVI=20RIS,+20T1Sl, (1.10.S) 

where OR,T, means the square on the side R1T1. From this relation 
Cavalieri concluded that 
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36 1. Techniques of the calculus, 1630--1660 

r-______ T-____ ~~C 

Figure 1.10.5. 

(9 AEa( Of) + (9 CEG( Of) = 
2(9 ABFE( Of) + 2( (911iEF'( Of) + (9 CBM( Of». (1.10.9) 

Since the triangles AEC and CEG are congruent, we have 

and similarly 
(1.10.10) 

(1.10.11) 

He further proved that, since the triangles CEG and MEF are similar, 
the following relation holds: 

(9CEG(OI): (9MEF(OI)=EG3: EF3=8: 1. (1.10.12) 

In the same way he found that 

(9ACGE(OI): (9ABlt'E(OI)=EG2: EF2=4: 1. (1.10.13) 

From (1.10.9)-(1.10.13) it follows that 

(9 ACGE( 01) = 3(9 CEG( 01) (1.10.14) 

(1635a, Book II, Theorem 24). This result has as an immediate conse
quence that a cylinder is three times the inscribed cone. Cavalieri 
applied the relation (1.10.14) to a series of problems concerning conics, 
interpreting it by analogy with (1.10.6) as a relation which was an 
alternative to 

(1.10.15) 

The first six books of Geometria are in their general style a copy of 
the Greek classical mathematical works, built up of definitions and 
postulates from which the theorems are carefully deduced, all verbally. 
Although Cavalieri ingeniously used his concepts to obtain many results, 
this made the reading of the book rather tedious. Perhaps. he felt this 
himself; at least, he wrote to Galileo in 1634 that he composed the 

-
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1.11. Wallis's method of arithmetic integration 37 

seventh book of Geometria to help those who found the concept of 
'all the lines' too difficult (Galileo Works, vol. 16, 113). In this last 
book, concerning the distributive method, he turned to a more intuitive 
treatment of the indivisibles. 

As we saw in the relation (1.10.2), by the collective method Cavalieri 
found the ratio between two figures by comparing the aggregates of 
indivisibles. In the distributive method, two figures with the same 
altitude were compared by comparing corresponding indivisibles. The 
basic relation in this theory was Cavalieri's theorem (1.10.5), for which 
he gave a new proof without using the concepts from the collective 
theory. 

A part of the criticism to which Cavalieri's methods were exposed 
was levelled against the nature of his indivisibles and the problem of the 
structure of the continuum. Some mathematicians took him to mean 
that a plane figure was made up of indivisibles and that were line
segments. This was against the Aristotelian view of a continuum as 
divisible into parts of the same kind as the original the parts 
again being infinitely divisible. To avoid his seeming error of di
mensionality, they tried tentatively to conceive a plane figure as composed 
of rectangles with infinitesimal breadth. But the distinction was of theo
retical interest only, for it remained usual to consider the ratio between 
two areas, so that an eventually missing Llx was cancelled by the relation 

A 
B 

Lan 

r. bn ' 
(1.10.16) 

where an and bn are the altitudes in the rectangles of which the areas A 
and B are composed. 

The conception of an area as a kind of a sum r. anLlx did not solve 
the problem, because it was still uncertain what was meant by an in
finitesimal magnitude and by an infinite sum. Despite the lack of 
rigour in their foundations, the methods were useful insofar as they 
provided the mathematicians with new results. 

1.11. Wallis's method of arithmetic integration 

To determine the area under the spiral of Galileo, Fermat used an 
arithmetic quadrature which he described in a letter to Mersenne in 
1638 (Mersenne Correspondence, vol. 7, 377-380). In his Traite des 
tndivisibles 1 Roberval squared many figures on the basis of arithmetical 

1 Traite uses a method of infinitesimals which Roberval worked out about 1630. 
The date of the composition of the Traite is, however, unknown. It was first printed 
in 1693 (Roberval Works!) and reprinted in 1730 (Works 2). 
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considerations. Pascal observed in his treatise Potestatum numericarum 
summa (' sum of numerical powers') that his results concerning the 

m 

sums ~ (A + id)n (where A, d and n are natural numbers) could be 
;=0 

applied to the quadratures of curves (Pascal Works l , vol. 3, 364; Works 2, 

vol. 2, 1272). Using proofs by complete induction he also established 
the rules for determining the binomial coefficients (1654a). 

But most of the results based on a method of arithmetic integration 
were achieved by John Wallis. His treatise on the subject, Arithmetica 
infinitorum (' The arithmetic of infinites': 1655a), is not burdened 
with proofs, for he relied boldly and confidently on his really astounding 
intuition as to the correlation between the sums of different series. He 
called his favourite method in the treatise' modus inductionis ': later it 
was termed' incomplete induction'. One might also call it ' conclusion 
by analogy'. 

Wallis started the treatise by establishing by this method that 

I 

~ i 
~-l 
(1+ 1)Z- 2, 

and similarly that 
I 

/ 

~ i2 
;=0 

(l + 1 )12 

I 

~ i 3 

i=O _ 1 1 
(l + 1 )/3 - "4 + 4/' 

~ in 
;=0 1 a l an _ 1 

(l + 1 )zn n + + 1+' .. Zn-l' 

(1.11.1) 

(1.11.2) 

where the a/s are rational numbers and n=4, 5, 6 (Wallis 1655a. 
Propositions I, XIX and XXXIX; Works, vol. 1, 365, 373 and 382), 
From this he concluded,that 

{ ± in} 
lim i=O _ 1 
l-+co (I + 1 )In - n + (1.11.3) 

(ibid., 384). This relation enabled him to square the curves y = xn in 
figure 1.11.1 to obtain 

a {(~)n (~)n (~)n} "~ y I + I +... I 
~=lim 

a 'n+ n+ n ~ b /-rCO a a ... a 
x=O 

{
I} ~ in 

l' ;=0 1 
= l:~ (1+ l)zn = n+ 

(1.11.4) 
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1.11. Wallis's method of arithmetic integration 

- - - - - - - -- - a-- ---

-- fa-----

b , 

v 
Figure 1.11.1. 

a result which corresponds to 

a 

J xn dx 
o 1 

n+ 

39 

(1.11.5) 

This result was not new, and indeed it had been found by many of 
Wallis's predecessors; but he did not stop there. He extended the 
range of n in (1.11.3) to include at least all rational numbers except - 1. 
The foundation of his extension is an observation which he made in 
connection with the formula (1.11.3), namely: If the numbers 1nl , 

In., .•• , [nr are in geometric progression (where nI' n2 , ••• , nr are non
negative whole numbers), then 

{ 

/-1-1 } 

tim i¥O In} , j = 1, 2, ... r, 
/-'00 '\"n 

1"., 1 } 
;=0 

(1.11.6) 

will be in arithmetic progression (ibid., 387). Further, from the fact 
that for O~p~q (q= 1,2,3, ... ) 

10, [l/q, 12 /q, .•• [p/q, ••. [1 are in geometric progression, 

11 112 1 P 2 . 'h' . , + -, + -, . .. + -, . " are In ant metlc progressIOn, 
q q q 

and the first and last members of the latter sequence are the reciprocals 
of the values of the right hand side of (1.11.3) for n = 0 and n = 1 res
pectively, he concluded that 
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40 1. Techniques of the calculus, 1630-1660 

{ 
li1 iPlq } 

1
. ;=0 1 
lm ._--

I-HA) ± /plq - 1 +p. 
i=O q 

(1.11.7) 

(ibid., 390). He did not doubt that the relation (1.11.7) held good for 
all plq ~ 0; he even said that it was valid for an irrational exponent, 
such as )3 (ibid., 395), and as he extended the concept of power to 
include negative powers he considered (1.11. 7) to be valid for them too-
except --1 (ibid., 408). By means of (1.11.7), he was now able to 
determine, whenPlq was a rational number different from -1, the 
ratios between the areas under the curves y = xP Iq and the circumscribed 
rectangles. He could also determine the ratios between the volumes 
obtained by a revolution of these areas about an axis and the circum
scribed cylinders. 

After that, Wallis proceeded to study polynomials in x; he applied 
the formula (1.11.7) to binomial expansions of (xP(Dn xn))m when p, n 
and m are small natural numbers and D is a constant, and by analogy 
deduced that 

D 

J [xP(Dn_xn)]m dx 
o 

n. 2n . ... mn 

(mp+ l)(mp+n+ 1)(mp+2n+ 1) ... (mp+mn+ 1) 
(1.11.8) 

(ibid., 419-420 and 425-430), a result which he put into various tables. 
(For clarity I render the last of his sums as integrals.) He further 
extended (1.11.8) to include the case where p and n are positive rational 
numbers (ibid., 433). 

One of Wallis's purposes was to square the circle; he stressed that 
from (1.11.8) and its extension we know for m = 0, 1,2,3 ... the' sums' 

and 

and for m= 1,2,3, ... the' sum' 

R 

(1.11.9) 

J (Rl/m_xllm)m dx 
o (1.11.10) 

where R is the radius and D the diameter of the circle. He wished to 

h b 
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1.11. WaUis' s method of arithmetic integration 41 

find the values of these' sums' for m = t, and he introduced the symbol 
, D ' to signify the reciprocal of (1.11.10):. 

D -- --------- =-R2 (4) -- 1 (R2- X 2 )1/2 dx Tr' 

(1.11.11) 

a principle of interpolation which we cannot go into here, he sue-· 
ceeded in establishing the formula 

where 

Rn--l 
'R-------- = an 
f (R2_ x2)<nI2H dx 
o 

for n 1, 2, 3, ... , 

n 2,4,6, ... 

4.6.8 ... (n+l) 
an~2=3 D, n=3,5,7, ... . .5.7. .. n 

(1.11.12) 

(1.11.13) 

(see Prag 1929a, 389-392, and Whiteside 196Ja, 237-241). From the 
fact that 

for n=l, 2, 3 ... , (1.11.14) 

he concluded that the ratio an+l/an is continuously decreasing, 1 so that 

and hence 

(1.11.16) 

From the formulae (1.11.13) he obtained for odd n the inequalities 

, Wallis was lucky that his sequence behaved in this way, for a sequence defined by 

2n 2n+l 
a, = k, a2 = 1, a2n+l = 2;;'1 a 2n -l> and a2n+2 = ~ a 2n 

will not generally have an+1/an continuously decreasing. 
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3.3.5.5.7~7 ... (n 2).n.n J(n+2)<D 
2 . 4 . 4 . 6 . 6 . 8 ... (n - 1)( n - 1)( n + 1) n + 1 

3.3.5.5.7.7 ... (n-2).n.n J(n+l) 
< 2 . 4 . 4 . 6 . 6 . 8 ... (n - 1 )( n - 1 )( n + 1) -n-' 

(1.11.17) 

In the limit as n -'TOO, these give a result now called' Wallis's product' : 

~ = 0 = _3_._3_ .. ,-5_'_ . .,.-5 _. ,.-7 -::' 7_-cc. 9_'-,-9-:::-. ___ ._. (1.11.18) 
7T 

(Wallis Works, vol. 1,469). 

1.12. Other methods of integration 

Most of the methods of integration in use before the time of Newton and 
Leibniz made use of an equidistant sub-division of intervals and com
pared the area or volume to be found with a known one, as we have seen 
with Cavalieri and Wallis. However, Fermat had a method which 
allowed him to make an absolute calculation of an area, employing a 
sub-division which meant that the areas of the infinitesimal rectangles to 
be summed were in a geometric progression with quotient less than unity. 
We may illustrate this by means of an example from his treatise on 
quadrature De aequationum, which he wrote about 1658 using ideas he 
had already had in the 1640s (see Mahoney 1973a, 243 f.). 

Fermat considered the hyperbolas 

yxn=k, k is a constant, n=2, 3, 4, .... (1.12.1) 

C F 

81--_-+ 

A 
--- a ---
---X1-----

Figure 1.12.1. 

b 
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1.12. Other methods of integration 43 

For convenience I reproduce his arguments in modern terms. He 
divided the x-axis to the right of the point G (see figure 1.12.1) in 
intervals G H, HO, OM, of lengths Xl - a, X 2 - Xl' X3 - X 2, ••• 

(a=AG), so that 

and hence 

He then considered the circumscribed rectangles 

R1=b(XI a),whereb=GE, 1 
RI' = Y1'-I(Xr - X,._l)' r = 2, 3, .... f 

From (1.12.1 )--( 1.12.4) it follows that 

RI=~ 
Yl(X2 Xl) 

RI' Yr-l(Xr xr- 1 ) 

R1'+l Y1'(x1'+l ~- x1' ) 

X na X na __ 1' __ =_1_= 
Xr - 1 n Xl anxl a 

(1.12.2) 

(1.12.3) 

(1.12.4) 

(1.12.5) 

(1.12.6) 

which means that the circumscribed rectangles are in a geometric pro
gression with quotient a/xn _ 1 • 

To determine the sum S of a geometric progression with first term IX 

and quotient u/v (u < v), Fermat used the following relation: 

v-u IX 

-U-=S-IX (1.12.7) 

(this is equivalent to S=IX/(l-u/v». Hence, if S denotes the sum of 
the rectangles R1' , we have: 

-a b(xl-a) 
(1.12.8) 

a S-b(x1-a) 
or 

xn_1-a ba 
(1.12.9) 

Xl a S b(xl-a)' 

He then imagined the intervals Xl - a, X 2 - Xl' ... to be sufficiently 
small and almost equal, and he concluded that the left hand side of 
(1.12.9) by adequality is equal to n 1. Further, as the intervals are 
small, he concluded that S-b(x1-a) in the relation (1.12.9) can be 
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44 1. Techniques of the calculus, 1630-1660 

set equal to the area ()' defined by the hyperbola and the lines GH and 
GE. Hence 

n 1 = ba = AG . GE, 
a a 

(1.12.10) 

and the quadrature is achieved.! We could have obtained (1.12.10) 
by taking the limit of both sides of (1.12.9) for Xl approaching a, but he 
did not use limits. He observed that his method could not be applied 
when n ,= 1 as the rectangles will then be equal. 

Figure 1.12.2. 

1 Fermat called his method' logarithmic' (Works, Vo!. 1, 265). In his time the 
word ' logarithmic' was used to characterise a connection between a geometric and an 
arithmetic progression; hence' logarithmic' was also used at that time where today we 
would say 'exponential'. Let us indicate in modern terms how his expression and 
proof can be interpreted. If we let a=exp (to) and xr=exp (to+r~t), r=l, 2, 3, ... , 
then we have a sub-division which is equivalent to (1.12.2). An easy calculation shows 
that 

Hence 

and 

Rr=k exp [ - (n-l)(to+(r-l)~t)](exp [~t]-l). (1) 

00 

S= 1: Rr=k exp [-(n-l)to](exp [At]-1) : (l-exp [-(n-1)~tD, (2) 
r=1 

lim S=(k exp [-(n-l)toD: (n-l)=(a. b) : (n-I) . 
.1.t....,.O 

(3) 

b 
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1.12. Other methods of integration 45 

An ingenious use of geometrical considerations and arguments 
from statics led mathematicians to many transformations corresponding 
to transformations of integrals, which could be applied to find connec·· 
tions between various problems solved by quadratures and cubatures. 
In his 1658c Pascal systematically drew up schedules in which appear 
the sums necessary to determine areas and volumes as well as their 
centres of gravity. He found a fundamental theorem for these connec·· 
tions by conceiving the volume KCAB (see figure 1.12.2) both as 
composed of the rectangles FDOO' FD. DO and as composed of the 
areas EG l' = ARI (Pascal 1658c, 'Lemme generel' in the section 
, Traite des trilignes rectangles'; Works]> vol. 9, 3-5). That is, 

I FD. DO= I EG/'. (1.12.11) 
AB AC 

If we put AB=a, AC=b, AD=x, FD==y f(x) and DO=z=g(x) 
(both being monotone functions), the relation corresponds to 

a 

J f(x)g(x) dx 
(} 

b (f"(Y) ) J J get) dt dy, 
() (} 

(1.12.12) 

which can be obtained by an integration by parts. Since f(a) 0 we have: 

J f(x)g(x) dx==·- J ( j get) dt) f'(x) dx 
(} (} () 

=, I (f-r)g(t) dt) dy. (1.12.13) 

When g( x) = x, we obtain 
a b x2 

J xy dx = J - dy. 
(} () 2 

(1.12.14 ) 

Roberval found the summation form of (1.12.14) in his Traite in a 
way similar to that of Pascal (Roberval Works2a, 271), and it was used 
by Fermat too (Works, vol. 1, 272). Among other things, it could be 

applied to the determination of the centre of gravity of the ar~a i y dx. 
() 

Let the x-coordinate of this point be t; in modern notation the argu
ment is the following (see figure 1.12.3). If we consider a lever AC 

a 

and let the area J y dx operate on the arm g on the one side, and at the 
() a 

other let all the rectangles y6.x of the area J y dx or BDC operate each 
(} 

on the arm x, then there will be equilibrium. Hence we have 
a a 

t f y dx = f xy dx. (1.12.15) 
(} (} 
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46 1. Techniques of the calculus, 1630--1660 

Figure 1.12.3. 

Therefore, by (1.12.14), 
b x2 

f dy 

~= 
o 

(1.12.16 ) ---
a 

f Y dx 
o 

which gives the x-coordinate of the centre of gravity. The y-coordinate 
can be found in a similar way. 

(1.12.16) is equivalent to the relation 

b a 

7T f x 2 dy=27T~ f y dx, (1.12.17) 
o 0 

which states that the volume obtained by revolving the area BCD 
about the axis BD (compare figure 1.12.3) is equal to the product of the 
area and the distance traversed by the centre of gravity. This is a 
special case of the theorem now known as ' Pappus-Guldin's theorem', 
formulated by Paul Guldin in Centrobaryca (1635-1641 a, vol. 2, 147) 
in the following way: 'the product of a rotating quantity and the path 
of rotation [that is, the circumference of the circle traversed by the 
centre of gravity], is equal to the quantity generated by the rotation'. 
The theorem is also found in Book VII of Pappus's Collections, but it 
may be a later addition (see, for example, Ver Eecke 1932a). 

1.13. Concluding remarks 

The examples given in sections 1.5-1.8 and 1.10-1.12 illustrate the 
remark in the introductory section 1.1 about the special character of the 
infinitesimal methods in the period 1630-1660. In the case of the 
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methods of quadrature we saw that they were all naturally founded on 
the conception of an area as an infinitesimal sum. However, mathe
maticians differed in their ways of approaching the problems raised by 
that concept. And not only were the methods of the various mathe
maticians based on different ideas; some of them also developed 
different methods, each one adapted to solve special problems of 
quadrature. 

Some of the methods of solving tangent or normal problems led to 
fixed rules--of which the most general one was Hudde's rule for de
termining the sub·,tangent to an algebraic curve---while others only 
suggested a procedure. The ideas behind the methods differed widely. 
Descartes used an argument about the number of points of intersection 
between a cirele and the curve; Fermat employed similar triangles 
and the concept of adequality; while Roberval's method was founded 
on an intuitive conception of instantaneous velocity and the law of 
parallelogram of velocities. The characteristic triangle (with sides ~x, 
~y and ~s) did not explicitly play a part in the deduction of the tangent 
methods. Nevertheless, it was applied by (for example) Pascal in 
connection with a transformation of a sum (see section 2.3); but not 
until Leibniz was the importance of this triangle fully recognised. 

Thus the period did not in itself bring any perception of basic 
concepts which were applicable to the determination of tangents as well 
as to quadratures. An important reason why mathematicians failed to 
see the general perspectives inherent in their various methods was 
probably the fact that to a great extent they expressed themselves in 
ordinary language without any special notation and so found it difficult 
to formulate the connections between the problem they dealt with. 
As an illustration we may consider one of the results achieved by the 
different quadrature methods outlined in the preceding sections. This 
result can be expressed in modern terms as 

a an+1 
J xn dx~~-
o n+ l' 

(1.13.1) 

where n is a natural number different from - 1. The mathematicians 
of that period, however, could not express their result so simply; 
they had to refer to areas under special parabolas. Their terminology 
did not prevent them from seeing connections such as that between the 
rectification of the parabola and the quadrature of the hyperbola, or the 
relation of certain inverse tangent problems to quadratures; but it may 
have barred their way to a deeper insight into the meaning of these 
connections. 

These remarks are not to be taken in the negative sense at all. It 
is not the task of a historian of mathematics to evaluate the work of 
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48 1. Techniques of the calculus, 1630-1660 

earlier mathematicians by present mathematical standards, nor to 
emphasise the inadequacy of their conq~pts as compared to modern 
ones. On the contrary, a historian of mathematics ought to enter into 
the mode of thought of the period under consideration in order to bring 
out the development of the mathematical ideas in its historical context. 
Briefly, it may be said that the mathematicians in the period preceding 
the invention of the calculus blazed the trail for its invention. They 
did so by employing heuristic methods, by making the geometry ana
lytical, and by seeking methods for solving problems of quadratures and 
tangents. 1 

1 I am grateful to Dr. John North of Oxford University for correcting some of my 
linguistic mistakes, and to Dr. D. T. Whiteside of Cambridge University for his valuable 
comments on the manuscript. 
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ABSTRACT
In the present paper it will be argued that and proposed how the history of mathematics can play a 
significant role in mathematics education for the learning of meta rules of mathematical discourse. The 
theoretical argument is based on Sfard’s theory of thinking as communicating. A multiple perspective 
approach to history of mathematics from the practice of mathematics will be introduced along with the 
notions of epistemic objects and techniques. It will be argued that by having students read and analyse 
mathematical texts from the past within this methodology, the texts can function as “interlocutors”. In such 
learning situations the sources can assist in revealing meta rules of (past) mathematical discourses, making 
them explicit objects for students’ reflections. The proposed methodology and the potential of history for the 
learning of meta-discursive rules of mathematical discourse is exemplified by analyses  of four sources from 
the 17th century by Fermat and Newton belonging to the calculus, and it is demonstrated how meta level 
rules can be made objects of students’ reflections. The paper ends with a proposal for a matrix-organised 
design for how the introduced approach to history of mathematics for elucidating meta-discursive rules 
might be implemented in upper secondary mathematics education.

1 Introduction
One can think of several purposes for using history in mathematics education: (1) For 
pedagogical reasons; it is often argued that history motivates students to learn 
mathematics by bringing in a human aspect. (2) As a didactical method for the learning 
and teaching of the subject matter of mathematics. (3) For the development of students’ 
historical awareness and knowledge about the development of mathematics and its driving 
forces. (4) For general educational goals, with respect to which the so called cultural 
argument makes the strongest case for history, but history can also serve general 
educational goals in mathematics education of developing interdisciplinary competences 
as a counterpart to specialisation (Beckmann 2009). These purposes are not necessarily 
mutually independent. In carefully designed teaching sessions all four of the above 
mentioned purposes can be realized in varying degrees.1

Regarding the question whether history promotes students’ learning of mathematics I 
have argued in (Kjeldsen 2011), that by adopting a multiple perspective approach to 
history from the practice of mathematics, history has potentials in developing students’ 
mathematical competence while providing them with genuine historical insights. In the 
present paper, I will go a step further and suggest that history might have a much more 

1 See (Kjeldsen 2010) where it is shown how all these four purposes can be accomplished in problem 
oriented and student directed project work. In (Jankvist and Kjeldsen 2011) two avenues for integrating 
history in mathematics education are discussed with respect to the development of students’ mathematical 
competence and historical awareness anchored in the subject matter of mathematics, respectively, both 
within a scholarly approach to history. In (Kjeldsen forthcoming) a didactical transposition of history from 
the academic research subject to history in mathematics education is proposed for developing a framework 
for integrating history of mathematics in mathematics education.  

In Evelyne Barbin, Manfred Kronfellner, and Constantinos Tzanakis, (eds.) 
History and Epistemology in Mathematics Education Proceedings of the Sixth European Summer University ESU 6. 
Vienna: Verlag Holzhausen GmbH, 2011, pp. 51-62. 
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profound role to play for the learning of mathematics. This suggestion is based on Sfard’s 
(2008) theory of commognition.  

In the following it will be argued that, and proposed how, the history of mathematics can 
play a significant role in the teaching and learning of mathematics. The theoretical argument 
is outlined in section 2. In section 3, the multiple perspective approach to history of 
mathematics from its practice is presented along with some tools of historians’. The 
adaptation for mathematics education is discussed in section 4. The potential of history for 
the learning of meta-discursive rules of mathematical discourse is exemplified in section 5 
through analyses of four sources from the 17th century by Fermat and Newton belonging to 
the calculus. In section 6 a proposal is outlined for a so called matrix-organised design for 
how such an approach to history of mathematics for elucidating meta-discursive rules might 
be implemented in upper secondary school. The paper ends with a concluding section 7. 

2 The theoretical argument for the significance of history 
In Sfard’s (2008, 129) theory of Thinking as Communicating mathematics is seen as a 
discourse that is regulated by discursive rules, and where the objects of mathematics are 
discursive constructs. There are two kinds of discursive rules both of which are important 
for the learning of mathematics: object-level rules and meta-discursive rules.  

The object-level rules have the content of the discourse as object. In mathematics they 
regard the properties of mathematical objects. The meta-discursive rules have the 
discourse itself as object. They govern proper communicative actions shaping the 
discourse. The meta-discursive rules are often tacit. They are implicitly present in 
discursive actions when we e.g. judge if a solution or proof of a mathematical problem or 
statement can count as a proper solution or proof (Sfard 2000, 167). The meta-discursive 
rules are not necessary; they are given historically.  

The meta-discursive rules are connected to the object-level of the discourse and have an 
impact on how participants in the discourse interpret its content. As a consequence, 
developing proper meta-discursive rules are indispensable for the learning of mathematics 
(Sfard 2008, 202). This means that designing learning situations where meta-discursive rules 
are elucidated is an important aspect of mathematics education. History of mathematics is an 
obvious method for illuminating meta-discursive rules. Because of the contingency of these 
rules, they can be treated at the object level of history discourse, and thereby be made into 
explicit objects of reflection. Hence, history might have a significant role to play for the 
learning of mathematics, precisely because meta-discursive rules can be treated as objects of 
historical investigations. By reading historical sources students can be acquainted with 
episodes of past mathematics where other meta-discursive rules governed the discourse. If 
students study original sources in their historical context, and try to understand the work of 
past mathematicians, their views on mathematics, the way they formulated and argued for 
mathematical statements etc. the historical texts can play the role as “interlocutors”, as 
discussants acting according to meta rules that are different than the ones that govern the 
discourse of our days mathematics and (maybe) of the students. By identifying meta rules 
that governed past mathematics and comparing them with the rules that govern e.g. their 
textbook, students can be engaged in learning processes where they can become aware of 
their own meta rules. In case a student is acting according to non-proper meta rules he or she 
might experience what Sfard calls a commognitive conflict, which is “a situation in which 
different discursants are acting according to different metarules” (Sfard 2008, 256). Such 
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situations can initiate a metalevel change in the learner’s discourse.  
This, of course, presupposes a genuine approach to history. In section 3 and 4 it will be 

argued that within a multiple perspective approach to the history of the practice of 
mathematics, and by using historian of mathematics’ tools such as the idea of epistemic 
objects and techniques, original sources can be used in mathematics education to have 
students investigate and reflect upon meta-discursive rules. For further discussion of this 
see (Kjeldsen and Blomhøj 2011), where also some student directed problem oriented 
project work performed by students at degree level mathematics are analysed with respect 
to students’ reflections about meta-discursive rules to provide empirical evidence for the 
theoretical claim. These projects will not be presented here. Instead I will present a 
proposal (see section 6) for a so called matrix-organised design for how such an approach 
to history of mathematics for investigating meta-discursive rules might be implemented in 
upper secondary school. 

3 A multiple perspective approach to history 
The so called whig interpretation of history has been debated at length in the 
historiography of mathematics.2 In mathematics education Schubring (2008) has pointed 
out how translations of sources, due to an underlying whig interpretation of history, have 
changed the mathematics of the source. In the whig interpretation history is written from 
the point of view of the present, as explained by the British historian Herbert Butterfield, 
who coined the term in the 1930s: 

It is part and parcel of the whig interpretation of history that it studies the past with 
reference to the present … The whig historian stand on the summit of the twentieth 
century and organises his scheme of history from the point of view of his own day. 
(Butterfield 1931, 13)  
If we want to use history to throw light on changes in meta rules from episodes of past 

mathematics to our days mathematics whig interpretations of history poses a problem, 
because, as it has been pointed out by Wilson and Ashplant (1988, 11) history then 
becomes “constrained by the perceptual and conceptual categories of the present, bound 
within the framework of the present,  deploying a perceptual ‘set’ derived from the 
present”. In this quote, Wilson and Ashplant emphasis exactly why one cannot design 
learning and teaching situations that focus on bringing out differences in meta rules of past 
episodes in the history of mathematics and modern ones within a whig interpretation of 
history. Historical sources cannot function as “interlocutors” that can be used to clarify 
differences in meta rules if the sources is interpreted within the framework of how 
mathematics is conceptualized and perceived of today. 

The trap of whiggism can be avoided by investigating past mathematics as a historical 
product from its practice. This implies to study the sources in their proper historical 
context with respect to the intellectual workshop3 of their authors, the particular 
mathematicians, to ask questions such as: how was mathematics viewed at the time? How 
did the mathematician, who wrote the source, view mathematics?  What was his/hers 

                                                           
2 Discussions of whig interpretations in the historiography of mathematics can be followed e.g. in the 
following papers (Unguru 1975), (van der Waerden 1976), (Freudenthal 1977), (Unguru and Rowe, 
1981/82), (Grattan-Guiness 2004). 
3 See (Epple 2004). 
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intention? Why and how did mathematicians introduce certain concepts? How did they 
use them and for what purposes? Why and how did they work on the problems they did? 
Which kinds of tools were available for the mathematician (group of mathematicians)? 
Why and how did they employ certain strategies of proofs? Such questions can reveal 
underlying meta rules of the discourse at the time and place of the sources. By posing and 
answering such questions to the sources, possibilities for identifying meta rules that 
governed the mathematics of the source can emerge, and hereby also opportunities for 
turning meta rules into explicit objects of reflection in a teaching and learning situation. 

As explained by Kjeldsen (2009b, 2011) one way of answering such questions and to 
provide explanations for historical processes of change is to adopt a multiple perspective 
approach to the history of the practice of mathematics. I have taken the term “a multiple 
perspective” approach from the Danish historian Jensen (2003). It signifies that episodes of 
the past can be studied from several perspectives, several points of observation, depending 
on which kind of insights into, or from, the past, we are searching for. Episodes in the 
history of mathematics can e.g. be studied from the perspective of sub-disciplines within 
mathematics to understand if, and if so, how other fields in mathematics have influenced the 
emergence and/or the development of the episode under consideration. They can be studied 
from an applied point of view to understand e.g. dynamics between pure and applied 
mathematics, or the role of mathematical modelling in the production of mathematical 
and/or scientific knowledge. They can be studied from a sociological perspective to 
understand the institutionalization of mathematics, its funding etc. They can be studied from 
a gender perspective, from a philosophical perspective and so on.  

4 Adaptation for mathematics education 
In mathematics education the above approach can be implemented on a small scale, by 
focusing on a limited amount of perspectives that address the intended learning. In the 
present context the purpose is to use past mathematics and history of mathematics as a 
means for elucidating meta discursive rules and make them into explicit objects of students’ 
reflections. Hence, students should study the sources to answer clearly formulated historical 
questions that concern the underlying meta rules of the mathematics in the source.  

Theoretical constructs that have been developed by historians of mathematics and/or 
science to investigate the history of scientific practices can be used to “open” the sources. 
With respect to the purpose of the present paper of uses of history to reveal meta rules of a 
(past) mathematical discourse by studying the history of mathematics from its practice, the 
notions of epistemic objects and techniques are promising tools. The term epistemic object 
refers to mathematical objects that are treated in a source, i.e. the object about which 
mathematicians were searching for new knowledge or were trying to grasp. The term 
epistemic technique refers to the methods employed in the source by the mathematicians 
to investigate the epistemic objects.4 These theoretical constructs can give insights into the 
dynamics of concrete productions of pieces of mathematical knowledge, since they are 
constructed to distinguish between elements of the source that provide answers and 
elements that generate mathematical questions.5  

                                                           
4 These notions have been adapted into the historiography of mathematics by Epple (2004) from 
Rheinberger’s (1997) study of experimental science. 
5 For examples of uses of this methodological tool see (Epple 2004) and (Kjeldsen 2009a). 
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The question is whether history dealt with in this way, where students study episodes 
from the history of mathematics from perspectives that pertain to meta rules of (past) 
discourses, ask historians’ questions to the sources concerning the practice of mathematics, 
and answer them using theoretical constructs such as epistemic objects and techniques, can 
facilitate meta level learning in mathematics education. In the following section four texts 
from the 1600s will be analyzed to provide some answers to this question. 

5 Analysis of four sources within the proposed methodology 
Four texts from the 1600s will be used in the following; two by Pierre de Fermat (Fermat I 
and Fermat II) and two by Isaac Newton (Newton I and Newton II). Fermat I is Fermat’s 
text on maxima and minima taken from Struik’s (1969) A Source Book in Mathematics, 
1200-1800, whereas Fermat II is called “A second method for finding maxima and 
minima”, which is published in Fauvel’s and Gray’s (1988) reader in the history of 
mathematics. Newton I is Newton’s demonstration of how he found a relation between the 
fluxions of some fluent quantities from a given relation between these. This text is the one 
prepared by Baron and Bos (1974), whereas Newton II is Newton’s method of tangent 
taken from Whiteside’s (1967) The Mathematical Works of Isaac Newton. The quality of 
these translations of sources can be criticised, and investigated for degrees of whiggism 
(Schubring 2008), but this will not be done in the present paper. In a teaching situation the 
students should work with the four texts, but in order to give the reader an impression of 
the texts, summaries of the four texts are inserted here: 

In Fermat I, Fermat stated a rule for the evaluation of maxima and minima and gave an 
example. The text is summarised below in Box 1. 

Fermat I: On a method for the evaluation of max. and min.
Rule: let a be any unknown of the problem

• Indicate the max or min in terms of a

• Replace the unknown a by a+e – express max./min. in terms of a and e

• “adequate” the two expressions for max./min. and remove common terms

• Both sides will contain terms with e – divide all terms by (powers of) e

• Suppress all terms in which e will still appear – and equate the others

• The solution of this equation will yield the value of a leading to max./min.

Example: To divide the segment AC at E so that AE x EC may be a maximum

aA E Cb - a

b
Max: a(b-a) = ab-aa
(a+e)b-(a+e)(a+e) = ab+eb-aa-2ae-ee
ab+eb-aa-2ae-ee ~ ab-aa “adequate”
eb ~ 2ae + ee remove common terms
b ~ 2a + e ;  b=2a ; a=½b; divide, suppress, solve

Box 1
 

If the above procedure is translated into modern mathematics using functions and the 
derivative it can be explained why Fermat reached the correct solution. But this does not 
explain how Fermat was thinking, since he knew neither our concept of a function nor our 
concept of derivatives. In Fermat II we can get a glimpse of how Fermat was thinking. 
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The text is summarised below in Box 2. 

Fermat II: A second method for finding maxima and minima
• Here he explained why his “rule” leads to max./min.: correlative equations – Viete

• Resolving all the difficulties concerning limiting conditions 

Example: To divide the line b such that the product of the segments shall be a max.

If one proposes to divide the line b in such a way that the product of the segments [a
and (b-a)] shall equal z’’… there will be two points answering the question, and they 
will be found situated on one side and the other of the point corresponding to the max.

Z’’

a e

ba-aa = z’’ and   be-ee = z’’
ba-aa = be-ee ;  ba-be = aa-ee
Divide by a-e
b = a + e
At the point of maximum we will have a = e, then
b = a +a = 2a, hence as before a=½b.
If we call the roots a and a+e (instead of a and e) the 
procedure follows the rule from text I.

Box 2
 

In Newton I, Newton explained through an example, how, given a relation between 
fluent quantities, a relation between the fluxions of these quantities can be found. In Box 3 
his procedure is summarised and illustrated with an example of a second degree equation 
instead of the third degree equation that Newton used in the text. 

Newton I: Find relation between fluxions from fluents
Newton’s fluxions and fluents

• Curves  are trajectories (paths) for motions

• Variables are entities that change with time – fluents x , y

• The speed with which fluents change – fluxions  x’ , y’ (Newton: dots!)

• Newton: All problems relating to curves can be reduced to two problems:

1. Find the relation between the fluxions given the relation between the fluents.

2. The opposite. 

ox’x

y

oy’
Example:  axx+bx+c-y=0  substitute x, y with x+x’o, y+y’o
a(x+x’o)(x+x’o)+b(x+x’o)+c-y-y’o=0
axx+a2xx’o+ax’x’oo+bx+bx’o+c-y-y’o=0
a2xx’o+ax’x’oo+bx’o-y’o=0
a2xx’+ax’x’o+bx’-y’=0  divided by o;  cast out terms with o
a2xx’+bx’-y’=0  hence  y’/x’=2ax+b

Box 3
 

In Newtons’s terminology o denotes an infinitely small period of time, so ox’ [Newton 
used a dot over x instead of x’ to designate the fluxions] is the infinitely small addition by 
which x increases during the infinitely small interval of time. 

Finally, in Newton II, Newton showed how to draw tangents to curves and illustrated it 
with the same example as he used in the first text. In Box 4 below the example is 
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illustrated with reference to the example used in Box 3. 

Newton II: To draw Tangents to Curves

ox’x

y

oy’

Example:

T A B b

c

d

D

Similar triangles: dcD and DBT
TB:BD = Dc:cd “infinitesimal triangle”
BT/y = x’o/y’o =x’/y’
x’/y’ can be found by the method from Newton I

Box 4
 

The suggestion made in this paper is that these four sources can be used to exhibit 
changes in meta rules of mathematical discourse, if students read the sources from the 
perspective of rigor, and focus on entities and arguments. The following worksheet (Box 
5) can be used to guide the students work. It consists of two sets of questions. The first set 
concerns questions that help the students to identify the epistemic objects and techniques 
of the two texts. The students are asked to compare and contrast the answers they get from 
studying Fermat, Newton, and their textbook, respectively.  

Perspective
Rigor – entities, arguments   

Worksheet: History from the practice of math. Compare/contrast Fermat and Newton

Questions: 

What mathematical objects are Fermat/Newton dealing with? Compare/contrast

How do they perceive them? – compare with your textbook

What are the problems they are trying to solve? 

What techniques are they using? – what do we do today?

How do they argue for their claims? – how do we argue today?

Can you find any changes in understandings of the involved mathematical concepts from 
Fermat over Newton to today? Explain

Can you find any changes in the way of argumentation from Fermat over Newton to 
today? Explain

What kind of objections do you think your math teacher would have to Fermat’s and 
Newton’s texts?

Epistemic objects
and techniques

Meta-rules – explicit object of reflection
Opportunities provided by historyBox 5

 
The second set of questions refers directly to meta rules of the involved mathematical 

discourses. 
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Regarding the first set of questions, an analysis of the four texts and the comparison 
between the objects that Fermat and Newton investigated, how they perceived them, the 
problems they tried to solve, the techniques they used and the arguments they employed 
might be summarised in the following scheme (Box 6):  

Fermat:
Objects:

curves - algebraic expressions
ex.: multiplication of line segments

Perceive:
Area; geometrical problems treated
by algebraic methods

Problem:
evaluate max/min

Techniques:
equations, roots, algebraic mani.

Argue:
Text 1: shows the method works on

an example
Text 2: heuristic arguments with 

roots  in equations given by 
an example

Newton:
Objects:

any curve 
variables that change in time

Perceive:
trajectories for moving particles

Problem:
relations between fluxions (velocities)
given relations between the fluents

Techniques:
algebraic mani; physics, geometry

Argue:
Physical arguments about distance
and velocity, algebraic arguments,
infinitesimal triangle, o-infinitely
small

Box 6
 

Regarding the second set of questions, which refers to meta rules of the discourse, the 
following changes can be discussed (se Box 7):  

Changes in understanding:
Fermat: curves; algebraic expressions
Newton: curves, traced by a moving point, variables change in time
Today: functions, correspondence between variables in domains

Changes in the way of argumentation:
Fermat: ad hoc; “it works – its true”; heuristic argument, no infinitely 

small quantities
Newton: more general procedure, physical arguments, infinitesimal 

triangle, infinitely small quantities (o)
Today: limit, the real numbers, epsilon-delta proofs

Box 7
 

In Kjeldsen and Blomhøj (2011) we have analysed some student directed problem 
oriented project work conducted by students in a degree level university mathematics 
programme. Here we were able to demonstrate that history, used within the framework of 
a multiple perspective approach to the history of mathematics from its practice, can be 
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used in mathematics education to give students insights into how meta rules of a 
mathematical discourse are established and why/how they change. These projects were 
made in a rather unique educational setting and the question is whether this methodology 
can be implemented in more traditional educational settings. The analyses of the sources 
guided by the worksheet (Box 5) and presented in Box 6 and Box 7 suggest that this 
approach can elucidate meta rules and turn them into explicit objects for students 
reflections. In the following section I present an outline for a so called matrix-organised 
design for how such a multiple perspective approach to history of mathematics from its 
practice might be implemented in upper secondary mathematics education.   

6 Implementation in upper secondary school: A proposal  
In the Danish upper secondary school system history of mathematics is part of the 
mathematics curriculum. The curriculum is comprised of a core curriculum which is 
mandatory and is tested in the national final, and a supplementary part, which should take 
up 1/3 of the teaching. History is mentioned explicitly in the supplementary part, which 
means that all upper secondary students should be taught some aspects of history of 
mathematics. The supplementary part of the curriculum is tested in an oral examination 
together with the core curriculum. In Box 8 below an outline is presented for a matrix 
organised design for how history could be (but has not yet been) implemented in a Danish 
upper secondary school for elucidating meta rules within the theoretical framework of 
section 2, 3 and 4, using the sources and the worksheet presented in section 5.  

Implementation in a Danish high school: a proposal
Step 1: Six groups – basic groups (worksheets would have to be prepared for 

each group with respect to the intended learning)
1. The mathematical community in the 17th century
2. The standard history of analysis
3. Who were Fermat and Newton?
4. The two texts of Fermat - the questions of the worksheet of Box 5
5. The two texts of Newton - the questions of the worksheet of Box 5
6. Berkeley’s critique of Newton

Step 2: Six groups – expert groups (each group consists of at least one member 
from each of the basic groups)
The experts teach the other group members of what they learned in their 
basic group. Each expert group write a common report/prepare an oral 
presentation of the collected work from all six basic groups as it was 
discussed in their expert groups

Step 3: A plenary discussion lead by the teacher focuses on methods of 
argumentation, the development/changes in the perception of objects and 
techniques, compared with the standards of today.

Box 8
 

This design follows a three step implementation. First six groups (so called basic 
groups) are formed who look into some aspects of the historical episode in question. In 
Box 8 it is suggested e.g. that group 1 investigates what the mathematical community of 
the 17th century looked like. Guided by a worksheet with questions relevant for the 
intended learning, the work in this group will provide the students with a sociological 
perspective on mathematics and its development. In step 2 new groups (so called expert 
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groups) are formed. They consist of at least one member from each of the six basic 
groups. In this way each new group consists of individual experts. Each expert now 
teaches the other members of the new group what he/she learned in his/hers basic group, 
and based on their shared knowledge provided by the various experts they answer the 
second set of questions of the worksheet in Box 5. The design is referred to as being 
matrix organised because it can be illustrated with a matrix, where the members of basic 
group 1 is listed in column 1, the members of basic group in column 2, etc. In step 2 the 
expert groups are formed by taking the students in the rows, i.e. expert group 1 consists of 
the students listed in row 1; expert group 2 of the students listed in row 2, etc. In this way 
all expert groups consists of at least one member from each basic group. In such a set up it 
is possible to create complex teaching and learning situations where students work 
independently and autonomously in an inquire-like environment, developing general 
educational skills as well.6 

7 Discussion and conclusion 
The main question in the present paper is whether working with sources in the spirit of the 
worksheet of Box 5 within the methodology outlined in section 3 may give rise to 
situations where meta rules of (past) mathematical discourses are made into explicit 
objects of students’ reflections, and whether this can assist the development of students’ 
proper meta rules of mathematical discourse. As pointed out above, the analyses of the 
sources guided by the questions of the worksheet in Box 5, and the suggestions for 
answers outlined in Box 6 and 7, suggest that history and historical sources can be used 
within the methodological framework of section 2, 3 and 4 to elucidate meta rules and 
make them explicit objects for students reflections.  

Regarding the second part of the question, whether such an approach to the use of 
history and historical sources in mathematics education also can assist the development of 
students’ proper meta rules of our days mathematics is a complex question which is much 
more difficult to document. The framework and methodology outlined in this paper 
provide a theoretical argument for the claim that history has the potential for playing such 
a profound role for the learning of mathematics, but in order to realize this in practice 
more research needs to be done, and methodological tools for detecting students’ meta 
rules and for monitoring any changes towards developing proper meta rules need to be 
developed. 
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IV ANAJ,YSIS BEFOltE NEWTON AND I,EIBNIZ 

values of y corresponding to Xl' X2, X3' ... are lh ~= an, Y2 = a"rn, Ys = anr2n, .. " Then the 
sum S of the rectangles 11 Xl + 12x2 .+. lsxs + . . . is 

(1 r)an+1(1 + 1'n+l + r2n +2 + ... ) 

When r = 8q (s < 1) and n ¥ 1, then 

J: xn dx = an +1 lim 
1 _. r' 

p+ q n + 

As we see, this procedure holds for n positive and negative, but it fails for n -1. 
This method approaches our modern method of' limits; it uscs the concept of the limit of 

an infinite geometric series. 

8 1<'I<JRMAT. MAXIMA AND MINIMA 

Modern textbooks on calculus take up first the differential and then the intcgral calculus. It 
may therefore come as a surprise to find that up to the middle of the seventeenth century 
the whole theory of infinitesimals concentrated on the computation of areas, volumes, and 
centel's of gravity, that is, on what we now call the integral calculus. Tangent constructions 
were, until that period, based on the property that the tangent has only one point in 
common with the curve, as we can see in Euclid or Apollonius. Archimedes, in his book on 
spirals, found tangents by a method that seems to have been inspircd by kinematic con· 
siderations. Even Torrieelli, when determining the tangent at a point of the "hyperbola" 
xmyn ,= k, still used the ancient method (A. Agostini, "Il metodo delle tangenti fondato 
sopra la dottrina dei moti nelle opere di Torrioel1i," Periodico di matematica [4] 28 (1950), 
141-158), and Descartes sought the normal prior to the tangent, and found it in some cases 
of algebraic curves by asking for double roots of a certain equation that expresses the 
abscissa of the intersections of thc curve with a circle. 

The beginning of the differential calculus, in which the tangent appears as the limit of 
a secant, can be studied in considerations concerning maxima and minima, as in Kepler's 
Nova stereometria doliorum vinariorurn (Linz, 1615; see Selection IV.2). Here we read that 
"near a maximum the decrements on both sides are in the beginning only imperceptible" 
(deerementa habet insitio insensibilia; Opere, IV (1863), 612). 

With Fermat we obtain an algorithm based on this fact. To understand his approach and 
its subsequent development into the method of the" characteristic triangle" (dx, dy, ds) wc 
must take notice of the fact that Fermat and Descartes were among the first to apply the 
new algebra dcveloped by Cardan, Bombelli, and Viete to the geometry of thc ancients. 
This was, as we have seen, the beginning of the coordinate method. Descartes published his 
method in 1687, but Fermat's discovery was known only through his correspondence until 
1679, the year of the publication of his works. Here is :Fermat's approach, from his Oeuvres, 
In (1896), 121--123. It is followed by a paper in which he applied his method to the finding 
of a center of gravity (Ibid., 124-126). 

Text 11: Fermat on maxima and minima. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 222–225.
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FERMA'r. MAXIMA AND MINIMA 

(1) ON A METHOD FOR THJ~ EVALUATION Ol" MAXIMA AND MINIMA' 

The whole theory of evaluation of maxima and minima presupposes two un· 
known quantities and the following rule: 

Let a be any unknown of the problem (which is in one, two, or three dimen
sions, depending on the formulation of the problem). Let us indicate the maxi
mum or minimum by a in terms which could be of any degree. "Ve shall now 
replace the original unknown a by a +. e and we shall express thus the maximum 
or minimum quantity in terms of a and e involving any We shaH 
adequate [adegaZer], to use Diophantus' term,2 the two expressions of the 
maximum or minimum quantity and we shall take out their common terms. 
Now it turns out that both sides will contain terms in e or its powers. We shall 
divide all terms bye, or by a higher power of e, so that e will be completely 
removed from at least one of the terms. We suppress then all the terms in which 
e or one of its powers wi1lstill appear, and we shall equate the others; or, if one 
of the expressions vanishes, we shall equate, which is the same thing, the positive 
and negative terms. The solution of this last equation wiH the value of a, 
which will lead to the maximum or minimum, the original 
expression. 

Here is an example: 

To divide the segment AO [Fig. 1] at E 80 that AE x JiJO may be a maxim1tm. 

Fig. 1 

We write AO = b; let a be one ofthe segments, so that the other will be b···· a, 
and the product, the maximum of which is to be found, will be ba -- a2 • Let now 
a + e be the first segment of b; the second will be b a e, and the product of 
the segments, ba .. - a2 .+ be -- 2ae .-. e2 ; this must be adequateq"with the pre
eeding: ba - a2 . Suppressing common terms: be ~ 2ae + e~ truppressing e: 
b = 2a. 3 To solve the problem we must consequently take the half of b. 

We ean hardly expeet a more general method. 

ON THE TANGENTS OF CURVES 

We use the preceding method in order to find the tangent at a given point of a 
curve. 

Let us consider, for example, the parabola BDN [Fig. 2] with vertex D and 
of diameter DO; let B be a point on it at which the line BE is to be drawn tan
gent to the parabola and intersecting the diameter at E. 

1 This paper was sent by Fermat to Pather Marin Mersenne, who forwarded it to Des· 
cartes. Descartes received it in January 1638. It became the subject of a polemic discussion 
between him and Fermat (Oeuvres, I, 133). On Mersenne, see Selection 1.6, note 1. 

2 Soe Solection IV.7, note 5. 
3 Our notation is modern. For instance, where we have written (following the French 

translation in Oeuv"es, III,122) be ~ 2ae + e2 , Fermat wrote: Bin E adaequabitur A in E 
bis + Eq (Eq standing for E quadratum). The symbol ~ is used for "adequatos." 

Text 11: Fermat on maxima and minima. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 222–225.
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Fig. 2 

N 

We choose on the segment BE a point 0 at which we draw the ordinate OJ; 
also we construct the ordinate BO of the point B. We have then: OD/DJ> 
B02/0J2, since the point 0 is exterior to the parabola. But B02/0J2 = OE2/JE2, 
in view of the similarity of triangles. Hence OD/DJ> OE2/JE2. 

Now the point B is given, consequently the ordinate BO, consequently the 
point 0, hence also OD. Let OD = d be this given quantity. Put OE a and 
OJ = e; we obtain 

Removing the fractions: 

da2 + de 2 - 2dae > da2 - a2e. 

Let us then adequate, following the preceding method; by taking out the 
common terms we find: 

or, which is the same, 

Let us divide all terms bye: 

de + a2 
'" 2da. 

On taking out de, there remains a2 2da, consequently a = 2d. 
Thus we have proved that OE is the double of OD-which is the result. 
This method never fails and could be extended to a number of beautiful 

problems; with its aid, we have found the centers of gravity of figures bounded 
by straight lines or curves, as well as those of solids, and a number of other 
results which we may treat elsewhere if we have time to do so. 

I have previously discussed at length with M. de Hoberval 5 the quadrature 
of areas bounded by curves and straight lines as well as the ratio that the solids 
which they generate have to the cones of the same base and the same height. 

4 Fm'mat wrote: D ad D _. E habebit majorem proportionem quam Ag. ad Aq. + 
Eq. - A in E bis (D will have to D - E a larger ratio than A 2 to A 2 + E2 - 2AE). 

5 See the letters from Fermat to Hoberval, written in 1636 (Oeuvres, HI, 292-294, 296-
297). 

Text 11: Fermat on maxima and minima. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 222–225.
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Now follows the second illustration of Fermat's "e-method," where Fermat's e =, 
Newton's 0 = Leibniz' dx. 6 

(2) CEN'l'Im OF GRAVITY OF PAB.ABOLOID OF R1WOLUTION, USING 
'.rIm SAME METHOD'I 

Let aBA V (Fig. 3) be a paraboloid of revolution, having for its axis lA and for 
its base a circle of diameter aTV. Let us find its center of gravity by using the 
same method which we applied for maxima and minima and for the tangents of 
curves; let us illustrate, with new examples and with new and brilliant applica. 
tions of this method, how wrong those are who believe that it may fail. 

Fig. 3 

A 

81-------1 

C '-----"__r 

In order to carry out this analysis, we write lA = b. Let; 0 be the center of 
gravity, and a the unknown length of the segment AO; we intersect the axis lA 
by any plane BN and put IN e, so that N A 0= b -- e. 

It is clear that in this figure and in similar ones (parabolas and paraboloids) 
the centers of gravity of segments cut off by parallels to the base divide the axis 
in a constant proportion (indeed, the argument of Archimedes can be extended 
by similar reasoning from the case of a parabola to all parabolas and paraboloids 
of revolution 8). Then the center of gravity of the segment of which N A is the 
axis and BN the radius of the base will divide AN at a point E such that 
NA/AE lA/AO, or, in formula, b/a = (b e)/AE. 

6 The gist of this method is that we change the variable x inJ(x) to x + e, e small. Since 
J(x) is stationary near a maximum or minimum (Kepler's remark), J(x + e) - J(x) goes to 
zero faster than e does. Hence, if we divide bye, we obtain an expression that yields the 
required values for x if we let e be zero. The legitimacy of this procedure remained, as we 
shall see, a subject of sharp controversy for many years. Now we see in it a first appreach 

to the modern formula: j'(x) = !im .f..53: + e) ,- J(x) , introduced by Cauchy (1820-21). 
8-+0 e 

7 This paper seems to have been sent in a letter to Mersenne written in April 1638, for 
transmission to Roberval. Mersenne reported its contents to Descartes. Fermat used the 
term "parabolic conoid" for what we call "paraboloid of revolution." 

8 "All parabolas" means "parabolas of higher order," y = 7cx n, n > 2. Tho reference is to 
Archimedes' On floating bodie8, n, Prop. 2 and following; see '1'. L. Heath, The works oJ 
Archimede8 (Cambridge University Press, Cambridge, England, 1897; reprint, Dover, New 
York),264ff. 

Text 11: Fermat on maxima and minima. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 222–225.
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c I D E 

N 

Removing the fractions: 

da 2 + de 2 
- 2dae > da 2 a2e. 

Let us then adequate, following the preceding method; by taking out the common 
terms we find: 

or, which is the same, 

Let us divide all terms bye: 
de+a2~2da. 

On taking out de, there remains a2 = 2da, consequently a = 2d. 
Thus we have proved that CE is the double of CD-which is the result. 
This method never fails and could be extended to a number of beautiful problems; 

with its aid, we have found the centres of gravity of figures bounded by straight lines or 
curves, as well as those of solids, and a number of other results which we may treat 
elsewhere if we have time to do so. 

I have previously discussed at length with M. de Roberval the quadrature of areas 
bounded by curves and straight lines as well as the ratio that the solids which they 
generate have to the cones of the same base and the same height. 

11.C2 A second method for finding maxima and minima 

In studying the method of syncriseos and anastrophe of Viete, and carefully following 
its application to the study of the nature of correlative equations, it occurred to me to 
derive a process for finding maxima and minima and thus for resolving easily all the 

Text 12: Fermat on maxima and minima. From J. Fauvel and J. Gray, eds. (1987). The
History of Mathematics: A Reader. London: Macmillan Press Ltd., pp. 359–360.
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difficulties concerning limiting conditions which have caused so many problems for 
ancient and modern geometers. 

Maxima and minima are in effect unique and singular, as Pappus said and as the 
ancients already knew, although Commandino claimed not to know what the term 
'singular' signified in Pappus. It follows from this that on one side and the other of the 
point constituting the limit one can take an ambiguous equation, and that the two 
ambiguous equations thus obtained are accordingly correlative, equal and similar. 

For example, let it be proposed to divide the line b in such a way that the product of 
the shall be a maximum. The point answering this question is evidently the 
middle of the line, and the maximum product is equal to b2 /4; no other division 
of this line a product equal to b2/4. 

But if one proposes to divide the same line b in such a way that the product of the 
segments shall equal z" (this area being besides supposed to be less than b2/4) there will 
be two points answering the question, and they will be found situated on one side and 
the other of the point corresponding to the maximum product. 

In fact let a be one of the segments of the line h, one will have ha - a2 = z"; an 
ambiguous equation, since for the segment a one can take each of the two roots. 
Therefore let the correlative equation be he e2 z". Comparing the two equations 
according to the method of Viete: 

ba -- he a2 - e2. . 

Dividing both sides by a -- e, one obtains 

b a -+ e; 

the lengths a and e will moreover be unequal. 
in place of the area z", one takes another greater value, although always less than 

h2/4, the segments a and e will differ less from each other than the previous ones, the 
points of division approaching closer to the point constituting the maximum of the 
product. The more the product increases the more on the contrary diminishes the 
difference between a and e until it will vanish exactly at the division corresponding to 
the maximum product; in this case there will only be a unique and singular solution, 
the two quantities a and e becoming equal. 

Now the method ofViete applied to the two correlative equations above leads to the 
equality b = a -+ e, therefore if e = a (which will always happen at the point 
constituting the maximum or the minimum) one will have, in the case proposed, 
b = 2a, which is to say that if one takes the middle of the segment b, the product of the 
segments will be a maximum. 

Let us take another example: to divide the segment b in such a way that the product 
of the square of one of the segments with the other shall be a maximum. 

Let a be one of the segments; one must have ba 2 a3 maximum. The equal and 
similar correlative equation is be2 

- e3
. Comparing these two equations according to 

the method of Viete: 

dividing both sides by a - e one obtains 

ba -+ be a2 -+ ae -+ e2
, 

which gives the form of the correlative equations. 

Text 12: Fermat on maxima and minima. From J. Fauvel and J. Gray, eds. (1987). The
History of Mathematics: A Reader. London: Macmillan Press Ltd., pp. 359–360.
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In Proposition II,f(y) = y (the line AOJ( is a straight line), Ply) = b 2 , and 

Pascal has several more examples based on this change of variables. 
It is here that we meet one of Pascal's references to a fourth dimension, when he gener

alizes his triligne8 from plane to space and beyond: "l,a quatrieme dimension n'est point 
contrc la pure geometrie" (The fourth dimension is not against pure geometry). See H. 
Bosmans, "Sur l'intcrpretation geometriquc donnoe par Pascal a l'cspace a quatre dimen .. 
sions," Annales de la Societe ScientiJique de Bruxelles 42 (1923), 337-345. 

13 WALIAS. COMPUTATION OF 7T BY SUCCESSIVI<J INTEIWOLATIONS 

After 1650, analytic methods began to receive morc attention and to replace geometric 
methods based on the writings of tho ancients. This was duc partly to the acceptance into 
geometry of thosc algebraic methods that Descartes and Fermat had introduced, and partly 
to 1;he still very active intcrest in numerical work-·-interpolation, approximation, logarithms 
·--a heritage of the sixteenth and early seventeenth centuries. This tradition was strong in 
England, where Napier and Briggs had !abored. 

This analytic method advanced rapidly through the efforts of ,John Wallis (1616-1703), 
of Emmanuel College, Cambridge, who in 1649 became the Savilian professor of geometry 
at Oxford. He was one of the founders of the goyal Society and, through his work, in
fluenced Newton, Gregory, and other mathematicians. In his Arithmetica in;finitorum 
(Oxford, 1655), he led explorations into the realms of the infinite with daring analytic 
methods, using interpolation and extrapolation to obtain new results. The title of the book 
shows the difference between Wallis' method-he called it "arithmetica"; we would say 
(with Newton) "analysis "-and the geometric method of Cavalieri. First Wallis derived 
Cavalieri's integral in an original way. Thereupon, he plunged into a maelstrom of numerical 
work and, with fine mathematical intuition to guide him in his interpolations, arrived at the 
infinite product for 1T that bears his name. See J. F. Scott, The mathematical work of John 
Wallis (Taylor and Francis, Oxford, 1938); also A. hag, "John Wallis," Quellen und 
Studien zur Geschichte der Mathematik (B) I (1931), 381-412. 

-----------------------.--.--------~-------

Proposition 39. 1 Given a series of quantities that are the cubes of a series of 
numbers continuously increasing in arithmetic proportion (like the series of 
cubic numbers), which begin from a point or zero (say 0, 1,8,27,64, ... ); we 
ask for the ratio of this series to the series of just as many numbers equal to the 
highest number of the first series. 

1 In previous propositions Wallis has derived the limit 

n 
L ik 

Hm i;;'l =_~_ 
n .... conk + 1 k+l 

for le = 1,2. This Proposition 39 prepares for the case le = 3; it shows Wallis's typical 
inductive and analytic method. 

Text 13: Wallis on interpolation. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 244–246.
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The investigation is carried out by the inductive method, as before. We have 

2 1 1 
4: 4: + 4; 

3 1 1 
- 8 4: + 8; 

4 1 
1"2 4: + 

27 + 64 -- 10O 5 1 
4: + 

125 = 225 6 ] 1 
4: + 

7 1 1 
-- 4: + 

and so forth. 
The ratio obtained is always greater than one-fourth, or i\;. But the excess 

decreases constantly as the number of terms increases; it is i\;, "~, fo, to, .t-.;;, . .. 
There is no doubt that the denominator of the fraction increases with every 
consecutive ratio by a multiple of 4" so that the excess of the resulting ratio over 
i\; is the same as I :4 times the number of terms after 0, etc. 

Proposition 40. Theorem. Given a serics of quantities that arc the cubes of a 
series of numbers continuously increasing in arithmetic proportion bcginning, 
for instance, with 0, then the ratio of this series to the series of just as many 
numbers equal to the highest number of the first series will be greater than i\;. 
The excess will bc 1 divided by four times the number of terms after 0, or the 
cube root of the first term after ° divided by four times the cube root of the 

highest term. 

The sum of the series 03 + 13 + ... + ZS is I + lZ3 + ~-t/ [3, or, if m is the 

number of terms, ~ 13 + ~ 13 = ~ ml3 + ~ ml2
• This is apparent from the pre

vious reasoning. 
If, with increasing number of terms, this excess over i\; diminishes con-

tinuously, so that it becomes smaller than any given number (as it; clearly does), 
when it goes to infinity, then it must finally vanish. Therefore: 

Proposition 41. '1'heorem. If an infinite series of quantities which are the cubes 
of a series of continuously increasing numbers in arithmetic progression, begin
ning, say, with 0, is divided by the sum of numbers all equal to the highest and 
equal in number, then we obtain i\;. This follows from the preceding reasoning. 

Proposition 42. Oorollary. The complement AD']' [Fig. I] of half the area of 
the cubic parabola therefore is to the parallelogram '1' D over the same arbitrary 

base and altitude as 1 to 4. 
Indeed, let ADD be the area of half the parabola AD (its diameter AD, and 

the corresponding ordinates DO, DO, ctc.) and let AD,]' be its complement. 

Text 13: Wallis on interpolation. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 244–246.
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Fig. 1 
D o 

Since the lines DO, DO, etc., or their equals AT, AT, etc. are the cube roots 2 

of AD, AD, ... , or their equals 1'0, 1'0, ... , these TO, TO, etc. will be the 
cubes of the lines AT, AT, ... The whole figure AOT therefore (consisting of 
the infmite number of lines TO, TO, etc., which are the cubes of the arith
metically progressing lines AT, Al', ... ) will be to the parallelogram ATD 
(consisting of just as many lines, all equal to the greatest TO), as 1 to 4, accord
ing to our previous theorem. And the half-segment AOD of the parabola (the 
residuum of thc parallelogram) is to the parallclogram itself as 3 is to 4. 

In Proposition 44 the result of these considerations on the quotient of thc two series 
1 i

k 
and 2: n k 

(n + 1 terms) is laid down in a table for k 0, 1,2 .... , 10. Wallis dis
criminates for ik between the series of equals (k = 0), of the first order (k = 1), of the second 
order (k = 2), and so forth (series aequalium, primanorum, secundanorum, and so forth). 

Proposition 54. Theorem. 3 If we consider an infinite series of quantities begin. 
ning with a point or ° and increasing continuously as the square, cube, bi. 
quadratic, etc. roots of numbers in an arithmetic progression (which I call the 
series of order k = i, 1, 1, ... ), then the ratio of the whole series to the series 
of all numbers equal to the highest number is expressed in the following table: 

k Result 
! 

-1. 
11 

or as 1 to 

2 Wallis uses the terms "atio subduplicata, 8ubtriplicata etc., to denoto square, cubic, etc., 
roots; the ratio 8ubduplicata of A 21 B2 is AI B. These terms are not classical, and may be ' 
medieval: WaIlis uses them here and in his Mathesis univet'8ali8 (Oxford, 1657), chap. 30. 
The term duplicate ratio is classical; see gucIid, Element8, Book V, Definition 9: if alb = blc, 
then ale has the duplicate ratio of alb, hence ale = a21b2. Similarly, triplicate ratio in 
Definition 10 means the ratio of cubes. See G. gnestrom, "Ueber den Ursprung des Termes 
'ratio subdupIicata'," Bibliotheca mathematica [3] 4 (1903), 210-211; 6 (1905), 410; 12 
(1911-12), 180-1S1. 

3 Propositions 54 and 59 are supplementary, with the tabulation of g Xk dx = I/(k + I) 
for all positive rational k. 

= 

Text 13: Wallis on interpolation. From D. J. Struik (1969). A Source Book in
Mathematics. 1200–1800. Cambridge (Mass.): Harvard University Press, pp. 244–246.
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Text 14: Roberval on the quadrature of the parabola. From E. Walker (1932). A Study
of the Traité des Indivisibles of Gilles Persone de Roberval. New York, pp. 181–182.
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Chapter 2 

Newton, 

H. J. M. Bos 

2.1. Introduction and biographical summary 

The starting-point of this chapter is the' invention', or rather' inven-
tions', of the calculus. Both Newton (in 1664-1666) and (in 
1675) created, independently of each other, an calculus. 
Their inventions were very different in concepts and but each 
contains so much of what we now recognise as essential to the calculus 
that the expression' invention of the calculus' is justified in both cases. 
I go on to consider the subsequent development of the calculus till 
about 1780. In this development the Leibnizian type of calculus with 
differentials and integrals proved more successful than the Newtonian 
fluxional calculus; therefore I concentrate on the former. 

Many great and lesser mathematicians were involved in the develop
ment of the calculus in the period covered by this chapter. I shall 
restrict myself to those who played the prime roles in the story: Isaac 
Newton, Lucasian professor of mathematics at Cambridge and later 
Master of the Mint in London; Gottfried Wilhelm Leibniz, historian 
and scientist at the ducal court of Hanover; J akob. Bernoulli, professor 
of mathematics at Basle; his brother J ohann Bernoulli, younger by 
thirteen years, who after a professorate at Groningen succeeded Jakob 
in Basle in 1705; Guillaume Franc;ois Marquis de l' Hopital, a French 
nobleman living by private means, and an able mathematician eagerly 
interested in the new developments in infinitesimal methods; and finally 
Leonhard Euler, who studied with Johann Bernoulli and then entered 
a career in the typically 18th-century scientific institutions, the academies. 
He was professor at the St. Petersburg (now Leningrad) Academy from 
1730 to 1741 and from 1766 till his death; in the intervening years he 
served the Berlin Academy as professor. 

Many of the great ideas that were to make Isaac Newton famous in 
mathematics and natural science came to him in the years 1664-1666. 

49 

Text 15: H. J. M. Bos (1980). “Newton, Leibniz and the Leibnizian Tradition”. In: From
the Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by

I. Grattan-Guinness. Princeton and Oxford: Princeton University Press. Chap. 2,
pp. 49–93.
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50 2. Newton, Leibniz and the Leibnizian tradition 

At that time he was a graduate student at Trinity College, Cambridge, 
but for some time during those two years he lived in Lincolnshire, 
staying away from Cambridge for fear of the Plague (compare Whiteside 
1966a). His ideas on gravity, which he was to work out later and present 
to the world in his famous Principia (1687a), date from that period, as 
well as his theory of colours, published in the treatise Opticks in 1704, 
the binomial series theorem and his fluxional calculus, which we shall 
discuss in more detail in section 2.2. 

As with gravity and colours, publication of these mathematical ideas 
in print was long delayed. Newton did compose several accounts of 
his findings in infinitesimal calculus. In October 1666 he summarised 
the discoveries of the fruitful two years in a tract on fluxions (1666a) ; 
in 1669 he wrote a treatise on infinite series, the De analysi (1669a), 
which circulated in manuscript form among members of the Royal 
Society; from 1671 dates a treatise on the method of fluxions and 
infinite series (1671a); and in about 1693 he composed a treatise on 
the quadrature of eurves (1693a). However, the 1666 traet and the 
treatise on the method of fluxions were not published in his lifetime, 
the De analysi was published only in 1711, and the treatise on quadra
tures of curves in 1704. Meanwhile the Principia of 1687 had brought 
for the first time to the general public indications of his methods in 
infinitesimal calculus, but these were not enough to show the scope and 
power of his mathematical discoveries. 

About the turn of the century a fair amount was published about 
Leibniz's calculus (as we shall see in sections 2.5-2.8 below), and 
sufficient information about Newton's calculus was available to show 
that both men had found new methods in essentially the same mathe
matical field. This caused a nasty quarrel over priority, in which feelings 
of personal and national pride combined with insufficient insight in the 
mathematics involved (at least in the case of the lesser participants in 
the debate) to create a distasteful muddle of misunderstandings and 
insinuations which has only been cleared up through patient historical 
research in the present century. The net result of the historical research 
is that Leibniz found his calculus later than Newton and independently 
of him, and that he published it earlier. 

In 1669 Newton had succeeded Isaac Barrow as Lucasian professor, 
but in the 1690s he grew dissatisfied with his position at Cambridge. 
He visited London often, to attend meetings of the Royal Society, of 
which he was a fellow from 1672, and to be present at sessions of Parlia
ment as a member for the Cambridge University constituency. He 
moved finally to London in 1696 when he was offered the office 
of Warden of the Mint. In 1703 he became president of the Royal 
Society, a post which he held till his death. His position as the most 

Text 15: H. J. M. Bos (1980). “Newton, Leibniz and the Leibnizian Tradition”. In: From
the Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by
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eminent British scientist was further emphasised by a knighthood in 1705. 
By the 1710s so much on the fluxional calculus was in print that the 

method was taken up and applied by others. However, this further 
development of the N ewtonian type of calculus remained restricted to 
Great Britain, and it did not achieve much. Reasons of the lack of 
success lie in the isolation from the Continental developments in analysis 
because of the priority dispute, in the lack of mathematicians in Britain 
of sufficient stature to really develop Newton's calculus, and in an over
stressed loyalty to Newton's conception of the calculus and to his nota
tions, which were less versatile than Leibniz's. 

On the Continent Leibniz's inventions gave rise to a much more 
intense development, to whose origins in the 1670s we now turn. 

Before Leibniz entered the service of the house of Hanover in 1676 
he had spent four ~ars in Paris on a diplomatic mission, which left 
him ample time to pursue his interest in mathematics, the sciences, 
history, philosophy and many other things. He met many French 
philosophers and made two visits to London to the Royal The 
Paris years were his formative period. When he arrived in 1672 his 
knowledge of mathematics was slight, despite the fact that he had pub
lished a small tract on combinatorics. He was trained in law at the 
university of his home town of Leipzig. In Paris Christiaan Huygens, 
who lived there at that time, recognised Leibniz's mathematical abilities 
and guided his first studies in the higher mathematics. Leibniz's 
, growth to mathematical maturity' (see. Hofmann 1949a) was indeed 
impressive; it led to his discovery of the calculus in 1675, the elabora
tion of that calculus in the following years and its publication in 1684-
1686. He contributed to other branches of mathematics as well, for 
instance to algebra (solvability of equations, determinants) and to nearly 
all other fields of human learning, including religion, politics, history, 
physics, mechanics, technology, mathematics, geology, linguistics and 
natural history. Many of his results were not immediately published 
and became known only gradually, through correspondence (from his 
comparative intellectual isolation in Hanover Leibniz corresponded with 
over a thousand scholars), through publication of short articles in journals 
(he was one of the founders of the first scientific journal in Germany, 
the Acta eruditorum), and later through the publication of his manu
scripts, most of which he kept and which are now stored at the Leibniz 
archive in Hanover. 

Leibniz's publication of his calculus in two articles in the Acta of 
1684 and 1686 did not provoke great commotion in mathematical 
circles. The articles were rather short, and they were marred by 
misprints and in places deliberately obscure, so that it is in fact surprising 
that in the following decade they were understood at all. 
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Jakob and Johann Bernoulli studied the articles from 1687, and by 
1690 they showed, in articles published in the Acta, that they had 
mastered the Leibnizian symbolism and its use. They both started a 
correspondence with Leibniz; the contact between J ohann and Leibniz 
was especially intensive and productive. After 1690 a stream of articles 
in the Acta and in other journals, written by the Bernoullis and Leibniz 
and later joined by I'H6pital and others, showed the learned world that 
the new calculus was something to be reckoned with. 

However, for people of lesser mathematical calibre than the 
Bernoullis, it would have been very difficult actually to learn the calculus 
from these articles. What was wanted was a proper textbook of the 
calculus. Such a textbook came, though only of the differential calculus, 
in 1696 with l'H6pital's Analyse des infiniment petits pour l'intelligence 
des lignes courbes (' Analysis of infinitely small quantities for the under
standing of curved lines': 1696a). 

The Marquis de l'H6pital was introduced to the calculus by Johann 
Bernoulli, who, after finishing his medical studies in 1690, had travelled 
to Paris, where he impressed learned circles by a method to determine, 
by means of differentials, the curvature of arbitrary curves-a problem 
which by the methods of Cartesian analytic geometry was well nigh 
unsolvable. l'H6pital was most impressed and asked Bernoulli to give 
him, for a good fee, lectures on the new method. Bernoulli accepted 
and the lectures were given, in Paris and at the country chateau of the 
Marquis. They were written out and both men kept copies. After 
about a year Bernoulli left Paris but agreed to continue instructing 
I'H6pital by letter. In fact the agreement was that Bernoulli, for a 
handsome monthly salary, would answer all I'H6pital's questions con
cerning mathematics, would send him all his mathematical discoveries 
and would give no one else access to these findings (see Bernoulli 
Correspondence, 144); a most curious and hardly honourable agreement 
which put Bernoulli's originality strictly in I'H6pital's service. From 
the start Bernoulli did not quite keep to the letter of the contract, and 
l'H6pital soon realised that he could not bind a brilliant mathematician 
in this way. But when in 1696 l'H6pital published his textbook, and 
Bernoulli saw that most of its content was taken from his lectures with 
not more than a passing reference to the Marquis's indebtedness to 
Bernoulli, he-could only be angry in silence, being bound by the contract. 

Later, after l'H6pital's death, J ohann Bernoulli did try to get his 
part in the Analyse acknowledged, but by that time his credibility in 
priority questions had become very low because of open quarrels on 
such matters with his brother. J akob Bernoulli was a rather intro
verted personality, but he was sensitive to praise from members of the 
mathematical community and he resented being overshadowed by ,his 
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brilliant younger brother. Johann, on the other hand, liked his own 
success too much to spare his brother's feelings. So there appeared 
insinuating remarks in articles, and later a quarrel exploded and went on 
quite openly. Johann Bernoulli's claim to much of the content of the 
Analyse was found to be justified only when in 1921 the manuscript of 
his Paris lectures on the differential calculus was found (see Johann 
Bernoulli 1924a). 

However strained their mutual relations, through the writings of 
these men the Leibnizian calculus became known and proved its power. 
By the first decade of the 18th century other mathematicians devoted 
themselves to the new calculus, such as Jakob Pierre Varignon, 
Niklaus BernoulIi (a nephew) and Daniel Bernoulli (son of Johann). 
The family Bernoulli continued to yield famous mathematicians through
out the 18th century. 

In these early days the new calculus consisted mainly of rather 
loosely connected methods, and problems solved by these methods. 
The man who reshaped the Leibnizian calculus into a soundly organised 
body of mathematical knowledge was Leonhard Euler. Euler was the 
central figure of continental mathematics in the middle years of the 18th 
century. He published an enormous number of books and articles on 
mathematics, mechanics, optics, astronomy, navigation, hydrodynamics, 
technical matters such as artillery and shipbuilding, and very many 
other topics. He maintained this impressive productivity despite losing 
the sight of one eye in 1735 and becoming completely blind in 1766. 
His position at the academies involved him in many other tasks besides 
scientific research, such as advice on the performance of new inventions 
as fire-engines and pumps, and on technological enterprises like canal
building and the construction of water-works in the park of the royal 
palace Sans Souci of Prussia's Frederick the Great. 

Euler's greatest influence on the calculus and on analysis in general 
was through his great textbooks, in which he gave analysis a definitive 
form, which it was to keep until well into the 19th century. These 
textbooks, written in Latin, were: Introductio ad analysin infinitorum 
(' Introduction to the analysis of infinites ': 1748a), Institutiones calculi 
differentialis (' Textbooks on the differential calculus': 1755b), and 
lnstitutiones calculi integralis (' Textbooks on the integral calculus' : 
1768-1770a). 

These were the men who created the calculus and shaped the 
Leibnizian tradition in analysis. In sections 2.3-2.8 I shall describe 
the mathematics involved, but first I shall devote the next section to 
an overview of the Newtonian calculus. 
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2.2. Newton's fluxional calculus 

As was mentioned above, Newton's main mathematical discoveries in 
the infinitesimal calculus date from 1664 to 1666. (For a detailed 
account of his achievements in this period, see Newton Papers, vol. 1, 
145--154, and Works2, vol. 1, viii-xiii.) Autodidactically he quickly 
acquired adequate knowledge of existing theories in the field, benefitting 
especially from reading Descartes's La geometrie in van Schooten's 
edition with commentaries, and from the works of Wallis. Starting from 
these studies he developed in these fruitful two years his fluxional calculus. 

In Newton's discoveries, complex, deep and many-sided as they are, 
a number of central themes may be distinguished. These are: series 
expansions, algorithms, the inverse relationship of differentiation and 
integration, the conception of variables as moving in time, and the doc
trine of prime and ultimate ratios. Although these themes are inter
connectedly present in almost all of his studies in the infinitesimal 
calculus, I shall deal with them separately. 

Newton valued power-series expansions very highly, because they 
provide a means to reduce the analytical formulae of curves to a form 
in which all terms simply consist of a constant times a power of the 
variable. Thus transcendental curves (admitting no algebraic equation), 
as well as algebraic curves with complicated equations, can be repre
sented by much simpler equations (be it with an infinite number of 
terms). Newton saw that this has two great advantages. Firstly, 
series expansion makes it possible to apply rules and algorithms which 
are defined for simple equations only, to a much wider range of curves. 
In particular, the relation 

1 J xn dx n+ 1 xn+1, (2.2.1) 

which was known in various forms by the 1660s (see sections 1.10 and 
1.11) can be used, in combination with power-series expansions, to 
provide series expressions for the quadratures of almost all curves. 
Secondly, series expansion provides a ready means for the approxima
tion and simplification of formulae through the discarding of higher
order terms-a feature which he used with virtuosity in his applications 
of his mathematical methods to physical problems. 

Newton's most famous series expansion is the' binomial theorem', 
which he found in the winter of 1664-1665 and which states that the 
well-known binomial expansion for integer powers n, 

(2.2.2) 
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can be generalised for fractional powers 0( = plq, in which case the right 
hand side of 

0( 0« 0( - 1) 
(a+x)a=a"+T aa-1x+-

1 
T aa-2x2 + . .. (2.2.3 ) 

is an infinite series. He found the theorem in connection with the 
problem of squaring the circle y = (1 -- x2 )1 /2. He compared the formulae 
(1-.x2)O, (1_x2)1/2, (1_x2)2/2, (1_x2)3/2, (1_x2)4/2, .... 
third, fifth, ... formulae involve no root, and therefore the quadratures 
of the corresponding curves are easily found: 

quadrature of y = (1 - x2
)O is X, } 

quadrature of y = (1 X2)2/2 is x Jix3, 

quadrature of y = (1 - X 2)4 /2 is x - ix3 + !X5. 

(2.2.4 ) 

On examining the coefficients in these expansions, Newton noted that 
the denominators are the odd numbers 1, 3, 5, 7, ... and that the 
numerators are, in the successive expansions, {I}, {I, I}, {1, 2, 1}, 
{I, 3, 3, I}, ... , that is, the numbers in the ' Pascal triangle', which 
he knew could be expressed for successive integral values of n as 

{ 
1 n( n 1) n( n - 1 )( n - 2) } 

, n, 1. 2' 1 . 2 . 3 ,. .. . 

He then guessed that, by analogy, the same expressions would apply 
for fractional values of n. When n = t this yields: 

quadrature of y=(1-x2)l/2 is 

(2.2.5) 

He then saw that this procedure of guessing, or ' interpolating " expan
sions such as (2.2.5) from the scheme of the series (2.2.4) could be 
applied to the equations of the curves as well as to their quadratures, 
and in this way he found that 

(2.2.6 ) 

Not satisfied with the reliability of the interpolation procedure, he 
checked (2.2.6) in two ways. He showed that the product of the right 
hand side of (2.2.6) with itself yields 1 - x 2 (that is, all further coefficients 
in the product series are zero), and he saw that a common method of 
root extraction known as the 'galley method', applied formally to 
1 - x2 , yields the same series. In the same way as with root extraction, 
he used the algorithm of long division to obtain series expansions, for 
instance, 
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1 
= 1 - x + x2 x3 + X4 - ••• , 

+x 
(2.2.7) 

which provided the quadrature of the hyperbola y= 1/(1 +x). He 
also obtained (2.2.7) by assuming that the binomial expansion applied 
when n= --1. 

In the De analysi (1669a), in which these methods of series expan
sions are explained and used, Newton also provides a general rule to 
compute, for a given polynomial equation 

L a.ijxiyi = 0 

between x and y, the first coefficients of the pertaining series 

y= L bixi 

(Papers, vol. 2, 222-247). 

(2.2.8) 

(2.2.9) 

Both in the way that Newton found the binomial theorem and in the 
application of series expansions in general, the relation, which we now 
write as 

1 
f xn dx=-- xn+1 

J n+l' 
(2.2.10) 

plays an important role. He mentioned this 'quadrature of simple 
curves' at the outset of his De analysi: ' RULE 1. Ifaxm/n = y, then 
will (na/(m+n))x(m+n)/n equal the area ABD' (ibid., 206-207; see 
figure 2.2.1). Later in that treatise he gave a general procedure (of 
which rule 1 is a direct consequence) for finding the relation between 
the quadrature of a curve (as AD in figure 2.2.1) and its ordinate. The 
procedure makes it clear that Newton recognised the inverse relation
ship of integration and differentiation (although, of course, he did not use 
these terms). He explains his method by means of an example, from 
which, however, the generality of the procedure is quite clear. He 

A 

Figure 2.2.1. 
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proceeds as follows (ibid., 242-245). In figure 2.2.1 let area ABD = z, 
BD = y and AB = x; let further BfJ = 0 and let BK = v be chosen such 
that area BD8fJ = area BKHb:= ov. Consider, as example, the curve 
for which 

Z .JX3 /2, (2.2.11) 

that is (removing roots to get a polynomial equation), 

then also 
(2.2.13 ) 

from which 
(2.2.14) 

Now by removing the terms without 0, which are equal on both sides 
from (2.2.12), and dividing the remainder by 0, we obtain 

2zv + ov2 = t(3x2 + 3xo + 0 2 ). (2.2.15) 

Now Newton takes B fJ ' infinitely small', in which case, as the 
suggests, v = y and the terms with 0 vanish: 

2zy=!X2. (2.2.16) 

Inserting the value of z from (2.2.11), he obtains 

y = X 1 /2• (2.2.17) 

Clearly the procedure is applicable to all polynomial relations between 
x and z. It consists in essence of calculating the derivative (in this 
case the y) for any algebraic function z of x. 

Newton saw clearly that the problem of quadratures was to be 
approached in this inverse way: by calculating y for all manner of 
algebraic z, he could find all manner of curves (y, x) which are quadrable. 
Indeed, he calculated many such quadrable curves, writing them together 
in extensive lists, which are thus nothing less than the first tables of 
integrals (compare Papers, vol. 1,404-411). 

The essential element in the foregoing procedure is the substitution 
of ' small' corresponding increments 0 and ov for x and z in the equa
tion. In studies on the determination of maxima and minima, tangents 
and curvature, Newton had extensively made use of this method, and 
he had worked out various algorithms for these problems, by which he 
could calculate the slope of the tangent or the curvature in any point of 
an algebraic curve. (In modern terms, he had developed algorithms 
to determine the derivative of any algebrai~ function.) Later he re
formulated these algorithms and their proofs in terms of fluents and 
fluxions, and we shall come back to them after discussing these concepts. l 

I Compare, for instance, Newton 1671a, in Papers, vol. 3, 72-73. 
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The terms' fluents' and' fluxions' indicate Newton's conception 
of variable quantities in analytical geometry: he saw these as ' flowing 
quantities', that is, quantities that change with respect to time. Thus, 
when considering the curve of figure 2.2.1, he would conceive the point D 
as moving along the curve, while correspondingly the ordinate y, the 
abscissa x, the quadrature z or any other variable quantity connected 
with the curve would increase or decrease, or in general change or 
, flow'. He called these flowing quantities 'fluents' (as opposed to 
the constant quantities occurring in the figure or in the problem at 
hand), and he called their rate of change with respect to time their 
, fluxion '. In his earlier researches he indicated fluxions by separate 
letters; in 1671 a he introduced the dot-notation, where the fluxions of 
the fluents x, y, z are X, y, % respectively. 

It should be remarked that the way in which the fluents vary with 
time is arbitrary. Newton often makes, for simplicity, an additional 
assumption about the movement of the variables, supposing that one 
of the variables, say x, moves uniformly, so that x = 1. Such assumptions 
can be made because the values of the fluxions themselves are not of 
interest but rather their ratio, such as y/x, which gives the slope of the 
tangent. By this conception of quantities moving in time Newton 
thought himself able to solve the foundational difficulties inherent in 
considering , small' ,corresponding increments of variables, which are 
so small that we may discard them, and yet are not equal to zero, as we 
want to divide through by them. In his approach to this problem, 
his theory of prime and ultimate ratios, which we shall discuss in section 
2.10, his conception of flowing quantities is essential; through this 
conception he comes very near to a use of limits as foundation of the 
calculus. 

We now return to the algorithms mentioned above. The corres
ponding increments of variables, can be expressed in terms of fluxions : 
let 0 now be an infinitesimal element of time, then the corresponding 
increments of the fluents x, y, z, ... are xo, yo, %0, ... respectively. 
The· ratio of y to x can now be determined in a way which is evident 
in the following example, which Newton gives himself in 1671a (Papers, 
vol. 3, 79-81). Let a curve be given with equation 

x3 - ax2 + axy - y3 = o. 

Substituting x + xo and y + yo for x and y respectively yields 

(x3 + 3xox2 + 3X20 2X + X30 3) (ax2 + 2axox + ax20 2 ) 

+ (axy + axoy + ay ox + axyo2) 

- (y3 + 3yoy2 + 3y 20 2y + y30 3) = O. 

(2.2.18) 

(2.2.19) 
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Deleting x3 - ax2 + axy - y3 as equal to zero from (2.2.18), dividing 
through by 0 and discarding the terms in which 0 is left, yields 

3xx2 - 2axx + axy + ayx - 3yy2 = 0, 

from which the ratio of y and x is easily obtained: 

y 
x 

(2.2.20) 

(2.2.21 ) 

We note that the numerator and the denominator in the result are (apart 
from a sign) the partial derivatives f x and I y of f( x, y) = x3 ax2 + axy -- y3, 
the left hand side of the equation of the curve. Thus 

y 
x 

Ix 
~. 

(2.2.22) 

Indeed, this relation is implicit in the algorithms which, as we mentioned 
before, Newton worked out for problems of maxima and 
minima, and curvature. He even at one time introduced special nota
tions in this connection (see Papers, vo!. 1,289-294), f![ for the 
left hand side of the equation of the curve (with the right hand side zero). 
He then wrote .f![ and f![. for what we would write as xix and yfy res
pectively (the so-called 'homogeneous partial derivatives'), using 
further symbols for homogeneous higher-order partial derivatives oc
curring in connection with curvature. However, the connection of 
Newton's .f![ and f![. with modem partial derivatives should not be 
considered without some qualifications; he defined them formally as 
modifications of the formula f![, and he did not explicitly view f![ as a 
function of two variables which assumes also other values than the zero 
in the equation. 

With these algorithms, and further finesses which we cannot go 
into here, Newton was able to solve what he formulated as one of the 
two fundamental problems in infinitesimal calculus: given the fluents 
and their relations, to find the fluxions. 

The second problem is the converse of the first: given the relation 
of the fluxions, to find the relation of the fluents. Transposed in 
modern terminology, this means: given a differential equation, to find 
its solution. This of course is a much harder problem than the first. 
Newton did more about the problem than formulate it; his integral 
tables, already mentioned, form a means toward its solution, and he also 
studied various individual differential equations (or rather, fluxional 
equations ). 

As we have seen in the previous section, Newton\ calculus was not 
to have the influence which Leibniz's achieved. Therefore, within the 
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space and organisation of this chapter, we must leave it at this short 
summary of the fluxional calculus and some more remarks on its founda
tions in section 2.10, turning now our attention to the more successful 
rival, the Leibnizian calculus. 

2.3. The principal ideas in Leibniz's discovery 

One of the most precious documents of the Leibniz archive at Hanover 
is a set of mathematical manuscripts dated 25, 26 and 29 October, and 
1 and 11 November, 1675. 1 On these sheets Leibniz wrote down his 
thoughts, more or less as they came to him, during a study of that most 
important problem of 17th-century mathematics: to find methods for 
the quadrature of curves. In the course of these studies he came to 
introduce the symbols 'J' and 'd', to explore the operational rules 
which they obey in formulas, and to apply them in translating many 
geometrical arguments about the quadrature of curves into symbols and 
formulas. In short, these manuscripts contain the record of Leibniz's 
, invention' of the calculus. We will discuss them in more detail 
below, but first we will mention three principal ideas which guided him 
in those fateful studies in 1675. 

The first principal idea was a philosophical one, namely Leibniz's 
idea of a characteristica generalis, a general symbolic language, through 
which all processes of reason and argument could be written down in 
symbols and formulas; the symbols would obey certain rules of com
bination which would guarantee the correctness of the arguments. 
This idea guided him in much of his philosophical thinking; it also 
explains his great interest in notation and symbols in mathematics and 
in general his endeavour to translate mathematical statements and 
methods into formulas and algorithms. Thus, in studying the geometry 
of curves, he was interested in methods rather than in results, and 
especially in ways to transform these methods into algorithms per
formable with formulas. In short, he was looking for a calculus for 
infinitesimal-geometrical problems. 

The second principal idea concerned difference sequences. In 
studying sequences aI' a2 , a3 , ••• , and the pertaining difference se
quences bI = a I a2 , b2 = a2 - aa, b3 = a3 a4 , ••• , Leibniz had noted that 

(2.3.1) 

This means that difference sequences are easily summed, an insight 
which he put to good use in solving a problem which Huygens suggested 

1 They are discussed in Hofmann 1949a, and an English translation is given in 
Child 1920a. 

« 
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to him in 1672: to sum the series t + -l + i + -lo +15 + ... , the de
nominators being the so-called 'triangular numbers' r(r + 1 )/2. He 
found that the terms can be written as differences, 

2 2 2 
(2.3.2) 

~(r + 1) = r - r + 
and hence 

n 

---=2.- 2 
n+ 

(2.3.3) 

In particular, the series, when ~ 11 :nmed to infinity has sum 2. This 
result motivated him to study a whole scheme of related sum and 
difference sequences, which he put together in his so-called' harmonic 
triangle' (figure 2.3.1), in which the oblique rows are successive dif
ference sequences, so that their sums can be easily read off from the 
scheme (Leibniz Writings, vol. 5, 405: compare Hofmann 1949a, 12; 
1974a, 20). 

1 

l ~. 

t i t 
!. 1 -& 1. 

12 4, 

i -Jo 1 1 1 
1nl 20 1> 

1 ·10 io . .L .1. i "6 60 30 
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7 42 105 140 105 42 

Figure 2.3.1. 

Leibniz's ' harmonic triangle'. The numbers in the n··th row are 

Surnmations can be read off from the scheme as, for example : 

1 1 1 1 1 1 
3+12+ 30 + 60 + 105+'" 

These results were not exactly new, but they did make Leibniz 
aware that the forming of difference sequences and of sum sequences 
are mutually inverse operations. This principal idea became more 
significant when he transposed it to geometry. The curve in figure 
2.3.2 defines a sequence of equidistant ordinates y. If their distance 
is 1, the sum of the y's is an approximation of the quadrature of the curve, 
and the difference of two successive y's yields approximately the slope 
of the pertaining tangent. Moreover, the smaller the unit 1 is chosen, 
the better the approximation. Leibniz concluded that if the unit could 
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62 2. Newton, Leibniz and the Leibnizian tradition 

o 1 18 
Figure 2.3.2. 

be chosen infinitely small, the approximations would become exact: in 
that case the quadrature would be equal to the sum of the ordinates, 
and the slope of the tangent would be equal to the difference of the 
ordinates. In this way, he concluded from the reciprocity of summing 
and taking differences that the determination of quadratures and tan
gents are also mutually inverse operations. 

Thus Leibniz's second principal idea, however vague as it was in 
about 1673, suggested already an infinitesimal calculus of sums and 
differences of ordinates by which quadratures and tangents could be 
determined, and in which these determinations would occur as inverse 
processes. The idea~lso made plausible that, just as in sequences the 
determination of differences is always possible but the determination 
of sums is not, so in the case of curves the tangents are always easily to 
be found, but not so the quadratures. 

The third principal idea was the use of the ' characteristic triangle' 
in transformations of quadratures. In studying the work of Pascal, 
Leibniz noted the importance of the small triangle cc'd along the curve 
in figure 2.3.3, for it was (approximately) similar to the triangles formed 

Figure 2.3.3. 
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by ordinate, tangent and sub-tangent, or ordinate, normal and sub
normal. The configuration occurs in many 17th-century mathematical 
works; Pascal's use of it concerned the circle. Leibniz saw its general 
use in finding relations between quadratures of curves and other quanti
ties like moments and centres of gravity. For instance, the similarity 
of the triangles yields cc' x Y = cd x n; hence 

cc' x y L cd x n. (2.3.4 ) 

The left hand side can be interpreted as the total moment of the curve 
arc with respect to the x-axis (the moment of a particle with respect to 
an axis is its weight multiplied by its vertical distance to the axis), 
whereas the right hand side can be interpreted as the area formed by 
plotting the normals along the x-axis. 

b 

Figure 2.3.4. 

As an example of Leibniz's use of the characteristic triangle, here is 
his derivation of a special transformation of quadratures which he called 
'the transmutation' and which, for good reasons, he valued highly 
(compare Hofmann 1949a, 32-35 (1974a, 54-60), and Leibniz Writings, 
vol. 5, 401-402). In figure 2.3.4 let the curve Occ'C be given, with 

".,-.. 

characteristic triangle cdc' at c. Its quadrature f2 = OCB, the sum of 
the strips bee' b', can also be considered as the sum of the triangles 
Occ' supplemented by the triangle OBC : 

f2 = L 6.0cc' + 6.0BC. (2.3.5) 
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64 

Now 

2. Newton, Leibniz and the Leibnizian tradition 

/).Occ' = 1cc' x Op 

= 1cd x Os 

(since the characteristic triangle cdc' is similar to /).Osp) 

= 1bqq'b'. (2.3.6) 

Now for each c on Occ'C we can find the corresponding q by drawing the 
tangent, determining s and taking bq = Os. Thus we form a new curve 
Oqq'Q, and we have from (2.3.5) : 

.22=1 (quadrature Oqq'Q)-t-/).OCB. (2.3.7) 

This is Leibniz's transmutation rule which, through the use of the 
characteristic triangle, yields a transformation of the quadrature of a 
curve into the quadrature of another curve, related to the original curve 
through a process of taking tangents. It can be used in those cases 
where the quadrature of the new curve is already known, or bears a 
known relation to the original quadrature. Leibniz found this for 
instance to be the case with the general parabolas and hyperbolas (see 
section 1.3), for which the rule gives the quadratures very easily. He 
also applied his transmutation rule to the quadrature of the circle, m 
which investigation he found his famous arithmetical series for 7T : 

(2.3.8) 

The success of the transmutation rule also convinced him that the 
analytical calculus for problems of quadratures which he was looking 
for would have to cover transformations such as this one by appropriate 
symbols and rules. 

The transmutation rule as Leibniz discovered it in 1673 belongs to 
the style of geometrical treatment of problems of quadrature which was 
common in the second half of the 17th century. Similar rules and 
methods can be found in the works of Huygens, Barrow, Gregory and 
others. Barrow's Lectiones geometricae (1670a), for instance, contain a 
great number of transformation rules for quadratures which, if trans
lated from his purely geometrical presentation into the symbolism and 
notation of the calculus, appear as various standard alogrithms of the 
differential and integral calculus. This has even been used (by J. M. 
Child in his 1920a) as an argument to give to Barrow, rather than Newton 
or Leibniz, the title of inventor of the calculus. However, this view can 
be sustained only when one disregards completely the effect of the 
translation of Barrow's geometrical text into analytical formulas. It 
is the very possibility of the analytical expression of methods, and hence 

Text 15: H. J. M. Bos (1980). “Newton, Leibniz and the Leibnizian Tradition”. In: From
the Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by

I. Grattan-Guinness. Princeton and Oxford: Princeton University Press. Chap. 2,
pp. 49–93.

Summer University 2012: Asking and Answering Questions Page 202 of 479.



-

2.3. The principal ideas in Leibniz's discovery 65 

the understanding of their logical coherence and generality, which was 
the great advantage of Newton's and Leibniz's discoveries. 

It is appropriate to illustrate this advantage by an example. To do 
this, I shall give a translation, with comments, of Leibniz's transmuta
tion rule into analytical formulas. 

The ordinate z of the curve Oqq' Q is, by construction, 

z=y x (2.3.9) 

(note the use of the characteristic triangle). The transmutation rule 
states that, for OB = xo, 

Xo Xo 

J y dx = t J z dx + txoyo· (2.3.10) 
o 0 

Inserting z from (2.3.9), we find 

x, 

J y dx 
o 

x, x, dy 
= t J Y dx - t J x -d dx + txoyo' 

o 0 x 

Hence 
x, x, dy ! Y dx+ ! x dx dx=xoyo, (2.3.11 ) 

so that we recognise the rule as an instance of ' integration by parts'. 
Apart from the indication of the limits of integration (0, xo) along 

the J-sign, the symbolism used above was found by Leibniz in 1675. 
The advantages of that symbolism over the geometrical deduction and 
statement of the rule are evident: the geometrical construction of the 
curve Oqq'Q is described by a simple formula (2.3.9), and the formalism 
carries the proof of the rule with it, as it were. (2.3.11) follows im
mediately from the rule 

d(x y) =x dy+y dx. (2.3.12) 

These advantages, manipulative ease and transparency through the rules 
of the symbolism, formed the main factors in the success of Leibniz's 
method over its geometrical predecessors. 

But we have anticipated in our story. So we return to October 1675, 
when the transmutation rule was already found but not yet the new 
symbolism. 
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2.4. Leibniz's creation of the calculus 

In the manuscripts of 25 October-ll November 1675 we have a close 
record of studies of Leibniz on the problem of quadratures. We find 
him attacking the problem from several angles, one of these. being the 
use of the Cavalierian symbolism' omn.' in finding, analytically (that is, 
by manipulation of formulas) all sorts of relations between quadra·· 
tures. 'Omn.' is the abbreviation of 'omnes lineae', 'all lines'; 
in section 1.10 it was represented by the symbol ' (9 '. 

A characteristic example of Leibniz's investigations here is the follow
ing. In a diagram such as figure 2.4.1 he conceived a sequence of 
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Figure 2.4.1. 

ordinates y of the curve OC; the distance between successive ordinates 
is the (infinitely small) unit. The differences of the successive ordinates 
are called w. OBC is then equal to the sum of the ordinates y. The 
rectangles like w x x are interpreted as the moments of the differences w 
with respect to the axis OD (moment = weight x distance to axis). 
Hence the area OCD represents the total moment of the differences w. 
~ ~ 

OCB is the complement of OCD within the rectangle ODCB, ·so that 
Leibniz finds that ' The moments of the differences about a straight 
line perpendicular to the axis are equal to the complement of the sum 
of the terms' (Child 1920a, 20). The' terms' are the y. Now w is 
the difference sequence of the sequence of ordinates y; hence, con
versely, y is the sum-sequence of the w's, so that we may eliminate y 
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2.4. 'Leibniz's creation of the calculus 67 

and consider only the sequence wand its sum-sequences, which yields: 
, and the moments of the terms are equal to the complement of the sum 
of the sums' (ibid.). Here the 'terms' are the w. Leibniz writes 
this result in a formula using the symbol 'Omn. ' for what he calls 
, a sum'. We give the formula as he gave it, and we add an explana
tion under the accolades; n is his symbol for equality, ' ult. x ' stands 
for ultimus x, the last of the x, that is, and he uses and 
commas where we would use brackets (ibid.) : 

omn. xw n 
~ 

moments of 
the terms w 

total sum of sums 
of the terms (2.4.1 ) 

the sums 

(Compare the form of (2.4.1) with that of (2.3.11).) he 
sees the possibility to obtain from this formula, by various substitutions, 
other relations between quadratures. For instance, of 
xw=a, w=a/x yields 

a a 
omn. a n ult. x, omn. - - omn. omn. -, 

x x 
(2.4.2) 

which he interprets as an expression of the ' sum of the logarithms in 
terms of the quadrature of the hyperbola' (ibid,. 71). Indeed, omn. a/x 
is the quadrature of the hyperbola y = a/x, and this quadrature is a 
logarithm, so that omn. omn. a/x is the sum of the logarithms. 

We see in these studies an endeavour to deal analytically with prob
lems of quadrature through appropriate symbols and notations, as well 
as a clear recognition and use of the reciprocity relation between dif
ference and sum sequences. In a manuscript of some days later, 
these insights are pushed to a further consequence. Leibniz starts here 
from the formula (2.4.1), now written as 

omn. xl n x omn. 1- omn. omn. I. (2.4.3 ) 

He stresses the conception of the sequence of ordinates with infinitely 
small distance: ' . .'. I is taken to be a term of the progression, and x is 
the number which expresses the position or order of the I corresponding 
to it; or x is the ordinal number and I is the ordered thing' (ibid., 80). 
He now notes a rule concerning the dimensions in formulas like (2.4.3), 
namely that omn., prefixed to a line, such as I, yields an area (the 
qUildrature); omn., prefixed to an area, like xl, yields a solid, and so on. 
Such a law of dimensional homogeneity was well-known from the 
Cartesian analysis of curves, in which the formulas must consist of 
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68 2. Newton, Leibniz and the Leibnizian tradition 

terms all of the same dimension. (In (2.4.3) all terms are of thret: 
dimensions, in x 2 + y2 = a2 all terms are of two dimensions; an expression 
like a2 + a is, if dimensionally interpreted, unacceptable, for it would 
express the sym of an area and a line.) 

This consideration of dimensional homogeneity seems to have sug
gested to Leibniz to use a single letter instead of the symbol ' omlfl. " 
for he goes on to write: 'It will be useful to write J for omn, so that 
J I stands for omn. I or the sum of all l's ' (ibid.). Thus the J -sign is 
introduced. 'J' is one of the forms of the letter's' as used in script 
(or italics print) in Leibniz's time: it is the first letter of the word 
summa, sum. He immediately writes (2.4.3) in the new formalism: 

J xl = x J 1-J J I ; 
he notes that 

(2.4.4 ) 

(2.4.5) 

and he stresses that these rules apply for' series in which the differences 
of the terms bear to the terms themselves a ratio that is less than any 
assigned quantity' (ibid.), that is, series whose differences are infinitely 
small. 

Some lines further on we also find the introduction of the symbol' d ' 
for differentiating. It occurs in a brilliant argument which may be 
rendered as follows: The problem of quadratures is a problem of 
summing sequences, for which we have introduced the symbol 'J' 
and for which we want to elaborate a calculus, a set of useful algorithms. 
Now summing sequences, that is, finding a general expression for J y 
for given y, is usually not possible, but it is always possible to find 
an expression for the differences of a given sequence. This finding of 
differences is the reciprocal calculus of the calculus of sums, and there
fore we may hope to acquire insight in the calculus of sums by working 
out the reciprocal calculus of differences. To quote Leibniz's own 
words (ibid., 82) : 

Given I, and its relation to x, to find f I. This is to be obtained 
from the contrary calculus, that is to say, suppose that J 1= ya. 
Let 1= yal d; then just as f will increase, so d will diminish the 
dimensions. But J means a sum, and d a difference. From the 
given y, we can always find yid or I, that is, the difference of the y's. 

Thus the 'd '-symbol (or rather the symbol 'lid') is introduced 
Because Leibniz interprets f dimensionally, he has to write the 'd' 
in the denominator: I is a line, J I is an area, say ya (note the role of 
, a' to make it an area), the differences must again be lines, so we must 
write' yajd '. In fact he soon becomes aware that this is a notational 
disadvantage which is not outweighed by the advantage of dimensional 
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2.4. Leibniz's creation of the calculus 69 

interpretability of J and d, so he soon writes' d(ya) , instead of 'yaJd' 
and henceforth re-interprets 'd' and 'J' as dimensionless symbols. 
Nevertheless, the consideration of dimension did guide the decisive 
steps of choosing the new symbolism. 

In the remainder of the manuscript Leibniz explores his new 
symbolism, translates old results into it and investigates the operational 
rules for J and d. In these investigations he keeps for some to the 
idea that d( uv) must be equal to du dv, but finally he finds the correct 
rule 

d(uv)=,u dv+v duo (2.4.6) 

Another problem is that he still for a long time writes J x, J X2, ••• for 
what he is later to write consistently as J x dx, J x2 dx, . .. . 

A lot of this straightening out of the calculus was still to be done 
after 11 November 1675; it took Leibniz roughly two years to complete 
it. Nevertheless, the Jllanuscripts which we discussed contain the 
essential features of the new, the Leibnizian, calculus: the concepts of 
the differential and the sum, the symbols d and $, their inverse relation 
and most of the rules for their use in formulas. 

Let us summarise shortly the main features of these Leibnizian 
concepts (compare Bos 1974a, 12-35). The differential of a variable y 
is the infinitely small difference of two successive values of y. That is, 
Leibniz conceives corresponding sequences of variables such as y and x 
in figure 2.4.2. The successive terms of these sequences lie infinitely 
close. dy is the infinitely small difference of two successive ordinates y, 
dx is the infinitely small difference of two successive abscissae x, which, 
in this case, is equal to the infinitely small distance of two successive y's. 
A sum (later termed 'integral' by the Bernoullis) like J y dx is the 
sum of the infinitely small rectangles y x dx. Hence the quadrature 
of the curve is equal to J y dx. 

---------- -x 

Figure 2.4.2. 
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70 2. Newton, Leibniz and the Leibnizian tradition 

Leibniz was rather reluctant to present his new calculus to the general 
mathematical public. When he eventually decided to do so, he faced 
the problem that his calculus involved infinitely small quantities, 
which were not rigorously defined and hence not quite acceptable in 
mathematics. He therefore made the radical but rather unfortunate 
decision to present a quite different concept of the differential which 
was not infinitely small but which satisfied the same rules. Thus in 
his first publication of the calculus, the article 'A new method for 

c 

,...£-. ___ -+-c __ x __ ,---" __ _ 
A 8 

Figure 2.4.3. 

maxima and minima as well as tangents' (1684a) in the issue for October 
1684 of the Acta, he introduced a fixed finite line-segment (see figure 
2.4.3) called dx, and he defined the dy at C as the line-segment satisfying 
the proportionality 

y: a=dy: dx, 

a being the length of the sub-tangent, or 

dy=!.. dx. 
a 

(2.4.7) 

(2.4.8 ) 

So defined, dy is also a finite line-segment. Leibniz presented the 
rules of the calculus for these differentials, and indicated some applica
tions. In an article published two years later (1686a) he gave some 
indications about the meaning and use of the J-symbol. This way of 
publication of his new methods was not very favourable for a quick and 
fruitful reception in the mathematical community. Nevertheless, the 
calculus was accepted, as we shall see in the following sections. 

2.5. l' Hopital' s textbook version of the differential calculus 

Leibniz's publications did not offer an easy access to the art of his new 
calculus, and neither did the early articles of the Bernoullis. Still, a 
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2.5. L' H6pital' s textbook on the differential calculus 71 

good introduction appeared surprisingly quickly, at least to the dif
ferential calculus, namely l'H6pital's Analyse (1696a). 

As a good textbook should, the Analyse starts with definitions, of 
variables and their differentials, and with postulates about these dif
ferentials. The definition of a differential is as follows: 'The in
finitely small part whereby a variable quantity is continually 
or decreased, is called the differential of that quantity' (ch. 1). For 
further explanation l'H6pital refers to a diagram (figure 2.5.1), in which, 
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/s I 
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Figure 2.5.1. 

with respect to a curve AMB, the following variables are indicated: 
~ 

abscissa AP=x, ordinate PM=y,chord AM=z, arcAM=s and 
~ 

quadrature AMP=f2. A second ordinate pm ' infinitely close' to PM 
is drawn, and the differentials of the variables are seen to be: dx = Pp, 
dy = mR, dz = Sm, ds = Mm (the chord Mm and the arc Mm are taken 
to coincide) and df2 = MPpm. I'H6pital explains that the 'd' is a 
special symbol, used only to denote the differential of the variable 
written after it. The small lines Pp, mR, ... in the figure have to be 
considered as ' infinitely small'. He does not enter into the question 
whether such quantities exist, but he specifies, in the two postulates, 
how they behave (ibid.) : 

Postulate 1. Grant that two quantities, whose difference is an 
infinitely small quantity, may be used indifferently for each other: 
or (which is the same thing) that a quantity, which is increased or 
decreased only by an infinitely smaller quantity, may be considered 
as remaining the same. 

This means that AP may be considered equal to Ap (or x = x + dx), 
MP equal to mp (y=y+dy), and so on. 

The second postulate claims that a curve may be considered as the 
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72 2. Newton, Leibniz and the Leibnizian tradition 

assemblage of an infinite number of infinitely small straight lines, or 
equivalently as a polygon with an infinite number of sides. The first 
postulate enables I'Hopital to derive the rules of the calculus, for 
instance: 

d(xy) = (x+ dx)(y + dy) - XY} 

=X dy+y dx+dx dy 

=X dy+y dx 

(2.5.1 ) 

, because dx dy is a quantity infinitely small, in respect of the other 
terms y dx and x dy: for if, for example, you divide y dx and dx dy 
by dx, we shall have the quotients y. and dy, the latter of which is in
finitely less than the former' (ibid., ch. 1, para. 5). l'Hopital's concept 
of differential differs somewhat from Leibniz's. Leibniz's differentials 
are infinitely small differences between successive values of a variable. 
I'Hopital does not conceive variables as ranging over a sequence of 
infinitely close values, but rather as continually increasing or decreasing; 
the differentials are the infinitely small parts by which they are increased 
or decreased. 

In the further chapters l'Hopital explains various uses of differentia
tion in the geometry of curves: determination of tangents, extreme 
values and radii of curvature, the study of caustics, envelopes and 
various kinds of singularities in curves. For the determination of 
tangents he remarks that postulate 2 implies that the infinitesimal part 
Mm of the curve in figure 2.5.2, when prolonged, gives the tangent. 
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Figure 2.5.2. 

Therefore Rm : RM, or dy : dx, is equal to y : PT, so that PT = y( dx/dy), 
and the tangent can be constructed once we have determined y dx/dy 
(ibid., ch. 2, para. 9) : 
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2.6. Johann Bernoulli's lectures on integration 73 

Now by means of the difference of the given equation you can 
obtain a value of dx in terms which all contain dy, and if you 
multiply by y and divide by dy you will obtain an expression for 
the sub-tangent PT entirely in terms of known quantities and free 
from differences, which will enable you to draw the required 
tangent MT. 

To explain this, consider for example the curve ay2 7_~ x8. The' dif
ference of the equation' is derived by taking differentials left and 

2ay dy = 3x2 dx. 

dx can now be expressed in terms of dy : 

2ay 
dx= 3x2 dy. 

Hence 

PT 
dx = 2ay = 2ay2 

y 3x2 3x2 ' 

which provides the construction of the tangent. 

(2.5.2) 

(2.5.3 ) 

(2.5.4) 

The 'difference of the equation' is a true differential equation, 
namely an equation between differentials. l'H6pital considers ex
pressions like 'dy/dx' actually as quotients of differentials, not as 
single symbols for derivatives. 

2.6. lohann Bernoulli's lectures on integration 

In 1742, more than fifty years after they were written down, Johann 
Bernoulli published his lectures to I'H6pital on ' the method of integrals' 
in his collected works (Bernoulli 1691a), stating in a footnote that he 
omitted his lectures on differential calculus as their contents were now 
accessible to everyone in I'H6pital's Analyse. His lectures may be 
considered as a good summary of the views on integrals and their use in 
solving problems which were current around 1700. 

Bernoulli starts with defining the integral as the inverse of the 
differential: the integrals of differentials are those quantities from which 
these differentials originate by differentiation. This conception of the 
integral-the term, in fact, was introduced by the Bernoulli brothers
differs from Leibniz's, who considered it as a sum of infinitely small 
quantItIes. Thus, in Leibniz's view, f y dx = fl means that the sum 
of the infinitely small rectangles y x dx equals fl; for Berr.oulli it 
means that dfl = y dx. 

Bernoulli states that the integral ofaxp dx is (a/(p + 1) )xP+l, and he 

Text 15: H. J. M. Bos (1980). “Newton, Leibniz and the Leibnizian Tradition”. In: From
the Calculus to Set Theory, 1630–1910. An Introductory History. Ed. by

I. Grattan-Guinness. Princeton and Oxford: Princeton University Press. Chap. 2,
pp. 49–93.

Summer University 2012: Asking and Answering Questions Page 211 of 479.



-

74 2. Newton, Leibniz and the Leibnizian tradition 

gives various methods usable in finqing integrals; among them is the 
method of substitution, explained by several examples, such as the 
following (1691 a, lecture 1) : 

Suppose that one is required to find the integral of 

(ax+xx) dxJ(a+x). 

Substituting J(a + x) ='y we shall obtain x = yy -- a, and thus 
dx = 2y dy, and the whole quantity 

(ax+xx) dxJ(a+x)=2y 6 dy-2ay4 dy. 

It is now easy and straightforward to integrate this expression; 
its integral isb? - ! ay5 and, after substituting the value of y, we 
find the integral to be ~(x+a)3J(x+a)-!a(x+a)2J(x+a). 

The principal use of the integral calculus, Bemoulli goes on to 
explain, is in the squaring of areas. For this the area has to be con
sidered as divided up into infinitely small parts (strips, triangles, or 
quadrangles in general as in figure 2.6.1). These parts are the dif
ferentials of the areas; one has to find an expression for them 'by 
means of determined letters and only one kind of indeterminate' 
(ibid., lecture 2), that is, an expression f(u) du for some variable u. The 
required area is then equal to the integral J f(u) duo 

Figure 2.6.1. 
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The further use of the method of integrals is in the so-called' inverse 
method of tangents' (ibid., lecture 8). The method, or rather the type 
of problem which Bernoulli has in mind here, originated in the 17th 
century; it concerns the determination of a curve from a given property 
of its tangents. He teaches that the given property of the tangents has 
to be expressed as an equation involving differentials, that is, a dif
ferential equation. From this differential equation the equation of the 
curve itself has to be found by means of the method of integrals. His 
first example is (ibid., lecture 8; see figure 2.6.2) : 

y 

Figure 2.6.2. 

It is asked what kind of curve AB it is whose ordinate BD is 
always the middle proportional between a given line E and the sub
tangent CD (that is, E:BD=BD:CD). Let E=a, AD=x, 
DB=y, then CD=yy: a. Now dy: dx=y: CD=yy/a (that is, 
CD=yy/a); therefore we get the equation y dx=yy dy: a or 
a dx = y dy; and after taking integrals on both sides, we get 
ax = tyy or 2ax = yy; which shows that the required curve AB is 
the parabola with parameter = 2a. 

In the further lectures BernQulli solves many instances of inverse 
tangent problems. He devotes considerable attention to the question 
how to translate the geometrical or often mechanical data of the problem 
into a treatable differential equation. The problems treated in his 
lectures concern, among other things, the rectification (computation of 
the arc-length) of curves, cycloids, logarithmic spirals, caustics (linear 
foci occurring when light-rays reflect or refract on curved surfaces), the 
catenary (see section 2.8 below), and the form of sails blown by the wind. 

2.7. Euler's shaping of analysis 

In the (about) 50 years after the first articles on the calculus appeared, 
the Leibnizian calculus developed from a loose collection of methods 
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for problems about curves into a coherent mathematical discipline: 
Analysis. Though many mathematicians, such as Jean le Rond 
d' Alembert, Alexis Clairaut, the younger generation of Bernoullis, and 
others, contributed to this development, it was in a large measure. the 
work of one man: Leonhard Euler. Not only did Euler contribute 
many new discoveries and methods to analysis, but he also unified and 
codified the field by his three great textbooks mentioned already in 
section 2.1. 

Shaping analysis into a coherent branch of mathematics meant first 
of all making clear what the subject was about. In the period of 
Leibniz, the elder Bernoullis and l'H6pital, the calculus consisted of 
analytical methods for the solution of problems about curves; the 
principal objects were variable geometrical quantities as they occurred in 
such problems. However, as the problems became more complex and 
the manipulations with the formulas more intricate, the geometrical 
origin of the variables became more remote and the calculus changed 
into a discipline merely concerning formulas. Euler accentuated this' 
transition by affirming explicitly that analysis is a branch of mathe
matics which deals with analytical expressions, and especially with 
functions, which he defined (following Johann Bernoulli) as follows: 
, a function of a variable quantity is an analytical expression composed 
in whatever way of that variable and of numbers and constant quantities' 
(1748a, vol. 1, para. 4). Expressions like xn , (b+X)2ax (with constants 
a and b) were functions of x. Algebraic expressions in general, and 
also infinite series, were considered as functions. The constants and 
the variable quantities could have imaginary or complex values. 

Euler undertook the inventorisation and classification of that wide 
realm of functions in the first part of his Introduction to the analysis of 
infinites (1748a). The Introduction is meant as a survey of concepts 
and methods in analysis and analytical geometry preliminary to the 
study of the differential and integral calculus. He made of this survey 
a masterly exercise in introducing as much as possible of analysis without 
using differentiation or integration. In particular, he introduced the 
elementary transcendental functions, the logarithm, the exponential 
function, the trigonometric functions and their inverses without re
course to integral calculus-which was no mean feat, as the logarithm 
was traditionally linked to the quadrature of the hyperbola and the 
trigonometric functions to the arc-length of the circle. 

Euler had to use some sort of infinitesimal process in the Introduction, 
namely, the expansion of functions in power-series (through long divi
sion, binomial expansion or other methods) and the substitution of 
infinitely large or infinitely small numbers in the formulas. A charac
teristic example of this approach is the deduction of the series expansion 
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for aZ (1748a, vol. 1, paras. 114-116), where he proceeds as follows. 
Let a> 1, and let w be an ' infinitely small number, or a fraction so 
small that it is just not equal to zero '. Then 

aw=l+if; 

for some infinitely small number if;. Now put 

if;=kw 

in which k depends only on a; then 

aW = 1 +kw 
and 

w = log (1 + kw) 

if the logarithm is taken to the base a. 

(2.7.1) 

(2.7.2) 

(2.7.3) 

(2.7.4) 

Euler shows that for a = 10 the value of k can be found (approxima .. 
tely) from the common table of logarithms. He now writes 

aiw =(l +kw)i (2.7.5) 

for any (real) number i, so that by the binomial expansion 

iw _ 1 ~ k i( i·- 1) k 2 2 i( i - 1 )( i - 2) k3 3 __ _ 
a - + 1 w+ 1.2 w + 1.2.3 w { .... (2.7.6) 

If z is any finite positive number, then i = z/w is infinitely large, and by 
substituting w = z/i in (2.7.6) we obtain 

aZ=aiw = 1 +{ kz+ lii~2!) k2z 2 + 1(~~ ~~(~;i2) k3z 3 +. ... (2.7.7) 

But if i is infinitely large, (i-l)/i=l, (i-2)/i=1, and so on, and we 
arrive at 

(2.7.8) 

The natural logarithms arise if a is chosen such that k 1. Euler gives 
that value of a up to 23 decimals, introduces the now familiar notation e 
for that number and writes (ibid., para. 123) : 

(2.7.9) 

In the next chapter Euler deals with trigonometric functions. He 
writes down the various sum-formulas and adds: 'Because (sin. Z)2 + 
(cos. z)2= 1, we have, by factorising, (cos. z+ .J -1 . sin. z)(cos. z 
- .J -1 . sin. z) = 1, which factors, although imaginary, nevertheless 
are of immense use in comparing and multiplying arcs' (ibid., para. 132) . 
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He further finds that 

(cos y ± J -1 sin y)(cos z ± J-:::t sin z) = 
cos (y+z):±: sin (y+z), (2.7.10) 

and hence 
(cos z ± J-:::Y sin z)n = cos nz ± J - 1 sin nz, (2.7.11 ) 

a relation usually called ' de Moivre's formula' as it occurs already in 
the work of Abraham de Moivre (see Schneider 1968a, 237-247). 

By expanding (2.7.11) Euler obtains expressions for cos nz and sin nz. 
Now taking z to be infinitely small (so that sin z = z and cos z """" 1 ), 
nz = v finite and hence n infinitely large, he arrives, by methods similar 
to those above, at 

cos v= 1-
v2 v4 v6 

(2.7.12) + + ... , 

v3 'l)o v7 
(2.7.13) SIn v=v- + + ... 

(ibid., para. 134). Some paragraphs later (art. 138) we find, derived 
by similar methods, the identities: 

exp (± v J -1) =cos v + J-:::Y sin v, (2.7.14) 

cosv=t(exp [vJ-l]+exp [-vJ-l]), (2.7.15) 

sinv=2J_l (exp [vJ-l]-exp [-vJ-l]). (2.7.16) 

Euler's Textbooks on the differential calculus (1755b) starts with two 
chapters on the calculus of finite differences and then introduces the 
differential calculus as a calculus of infinitely small differences, thus 
returning to a conception more akin to Leibniz's than to l'Hopital's : 
, The analysis of infinites ... will be nothing else than a special case 
of the method of differences expounded in the first chapter, which 
occurs, when the differences, which previously were supposed finite, 
are taken infinitely small' (1755b, para. 114). He considers infinitely 
small quantities as being in fact equal to zero, but capable of having 
finite ratios; according to him, the equality 0 . n = 0 implies that 0/0 
may in cases be equal to n. The differential calculus investigates the 
values of such ratios of zeros. Euler proceeds to discuss the differentia
tion of functions of one or several variables, higher-order differentiation 
and differential equations. He also obtains the equality 

02V 02V 
-- --oxoy ay ox (2.7.17) 
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for a function V of x and y (though not using this notation, and without 
obtaining a fully rigorous proof; 1755b, paras. 288 ff.). 

In his discussion of higher-order differentiation Euler gives a 
prominent role to the differential coefficients, p, q, r, defined, for a 
function y = f( x), as follows; 

dy dx (2.7.18) 

(where p is the coefficient with which to multiply the constant dx in 
order to obtain dy, so that p is again a function of x); and similarly, 

dp=qdx (so that ddy=q(dx)2), 

dq=r dx (so that dddy=r(dx)3), ... 

(2.7.19) 

(2.7.20) 

These differential coefficients are, though differently defined, equal to 
the first- and higher-order derivatives of the function f. In his textbook 
on the integral calculus he treats higher-order differential equations in 
terms of these differential coefficients, thus, in some measure, the 
way for the replacement of the differential by the derivative as funda·· 
mental concept of the calculus. 

The three-volume Textbooks on the integral calculus (1768--1770a) 
give a magisterial close to the trilogy of textbooks. Here Euler gives a 
nearly complete discussion of the integration of functions in terms of 
algebraic and elementary transcendental functions, he discusses various 
definite integrals (including those now called the beta and gamma 
functions), and he gives a host of methods for the solution of ordinary 
and partial differential equations. 

Apart from determining, through these textbooks, the scope and style 
of analysis for at least the next fifty years, Euler contributed to the 
infinitesimal calculus in many other ways. Two of these contributions 
are worth special emphasis. Firstly, he gave a thorough treatment of 
the calculus of variations, whose beginnings lie in the studies by the 
Bernoullis of the brachistochrone and of isoperimetric problems (see 
section 2.8 below). Secondly, he applied analysis, and indeed worked 
out many new analytical methods, in the context of studies in mechanics, 
celestial mechanics, hydrodynamics and many other branches of natural 
sciences, thus transforming these subjects into strongly mathematised 
form. In the next section I shall describe one example of each of these 
ways. 

2.8. Two famous problems: the catenary and the brachi,ftochrone 

In writing the history of the calculus, it is customary to devote much 
attention to the fundamental concepts and methods. This tends to 
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obscure the fact that most mathematicians spend most of their time 
not in contemplating these concepts and methods, but in using them to 
solve problems. Indeed, in the 18th century the term' mathematics' 
comprised much more than the calculus and analysis, for it ranged from 
arithmetic, algebra and analysis through astronomy;, optics, mechanics 
and hydrodynamics to such technological subject~ as artillery, ship
building and navigation. In this section I discuss two famous problems 
whose solution was made possible by the new methods of the differential 
and integral calculus; in the next section I shall say something about 
what more was made possible through these methods. 

The catenary problem 

The catenary is the form of a hanging fully flexible rope or chain 
(the name comes from catena, which means' chain '), suspended on 
two points (see figure 2.8.1). The interest in this curve originated with 

B 

A 

Figure 2.8.1. 

Galileo, who thought that it was a parabola. Young Christiaan Huygens 
proved in 1646 that this cannot be the case. What the actual form was 
remained an open question till 1691, when Leibniz, Johann Bernoulli 
and the then much older Huygens sent solutions of the problem to the 
Acta (Jakob Bernoulli, 1690a, Johann Bernoulli 1691b, Huygens 1691a 
and Leibniz 1691a), in which the previous year Jakob Bernoulli had 
challenged mathematicians to solve it. As published, the solutions did 
not reveal the methods, but through later publications of manuscripts 
these methods have become known. Huygens applied with great 
virtuosity the by then classical methods of 17th-century infinitesimal 
mathematics, and he needed all his ingenuity to reach a satisfactory 
solution. Leibniz and Bernoulli, applying the new calculus, found the 
solutions in a much more direct way. In fact, the catenary was a test
case between the old and the new style in the study of curves, and only 
because the champion of the old style was a giant like Huygens, the 
test-case can formally be considered as ending in a draw. 

A short summary of J ohann Bernoulli's solution (he recapitulated it 
in his 1691 a, lectures 12 and 36), may provide an insight in how the 
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p 

Figure 2.8.2. 

new method was applied. In figure 2.8.2 let AB be part of the 

81 

Using arguments from mechanics, he inferred that the forces Fo and F l , 

applicable in B and A to keep the part AB of the chain in position, are 
the same (in direction and quantity) as the forces required to keep the 
weight P of the chain AB in position, suspended as a mass at E on 
weightless cords AE and BE, which are tangent to the curve as in the 
figure. Moreover, the force Fo at B does not depend 9n the choice of 
the position of A along the chain. P may be. put equal to the length s 
of the chain from B to A; Fo = a, a constant; and from composition 
of forces we have 

Hence 
P: Fo=s: a=dx: dy. 

dy a 

dx s 

(2.8.1 ) 

(2.8.2) 

This is the differential equation of the curve, though in a rather 
intractable form as x andy occur implicitly in the arc-length s. Through 
skilful manipulation Bernoulli arrives at the equivalent differential 
equation 

dy (2.8.3 ) 

I shall not follow his argument here in detail, but the equivalence can 
be seen by going backwards and calculating ds from (2.8.3) : 

ds= J(dy2+dx2) = J(x2:a2+ 1) dx= J(:2d~a2r (2.8.4) 
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Hence by integration 

xdx dx 
s=J ----;--( 2 2)= )(x2 _·a2 )=a-. (2.8.5) 

V x -a dy 

Through a substitution x -)- x + a Bernoulli reduces (2.8.3) to 

adx 
dY =")(x2 +2ax), (2.8.6) 

This substitution is needed to move the origin to B. In the differential 
equation (2.8.6) the variables are separated, so that the solution is 

adx 
y = J )(X2 + 2ax)' (2.8.7) 

and the question is left to find out what the right hand side means. 
At that time, in the early 1690s, Bernoulli had not yet the analytical 
form of the logarithmic function at his disposal to express the integral 
as we would (namely, as a log (a + x + )[ x2 + 2ax])). Instead he gave 
geometrical interpretations of the integral, namely, as quadratures of 
curves. He noted that the integral represents the area under the curve 

a2 

z - --:----:-.,---.,. 
- ) ( x2 + 2ax )' 

(2.8.8) 

But he also interpreted (through transformations which again we shall 
not present in detail) the integral as an area under a certain hyperbola 
and even as an arc-length of a parabola. By these last two interpreta
tions, or ' constructions' as this procedure of interpreting integrals was 
called, he proved that the form of the catenary' depended on the quadra
ture of the hyperbola' (we would say: involves only the transcendental 
function the logarithm) and with this proof the problem was, to the 
standards of the end of the 17th century, adequately solved. 

The brachistochrone problem 

If a body moves under influence of gravity, without friction or air 
resistance along a path y (see figure 2.8.3), then it will take a certain 
time, say T y, to move to B starting from rest in A. Ty depends on 
the form of y. The brachistochrone (literally: shortest time) is the 
curve Yo from A to B for which Ty is minimal. It can easily be seen 
that the fall along a straight line from A to B does not take the minimal 
time, so there is a problem: to determine the brachistochrone. 

The problem was publicly proposed by J ohann Bernoulli in the Acta 
of June 1696 (Bernoulli 1696a) and later in a separate pamphlet. Several 
solutions reached the Acta and were published in May 1697 (J ohann 
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A 

Figure 2.8.3. 

83 

Bernoulli 1697a, l'Hopital ,1697a, 1697a and Newton ; 
see Hofmann 1956a, 35-36). Bernoulli's own solution used an analogy 
argument: he saw that the problem could be reduced to the problem 
of the refraction of a light-ray through a medium in which the density, 
and hence the refraction index, is a function of the height Leibniz 
and Jakob Bernoulli first considered the position of two consecutive 
straight line-segments (see figure 2.8.4) such that from P to Q is 
minimal. This is an extreme value problem depending on one variable 
and therefore solvable. Extending this to three consecutive straight 
segments and considering these as infinitely small, they arrived at a 
differential equation for the curve, which they solved. They found, 
as did J ohann Bernoulli, that the brachistochrone is a cycloid (compare 
section 1.8) through A and B with vertical tangent at A. Newton had 
also reached this conclusion. 

Figure 2.8.4. 

The problem of the brachistochrone is very significant in the history 
of mathematics, as it is an instance of a problem belonging to the calculus 
of variations. It is an extreme value problem, but one in which the 
quantity (Ty ), whose extreme value is sought, does not depend on one 
or a finite number of independent variables but on the form. of a curve. 
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J akob Bernoulli proposed, as a sequel to his solution of the brachisto
chrone problem, further problems of this type, namely the so-called 
isoperimetric problems. In the case of the brachistochrone, the class of 
curves considered consists of the curves passing through A and B. 
In isoperimetric problems one considers curves with prescribed length. 
For instance, it could be asked to find the curve through A and B 
with length I and comprising, together with the segment AB, the largest 
area (see figure 2.8.5). Jakob Bernoulli made much progress in finding 
methods to solve this type of problem. Euler unified and generalised 
these methods in his treatise 1744a, thus shaping them into a separate 
branch of analysis. Lagrange contributed to the further development 
of the subject in his 1762a, in which he introduced the concept of varia
tion to which the subject owes its present name-the calculus of varia
tons. On its history, see especially Woodhouse 1810a and Todhunter 
1861a. 

8 
Figure 2.8.5. 

2.9. Rational mechanics 

The catenary and brachistochrone problems were two problems whose 
solution was made possible by the new methods. There were many 
more such problems, and their origins were diverse. The direct 
observation of simple mechanical processes suggested the problems of 
the form of an elastic beam under tension, the problem of the vibrating 
string (which Taylor, Daniel Bernoulli, d' Alembert, Euler and many 
others studied; see section 3.3) and the problem of the form of a sail 
blown by the wind (discussed by the Bernoulli brothers in the early 
1690s). 

More technologically involved constructions suggested the study of 
pendulum motion (which Huygens initiated), the path of projectiles, 
and the flow of water through pipes. Astronomy and philosophy 
suggested the motion of heavenly bodies as a subject for mathematical 
treatment. MathemRtics itself suggested problems too: special dif-
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ferendal equations were generalised, types of integrals were classified 
(for example, elliptic integrals), and so on. Certain types of problems 
began rather quickly to form coherent fields with a unified mathematical 
approach: the calculus of variations, celestial mechanics, hydro
dynamics, and mechanics in general. Somewhat later, probability (on 
which J akob Bernoulli wrote a fundamental treatise Ars conjectandi 
(' The art of guessing '), which was published posthumously as 1713a), 
joined this group of mathematicised sciences, or sub-fields of mathe
matics. 

Something more should be said here about the new branches of 
mechanics (or ' rational mechanics' as it was then called, to distinguish 
it from the study of machines), which acquired its now familiar mathe
maticised form in the 18th century. The basis for this mathematicisao. 
tion was laid by Newton in his Philosophiae naturalis principia mathe
matica (1687a), in which he formulated the Newtonian laws of motion 
and showed that the supposition of a gravitational force inversely 
proportional to the square of the distance yields an appropriate descripo 
tion of the motion of planets as well as of the motion of falling and proo 
jected bodies here on earth. He gave here (among many other things) 
a full treatment of the motion of two bodies under influence of thei r 
mutual gravitational forces, several important results on the 'threc
body problem', and a theory of the motion of projectiles in a resistill f: 
medium. However, a great deal in the way of mathematicisation of the:>;' 
subjects still had to be done after the Principia. Though Newton made 
full use of his new infinitesimal methods in the Principia, he found and 
presented his results in a strongly geometrical style. Thus, although 
implicitly he set up and solved many differential equations, exactly or 
by approximation through series expansions, one rarely finds them 
written out in formulas in the Principia. Neither are his laws of motion 
expressed as fundamental differential equations to form the starting
point of studies in mechanics. 

In the first half of the 18th century, through the efforts of men like 
J akob, J ohann and Daniel Bernoulli, d' Alembert, Clairaut and Euler, 
the style in this kind of study was further mathematicised~that is, the 
methods were transformed into the analytical methods-and they were 
unified through the formulation of basic laws expressed as mathematical 
formulas, differential equations in particular. Other fields were also 
tackled in this way, such as the mechanics of elastic bodies (on which 
J akob Bernoulli published a fundamental article 1694a) and hydro
dynamics, on which father and son Johann and Daniel Bernoulli wrote 
early treatises (1743a and 1738a respectively). 

Great textbooks of analytic mechanics, such as Euler's Mechanica 
(1736a), d'Alembert's 1743a and Lagrange's 1788a, show a gradual 
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process of mathematicisation of mechanics. Though Euler's Mechanica 
was strongly analytical, the formulation of Newton's laws in terms of 
differential equations (now termed' Newton's equations ') occurred for 
the first time only in a study of Euler published in 1752 (see Truesdell 
1960a). These branches of rational mechanics were very abstract 
fields in which highly simplified models of reality were studied. There
fore, the results were less often applicable than one might have hoped. 
These studies served to develop many new mathematical methods and 
theoretical frameworks for natural science which were to prove fruitful 
in a wider context only much later. Still, the interest in the problems 
treated was not entirely internally derived. Thus the proj!;:ctiles of 
artillery suggested the study of motion in a resisting medium, while the 
three-body problem was studied by Newton, Euler and many others, 
especially in connection with the motion of the moon under the influence 
of the earth and the sun, a celestial phenomenon which was of the utmost 
importance for navigation as good moon tables would solve the problem 
of determining a ship's position at sea (the so-called 'longitudinal 
problem '). Indeed, Euler's theoretical studies of this problem, com
bined with the practical astronomical expertise of Johann Tobias Mayer, 
gave navigation, in the 1760s, the first moon tables accurate enough to 
yield a sufficiently reliable means for determining position at sea. 

Central problems in hydrodynamics were the efflux of fluid from an 
opening in a vessel, and the problem of the shape of the earth. The 
latter problem was of philosophical as well as practical importance, 
because Cartesian philosophy predicted a form of the earth elongated 
along the axis, while Newtonian philosophy, considering the earth as a 
fluid mass under the influence of its own gravity and centrifugal forces 
through its rotation, concluded that the earth should be flattened at the 
poles. In practice, the deviation of the surface of the earth from the 
exact sphere form has to be known in order to calculate actual distances 
from astronomically determined geographical latitude and longitude. 
Several expeditions were held to measure one degree along a meridian 
in different parts of the earth, and the findings of these expeditions 
finally corroborated the Newtonian view. 

2.10. What was left unsolved.' the foundational questions 

The problem that was left unsolved throughout the 18th century was 
that of the foundations of the calculus. That there was a problem was 
well-known, and that is hardly surprising when one considers how 
obviously self-contradictory properties were claimed for the funda
mental concept of the calculus, the differential. According to l'H6pital's 
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first postulate, a differential can increase a quantity without increasing 
it. Nevertheless, this postulate is necessary for deriving the rules of 
the calculus, where higher-order differentials (or powers or products of 
differentials) have to be discarded with respect to ordinary differentials, 
and similarly ordinary differentials have to be discarded with respect to 
finite quantities (see (2.5.1)). Also, when Bernoulli takes the differential 
of the area fl to be equal to y dx he discards the small triangle at the top 
of the strip (like MmR in figure 2.5.2) because it is infinitely small with 
respect to y dx. Thus the differentials have necessary but apparently 
self-contradictory properties. This leads to the foundational question 
of the calculus as many mathematicians since Leibniz saw it : 

FQ 1: Do infinitely small quantities exist? 
Most practitioners of the Leibnizian calculus convinced themselves 

in some way or other that the answer to FQ 1 is ' yes', and thus they 
considered the rules of the calculus sufficiently proved. There is, 
however, a more sophisticated way of looking at the a way 
which for instance Leibniz himself adopted (see Bos 53--66). 
He had his doubts about the existence of infinitely small quantities, and 
he therefore tried to prove that by using the differentials as possibly 
meaningless symbols, and by applying the rules of the calculus, one would 
arrive at correct results. So his foundational question was: 

FQ 2: Is the use of infinitely small quantities in the calculus reliable? 
He did not obtain a satisfactory answer. 

In Newton's fluxional calculus (see section 2.2) there also was a 
foundational problem. Newton claimed that his calculus was inde
pendent of infinitely small quantities. His fundamental concept was 
the fluxion, the velocity of change of a variable which may be considered 
to increase or decrease with time. In the actual use of the fluxional 
calculus, the fluxions themselves are not important (in fact they are 
undetermined), but their ratios are. Thus the tangent of a curve is 
found by the argument that the ratio of ordinate to sub-tangent is equal 
to the ratio of the fluxions of the ordinate and the abscissa respectively: 
y!a=y!i: (y is the fluxion of y, i: the fluxion of x; see figure 2.10.1). 

-.---.~------ --_."'----
er 

Figure 2.10.1. 
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He explains that the ratio of the fluxions :fIx is equal to the' prime' 
or 'ultimate' ratio of the augments or decrements of y and x (see 
Newton 1693a ; Works2, vol. 1,141). That is, he conceives correspond
ing increments Bb of x and Ec of y, and he considers the ratio,EclCE for 
Ec and CE both decreasing towards 0 or both increasing from O. 
In the first case he speaks of their ultimate ratio which they have just 
when they vanish into zero or nothingness; in the latter case he speaks 
about their prime ratio, which they have when they come into being from 
zero or nothingness. The ratio :fIx is precisely equal to this ultimate 
ratio of evanescent augments, or equivalently to this prime ratio of 
, nascent' augments. 

Obviously there is a limit-concept implicit in this argument, but it is 
also clear that the formulation as it stands leaves room for doubt. For 
as long as the augments exist their ratio is not their ultimate ratio, and 
when they have ceased to exist they have no ratio. So here too is a 
foundational question, namely: 

FQ 3: Do prime or ultimate ratios exist? 

2.11. Berkeley's fundamental critique of the calculus 

Most mathematicians who dealt with calculus techniques in the early 
18th century did not worry overmuch about foundational questions. 
Indeed, it is significant that the first intensive discussion on the founda
tions of the calculus was not caused by difficulties encountered in working 
out or applying the new techniques, but by the critique of an outsider 
on the pretence of mathematicians that their science is based on secure 
foundations and therefore attains truth. The outsider was Bishop 
George Berkeley, the famous philosopher, and the target of his critique 
is made quite clear in the title of his tract 1734a: 'The Analyst; or a 
Discourse Addressed to an Infidel Mathematician Wherein It Is 
Examined Whether the Object, Principles, and Inferences of the 
Modern Analysis are More Distinctly Conceived, or More Evidently 
Deduced, than Religious Mysteries and Points of Faith'. 

As we have seen, Berkeley indeed had a point. In sharp but captivat
ing words he exposed the vagueness of infinitely small quantities, 
evanescent increments and their ratios, higher-order differentials and 
higher-order fluxions (1734a, para. 4) : 

Now as our Sense is strained and puzzled with the perception of 
Objects extremely minute, even so the Imagination, which Faculty 
derives from Sense, is very much strained and puzzled to frame clear 
Ideas of the least Particles of time) or the least Increments generated 
therein: and much more so to comprehend the Moments, or those 
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Increments of the flowing Quantities in statu nascenti, in their very 
first origin or beginning to exist, before they become finite Particles. 
And it seems still more difficult, to conceive the abstracted Velocities 
of such nascent imperfect Entities. But the Velocities of the 
Velocities, the second, third, fourth and fifth Velocities, &c. exceed, 
if I mistake not, all Humane Understanding. The further the 
Mind analyseth and pursueth these fugitive Ideas, the more it is 
lost and bewildered; the Objects, at first fleeting and minute, soon 
vanishing out of sight. Certainly in any Sense a second or third 
Fluxion seems an obscure Mystery. The incipient Celerity of an 
incipient Celerity, the nascent Augment of a nascent Augment i.e. 
of a thing which hath no Magnitude: Take it in which light you 
please, the clear Conception of it will, if I mistake not, be found 
impossible, whether it be so or no I appeal to the trial of every 
thinking Reader. And if a second Fluxion be inconceivable, what 
are we to think of third, fourth, fifth Fluxions, and so onward 
without end? 

Further on comes the most famous quote from The analyst: 'And 
what are these Fluxions? The Velocities of evanescent Increments? 
And what are these same evanescent Increments? They are neither 
finite Quantities, nor Quantities infinitely small nor yet nothing. May 
we not call them the Ghosts of departed Quantities?' (para. 35). 
Berkeley also criticised the logical inconsistency of working with small 
increments which first are supposed unequal to zero in order to be 
able to divide by them, and finally are considered to be equal to zero in 
order to get rid of them. 

Of course Berkeley knew. that the calculus, notwithstanding the 
unclarities of its fundamental concepts, led, with great success, to 
correct conclusions. He explained this success-which led mathe
maticians to believe in the certainty of their science-by a compensation 
of errors, implicit in the application of the rules of the calculus. For 
instance, if one determines a tangent, one first supposes the characteristic 
tria'ngle similar to the triangle of ordinate, sub-tangent and tangent, 
which involves an error because these triangles are only approximately 
similar. Subsequently one applies the rules of the calculus to find the 
ratio dy/dx, which again involves an error as the rules are derived by 
discarding higher-order differentials. These two errors compensate 
each other, and thus the mathematicians arrive' though not at Science, 
yet at Truth, For Science it cannot be called, when you proceed blind
fold, and arrive at the Truth not knowing how or by what means' 
(1734a, para. 22). 
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2.12. Limits and other attempts to solve the foundational questions 

Berkeley's critique started a long-lasting debate on the foundations of 
the calculus. Before mentioning some arguments in this debate, it may 
be useful to recall how in modern differential calculus the foundational 
question is solved. Modern calculus concerns functions and relates to 
a function f its derivative 1', which is again a function, defined by means 
of the concept of limit: 

f'(x)= lim (f(X+h)-f(X)). (2.12.1) 
Df h-+O h 

The preliminaries for this approach were worked out in the 18th and 
19th centuries; they played different roles in the various approaches to 
the foundational questions which were adopted in that period. It is 
instructive to list the preliminaries. They are: 

(1) the idea that the calculus concerns functions (rather than 
variables) ; 

(2) the choice of the derivati'oe as fundamental concept of the 
differential calculus (rather than the differential) ; 

(3) the conception of the derivative as a function; and 
(4) the concept of limit, in particular the limit of a function for 

explicitly indicated behaviour of the independent variable (thus ex
plicitly lim (p(h)), rather than merely the limit of the variable p). 

k->O 

Of the various approaches to the questions raised by Berkeley's 
critique, we have already seen the one adopted by Euler: he did con
ceive the calculus as concerning functions, but for him the prime concept 
was still the differential, which he considered as equal to zero but capable 
of having finite ratios to other differentials. Obviously this still leaves 
the foundational question QF 3 of section 2.10 unanswered. In fact, 
it does not seem that Euler was too much concerned about foundational 
questions. 

Berkeley's idea of compensating errors was used by others to show 
that, rather than proceeding blindfold, the calculus precisely compen
sates equal errors and thus arrives at truth along a sure and well-balanced 
path. The idea was developed by Lazare Carnot among others. 
Another approach was due to Joseph Louis Lagrange, who supposed 
that for every function f and for every x one can expand f( x + h) in a 
senes 

(2.12.2) 

So Lagrange defined the' derived function' f'(x) as equal to the coeffi
cient of h in this expansion. The idea, published first in 1772a, became 
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somewhat influential later through Lagrange's Thiorie des fonctions 
analytiques (Functions). As a solution of the foundational questions 
the idea is unsound (not every f(x+h) can be so expanded, and even so 
there would be the question of convergence), but in other ways this 
approach was quite fruitful; it conceived the calculus as a theory about 
functions and their derived functions, which are themselves again func
tions. For more details on Carnot and Lagrange, see sections 3.3 and 
3.4. 

Eventually the most important approach towards solving the founda
tional questions was the use of limits. This was advocated with respect 
to the fluxional calculus by Benjamin Robins (see his 1761 a, vot. 2, 49), 
and with respect to the differential calculus by d' Alembert. Robins 
and d' Alembert considered limits of variables as the limiting value which 
these variables can approach as near as one wishes. Thus d' Alembert 
explains the concept in an article 1765a on ( Limite ' in the Encyclopedie 
which he edited with D. Diderot: 'One magnitude is said to be the 
limit of another magnitude when the second may approach thc first 
within any given magnitude, however small, though the first magnitude 
may never exceed the magnitude it approaches'. 

m 

x 
R o A p p 

Figure 2.12.1. 

In the Encyclopedie article ( Differentiel ' (1764a) d' Alembert gave 
a lengthy explanation, with the parabola y2 = ax as example. His argu
ment can be summarised as follows. From figure 2.12.1 it follows that 
MP/PQ is the limit of mO/OM. In formulae, mO/OM=a/(2y+z), 
and algebraically the limit of a/(2y+z) is easily seen to be a/2y. One 
variable can have only one limit, hence MP/PQ = a/2y. Furthermore, 
the rules of the calculus also give dy/dx = a/2y, so that we must conceive 
dy/dx not as a ratio of differentials or as 0/0, but as the limit of the 
ratio of finite differences mO/OM. 
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Robins and d' Alembert were not the first to formulate the concept of 
limit; in fact it occurs already implicitly in ancient Greek mathematics, 
and later Simon Stevin for instance came very close to formulating it 
(see his Works, vo!. 1, 229-231). For a very long time after Robins 
and d' Alembert propagated the use of this concept to solve the founda~ 
tional questions, the limit approach was just one among many approaches 
to the problem. The reason why it took so long until the value of the 
limit approach was recognised lay in the fact that Robins and d' Alembert 
considered limits of variables. In that way the concept still involves 
much unclarity (for details, see Baron and Bos 1976a, unit 4) which 
could only be removed once the limit concept was applied to functions 
under explicitly specified behaviour of the independent variable. 

2.13. In conclusion 

In the century which followed Newton's and Leibniz's independent 
discoveries of the calculus, analysis developed in a most impressive way, 
despite its rather insecure foundations, thus making possible a mathe
matical treatment of large parts of natural science. During these de
velopments analysis also underwent deep changes; for Newton and 
Leibniz did not invent the modern calculus, nor did they invent the 
same calculus. It will be useful to recall, in conclusion, the main 
features of both systems, their mutual differences, and their differences 
from the forms of calculus to which we are now used (compare Baron 
and Bos 1976a, unit 3, 55-57). 

Both Newton's and Leibniz's calculi were concerned with variable 
quantztzes. However, Newton conceived these quantities as changing 
in time, whereas Leibniz rather saw them as ranging over a sequence of 
infinitely' close values. This yielded a difference in the fundamental 
concepts of the two calculi; Newton's fundamental concept was the 
fluxion, the finite velocity or rate of change (with respect to time) of the 
variable, while Leibniz's fundamental concept was the differential, the 
infinitely small difference between successive values in the sequence. 

There was also a difference between the two calculi in the conception 
of the integral, and in the role of the fundamental theorem. For Newton 
integration was finding the fluent quantity of a given fluxion; in his 
calculus, therefore, the fundamental theorem was implied in the defini
tion of integration. Leibniz saw integration as summation; hence for 
him the fundamental theorem was not implied in the definition of integra
tion, but was a consequence of the inverse relationship between summing 
and taking differences. However, the Bernoullis re-interpreted the 
Leibnizian integral as the converse of differentiation, so that throughout 
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the 18th century the fundamental theorem was implied in the definition 
of integration. 

Both Newton and Leibniz worked with infinitely small quantities and 
were aware of the logical difficulties inherent in their use. Newton 
claimed that his calculus could be given a rigorous foundation by means 
of the concept of prime and ultimate ratio, a concept akin to (but 
not the same as) the concept of limit. 

Leibniz valued notation very much, and his choice of symbols for 
the calculus proved to be a happier one than Newton's. His use of 
separate letters, 'd' and ' J " indicated the role of differentiation and 
integration as operators; moreover, his symbols were into 
complicated formulas much more easily than were Newton's. In 
general, Leibniz's calculus was the more analytical; Newton's was 
nearer to the geometrical figures, with accompanying arguments in prose. 

These are the principal differences between the two If we 
compare them with the modern calculus, we note three further dif
ferences. Firstly, whereas Newton's and Leibniz's were con
cerned with variables, the modern calculus deals with functions. 
Secondly, the operation of differentiation is defined in the modern 
calculus differently from in the 18th century ; it relates to a function a 
derived function, or derivative, defined by means of the concept of limit. 
Thirdly, unlike 18th-century calculus, modern analysis has a generally 
accepted approach to the problem of the foundation of the calculus 
namely, through a definition of real numbers (instead of the vague 
concept of quantity which had to serve as a basis for analysis before the 
1870s) and through the use of a well-defined concept of limit. The next 
chapter describes much of this future progress. 
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CHAPTER 3 

NICCOLO GurCCIARDINI 

3.1. Introduction 

From the J 660s to the 1680s, Isaac Newton and Gottfried WilheJm Leibni7, 
created what we nowadaY8 recognize as infinitesimal calculus. A st.udy of their 
achievements reveals elements of continuity with previous work 2) as 
well as peculiarities which distinguish their methods and concepts from those which 
are accepted in present day mathematics. The statement it8elf tha.t "Ncwton and 
Leibniz invented the calculus" is problematic. In the first placc, they two 
different versions of calculus, and the problem of comparing the two, of establishing 
equivalences and differences, arises (see Chapter 3.5). In the second place, what do 
we mean by "inventing calculus" in this context? 

The novelty of Newton's and Leibniz's contributions can be briefly characterized 
by pointing out three aspects of their mathematical work: problem-reduction, the 
calculation of areas by inversion of the process for calculating tangents, the creation 
of an algorithm. The "invention of calculus" can thus be conceived as consisting of 
these three contributions. 

Newton and Leibniz realized that a whole variety of problems about the calcu
lation of centres of gravity, areas, volumes, tangents, arclengths, radii of curvature, 
surfaces, etc., that had occupied mathematicians in the first half of the seventeenth 
century, were instances of two basic problems. Furthermore, they fully realized 
that these two problems were the inverse of each other (this is the "fundamental 
theorem" of calculus). They thus understood that the solution of the former, and 
easier, problem could be used to answer the latter. Last but not least, Newton 
and Leibniz developed two efficient algorithms that can be applied in a system
atic and general way. It is thanks to these contributions that Newt.on and Leibniz 
transformed mathematics. 

The peculiarity of Newton's and Leibniz's algorithms is a fact that the historian 
is sometimes led to forget. In fact, both, especially the latter, look very much the 
same as the one we employ nowadays. We can thus be tempted to modernize their 
calculi. As a matter of fact, their calculi are strongly embedded in the culture of 
their own times. We make two major points. Neither Newton's nor Leibniz's calculi 
are about "functions" (see (Bos 1980, 90).) The concept of function emerged only 
later (see Chapter 4). Newton and Leibniz talk in terms of "quantities" rather 
than "functions", and they refer to these quantities, their rates of change, their 
differences, etc., related to specific geometric entities (typically a given curve). Thus 
the reader will notice that in what follows I will always use the term "function" 
in "quotation marks". Furthermore, while we are used to referring to calculus as 
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the continuum of the real numbers, the continuum to which Newton and Leibniz 
refer is geometrical or kinematical. It is by referring to an intuitive geometric or 
kinematic continuum that Newton and Leibniz develop their limit procedures (see 
3.5.2). 

3.2. Newton's method of series and ftuxions 

3.2.1. A mathematician working in isolation. Isaac Newton was born 
into Cl family of small landowners. After receiving an elementary education, he was 
sent to Cambridge, where he matriculated as a sub-sizar in 1661. "Sub-sizars" were 
poor students who worked as servants to the fellows and the rich students. Newton 
raised himself from this condition to become Lucasian Professor, Warden of the 
Mint, Cl member of Parliament and President of the Royal Society. His funeral was 
described by Voltaire as being as full of pomp as those of a king. His success in 
British society was determined by the high esteem which his published scientific 
discoveries aroused. In his secret, unpublished, studies Newton cultivated interests 
that would have ruined his public image. He was involved in alchemical studies, 
and his theological interests, inspired by deep religious feelings, gave him strongly 
critical attitude towards the established Church. 

Some of Newton's greatest scientific discoveries were made during the years 
1665-1667, when Cambridge university was closed because of the plague. Dur
ing these anni mirabiles Newton performed experiments with prisms, convincing 
himself of the composite nature of white light, stated the binomial theorem for frac
tional powers, discovered the calculus of fiuxions and speculated about the moon's 
motion. For complicated reasons, he did not immediately share his mathematical 
results with others. This is only explained in part by the cost of mathematical pub
lications at that time. More decisive was his introverted character that led him to 
keep his thoughts to himself. Furthermore, he was not completely confident about 
the conceptual foundation of his calculus. To these causes which may have hin
dered Newton from publishing his discoveries on calculus, one can add that it was 
a practice of some seventeenth century mathematicians to keep their mathematical 
methods secret. The mathematical tools, which allowed the solution of problems, 
were considered private property, not to be shared too generously with others. Very 
much as painters kept the secrets for obtaining colours for themselves, the mathe
maticians often gave the solution without revealing the demonstration. In 1676 the 
secretary of the Royal Society, Henry Oldenburg, obtained from Newton two let
ters in which some of his mathematical results were summarized. These two letters 
were meant to inform a German philosopher, Gottfried Wilhelm Leibniz, about the 
scope of Newton's achievements. The Philosophiae Naturalis Principia Mathemat
ica (1687), where Newton developed his theory of gravitation, also contained results 
connected with calculus. It was only in 1704 that Newton published a systematic 
treatise on calculus: the De quadratura curvaTwn. This was too late to prevent a 
priority dispute with Leibniz, who had already published his differential calculus 
in 1684. Leibniz was accused of plagiarism by Newton and by the British fellows 
of the Royal Society. Actually he had discovered differential and integral calculus 
in 1672-1676 independently. He therefore asked the Royal Society to withdraw the 
accusation of plagiarism that was circulating in several papers. A committee of 
the Royal Society, guided secretly by Newton, reported that Leibniz was guilty of 
plagiarism. The Newtonian and the Leibnizian schools difFered strongly on a wide 
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range of issues. They maintained different cosmologies, different views on the re
lationships between God and nature, different views on space and time and on the 
conservation laws basic in physics. The priority dispute divided them mathemati
cally. This was a bitter outcome for Leibniz, who had always maintained that the 
demonstrative power of mathematics could end all disputes and promote a more 
harmonious world. 

3.2.2. The binomial series (1664 to 1665). It appears that Newton's in
terest in mathematics began in 1664, when he read Frangois Viete's works (1646), 
Descartes's Geometric (1637) (the second Latin edition (1659-1661) with Frans van 
Schooten's commentaries and Hudde's rule), William Oughtred's Clavis mathemat
icac (1631), and Wallis's Ar'ithmctica Infinitorum (1656). It was from reading this 
selected group of mathematical works in "modern analysis" that Newton learned 
about the most exciting discoveries on analytic geometry, algebra, tangent prob
lems, quadratures and series. After a few months of self-instruction he was able, 
in the winter 16641665, to make his first mathematical discovery: the "binomial 
theorem" for fractional powers. In slightly modernized notation, he stated: 

/ m/n m m/n--], 1 m (rn ) 'fn/n--2 2 (3.1) (a+x)mn a +-a x+ .- ---la x+···. 
n 1.2 n n 

Newton obtained this result generalising by Wallis's "inductive" method for squar
ing the unit circle. The process of interpolation with which Newton determined the 
binomial coefficients is too long to be described in detail here. A good presentation 
of Newton's guesswork can be found in (Edwards 1979, 178-187). Here it will suffice 
to say that Newton arrived at 

(3.2) 
113 11 5 11 7 Ix - -x - -_·x ----x 
23 85 167 

5 1 9 
-x 

1289 

as a series for the area under the curve (1 - x2?/2, a result which allows one to 
calculate the circle's area. He further noted that, since the area under xn and over 
the interval [0, xl is /(n + 1), he could extend the result valid for the area to 
the curve itself to obtain 

(3.3) (1 .- x2)1/2 = 1 _ ~X2 _ ~.T4 __ 1 
2 8 16 

By working through similar examples, Newton guessed the general law of for
mation of the binomial coefficients for fractional powers (see (3.1)). He further 
extrapolated (3.1) to negative powers. The case n -1, 

(3.4) (1 + x)-l = 1 - x + x2 - x3 + x4 - .... 

is particularly relevant. Since the proof of the binomial series rested on shaky 
"inductive" Wallisian procedures, Newton felt the need to verify the agreement 
of the series obtained by applying (3.1) by algebraical and numerical procedures. 
For instance, he applied standard techniques of root extraction to (1 - x2)1/2 and 
standard techniques of "long division" to (1 + x)-l, and he was happy to see that 
he obtained the series (3.3) and (3.4). 

He also knew that the area under (1 +x)--l and over the interval [0, x], or the 
negative of this area if -1 < x < 0, is In(l + x). He could thus express In(1 + x) as 
a power series by termwise integration of (3.4): 

(3.5) 
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Actually the order of Newton's reasoning is quite unexpected: He first obtained 
(3.5) via interpolation, and then he obtained (3.4) by differentiation. The series 
(3.5) allowed Newton to calculate In(l +x), for x ~ O. He carried out his numerieal 
calculations up to more than fifty decimal places! 

We note three aspects of Newton's work on the binomial series. First of all 
he introduced, following Wallis's suggestion, negative and fractional exponents. 
Without this innovative notation (x a / b for \/xa) it would not have been possible 
to interpolate or extrapolate the binomial theorem from positive integers to the 
rationals. Secondly, Newton obtained a method for representing a large class of 
"curves" by a power series. For him curves are thus given not only by finite al
gebraical equations (as for Descartes) but also by infinite series (preferably power 
series) understood by Newton and by his contemporaries as infinite equations. In 
1665 mathematicians had just begun to appreciate the usefulness of infinite series 
as representations of "difficult" curves. Transcendental curves, such as the loga
rithmic curve, can thus be given an "analytical" representation to which the rules 
of algebra can be applied. Before the advent of infinite series, such "functions" had 
no analytic representation, but they were generally defined in geometric terms. It 
should be noted that Newton had a rather intuitive concept of convergence. For 
instance he realized that the binomial series (3.1) can be applied when x is "small". 
Newton developed no rigorous treatment of convergence. 

3.2.3. The fundamental theorem, 1665 to 1669. Newton's first system
atic mathematical tract bears the title De analysi per aequationes nurnero terrni
nOr1Lrn infinitas. Newton began this short summary of his discoveries with the 
enunciation of three rules that can be rendered as follows (Newton 1669, 206 ff.): 

Rule 1: If y axm/ n , then the area under y is (an) / (n + m )xm/n+I. 
Rule 2: If y is given by the sum of more terms (also an infinite number of 

terms), Y YI + Y2 + ... , then the area under Y is given by the sum of the areas of 
the corresponding terms. 

Rule 3: In order to calculate the area under a curve f(x, y) = 0, one must 
expand Y as a sum of terms of the form axm

/
n and apply Rule 1 and Rule 2. Rule 

1 had been stated by Wallis. As we will see, Newton provided a proof of this rule 
based on the fundamental theorem. The binomial series proved to be an important 
tool implementing Rule 3. In several cases, however, the binomial series cannot be 
applied. In the years from 1669 to 1671 Newton devised several clever techniques 
for obtaining a series z = I: bixi , i rational, from an implicit "function" f(x, z) = o. 
He also had a method for "reverting" series. That is, given z I: b;xi, he had a 
method of successive approximations which led to x = I: aiz;. It is reverting the 
power series expansion of z = In(l + x) (formula (3.5)) that he obtained the series 
for x = eZ (see (Edwards 1979, 204-205) and Chapter 4). 

The most general result concerning the squaring of curves (i.e., "integration") 
is the fundamental theorem of calculus which Newton discovered in 1665. Newton's 
reasoning, which resembles Barrow's (see 2.2.4), refers to two particular curves (see 
Fig. 3.1) z = x 3 / a and y = 3x2 

/ a, but it is completely general: y is equal to the 
slope of z and is defined as 

(3.6) 
m(3 

bg = dh n(3' 
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'If 

FIGURE 3.] 

where bg is an ordinate of the curve y, and rn(3 and [2(3 are infinitesimal increments 
of z and x, while dh is a unit length segment. It follows immediately that the area 
bpsg (= [2(3 . bg) and the area /111,)..1/ (= rn(3 . dh) are equal. It was commonplace 
in seventeenth century mathematics to consider the area subtended by a curve to 
be equal to the sum of infinitely many infinitesimal strips such as bpsg. It follows 
that the curvilinear area subtended by y, e.g., d1/m, is equal to the rectangular area 
dhO'p. A knowledge of z then allows us to "square" y, since "the area under y (the 
derivative curve) is proportional to the difference between corresponding ordinates 
of z" (Westfall1980, 127). In Leibnizian terms, Newton proves that the integral of 
the derivative of z is equal to z (see (Newton 1665)). 

A proof of the fact that the derivative of the integral of y is equal to y was 
given by Newton at the end of De analysi as a proof of Rule 1. He proceeded as 
follows. 

Newton considered a curve AD6 (see Fig. 3.2), where AB = x, BD = y and 
the area AB D = z. He defined B (3 = 0 and B K = v such that "the rectangle 
B(3H K ov) is equal to the space B{36D." Furthermore, Newton assumed that 
B(3 is "infinitely small." With these definitions one has that A(3 = x + 0 and the 
area A6(3 is equal to z + ov. At this point Newton wrote: "from any arbitrarily 
assumed relationship between x and z I seek y." He noted that the increment of 
the area OV, divided by the increment of the abscissa 0 is equal to v. But since one 
can assume "B{) to be infinitely small, that is, 0 to be zero, v and y will be equal." 
Therefore, the rate of increase of the area is equal to the ordinate (Newton 1669, 
242244). 
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FIGURE 3.2 

The fundamental theorem allowed Newton to reduce the probems of quadrature 
to the search for primitive "functions". He actually calculated the tangent for 
a great variety of "curves", so compiling what he called "tables of Huents" (in 
Leibnizian terms "table of integrals"). We will see in the next section how he 
deployed the fundamental theorem in order to square curves. 

3.2.4. The method of fluents, fluxions and moments (1670 to 1671). 
While the De analysi was devoted mainly to series expansions and the use of series 
in quadratures, the De rnethodis serierurn et .fluxionv,rn written in 1670-1671 was 
mainly devoted to the use of an algorithm that Newton had developed in the years 
from 1665 to 1666. The objects to which this algorithm is applied are quantities 
which "flow" in time. For instance the motion of a point generates a line and the 
motion of a line generates a surface. The quantities generated by a "flow" are 
called "Huents". Their instantaneous speeds are called "fluxions". The "moments" 
of the fluent quantities are "the infinitely small additions by which those quantities 
increase during each infinitely small interval of time" (Newton 16701671, 80). 
Consider a point which flows with variable speed along a straight line. The distance 
covered at time t is the fluent, the instantaneous speed is the fluxion, and the 
"infinitely" (or "indefinitely") small increment acquired after an indefinitely small 
period of time is the moment. Newton further observed that the moments "are as 
their speeds of How", i.e., as the fluxions) (Newton 1670--1671, 78). His reasoning 
is based on the idea that during an "infinitely small period of time" the Huxion 
remains constant and so the moment is proportional to the fluxion. Newton warns 
the reader not to identify the "time" of the f-luxional method with real time. Any 
fluent quantity whose f-luxion is assumed constant plays the role of fluxional "time". 

Newton did not develop a particularly handy notation in this context. He em
ployed a, b, c, d for constants, v, x, y, z for the f-luents and l, m, n, T for the respective 
fluxions, so that, e.g., m is the fluxion of x. The "indefinitely" (or "infinitely") 
small interval of time was denoted by o. Thus the moment of y is no. It was only 
in the 1690s that Newton introduced the now standard notation where the fluxion 
of x is denoted by x and the moment of ::r; by xo. The fluxions themselves can be 
considered as fluent quantities so that one can seek for the f-luxion of n/m. In the 
1690s Newton denoted the "second" f-luxion of x by x. 

Text 16: N. Guicciardini (2003). “Newton’s Method and Leibniz’s Calculus”. In: A
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x 

FIGURE ~).3 

Newton did not use a single notation for the area undeI' a curve. Generally he 
put words such as "the area of" or a capital Q before the analytical expression of 

the curve. In some cases he used "[~jx'~" for "the area under the curve of equation 

y = ajx2
" (in Leibnir,ian terms this would be J(ajx 2 )dx). As we will see (3.2.6) 

Newton also employed x to denote a Huent quantity whose Huxion is x. The limits 
of integration were either understood by the context or explained by words. 

In the De rnethodis Newton gives the solution of a series of problems. The 
main problems are to find maxima and minima, tangents, curvatures, areas and 
arclengths. The representation of quantities as generated by continuous How allows 
all these problems to be reduced to the following Problems 1 and 2: 

1) Given the length of the space continuously (that at every 
time), find the speed of motion at any time proposed. 
2) Given the speed of motion continuously, find the length of the 
space described at any time proposed. 
(Newton 16701671, 7071) 

The problems of finding tangents, extremal points and curvatures are related to the 
former, and the problems of finding areas and arclengths are related to the latter. 

Imagine a plane curve f (x, y) = 0 to be generated by the continuous How of 
a point P(t). If (x, y) are the Cartesian coordinates of the curve, yjx will be 
equal to tawy, where r is the angle formed by the tangent in P(t) with the x-axis 
(see Fig. 3.3). According to Newton's conception, the point will move during the 
"indefinitely small period of time" with uniform rectilinear motion from P(t) to 
P(t + 0). The infinitesimal triangle indicated in Fig. 3.3 has sides equal to yo and 
.1:0 and so tan r = yojXo = yjx. An extremal point will have yjX = tall{ = O. 
Newton showed that the radius of curvature is given by p (1 + (yjx)2)3/2 j(jjjx2). 

The fact that the finding of areas can be reduced to Problem 2 is a consequence 
of the fundamental theorem. Let z be the area generated by continuous uniform 
How (x = 1) of ordinate y (see Fig. 3.2). The speed of motion is given continuously, 
i.e., it is given by i. By the fundamental theorem y = i. In order to find the area, 
a method is required for obtaining z from y = i. This is Problem 2. It should be 
stressed how the conception of quantities as generated by continuous How allowed 
to Newton to conceive the problem of determining the area under a curve as a 
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special example of Problem 2. The reduction of arclength problems to Problem 2 
depends on the application of Pythagoras's theorem to the moment of arclength 8: 

"50 V(xoP--+:-Cyo)2 (see Fig. :3.:-1). Therefore 8 = 
L------------~c--

The basic algorithm for Problem 1 is given by Newton an example (Newton 
16701671, '78-81). He considered the equation x3 -~ ax2 axy y3 =, O. He 
substituted x+:i;o in place of x and y+yo in place of y. Deleting .<:3 -- ax2 +a:ry-y:' 
as equal to zero and then dividing by 0, he obtained an equation from which he 
cancelled the terms which had 0 as a factor. These terms have the property that 
they "will be equivalent to nothing in respect to the others", since "0 is supposed 
to be infinitely small." At last Newton arrived at 

(3.7) 3xx2 2a:cx + axy + ay:r ~ 3yy2 O. 

This result is achieved by employing a rule of cancellation of higher-order inflnites
imals (equivalent to Leibniz's :r + dx x), according to which, if x is finite and 0 

is an infinitesimal interval of time, then 

(:3.8) x + xo = x. 

Notice that the above example also contains the rules for the fluxiom; of a product 
xy and of x"', respectively: xy + yx and nxn -- 1 x. 

Newton dealt with irrational "functions" as follows. He considered y2 - a2 -

x,;a~~--x2 O. He set z and so obtained y2 a2 - z = 0 and 
a2x2 - = O. Applying the direct algorithm, he determined 2yy - i = 0 and 
2a2 x:r; -- 4xx" - 2iz O. He then eliminated i, restored z = X~X2, and thus 
arrived at 

2yy + (-a2x + 2xx2) / vfaj----x2 = 0 

as the relation sought between y and X. 
Even though Newton presents his "direct" algorithm by applying it to particular 

cases, his procedure can be generalized. Given a curve expressed by a function in 
parametric form, f(x(t),y(t)) = 0, the relation between the fluxions x and y is 
obtained by application of the equation 

f( . . ) of. x + xo, y + yo = ~xo ox 
of 2 
~yo + 0 ( ... ) = o. oy 

After division by 0, the remaining terms in 0 are cancelled. Such a modern re·· 
construction clearly says more than what Newton could express. I used concepts 
and notation, not a.vailable to Newton, for a function f(x(t), y(t)) and for partial 
derivatives. However, with due caution, it can be used to highlight the following 
points. 

1) Newton assumes that, during the infinitesimal interval of time 0, the motion 
is uniform, so that when x flows to x + XO, y flows to y + yo. Therefore, f(x, y) = 
f(x + xo, y + yo). 

2) Newton applies the principle of cancellation of infinitesimals, so in the last 
step the terms in () are dropped. 

Newton's justification for his algorithmic procedure is not much more rigorous 
than those in the works of Pierre Fermat or Hudde. As we will see in the next 
subsection, he was soon to face serious foundational questions. 

Problem 2 is, of course, much more difficult. Given a "fluxional equation" 
f(x, y, x, y) = 0, Newton seeks a relation g(x, y, c) 0 (c constant) such that the 
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o 

FIGURE 3.4 

application of the direct algorithm yields f(x, y, x, y) = 0, In [,eibnil':ian terms, he 
poses the problem of integrating di{f'erential equations, 

Newton has a very general strategy which allows him to solve a great variety 
of such "inverse problems", His strategy is twofold, 1) Either he changes variable 
in order to reduce to a known table of Huents (in Leibnizian terms, a "table of 
integrals") or 2) he deploys series expansion techniques (termwise integration), His 
strategy is a great improvement on the geometrical quadrature techniques of, e,g., 
Huygens, or the techniques of direct summation of, e,g" Wallis (see Chapter 2), 

We can give some of the Havour of Newton's first strategy by looking again at 
the quadrature of the cissoid which had occupied Huygens and Wallis in the late 
1650s (see Chapter 2 and (van Maanen 1991)). Newton used y = as 
the equation for the cissoid (see Fig. 2,21). Problem 2 is solved by the determination 
of a z such that ijX = x 2 /,rax~x2, For k = :1N2va - X, 

(3.9) k = ~/~x _ x2 
:1; 2 

Rearranging, we get 

(3.10) 

In Leibnizian terms, z Joa 
3Vax- x 2dx 2[k(x)]o. The area under the cissoid 

and over the interval [0, a] is therefore three times the area under the semicircle 
with equation y vax - x 2 . Notice that the second term on the right of (3.10) 
vanishes when "integrated" over [0, a], 

When the first strategy failed, Newton tried the second, He generally reduced 
the quadrature to the area under the graph of a circular or a hyperbolic "function", 
such as (a2 X2)±1/2 or a/(b+cx). These he could evaluate by binomial expansion 
and termwise "integration". An example follows. 

Consider a circle with unit length radius (see Fig. 3.4): The moment of the 
arc eo is to the moment of the abscissa xo as 1 to . Applying the binomial 
theorem to (1 x2 )-1/2 and "integrating" termwise, Newton obtained the arcsin 
series 

(3,11) 
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"R.everting" the above series by a process of successive approximations, he obtained 
the power series for sin. 

Newton was able to solve the inverse problem for a large class of fiuxional 
equations. Had he published his tract in 1671, he would have aroused awe in all 
the corners of Europe. 

3.2.5. The geometry of and ultimate ratios (1671 to l'T04). As 
we have seen, Newton employed methods characteristic of the seventeenth-century 
"new analysis" in his early writings. He used series and infinitesimal quantities. 
Infinitesimals entered mainly as moments, momentaneous increments of a "flowing" 
variable quantity. The kinematical approach to the calculus was therefore prevalent 
in Newton's work from the very beginning. For him, reference to our intuition of 
continuous "flow" provided a means to "define" the reference objects of the calculus: 
fiuents, fiuxions and moments (see 3.5.2). 

Up to the composition of the De methodis, Newton described himself with 
pride as a promoter of the seventeenth-century "new analysis". However, in the 
1670s he abandoned the calculus of fluxions in favour of a geometry of fluxions 
where infinitesimal quantities were not employed. He labelled this new method the 
"synthetical method of fiuxions" as opposed to his earlier "analytical method of 
fiuxions" (Newton 1967--1981, 8, 454-455). Some of the results on the synthetical 
method were summarized in Section 1, Book 1 of Principia M athematica entitled 
"The method of prime and ultimate ratios". He wrote: 

whenever in what follows I consider quantities as consisting of 
particles or whenever I use curved line-elements [or minute curved 
lines] in place of straight lines, I wish it always to be understood 
that I have in mind not indivisibles but evanescent divisibles, 
and not sums and ratios of definite parts but the limits of such 
sums and ratios, and that the force of such proofs always rests 
on the method of the preceding lemmas. (Newton 1687/1999, 
441-442) 

He also pointed out that the method of prime and ultimate ratios rested on the 
following Lemma 1: 

Quantities, and also ratios of quantities, which in any finite time 
constantly tend to equality, and which before the end of that 
time approach so close to one another that their difference is 
less than any given quantity, become ultimately equal. (Newton 
1687/1999, 433) 

Newton's ad absurdum proof runs as follows: 

If you deny this, let them become ultimately unequal, and let 
their ultimate difference be D. Then they cannot approach so 
close to equality that their difference is less than the given dif
ference D, contrary to the hypothesis. (Newton 1687/1999,433) 

This principle might be regarded as an anticipation of Cauchy's theory of limits 
(see Chapter 6), but this would certainly be a mistake, since Newton's theory of 
limits is referred to as a geometrical rather than a numerical model. 

The objects to which Newton applies his "synthetical method of fluxions" or 
"method of prime and ultimate ratios" are geometrical quantities generated by 
continuous flow (i.e., "fluents"). While in his early writings Newton represented 
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the fiuents with algebraical symbols, in this new approach he referred directly to 
geometrical figures. These figures, however, are not static, as in classic geometry: 
they must be conceived as "in motion" . 

A typical problem is the study of the limit to which the ratio of two geometrical 
fiuents tends when they vanish simultaneously (Newton used the expression of the. 
"limit of the ratio of two vanishing quantities"). For instance, in Lemma 7 Newton 
shows that given a curveACB (see Fig. 3.5): 

the ultimate ratio of the arc, the chord, and the tangent to one 
another is a ratio of equality. (Newton 1687/1999, 436) 

The proof, which rests on Lemma 1, is based on the fact that a difference between 
~ ~ 

the arc AC B and the tangent AD, or the arc AC B and the chord AB, can be made 
less than any assignable magnitude by taking B sufficiently close to A. 

In Lemma 2 Newton shows that a curvilinear area AabcdE (see Fig. 3.6) can 
be approached as the limit of the inscribed AKbLcM dD or the circumscribed 
AalbmcndoE rectilinear areas. The proof is magisterial in its simplicity. Its struc
ture is still retained in present day calculus text books in the definition of the definite 
integral. It consists in showing that the difference between the areas of the circum
scribed and the inscribed figures tends to zero, as the number of parallelograms 
tends to infinity. In fact this difference is equal to the area of parallelogram ABla: 
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"but this rectangle, because its width AB is diminished indefinitely, becomes less 
than any given rectangle" (Newton 1687/1999, 43:3). 

Notice how in Lemma 2 and Lemma 7 Newton gives a proof of two assumptions 
that were made in the seventeenth-century "new analysis". The "new analysts" 
(Newton himself in his early writings!) had assumed that a curve can be conceived 
as a polygonal of infinitely many infinitesimal sides and that a curvilinear area can 
be conceived as an infinite summation of infinitesimal strip (see Chapter 2). In the 
Georne/;Tia cUTvilinea and in PTincipia, curves are smooth and curvilinear areas are 
not resolved into infinite8imal elements. In the synthetical method of fluxions onc 
always works with finite quantities and limi ts of ratios and sums of finite quantities. 

In De q1Ladmlvxa C1LTVar1Lrn Newton presented a calculus version of the method 
of prime and ultimate ratios (sce (Newton 16911692) and (Newton 1704)). How
ever, he made it clear that such symbolical demonstrations were safdy grounded in 
geometry (sce 3.5.4). Newton began working on this treatise devoted to "integra
tion" in the early 1690s. It is opened by the declaration that calculus is referred 
to as only finite flowing quantities: "Mathematical quantities I here consider not 
as consisting of least possible parts, but as described by a continuous motion. [ ... ] 
These geneses take place in the reality of physical nature and are daily witnessed 
in the rnotion of bodies" (Newton 1704, 122). 

For instance, in order to find the fluxion of y xn by the method of prime and 
ultimate ratios, Newton proceeded as follows: 

Let the q'uantity x fiow 1Lniformly and the fi'Uxion of the q1Lantity 
:];11 needs to be f01Lnd. In the time that the quantity x comes in 
its fiux to be x + 0, the quantity xn will come to be (x o)n, 
that is [when expanded] by the method of infinite series 

(3.12) x" + nox11 1 ~ (n2 n) + ... ; 

and so the augments 0 and n()Xn~l + ~(n2 - n)o2xn - 2 + .. . 
are one to the other as 1 and nxn~l + ~(n2 n)oxn-- 2 + ... . 
Now let those augments come to vanish and their last ratio will 
be 1 to ; consequently the fiuxion of the quantity x is to 
the fiuxion of the quantity :(;11 as 1 to nxn~l. (Newton 1704, 
126128) 

Notice that the increment 0 is finite and that the calculation aims at determining 
the limit of the ratio [(x + 0)" x11 ]/o as 0 tends to zero. 

3.2.6. Higher-order ftuxions and the Taylor series (1687 to 1692). In 
the 1690s Newton introduced a notation for fiuxions and higher-order fiuxions. He 
wrote X, X, X, etc., for first, second, third, etc., fiuxions. He also used the notation 
1; for the iiuent of .x. Dots and accents could be repeated to generate higher-order 
fiuxions and higher-order fiuents. Newton also employed overindexes in order to 

n 
avoid the multiplication of dottl and accents: so he wrote Y for the nth fiuxion of y 
(Newton 1967-1981, 7, H~18 and 162). 

In discussing higher-order fluxions, Newton stated that every ordinate y of a 
curve in the x-y plane can be expressed, assuming x 1, as a power series whose nth 

11 

term is equal to the nth fiuxion of y, i.e., y, divided by n! (see (Newton 1691-1692, 
7, 9698)). He probably arrived at this statement by generalizing his experience 
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with power series (see some examples in 3.2): For all of them this property holds. 
On the other hand, if we assume that y is expressible as a power series such as 
y = a + bx + cx2 + dx3 + e:r;4 + ... , one gets immediately that y(O) cc= a, y(O) b, 
y(O) = 2c, etc. 

Newton thus stated a theorem, nowadays called the TayJor theorem, which was 
to play an important role in the development of eighteenth··century cakulus (sce 
Chapter 4). 

It should be noted that already in the PTincipia , Scholium to ProposiLion 
93, Book 1, and Proposition 10, Book 2) Newton had come close to stating that 
the nth term of a power series expansion is proportional to the nth fluxioH. He had 
actually stated that the first ternl represents the ordinate, the second the tangent 
(or the velocity), the third the curvature (or the acceleration), and so on. In Book 
3 he had also solved the problem of determining "a parabolic curve that will pass 
through any number of given points" by a procedure which is equivalent to the 
so-called Gregory-Newton interpolation formula (a version of which he discovered 
in about 1676). It is indeed remarkable to see how important power serje~ were in 
the work of Newton. From his early research on tangent::; and quadratures to his 
mature development of a theory of higher··order fluxions he used power series as a 
major analytical tool. 

3.3. Leibniz's differential and calculus 

3.3.1. A mathematician and diplomat. GottfriedWilhclrn Leibniz was 
born in Leip7.ig in 1646 from a Protestant family of distant Slavonic origins. His 
father, a professor at Leip7.ig University, died in 1652, leaving CL rich library, where 
the young Gottfried began his scholarly life. He studied philosophy and law in 
the Universities of Leipzig, Jena and Altdorf. He also received some elementary 
education in arithmetic and algebra. Early on he formulated a project for the 
construction of a mathematical language with which deductive rea80ning eould be 
conducted. His manuscripts related to symbolical reasoning reveal anticipation of 
the nineteenth-century algebra of logic. Leibniz never abandoned hiH programme 
of devising a "charaeteristica universalis". As we will see, he conceived his mathe
matical research as part of this ambitious project. More specifically, his interest in 
number sequences played a role in the discovery of differential and integral calculus. 
After receiving his doctorate in 1666 from the University of Altdorf, he entered into 
the service of the Elector of Mainz. From 1672 to 1676 he was in Paris on a diplo
matic mission. Here he met several distinguished scholars, most notably Christiaan 
Huygens, who belonged to the recently established Academie Royale des Sciences. 
It was in Paris, following Huygens's counsel, that Leibniz learned mathematics. 
In a few months he had digested all the relevant contemporary literature and was 
able to contribute original research. His discovery of calculus dates from the years 
1675-1677. He published the rules of differential calculus in 1684 in the Acta CTudi
tOTUm, a scientific journal that he had helped to found in 1682. In 1676 his seminal 
period of study in Paris came to an end. After 1676 Leibniz worked in the service 
of the Court of Hanover. He embarked on political projects, the most ambitious 
of which was the reunification of the Christian churches. Leibniz was very good 
in divulging his mathematical discoveries through scientific journalt: and learned 
correspondence. While Newton kept his method secret, Leibni~ made great efforts 
to promote the use of calculus. In Basel, Paris and Italy several mathematicians, 
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such as the Bernoulli brothers, I'Hopital, Varignon, Manfredi, and Riccati began 
to use and defend the new calculus of sums and differences. A notable advance 
occurred at the turn of the century when .lakob and .lohann Bernoulli extended 
integral calculus and applied it to dynamics. 

Leibniz died in 1716. His funeral was attended only by his relatives and by his 
secretary. Leibniz's intellectual interests spanned from technology to mathematics, 
from physics to logic, from politics to religion. He is remembered as one of the 
profoundest philosophers and onc of the most creative mathematicians of all ages. 

3.3.2. Infinite series (1672 to 1673). Leibniz's interests in combinatorics 
led him to consider finite numerical sequences of differences such as 

(3.13) 

He noted that it is possible to obtain the sum b1 + /;2 + ... + bn as a difference, 
al - an+l.When extrapolated to the infinite, this simple law led to interesting 
results with infinite series. For instance, in order to flnd the sum of the series of 
reciprocals of the triangular numbers 

00 
2 

00 

Lbn , 

n=l 

(3.14) 
n(n + 1) 

n=] 

Leibniz noted that the terms of this series may be expressed using a difference 
sequence by setting 

(3.15) bn 
2 2 --0 = an - an+l· 
n n .. 

Therefore 

(:"\.16) Lbn 
2 

al - as+l = 2-
8+1 n=l 

So, if we "sum" all the terms, we obtain 2. 
Leibniz applied this procedure successfully to several other examples. }or in

stance he considered the "harmonic triangle" (see Fig. 3.7). In the harmonic trian
gle the nth oblique row is the difference sequence of the (n + l)th oblique row. It 
follows, for instance, that 

1 1 1 1 1 
(3.17) 4 + 20 + 60 + 140 + " . = 3' 

This research on inflnite series implies an idea that played a central role in Leib
nizian calculus (see (Bos 1980, 61)). The sum of an infinite number of terms bn can 
be achieved via the difference sequence an. 

3.3.3. The geometry of infinitesimals (1673 to 1674). In 1673 Leibniz 
met with the idea of the so-called "characteristic triangle". He was reading Pascal's 
Lettres de "A. Dettonville" (1659). Pascal, in dealing with quadrature problems, 
had associated a point on a circumference with a triangle with inflnitesimal sides. 
Leibniz generalized this idea. Given any curve (see Fig. 3.8) he associated an 
inflnitesimal triangle to an arbitrary point P. One can think of the curve as a 
polygonal constituted by infinitely many inflnitesimal sides. The prolongation of 
one of the sides gives the tangent to the curve. A line at right angles with one of 
the sides is the normal. Call t and n the length of the tangent and the normal, 
respectively, intercepted between P and the x-axis. From the similarity of the three 
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triangles shown in Fig. 3.8, Leibniz obtained several geometrical transformations 
which allowed him to transform a problem of quadrature into another problem. He 
stated equivalences which he would later write as J kdx = J ydy, J ydx = J (J'dy, 
J yd8 J tdy, J yd8 J ndx (here n is the normal, t is the tangent, k is the 
subnormal and (J' is the subtangent). The most useful transformation obtained by 
Leibniz in 16731674, i.e., the years immediately preceding the invention of the 
algorithm of calculus, is the "transmutation theorem" ((Hofmann 1949,3235) and 
(Bos 1980, 62-64)). 

Leibniz cOllsidered a smooth convex curve OAB (see Fig. 3.9). The problem is 
to determine the area OABG. Let PQN be the characteristic triangle associated 
to the point P. The area OABG can be seen either as the sum of infinitely many 
strips RPQS or as the sum of the triangle OBG plus the sum of infinitely many 
triangles OPQ. We can write 

(3.18) OABG 
1 

RPQS = 20G . GB + L OPQ. 

Let the prolongation of PQ (i.e., the tangent in P) meet the y-axis in T and let 
OW be normal to the tangent. Triangle OTW is thus similar to the characteristic 
triangle PQN; therefore, 

(3.19) 
PN 
OW 

PQ 

OT 
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The area of the infinitesimal triangle OPQ is thus 

(3.20) OPQ = ~OW . PQ = ~OT . P N. 

Leibniz defines a new curve OLlvI, related to the curve OAB through the process of 
taking the tangent. The new curve has an ordinate in R equal to 01'. Geometrically 
the construction is obtained by drawing the tangent in P and determining the 
intersection l' between the tangent and y-axis. In symbols not yet available to 
Leibniz, the ordinate z of the new curve OLM is z = y - ;rdy/d.T. 

Leibniz has thus shown that 

OABG 

(3.21 ) 

~OG. GB + l',OPQ 
2 
1 1 
-OG· GB + l',~OT· PN 
2 2 

~OG. GB + ~OLMG 
22' 

where OLMG is the area subtended by the new curve. In modern symbols, setting 
y as the ordinate of the curve 0 AB (see (Bos 1980, 65)), 

(3.22) l
XO 

1 1 iXO 
1 1 j'XO 1 f'xO dy 

ydx = --XoYo + - zdx = -XoYo + , ydx - x--d:J.:. 
o 2 2 , 0 2 2 0 2 0 dx 

Leibniz's geometrical "transmutation" is thus equivalent to integration by parts. 
He was later (see, e.g., (Leibniz 1714, 408)) to express it as 

(3.23) J ydx = xy - J xdy. 

Leibniz thus achieved, through the geometry of the infinitesimal characteristic tri
angle, a reduction formula for integration. The integration of curve 0 AB is re
duced to the calculation of the area subtended to an auxiliary curve OLM related 
to OAB through the process of taking the tangent, The relation of the tangent 
and quadrature problem began thus to emerge in Leibniz's mind. This work with 
the characteristic triangle also made him aware of the fruitfulness of dealing with 
infinitesimal quantities, 
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3.3.4. The calculus of infinitesimals to 1mb Lcib·· 
niz made the crucial steps which led him to forge the algorithm which is still 
utilized, though in a revised form and in a different conceptual context. He be· 
gan considering two geometric constructions which had played a relevant role in 
seventeenth-century infinitesimal techniques: viz., the characteristic triangle and 
the area subtended to a curve as the sum of infinitesimal strips. 

Let us consider a curve C (see Fig. 3.10) in a Cartesian coordinate system. Leib·· 
niz imagines a subdivision of the :r:-axis into infinitely many infinitesimal intervals 
with extremes Xl, X2, :r;3, etc. He further defines the differential dx =--' Xn-l-I - x n . 

On the curve and on the y-axis one has the corresponding successions SI, s~, 83, 

etc., and YI, Y2, Y3, etc. Therefore ds = Bn-l-l Sn and dy Yn-l-I Yn' 'rhe 
characteristic triangle has sides d:r:, dB, dy. The tangent to the curve C forms an 
angle, with the x-axis such that tan, ~-= dy/dx. The area subtended to the curve 
is equal to the sum of infinitely many i:lLrips ydx. Leibniz initially employed Cav
alieri's symbol "omn.", but he so OD replaced this notation with the now familiar 
.r ydx, where I is a long "s" for "sum of". The first publlshed occurrence of the 
d-sign was in (Leibniz 1684), while the integral appeared in (Leibniz 1686). Three 
aspects of Leibniz's representation of the curve C in termi:l of differentials should 
be noted. 

1) The symbols d and .r applied to a finite quantity x generate an infinitely 
little and an infinitely great quantity, respectively. So, if x is a finite angle or a finite 
line, dx and .r x are, respectively, an infinitely little and an infinitely great angle or 
line. Thus the two symbols d and .r change the order of infinity but preserve the 
geometrical dimensions. Notice that Newton's dot symbol does not do that. If x is 
a finite fiowing line, :i; is a finite velocity. 

2) Since geometrieal dimension is preserved, the symbols d and I can be iterated 
to obtain higher-order infinitesimall:l and higher-order infinites. So ddx is infinitely 
little compared to d2:, and I I 2; is infinitely great eompared to I x. A hierarchy of 
infinitesimals and infinites is thus obtained. Higher-order differentials were denoted 
by repeming the symbol d. It became usual, from the mid-1690i:l, to abbreviate 
dd ... d (n times) by dn

, so that the nth differential of x is dn x. 
3) T'he representation of the curve C in terms of differentials can be achieved 

in a variety of ways. One can chose the progressions of x n , Yn and Sn so that dx 
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is constant or dy is constant or ds is constant. Or one can choose the three above
mentioned progressions such that dx, dy and ds are all variable. For instance, the 
choice of dx constant (i.e., the Xn equidistant) generates successions of Yn and Sn 
where ds and dy are not (generally) constant. As Bos has shown in (Bos 1974) the 
choice of dx constant is equivalent to selecting x as the independent variable and s 
and y as dependent variables. (The Newtonian equivalent is to choose i; constant, 
i.e., x flowing with uniform velocity.) 

Bos stresses, moreover, that the Leibnizian calculus is not concerned with "func
tions" and "derivatives" but with progressions of variable quantities and their dif
ferences. Therefore we should not read, for instance, dy / dx as the derivative of 
y( x) as a function of x but as a ratio between two differential quantities, dy and 
dx. The conception of dy/dx as a ratio renders the algebraical manipulation of 
differentials quite "natural". For instance, the chain rule is nothing more than a 
compound ratio: 

(3.24) 
dy 

dx 

dy dw 

dw dx 

Selecting a variable x so that dx is constant simplifies the calculations since 
ddx 0 and higher-order differentials of x are cancelled. There is another way for 
cancelling higher-order differentials. When onc has a sum A + Cl: and (l; is infinitely 
little in comparison to A, it can be stated that A + Cl: = A. This rule of cancellation 
for higher-order infinitesimals can be stated as follows: 

(3.25) 

Leibniz calculated the difFerential of xy and xn as follows: 

d(xy) = (x + dx)(y + dy) xy = xdy + ydx + dxdy xdy + ydx, 

while 
dxn = (x + dx)n - xn nxn~ldx + dx 2 (- .. ) = nxn~ldx. 

In fact, he assumed that dxdy cancels against xdy + ydx and that dx 2 cancels 
against dx (see 3.5.2 for Leibniz's attempts to justify this procedure). 

Differentials of roots such as y .;j x a can be achieved by rewriting yb = 
x a, taking the differentials, byb~ldy = axa~ldx, and rearranging so that difXCi 

(a/b)dx\lxa~b. A similar reasoning leads to d(l/xa) -adx/xaH . 
Leibniz was clearly proud of the extension of his calculus. In the predifferentia

tion period (see 2.2) roots and fractions were difficult to handle. Leibniz published 
the rules for differential calculus in 1684 in a short and difficult paper which bears 
a title with the English translation A new method for maxima and minima as well 
as tangents) which is neither impeded by fractional nor irrational quantities) and a 
remarkable type of calculus for them. 

Leibniz generally performed integration by reductions of J ydx through meth
ods of variable substitution or integration by parts. These methods could be worked 
out in a purely analytical way. Instead of requiring complex geometrical construc
tions of auxiliary curves (as in the method of transmutation), the new notation 
allowed algebraical manipulations. 

The most powerful method for performing integrations came from the under
standing of the fundamental theorem of calculus. The notation d and J, for differ
ence and sum, immediately suggests the inverse relationship of differentiation and 
integration. Leibniz conceived J ydx as the "sum" of an infinite sequence of strips 
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FIGURE 3.11 

ydx. From his research on infinite series he knew that a sum of an infinite sequence 
can be obtained from the difFerence sequence (see 3.3.2). In order to reduce f ydx 
to a sum of differences, one must find a z such that dz = ydx. Thus, at once, 

(3.26) J ydx J dz = d J z = z. 

Once the inverse relation of differentiation and integration is understood, several 
techniques of integration follow. For instance the rule of transmutation (integration 
by parts) comes by inverting d(xy) xdy + ydx. Wc thus obtain xy = f d(xy) 
f xdx + fydx. 

As an example of Leibniz's inverse algorithm we can consider the applicaton of 
the transmutation theorem to the quadrature of the cycloid generated by a circle 
of radius a rolling along the vertical line x = 2a (sce Fig. 3.11). The ordinate BC 
is equal to BE + EC = BE + AE, where AE is the length 8 of the circular arc. 
Since d8/a = dxr/2ax - x 2 , it follows that 8 = f; adu/V2au~u2. (Nowadays 
we have notation for the elementary transcendental functions and we would write 
8 = a . arccos( (a - x) / a).) Thus the equation of the cycloid is 

(3.27) y = \hax - x 2 + l x 

adu/V2au - u 2 . 

Since dy/dx (2a - x)/V2ax - x 2 , from (3.22), 

(3.28) l xO 

ydx xoYo - l xO 

x 2 dx. 

If we take Xo = 2a and Yo = 7ra, formula (3.28) gives 37ra2 /2 for the area subtended 
under the half-arch (see (Dupont and Roero 1991, 118-119)). 

Leibniz was greatly interested in the applications of his calculus to geometry and 
dynamics. In this applied context he wrote and solved several differential equations. 
This very important subject entered into the world of continental mathematics 
thanks to Leibniz's development of integration techniques (see 11.2.2). 

3.4. Mathematizing force 

The publication in 1687 of Newton's Principia was perhaps the major event of 
seventeenth-century natural philosophy. The reaction of Leibniz to the Principia 
is too complex a subject to be tackled here. To mention just a few points, Leibniz 

,£~-.. -----------------------------------------------------------------------------------------
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disagreed with Newton's cosmology of universal gravitation, with his conceptions 
of absolute time and space, with his dynamical principles, and with his theological 
views (sec (Bertoloni Meli 1993a)). It is of interest for us that Leibniz and his 
school were critical of Newton's mathematical methods in dynamics. 

Even though Newton was one of the discoverers of calculus, he made explicit 
use of it in only a few isolated propositions in the Pr-incipia. Instead he employed 
the synthetical method of fiuxions, i.e., the method of prime and ultimate ratios 
(3.2.5). Limits of ratios and limits of sums, as well as infinitesimals of various 
orders, occur very often in his geomcLrical dynamics. A "translation" into the 
language of calculus thus might appear trivial. However, the mathematicians who, 
at the beginning of the eighteenth century, set themselves the task of applying the 
calculus to Newton's dynamics (most notably Pierre Varignon, Jakob Hermann, 
and Johann Bemoulli) had difficult problems to surmount. In some cases, the 
geometrical demonstrations of the Pr-incipia can be translated almost at once into 
calculus concepts; in other cases, this translation is complicated, unnatural, or even 
pro blcmatic. 

Today, we take it for granted that calculus is a better suited tool than geom
etry for dealing with dynamics. But at the beginning of the eighteenth century, 
the choice of mathematical methods to be applied to dynamics was problematic. 
Newton's mathematization of dynamics was mainly, even though not exclusively, 
geometrical and several members of the Newtonian school, up to Colin Maclaurin 
and Matthew Stewart at the middle of the eighteenth century followed Newton 
from this point of view (see (Guicciardini 1989)). 

Before writing the Pr-incipia, Newton had already turned his attention toward 
geometrical methods. In the 1670s he was led to distance himself from his early 
highly analytical mathematical research. Newton began to criticize modern math
ematicians: He stressed the mechanical character of modern algebraical methods, 
their utility only as heuristic tools and not as demonstrative techniques, and the 
lack of referential clarity of the concepts employed. By contrast, he character
ized the "geometry of the Ancients" as simple, elegant, concise, adherent to the 
problem posed, and always interpretable in terms of existing objects. Needless 
to say, notwithstanding Newton's rhetorical declaration of continuity between his 
method!:) and the methods of the "Ancients," his geometrical dynamics is a wholly 
seventeenth-century affair. 

The reasons that induced this champion of analytics, series, infinitesimals and 
algebra to spurn his analytical research are complex. They have to do with founda
tional worries about the nature of infinitesimal quantities as well as with his desire 
to find in geometry a unifying principle of techniques which grew wildly in his early 
writings. They also have to do with his dislike of Descartes, towards anything 
Cartesian, and with his admiration for the geometrical methods of Huygens (see 
(West fall 1980, 377-381)). 

But other factors combined to give to the Pr-incipia the geometrical form we 
know. A sixteenth-century approach to natural philosophy, exemplified in the works 
of Johannes Kepler and Galileo Galilei, saw the Book of Natur-e as written in circles 
and triangles, not in equations. Furthermore, the community of natural philoso
phers to which Newton addressed the Principia was trained in geometry, certainly 
not in calculus: In 1687 almost a still unpublished discovery. It would have been 
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hopelessly difficult for them to understand a completely new dynamics expressed 
into a completely new language. 

Another important factor that led Newton to use geometry in dynamics has 
to do with the relative weakness of calculus in 1687. Newton knew how to apply 
calculus to the simplest problems. We have manuscripts in which he writes fiuxional 
(i.e., differential) equations of motion for the one-body problem ((Newton 1691--
1692, 122-129) and (Guicciardini 1999)). However, universal gravitation allows 
perturbed motions in planetary orbits. The possibility of mathematizing fine details 
of planetary motions (such as the precession of equinoxes) or planetary shapes and 
tides was crucial for Newton and his followers. The calculus was not yet powerful 
enough to allow such dynamical studies. Geometry on the other hand offered a 
means to tackle these problems, at least at a qualitative level (see (Greenberg 
1995)). 

Employing the geometry of prime and ultimate ratios, refusing the new anal
ysis in favour of the synthetical method of fiuxions, was not therefore a defensive, 
backward move, but rather it was seen by Newton as a progressive move, a choice 
of a more powerful method. Newton believed this method was better, both from a 
foundational point of view and from a demonstrative point of view. 

Let us consider, as an example of Newton's geometrical techniques in dynamics, 
the treatment of Kepler's area law of planetary motions, i.e., Proposition 1 of Book 
1 of the Principia. This proposition states that Kepler's area law holds for any 
central force. Newton's geometric proof is based on an intuitive theory of limits. 
In the Principia we read: 

The areas which bodies made to move in orbits describe by radii 
drawn to an unmoving centre of forces lie in unmoving planes 
and are proportional to the times. (Newton 1687/1999, 444) 

Newton's proof is as follows. Divide the time into equal and finite intervals, 
6.tl, 6.t2 , 6.t 3 , etc. At the end of each interval the force acts on the body "with 
a single but great impulse" (ibid.) and the velocity of the body changes instanta
neously. The resulting trajectory (see Fig. 3.12) is a polygonal ABCDEF. The 
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areas BAB, BBC, BCD, etc., are swept by the radius vector in equal times. Apply
ing the first two laws of motion, it is possible to show that they are equal. In fact, 
if at the end of 6.t], when the body is at B, the centripetal force did not act, the 
body would continue in a straight line with uniform velocity (because of the first 
law of motion). This means that the body would reach c at the end of 6.t2 such 
that AB Bc. Triangles BAB and BBc have equal areas. However, we know that 
at the end of 6.t t , when the body is at B, the centripetal force acts. Where is the 
body at the end 6.t2? In order to answer this question, one has to consider how 
Newton, in Corollary 1 to the laws, defines the mode of action of two forces acting 
"simultaneously": "A body, acted on by two forces simultaneously, will describe 
the diagonal of a parallelogram in the same time as it would describe the sides by 
those forces separately" (ibid., 417). Invoking the above corollary, Newton deduces 
that the body will move along the diagonal of parallelogram BcCV and reaching 
C at the cnd of 6.t2. Cc is parallel to VB, so that triangles BBc and BBC have 
equal area8. It follows that triangles BAB and BBC have equal areas. One can 
iterate this reasoning and construct points C, D, E, F. They all lie on a plane, since 
the force is directed towards B, and the areas of triangles BCD, BDE, BEF, etc., 
arc equal to the area of triangle B AB. The body therefore describes a polygo .. 
nal trajectory which lies on a plane, and the radius vector BP sweeps equal areas 
BAB, BBC, BCD, etc., in equal times. Newton passes from the polygonal to the 
smooth trajectory by a limit procedure based on the method of prime and ultimate 
ratios. He writes: 

Now let the number of triangles be increased and their width de
creased indefinitely, and their ultimate perimeter ADF will [ ... ] 
be a curved line; and thus the centripetal force by which the body 
i8 continually drawn back from the tangent of this curve will act 
continually, while any areas described, BADB and BAFB, which 
are always proportional to the times of the description, will be 
proportional to those times in this case. (Ibid., 145) 

That is to tiay, since Kepler's area law always holds for any discrete model (polygonal 
trajectory generated by an impulsive force) and since the continuous model (smooth 
trajectory generated by a continuous force) is the limit of the discrete models for 
6.t --J> 0, then the area law holds for the continuous model. The area swept by SP 
is proportional to time. 

The Leibnizians proceeded in a completely different way. They tackled Kepler's 
area law from an analytical point of view. After partial results obtained by Jakob 
Herrnann in 1716 (see (G uicciardini 1999)), they obtained the following analytical 
representation for centripetal force. 

The most natural choice is to use polar coordinates (r, e) so that the origin 
co'incides with the centre of force. The radial and transversal acceleration are thus 
expressed by the following two formulae: 

(3.29) a = d2
r _ r (de) 2 

r d{;2 dt 

and 

(3.30) 
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Let A be the area swept out by the radius vector. Then 2dA/dt T2dO/dt and 
2d2 A/ dt 2 = T2 d20 / dt2 + 2T( dT / dt) (de / dt) = Tat. 1<'or a central force, at is equal to 
zero. By integrating (3.30), we obtain dA/dt k (i.e., the areal velocity is equal to 
a constant k). Inversely, if dA/dt = k, it follows by differentiation that at is zero 
(i.e., the force is central). Proposition 1 and its inverse are thus embedded in the 
analytical formulation of tramlVersal and radial acceleration. 

The above demonstration is quite 8traightforward: Mathematically speaking, it 
requires only elementary calculus and the use of polar coordinates. However, such 
a demonstration was only worked out in the 1740s in the works of Daniel Bernoulli, 
Leonhard Euler and Alexis Claude Clairaut on constrained and planetary motion 
(sec (Bertoloni Meli 1993b)). 

This example shows how different the approach of the Leibnizian school was 
to the mathematization of dynamics (sce (Whiteside 1970)). In the Leibnizian 
approach the geometry of infinitesimals is the model from which one can work out 
differential equations. The trajectory is represented locally in terms of differentials. 
The study of the geometrical and dynamical relationships of infinitesimals leads to 
differential equations which can be manipulated algebraically until the result sought 
is achieved. During the algebraical manipulation the geometrical interpretability of 
the symbols is not at issue. On the other hand, Newton adheres to geometry: The 
symbols he employs are always interpreted in geometric terms, and they are actually 
exhibited in the geometrical model, whose geometrical and dynamical properties 
I1re central to the demonstration. 

3.5. Newton versus Leibniz 

3.5.1. "Not-equivalent in practice". It is not easy to establish a compari·
son between Leibniz's and Newton's calculi because Leibniz and Newton presented 
several versions of their calculi. Leibniz never published a systematic treatise but 
rather divulged the differential and integral calculus in a series of papers and let
ters. He changed his mind quite often especially on foundational questions. New
ton abandoned his earlier version of calculus based on moments and opted for the 
method of prime and ultimate ratios. 

In my opinion, Leibniz's and Newton's calculi have sometimes been contrasted 
too sharply. For instance, it has been said that in the Newtonian version variable 
quantities are seen as varying continuously in time, while in the Leibnizian version 
they are conceived as ranging over a sequence of infinitely close values (Dos 1980, 
92). It has also been said that in the fiuxional calculus, "time", and in general 
kinematical concepts such as "fluent" and "velocity", play a role which is not ac
corded to them in differential calculus. It is often said that geometrical quantities 
are seen in a different way by Leibniz and Newton. For instance, for Leibni2 a curve 
is conceived as polygonal~with an infinite number of infinitesimal sides--while for 
Newton curves are smooth (Bertoloni Meli 1993a, 61-73). 

These sharp distinctions, which certainly help us to capture part of the truth, 
are made possible only by simplifying the two calculi. As a matter of fact, they are 
more applicable to a comparison between the simplified versions of the Leibniz;ian 
and the Newtonian calculi codified in textbooks such as l'Hopital's Analyse des 
infiniment petits (1696) and Sirnpson's The DoctTine and Application of Fluxions 
(1750) rather than to a comparison between Newton and Leibniz. It seems to me 
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that important aspects of their mathematics are ignored in these historical inter
pretations. For instance, one should not ignore Leibniz's highly skeptical attitude 
towards the existence of infinitesimals: He would have agreed with Newton that 
variables vary continuously and that curves are smooth. Leibniz explicitly em
ployed infinitesimals as heuristic devices. In much the same way Newton conceived 
"moments" as useful abbreviations which can be eliminated by translating infinites
imalist proofs into rigorous limit-based proofs. Furthermore, Newton's conception 
of "time" as used in the fluxional calculus is highly abstract: He was quite careful 
to avoid any identification of "fluxional time" with "real time". "Fluxional time" is 
just a variable fluent with constant fluxion. So the fluxional calculus is not simply 
founded on kinematics but rather of the abstract concept of continuous variation. 

The diilenmces between the Leibnizian and the Newtonian calculi should not 
be overstressed. In particular, as I shall argue in this section, the differences should 
not be looked for at the syntactic or at the semantic level b'ut rather at the prag
matic level. After all, the two calculi shared a great deal in common both at the 
syntactic level of the algorithm and at the semantic level of the interpretation of 
the algorithm's symbols and the justification of the algorithm's rules. It is possible 
to translate between the Huxional and the differential calculus (through correspon
dences between io and dx). The Leibnizian and the Newtonian mathematicians 
made such translations: They were aware that there is not a single theorem which 
can be proved in onc of the two calculi and which cannot have a counterpart in the 
other. It was exactly this "equivalence" which gave rise to the quarrel over priority. 

In discussing the question of equivalence, A. R. Hall writes quite appropriately: 

Did Newton and Leibniz discover the same thing? Obviously, 
in a straightforward mathematical sense they did: [Leibniz's] 
calculus and [Newton's] fluxions are not identical, but they arc 
certainly equivalent. [ ... ] Yet one wonders whether some more 
subtle element may not remain, concealed, for example, in that 
word "equivalent". I hazard the guess that unless we obliterate 
the distinction between "identity" and "equivalence", then if two 
sets of propositions are logically equivalent, but not identical, 
there must be some distinction between them of a more than 
trivial symbolic character. (Hall 1980, 257-258) 

In order to explore this more subtle and concealed level, where a comparison be
tween Newton's and Leibniz's calculi can be established, S. Sigurdsson has proposed 
to use the category "not-equivalent in practice". Despite the equivalence of the two 
calculi, 

[this] equivalence breaks down once it is realized that competing 
formalisms suggest separa.te directions for research and therefore 
generate different kinds of knowledge. (Sigurdsson 1992, 110) 

Similarly I. Schneider has remarked that "the starting point, the main emphasis and 
the expectations of the two pioneers were not at all identical" (Schneider 1988, 142). 
D. Bertoloni Meli has drawn a comparison between a Newtonian and a Leibnizian 
mathematician and two programmers who use different computer languages: 

Even if the two programmes are designed to perform the same 
operations, the skills required to manipulate them may differ 
considerably. Thus subsequent modifications and developments 
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may follow different routes, and this is precisely what happened 
in Britain and on the Continent in the eighteenth century: de-
spite the initial "equivalence" of fluxions and differentials. 
(Bertoloni Meli 1993a, 202) 

97 

I agree with the approach of the above--mentioned scholars. Rather than look
ing for sharp distinctions between the two calculi, we should look for subtler, less 
evident aspects. Newton and Leibniz had two "mathematically equivalent" symbol-
isms. At the syntactical level they could translate each other's results and, at the 
semantieal level, they agreed on important foundational questions. Nonetheless, 
at the pragmatic level, they oriented their research in different directions. Belong
ing to the Newtonian or to the Leibnizian school meant having different skills and 
different expectations. It meant stressing different lines of research and different 
values. After all, it often happens in history of mathematics that the difference 
between two schools does not lay in logical or conceptual incommemmrabilities but 
rather in more pragmatic aspects: such as the teaching methods, the formation of 
mathematicians, the expectations for future research, the of values which 
support the view that a method of proof is preferable to another, etc. 

In the following three sections, I will look for such a comparison between the 
two schools focusing on three aspects: the conceptual foundations, the algorithms 
and the role of geometry. 

3.5.2. The problem of foundations. The problem of foundations did not 
exists in the seventeenth century in the form which it took in the early nineteenth 
century (see Chapter 6). One of the most important foundational questions faced 
by seventeenth- and eighteenth-century mathematicians was a question concerning 
the referential content of mathematical symbols (typically "do infinitesimals ex-
ists?"). This "ontological" question was followed by a "logical" question about the 
legitimacy of the rules of demonstration of the new analysis (typically "is x -+ dx = x 
legitimate?"). To these two questions Newton and Leibniz gave similar answers. 

They both stated that (a) actual infinitesimals do not exist; they ar-e useful 
fictions employed to abbr-eviate pr-oofs, (b) injinitesimals .should be defi:ned mther- as 
var-ying quantities in a .state of appr-oaching zcr-o, (c) infinilesimals can be completely 
avoided by limit-based pr-oofs, which constitute the 7"igor-ou.s for-mulation of calculus, 
(d) hmit-based pr-oofs ar-e a dir-ect ver-sion of and ar-e th1LS equivalent to the indir-ect, 
ad absurdum Archimedean method of e.Tha1Lstion. 

Once the calculus had been reduced to limit-based proofs, the logical question 
took the form: "Are limit-based proofs legitimate?" In order to answer this question, 
both Newton and Leibniz used the concept of continuity. However, the former 
legitimated limits in terms of our intuition of continuous flow, while the latter 
referred to a philosophical "principle of continuity". 

To the question, "Do differentials exist?", many Leibnizians answered in the 
affirmative. Leibniz did not .. From his very early manuscripts (see (Leibniz 1993)) 
to his mature works, it is possible to infer that for him actual differentials were just 
"fictions", symbols without referential content (sce (Knobloch 1994)). 

Nonetheless the use of these symbols was justified, according to Leibniz, since 
correct results could be derived by employing the algorithm of differentials. As 
Leibniz said, differentials arc "fictions", but "well-founded fictions". Why "well
founded"? Leibniz seems to have had the following answer. He denies the actual 
infinite and actual infinitesimal and conceives the differentials as "incomparable 
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quantities": varying quantities which tend to zero. In his writings of the 1690s 
Leibniz describes these "incomparables" as magnitudes in a fluid state which is 
different from zero but which is not finite. These quantities would give a meaning 
to dy/dx as a ratio between two quantities. In fact, if dy and dx are zero, we have 
the problem of giving a value to 0/0, but if they are finite, they cannot be neglected 
(thUS x + dx = x would be invalid). 

However, in other later writings Leibniz stated that differentials are well
founded, since they are symbolic abbreviations for limit-procedures. From this 
viewpoint, the calculus of differentials is a shorthand for a calculus of finite quan
tities and limits, equivalent to Archimedean exhaustion. He wrote: 

In fact, instead of the infinite or the infinitely small, one can 
take magnitudes that are so large or so small that the error will 
be less than the given error, so that one differs from the style of 
Archimedes only in the expressions, which are, in our method, 
more direct and more apt to the art of discovery. (Leibniz 1701, 
350) 

Newton's approach to the question of the existence of infinitesimals is similar. 
Newton also spoke of infinitesimals ("moments" or "indefinitely little quantities") 
as a shorthand for longer and more rigourous proof given in terms of limits. He 
also speaks of infinitesimals as "vanishing quantities" in such a way that they seem 
to be defined as something in between zero and finite, as quantities in the state 
of disappearing, or coming to existence, in a fuzzy realm in between nothing and 
finite. More often he makes clear that infinitesimals can be replaced by using limits. 

There is not, therefore, a strong conceptual opposition between Leibniz and 
Newton but rather a different attitude. Both agreed that limits provide a rigorous 
foundation for the calculus, but for Leibniz this was more a rhetorical move in 
defence of the legitimacy of the differential algorithm, while for Newton this was 
a programme that should be implemented. While Newton explicitly developed a 
theory of limits (see 3.2.5), Leibniz simply alluded to the possibility of building the 
calculus based on such a theory. Leibniz could live with the infinitesimal quantities; 
Newton made a serious effort in the Pr'incipia and De quadratura to eliminate them 
(see (Lai 1975)), (Kitcher 1973) and (Guicciardini 1999)). 

Leibniz often refers to the heuristic character of calculus in order to justify the 
use of differentials. 1<'or him "metaphysical" questions on the foundations should 
not interfere with the acceptance of calculus. Calculus, according to Leibniz, should 
be seen also as an ars inveniendi: As such it should be valued by its fruitfulness, 
more than by its referential content. According to Leibniz, we can calculate with 
symbols devoid ofreferential content (for instance, with A) provided the calculus 
is structured in such a way as to lead to correct results. Newton could not agree: 
For him mathematics devoid of referential content could not be acceptable. 

The argument of continuity with the "geometry of the Ancients" also played 
a different role in Newton's and in Leibniz's conceptions. Fer Newton, showing 
a continuity between his method and the methods of Archimedes was a crucial 
step in guaranteeing the acceptability of the "new analysiD". Leibniz stressed this 
continuity only in passing references deviced to reassure the dubious or to reply 
to critics. He preferred to stress the novelty and revolutionary character of his 
calculus. 
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The next foundational question concerns the Icgitimacy of proofs based on 
limits. Newton in the Pr-incipia considers the objection that "there is no such thing 
as an ultimate proportion of vanishing quantities, inasmuch as before vanishing the 
proportion is not ultimate, and after vanishing it does not exist at all." However, 
he observes that 

by the same argument it could equally be contended that there 
is no ultimate velocity of a body reaching a certain place at 
which the motion ceases; for before the body arrives at this place, 
the velocity is not the ultimate velocity, and when it arrives 
there, there is no velocity at all. But the answer is easy; to 
understand the ultimate velocity as that with which a body is 
moving, neither before it arrives at its ultimate place and the 
motion ceases, nor after it has arrived there, but at the very 
instant when it arrives, that is, the very velocity with which the 
body arrives at its ultimate place and with which the motion 
ceases. (Newton 1687/1999, 442) 

In order to demonstrate the existence of limits, Newton thus referred to the 
intuition of continuous motion: We know by intuition that natural evolve 
by continuous motion and that in every instant of time there is a velocity of flow. 

Leibni?:, to the contrary, in order to justify the limiting procedures referred 
to a metaphysical principle of continuity which he expressed in several forms and 
contexts (see (Breger 1990).) The "law of continuity" pervades Leibniz's thought. 
He made use of it in cosmology, in physics and in logic. Thus, invoking the law of 
continuity, he affirmed that rest can be conceived as an infinitely little velocity or 
that equality can be conceived as an infinitely little inequality. In 1687 he stated 
this principle as follows in his difficult philosophical prose: 

When the difFerence between two instances in a given series or 
that which is presupposed [in datis] can be diminished until it 
becomes smaller than any given quantity whatever, the corre
sponding difference in what is sought [in quaesitis] (Leibniz 1687, 
52) 

In order to explain the meaning of this general principle, Leibniz refers to the 
geometry of conic sections. An ellipse, he says, may approach a parabola a8 closely 
as onc pleases, so that the difference between the ellipse and the parabola (the 
difference between what "results") may become "less than any given difference", 
provided that one of the foci (what is "posed") is removed far enough away from 
the other. Consequently, the theorems valid for the ellipse can be extrapolated 
to the parabola "considering the parabola as an ellipse when one of the foci is 
infinitely distant, or (in order to avoid this expression) as a figure which differs 
from a certain ellipse less than any given difi'erence" (ibid.). It is the continuous 
dependence between what is "posed" and what "results" that justifies limit-based 
reasonings in which one extrapolates to the parabola what has been proved of 
the ellipses: "In continuous magnitudes the exclusive extremum can be treated as 
inclusive" (Leibniz 1713, :385). 

3.5.3. The two algorithms: Method versus calculus. Leibniz's and New
ton's algorithms are related through correspondences between io and dx. The two 
schools could easily translate each other's results. The main advantage of Leibniz's 

":c;t\~_·-____________________ _ 
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algorithm conccrns the integral sign. With Leibniz's I ydx the integration-variable 
x is explicitly indicated. Newton's [~], Qy and if need to be accompanied by verbal 
statements. This has effects on integration techniques. In the Leibnizian calculus, 
integration by substitutions and by parts can be performed in a more mechanical 
way. This advantage was recognized by the Newtonians, who often employed hybrid 
notations: E.g., Maclaurin wrote F, yx in (Maclaurin 1742, 665 ft'.). 

I. Schneider remarks (Schneider 1988, 143) that in Leibniz's calculus the fun·· 
damental theorem is somehow "built into" the notation itself. Indeed, Leibniz's 
symbols d and I that differentiation and integration arc operations and 
that they are the inverses of each other. 

As Scr'iba has observed (Scriba 196:)), Ncwton emphasized the use of infinite 
series. He expanded fluents into infinite series and "integrated" termwise. Leibniz 
also employed this technique. However, Leibniz preferred integration in "closed" 
form: He looked for quadraturelS expressed not by infinite series but by a finite 
combination of "functions". Newton also obtained "closed" integrations, but it is 
certainly true that for him infinite series played a more prominent role than for 
Leibniz. This "contrast" is thus a matter of emphasis; i.e., it is a contrast whicb 
relates to the values which direct research along different lines. 

Leibniz and Newton had equivalent symbolit:lm but different approaches to no· 
tation. The former attached great importance to the construction of an efficient 
algoritbm and chose symbols carefully. The latter was not particularly concerned 
with notation. Leibniz thought of his calculus as part of a general programme 
leading to the creation of a mathcsis universalis, a language in which all reasoning 
could be framed. He often insisted on the advantages of symbolical reasoning as 
a method of discovery. Nobody, according to Leibniz, could follow a long reason
ing without freeing the mind from the "effort of imagination". The calculus was 
dcviced to favour this "blind reasoning" (cogitatio caeca) (sec (Pasini 1993, 205)). 

Newton, on the other band, did not value mechanical algorithmic reasoning. He 
always spoke of the geometrical demonstrations of Huygens in the highest terms and 
contrasted the elegant geometrical methods of the "Ancients" with the mechanical 
algebraic methods of Descartes (which "provoked to him nausea" (Newton 1967 
] 981,4, 277). He made clear that the symbols of the "analytical method of fluxions" 
had to be interpreted in terms of the "synthetical method". It is this interplay 
between algorithm and geometry that characterizes Newton's method. 

Leibniz's concern with symbolism led him to develop an algebra of differentials 
(sec 3.3.4). His main target was the construction of a set of algorithmic rules: 
a ca lcu lv,s. The rules of calculus are instructions on how to manipulate the d's 
and the 1"s, and they allow algorithmic procedures which are as much as possible 
independent of the initial geometrical context. Leibniz even considered d"x for a 
fractional a. We note that the chain rule in Leibnizian terms takes a form (sce 
formula (3.24)) which is suggested by the notation itself. Everything can be done, 
of course, also in Newton's notation. Newton, however, preferred to give examples 
which show the rule rather than give the rule itself. For instance, he would introduce 
the chain rule with an example, as a set of instructions applied to the solution of a 
particular problem. 

3.5.4. The role of geometry. Newton valued geometrical thinking very 
highly. As we have seen in 3.2.5, he developed a geometrical version of the method 
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of Huxion in the 1670s: He called it the "synthetical method of fIuxions" in op
position to the "analytical method". Newton employed the synthetical method 
especially in dynamics (see 3.4). He often affirmed that the synthetical method was 
more rigorous and that it actually founded and justified the procedures employed in 
the analytical method. This foundation and justification depended on two factors. 

First of all the geometrical method of fluxions offered a model in which the 
analytical method could be interpreted. In the geometrical method the fluents and 
fluxions were exhibited to the eye, their existence in "rerum natura" proved ostcm·· 
sibly. In the second place, Newton conceived his geometrical method of fluxions as 
a generalization of the method of exhaustion of the "Ancient Geometers". 

The role given to geometry by Newton led him to underestimate the importance 
of notation. If a demonstration is legitimated when each step of it is interpretable 
in geometric terms, there is no motivation to develop the algorithm independently 
from geometry. 

The complexity of the relationship between calculus and should be 
stressed here. Newton's method was concerned with "fluxions and series". His 
treatment of series expansions remained a highly analytical in Newtonian 
fluxional works, even when the interpretation of power series as Taylor expansions 
paved the way for a geornctrical, or kincmatical, interpretation of the successive 
terms (e.g., as position, velocity, acceleration, variation of acceleration, etc.). 

On the other hand, Leibniz, notwithstanding his declarations in favour of a 
calculus as "blind reasoning", always embedded his algorithm in a geometrical 
interpretation. Leiblliz's differentials and integrals, as much as Newton's fluents 
and fiuxions, were referred to as geometrical objects. It is revealing that Leibniz 
always paid attention to the geometrical dimensions of the combination of symbols 
occurring in a differential equation. It was by studying the geometry of difIerentials 
(e.g., the characteristic triangle) that Leibniz and his immediate followers could 
extract differential equations. Once a differential equation was obtained, it waR, 
however, handled as much as possible as an algebraic object. From time to time, 
it was necessary to use geometric thinking to interpret the model under study (see 
4.2). Leibnizians had to do so since the rules of the calculus did not allow 
the solution of the problems in geometry and dynamics that they faced (especially 
when transcendental "functions" occurred). A complete algebraization of calculus 
came only in the late eighteenth century. The calculus as "blind reasoning" was 
thus more a. des'idemtum than a reality. Reinterpretation of the symbolism in 
the geometric model was possible, and in many cases necessary, but, contrary to 
Newton's approach, this reinterpretation was not seen as a value, as Cl strategy to 
be pursued. 

The stress on algorithmic improvements and 011 the idea that progress could be 
obtained by symbolical manipulations had momentous consequences in the Leib
nizian school. Continental mathematicians felt that the differential and integral 
calculus opened new field of research. In this field many new results could easily 
be obtained by following as a guideline the analogies suggested by the calculus's 
notation. New generalizations, new relations and formulas could be found. The 
mechanization and standardi"mtion of mathematical research renderecl possible by 
the stress over the algorithm rendered the Leibnizia.n school much more active and 
open to innovation. 
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Leibniz and the Leibnizian mathematicians looked at the geometrical proofs of 
Newton's Pr'incivia with suspicion. One of their aims was to translate Newton's 
geometrical proofs into the language of the differential and integral calculus. In
deed mechanics proved to be a great source of inspiration for Leibnizians. It is 
by trying to develop new mathematical tools for the mechanics of extended bodies 
(rigid, elm.,tic and fluid) that mathematicians such as Varignon, Johann and Daniel 
Bernoulli, Clairaut, Euler, d'Alembert, and Lagrange enriched calculus by devel
oping new concepts and techniques (see (Truesdell1968)). Such important resultf:l 
of eighteenth-century calculus as trigonometric series, partial differential equations, 
and the calculuf:l of variations were to a great extent motivated by the analytical 
approach to dynamics that Leibni2 had sought to promote (sce Chapters 4, 11, and 
12). The eighteenth century was thus characterized by the analytical programme 
emphasized by the Leibnizian school, while the role attributed to geometry by 
Newton and his followers faded away. 
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2 The introduction of v (where v is ultimately to be put equal to y) you 
may regard as something of a red herring! Newton was making the 
assumption that v exists, where f(x) < v < f(x + 0), such that the rec
tangle ov = curvilinear area Bf3(jD; since this is always possible for a 
simply convex curve, the equation he formed was, in consequence, exact. 

3 In modern notation, if LX y dx z, where z = f(x), then y dz/dx = 

f'(x): in particular, if z = [n/(m + n)]ax(m+II)/II, then y axm1n• 

4 Although, in earlier researches, Newton did sketch in the outline of a 
geometrical proof of the fundamental theorem of the calculus (on the lines 
of the proofs subsequently published by Barrow and Gregory) he seems 
to have later preferred to rely on the reversibility of the operations, so that 
differentiation and integration are regarded essentially as inverses, the 

one of the other (i.e. if = f(x) f y dx, then ~: f'(x) = y, and con-

versely, if y = f'(x) = ~: then z f y dx f(X)). 

Exercise 7 

Use Newton's method to show that, if z -.j(a2 + x 2
), y x/-.j(aZ + x 2

). 

SA 7 

z = -.j(a2 + x 2
), Z2 a2 -+ x 2

, (z + OV)2 a2 + (x + o? 

+ 20vz + 02V2 = a2 + x 2 -I- 20x + 0
2 

20vz -+ 02V2 20x + 02 

zv x = zy, (v y) 

y = x/z =, x/-.j(a2 -I- x 2) 

C3.6 FLUXIONS AND 

Even before writing the De Analysi Newton had experimented with other 
types of notation and other forms of demonstration (see flow diagram, 
p. 12). In the small tract written in 1666, he developed a fairly comprehen
sive treatment of a whole range of calculus problems based on the genera
tion of curves by motion. These ideas, which constituted the foundation 
of what he called his 'method of fluxions' were developed more fully in 
the 1671 tract and it is from that that we will quote. The passage which we 
have chosen conveys well the 'flavour' of Newton's fluxions and fluent~ 
and suggests clear links with mediaeval ideas on motion, developed by 
Galileo, Torricelli and Barrow. Because of this, you may not find it easy 
to follow. 

It now remains, in illustration of this analytical art, to deliver some typical problems 
and such especially as the nature of curves will present. But first of all I would observe 
that difficulties of this sort may all be reduced to these two problems alone, which I 
may be permitted to propose with regard to the space traversed by any local motion 
however accelerated or retarded: 

1 Given the length of the space continuously (that is, at every [instant of] time), to 
find the speed of motion at any time proposed. 

2 2 Given the speed of motion continuously, to find the length of the space described 
at any time proposed. 

22 

So in the equation x 2 y, if y designates the length of the space described in any time 
which is measured and represented by a second space x as it increases with uniform 

Text 17: Newton on fluxions and fluents. From M. E. Baron and H. J. M. Bos, eds.
(1974). Newton and Leibniz. History of Mathematics: Origins and Development of the

Calculus 3. The Open University Press, pp. 22–25.
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Extract from William lones' edition of 
Newton's Fluxions, 1711 (Turner Collec
tion, University of Keele). 

3 speed: then 2xx will designate the speed with which the space at the same moment of 
time proceeds to be described. And hence it is that in the sequel I consider quantities 
as though they were generated by continuous increase in the manner of a space which 
a moving object describes in its course. 

We can, however, have no estimate of time except in so far as it is expounded and 
measured by an equable local motion, and furthermore quantities of the same kind 
alone, and so also their speeds of increase and decrease, may be compared one with 
another. For these reasons I shall, in what follows, have no regard to time, formally so 
considered, but from quantities propounded which are of the same kind shall suppose 

4 some one to increase with an equable flow: to this all the othcrs may be referred as 
though it were time, and so by analogy the name of 'time' may not improperly be 
conferred upon it. And so whenever in the following you meet with the word 'time' 
(as I have, for clarity's and distinction's sake, on occasion woven it into my text), by 
that name should be understood not time formally considered but that other quantity 
through whose equable increase or flow time is expounded and measured. 

But to distinguish the quantities which I consider as just perceptibly but indefinitely 
growing from others which in any questions arc to be looked on as known and 
determined and are designated by the initial letters a, b, c and so on, I will hereafter 
call them fluents and designate them by the final letters v, x, y and z. And the speeds 
with which they each flow and are increased by their generating motion (which I 

23 

Text 17: Newton on fluxions and fluents. From M. E. Baron and H. J. M. Bos, eds.
(1974). Newton and Leibniz. History of Mathematics: Origins and Development of the

Calculus 3. The Open University Press, pp. 22–25.
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might more readily call fluxions or simple speeds) I will designate by the letters 
5 v, X, y and z: namely, for the speed of the quantity v I shall putlj, and so for (he speeds 

of the other quantities I shall put x,y and z respectively. 

Notes 

Although it may appear to help if we express some of Newton's statements 
in the notation of the calculus it should be borne in mind that, by doing 
so, we risk distortion in that we may the work a of clarity and 

I If s 
ds 

dt 
v 

which was absent. 

where t is the time and s the to find the l.e. 

2 If v q)(t), to find s, i.e. s r (p(t) dt. These arc the two 
.10 

inverse ,..H',·,hl"'11 from which Newton his calculus. 

3 If y 2x Since IS 

taken to be constant. 

4 Since time can be measured 
x x t. The 

uniformly, can be used as a 'measure' of time. 

5 ]f v, x, y, arefluents, variables 
then D, x, y, i, represent the jluxions, or 
of these 

This may be an appropriate point to say about Newton's 
'dot'-notation, particularly as you may ultimately want to compare it 
with the notation developed by Leibniz. Newton with dot·· 
notation of one kind or another from 1665 onwards flow diagram, 
p. 12). He did not settle on the 'standard' Newtonian form of doL-notation 
until late 1691 and, in the original version of the 1671 traet, he used literal 
symbols I, rn, n, r for the fiuxions of v, x, y, z. In 1710, William Jones made 
a transcript of the 1671 treatise on fluxions and inserted the dot-notation 
and this transcript was subsequently copied in all published editions. In 
the translation we are using, Whitesidc has to adhere to the 
'standard' dot-notation because it is a great aid to understanding. In 
England, at any this notation, used to denote differentiation with 
respeet to t (where t is the time), has become familiar and useful. In eo m-

the Newtonian dot-notation with the notation developed by 
Leibniz (dx, dy) we should bear in mind that Newton's decision to adhere 
to a standard form of dot-notation and to use it consistently was certainly 
made with knowledge of the existence of the Leibnizian notation in 
Europe. 

Exercise 8 

If Y x 3
, what is the fluxion of x? What is the f1uxion of y? How is thc 

f1uxion of y related to the f1uxion of x? What are x and y ealled? Which 
variable is taken by Newton to move uniformly? 

SA 8 

. y; y ","0 3x2 x; x and y are ealledfiuents, x is taken to move uniformly so 
that x k (k normally is taken to be 1). 

Let us now consider how, given a relation between the fluent quantities 
Newton set about finding a relation between the jluxions of these quantities. 

24 

Text 17: Newton on fluxions and fluents. From M. E. Baron and H. J. M. Bos, eds.
(1974). Newton and Leibniz. History of Mathematics: Origins and Development of the

Calculus 3. The Open University Press, pp. 22–25.
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L 

DEMONSTRATION 

The moments ofthe 11uent quantities (that is, their indefinitely small parts, by addition 
of which they increase during each infinitely small period of time) are as their speeds 
of 11ow. Wherefore if the moment of any particular one, say x, be expressed by the 
prodnct of its speed x and an infinitely small quantity 0 (that is, by xo), then the 
moments of the others, v, y, z, [ ... ], will be expressed by vo, yo, zo, [ ... ] seeing that 
vo, xo, yo and io are to one another as lj, x, y and z. 
Now, since the moments (say, xo and yo) of 11uent quantities (x and y, say) are the 
infinitely small additions by which those quantities increase during each infinitely 

2 small interval of time, it follows that those quantities x anci y after any infinitely small 
interval of time will become x + xo and y + yo. Consequently, an equation which 
expresses a relationship of fluent quantities without variance at all times will express 
that relationship equally between x xo and y -+ yo as between x and y; and so 

3 x + .xo and y + yo may be substituted in place of the latter quantities, x and y, in 
the said equation. 

4 

Let there be given, accordingly, any equation x 3 ax 2 + axy -- l ° and sub-
stitute x + xo in place of x and y +- yo in place of y: there will emerge 

(x 3 + 3xox2 + 3X 2
0

2
X + X3( 3) (ax 2 + 2axox + 

+ (axy +- axoy ayox + aX)J()2) (y3 + 3yo/ + + y3 ( 3) 0. 

Now by hypothesis x 3 
-- ax2 + axy y3 = 0, and when these terms arc erased and 

the rest divided by 0 there will remain 

3xx2 + 3x 2 0x + X\)2 - 2axx --- ax 2
0 + axy + ayxl- axyo --

__ y3()2 0. 

But further, since 0 is supposed to be infinitely small so that it be able to express the 
moments of quantities, terms which have it as a factor will be equivalent to nothing 

5 in respect of the others. I therefore cast them out and there remains 3xx 2 2axx + 
axy + ayx - 3;iyz = 0, as in Example 1 above. 

Notes 

It is accordingly to be observed that terms not multiplied by () will always vanish, as 
also those multiplied by () of more than one dimension; and that the remaining terms 
after division by 0 will always take on the form they should have according to the 
rule. This is what I wanted to show.! 

1 The little '0' which we saw as a general increment in the De Analysi has 
now become an 'infinitely small period of time', say lit. 

2 All variables arefluent quantities and their moments are correspondingly 
expressed by the products of their respective velocities and the time '0', 

We ean think of xo,yo, as (dx/dt)bt, (dy/dt)lit" ,. 

3 Hf(x, y) 0 expresses a relationship between x and y which is valid at 
all times, then 

.f(x, y) = f(x + xo, y + yo) 

f(x + (dx/dt)bt, y+ (dy/dt)bt) 

4 ax2 + axy o 
(x + XO)3 - a(x + XO)2 + a(x + xo)(y + yo) - (y + yO)3 

The steps followed are, successively: (i) expand, (ii) remove common terms 
from both sides, (iii) divide by 0, (iv) delete terms containing 0, 'since 0 is 
supposed to be infinitely small'. 

5 The relation, 3xx2 
- 2axx + axy + ayx - 3 yy2 0, can be rewritten 

in the form,y /x 
3x2 - 2ax + ay dy 

- ax dx 
- fx! j~, wherej~ andj~ are the 

partial derivatives of f (x, y) with respect to x and y respectively. (See 
MlO0 2, Unit 15.) 

1 NMP, Ill, pp. 79-81. 

2 The Open University (1971) MlOO Mathematics: A Foundation Course, The Open 
University Press. 

25 

Text 17: Newton on fluxions and fluents. From M. E. Baron and H. J. M. Bos, eds.
(1974). Newton and Leibniz. History of Mathematics: Origins and Development of the

Calculus 3. The Open University Press, pp. 22–25.
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Text 18: Newton on the method of drawing tangents. From D. T. Whiteside, ed.
(1964). The Mathematical Works of Isaac Newton. Vol. 1. Johnson Reprint Corp.
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ult.x 

B c 

We have now mentioned the three important ideas which underlie 
Leibniz's invention of the calculus: 

1 Leibniz's interest in symbolism and notation in connection with his 
idea of a general symbolic language; 

The insight that their differences are 
quadraturcs and 

:; The characteristic transformations 
of the 

]n the 25 October 11 November 1 Leibniz combincd these 
ideas in a series of studies on the analytic treatment of infinitesimal 
problems, which contain the invention of the calculus. They are known 
to us becausc the manuscripts in which Leibnizjotted down his thoughts, 
more or less as they came to are still extant. These manuscripts, dated 

29 October and 1 and 11 November 1 form a most precious 
record of a process of invention. It is not often that we are able to follow 
the successive steps in a major mathematical discovery, and in this section 
we will indicate these steps and illustrate them by fragments of the original 
texts. 

Leibniz's starting point was the study of relations between quadratures, 
expressed analytically (in formulae) by means ofthe symbolism introduced 
by Cavalieri (see Unit C2 pp. 13-8). That is, he wrote 'omn./' (abbreviation 
for omnes I, 'all!'), for the quadrature of a curve whose ordinates are l. 

To give you the flavour of this starting point of Leibniz's study, here is an 
argument from the manuscript of 26 October. The text is very brief, it 
consists only of the sentences we quote l and a series of formulae, so we 
have added some explanation. 

Consider a sequence of equidistant ordinates y of a curve as in the figure 
(which is an amplification of Leibniz's figure). The differences of the ys are 
called w. The area OCD is the sum of all rectangles xw. Now x x w is the 
statical moment of w with respect to the horizontal axis. (Statical moment 
= weight x distance to axis; in this case the weight of w is taken equal 
to its length.) Therefore area OCD is the sum of the moments of the 
differences w. Now area OCD is the complement of area OCB in the 
rectangle OBCD, and the area OCB is, in Cavalieri's terminology, the sum 
of all 'terms' y. Hence: 

The moments of the differences about a straight line perpendicular to the axis are 
equal to the complement of the sum of the terms. 

Now the ws are the differences of the ys, so that conversely the 'terms' y 
are the sums ofthe w. So if we take any sequence with terms wand replace 
in the preceding sentence 'differences' by 'terms' and 'terms' by 'sum of the 
terms' we have: 

and the moments of the terms are equal to the complement of the sum of the sums. 

Leibniz expresses this result in Cavalierian symbolism: 

omn.xw n 
'--~ 

moments of 
the terms w 

ult.x, omn.w., - oliin.omn~w 
'-----v-----' ~--' 

total sum of the sums 
of the terms 

complement of the sum 
of the sums of the terms 

1 Child, J. M. (1920) The Early Mathematical Manuscripts ofLeibniz, London. 

42 

Text 19: Leibniz’ process of discovery. From M. E. Baron and H. J. M. Bos, eds. (1974).
Newton and Leibniz. History of Mathematics: Origins and Development of the
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11 is Leibniz's symbol for equality; he llses overlining where we would 
use brackets; the commas are separating symbols; ult. stands for ultimus 
(last), meaning the last terms of the sequence. You should note the central 
role of the theory of difference sequences in this see Section 
C3. 12 p. 36. 

Now Leibniz with this formula, and derives other formulae from 
purely analytically, without use of a He does this 
substituting variables in the of w, and he the results 
as relations between In this way he finds for instance: 

az az 
omll.az n u]t.x, omn.· omn.omn 

x x 

substitution xw az, W and 

a a 
"omn.a n ult.x,om11.·· omn.OIl1I1. 

x x 

(bY substitution xw a, W 
a 

Leibniz "..j,F'rr,rpjiQ the last 
the last theorem expresses the sum of the logarithms in terms of the known quadral ure 
of the hyperbola. 

y = f!. is the equation of the rectangular hyperbola, hence omn.
a 

is the 
x x 

quadrature of the hyperbola. Now this quadrature is a logarithm 

I
a~ . a 

would say ~ ... ~ .. 0= log x for some base for the loganthm), so omn.omn. 
x x 

is the sum of the logarithms. So the equation indeed expresses the sum of 
the logarithms in terms of the quadrature of the hyperbola. 

You should compare this way of deriving transformations of quadratures 
with Leibniz's study on the transmutation, and note the advantage of a 
symbolism through which these transformations can be performed by 
means of formulae instead of by inspection of complicated figures. 

Exercise 19 

Leibniz also derived from his basic formula the relation 
a a a 

omn.~ n x, omn. X2 ~ omn.omn.~ 

Could you imagine how? 

SA 19 

a 
By using the substitution w = 

Three days later (29 October) we find Leibniz exploring the operational 
rules for the symbol omn., noting for instance that omn.yz is not equal to 
omn.y x omn.z. In this investigation Leibniz suddenly chooses a new 
symbol instead of omn. : 

It will be useful to write f for omn., so that f I = omn.l, or the sum of the Is. 

I is the long script s, it stands for summa, sum, so tha t the symbol is shorter 

and applies better to Leibniz's conception of the quadrature: the sum of 

the terms, rather than the Cavalierian 'all terms'. Leibniz writes I I for 

omn.omn., he stresses that the differences between the terms are infinitely 
small and he writes simple quadrature relations in the new symbolism: 

43 

.. ' 

Text 19: Leibniz’ process of discovery. From M. E. Baron and H. J. M. Bos, eds. (1974).
Newton and Leibniz. History of Mathematics: Origins and Development of the

Calculus 3. The Open University Press, pp. 42–43.
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96 Tekst 26: Berkeley om analysens grundlag

d) Tror Berkeley p̊a de resultater, som man har opn̊aet med fluxionsregningen?

e) Diskuter forskellen mellem religiøs og matematisk viden ifølge Berkeley.

Berkeley

A Discourse Addressed to an Infidel Mathematician

Though I am a stranger to your person, yet I am not, Sir, a stranger to the
reputation you have acquired in that branch of learning which hath been your
peculiar study; nor to the authority that you therefore assume in things foreign
to your profession; nor to the abuse that you, and too many more of the like
character, are known to make of such undue authority, to the misleading of unwary
persons in matters of the highest concernment, and whereof your mathematical
knowledge can by no means qualify you to be a competent judge. [. . . ]

Whereas then it is supposed that you apprehend more distinctly, consider
more closely, infer more justly, and conclude more accurately than other men,
and that you are therefore less religious because more judicious, I shall claim
the privilege of a Freethinker; and take the liberty to inquire into the object,
principles, and method of demonstration admitted by the mathematicians of the
present age, with the same freedom that you presume to treat the principles and
mysteries of Religion; to the end that all men may see what right you have to
lead, or what encouragement others have to follow you. [. . . ]

The Method of Fluxions is the general key by help whereof the modern math-
ematicians unlock the secrets of Geometry, and consequently of Nature. And,
as it is that which hath enabled them so remarkably to outgo the ancients in
discovering theorems and solving problems, the exercise and application thereof
is become the main if not the sole employment of all those who in this age pass
for profound geometers. But whether this method be clear or obscure, consistent
or repugnant, demonstrative or precarious, as I shall inquire with the utmost
impartiality, so I submit my inquiry to your own judgment, and that of every
candid reader. — Lines are supposed to be generated1 by the motion of points,
planes by the motion of lines, and solids by the motion of planes. And whereas
quantities generated in equal times are greater or lesser according to the greater
or lesser velocity wherewith they increase and are generated, a method hath been
found to determine quantities from the velocities of their generating motions.
And such velocities are called fluxions: and the quantities generated are called
flowing quantities. These fluxions are said to be nearly as the increments of the
flowing quantities, generated in the least equal particles of time; and to be ac-
curately in the first proportion of the nascent, or in the last of the evanescent
increments. Sometimes, instead of velocities, the momentaneous increments or

1Introd. ad Quadraturam Curvarum.

Text 20: Bishop Berkeley’s The Analyst. From D. E. Smith (1959). A source book in
mathematics. 2nd ed. 2 vols. New York: Dover Publications, Inc., pp. 627–634.

Adopted from J. Lützen and K. Ramskov, eds. (1999). Kilder til matematikkens historie.
2nd ed. København: Matematisk Afdeling, Københavns Universitet, pp. 95–99.
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decrements of undetermined flowing quantities are considered, under the appel-
lation of moments.

By moments we are not to understand finite particles. These are said not
to be moments, but quantities generated from moments, which last are only the
nascent principles of finite quantities. It is said that the minutest errors are not
to be neglected in mathematics: that the fluxions are celerities, not proportional
to the finite increments, though ever so small; but only to the moments or nascent
increments, whereof the proportion alone, and not the magnitude, is considered.
And of the aforesaid fluxions there be other fluxions, which fluxions of fluxions
are called second fluxions. And the fluxions of these second fluxions are called
third fluxions: and so on, fourth, fifth, sixth, etc., ad infinitum. [. . . ] But the
velocities of the velocities — the second, third, fourth, and fifth velocities, etc.
— exceed, if I mistake not, all human understanding. [. . . ]

Berkeley diskuterer herefter konkrete eksempler og forskellige metoder til at finde
fluxionerne.

[. . . ] But whether this method be more legitimate and conclusive that the former,
I proceed now to examine; and in order thereto shall premise the following lemma:
— “If, with a view to demonstrate any proposition, a certain point is supposed,
by virtue of which certain other points are attained; and such supposed point
be itself afterwards destroyed or rejected by a contrary supposition; in that case,
all the other points attained thereby, and consequently thereupon, must also be
destroyed and rejected, so as from thenceforward to be no more supposed or
applied in the demonstration.”2 This is so plain as to need no proof.

Now, the other method of obtaining a rule to find the fluxion of any power
is as follows. Let the quantity x flow uniformly, and be it proposed to find the
fluxion of xn. In the same time that x by flowing becomes x + o, the power xn

becomes x+ o
n
, i.e., by the method of infinite series

xn + noxn−1 +
nn− n

2
ooxn−2 +&c.,

and the increments

o and noxn−1 +
nn− n

2
ooxn−2 +&c.

are one to another as

1 to nxn−1 +
nn− n

2
oxn−2 +&c.

Let now the increments vanish, and their last proportion will be 1 to nxn−1. But
it should seem that this reasoning is not fair or conclusive. For when it is said,

2Berkeley’s lemma was rejected as invalid by James Jurin and some other mathematical
writers. The first mathematician to acknowledge openly the validity of Berkeley’s lemma was
Robert Woodhouse in 1803.

Text 20: Bishop Berkeley’s The Analyst. From D. E. Smith (1959). A source book in
mathematics. 2nd ed. 2 vols. New York: Dover Publications, Inc., pp. 627–634.

Adopted from J. Lützen and K. Ramskov, eds. (1999). Kilder til matematikkens historie.
2nd ed. København: Matematisk Afdeling, Københavns Universitet, pp. 95–99.

Berkeley then discusses speci�c examples and di�erent ways of �nding the �uxions.
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let the increments vanish, i. e., let the increments be nothing, or let there be no
increments, the former supposition that the increments were something, or that
there were increments, is destroyed, and yet a consequence of that supposition,
i. e., an expression got by virtue thereof, is retained. Which by the foregoing
lemma, is a false way of reasoning. Certainly when we suppose the increments to
vanish, we must suppose their proportions, their expressions, and everything else
derived from the supposition of their existence, to vanish with them. [. . . ]

I have no controversy about your conclusions, but only about your logic and
method: how you demonstrate? what objects you are conversant with, and
whether you conceive them clearly? what principles you proceed upon; how
sound they may be; and how you apply them? [. . . ]

The great author of the metod of fluxions felt this difficulty, and therefore he
gave in to those nice abstractions and geometrical metaphysics without which he
saw nothing could be done on the received principles: and what in the way of
demonstration he hath done with them the reader will judge. It must, indeed, be
acknowledged that he used fluxions, like the scaffold of a building, as things to
be laid aside or got rid of as soon as finite lines were found proportional to them.
But then these finite exponents are found by the help of fluxions. Whatever
therefore is got by such exponents and proportions is to be ascribed to fluxions:
which must therefore be previously understood. And what are these fluxions?
The velocities of evanescent increments. And what are these same evanescent
increments? They are neither finite quantities, nor quantities infinitely small,
nor yet nothing. May we not call them the ghosts of departed quantities? [. . . ]

And, to the end that you may more clearly comprehend the force and design
of the foregoing remarks, and pursue them still farther in your own meditations,
I shall subjoin the following Queries: —
[. . . ]

Qu. 4. Whether men may properly be said to proceed in a scientific method,
without clearly conceiving the object they are conversant about, the end pro-
posed, and the method by which it is pursued? [. . . ]

Qu. 8. Whether the notions of absolute time, absolute place, and absolute
motion be not most abstractely metaphysical? Whether it be possible for us to
measure, compute, or know them?
[. . . ]

Qu. 16. Whether certain maxims do not pass current among analysts which
are shocking to good sense? And whether the common assumption, that a finite
quantity divided by nothing is infinite, be not of this number?3 [. . . ]

Qu. 31. Where there are no increments, whether there can be any ratio of in-

3The earliest exclusion of division by zero in ordinary elementary algebra, on the ground
of its being a procedure that is inadmissible according to reasoning based on the fundamental
assumptions of this algebra, was made in 1828, by Martin Ohm, in his Versuch eines vollkommen
consequenten Systems der Mathematik , Vol. I, p. 112. In 1872, Robert Grassmann took the same
position. But not until about 1881 was the necessity of excluding division by zero explained in
elementary school books on algebra.

Text 20: Bishop Berkeley’s The Analyst. From D. E. Smith (1959). A source book in
mathematics. 2nd ed. 2 vols. New York: Dover Publications, Inc., pp. 627–634.

Adopted from J. Lützen and K. Ramskov, eds. (1999). Kilder til matematikkens historie.
2nd ed. København: Matematisk Afdeling, Københavns Universitet, pp. 95–99.
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crements? Whether nothings can be considered as proportional to real quantities?
Or whether to talk of their proportions be not to talk nonsense? [. . . ]

Qu. 63. Whether such mathematician as cry out against mysteries have ever
examined their own principles?

Qu. 64. Whether mathematicians, who are so delicate in religious points, are
strictly scrupulous in their own science? Whether they do not submit to authority,
take things upon trust, and believe points inconceivable? Whether they have not
their mysteries, and what is more, their repugnances and contradictions? [. . . ]

Tekst 27: Eulers formler

I bind 1 af Introductio in analysin infinitorum fra 1748 behandlede Euler sammenhæn-
gen mellem de trigonometriske funktioner og eksponentialfunktionen. Det var hans
konsekvente brug af betegnelserne sin x og cosx for sinus og cosinus, samt π for den
halve omkreds af enhedscirklen, der gjorde, at disse fik almindelig udbredelse i den
matematiske symbolik.

Nedenfor er gengivet uddrag af hans behandling i den engelske oversættelse i
[Fauvel & Gray 1987, pp. 449–51].

a) Gennemg̊a Eulers udledning af rækkeudviklingerne for sin x og cosx. Hvilken
formel baseres udledelsen p̊a?

b) Gennemg̊a udledningen af Eulers formler.

c) Kommenter Eulers brug af uendelig små og store størrelser.

Euler’s unification of the theory of elementary functions

126. After logarithms and exponential quantities we shall investigate circular
arcs and their sines and cosines, not only because they constitute another type of
transcendental quantity, but also because they can be obtained from these very
logarithms and exponentials when imaginary quantities are involved.

Let us therefore take the radius of the circle, or its sinus totus, = 1. Then
it is obvious that the circumference of this circle cannot be exactly expressed
in rational numbers, but it has been found that the semicircumference is by
approximation = 3.14159.26535.89793 . . . [127 decimal places are given] for which
number I would write for short π, so that π is the semicircumference of the circle
of which the radius = 1, or π is the length of the arc of 180 degrees.

Text 20: Bishop Berkeley’s The Analyst. From D. E. Smith (1959). A source book in
mathematics. 2nd ed. 2 vols. New York: Dover Publications, Inc., pp. 627–634.

Adopted from J. Lützen and K. Ramskov, eds. (1999). Kilder til matematikkens historie.
2nd ed. København: Matematisk Afdeling, Københavns Universitet, pp. 95–99.
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Bolzano , Cauc y and "New Ana sis" 
of Ear  Nineteent  Century 

I. GRATTAN-GuINNESS 

Communicated by J. E. HOFMANN 

S u m m a r y  

Ill  th i s  p a p e r  1 I discuss t he  d e v e l o p m e n t  Of m a t h e m a t i c a l  ana lys i s  d u r i n g  t he  
second a n d  t h i r d  decades  of t i le n i n e t e e n t h  c e n t u r y ;  a n d  in p a r t i c u l a r  I a sse r t  t h a t  
t he  wel l -known cor respondence  o f :new ideas to  be  found  in t h e  w r i t i n g s  of BOLZANO 
a n d  CAueHY is not a coincidence,  b u t  t h a t  CA~ICH¥, h a d  read  one p a r t i c u l a r  p a p e r  of 
BOLZANO a n d  drew on i ts  resu l t s  w i t h o u t  acknowledgemen t ,  T he  reasons  for th i s  
con jec tu re  invo lve  no t  on ly  t he  t e x t s  ill ques t ion  b u t  also t h e  s t a t e  of d e v e l o p m e n t  
of m a t h e m a t i c a l  ana lys is  itself, CAUClty b o t h  as pe r sona l i t y  a n d  as m a t h e m a t i c i a n ,  
a n d  t he  r ival r ies  which  were p r e v a l e n t  in  Par i s  a t  t h a t  t ime.  

C o n t e n t s  

t .  I n t r o d u c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372 
2. The  C o m m o n  Ideas  in  BOLZAI~O a n d  C,~ucI~,Y . . . . . . . . . . . . . .  373 
3. The  New Analys i s  . . . . . . . . . . . . . . . . . . . . . . . . . .  378 
4. T h e  Old Ana lys i s  . . . . . . . . . . . . . . . . . . . . . . . . . .  38t  
5. CAUCI~Y'S Or ig ina l i ty  as a M a t h e m a t i c i a n  . . . . . . . . . . . . . . . .  384 
6. The  S t a t e  of Pa r i s i an  M a t h e m a t i c s  . . . . . . . . . . . . . . . . . . .  387 
7. CAtJCHY'S P e r sona l i t y  . . . . . . . . . . . . . . . . . . . . . . . . .  393 
8. The  Ava i l ab i l i t y  a n d  F a m i l i a r i t y  of BOLZANO'S W o r k  . . . . . . . . . . .  395 
9- Tile Pe r sona l  Re la t ions  be tw een  BOLZANO a n d  CAUCHY . . . . . . . . . .  397 
10. Epi logue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  398 

I n d e x  of N a m e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  400 

1. I n t r o d u c t i o n  

T h e  c e n t r a l  t h e m e  of t h i s  p a p e r  is a n  h i s t o r i c a l  c o n j e c t u r e  c o n c e r n i n g  t h e  

d e v e l o p m e n t  of m a t h e m a t i c a l  a n a l y s i s  in  t h e  e a r l y  n i n e t e e n t h  c e n t u r y .  I t  is  

wel l  k n o w n  t h a t  t h e  m a j o r  e v e n t  w a s  t h e  p u b l i c a t i o n  in  t821  of t h e  Cours d'Ana- 

1 This  p a p e r  is a revised  a n d  grea t ly  e x p a n d e d  vers ion  of a lec ture  en t i t l ed  "Did 
Cauchy  read  Bolzano  before  wr i t ing  his  Cours d'Analyse?" given  a t  t i le Problem- 
geschichte der Mathematik s em ina r  a t  Oberwolfach,  W e s t  Ge rmany ,  on  t he  26 th No- 
vember ,  1969. I wish  to t h a n k  Professors  J.  E. HOFMANN a n d  C . J .  SCRIBA for t h e i r  
i n v i t a t i o n  to  th i s  seminar .  

The  t e x t  d raws  f r equen t ly  on  m y  h i s to ry  of The Development o/ the Foundations 
o/ Mathematical Analysis /rom Euler to Riemann a n d  Joseph Fourier 1768--1830, 
which  are b o t h  to be pub l i shed  b y  t he  M.I .T.  Press  a n d  are referred to  ill l a t e r  foot-  
no tes  as Foundations a n d  Fourier, respect ively.  Tile l a t t e r  work  was w r i t t e n  w i t h  t h e  
co l l abora t ion  of Dr.  J. R. R A V E T Z ,  and  t h e  fo rmer  w i th  t h e  help  of his  de ta i led  
cr i t ic ism:  I wish  to record  here  m y  indeb tednes s  to  his assis tance.  

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,
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lyse of AUCUSTIN-LouIS CAUCHY (t789--t857), s in which CAUCHY presented a 
new type of analytical reasoning far superior to previous ideas for the devel- 
opment of analysis --  limits, functions, the calculus, and so on. CAUCHY'S 
achievement was the so-called "arithmeticisation" of analysis, a method whose 
development and application has been a major interest for mathematicians ever 
since. 

I t  has been also well-known for some time that CAUCHY had been anticipated 
in his basic ideas of the new analysis by an obscure pamphlet published in Prague 
in t 817 by BERNARD BOLZANO (t 78t --1848). In contrast to the broad programme 
of CAUCHY'S book, BOLZANO devoted his little work to the proof of a theorem 
which he described in its title: "Purely  analytical proof of the theorem, that 
between any two values [of a function/(x)]  which guarantee an opposing result 
[in sign] lies at least one real root of the equation [/ (x) ---- 0]." s The "pure ana- 
lysis" which ]3OLZANO produced in his proof is exactly that which we find greatly 
developed and extended in CAUCHY'S Coufs d'Analyse and his later writings on 
analysis. 

I do not believe that we have here an example of a remarkable coincidence 
of new ideas. Such occurrences are of course well-known in the history of science, 
but I shall argue for the conjecture that in this case CAUCHY was welt acquainted 
with BOLZANO'S paper and that he drew on its novelties without ever making 
acknowledgement to him. 

The argument for this thesis is not based on new documentary evidence: 
there is no reference to BOLZANO'S work among the scattered fragments of 
CAUCHY'S papers and letters, no library record of CAUCHY'S reading or borrowing 
BOLZANO'S paper, no copy of it in his personal library (which in fact has been 
dispersed). My reasons for the conjecture are circumstantial and related to 
intellectual matters, and involve not only the general development of analysis 
at that time but also that aspect of the growth of science which is ignored all too 
often by its historians --  the social and educational situation of the period; and 
the personalities of the principal characters. 

2. The Common Ideas in Bolzano and Cauchy 

We consider first the directly corresponding results in the two works, in each 
case in its general historical setting. 

2.1. Continuity of a Function. Normally the continuity of a function was then 
identified with its description by a single algebraic expression, and the function 
was usually thought to be differentiable: in fact, under EULER'S influence the 

2 A.-L. CAucI~Y, Cours d'Analyse de l'Ecole Royale Polytechnique. I TM Pattie: Ana- 
lyse Algdbrique (1821, Paris) = Oeuvres, (2) 3. No further parts of this work were 
published: it is referred to in later footnotes as Cours. 

3 ]3. BOLZANO, "Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey 
Werthen, die ein entgegengesetztes Resultat gew~hren, wenigstens eine reelle Wurzel 
der Gleichung liege," (18t7, Prague)= Abh. KSnigl. B6hm. Gesell. Wiss., (3) 5 
(18t4--17: publ. 18t8), 60pp. = Ostwald's Klassiker, No. t53 (ed. P. JOURDAI~¢: 
1905, Leipzig), 3--43. French trans, in Rev. d'Hist. Sci. Appl., 17 (1964), 136--164: 
there have also been various other translations and issues. The paper is referred to 
in later footnotes as Beweis. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,
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term "continuous" was usually confined to functions which we now call "dif- 
ferentiable". 4 There were efforts to move away from this view, including by 
EULER himself; but nobody had come at all close to the formulation of continuity 
given by BOLZANO and CAUCHY: 

BOLZANO: "A function /(x) varies according to the law of continuity for all 
values of x which lie inside or outside certain limits, is nothing other than this: 
if x is any such value, the difference /(x +co)--/(x) can be made smaller than 
any given quantity, if one makes w as small as one ever wants to. ''~ 

CAUCHY: "The function /(x) will remain continuous with respect to x between 
the given limits, if between these limits an infinitely small increase of the variable 
always produces an infinitely small increase of the function itself".* 

One of the most interesting and important features of this formulation of 
continuity is that  it extends the old formulation beyond that of differentiability, 
for it also encompasses functions with corners. I think that BOLZANO was aware 
of the extension in t8t7, for in later manuscripts he studied the distinction 
between the new continuity and differentiability to the extent of constructing 
a continuous non-differentiable function of the type studied later only by the 
school of WEIERSTRASS in the t870's. ~ But CAUC~IY seems to have seen the new 
idea only as a reformulation of the old one when he wrote the Cours d'Analyse, 
for the examples he gave there of continuous functions were all of standard 

a 
differentiable algebraic expressions, with the functions x ~ for negative a, and x '  

regarded as "discontinuous" at x----0 since they then became infinite) In fact, 
he explicitly discussed the distinction only in a paper of 1844, and then in a 
way which tried to give the impression that he had known it all along: 

"In the works of Euler and Lagrange, a function is caned continuous or 
discontinuous, according as the diverse values of that function, corresponding 
to diverse values of the variable ... are or are not produced by one and the same 
equation . . . .  Nevertheless the definition that we have just recalled is far from 
offering mathematical precision; for the analytical laws to which functions can 
be subjected are generally expressed by algebraic or transcendental formulae 
[that is, by  the EULERIAN range of algebraic expressions~, and it can happen that 
various formulae represent, for certain values of a variable x, the same function: 
then, for other values of x, different functions." 

He then quoted the example 

(20 

V ~ -  - 2 f x~ / x i f x = > 0  
~ .  t ~ f i d t = t _ x i f  x <  O, (t) 

0 

EULER'S classic presentation of his theory of functions was given in the opening 
sections of both volumes of his Introductio ad analysin in/initorum (2 vols: 1748, 
Lausanne) = Opera Omnia, (1) 8 - - 9 .  

5 B .  BOLZANO,  Beweis, preface, part IIa.  
A.-L. CAUCI~Y, Cours, 34--35 = Oeuvres, (2) 3, 43. 

7 See B. BOLZANO, Functionenlehre (ed. K. RYCHLIK), in his Schriflen, 1 (1930, 
Prague), esp. pp. 66--70, 88--89. 

8 A.-L. CAvcI~Y, Cours, 36--37 = Oeuvres, (2) 3, 44--45. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
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in which the first two forms are "cont inuous"  in EULER'S sense while the third  
is "discont inuous"  ; 

". . .  but  the indeterminacy ceases if for Euler 's  definition we subst i tute  tha t  
which I have given [in the Cours d 'Analysej - .9  

2.2. Convergence of a Series. A major  innovat ion of the new analysis was the 
s tudy  of the convergence of a series (or of classes of series) as a general problem 
separate f rom and indeed prior to tha t  of its summat ion;  bu t  it would be wrong 
to presume tha t  the problem of convergence had  previously been ignored or 
taken for granted.  1 7  th and t8  *h century  mathemat ic ians  were perfectly well 
aware tha t  a series was to be interpreted as a t e rm-by- te rm addition of its 
members,  and tha t  individual series (usually series of constant  terms or certain 
power series) could be shown to be convergent,  especially if they  were associated 
with some geometrical limiting procedure such as the approximat ion to a curve 
by  a polygon. But  this unders tanding had been endangered during the 18 th 
century,  especially b y  EULER'S great  ability to devise complicated new methods 
of summat ion  of series. Today  we unders tand tha t  some of these methods reduce 
to or thodox smnmat ion  for or thodox convergent  series and some do not ;  bu t  
EULER and his contemporaries seemed to have regarded all methods as legiti- 
mate,  giving " t h e "  sum of the series ra ther  than its sum relative to the method  
of summat ion  involved. This more sophisticated unders tanding began to develop 
only in the t 890's, under  the leadership of BOREL: 1° until  then, series considered 
" d i v e r g e n t "  (that is, oscillatory series as well as those with an infinite sum) 
had been banished from analysis under  the influence of CAUCHY'S work. But  he 
and BOLZANO were not  the first to consider the convergence of a series to be an 
impor tan t  proper ty  wor thy  of investigation of its own. GAUSS had even advanced 
as far as a sophisticated convergence test by  t 8t 211: FOUI~IER had  already t reated 
the convergence of part icular  examples of his series in 1807, in his first paper  on 
the diffusion of heatl~: LAGRANGE had  tried to find expressions for the remainder 
term of a TAYLOR series, in connection with his long held belief tha t  the series 
could serve as the foundat ion of the calculus; 13 and LACROIX was also aware of 
the need for general formulat ion of convergence. ~4 Both  BOLZANO and CAOCHY 
also stressed tha t  the convergence of a series is to be determined only by  the 
tendency  of the n th partial sums to a limiting value s as n tended to infinity;  ~5 

9 A.-L. CAuci~¥, "M6moire sur les fonctions continues ou discontinues" C.R.  
Acad. Roy. Sci., 18 (t844), 1t6--130 (see pp. t16--117) = Oeuvres, (t) 8, t45--160 
(pp. 145--146). 

10 For extended discussion, see my Foundations, ch. 4. 
11 K. F. Gauss, "Disquisites generales . . . "  Comm. Soc. Reg. Sci. Gdltingen Rec., 

2 (18t1--13: publ. 1813), cl. math., 46pp.  = Werke, 3, 123--t62: see art. 16. For a 
history of convergence tests, see the appendix to my Foundations. 

13 j .  B. J. FOURIER, " Sur la propagation de la chaleur," MS. 1851, Ecole Nationale 
des Ponts el Chaussdes, Paris: see arts. 42--43. The publication of this entire manuscript 
constitutes the body of my Fourier: see there ch. 7 on this point. 

13 See especially his Thdorie des/onctions analytiques . . . .  (2nd edition: 1813, Paris) 
= Oeuvres, 9: part  1, arts. 35--40. 

i~ See especially his Traild du calcul diJ/drentiel et du calcul intdgral (Ist edition: 
t 797--t800, Paris), 1, 4--9. 

15 B. BoLzAxo, Beweis, art. 5. A.-L. CAIJCHY, Cours, t23- - t25  = Oeuvres, (2) 3, 
114--t15. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
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thus  this correspondence is not  so striking, a l though the idea was still then ve ry  
much  a new one. But  in both  works we find a new type  of result, not  to be found 
in any  other  con tempora ry  writing. BOLZANO had defined a class of series: 

". . .  which possess the p roper ty  t h a t  the var ia t ion (increase or decrease) which 
their  value suffers through a prolongat ion Eof terms]  as far  as desired remains 
always smaller  than  a certain value, which again can be t aken  as small as one 
wishes, if one has a l ready prolonged the series sufficiently f a r " ,  1~ and then  he 
p roved  tha t  for series with this proper ty ,  

". . .  there always exists a certain constant  value, and certainly only one, 
which the te rms of this series always approach  the more,  and  towards  which they  
can come as close as desired, if one prolongs the  series sufficiently f a r . "  ~ CAUCHY 
s ta ted  tha t  : 

" F o r  the series 1 u, to be convergent  it  is ye t  necessary t ha t  for increasing 

values of n the different sums 

u~ + u ~ +  1 +u~+~ 

~ C  . . . . .  

. . .  finish b y  cons tan t ly  achieving numerical  values smaller than  any  assignable 
limit. Reciprocally,  when these var ious conditions are fulfilled, the convergence 
of the series is assured. ''18 

In  other  words, they  bo th  found a general condition for convergence in te rms  
of the behaviour  of (s,+~--s~) as n tended to infinity:  a result  of quite profound 
originality. Cont rary  to general belief, BOLZANO in fact  only asserted the suffi- 
ciency of the  condition in his paper ;  his proof is ve ry  difficult to follow even with 
the ideas of his new analysis, and  in fact  is faulty.  The  necessity of the condition 
is far easier to recognise and  prove:  CAUCltY did prove  it, bu t  then avoided diffi- 
culties b y  hint ing t ha t  sufficiency followed as a consequence (which it does not  !) : 

" t h e  sums s~, s~+ 1 . . . .  d i f fer  f rom the limit s, and consequently among them- 
salves, b y  infinitely small quantit ies.  ''19 

2.3. Bolzano's Main Theorem. The theorem which BOLZANO actual ly  proved in 
his paper  was the  following generalisation of the theorem of his tit le: 

Le t  /:(x) and ]~(x) be continuous functions for which /: (~) < /2 (*¢) and  
]1 (/5) > ]~ (/5) : then ]1 (a) = ]~ (a) for at  least one value a of x between c~ and/5. (The 
basic theorem is the case where in (x) ~ 0.) 

As a theorem it is mos t  untypica l  of its t ime:  t ha t  is, a general theorem con- 
cerning the propert ies  of functions was not the kind of result  then being sought 
in analysis. ]3OLZANO himself saw it ra ther  as a theorem in the  theory  of equations,  
as a companion to GAUSS'S recent  proofs of the decomposi t ion of a polynomial  

lS B .  BOLZANO, Beweis, art. 5. 
17 t3. BOLZANO, Beweis, art. 7. 

is A.-L. CAUCHY, Gouts, t24--125 = Oeuvres, (2) 3, 115--116. 
19 A.-L. CAOCHY, Cours, 125 =Oeuvres, (2) 3, 115. My italics. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
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in to  l inear  and  quad ra t i c  factors.  ~° CAucltY saw i t  as a theorem of the  new anal-  
ysis, and  p u t  i t  twice in to  the  Cours d'Analyse (in i ts  res t r i c ted  form):  f i rs t ly  
wi th  a naive  geometr ica l  a rgument ,  and  la ter ,  in the  pa r t  of his book  reserved  
for those wi th  a special  in teres t  in analysis ,  wi th  a condensa t ion  a rgumen t  which 
seems ve ry  much  like an unr igorous  version of the  in t r i ca te  proof  deve loped  in 
B O L Z A N O ' S  p a p e r .  ~1 

2.4. Bolzano 's  Lemma.  A crucial  l e m m a  requi red  b y  BOLZA?¢O to  es tabl ish  the  
exis tence of the  real  root  was the  following l e m m a :  

" I f  a p r o p e r t y  M does not  a p p l y  to  all values  of a var iab le  q u a n t i t y  x, b u t  
to  all those which are smal ler  t han  a cer ta in  u :  so there  is a lways  a q u a n t i t y  U 
which is the  largest  of those of which i t  can be asser ted  t h a t  all smal ler  x possess 
the  p r o p e r t y  M . "  32 

W i t h  this  e x t r a o r d i n a r y  theorem came ano the r  new idea  into  analysis ,  com- 
p le te ly  un typ i ca l  of i ts  t ime :  the  upper limit of a sequence of values.  I t  is no t  to  
be found expl ic i t ly  in CAlJCltY'S Cours d'Analyse, b u t  ins t ead  we have  there  a 
f requent  use of phrases  l ike " . . .  the  larges t  value  of the  express ion . . . "  when 
ca lcula t ing  l imi t ing  values,  especial ly  in connect ion wi th  the  deve lopmen t  of 
tes ts  for convergence of a series. ~3 As wi th  con t inu i ty  of a funct ion,  CAUCltY was 
revea l ing ly  only  pa r t i a l l y  aware  of the  significance of the  idea;  for he used i t  
only  as a tool  for developing the  proofs of his pa r t i cu l a r  theorems and  no t  as a 
p rofound  device for inves t iga t ing  more  soph i s t i ca ted  proper t ies  of analysis .  
Therefore  i t  would  be especial ly surpr is ing  if i t  were CAUCHY'S own inven t ion :  
not  un t i l  the  t860 's  was i t  i n t roduced  again and  p rope r ly  used, b y  the  WEIER- 
STRASS school of analys ts .  2~ 

2.5. The Real Number System. Las t ly ,  a po in t  which is less s t r ik ing  t h a n  the 
o thers  bu t  wor th  ment ion ing :  the  considera t ions  given in bo th  works  to  the  real  
numbers .  In  the  course of p roving  his l e m m a  as well as in o ther  pa r t s  of his pape r  
BOLZANO had  recourse to ex tended  considerat ions  of real  numbers ,  especia l ly  
regarding  the  r a t iona l  or i r r a t iona l  l imi t ing  values  of sequences of cer ta in  f ini te  
series of ra t ionals .  ~ In  l a te r  manusc r ip t s  he ex t ended  these r emarks  in to  a full 
t heo ry  of r a t iona l  and  i r ra t iona l  numbers  of the  t y p e  which, l ike cont inuous  non- 
di f ferent iable  funct ions and  the  theorem on uppe r  l imits ,  was nex t  i nves t iga t ed  

s0 K. F. GAuss, "Demonstra t io  nova altera . . . "  and "Theorematis  de resolubitate 
• ..", Comm. Soe. Reg. Sci. Gdttingen Rec., 3 ( t814--15:  publ. t816), cl. math.,  107--134, 
and t33--142 = Werke, 3, 31--56, and 57--64. 

2~ A.-L. CAUCHY, Cours, 43--44 and 46(>--462 = Oeuvres, (2) 3, 50--5 t and 378--380. 
22 ]3. ]~OLZANO, Beweis, art. 12. 
23 See especially the sections on convergence tests in chs. 6 and 9 of the Cours. 
2~ There is a distinction between ]3OLZANO'S introduction of an upper l imit  and 

CAuc~Y'S "largest  value of the expression . . ." ,  in tha t  CAUCHY actually used the 
Limes of a sequence (whose every neighbourhood contains members of the sequence), 
while BOLZANO defined the upper limit (which does not necessarily have this property) ; 
but  we cannot interpret  this distinction as intentional in ]~OLZANO and CAUCHY'S 
t ime and I do not know of any recorded awareness of it  then. For  a brief discussion 
of the point, see P. E. ]3. JOURDAIN, "On the general theory of functions," fourn, rei. 
ang. Math., 128 (1905), 169--210 (pp. t85--t88). 

25 ]3. BOLZANO, Beweis, art. 8: see also art. t2. 

26 Arch. Hist. Exact Sci,, Vol. 6 
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only by  WEIERSTRASS and his followers. Is CAUCHY wrote just once on the real 
number system: it was in the Cours d'Analyse, where he gave a superficial formal 
exposition of the real number system. The initial stimulus for this work was 
foundational questions concerning the representation of complex numbers;  but  
he took the development of the ideas well into BOLZANO'S territory, twice in- 
cluding the remark that  "when B is an irrational number, one can obtain it by  
rational numbers with values which are brought nearer and nearer to i t "  37 _ 
merely a remark on a property of the real numbers and not as a definition of the 
irrational number in the sense of the later work, as has sometimes been thought. 
Once again CAUCHY did not fully appreciate the depth of BOLZANO'S thought;  
and yet it is clear from his partial success that  he was aware of ]3OLZANO'S ideas, 
rather than from his partial failure that  he was ignorant of them. The striking 
feature of this remark, as with his interpretation of continuity and his only 
incomplete use of the upper limit, is that  it is there at all, rather than that  it appears 
in a mutilated form. 

3. The New Analysis 

Thus we find a significant collection of unusual results in the two works: yet  
there is a much stronger and more profound link between them, which cannot 
be identified by  means of precise quotations or references - -  namely, a unity o/ 
approach. We have here a good example of the rule that  the whole is greater than 
the sum of the parts, for it is the homogeneity and general applicability of these 
new ideas which is their most significant feature. The term "arithmeticisation of 
analysis" is given to them, because they operate by  means of arithmetical dif- 
ferences and proofs within the analysis are based on the arithmetical mani- 
pulation of them; but  I do not favour this name, par t ly  because it is identified 
with the later WEIERSTRASSIAN developments of analysis but  principally because 
the arithmeticisation is only at the service of something more profound: the 
theory of limit-avoidance. 

When we speak of "introducing the concept of a l imit"  into analysis, we are 
actually introducing limit-avoidance, where the limiting value is defined by the 
property that  the values in a sequence avoid that  limit by  an arbitrarily small 
amount when the corresponding parameter  (the index n for the sequence s~ of 
n th partial sums, say, or the increment ~ in the difference (/(x +~)--/(x))  for 
continuity) avoids its own limiting value (infinity and zero, in these examples). 
The new analysis formed in ]3OLZANO'S pamphlet  and developed in CAUCHY'S 
text-books was nothing else than a complete reformulation of the whole of 
analysis in limit-avoidance terms, terms which CAUCHY made quite explicit in 
the introduction to the Cours d'analyse: 

"When the values successively attr ibuted to a particular variable approach 
indefinitely a fixed value, so as to finish by  differing from it by  as little as one 
wishes, this latter is called the limit of all the others." 2s 

2s These manuscripts were published in K. RYCHLIK (ed.), Theorie der reellen Zahlen 
im Bolzanos handschriitlichen Nachlasse (1962, Prague). 

27 A.-L. CAUCHY, Cours, 409 and 4t5 = Oeuvres, (2) 3, 337 and 341. 
2s A.-L. CAUCHY, Cours, 4 ~-Oeuvres, (2) 3, 19. 
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One important  aspect of limit-avoidance is that  it is independent of the contin- 
uum of values over which the analysis is conducted. Limit-avoidance can be 
developed whether an infinitesimal or non-infinitesimal field is being used: the 
use of the WEIERSTRASSIAN term "ari thmet ic isat ion of analysis",  applied to the 
period when WEIERSTRASS excluded infinitesimals from analysis, has led us to 
forget that  its limit-avoiding character was shown also by  the earlier period 
instigated by  BOLZANO, who used both types of continuum in his analysis, 29 
and CAucrI¥, who practiced only infinitesimals throughout his mathematical  
career. Since WEIERSTRASS'S time, we have held a fairly contemptuous view of the 
infinitesimalists which I regard as unfair. A remarkable amount of pure and 
applied analysis was developed from the time of NEWTON onwards with the aid 
of infinitesimals; but  there were important  foundational difficulties involved in 
their use, and in fact CAUCHY is a good example of them. These difficulties seem 
to me to lie especially in the foundations of the calculus, which if we examine 
from the point of view of limit-avoidance also reveal the attraction that  in- 
finitesimals must have had to the founders of the algebraic calculus. 

We make our point in the LEIBI~IZIAX notation, which not only became the 
standard system but also contained a key to the difficulties that  the infinitesimal- 
ists faced. When we calculate the derivative by  means of the definition 

dx dY-=D~ "h~o l im[  / - (x+h)-- / (x)  ' (2) 

we may  quite easily obtain the value of the derivative involved; but  we are left 
with the important  foundational question of how tha t  value is obtained in light 

0 
of the fact that  the ratio on the right hand side of (2) becomes ~- when h = 0. 
The virtue of infinitesimals, quantities which obeyed the law 

a + h = a  (3) 

of addition to the "o rd ina ry"  numbers, was that,  being non-zero they avoided 

the limiting value and therefore the difficulty of 0 ~-; on the other hand, being 

smaller than " a n y  assignable quan t i ty"  (that is, any non-infinitesimal), they 
effectively allowed the limit to be taken. This view was of course an inconsistent 
one, but  I think that  it lay basically behind infinitesimalist reasoning and was 
the source of its difficulties. The infinitesimal was either zero or non-zero, 
according to the needs of the moment :  thus it could be added to or withdrawn 
from any quant i ty  in an equation, with the presumed certainty of leaving the 
mathematical  situation described by  that  equation undisturbed. We may  see 
this as a double-interpretation for the infinitesimal - -  a limit-avoiding inter- 
pretation as a non-zero quantity,  and what we may  call by  contrast a " l imit-  
achieving" interpretation as an essentially zero quant i ty  allowing the limit to 
be taken. From this distinction there follows a corresponding double-inter- 

29 In the Beweis ]3OLZANO did not explicitly discuss the possible continua, and 
seemed to have allowed the use of infinitesimals; but later in the year he published 
another pamphlet, on Die drei Probleme der Recti/ication, der Complanation und die 
Cubirung, ohne Betrachtung des unendlich Kleinen . . . .  und ohne irgend eine nicht s~reng 
erweisliche Voraussetzung gel6st; ... (t817, P rague )=  Schri/ten, 5 (t948, Prague), 
67--138. 

26* 
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dy 
pretation of d x '  Let us take a specific example of a derivative, say for the 
function 

y = xL (3) 
whose derivative 

is calculated from 

dy 
dx = 3 x2 (4) 

dy lim[ (X+h)8--x3 ] 
d .  = D r .  • (5)  k ~ o  t k 

When h achieves its limiting value zero (4) gives us the value of the derivative, 
dy 

and so the denoting symbol ~ is in fact just a symbol and is not to be taken as 

an arithmetical ratio "dy+dx" .  Thus it is not valid to multiply through (4) by 
dx to obtain 

dy = 3 x2dx. (6) 

(6) follows from (4) by  turning from the limit-achieving interpretation of dd--~-Yx as 

a whole symbol to its limit-avoiding interpretation, where it is the r a t io"  d'y +dx".  
For if we avoid the limiting value by  the non-zero infinitesimal quanti ty dx, then 
we see from the right hand side of (5) that  the situation for the increment dy 
(=d(x~)) is given by 

dy = 3 x~ dx + q, 

where q is a second-order infinitesimal obeying the law 

(7) 

a + q = a  (8) 

,, dy in this of addition to ordinary" or first-order infinitesimal quantities a. -d7 

kind of situation, if we wish to consider it, could arise by dividing throughout (7) 
to give: 

dy q 
a .  - 3 x~ + d .  ' (9) 

a result of a [undamentally di//erent kind [rom (4). There is a difference between 

the two far greater than the first order infinitesimal ~q~7.: we see a basic qualitative 

dy appears in (4) as a limit-achieving symbol but  in (9) as a limit- 
~ t 9  

difference, for dk-x 

avoiding ratio. Further, the deduction of (9) from an infinitesimal equation (7) 
is not necessary to the derivation of (4). For let us suppose that  we change con- 
tinua so that  in WEIERSTRASSIAN style we reject the use of infinitesimals. Then 
(4) and (5) still stand (with the limit now of course taken over the non-infinitesi- 
mal field); but  (7) and all its consequences, such as (9), disappear altogether 
for (7) itself changes into tile identity 

o = o ,  (1o) 

whether or not it was true in the infinitesimal continuum. 
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The ideas that  I have presented here are essentially straightforward, and are 
susceptible of considerable extension; but they are independent of the modern 
interest in developing a consistent theory of infinitesimals. 8° They do not them- 
selves establish a consistent infinitesimalism but at least show that  much can 
be clarified in terms which could have been understood and developed in the 
infinitesimalist period. Yet they were far from the considerations of the time: in 
particular, CAUCHY'S t reatment  of the foundations of the calculus was as in- 
coherent and incompetent as any that  were ever offered. In his Rdsumd des 
le9ons . . .  sur le calcul in/initdsimal of 1823, the next instalment of his new anal- 
ysis after the Cours d 'Analyse,  he explicitly rejected LAGRANGE'S faith in 
TAYLOR'S series, but  he replaced it with an extraordinary theory of the derivative 
which made simultaneous use of both LAGRANGE'S theory of derived functions 
/' ( x ) , / " ( x ) ,  . . .  and also of CARNOT'S theory of differentials dx, ddx,  ... : infini- 
tesimals not only achieved the limit in CAUCHY'S system but  they also avoided it, 
at times by  non-infinitesimal amounts, changing their role with every appearance 
of new and usually unnecessary notation. 31 However, when CAUCHY came to 
integration he was wonderfully successful, laying out the whole basic structure 
of the theory of the "CAucH¥ integral"  (defined in terms of the area as the 
limit of a sum) in a masterly display of the power of the new analysis of limit- 
avoidance. 

This is what the new analysis was: only in limit-avoidance terms can its full 
power and subtlety be appreciated, and theorems such as the necessary and 
sufficient condition for convergence in the diminishing of (s~+~-  s,) - -  where the 
l imit  s is avoided altogether - -  and BOLZANO'S theorem on the existence of upper 
limits, can be seen to their best advantage. Yet to understand BOLZANO and 
CAUCH¥'S work we must look at the old as well as the new. What  sort of analysis 
had they replaced ? 

4. The Old Analysis 

We have referred earlier briefly to certain features of t8 th century analysis, 
and it is appropriate now to make more detailed remarks about its character. 
In speaking of the "o ld  analysis",  we are referring only to the subject immedi- 
ately prior to BOLZANO and CAUCHY'S work; and we find that  many  of its features 
were the result of problems in other areas of mathematics,  especially in the 
solution of difference and differential equations. Following the leadership of 
EULER, his contemporaries (mainly D'ALEMBERT, DANIEL BERNOULLI and 
LAGRANGE) and successors (mainly LAGRANGE, LAPLACE and MONGE) had 
developed a wide range of solution methods. I t  is impossible to describe them all 
in a sentence, but  often they involved the construction of exact differentials 
prior to integration to give functional solutions, or assumptions of particular 
kinds of solution which led via the conditions of the problem to auxiliary equa- 

30 See A. ROBINSON, Non-Standard Analysis (t966. Amsterdam); and also the 
work initiated by C. SCHMEIDEN 6: D. LAUGWITZ, " E i n e  Erweiterung tier Infinitesimal- 
rechnung", Math. Zeitschr., 69 (1958), 1--39. 

31 A.-L. CAucI-I¥, Rdsumd des lemons donndes ~ l'Ecole Royale Polytechnique sur le 
calcul in]initdsimal. Tome premier (1823, Pa r i s ) =  Oeuvres, (2) 4, 5--26t. No other 
volumes were published: see here lecture 5. 
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tions. The analytical techniques themselves - -  which involved not only dif- 
ferentiation and integration, but  also summation and rearrangement of series 
(especially power series), manipulations of algebraic expressions, the taking of 
limiting cases (in moving from difference to differential equations for example), 
and so on - -  were normally used as required without consideration of their 
validity. This is not intended as a criticism, but merely a general s tatement of 
the situation: it led to an enormous range of results in pure and applied mathe- 
matics which have remained important  ever since. Further, there were cases when 
questions of rigour and validity did arise, of which the most important  was the 
problem of the motion of the vibrating string; 32 but  ill general the situation at 
the beginning of the 19 ~ century was that  not only were such considerations 
relatively limited but  the techniques themselves were susceptible of, and received, 
plenty of further development without concern for the rigour involved. This is a 
mat te r  of great importance when considering the "new analysis" of BOLZANO 
and CAUCHY. Their new foundations, based on limit avoidance, certainly swept 
away the old foundations, founded largely on faith in the formal techniques; but  
it would be a mistake of posterior wisdom to assume that  old foundations had 
been in a serious and comprehensive state of decay and were recognised as such 
by  those who were using them. Historians of science seem to be only too ready 
to make assumptions of this kind when considering "revolut ions"  in science: 
they also tend to identify anticipations of a new system in the old one with that  
new system instead of what they probably were, something else in the old system 
which was quite different and also interesting. The historiographical point here 
is the danger of determinism; that  because a body of knowledge developed in a 
particular way, then it must be viewed historically as having been capable of 
developing only tha t  way, certainly from the intellectual point of view and per- 
haps even chronologically. Yet  in fact any situation is always open to a variety 
of future developments: we must  not allow the intermediate historical processes 
that  actually happened to distort our vision of the situation from which they 
started. 

I have already claimed that  the new analysis replaced an old analysis which 
does not seem to have needed such a radical replacement: from the point of view 
of the BOLZANo-CAucHY question, it follows that  it is all the more surprising that  
exactly the same type of replacement began to emerge twice within four years. 
But  we must consider also the anticipations of the new system ill the old one. 
The "new analysis" laid great stress on the rigour of processes: did no "old  
analys t"  t ry  to do the same ? Yes, certainly, but  not ill any way resembling the 
comprehensive and homogeneous character of the new method: they had other 
ideas which were quite different and also interesting. EULER tried hard, though 
with little practical success, to produce a consistent infinitesimalism in his 
"reckoning with zeros", including consideration of different orders of infinitesi- 
mal. D'ALEMBERT tended to distrust infinitesimals altogether, while LAGRANGE 
tried to avoid all limiting processes by  defining the derivatives of a function in 

82 For a discussion of foundational questions in the light of this problem, see my 
Foundations, Ch. t ; and for an extended account of the solution of differential equa- 
tions ill this period, see C. TRUESDELL, The rational mechanics o[ flexible or elastic 
bodies 1638--1788, L. Euleri Opera Omnia, (t) 11, pt. 2 (196o, Zurich). 
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terms of the coefficients of its expansion as a TAYLol~ series. This was "limit- 
avoidance" of a completely different and considerably less successful kind, and 
it won few supporters. One of them, however, was ARBOGAST, WhO tried towards 
the end of the century to reduce the number of distinctions between types of 
function to a group based on analytical rather than algebraic or mechanical 
considerations. L'I-IuILIER offered a thoughtful essay on the taking of limits: 
I am sure that CAISCHY read it, for he always used the notation " l im"  for a 
limiting value which L'HuILIER introduced there. But I doubt if he learnt much 
more from it, for the results obtained are severely limited, being concentrated on 
the derivative and often providing no more than a re-writing of known ideas. 
L'HIJILIEI~ also criticised (with iustice) EULEI~'S use of infinitesimals, and CARNOT 
took it further into a profound essay on orders of the infinitely small and the 
interpretation of the LEIBNIZIAN notations as infinitesimals. But perhaps the 
best example, especially from the point of view of anticipations of BOLZAI~O and 
CAUCHY, iS LACROIX, the principal text-book writer of the day. He was not an 
important creative mathematician, but he was capable of some measure of 
appreciation of contemporary work and he read exhaustively among the earlier 
literature. I referred earlier to his understanding of convergence of series as a 
general problem, which he learnt from D'ALEMBERT'S vague warnings against 
divergent series in the t760's: he also gave in t806 a formulation of continuity 
vaguely similar to that of BOLZANO and CAucI~Y. 3~ Thus we may say that LACROlX 
anticipated them if we wish; yet it would be more misleading than illuminating 
to do so, not least to the understanding of LACROIX'S results. For one cannot 
find in LACROIX'S writings the general aim that BOLZANO and CAI~CI~Y achieved, 
not even in the new editions of his works that continued to appear after CAUCI-IY'S 
text-books were published. 

What would have happened if CAUCH¥ had not read BOLZANO ? Without 
doubt, foundational questions would have received discussion, but it seems to 
me most unlikely that the radical reform that  in fact happened would have taken 
place: rather only parts of that  theory would probably have emerged, especially 
in the convergence of series and the integral as the limit of a sum, while the rest, 
apparently sound enough, would have received well-meaning but limited ex- 
amination. But in order to put the old and the new analyses into better perspective 
we must describe some of the fundamental problems which were current before 
BOLZANO'S paper; and at the same time we shall pass on to further aspects of 
the CAUCHY-BoLZANO question, aspects which involve not only analysis itself 
but also the Paris in which CAUCHY was working and the way in which his 
mathematical genius was inspired. 

~ S. ~'. LACROIX, Traitd dldmentaire du calcul intdgral (2nd edition; 1806, Paris): 
see art. 60. The other works to which we referred explicitly were L. F. A. ARBOGAST, 
Mdmoire sur la nature des/onctions arbitraires qui ent~ent dam les intdgvales des dquations 
aux diHdrentielles partielles (t 791, St. Petersburg) : S. L'HuILIER, Exposilion dldmentaire 
des principes des calculs supdrieures (1786, Berlin), esp. chs. I and a I ; and L. N. M. 
CARNOT, Re/lexions suv la mdtaphysique du calcul in/initdsimale (1 st edition: 1797, 
Paris. 2 nd edition: 1813, Paris). On EULER'S and LAGRANGE'S views on analysis, see 
A. P. JUSCI-IKEWITSCI-I, ' "  Euler and Lagrange ~ber die Grundlagen der Analysis," Sam- 
melband der zu Ehren des 250. Geburtstages Leonhard Eulers (ed. K. SCI-IRODER: 1959, 
Berlin), 224--244; and on all these and other developments, my Foundations, chs. 1 and 3. 
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8. Cauchy's Originality as a Mathematician 

If CAUCHY came to his new ideas independently of BOLZANO, then he perceived 
a completely novel approach to analysis and detected its superiority over known 
techniques which themselves were not lacking in power or generality. This kind 
of achievement is characteristic of certain mathematicians: it reflects their sen- 
sitive "intuition for problems", their ability to see far beyond contemporary 
work into totally new ways of solving current problems, or even of forming new 
problems of which others were hardly aware. GAuss is a prime example of such 
a thinker, with his notebooks already filled with the seeds of most t9 th century 
mathematics within its first decade: ]3OLZANO shows this ability, too, and to 
the extent that  he was in fact extremely limited in ability at "or thodox"  devel- 
opments of current and popular methods. Thus in i8t6,  for example, before the 
flood of his own new thinking, he published a treatise on the binomial series in 
the style of the old analysis which is really quite remarkably uninteresting) 4 But 
CAUCHY is a good example of originality of another kind, lacking such sensitivity 
and feeling for new problems but, when stimulated by the achievements or 
especially lack o/success in some contemporary work, would expand the accom- 
plished fragments into immense generalisations and extensions within the same 
field of research. His monument in mathematics in his theory of functions of a 
complex variable and their integration, one of the great achievements of all 19 th 
century mathematics. Its origins are to be found in a large paper of t814 (his 
25 th year) on the validity of using complex numbers in the evaluation of definite 
integrals. The technique had been used for decades from time to time, without 
much consideration of its validity: in particular, in June 18t4, LEGENDI~E 
published an instalment of the second volume of his Exercises du calcul intdgral, 

a work containing various methods of evaluating definite integrals whose main 
aim was towards the development of his theory of elliptic integrals. 35 This instal- 
ment concerned itself chiefly with integrals whose integrands were the product 
of rational and trigonometric functions, and it provided the spark for CAUCI~Y'S 
fire, for from LEGENDRE'S work CAUCHY came to the following generalised problem 
concerning the evaluation of definite integrals: what are sufficient conditions for 
the validity of using complex variables in such evaluations ? His solution was the 
equality of two mixed partial differentials: 

oxOy l(z)dz-- Oy~x /(z)dz, (1t) 

where z is a complex function of x and y; 

z=h(x, y) +ik(x, y) (12) 
and thus 

/(z) =~,(x, y ) + i v ( x ,  y). (13) 

From this fruitful equation (t 1) stemmed a variety of general theorems (including 
the "Cauchy-Riemann equations") and thence hosts of particular integrals, 

34 ]~. :BOLZANO, Der binomische Lehrsatz and als Folgerung aus ihm der Polynomische 
und die Reihen . . . .  (1816, Prague). The most interesting section is on pp. 27--40. 

85 A.-M. LEGENDRE, Exercises du calcul inl@ral sur divers ordres des hombres trans- 
cendantes el sur les quadratures (3 vols: 1811--t 7, Paris). 
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including the evaluation of some of LEGENDRE'S. CAUCHY presented his paper in 
August (18t4) to the Institut de France, and LEGENDRE was one of its examiners: 
he rightly praised its many important new results, but had a most interesting and 
important dispute with CAUCHY over the evaluation of 

oo 

f x c o s a x  dx (t4) 
• s i~b~  t + x ~ " 
0 

a 
Put in modern terms, if we regard the integral as a function of ~- then it has a 

discontinuity of magnitude ~ at the odd multiple values of its argument. CAVCHY 
had by separate equations evaluated the left- and right-hand limiting values of 

a a 
the function for ~- < t a n d s -  > t" but in the t814 instalment of his book LEGE~- 

DI~E had used a power series expansion method on a generalisation of (t4) to 
produce in a limiting case the arithmetic mean of CAUCHY'S two evaluations for 
a 
b - - t ,  and he could not understand that this new type of algebraic expression 

- -  the integral representation --  could in fact give a discontinuous function. 
CAUCHY produced a spurious piece of infinitesimal reasoning to resolve the 
situation to LEGENDRE'S satisfaction; 36 but it must have shown him that there 
were foundational questions in real variable analysis apart from the use of 
complex numbers with which he would have to deal. 

Let us return, however, to the question of CAUCHY'S type of mathematical 
inspiration. We see in this episode that CAUCHY was directly stimulated by 
LEGENDRE'S attempts at integral evaluation to work in exactly the same field, 
rather than to intuite from it some more general and abstract kind of problem 
concerned with the use of functions of a complex variable. In the t814 paper for 
example, the theory of singularities and residues which he was to produce in 
later years was given in a real variable integral form, which we may write as: 

Y~ ~¢2 X~ Y2 

f f  o, ff , f ~7-x d x d y - - .  -~x d y d x =  . ES(X + p , Y  +q) (t5) 
Yl J('l X1 Yl  0 

- - S ( X  +p,  Y - - q )  -- S ( X - - p ,  Y +q) + S ( X - - p ,  Y - - q ) ] d p ,  

os 
where ~ has an infinity at the point (X, Y) inside the rectangle bounded by 

the sides, x = x 1, x = x 2, y = yl and y = Y2.3~ His later fine achievements in the 
new analysis with the theory of integration may be traced in large part to the 
issues involved in the profound result (15). 

In the following year of 18t5 CAVC~IY had another large paper ready, this 
time on the propagation of water-waves. 3s Complex variables were again present, 

3n For a full account of this episode see my Foundations, ch. 2. 
a7 CAucH¥'s paper was "M6moire sur les int6grales d6finies", Mdm. prds. A cad. 

Roy. Sci. div. say., (2) 1 (1827), 60t--799 =Oeuvres, (1) 1, 31 9---506. LEaENI)RE'S 
evaluation of tile integral (t4) is in his as, 2, t24. 

~s A.-L. CAucI~¥, "Ttl~orie de la propagation des ondes ~ la surface d'nn fluide 
pesant d'une profondeur ind6finie," Mdm. prds. Acad. Roy. Sci. div. say., (2) 1 (1827), 
3--3t2 = Oeuvres, (1) 1, 4--318. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,

pp. 372–400.

Summer University 2012: Asking and Answering Questions Page 328 of 479.



386 I. GRATTAN- GUINNESS : 

as they were to be in all of his mathematical  output;  and integrals were also to 
be found, for the prominent new feature here was tile use of integral methods to 
solve linear partial differential equations (and thus to use again the integral 
representation of a function). The inspiration in this case is not so easy to trace, 
as it is impossible to say how much of FOURIER'S then still unpublished work on 
heat diffusion he had seen; but  he knew of POlSSON'S (lesser) work in the same 
field, and doubtless he was aware of some results of LAPLACE which we shall 
discuss later. At all events, in 18t 7 his further researches brought him to "Fou- 
rier's Integral Theorem":  

o o  o o  

/ ( x )  = 

0 0 

in a short paper whose rushed and excited tone suggests that  he had really found 
the result independently of FOURIER. 39 FOURIER acquainted him with his own 
prior discovery of the theorem, and then CAUCHY certainly did read his manu- 
scripts: not only did he publish an acknowledgement in 1818, 40 but  in all his 
later work on integral solutions to partial differential equations there was a new 
confidence and dexterity, and again - -  extensions and generalisations (to multiple 
integral solutions, and so on) of what FOURIER had already done. 41 

And then we come to t 82t and tile Cours d'Anatyse: large numbers of theorems 
on all aspects of real and complex variable function theory, based on the ideas 
which we listed in our section 2. From where had the inspiration come this t ime ? 
From within CAucI~= himself ? Perhaps; but  it is so ut ter ly untypical of his kind 
of achievement whereas under the hypothesis of his prior reading of BOLZANO it 
is SO perfect an example of it, that  it seems difficult not to accept the latter 
possibility. Perhaps I can best illustrate the force of this point by  describing m y  
own researches into the development of the foundations of analysis during this 
period. I had started naturally enough with CAUCHY'S Cours d'Analyse and his 
other contributions to analysis, and in the course of reading other of his writings 
his need for an initial external stimulus to his genius had become clear to me. 
Thus I wanted to find the source of the new ideas of the Cours d'Analyse, and so 
I made a special search of all of CAOCHY'S work written prior to 182t. I found 
many  important  things, especially the 18t 4 integrals paper and the disagreement 
over (t4) with LECENDRE, and the affair of 1817 over FOU~IER'S Integral Theo- 
rem (16): there was clearly plenty of motivation for CAUCHY to t ry  to improve 
analytical techniques. But of the new ideas that  were to achieve that  aim --  of 
them, to my  great surprise, I could find nothing. Only later did I follow up my  
knowledge that  BOLZANO had done "someth ing"  in analysis which no-one had 
read (or so I thought) ; and I can remember quite clearly the extraordinary effect 
of reading BOLZANO'S 18t7 pamphlet  and seeing the Cours d'Analyse emerging 
from its pages. I then re-read the Cours d'Analyse and found the fine details of 

3 .  A.-L. CAUCHY, "Sur  une loi de r6ciprocit6 qui existe entre certaines fonctions", 
Bull. Sci. Soc. Philom. Paris (1817), 121--124 = Oeuvres, (2) 2, 223--227. 

~0 A.-L. CAucI~Y, "Second note sur les fonctions r6ciproques", Bull. Sci. Soc. 
Philom. Paris (t8t8), 178--181 = Oeuvres, (2) 2, 228--232. 

4, For discussion of these developments, see my Fourier, chs. 21 and 22; and 
BURKHARDT 3a, chs. 8--11 passim. 
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correspondence; but more than that, I could see CAlsCI~Y'S mind at work in its 
own individual way, taking the fragments of BOLZANO'S thought as he had taken 
LEGENDRE'S morsels and FOURIER'S substantial achievements earlier, and pro- 
ducing from them whole new systems of mathematical thought. 

But if CAUCHY owed so much to BOLZANO, why did he not acknowledge him ? 
To answer this question, we move more fully into the social situation of the time: 
to Paris, the centre of the mathematical world. 

6. The State of Parisian Mathematics 

Almost every mathematician of note at this time either lived in or at ]east 
visited Paris. One consequence of this galaxy of brilliance was that a state of 
intense rivalry and sometimes bitter enmity existed almost continuously in the 
Parisian scientific circles. Everybody was affected by it, although some less 
than others; and the reasons were not always purely scientific. There were deep 
and passionate political or religious disagreements, too, heightened by the Napo- 
leonic era and its violent end and brief resurrection in the mid-t810's. These 
rivalries pose an exciting and difficult problem for the historian of the period, 
for their detection and description calls for the most careful reading of even the 
finest point in the most obscure paper, as well as reading between the lines of 
all the scientific literature of the time. Very little work has been done on these 
rivalries: indeed, most historians have failed to notice them altogether. 4~ But 
perhaps I can give some idea of how they affected the situation and bore especially 
upon CAUCHY and his Cours d'Analyse by describing two of the most important 
controversies of the time -- as fully as I have been able to disclose them. 

We have mentioned FOURIER'S name several times, and the first controversy 
involved his work on heat diffusion. Like GAUSS and BOLZANO, he also had a 
strong intuition for new problems, and seemingly from about 1802 he began 
work on the then novel study of the mathematical description of the diffusion 
of heat in continuous bodies. His early work on the problem proceeded by means 
of a discrete n-body model, and though he achieved considerable mathematical 
success a small hut vital error in the model itself brought failure to his efforts to 
obtain a solution for the corresponding continuous bodies by taking n to infinity. 
Then he had a slight CAocI~v-like inspiration from a small paper of 1804 by BlOT 
on the propagation of heat in a bar 43 to start again by forming the partial dif- 
ferential equation directly, and in the brief periods of leisure allowed him in the 
next three years from his duties as Prefect of Is~re at Grenoble and from his 
Egyptological researches he created a genuine revolution of his own: a revolution 
in mathematical physics, which he took beyond the realm of NEWTONIAN mech- 
anics into a new physical territory of heat diffusion, with its own equations and 
physical constants and a fresh range of solution methods based on the use of 
linear equations, the method of separation of variables (then mainly used in solving 

42 An exception is YI. ]3URKI-IARDT 33" for scattered remarks, see ch. 8 pctssim. 
See also my Foundations, esp. chs. 2--5; and Fourier, esp. chs. 21 and 22. 

~3 j. B. BLOT, "M6moire sur la propagation de la chaleur," Bibl. Brit., 27 
(1804), 3t0--329 = fourn. Mines, 17 (t804), 203--224. FOURIER never acknowledged 
BLOT'S paper] 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,
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ordinary differential equations) and the superposition of special solutions. FOU- 
RIER series were only one consequence of these new methods: another was his 
creation of the basic theory of the misnamed "Bessel functions",  and indeed it 
was there that  he showed his mathematical  technique at its greatest. By 1807 
he had progressed far; but  he was unable to solve the problem of heat diffusiou 
in an in/inite continuous body, and so he wrote up his theoretical achievements 
and experimental results in a large monograph submit ted to the Institut de 
France in December ~4. LAGRANGE and LAPLACE were the most important  of the 
examiners: for various conceptual r e a s o n s  LAGRANGE was opposed to the whole 
approach based on separation of variables, but  LAPLACE was very impressed and 
began to take great interest in FOURIER'S work. So a struggle began over the 
reception of FOURIER'S paper, with LAPLACE, FOURIER and MONGE (another 
examiner, and personally close to FOURIER) in support, and opposition from 
LAGRANGE and - -  P O I S S O N .  

We must consider POISSON for a moment,  for in him more than in any other 
single person lies the key to the Parisian mathematical  rivalries. He graduated 
brilliantly from the Ecole Polytechnique in t803, and to the aging grand masters 
of Parisian mathematics - -  LAGRANGE, LAPLACE, LEGENDRE and MONGE --  he 
must have seemed to be the only heir to their crown: FOURIER was so occupied 
with administrative work at Grenoble that  he could not be expected to be 
achieving substantial mathematical  work, while CAUCHY was still only in his 
early teens. So Polssox  was placed in a position of special favour from the 
beginning of his career which he exploited to the full, especially by  means of 
influential positions on Parisian scientific journals; but  over the next twenty 
years he gradually but  steadily lost favour and reputation to FOURIER and then 
CAUCHY as they emerged and surpassed him in the quality of their work. The 
t807 paper of FOURIER was crucial in this development. By  1805 or 1806 Polssox  
was already aware of some of FOURIER'S results and the type of solution tha t  he 
was trying to develop: he replied not only by  applying to FOURIER'S diffusion 
equation in t806 the ideas of LAGRANGE and LAPLACE on solutions of partial 
differential equations using power series of functions, 45 but also by  publishing a 
denigrating five-page review of FOURIER'S monograph in 1808 in a journal of 
which he was mathematical  editor. 4° However, LAPLACE, acting in his typical 
political way, maintained his interest in POlSSON (and also in BLOT) while 
gradually changing his interests towards FOURIER'S methods and results. In t809 
he published a miscellany on analysis which - -  without reference to FOURIER --  
just happened to contain a t reatment  of the diffusion equation with initial condi- 

~4 For the references of this manuscript, see 12; and for a detailed analysis of its 
contents, see my "Joseph Fourier and the revolution in mathematical physics", 
Journ. Inst. Maths. Applics., 5 (t 969), 230--253. Much new information on FOURIER'S 
life and Prefectural responsibilities is contained in my Fourier, ch. t. 

4~ S. D. POISSON, "M6moire snr les solutions particuli~res des 6quations diff6ren- 
tielles et des 6quations aux diff6rences", Journ. Ec. Polyt., call. 13, 6 (1806), 60--116 
(pp. 109--t11). 

46 S. I). POlSSON, "M6moire sur la propagation de la chaleur darts les corps solides", 
Nouv. Bull. Soc. Philom. Paris, 1 (1808), t t2 - - t  t6 ~ FOURIER'S Oeuvres, 2, 2t 3--221. 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,
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t ions over  an inf ini te  in terval .  His  solut ion 
o o  

0 

brough t  in to  m a t h e m a t i c s  a resul t  which la te r  was deve loped  as the  " L a p l a c e  
t r a n s f o r m " ;  i t  m a y  well have  been CAUCH¥'S inspi ra t ion  to  t r y  in tegra l  solut ions 
to  pa r t i a l  d i f ferent ia l  equat ions.  4~ I t  was cer ta in ly  FOURIER'S inspi ra t ion ,  for i t  
showed FOURIER t h a t  an integral, ra the r  than  a series, solut ion was appl icab le  in 
the  case of an inf ini te  in te rva l  and  i t  led h im to "' Four ie r  i n t eg ra l s "  and  thus  to 
his in tegra l  theorem (t6). Meanwhile,  POlSSON h a d  been oppos ing  FOURIER'S 
solut ion me thod  in favour  of func t iona l  solut ions  b y  means  of indi rec t  references 
in the  con tex t  of the  v ib ra t ion  of elast ic  surfaces;  48 b u t  FOURIER and  his sup-  
por ters  even tua l ly  m a n a g e d  to secure a prize p rob lem for hea t  diffusion in the  
Ins t i tu t  de France for J a n u a r y ,  1812. To the  revis ion of the  manusc r ip t  of 1807 
FOURIER a d d e d  a new sect ion on FOURIER integrals ,  and  also two more  new pa r t s  
on phys ica l  aspects  of hea t  which were inspi red  b y  discussions wi th  LAPLACE. 
He won the  prize, b u t  the  cri t icisms of LAGRANGE in the  examiners '  r epor t  hu r t  
h im for the  rest  of his life: 

" . . .  This work  conta ins  the  t rue  di f ferent ia l  equat ions  of the  t ransmiss ion  of 
hea t ,  bo th  in the  in ter ior  of the  bodies  and  a t  the i r  surface, and  the  nove l t y  of 
the  purpose  ad jo ined  to  i ts  impor t ance  has de t e rmined  the  class [of the  Institut] 
to  crown this  work, observing,  however,  t h a t  the  manne r  of a r r iv ing  at  i ts  
equat ions  is no t  free from difficult ies and  i ts  analysis  of in tegra t ion  sti l l  leaves  
someth ing  to be desired, bo th  re la t ive  to  i ts  genera l i ty  and  on the  side of rigour.  "4° 

LAGRANGE died  in 1813; b u t  pub l ica t ion  of th is  second pape r  was no more  
l ike ly  t han  i ts  predecessor  and  so FOURIER wrote  his book  on hea t  diffusion as 
the  th i rd  vers ion of his work. I t  d id  no t  appea r  un t i l  1822, 5o hav ing  been de layed  
p a r t l y  b y  FOURIER'S own difficulties in developing  the  phys ica l  aspects  of hea t  
(which he even tua l ly  omi t t ed  and p romised  for a sequel which was never  wri t ten)  ; 
and  the  t812 prize paper  d id  not  appea r  unt i l  s t i l l  la ter .  51 B y  this  t ime  FOURIER 

47 p. S. LAPLACE, "M6moire sur divers points d 'analyse" ,  Journ. Ec. Polyt., cab. t 5, 
8 (1809), 229---265 (pp. 235--244) = Oeuvres, 14, 178--214 (pp. 184--193). 

4s See especially the preamble to a prize problem on this topic in Hist. cl. sci. 
math. phys. Inst. Fr. (1808: publ. 1809), 235--24t .  Obviously writ ten by  POlSSON, 
i t  extols the virtues of functional solutions to the wave equations - -  in implied contrast  
to FOURIER series solutions which were then available. In  controversial circumstances 
(described in my Fourier, ch. 2t), POlSSON read his own paper  on the subject  in 1814, 
which was published as "M6moire sur les surfaces elastiques",  Mdm. cL sci. math. 
phys. Inst. Fr., (t812), pt. 2 (publ. t8t6),  167--225. 

49 Published in FOURIER'S Oeuvres, 1, vi i --vi i i .  The manuscript  is kept  in the 
Archives of the Acaddmie des Sciences, Paris. 

FOURIER never allied himself closely to LAPLACE, and gave no acknowledgement 
to LAPLACE in the prize paper. I t  may  be tha t  LAORANGE'S continued general opposition 
was supplemented by  LAPLACIAN annoyance: the remarkable story of the relations 
between LAPLACE and FOURIER from 1807 until  the 1820's is described in my  Fourier, 
chs. 21 and 22. 

so j .  ]3. J. FOURIER, Thdorie analytique de la chaleur (1822, Paris) = Oeuvres, 1. 
51 j .  ]3. J. FOtlRIER, "Th6orie du mouvement de la chaleur dans les corps solides", 

Mdm. Acad. Roy. Sci., 4 ( t819--20:  publ. 1824), t85--555;  and 5 (1821--22: publ. 
t826), 153--246 = Oeuvres, 2, 3--94. 
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had risen to a strong political position, having been appointed sdcretaire perpdtuel 
of the Acaddmie des Sciences in 182t; and then there developed the second of 
our major controversies, which directly involved CAUCHY'S Cours d'Analyse -- 
the convergence problem of FOURIER series. 

FOURIER series contain many of the problems which we tackle by means of 
the new analysis, but we have not yet described any of FOURIER'S work in that 
field. The reason is that, although he understood all the basic analytical problems 
-- convergence, the possibility of discontinuous functions, the integral as an 
area --  before both BOLZANO and CAUCHY had begun their work, he was not 
strongly attracted to pure analysis as a study and so did not develop his own 
understanding to the extent of that  which he was capable. ~2 Doubtless CAUC~IY 
was aware of this fact, for in the Cours d'Analyse he put the following theorem: 

"When the different terms of the series [ ~  u~ are functions of the 
P ~ 

same 
[--r=l J 

variable x, continuous with respect to that variable in the vicinity of a particular 
value for which the series is convergent, the sum of the series is also a continuous 
function of x in the vicinity of that particular value."sa 

The theorem is remarkable for its falsehood: it was known in its day to be 
false, and indeed CAUCHY knew it was refuted when he put it in his book. But to 
find the reasons why it was included, we must examine the type of counter- 
examples which were then known. They were in fact FOURIER series: 

/(x) = ½ a o + ~. (a, cos rx  +b,  sin rx) ,  (18) 
r = l  

where 
2v~ 

If ao=~- l(u)du, 

+~ 

a, = ~ /(u) cos r u d u ,  

+= 

I f /(u) s i n r u d u ,  b,---- 

(19) 

r = 1, 2 . . . .  (20) 

r = 1, 2 . . . . .  (2t) 

The trigonometric functions are continuous, and so the series on the fight hand 
side of (18) is covered by CAUCHY'S theorem: thus if [(x) is discontinuous, tile 
series cannot be convergent to it. But FOURIER had produced several series of 
discontinuous functions, and had shown by direct consideration of their n th 
partial sums that they were convergent; and since t8t 5 POlSSOX had found that 
he had had to abandon his belief in functional and power series solutions in favour 
of FOURIER series solutions, and he had found similar examples also. So what was 
CAUCHY'S purpose in stating his theorem ? There was of course an intellectual 
aspect to it, for CAUCHY did have a proof: suffice it to say for now that the 

52 I n  t h e  1807 m a n u s c r i p t  1~, see  a r t s .  4 2 - - 4 3 ,  6 4 - - 7 4 :  in  t h e  1811 p a p e r  ~1, see  
p a r t  1, 2 6 9 - - 2 7 3  a n d  3 0 4 - - 3 1 6 :  in  t h e  b o o k  50 ( m o s t l y  w r i t t e n  b y  1815), see  a r t s .  
1 7 7 - - I  79 a n d  2 2 2 - - 2 2 9 .  

5a A. -L .  CAUCHY, Cours, 1 3 1 - - t 3 2  = Oeuvres, (2) 3, 120. 
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distinctions between modes of uniform and non-uniform convergence which 
resolve the difficulty were not  noticed b y  anybody  until  the 1840's, tha t  CAUCHY'S 
theorem had  some role to play in their development,  and tha t  short ly  after- 
wards, in his last years, he wrote a pathet ic  paper  of his own on the subject 
presenting the same type  of idea wi thout  any  reference to recent work. 5~ But  
on the personal side, there was a message to FOURIER and POlSSON between 
the lines of his theorem: "your  t r igonometric  series m a y  be very  interesting, bu t  
do you  have a general convergence proof for them ? Do your  series not  affront 
the results of the new analysis ?"  

The later developments of this r ivalry read almost like a novel. 55 Briefly, 
POISSON had already published a general proof in 1820 based on ra ther  crude 
manipulat ions of the "Poisson  in tegra l"  

+ ~  

f (1 __p2) I(~) 
1 - -  2p cos (x -- ~) +p2 d ~ ; 56 (22) 

but,  while he never abandoned it, it impressed few of his contemporaries.  I f  
CAUCHY knew it when he wrote the Cours d'Analyse, then his theorem was 
already a comment  on it;  bu t  in a short  paper  of 1826 on the convergence problem 
he certainly showed his awareness of it. For  he began tha t  paper  with a version 
of POISSON'S convergence proof based on (22) to produce the FOURIER series (18); 
and then he remarked:  

" T h e  preceding series [(t8)] can be very  usefully employed in m a n y  circum- 
stances. But  it is impor tan t  to show its convergence. ''5~ 

CAocltY'S own proof followed; and while it was of considerably bet ter  mathe-  
matical  calibre than  POISSON'S, it contained one vital  flaw - -  the false assumption 

tha t  if u~--*v, as n tends to infinity, then 2 ur and 2 v~ converge together.  Tha t  
r = l  r = l  

this assumption is false was pointed out  in a paper of t829 on the convergence 
problem by  the young  DIRICHLET. In  this masterpiece DIRICHLET showed the 
power of the new analysis in producing the famous sufficient "Dir ichlet  condi- 
t ions"  for the convergence of a FOURIER series to its funct ion:  tha t  it m a y  have 

5~ A.-L. CAUCHY, "Note  sur les s6ries convergentes ...", C. R. Acad. Roy. Sci., 
36 (1853), 454--459 = Oeuvres, (1) 12, 30--36. For a detailed account of the intro- 
duction of modes of convergence, see my Foundations, ch. 6. The relevance of CAUCHY'S 
theorem in the Cours is especially connected with one paper important in the develop- 
ment of modes of convergence: P . L .  SEIDlgL'S "Note  tiber eine Eigenschaff der 
t~eihen, welche discontinuirlichen Functionen darstellen", Abh. Akad. Wiss. Mi~nich, 
7 (t 847--49), math :phys .  KI., 381--393. This paper (by a pupil of DIRICHLET!) dealt 
explicitly with that  theorem in the light of discontinuous FOURIER series, and is more 
than likely to have been the (unmentioned) inspiration of CAUCHY'S paper of five 
years later. 

55 A detailed description is given in my Foundations, eh. 5. 
5 6  S.-D. PolssoN, "M6moire sur la mani~re d'exprimer les fonctions . . ."  Journ. 

Ec. Polyt., cah. 16, 11 (1820), 417--489 (pp. 422--424). 
57 A.-L. CAUCHY, "M6moire sur les d6veloppements des fonctions en s6ries p6riodi- 

ques", Mdm. Acad. Roy. Sci., 6 (1823: puN. 1827), 603--6t2 (p. 606) = Oeuvres, (1) 2, 
12-- t9  (p. 14). 
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a finite number  of discontinuities and turning values in an otherwise continuous 
and monotonic  course. 5s And his proof was a development of a sketched argument  
in FOURIER'S book of 1822: he took an alternative form to  FOURIER'S for the n th 
partial  sum of the series and applied to it a precise version of the proof tha t  
FOURIER had  out l ined)  9 Yet there was more than mathemat ics  in DIRICHLET'S 
paper, too, for during his visit to  Paris  in 1826 he formed such a close personal 
a t t achment  to FOURIER tha t  his work on the convergence problem was a per- 
sonal homage in FOORIER'S last years. However,  he formed no close relationship 
to CAUCHY: as well as pointing out  the error in CAUCHY'S 1826 proof and finding 
general convergence conditions which, in allowing discontinuities in the function 
refuted CAOCHV'S 1821 theorem, he reported in his paper a presumably  verbal 
remark of CAUCHY'S on his t826 paper tha t :  

"The author  of this work himself acknowledges tha t  his proof is defective for 
certain functions for which, however, convergence is incontestable. ''8° 

One can find CAUCHY'S reaction to DIRICHLET'S results if one looks carefully: 
in 1833 CAUCHY published in French at Turin a summarised version of all his 
t820's  text-books (based on the lectures tha t  he had been giving there ill Italian), 
and was careful to include his theorem from the Cours d'Analyse word for 
word. 61 

And so we re turn to ]3OLZANO and his Prague pamphlet .  Is it any  wonder 
t ha t  in an atmosphere like this CAUCHY made no acknowledgement to him ? 
References were often not  made (apart from honorific citations of the great  
names of the past), either between members  of the Paris cliques or outside them;  
and even then they  were some times double-meant.  For  example, when CAUCHY 
finally managed  to get his t 8 t 4  paper on definite integrals and the 1815 paper 
on water-waves published in 1827 he introduced in 1825 some extra  notes and 
footnotes to the texts  and introduced fawning references to the powerful secrdtaire 

b 
perpdtuel (FouRIER), especially with regard to his invention of the notat ion f to 

represent the definite integral;  he also inserted a t tacks  on the declining POlSSON. 62 
But  there seems to me to be more specific reasons for CAUCtIY'S failure to acknowl- 
edge ]3OLZANO. He  had  appreciated the qualities of BOLZANO'S work ,  and I think 
tha t  he deliberately excluded references to an obviously obscure work in order 
to prevent its acquaintance by  rivals such as Po l s so~  and FOURIER (and perhaps 
others such as A~IP~RE). This is perhaps not a nice remark to make about  CAUCHY 
but  it is all too justified, and indeed CAUCHV'S personality is wor th  our separate 
attention. 

5s p. G. LEJEUNE-DIRICHLET, " S u r  la convergence des s6ries t r igonometr iques  . . . " ,  
Journ. rei. ang. Math., 4 (t829), t57--169 ---- Werke, 1, 117--132. DIRICI-ILET'S contri- 
butions to the new analysis in this and other works (described in my Foundations, 
ch. 5), surpass in my view any other of CAucnY'S successors - -  including ABEL. 

S9 See J. B. J. FOURIER 5°, esp. art. 423. 
s0 See P. G. L E J E U N E - D I R I C H L E T  5s, 157  = Werke, 1, 119. 
61 A.-L. CAUCHY, Rdsumds Analytiques (t833, Turin), 46 = Oeuvres, (2) 10, 55--56. 
6, For CAUCHY'S acknowledgements to FOURIER, see 37, 623 = Oeuvres, (1) 1, 340; 

and 30, 194 (omitted from Oeuvres, (1) 1, t97). For the attacks in 3s on PolssoN, see 
pp. 187--188 = Oeuvres, (1) 1, 189--191. 
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7. Cauchy's Personality 

If CAUCHY was one of the greatest mathematicians of his time, he was one 
of the most unpleasant personalities of all time: a fanatic for Catholic and Bour- 
bonist causes to the point of perversion, he had to prove his superiority at all 
times over even the weakest of his contemporaries and to publish a virtually 
continuous stream of work. He also wrote articles on education, the rights of the 
Catholic and Bourbon causes, and the reform of criminals, to supplement his 
mathematical  output;  but  he never helped and even at times hindered his 
younger colleagues in their careers and work. A good example of this concerns a 
young man who wrote the following of him: 

" C a u c h y  is a fool, and one can ' t  find any understanding with him, although 
he is the mathematician who at this t ime knows how mathematics  should be 
treated ... he is extremely catholic and bigoted . . . .  " 

The writer was ABEL, in a letter sent to his friend HOLMBOE when, like 
DIRICHLET, he visited Paris in October, t826. ea Poor ABEL: he cannot have 
known how right he was, just as he did not understand the Parisian political 
situation. While in Berlin during the previous January,  he had written a paper  
on convergence tests and their application to the binomial series which made 
important  use of the new analysis: he had also spotted the weakness in CAUCHY'S 
theorem of the Cours d 'Ana ly se  and made the first public mention of the point 
in a footnote to the paper. 84 Later  in the same letter to HOLMBOE he remarked: 

" I  have worked out a large paper on a certain class of transcendental functions 
to present to the Ins t i tu t .  I am doing it on Monday. I showed it to Cauchy: but  
he would hardly glance at it. And I can say without bragging tha t  it is good. 
I am very curious to hear the judgement of the Ins t i tu t  . . . .  " ~  

This was the paper which ushered in the transformation of LEGENDRE'S theory 
of elliptic integrals into his own theory of elliptic functions; and the story of its 
fate is only too characteristic of Parisian science and of CAUCtIY. CAUCIIY and 
L E G E N D R E  w e r e  the examiners: CAUCHY took it and, perhaps because of ABEL'S 
footnote against his theorem, ignored it entirely: only after ABEL'S death in 
t829 did he fulfil a request to return it to the Acaddmie  des Sciences. I t  was 
finally published in 184t, when the manuscript  vanished in sensational circum- 
stances, to be rediscovered only in the t950's. This story is well-known ;~ however, 
there is one aspect of it which has been little remarked upon but  which shows 
the depths to  which CAUCH¥ could sink. When ABEL'S paper was in the press 
another Norwegian mathematician presented a paper to the Acaddmie  des Sciences 

6s Niels Hendrik Abel. Mdmorial publid h l'occasion du centenaire de sa naissance 
(t 902, Christiana), Correspondance d'Abel .... 135 pp. (pp. 45 and 46) = Texte original 
des lettres . . . .  61 pp. (pp. 41 and 42). Also in Oeuvres (ed. L. SYLOW & S. LIE), 2, 259. 

6~ lxT. H. ABEL,  "Untersuchungen fiber die Reihe ...", Journ. rei. ang. Math.,  1 
(t826), 311--329 (p. 316) =Oeuvres  (ed. B. HOLMBOE), 1, 66--92 (p. 71) =Oeuvres  
(ed. L. SYLOW & S. LIE), 1, 219--250 (p. 225). 

,5 In addition to the references in ,3, we may add for this passage ABEL'S Oeuvres 
(ed. B. HOLMBOE), 2, 269--270. 

~ For a detailed account of this affair, see O. ORE, Niels  Hendrik Abel - -  mathe- 
matician extraordinary (t957, Minneapolis), 246--261. 

27 Arch. Hist. Exact Sci., Vol. 6 
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on elliptic functions. CAUCHY was again an examiner, and his report contains the 
following words: 

"Geome te r s  know the beautiful works of Abel and of Mr. Jacobi on the 
theory of elliptic transcendentals. One knows that of the important papers ... 
one of them in particular was approved by the Acaddmie in t829, on the report 
of a commission of which Mr. Legendre was a part ECAucHY himself having been 
the other!l, then crowned by the Ins t i tu t  in 1830, and that the value of the prize 
was remitted to Abel's mother. In fact this illustrious Norwegian, whom a pro- 
ject of marriage had determined to undertake a voyage in the depth of winter, 
unfortunately fell ill towards the middle of January t829 and, in spite of the 
care that had been lavished on him by his fianc6e's family, he died of phthisis 
on the 6th April, having been confined to bed for three months . . . .  

"Be fore  completing this report where we have often had to recall the works 
of Abel, it appears to us proper to dispel an error which is already quite wide- 
spread. I t  has been supposed that Abel died in misery, and this supposition has 
been the occasion for violent attacks directed against scholars from Sweden and 
from other parts of Europe. We would want to believe that the authors of these 
attacks will regret that  they expressed themselves with such vehemence, when 
they read the Preface of the ... Oeuvres d'Abel, recently published in Norway 
by Mr. Holmboe, the teacher and friend of the illustrious geometer. They will 
see there with interest the flattering encouragements, the expressions of esteem 
and admiration that Abel received from scholars during his life, particularly 
from those who occupied themselves at the same time as he with the theory of 
elliptic transcendentals . . . .  -67 

In fact CAUCH¥ must have known that, while preparing his t839 edition of 
ABEL'S works, HOLMBOE had tried without success to obtain the 1826 manuscript 
from the Acaddmie des Sciences and that  its publication in t84t was due only to 
the fact that  he had raised the matter to governmental level. Anyone capable of 
writing in this manner, knowing the negative role played by himself in the matter 
under discussion, would hardly think twice about borrowing from an unknown 
paper published in Prague without acknowledgement. 

But how unknown was BOLZANO'S paper ? 

e~ A.-L. CAI:CH¥, "Rapport sur un m6moire de M. Broch, relatif ~ une certaine 
classe d'int6grales," C.R .  Acad. Roy. Sci., 12 (184t), 847--850 = Oeuvres, (t) 6, 
146---t49. ABEL'S paper was then appearing as "M6moire Bur une propri6t6 g6n6rale 
d'une classe tr~s-6tendue de fonctions transcendantes", Mdm. prds. Acad. Roy. Sci. 
div. say., (2) 7 (184t), 175--254 =Oeuvres (ed. L. SYLOW & S. LIE), 1, 145--211. 
BRocI~'S paper appeared as "M6moire sur les fonctions de la forme 

$ + - -  

f xs-ye-l / (xo) R (xQ) "o Ox", 

Journ. rei. ang. Math., 23 (1846), 145--t95 and 20t--242: we note the five-year 
delay, and the fact that its publication was not in the journal of the Acaddmie to 
which it had been assigned. CAUCHY'S report (with LIOUVlLLE as co-signatory but 
certainly not author!) prefaced the paper on pp. 145--147: he was referring in the 
above quotation to the "Notice Bur la vie de l'auteur" that HOLMBOE put in his 
edition of ABEL'S Oeuvres, 1, v--xiv. At the end of that edition HOLMBOE included 
a selection of his letters from ABEL, and we note from s3 and s5 that he did not include 
ABEL'S remark on CAUCHY. 
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8. The Availability and Familiarity of Bolzano's Work 

We have mentioned several times that BOLZANO'S achievements anticipated 
specifically the work of the WEIERST~SS school in the t860's, and it was they 
who first brought BOLZANO'S mathematical publications 6s to general attention 
at that  time. Du Bols R~YMOND, CANTO~, HA~KEL, HAR~ACK, H~IZ~E, SC~WA~Z, 
STOLZ --  they formed perhaps the most talented group ever to work on founda- 
tional problems in analysis, and they all had a deep interest in the history of 
their subject. I do not know which of them first came across BOLZANO'S writings : 
the first to make a reference in print was HA~KEL in t871, 69 but SCHWARZ was 
the one most interested in these questions and it was he who around that time 
named WEIERSTaASS'S theorem on the existence of a limiting value of an infinite 
closed sequence of values the "BoLzAZ~o-W~I~RSTRASS theorem", in view of 
BOLZA~O'S theorem on the existence of an upper limit in his t817 pamphlet 
which we quoted in section 2.4. 7° WEIERSTRASS'S group were then studying 
continuous non-differentiable functions, rational and irrational numbers, and 
the early ideas of set theory, on all of which BOLZANO had preceded them; and 
so it had tended to be assumed (posterior wisdom again) that in his own day 
BOLZANO was not read at all. Without any doubt his works were not widely 
available --  for proof of this, we need only mention that it is today extremely 
difficult to find copies of any of them. But it would be a mistake to assume that 
because they appeared as pamphlets they could not have become widely familiar. 
On the contrary, at that  time the publication of pamphlets was a common 
method of issuing scientific literature and indeed avoided the notorious delays 
of academy journals: CAUCHY for example, always anxious for rapid publication, 
put some very important work into pamphlets and lithographs, and even publish- 
ed his own mathematical journal during two periods of his life. 7a There seems to 
have been a well organised trade in the sale of such material, based on the cata- 
lognes of book shops designed especially for scientific and intellectual circles: 
it was by these means, for example, that  BOLZANO in Bohemia managed to learn 
of and obtain the current literature. So we may presume that the work was in 
reasonably fluid circulation -- and surely especially in Paris, the scientific centre 
of the age. CAucHY himself reveals this in his own writings. Although his refer- 

6s Apart from the Beweis and the works listed in 35 and 8~, BOLZANO also published 
Betrachtungen iiber einige Gegenstdnde der Elementargeometrie (1804, Prague) = 
Schri[ten, 5 (1948, Prague), 9--49; and Beitrdge zu einer begri~ndeten Darstellung der 
Mathematik. 1. Lie[erung (t8t0, Prague) = (t926, Paderborn). (No other parts pub- 
lished.) BOLZANO'S friend F. PRIHONSK~" posthumously published his Paradoxien des 
Unendlichen (1851, Leipzig): there have been various re-issues and translations of 
this work, including an English edition (1950, London). 

65 H. HANKEL, " '  Grenze", Allg. Eric. Wiss. Kiinste, sect. 1, pt. 90 (1871, Leipzig), 
t 85--21 t : see pp. t 89, 209---210. The first major study was by STOLZ, as " B. Bolzanos 
Bedeutung in der Geschichte der Infinitesimalrechnung", Math. Ann., 18 (1881), 
255--279 (and corrections in 22 (1883), 5t8--519). 

70 See K. SCHWARZ, " Z u r  Integration der partiel Differentialgleichung 
~ u  ~2u 
ax , + ~ -  = 0 " ,  Journ. rei. ang. Math., 74 (t872), 218--253 (p. 221) = Abhandlungen, 

2, t75--210 (p. 178). 
~ See his Exercises des Mathdmatiques (4 vols. and I instalment: 1826---30, Paris), 

and Exercises d'Analyse et de Physique Mathdmatique (4 vols: 1840---47, Paris). They 
appear respectively in his Oeuvres, (2) 6---9; and (2) 11--14. 

27* 
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ences were often not  a lways  given, t hey  show tha t  he was abreas t  of cur rent  
wri t ings  in all  Eu ropean  languages,  and  not  only  the  most  p rominen t  au tho r s ,  
books  and  journals :  there  are also references to l i t t le  known mater ia l .  In  the  
Cours d 'Analyse,  for example ,  he referred to  a pompous  l i t t le  t r ac t  of t820 
publ i shed  in London  on rules of signs in the  t heo ry  of equat ions,  7°' which was at  
least  as obscure as BOLZANO'S pamphle t .  In  fact,  ]3OLZANO had  given his pape r  
two oppor tun i t ies  for publ ica t ion ,  for no t  only  d id  he issue i t  as a p a m p h l e t  in 
1817, b u t  - -  wi th  the  same pr in t ing  - -  inser ted  i t  in to  the  18t8 volume of the  
Prague  A c a d e m y  Abhandlungen. ~3 T h a t  journa l  was avai lab le  in Par is :  indeed,  
the  Biblioth~que Impdriale (now the  Biblioth~que Nationale) began  to t ake  i t  
wi th  precisely the volume containing Bolzano's pamphlet. 74 So here is a t  least  one 
plausible  poss ib i l i ty  for CAUCHY to have  found a copy  of BOLZANO'S paper ,  qui te  
a p a r t  f rom the  book - t r ade :  he could have  no t iced  a new journa l  in the  l i b ra ry ' s  
s tock and  examined  i t  as a possible course of in teres t ing  research.  

We tu rn  now from the  ava i l ab i l i t y  to  the  f ami l i a r i ty  of BOLZANO'S WOrkS. 
W e  have  seen t ha t  t hey  were no t  wide ly  circulated,  a l though p r o b a b l y  more  so 
than  migh t  be imagined ;  b u t  a p a r t  f rom t h a t  I feel t ha t  all i m p o r t a n t  fac tor  in 
the  appa ren t  indifference of his contemporar ies  was a lack o[ understanding of 
wha t  he had  achieved.  Since his i m p o r t a n t  resul ts  were so far  ahead  of i ts  t ime,  
only  a genius of CAUCHY'S type  and  magn i tude  could br ing  t hem to the  reali-  
sa t ion  t h e y  deserved (and of which the i r  c rea tor  was p r o b a b l y  incapable) .  W e  
can apprec ia te  this  po in t  be t t e r  if we r e tu rn  to  ABEL. There  is no reference to  
any  of ]3OLZANO'S works  in ABEL'S writ ings,  and  seemingly  no direct  influence 
either,  even though  t h e y  had  bo th  wr i t t en  on the  b inomia l  series; b u t  ABEL had  
certainly- read  some BOLZANO, for he expressed grea t  admi ra t ion  for h im in a 
no tebook  and  hoped  to mee t  h im in Prague  dur ing his Eu ropean  tour.  v5 1 suspect  
t h a t  several  ma thema t i c i ans  were in ABEL'S pos i t ion:  impressed  b y  BOLZANO'S 
work,  b u t  unable  to  t ake  i t  fur ther  themselves.  7e Bu t  wi thou t  doub t  there  were, 
unfo r tuna te ly ,  m a n y  who never  d iscovered i t  a t  all.  This,  therefore,  is a s i tua t ion  
in m a r k e d  con t ras t  to  CAUCI~Y'S works,  which were read  b y  e v e r y b o d y  - -  in- 
c luding BOLZANO. 

72 p. NICHOLSON, Essay on involution and evolution: containing a new accurate 
and general method o[ ascertaining the numerical value o] any Junction ... (t 820, London). 
CAUCH¥'S reference is in the Cours, 500 = Oeuvres, (2) 3, 409: he also wrote a number 
of papers on this subject in the 18t0's, but  with an interest towards structural  prop- 
erties (permutations, etc.) rather  than  in the foundations of analysis. For  commentary,  
see H. WusslNG, Die Genesis des abstrakten Gruppenbegri[/es (1969, Berlin) esp. 
pp. 61--66. 

~3 See the references in a 
7~ The present call mark  of this volume is R. 15 200 in the Ddpartment des Im- 

primds. There is no record of its readers, neither does i t  contain any annotated 
markings or corrections. The only other copy of the work known to me in Paris is 
in the holding of the journal by  the Musdum Nationale d'Histoire Naturelle - -  a source 
hardly likely to have been used by  CAUCHY. The copy has no revealing annotations on it. 

75 See L. SYLOW, "Les  6tudes d 'Abel  e t  ses d6couvertes," s2, 59 PP. (pP. 6 and t 3); 
and K. RYCHLIK, "Niels Hendrik  Abel a ~echy" ,  Pok. mat. [ys. astron.;9 (1964), 
317--319. 

~6 LOBACHEWSKY also knew BOLZANO'S 18t 7 pamphlet  on the roots of a continuous 
function: see B. L. LAPTIEV, "0  ~H6HHoTeqHBIX 8an~eax RH~Ir ~I mypHazXOB, ~bl~aHm, xx 
H. H. JIo6aqeBcKoMy", VClI. MaT. HayI L 14 (t959), pt.  5, t53- - t55 .  
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9. The Personal Relations between Bolzano and Cauchy 

That CAOCHY read BOLZANO'S 18t7 pamphlet is the subject of our conjecture; 
but that  BOLZANO read CAOCHY'S Cours d'AnaIyse is beyond question, for in an 
important manuscript of the 1830's on analysis he referred to CAUCHY'S as one 
of the recent formulations of continuity in his own style. 7~ By then of course, 
BOLZANO'S ideas had gained much publicity through CAUCHY'S book, which 
itself had been published at KSnigsberg in t 828 in a German translation which 
may well have been the version that BOLZANO read. Yet there was never a priority 
row between the two over their common ideas. This is, however, not surprising. 
In the first place, BOLZANO was no CAUCHY, incessantly anxious for publication 
and his "r ights";  and in addition he was already a controversial figure in Bo- 
hemia on account of his progressive views on society and religion. Thus, even if 
he had wanted to stage a priority row from Bohemia against the great CAUCHY 
in Paris, he would have found it especially difficult. But I would suggest that  
there is still another reason why BOLZANO did not promote such a row; namely, 
that he probably never noticed the correspondence of ideas --  or at least their 
significance -- when he read the Cours d'Analyse. For the Cours is a large 
book, nearly 600 pages in length; and almost all of it is CAUCHY, applying BOL- 
ZANO'S germinal ideas to one analytical problem after another. But the ideas 
themselves and the direct points of correspondence appear only here and there 
in its course, and could easily be missed in the general context. 

This view is strengthened when we consider their personal relations. There 
was no meeting between the two in the t810's or 1820% for CAUCHY was in 
France and BOLZANO in Bohemia; but after the fall of the Bourbons in 1830 
CAUCHY exiled himself, firstly to Italy, and then, between 1833 and t835, to 
Prague to assist in the education of the son of the dethroned King CHARLES X. 
The tone of BOLZANO'S reaction to CAUCHY'S visit to Prague, in a letter he sent 
to his friend PRiHONSK~ in August, t833, indicates quite clearly that he had had 
no contact with CAUCHY of any sort and that he suspected no direct use of his 
results by CAUCHY: 

"The news of Cauchy's presence Ein PragueJ is uncommonly interesting for 
me. Among all living mathematicians today he is the one whom I esteem the 
most and to whom I feel the most akin; I owe to his inventive spirit some of the 
most important proofs. I ask you very much to recommend me to him and to 
say that I would have travelled now straight to Prague to make his personal 
acquaintance, if I --  after what you tell me of his appointment --  could not 
hope for certain that I will meet him at the end of September . . . . .  ,,Ts 

There were in fact a few meetings, for BOLZANO described them in a letter of 
December, t843 to FESL: 

"Cauchy, the mathematician, was ... in the years t834 or t835 ... in Prague, 
where we met a few times during the few days that I was accustomed to spend 
at that time (at Easter and in the autumn) in Prague. After my departure I let 

72 ]3. BOLZANO 7, in Schri/ten, 1 (1930, Prague), t5: see also p. 94. 
~s See E. WINTER (ed.), "Der b6hmische VormArz in Briefen ]3. Bolzanos an 

F. Pr~honsk3~ (t824--t848)", Ver6][. Inst. Slav., Dtsch. Akad. Wiss. Berlin., 11 (1958), 
306 pp. (p. 156). 

Text 22: I. Grattan-Guinness (1970). “Bolzano, Cauchy and the “New Analysis” of the
Early Nineteenth Century”. Archive for History of Exact Sciences, vol. 6, no. 5,

pp. 372–400.

Summer University 2012: Asking and Answering Questions Page 340 of 479.



398 I. GRATTAN-GuINNESS : 

Kulik deliver to him (1834) an essay filling a single quarto sheet which I had 
drafted for Cauchy sometime in French, on the famous mathematical problem 
of the rectification of curves, because I rightly feared that he would find the 
"Paper  on the three problems of rectification, planing and cubing" published 
in 18t779 too comprehensive and difficult. Early last year, as I was looking 
through some issues of Cauchy's writings 8° bound with the usual coloured wrap- 
pers, and [turned to I the lists of works announced on the back, I noticed with 
astonishment a small note by him on the same subject, that  he had published 
as a lithograph in Paris in t834 (therefore presumably only after he had read my 
little essay). Naturally I would be very eager to read the note . . . .  ,,81 

Eventually BOLZANO managed to obtain a copy of the paper: in fact it came 
through FESL who pointed out to him that it had been written in 1832 rather 
than 1834 and so could not be related to his essay, and that it treated the sub- 
ject in a quite different way. BOLZANO admitted this in an acknowledgement to 
FESL in May, t 844, 82 and it is quite clear that in this case there was not even a 
correspondence of ideas; but on the foundations of analysis a very different 
situation seems to have applied. One would dearly like to know the content of 
their conversations; but if BOLZANO ever wondered even for a moment that 
CAUCHY had read his 18t7 paper before writing the tours d'Analyse, I imagine 
that he would have been pleased rather than annoyed. For when he wrote that 
paper, he had known then that it was a significant work which would probably 
not reach the audience that it deserved; and so he had ended its preface with a 
plea to the scientific community which I believe CAUCHY accepted: 

".. .  I must request ... that  one does not overlook this particular paper be- 
cause of its limited size, but rather examine it with all possible strictness and 
make known publicly the results of this examination, in order to explain more 
clearly what is perhaps unclear, to revoke what is quite incorrect, but to let 
succeed to general acceptance, the sooner the better, what is true and right. ''s8 

10. Epilogue 

My conjecture has aroused considerable adverse criticism before publication, 
and will doubtless receive much more now: thus to minimise the possibility of 
misunderstandings of this paper, a few points may be worth stressing. 

t. Part  of my purpose has been to describe some of the extra-intellectual 
aspects of Parisian mathematics; and whether or not my conjecture is correct 

~9 Tile reference for this work is given in 29 
80 Presumably the Exercises d'Analyse listed in 71 
sl See I. SEIDERLOVA, "]3emerkung zu den UmgAngen zwischen B. Bolzano und 

A. Cauchy," ~as. pdst. mat., 87 (t962), 225--226. 
82 See sl. CAUCHY'S paper, read to the Acaddmie des Sciences on the 22nd October, 

1832, was the "M6moire sur la rectification des courbes et la quadrature des surfaces 
courbes", Mdm. Acad. Roy. Sci., 22 (1850), 3--15 = Oeuvres, (1) 2, 167--t77; but in 
the publisher's lists in the Exercises d'Analyse it is described as an t l-page lithograph 
of t 832, which was its first publication. I do not understand why ]3OLZANO thought 
that it had been published in t 834. 

s8 ]3. ]3OLZANO, Beweis, end of preface. 
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I am firmly convinced that rivalries of the type of which I have given some 
examples played an important role in Parisian mathematics, and so I have tried 
to bring to the attention of historians of this period the kinds of historical problem 
that  they will have to face in interpreting its literature. In addition, the theory 
of "limit-avoidance" is an historical tool which appears to be some use in one 
form or another in investigating the development of analysis and the calculus 
in this and other periods. 

2. I cannot stress too strongly that in characterising Cauchy's genius as respon- 
sive to exterior stimuli I am trying to describe rather than decry the depth and 
extent of his originality. Without any question he and GAUSS were the major 
mathematicians of the first decades of the nineteenth century: thus his work 
has to be given especial attention by historians. I t  is of course not my position 
that CAUCHY would never give references without intending a double meaning, 
but I do think that in his writings, and equally in those o[ his"  colleagues", questions 
of this type do need to be borne very carefully in mind. With regard to ]3OLZANO'S 
pamphlet, it is possible that CAUCHY, the busy and active researchmathematician 
and professor at three Paris colleges, simply did not bother to mention it or 
even forgot that  he had read it (though personally I would not regard this 
explanation as sufficient). My case would be much strengthened by documentary 
evidence of some kind: CAUCHY did leave a Nachlass containing mathematical 
manuscripts and correspondence, for it was used by VALSON when preparing 
his excessively admiring biography of CAUCHY, s4 but unfortunately it was kept 
in the family and there is reason to think that, like his library, it has now been lost. 

3. I remarked that CAUCHY was familiar with European languages: in the 
case of German, it is perhaps worth mentioning explicitly (from a number of 
examples) that  he examined in t817 a manuscript in German sent in to the 
Acaddmie des Sciences, s5 and that he reviewed MCBIUS'S Der barycentrische Calcul 
in t828. s~ We may also record another "coincidence of ideas" with obscure 
German writing strikingly similar to the case of t3OLZANO'S pamphlet. In April 
t847, GRASSMANN, then a schoolmaster at Stettin, sent to CAUCHY tWO copies 
of his t844 Ausdehnungslehre, but he never received any acknowledgement; how- 
ever between late 1847 and t853 CAUCHY published a number of papers on a 
theory of "clefs algCbriques" which basically used the same sort of ideas and 
even some almost identical notation, s7 I offer no judgement here on the matter:  

84 C.-A. VALSON, La vie et les travaux du Baron Cauchy (2 vols.: 1868, Paris): 
see esp. vol. 2, viii--x. 

s5 See Proc~s-Verbaux des sdances de l'Acaddmie tenues depuis la fondation jusqu'au 
mois d'ao~t, 1835 (10 vols: 1910--22, Hendaye), 6, 210. I may remark here that these 
volumes are an invaluable source of historical insight into the period 1795--1835, 
when the rivalries were at their height. They give the minutes of all the private 
meetings of the A caddmie des Sciences, which the participants can hardly have expected 
to be published! 

s6 A.-L. CAUCHY, Bull. Univ. Sci. Ind. [Ferrusac~, Sci. math. phys. chim., 9 (1828), 
77--80. Not in the Oeuvres. 

sT For the references and some discussion of the affair, see M. J. CROWE, A history 
of vector analysis (1967, Notre Dame and London), 82--85 and 106. CROWE'S last 
reference in his 63 is inaccurate and ill fact misleading; it should be "MCmoire sur les 
clefs algCbriques", Exercises d'Analyse et de Physique Mathdmatique, 4 (t847, Paris), 
356---400 = Oeuvres, (2) 14, 4t7--460. 
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I merely record it as another example of the kind of historical problem which 
surrounds the great achievements of the Parisian mathematicians of the time, 
when Paris was the centre of the scientific world and CAUCHY'$ achievements 
among its principal adornments. 

Index of Names 

We list here the names and dates of persons mentioned in the main text.  

D'ALEMBERT, JEAN LE ROND (t 7t 7--1783) 
AMPERE, ADRIEN MARIE (1775--1836) 
ARBOGAST, LOUIS FRANCOIS ANTOINE (1759--1803) 
BERNOULLI, DANIEL (1700--t 782) 
BESSEL, FRIEDRICH WILHELM (1784--1846) 
BLOT, JEAN BAPTISTE (t 774--1862) 
DU BOIS REYMOND, PAUL DAVID GUSTAV (t83t--1889) 
BOLZANO, BERNARD PLACIDUS JOHANN NEPOMUK (t781--1848) 
BOREL, EMILE FELIX EDOUARD JUSTIN (187t--t959) 
CANTOR, GEORG FERDINAND LUDWIG PHILIPP (1845--t 918) 
CARNOT, LAZARE NICOLAS MARGUERITE (1753--t823) 
CAUCHY, AUGUSTIN-LouIs (t 789--1857) 
CHARLES X, KING (t 757--1836) 
DIRICHLET, PETER GUSTAV LEJEUNE- (1805--t859) 
EULER, LEONHARD (I 707--t 783) 
FESL, MICHAEL JOSEPH (1786--1864) 
FOURIER, JEAN BAPTISTE JOSEPH (I 768--t830) 
GAUSS, KARL FRIEDRICH (1777--t855) 
GRASSMANN, HERMANN G/JNTHER (1809---t877) 
HANKEL, HERMANN (t839--1873) 
HARNACK, CARL GUSTAV AXEL (I 851--1888) 
HEINE, EDUARD HEINRICH (I 821--I 881) 
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Did Cau@ Plagiarize golzano ? 
H .  FREUDENTHAL 

1. Introduct ion 

t. In an elaborate erudite paper* I. GRATTAN-GUINNESS has put forward a case 
that  CAUCHY plagiarized BOLZANO: 

In Section 2, he discusses why i] CAUCHY plagiarized BOLZAXO, he did it so 
badly, 

In Section 3, he presents a new limit concept which he calls "l imit  avoidance", 
In Section 4, he mentions some facts from analysis before CAUCHY'S time, 
In Section 5 he claims that CAUCHY could not have written a so "u t te r ly  

untypical"  work as his Cours d'Analyse of 182t without having been inspired 
by somebody else, 

In Section 6-7 he analyzes the quarrels among French mathematicians 
around 1800 and CAUCHY'S bad character so as to explain psychologically why 
CAUCHY plagiarized BOLZANO, 

In Section 8 he discusses whether CAUCHY could have read BOLZANO, 
In Section 9 he deals with the personal relations between CAUCHY and BOLZANO. 

Here I wish to discuss the specific question set as the title of this paper, 
whether CAUCHY plagiarized BOLZANO, a question not considered directly by 
GRATTAN-GuINNESS. 

I have to apologize that  I am not well enough acquainted with the chronique 
scandateuse of the French Academy to follow GRATTAN-GuINNESS there. On the 
other hand I entirely agree with him that  a historian is obliged to read between 
the lines**, though I think it just as important to read the lines themselves. 
In history of mathematics it is also a good idea to understand the mathematics 
involved. 

The question set as the title of the present paper can be put more precisely 
by asking 

whether CAUCHY read BOLZANO, 
whether CAUCHY could have learned new things from BOLZANO, 
whether these things were so important that  he should have cited BOLZANO. 

* I. G~ATTA~-GI3INNBSS, "Bolzano, Cauchy and the New Analysis of the Early 
Nineteenth Century", Archive for History of Exact Sciences 6 (1970), 372-400. 

** p. 387, t 7. 

27* 
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I t  is no sacrilege to ask such questions, even the last one. False ascriptions are 
a tradition in mathematics;  twice I have met  opposition when I refuted such 
ascriptions*. 

2. The Style of Cauchy's Text-Books on Calculus** 

CAUCHY is credited with having laid the first solid foundations of what is 
now called Analysis or Calculus. Though this is true, it is not the whole truth, 
and in a certain sense it is a misleading statement.  I t  is true that  mathematicians 
learned from CAUCHY'S Cours d'Analyse and other text-books what continuity 
and convergence were and how to test  for them, how to be careful with TAYLO~ 
series and how to estimate their remainders, how to avoid pitfalls when multiplying 
and rearranging series, how to deal with multivalued functions, how to define 
differential quotients and integrals, how to be careful with improper and singular 
integrals, and that  they found there the first example of the powerful method 
tha t  later became standard in analysis and recently has come to be called "epsi- 
lontics". 

To know what was new in CAUCHY'S textbooks on Calculus, we had bet ter  
listen to his own words, in the Introduction to his Cours d 'Aualyse***: 

Quant aux m6thodes, j 'ai  cherch6 ~ leur donner route la rigueur qu'on 
exige en g~orn~trie, de mani~re ~ ne jarnais recourir aux raisons tir~es de la 
g~n~ralit~ de l'alg~bre. Les raisons de cette esp~ce, quoique assez cornmun6- 
rnent admises, surtout dans le passage des s6ries convergentes aux s~ries 
divergentes, et des quantit~s r~elles aux expressions imaginaires, ne peuvent 
~tre consid~rdes, ce rne sernble, que comme des inductions propres ~ faire 
pressentir quelquefois la v~rit6, mais qui s 'accordent peu avec l 'exactitude si 
vant~e des sciences math~rnatiques. On doit m~me observer qu'elles tendent 

faire attribuer aux formules alg~briques une ~tendue ind~finie, tandis que, 
dans la r6alit~, la plupart  de ces formules subsistent uniquernent sous certaines 
conditions, et pour certaines valeurs des quantit~s qu'elles renferrnent. En 
ddterrninant ces conditions et ces valeurs, et en fixant d'une mani~re precise 
le sens des notations dont je me sers, je fais disparaltre toute incertitude; 
et alors les diff~rentes formules ne pr~sentent plus que des relations entre 
les quantit~s r6elles, relations qu'il est toujours facile de v~rifier par la sub- 
stitution des nornbres aux quantit~s elles-m~mes. I1 est vrai que, pour rester 
constamrnent fiddle ~ ces principes, je me suis vu forc~ d 'admet t re  plusieurs 
propositions qui parMtront peut-~tre un peu dures au premier abord. Par  
exemple, j '~nonce dans le chapitre VI, qu'une sdrie divergente n'a pas de somme/ 
dans le chapitre VII ,  qu'une dquation imaginaire est seulement la reprdsentation 
symbolique de deux dquations entre quantitds rdelles; dans le chapitre IX,  que, 
si des constantes ou des variables comprises dam une ]onction, apr~s avoir dtd 
supposdes rdelles, deviennent imaginaires, la notation ~ l'aide de laquelle la ]onc- 

* GR.~.TTAN-GuINNESS remarks (p. 398, 5 f.b.) that his "conjecture has aroused 
considerable adverse criticism before publication". In his lecture on this subject 
before an audience of mathematicians rather than historians that I attended, it was 
his mathematics rather than his thesis on CAuctiY that aroused opposition. 

** CAUCHY, Oeuvres (2) 3~S. 
*** CAUCHY, Oeuvres (2) 3. 
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tion se trouvait exprimde, ne peut gtre conservde dans le calcul qu'en vertu d'une 
convention nouvelle propre d~ ]ixer le sens de cette notation dam la derni~re 
hypoth~se; & c. Mais ceux qui liront mon ouvrage reconnaltront, je l'espfire, 
que les propositions de cette nature, entralnant l'heureuse nfcessit6 de mettre 
plus de pr&ision dans les tlifories, et d 'apporter des restrictions utiles ~ des 
assertions trop ~tendues, tournent au profit de l'analyse, et fournissent plusieurs 
sujets de recherches qui ne sont pas sans importance. Ainsi, avant d'effectuer 
la sommation d'aucune sfrie, j 'ai d r  examiner dans quels cas les sfries peuvent 
6tre somm6es, ou, en d'autres termes, quelles sont les conditions de leur 
convergence; et j'ai, ~ ce sujet, 6tabli des r~gles g6n6rales qui me paraissent 
m6riter quelque attention. 

The "generali ty of algebra" meant that  what was true for real numbers, 
was true for complex numbers, too, what was true for convergent series, was 
true for divergent ones, what was true for finite magnitudes, held also for in- 
finitesimal ones. Today it is hard to believe that mathematics ever relied on such 
principles, and since differentials now are only an uneasy remainder of the pre- 
CAUCH¥ period, we readily identify CAUCI~Y'S renovation with the progress from 
"infinitesimal" methods to epsilontics, in spite of CAUCHY'S own, much broader, 
appreciation, by which all metaphysics was barred from mathematics. The next  
generation of mathematicians, who had been brought up with the Cours d'Analyse, 
and the generations after WEIERSTRASS, CANTOR and DEDEKIND, who knew 
which course the development of analysis was due to take after CAUCHY, put  
the stress differently than CAUCItY and his generation would have done; at that 
time, and even more today, people would not properly understand what it meant 
if you told them that CAUCHY abolished "the generality of algebra" as a founda- 
tion stone of mathematics. 

I. GRATTAN-GuINNESS has been puzzled by the "untypica l"  character of 
CAUCHY'S work on Calculus as compared to his production before t821. I t  is 
indeed puzzling. But GRATTAN-GuINNESS might have added that  it is untypical 
even if compared with CAUCHY'S work after t82t.  The strange thing is that  in 
his research papers CAucttY never lived up to the standards he had set in his 
Cours d'Analyse. Though he had given a definition of continuity, he never proved 
formally the continuity of any particular function. Though he had stressed tile 
importance of convergence, he operated on series, on FOURIER transforms, on 
improper and multiple integrals, as though he had never raised problems of 
rigor. In spite of the stress he had laid on the limit origin of the differential 
quotient, he developed also a formal approach to differential quotients like 
LAGRANGE'S. He admitted semi-convergent series and rearrangements of con- 
ditionally convergent series if he could use them. He formally restricted multi- 
valued complex functions of x as logx, V x, and so on, to the upper half plane, 
but if he could use them in the lower half plane, he easily forgot about this 
prescription. CAUCHY looks self-contradictory, but  he was simply an opportunist 
in mathematics, notwithstanding his dogmatism in religious and political affairs. 
He could afford this opportunism because, with the background of a vast experi- 
ence, he had a sure feeling for what was true, even if it was not formulated or 
proved according to the standards of the Cours d'Analyse. 

Text 23: H. Freudenthal (1970–1971). “Did Cauchy Plagiarize Bolzano?” Archive for
History of Exact Sciences, vol. 7, no. 5, pp. 375–392.

Summer University 2012: Asking and Answering Questions Page 346 of 479.



378 H. FREUDENTHAL: 

Why, then, was the Cours d'Analyse so different from his other work ? Not 
because it was more fundamental,  but  because it was a textbook, in which he 
not only communicated his results but also made explicit his background experi- 
ence. CAUCHY was not a lover of foundational research like BOLZANO, but  to teach 
mathematics  to beginners, he had to analyze and to present the techniques 
implicit in his background. A similar situation is common today, when a modern 
teacher of mathematics  will make explicit his logical habits, even though he is 
not a logician. 

There is at least one work of CAOCH¥, his theory of determinants of 18t2% 
which shows the same "un typ ica l "  features; it is not to be wondered at that  
for a long time this was the only textbook on determinants. The most "untypical" 
CAIJC~IY of all, however, is found in his marvellous first communication on 
Elasticity of t822"*, which by  its conceptual style towers high above the usual 
algorithmic swamp in which he moves. 

Certainly, one has to be careful with stylistic arguments. If CAUCHY'S work 
had come down to us anonymously, by  stylistic arguments we might at tr ibute 
the Cours d'Analyse, the introduction to elasticity, and the remainder of his 
scientific work to at least three different CAUCHYS; on account of content we 
might even attribute his work on complex functions also to at least three CAOC~IYS, 
so as to account for the strange phenomenon of periodic amnesia: often he asserts 
propositions he had recognized as wrong a short t ime before*** and for 
26 years he seems to have forgotten the most  important  paper he wrote in this 
field****. 

CAUCHY did not live in vacuo. He was moved by  work of others, and though 
he made lavish acknowledgements to work of others, we can never be sure whether 
he cited all sources of his inspiration. By his own test imony we know that  LEIBNIZ 
was inspired to his discoveries in Calculus by  work of PASCAL which actually 
was only weakly related to what LEIBNIZ himself finally achieved; even according 
to modern standards LEIBNIZ could hardly have been obliged to cite PASCAL on 
these grounds. In any case from LEIB~IZ' publications we could not guess who 
among LEIBNIZ' predecessors was the most  influential. 

To tell from mere stylistic arguments that  CAUCRY'S Cours d'Analyse must  
have been inspired by  essentially other sources than those on complex functions 
or hydrodynamics, is an ut ter ly dangerous conclusion. I have spent so much 
time on it because the difference of style between the Cours d'Analyse and other 
work of CAUCHY is indeed striking, and because I. GRATTAN-GUINNESS confesses 
that  this feature was the starting point of his investigation. 

* CAUCHY, Oeuvres (2) 1, 9t-t69. (M6moire sur les fonctions qui ne peuvent 
obtenir que deux valeurs...) See also Oeuvres (2) 1 64-90. (M6moire sur le hombre 
de valeurs qu'une fonction peut acqu6rir.) 

** CAUCHY, Oeuvres (2) 2, 300-304. 
*** E.g. the conditions for development into a series of partial fractions in 

CAUCHV, Oeuvres (2) 7, 324-362, and (i) 8, 55-64, or multivalued functions in CAt3CmZ, 
Oeuvres (l), 8, 156-160 and (!) 8, 264. 

**** A. L. CAIYCI~Y, M6moire sur les int6grales d6finies prises entre des limites 
imaginaires, Paris 1825, 4 °, 68 pages. Reprinted in Bull. sci. math. 7 (t874), 265-304; 
8 (1875), 43-55, 148-159; due to be reprinted in CAtYCnY, Oeuvres (2) 15. 
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3. Bolzano's Pamphlet of 1817 
The first theorem of BOLZANO'S pamphle t*  is what is now called CAUCHY'S 

convergence theorem; since a theory of real numbers is lacking, its proof can be 
nothing but a sham. We will come back to this point. 

The next  theorem is usually described as the theorem on the existence of the 
lowest upper bound of a bounded set of real numbers;  in fact the only bounded 
sets considered are lower classes as used in DEDEKIND cuts, SO that  it would 
be bet ter  to term it the theorem on the existence of the cut number. From old 
times this existence has been used implicitly or explicitly. I t  was BOLZANO'S 
great idea to prove it. The proof, using a sequence of dichotomies and the "Cauchy 
convergence criterion", is correct. 

The third theorem is about continuous functions f and q5 with [(c~)< ~b (~) 
and f(/~)> $ (~); it states the existence of an intermediate x where f ( x ) =  $ (x). 
Continuity had been defined in the preface in a perfectly modern way. The theorem 
is derived by  considering the subset of y such that  [ (x) < $ (x) for all x ~ y  and 
by  applying the preceding theorem to it. Again it is a merit  of BOLZANO to have 
recognized the idea to prove it. 

The last theorem asserts the existence of a real root of a polynomial between 
two points where its values are of opposite sign. 

As compared to CAUCHY'S work, BOLZANO'S pamphlet  is clumsily written and 
partially confused. ]3OLZANO has no term for convergence, and none for the limit 
of a sequence; he always circumscribes the convergence to a certain limit by  the 
sentence that  defines this property. Of course he has no term for lowest upper  
bound either. His terminology is unusual; a sequence of functions is called a 
ver~nderliche Gr6sse, and a single function a best~ndige Gr6sse. The CAUCHY conver- 
gence criterion is formulated for a sequence, not of numbers, but  of functions, 
and the property that  is formulated, is, ill fact, uniform convergence although 
BOLZANO draws no conclusion from it (e.g. with respect to continuity); the 
criterion is actually applied to numerical sequences only**. The proof of this 
criterion is worse than faulty, it is ut ter ly confused and not at all related to the 
thing to be proved. At that  t ime it was, indeed, hard to understand that  such 
a theorem could not be proved without an underlying theory of real numbers;  
recently published papers of BOLZANO show that  later he became aware of 
this fact. 

This failure does not prevent the pamphlet  from being a marvellous piece 
of work; the proofs of the other theorems are correct. 

4. The Common Ideas in Bolzano and Cauchy 
I am borrowing the titles of this section and of the subsections t -5  from 

I. GRATTAN-GUINNESS ; his remarks in the corresponding section will be analyzed 
here. 

* B. BOLZANO, Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey 
Werthen, die ein entgegengesetztes Resultat gewdhren, wenigstens eine reelle Wurzel der 
Gleichung liege (18t7), Prague = Abh. K6nigh B6hm. Gesell. Wiss. (3) 5 (1814-1817; 
publ. 1818), 60 p . -  Also in: OSTWALD'S Klassiker No. 153, ed. Ph. E. B. JOURDAIN. 

** This is dissimulated in I. GRATTAN-GUINNESS' quotation, where the hypothesis 
of the theorem is replaced with a provisional announcement taken from another 
section of the pamphlet. 
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4.1. Continuity o / a  Function. BOLZAXO'S and CAUCHY'S definitions are equiv- 
alent. BOLZANO'S iS far better;  it is modern (though instead of ~ and e he uses 
co and f2) ; the succession of the quantifiers is correct and clear. CAUCHY'S definition 
uses the language of infinitesimals (an infinitely small increase of the variable 
produces an infinitely small increase of the functions); even the succession of 
the quantifiers is not clear in this formulation. 

I t  is hard to explain how CAUCHY, if borrowing the definition of continuity 
from ]3OLZANO, could have presented it in deteriorated form; later on such 
occurrences are explained by I. GRATTAN-GuINNESS as instances of CAUCHY'S 
failure to fathom the depth of ]3OLZANO'S thought. There is, however, not the 
slightest reason to assume that CAUCHY learned tile concept of continuous function 
from BOLZANO, since it was already instrumental in CAUCHY'S* treatise of t8 t4  
on complex functions (the Cauchy integral theorem): 

Solution. --  Si la fonction 9 (z) croit ou d6croit d'une mani~re continue 
entre les limites z =b' ,  z = b " ,  la valeur de l'int6grale sera repr6sent6e, 
l'ordinaire, par 

(b") -- 9 (b'). 

Mais, si, pour une certaine valeur de z repr6sent6e par Z et comprise entre 
les limites de l'int6gration, la fonction ~ (z) passe subitement d'une valeur 
d6terminde ~ une valeur sensiblement diffdrente de la premiere, en sorte qu'en 
d6signant par ~ une quantit6 tr~s petite, on ait 

(Z +~) --  9 (Z --~) = A ,  

alors la valeur ordinaire de l'int6grale d6finie, savoir, 

(b") -- ~ (b') 

devra ~tre diminu6e de la quantit6 A, comme on peut ais6ment s'en assurer. 

To within a formal definition the full-fledged idea of continuity is presented 
not only here; it is also the main idea underlying the introduction of the CAUC~IY 
principal value of singular integrals, which provided CAUC~IY'S approach to his 
integral theorem. There can be little doubt that  here was CAUCHY'S point of 
departure to continuity. 

I. GRATTAN-GuINNESS claims that in t 82t CAUCHY did not know that continuity 
did not imply differentiability, while BOLZANO knew it. There is no proof for the 
second claim, and in the light of the role continuity plays in CAUC~IY'S treatise of 
18t4, the first claim is ridiculous. 

4.2. Convergence o[ a Series. In the case of the Cauchy convergence criterion 
CAUCHY'S formulation is much better than BOLZANO'S. If CAUCHY ever read 
BOLZANO, and even if he did not understand his confused exposition, the possibility 
can hardly be excluded that he guessed what BOLZANO meant and consequently 
arrived at an improved version. Of course, this is no proof that it really happened 
this way. CAUCHY prepares tile announcement of his criterion by a fine heuristic 
approach which, undoubtedly, is his own**; when reading his exposition, one can 

* C~,UCH¥, Oeuvres (1) 1, 402-403. 
•• CAUCHY, Oeuvres (2) 3, I t 5-t 16. 
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imagine him standing at the blackboard, explaining that  for a sum Y, u. to con- 
verge, it does not suffice that  the u, converge to 0, nor does it suffice that  the 
u. + u . + l  converge to 0, nor does it suffice that  the u , + u , +  1 +u,+ 2 converge 
to 0, and so on, and that  in order to get convergence of the sum you have rather 
to make all these expressions arbitrarily small by  choosing n large. 

In today 's  mathematics  this is so natural  an approach that  one feels little 
need to ask who invented it, yet  in the historical setting the CAUCHY convergence 
criterion looks like a premature discovery. In fact, if we expect a great many  
applications of the CAUCHY convergence criterion in CAOCH¥'S work, we are 
likely to be disappointed. I t  is applied at essentially two places: 

First, to justify the majorant  method of convergence proofs (if [a~[ <]c. I for 
almost all n, and if Y, [ c,] converges, then Y, a~ converges), which in the particular 
case of a geometrical series as a majorant,  is the foundation of CAUCHY'S famous 
"Calcul des limites" in power series and differential equations, 

Second, to prove the convergence criterion on alternating series (if the [a~[ 
are such that  a~a~+ 1 ~ O, [ a~] ~ [  a~+l [, and lira a~ = 0, then • a~ converges). 

As soon as these two criteria have been established, the reader of tile Cours 
d'Analyse may  readily forget about the CAUCHY convergence criterion. 

This is not to be wondered at since there was not any other essential use of 
the CAUCHY convergence criterion up to the rise of the direct methods of the 
variational calculus at the turn of the t9 th century. The majorant  method and 
the criterion on alternating series as algorithmic tools were just what mathemati-  
cians in CAUCHY'S time, and even later, needed. The CAUCHY convergence criterion 
with its much more involved logical structure, lacked this algorithmic appeal. 
CAUCHY'S work in analysis would not have looked different if he had never 
formulated the CAUCHY convergence criterion and, instead, had accepted the 
principle of the majorant  method and the criterion on alternating series as obvious 
truths which did not need a proof, just as, for instance, he accepted without 
argument that  the endpoints of a nested sequence of intervals, shrinking to zero, 
had a limit*. 

From CAUCHY'S time up to the end of the {9 th century the CAUCHY convergence 
criterion was an expression of logical profundity rather than a practical tool. 
This is what I meant  when I characterized the CAUCHY convergence criterion 
as a "premature d i scovery" - -a  characterization which at the same t ime means 
a praise of its discoverers. 

I. CvRATTAN-GUINNESS could have made a relatively strong point against 
CAUCHY out of the argument that  the CAUCHY convergence criterion fitted less 
into CAUCHY'S work than anything else. Strangely enough he did not. Though 
he challenged CAUCHY'S originality in much weaker cases, he did not do so in 
this one, which would have been the strongest. 

Though I cannot exclude the possibility that  CAUCI-IY borrowed his conver- 
gence criterion from BOLZANO, I stress that  i do not see any indication that  he 
actually did so. 

* CAucI~¥, Oeuvres (2) 3, 379; ill the proof of the theorem of the intermediate 
zero of a continuous function. 
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4.3. Bohano's  Main  Theorem. The theorem on the vanishing of a continuous 
function between two points where its values are of opposite sign is still less 
fundamental to CAUCHY'S Calculus. I t  is almost self-evident that such a pure 
existence theorem did not mean much at that time. In CAVCHY'S Cours d'Analyse 
it stands in the classical constructive context of solving numerical equations, 
particularly in connection with a method of LEGENDRE*, cited by CAUCHY**. 
The theorem itself had long been known. BOLZANO'S and CAUCHY'S merit 
is to have proved it. I. GRATTAN-GuINNESS' statement that CAUCHY'S proof uses 
a condensation argument is far off the mark if by "condensation argument" 
he means what is usually understood by this term. His claim that CAUC~IY'S 
proof 

seems very much like an unrigorous version of the intricate proof developed 
in BOLZANO'S paper 

is as wrong as can be. The most convincing though somewhat lengthy way to 
refute this claim is to quote CAUCI~Y himself***: 

Th6or6me I. --  Soit / (x)  une /onction rdelle de la variable x, qui demeure 
continue par rapport ~ cette variable entre les limites x = x o, x = X .  S i  les deux 
quantitds / ( xo ) , / (X )  sont de signes contraires, on pourra satis]aire ~ l'dquation 

(~) l(x) = 0  

par une ou plusieurs valeurs rdelles de x comprises entre x o et X .  

Ddmonstration. --  Soit x 0 la plus petite des deux quantit6s x 0, X. Faisons 

X - - x  o = h ,  

et d6siguons par m un nombre entier quelconque sup6fieur ~ l'unit6. Comme 
des deux quantit6s / ( xo ) , / (X ) ,  l 'une est positive, l 'autre n6gative, si Yon 
forme la suite 

2 h 

et que, dans cette suite, on compare successivement le premier terme avec 
le second, le second avec le troisi6me, le troisi6me avec le quatri6me, etc., 
on finira n6cessairement par trouver une ou plusieurs lois deux termes con- 
s6cutifs qui seront de sigues contraires. Soient 

t (xl), !(X') 

deux termes de cette esp6ce, x I 6tant la plus petite des deux valeurs corres- 
pondantes de x. On aura 6videmment 

X o < x ~ < X '  < X  
et 

h I ( X - x o ) .  X ' - - x l - -  m --  m 

* M.-A. LEGENDRE, Essai sur la th6orie des hombres. Suppl6Inent, f6vrier 
4816, § III .  

** CAI~CHY, Oeuvres (2) 3, 38t. 
*** CAUCHV, Oeuvres (2) 3, 378-380. 
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A y a n t  ddtermin6 x, et X '  comme on vient  de le dire, on pourra de m~me, 
entre ces deux nouvelles valeurs de x, en placer deux autres x=, X "  qui, sub- 
stitu6es dans f(x), donnen t  des r6sultats de signes contraires, et qui soient 
propres g v6rifier les conditions 

x 1 < x~ < X "  < X' ,  

t 1 
x "  - x~ = ~ ( x '  - xl) = ~ ( x  - x0).  

En  cont inuant  ainsi, on obt iendra:  t ° une s6rie de valeurs croissantes de x, 
savoir  

(2) x 0, x 1, x,~ . . . .  ; 

2 ° une s6rie de valeurs ddcroissantes 

(3) x ,  x ' ,  x " ,  . . . ,  

qui, surpassant  les premi6res de quantit6s respect ivement  6gales aux pro- 
duits  

t 1 
I x ( X - x 0 ) ,  ~ -  x ( X - X o ) ,  ~ x ( X - X o )  . . . .  , 

finiront par  diff6rer de ces premieres valeurs aussi peu que l 'on voudra.  
On doit  en conclure que les termes g6n6raux des s6ries (2) et (3) converge- 
ron t  vers une limite commune.  Soit a cette limite. Puisque la fonction ](x) 
reste continue depuis x = x  o jusqu '~ x = X ,  les termes g6n6raux des s6ries 
suivantes 

l(Xo), l ( x l ) ,  / (x2)  . . . . .  

t ( x ) ,  ! ( x ' ) ,  l ( X " )  . . . .  

convergeront  6galement vers la limite commune /(a) ;  et, comme en s 'ap- 
prochant  de cette limite ils resteront  toujours de signes contraires, il est clair 
que la quanti t6 /(a), n6cessairement finie, ne pourra  diffdrer de z6ro. Par  
cons6quent  on v6rifiera l '6quation 

(1) /(x) = 0 ,  

en a t t r ibuant  ~ la variable x la valeur particnli&re a comprise entre x 0 et X. 
En  d 'autres  termes, 

(4) x = a  

sera une racine de l '6quation (t). 

CAUCH¥'S proof is s imply a faithful description of the naive procedure for 
solving equations numerical ly (the title of this Note i s "  Sur la r&olution nurndrique 
des dquations"). The only sophistication is tha t  the length of the unit  interval  
is replaced b y  a more general h, and the 10 of our decimal sys tem by  a general 
basis m. 

The proof is not  a version of BoLzAzvo's and it is as rigorous as a proof can be. 
The only correct remark  I. GRATTAN-GuINNESS made is tha t  BOLZANO'S proof is 
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intricate; it goes by  way of the existence of the least upper bound of a bounded 
set (or rather the existence of the cut number);  once this existence is presumed, 
BOLZANO'S proof is more elegant than CAUCHY'S. 

Anyhow there is not the slightest need to suppose that  CAUCHY took his 
proof from BOLZANO. The idea, however, that  such a theorem needed a proof 
and could be proved, may  well have come from BOLZANO. The title of BOLZANO'S 
pamphlet  could have been enough to inspire CAUCHY to prove the theorem even 
if he never read tile pamphlet  itself. 

Of course this does not prove that  CAUCHY ever saw BOLZANO'S pamphlet.  

4.4. Bolzano's Lemma. The corner stone in I. GRATTAN-GUINNESS' case that  
CAUCItY plagiarized ]3OLZANO, is the following argument:  In his Cours d'Analyse, 
instead of the limit concept, which would have been sufficient, CAUCHY used 
the concept of upper limit, which was not needed, simply because he found it 
in ]3OLZANO'S pamphlet.  If  this were true, it would, indeed, prove convincingly 
that  CAUCHY knew BOLZANO'S pamphlet.  

I t  was pointed out to I. GRATTAN-GUINNESS that  his s tatement  here rests on 
a few mathematical  errors. In I. GRATTAN-GUINNESS' paper  we now find a text  
(section 2.4), which, mathematical ly and historically, is wrong, as I will show 
in all details; further, at tached to this text, footnote 24, which in fact invalidates 
the main text,  and which is wrong in itself. I will now analyze this paragon of 
confusion. 

As I explained, ][3OLZANO proved in his pamphlet  the existence of the least 
upper bound of bounded sets of a special kind (DEDEKIND lower classes). I. GRAT- 
TAN-GUINNESS quotes BOLZANO'S text  and then continues: 

with this extraordinary theorem came another new idea into analysis, complete- 
ly untypical of its t ime : the upper limit of a sequence of values. 

Speaking of upper limit rather than of least upper bound could be a termino- 
logical deviation, since for a long time usage here was unsettled. I t  is certain, 
however, that  I. GRATTAN-GUINNESS means "upper  l imit"  since he refers to a 
sequence rather than to a set or a lower class, and since he continues with a 
reference to a convergence test  of CAUCHY, the V~-criterion for the convergence 
of ~, u~ (with positive u,). Here, indeed, the upper limit (that is, in modern terms, 
the largest accumulation value) is needed and is used. I. GRATTAN-GuIz~NESS says 
that  the term of upper limit is 

... not to be found explicitly in Cauchy's Cours d'Analyse, but instead 
we have there a frequent use of phrases like " . . . the  largest value of the ex- 
press ion . . . "  

This is entirely wrong. At one of the places alluded to by  I. GRATTAN-GuINNESS 
we read* 

Cherchez la limite ou les limites vers lesquelles converge, tandis que n 
croit ind6finiment, l 'expression (u,,) 1/~ et d6signez par  k la plus grande de ces 
limites, ou, en d 'autres termes la limite des plus grandes valeurs de l 'expression 

* CAucnY, Oeuvres (2) 3, t21. 
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dont il s'agit. La s6rie (1) sera convergente si l 'on a k <  1, et divergente si 
l 'on a k >  1. 

At another place*: 

Cherchez la limite ou les limites vers lesquelles converge, tandis que n 
crolt ind6finiment, l 'expression (0~)1/.. Suivant que ]a plus grande de ces 
limites sera inf6rieure ou sup6rieure ~ l'unit6, la s6rie (3) sera convergente 
ou divergente. 

The alternative definition is here repeated in the proof of the theorem: 

Considdrons d 'abord le cas off les plus grandes valeurs de l 'expression (0~)1/~ 
convergent . . .  

I t  is difficult to say which one of the two definitions was operative, since 
the proofs do not use the explicit value of the upper limit but only its being < t 
(or > t), that  is, the existence of an U such that  (u~)l/~< U < 1 for almost all n 
((u.)l/~> U > t for infinitely many  n). Contrary to I. GRATTAN-GuINNESS' state- 
ment  the term of upper limit (la plus grande de ces lirnites) is explicit in CAUCHY'S 
text.  On the other hand the plural form and the context "la lirnite des plus grandes 
valeurs de l'expressions" clearly show that  this is not CAUCHY'S terminology for 
the upper limit as suggested by  I. GRATTAN-GuINNESS' quotation " the  largest 
value of the express ion. . . "  Cut out this way from CAUCHY'S text  by I. GRATTAN- 
GUI]qNESS, it is meaningless because it does not allow the hidden quantifiers to 
be traced. 

I t  does not mat ter  too much what  artificially isolated pieces of a text  mean 
if the text  is globally clear; in the present case it is not far-fetched, and it is in 
agreement with the global text  to assume that  "la plus grande valeur"  applies 
to a finite set, to wit the set of (u,) 1/~, . . . .  (u.+k) 1/~+k, and the plural is to indicate 
that  all such sets are considered. 

I. GRATTAN-GUINNESS continues: 

As with continuity of a function, CAUCIIY was revealingly only partially 
aware of the significance of the idea; for he used it only as a tool for developing 
the proofs of his particular theorems and not as a profound device for in- 
vestigating more sophisticated properties of analysis. Therefore it would be 
especially surprising if it were CAUCHY'S own invention. . .  

Everybody who is not a stranger to calculus knows that  there is no other use of 
upper  limits than just those theorems where CAUCI-IY used them. Even today 
they provide an unusual and ineffective device. The conclusion that  it was not 
CAUCtIY'S invention because he used it too little is consequently mistaken. 
I. GRATTAN-GuINNESS still suggests that  CAUCHY took this tool from BOLZANO. 
When he wrote that  sentence, he certainly believed that  this tool was in BOLZANO'S 
pamphlet.  Probably he was misled by the so-called BOLZANO-WEIERSTRASS 
Theorem on the existence of an accumulation point for an infinite bounded set 
of numbers, which can be proved by  showing the existence of the upper limit. 

* CAucI~Y, Oeuvres (2) 3, 235. 
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BOLZANO'S name in this context, however, is an honorific rather than an historic 
epithet as is HEINE'S name in "HEINE-BOREL theorem"*. 

CAUCHY did not use the notion of upper limit more often than he did, because 
he could not**, and he did not take it from BOLZANO, because it was not in 
BOLZANO'S pamphlet. There is no doubt that I. GRATTAN-GUINNESS now knows 
these facts, but instead of cancelling the whole section, he has nullified it in a 
footnote: 

There is a distinction between BOLZANO'S introduction of an upper limit 
and CAUCHY'S "largest value of the expression.. ."  in that CAUCHY actually 
used the Limes of a sequence.., while BOLZANO defined the upper limit... 
but we cannot interpret this distinction as intentional in BOLZANO'S and 
CAUCHY'S time.. .  

First, neither did CAUCHY use the term "largest value of the expression" nor 
did BOLZANO speak of upper limits. According to modern terminology the terms 
are upper limit (or limit superior) and least upper bound (or cut number), respectively. 
Second, CAUCHY doesnot use the limit but the upper l imit--I .  GRATTAN-GUINNESS 
seems still not to grant that these are different things. Third: Both BOLZANO'S 
and CAUCHY'S concepts of least upper bound and upper limit, respectively, were 
introduced on purpose because in the given context neither of them could use 
any other concept. 

The fact that  at first I. GRATTAN-GUINNESS did not notice this distinction, 
does not entitle him to claim that BOLZANO and CAUCHY could not make it. 
They did not have to, because they were confronted with different situations, 
and it is no use asking whether they would have made the distinction if there 
had been some need to do so. 

To summarize, at this point there is no influence of BOLZANO on CAUCHY 
visible. 

4.5. The Real Number System. I. GRATTAN-GUINNESS says: 

In the course of proving this Lemma as well as in other parts of his paper 
BOLZANO had recourse to extended considerations of real numbers regarding 
the rational or irrational limiting values of sequences of certain finite series 
of rationals... 

On the contrary: 

CAUCHY wrote just once on the real number system: it was in the Cours 
d'Analyse, where he gave a superficial exposition of the real number system. 
The initial stimulus for this work was foundational questions concerning the 
representation of complex numbers; but he took the development of the ideas 
well into BOLZANO'S territory, twice including the remark that "when B is 

* HEINE first recognized the importance of uniform convergence, but he did not 
formulate covering properties. 

** Even a concept like the least upper bound was not of any importance for the 
mathematics of the CAUCHY era. Such concepts become instrumental only with the 
direct methods of the variational calculus at the end of the 19 m century, in particular 
after HILBEgT'S salvation of DIEICHLET'S principle. 
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an irrational number  one can obtain it by  rational numbers with values 
which are brought nearer and nearer to i t " - - m e r e l y  a remark on a property 
of the real numbers and not as a definition of the irrational number . . .  Once 
again CAUCHY did not fully appreciate the depth of BoLzAxo's thought;  
and yet  it is clear from his partial  success that  he was aware of BOLZANO'S 
ideas rather  than from his partial  failure that  he was ignorant of them. 

I t  is hard to believe, but  the t ruth is just the other way round. I t  is true that  
neither BOLZANO nor CAUCHY defined real numbers (in later investigations 
]3OLZANO tried to do so). There is, however, nothing in BOLZANO'S pamphlet  
that  justifies the sentence quoted. There are no "extended considerations on 
real numbers . . . " ,  there is not any consideration of real numbers and not even 
anything that  could be misunderstood as such by  somebody unaccustomed to 
reading mathematics.  What  I. GRATTAN-CjuINNESS writes is a pure invention. 
The terms "rational" and "irrational" do occur once, in § 8, when, using as an 
example the decimal development of 1 ]3OLZANO warns the reader against be- 
lieving that  the limit of a sequence of different rational numbers must be irra- 
tional. 

On the contrary, CAUCH¥'S occupation with real numbers in the Cours d'Analyse 
is hatefully misrepresented. CAUCHY, though not defining real numbers, at least 
defines the algebraic and exponential operations on real numbers;  starting from 
the rational numbers, where they had been defined directly, he extends the 
definitions to the real numbers by  continuity. In this context he twice uses the 
fact that  real numbers can be obtained as limits of rational ones. These are not 
isolated remarks as I. GRATTAN-GuINNESS claimed, but  rather a deliberate use 
of this property in a meaningful context. 

In any case CAUCHY wrote in the Cours d'Analyse much more on real numbers 
than BOLZAI~O did in his pamphlet  (which was nothing). What  could CAUCHY 
learn at this point from BOLZANO ? What  was the "depth of ]3OLZANO'S thought"  
that  CAUCHY could not fa thom? The bare Nothing or the fact that  0 . t t t  ... is 
rational ? Where did he trespass into BOLZANO'S territory, if this terri tory con- 
sisted of Nothing or of the fact that  0 . t t l . . .  was rational? 

4.6. Summary as to the Common Ideas in Bolzano and Cauchy. 

1. The idea of continuity, common to them both, was arrived at by  each of 
them independently. 

2. The CAUCHY convergence criterion was formulated by  each of them; it 
is possible that  CAUCH¥ took it from ]~OLZANO, though it can easily be explained 
as an original invention of CAocltY'S. 

3. The theorem on the intermediate value of a continuous function had long 
been known as a more or less obvious proposition. The idea to prove it may  
have come to CAUCHY when he read the title of BOLZANO'S pamphlet  if he ever 
did. His proof is different from BOLZAI~O'S. 

4. As regards upper limits and least upper bounds, there is no common element. 

5. On real numbers ]3OLZANO'S pamphlet  contains nothing, while CAUC~IY 
in his Cours d'Analyse developed a theory of operations with real numbers. 
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In  section 2 I explained how the Cours d'Analyse rested on a much broader  
basis of ideas than the few CAUCHY could have borrowed from BOLZANO'S pamphlet .  
Therefore I. GRATTAN-GUINNESS' insinuating quest ion* 

W h a t  would have happened  if CAUCHY had not read BOLZANO .~ 

is irrelevant. The present section shows tha t  there is even little if any  cause 
to ask the other  insinuating quest ion** 

But  if CAUCHY owed so much to BOLZANO, why did he not  acknowledge him ? 

Before analyzing his answer on this question, we shall cast  a glance at his sec- 
t ion 3. 

5. Limit-Avoidance 

I quote I. GRATTAN-GUINNESS' new limit definit ion***: 

When  we speak of "introducing the concept  of a l imi t"  into analysis, we are 
actual ly introducing limit-avoidance, where the limiting value is defined by  
the proper ty  tha t  the values in a sequence avoid tha t  limit by  an arbitrari ly 
small amount  when the corresponding parameter  [the index n or the sequence 
s, of n- th  partial  sums, say, or the increment c~ in the difference (] (x + ~) - -  ] (x)) 
for cont inui ty  I avoids its own limiting value (infinity and zero in these exam- 
ples). The new analysis of BOLZANO'S pamphle t  and developed in CAUCHY'S 
text -books  was nothing else than  a complete reformulation of the whole of 
analysis in l imit-avoidance t e rms . . .  

No, no, and no. BOLZANO and CAUCHY knew bet ter  than  I. GRATTAN-GUINNESS 
what  was convergence and what  was continuity.  I t  is t rue there are bad  19 th century  
textbooks  where you can find such silly definitions, but  this was neither BOLZANO'S 
fault nor  CAUCHY'S**** 

6. Cauchy's Character 

To explain why CAUCHY plagiarized BOLZANO, I. GRATTAN-GuINNESS writes 
a s tory  about  what  he calls the Paris clique of mathematic ians .  No doubt  he 
has studied tha t  chronique scandaleuse bet te r  than anybody  else. But  if the 
secrets of tha t  society are as relevant to unders tanding the his tory of mathemat ics  
as he suggests, why  does he wrap himself in veils of mys te ry  ra ther  than  disclose 
them ? W h y  does he concoct a pompous  s tory  from plain historical facts and 
unfa thomable  allusions ? 

Whoever  has studied CAUCHY'S work knows how chaotic it is. A proposit ion 
is stated, then refuted, only to be s ta ted  once more;  a procedure is severely 
criticized, only to be applied successfully at  the next  oppor tun i ty ;  for no reason 

* p. 383, 12 f.b. 
** p. 387, 5. 

*** p. 378, t3 f.b. - -  5 f.b. 
**** When I. GRATTA•-GUI•NESS lectured at the Utrecht Mathematical Colloquium 

everybody protested. An hour later people thought they had convinced him. I t  is 
a pity they had not done so. 
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notat ions are changed back and forth. No, I. GRATTA~-GuINNESS says, s ta t ing 
a certain apparent ly  wrong theorem was a strategic move  in the secret game of 
the Paris clique. As long as I do not  know the secret information on which such 
conclusions mus t  be based, I cannot  challenge them*.  

A critic is on a safer ground when I. GRATTAN-GuINNESS gives his sources. 
To prove tha t  CAUCHY took  sides in the quarrels of the "Par i s  cl ique" (which 
is u t ter ly  improbable) he mentions,  in the same work, " fawning  references to 
the powerful secrdtaire perpf tuel  (FouRIER)" and " a t t a c k s  on the declining 
POISSON"**. Any  one who checks the sources will find tha t  neither is the re- 
ference to FOURIER fawning nor  is Po l sso~  at tacked.  The first reads 

X'P 

si l 'on ddsigne avec M. FOURIER avec f ] (x)d x l ' int6grale d6finie, prise entre 
les limites x = x' ,  x = x "  . . . ~" 

and it is the style in which such acknowledgements  have been made a thousand 
times by  mathematicians.  At  the second place quoted  we find CAUCHY, rather  
than  at tacking POlSSON, explaining why  he had overlooked certain consequences 
of his theory  which had meanwhile been discovered by  •OISSON. 

To unders tand what  citations mean  for mathematicians,  it would be worth-  
while to make  a statistical s tudy  of them, say around CAUCHY. Isola ted examples 
are of little value. At the very  period when, according to I. GRATTAN-GUINNESS, 
CAUCtIY had reasons to fawn FOURIER and to a t tack  PoISSON, he used the intro- 
duct ion to  his Cours  d ' A n a l y s e  to  extend his thanks  to LAPLACE and POISSON, 
who had  advised him to publish his courses, and at the end of the same intro- 
duction he acknowledged the good counsel he had  received from Polsso~,  AMPERE 
and CORIOLIS. Should we interpret  these acknowledgments,  too, as a t tacks  ? 

I t  is well known tha t  CAUCHY was a strange fellow, and to prove it, there is 
no need to invent  strange stories about  him. The strangest  is his quixotic conduct  
after  the Ju ly  revolution of 1830, when as a lone paladine he followed his king 
to his exile court  in Prague.  He was a religious and  political dogmatic  who often 
exhibited an appalling lack of human  relations. 

* A characteristic pomposity is the remark in footnote 85 that  the Proc~s verbaux 
des sdanees de l 'Acaddmie tenues depuis  la ]ondation jusqu 'au  mois  d'aoC~t 1835 (t0 vols; 
19t0-22, Hendaye) "are  an invaluable source of historical insight into the period 
1795-1835, when the rivalries were at their height. They give the minutes of all the 
private meetings of the Acaddmie des Sciences, which the participants can hardly 
have expected to be published!" 

In fact, there is little that  might be regarded as sensational to be found in the 
Proc~s verbaux. The style is the same as that  of the later Comptes Rendus;  the greater 
part  is routine business. The meetings were not private but public. All spontaneous 
remarks were afterwards carefully edited or omitted; the oral text is better reflected 
by the newspaper reports. 

** CAUCHY, Oeuvres (1) 1, 340 and 189-191; another source mentioned is not 
accessible to me. 

The adjectives "powerful"  and "declining" are melodramatic stereotypes. There 
has never been any secrdtaire perpdtuel who was not powerful, but  I doubt whether 
FOURIER was more so than his predecessors or successors. Facing a powerful secrdtaire 
perpdtuel, POISSON, too, needed an adjective though it is a pity that  I. GRATTAN- 
GUINNESS hit on one that  is so trivially mistaken as is "declining". 

28a Arch. Hist. Exact  Sci., Vol. 7 
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There is a story about CAUCHY and a manuscript of ABEL. In t826, when his 
first important  work had yet  to appear, ABEL visited Paris. A few times he met  
CAUCHY, who at that  period was interested only in mathematical  physics. In 
Paris ABEL wrote the famous work he presented to the French Academy in October 
t826. In t829 he died. In the late thirties the editor of his Oeuvres, who knew 
about the manuscript, tried to get it back from the Academy, but it could not 
be found. Suddenly, in t841, the text  of the manuscript appeared in print in a 
publication of the Academy, though, strangely enough, the manuscript itself 
was still lost. 

This trackless manuscript has always been an exciting feature in the melo- 
dramatic life of ABEL, who according to the stories died in misery, oblivion, and 
disappointment. (It  has long been known that  this story is untrue*.) 

In such a story a villain is needed. According to old LEGENDRE, ABEL'S 
paper  was illegible, so the referees, CAUCHY and himself, could not read it. Even 
today it is commonly believed that  the manuscript was lost by CAUCHY'S neglect. 
In t922 a copy of CAUCHY and LEGENDRE'S report on ABEL'S paper, dated 
29 June  t829, was discovered**; it proved that  CAUCHY'S account of his role in 
the story was correct. I t  is obvious that  CAUCHY had no further business 
with ABEL'S manuscript, since after the Ju ly  revolution of 1830 he went abroad 
and did not return before t838. The academician LIBRI, however, who to annoy 
other people, had invented the main facts in ABEL'S melodramatic life, got some 
business with ABEL'S paper; in any case he read the proofs, though according 
to him without the manuscript. LIBRI was a mediocre mathematician who became 
famous by  his sudden departure to London in t848, when he was accused of 
having over many  years stolen from the French public libraries a million's worth 
of rare books and manuscripts. Thus it was not too far-fetched to look into LIBRI'S 
estate in the Moreniana library in Florence. Finally, in 1952, VIGGO BI~UN did 
so, and he found ABEL'S manuscript***. A written explanation of it by  LEGENDRE 
had been published in World War I I**** but had not been noticed. I t  readst:  

Ce M6moire a 6t6 mis d 'abord entre les mains de M. Le Gendre qui l 'a  
parcouru, mais voyant  que l'6criture 6toit peu lisible et les caract~res alg~bri- 
ques souvent real form6s, il le remit entre les mains de son confrere, M. Cauchy 
avec pri~re de se charger du rapport.  M. Cauchy distrait par d 'autres affaires 
et n ' ayan t  re~u nulle provocation pour s 'occuper du M6moire de M. Abel, 
at tendu que celui-ci n '6tait  rest6 que peu de jours ~ Paris apr~s la pr~sentation 
de son M6moire ~t l'Acad6mie, et n 'avai t  charg6 personne de suivre cette 
affaire auprfis des cornmissaires, M. Cauchy, dis-je, a oubli6 pendant tr~s 
long temps le M6moire de M. Abel dont il 6toit d@ositaire. Ce n'est  que vers 

* Read VIGC-O BRUN'S debunking paper in Journal r. u. angew. Math. 193 
(1954), 239-249. 

** D. E. SMITH, Amer. Math. Monthly 29 (1922), 394-5. Among my autographs, 
29. Legendre and Cauchy sponsor Abel. - -  I t  is in agreement with the Proems verbaux 
(el. footnote*, p. 389). 

*** See footnote *. 
**** G. CANDIDE, Sulla mancata pubblieazione, nel t 826 delia celebre Memoria 

di Abel. Tip. Editr. "Marra"  di G. Bellone, Galatina t942, XX. 
t Journ. r. u. angew. Math. 193, 244-245. 
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le mois de mars 1829, que les deux Commissaires apprirent, par l'avis que 
l 'un d'eux r6~ut** d'un savant d'Allemagne, que le M6moire de M. Abel, qui 
avait 6t6 present6 ~ l'Acad6mie, contenait ou devait contenir des r6sultats 
d'analyse fort interessants, et qu'il 6tait 6tonnant qu'on n'en efit pas fair 
de rapport ~t l'Acad6mie. Sur cet avis M. Cauchy rechercha le M6moire, le 
trouva et se disposait ~t en faire son rapport;  mais les Commissaires furent 
retenus par la consid6ration que M. Abel avait d6j~t publi6 dans le Journal 
de Crelle une pattie de son M6moire pr6sent6 ~ l'Aead6mie, qu'il continuerait 
probablement ~t faire paraitre la suite, et qu'alors le rapport de l'Acad6mie, 
qui ne pouvait ~tre que verbal, deviendrait intempestif*. 

Dans cet 6tat de choses nous apprenons subitement la mort de M. Abel, 
perte tr~s fAcheuse pour les sciences, et qui parait maintenant rendre le rapport 
n6cessaire pour conserver s'il y a lieu, dans le receuil des savants 6trangers, 
un des principaux titres de gloire de son auctor**. 

This unveils the mystery around ABEL'S manuscript. I t  is not unusual that  
referees neglect their task, in particular, if they are not interested in the subject 
or if it is the work of a virtually unknown author, though I agree that  CAUCHY 
was usually more careful. Delays of 10-t 5 years in printing treatises accepted 
by the French Academy were not unusual either; every publication needed a 
royal authorization. In ABEL'S case it may have played a role that  the essential 
part of the manuscript had already been published in "Crelle's Journal" .  

I. GRATTAN-GUINNESS' report on this event is a distortion of the story as it 
is known now. He omits all evidence that is in favour of CAUCHY, and he falsifies 
two points***: 

First he claims that  the neglected manuscript 

... was the paper which ushered in the transformation of LEGENDRE'S theory 
of elliptic integrals into his own theory of elliptic functions.. .  

to add one more melodramatic feature. The paper on elliptic functions was 
published in Crelle's Journal. The manuscript in question was about "ABEL'S 
theorem";  an extract also appeared in Crelle's Journal. 

Second, he claims: 

CAUCHY took it and, perhaps because of ABEL'S footnote against him, ignored 
it entirely: only after ABEL'S death in t829 did he fulfil a request to return 
it to the Acaddmie des Sciences. 

The reader can check that this is in all essentials contrary to L E G E N D R E ' S  

report. If I. GRATTAN-GuINNESS is in the possession of secret information that  
refutes LEGENDRE'S report, he should reveal his sources. Meanwhile I am entitled 
to consider L E G E N D R E ' S  report as correct. 

* The procedure of a formal report was applied only to manuscripts; printed 
pieces submitted to the Academy were given a rapport verbal. 

** Sic. 

*** p. 393. 
28b Arch. Hist. Exact Sci., Vol. 7 

Text 23: H. Freudenthal (1970–1971). “Did Cauchy Plagiarize Bolzano?” Archive for
History of Exact Sciences, vol. 7, no. 5, pp. 375–392.

Summer University 2012: Asking and Answering Questions Page 360 of 479.



392 H. FREUDENTHAL: Did Cauchy Plagiarize Bolzano ? 

I. GRATTAN-GUINNESS continues: 

. . . there  is one aspect of it which has been little remarked upon but  which 
shows the depths to which CAUCHY could sink. 

The evidence I. GRATTAN-GuINNESS produces for CAUCHY'S moral downfall is an 
expos6 of 1841, where CAUCHY first praises ABEL and then refutes the story that  
ABEL died in misery. We now know that  CAUCHY'S expos6 is correct. 

I. GRATTAN-GUINNESS does not explain in what CAUCH¥'S downfall consisted, 
but  anyhow it was a downfall and 

. . .anyone capable of writing in this manner, knowing the negative role 
played by himself in the matter  under discussion, would hardly think twice 
about borrowing from an unknown paper published in Prague without acknow- 
ledgment. 

Anyone ? Maybe. But CAUCHY was someone. 
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