CHAPTER 6

Network Models

There is a multitude of operations research situations that can be modeled and solved
as networks (nodes connected by branches). Some recent surveys report that as much
as 70% of the real-world mathematical programming problems can be represented by
network-related models. The following list illustrates possible applications of networks.

1.

Design of an offshore natural gas pipeline network connecting wellheads in the
Gulf of Mexico to an inshore delivery point. The objective of the model is to min-
imize the cost of constructing the pipeline.

Determination of the shortest route between two cities in a network of roads.
Determination of the maximum capacity (in tons per year) of a coal slurry
pipeline network joining the coal mines in Wyoming with the power plants in
Houston. (Slurry pipelines transport coal by pumping water through specially
designed pipes.)

Determination of the minimum-cost flow schedule from oil fields to refineries
through a pipeline network.

Determination of the time schedule (start and completion dates) for the activi-
ties of a construction project.

The solution of these situations, and others like it, is accomplished through a

variety of network optimization algorithms. This chapter will present five of these
algorithms.

R wN e

Minimal spanning tree (situation 1)

Shortest-route algorithm (situation 2)

Maximum flow algorithm (situation 3)

Minimum-cost capacitated network algorithm (situation 4)
Critical path (CPM) algorithm (situation 5)
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6.1

FIGURE 6.2

Examples of a tree and a spanning tree
given the network in Figure 6.1

Chapter 6 Network Models

The situations for which these algorithms apply can also be formulated and
solved as explicit linear programs. However, the proposed network-based algorithms
are more efficient than the simplex method.

NETWORK DEFINITIONS

A network consists of a set of nodes linked by ares (or branches). The notation for
describing a network is (N, A), where N is the set of nodes, and A is the set of arcs. As
an illustration, the network in Figure 6.1 is described as

N = {1,2,3,4,5}
A = {(1,2),(13),(2.3),(2.5).3:4),3,5),(4.2).(4.5)}

FIGURE 6.1
Example of (N, A) network

Associated with each network is some type of flow (e.g., oil products flow in a
pipeline and automobile traffic flows on highways). In general, the flow in a network is
limited by the capacity of its arcs, which may be finite or infinite.

An arc is said to be directed or oriented if it allows positive flow in one direction
and zero flow in the opposite direction. A directed network has all directed arcs.

A path is a sequence of distinct arcs that join two nodes through other nodes
regardless of the direction of flow in each arc. A path forms a cycle if it connects a node
to itself through other nodes. For example, in Figure 6.1, arcs (2,3), (3,5), and (5,2) form
aloop. A cycle is directed if it consists of a directed path; e.g., (2,3), (3, 4),and (4,2) in
Figure 6.1.

A connected network is such that every two distinct nodes are linked by at least
one path. The network in Figure 6.1 demonstrates this type of network. A tree is a
connected network that may involve only a subset of all the nodes of the network
with no cycles allowed, and a spanning tree is a tree that links a// the nodes of the
network, also with no cycles allowed. Figure 6.2 provides examples of a tree and a
spanning tree for the network in Figure 6.1.
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PROBLEM SET 6.1A

1. For each network in Figure 6.3 determine (a) a path, (b) a cycle, (c) a directed cycle, (d)a
tree, and (e) a spanning tree.

FIGURE 6.3
Networks for Problem 1, Set 6.1a

(it)

2. Determine the sets N and A for the networks in Figure 6.3.
3. Draw the network defined by

N = {1,2.3,4,5,6}
A = {(1.2).(1.5),(2.3),(24),(3.5),(3.4).(4.3),(4.6),(5,2), (5.6)}

Consider eight equal squares arranged in three rows, with two squares in the first row,
four in the second, and two in the third. The squares of each row are arranged symmetri-
cally about the vertical axis. It is desired to fill the squares with distinct numbers in the
range 1, 2,...,and 8 so that no two adjacent vertical, horizontal, or diagonal squares hold

consecutive numbers. Use network representation as a vehicle to find the solution in a
systematic way.

t

S. Three inmates escorted by 3 guards must be transported by boat from San Francisco to
the Alcatraz penitentiary island to serve their sentences. The boat cannot transfer more
than two persons in either direction. The inmates are certain to overpower the guards if
they outnumber them at any time. Develop a network model that designs the boat trips in

a manner that ensures a safe transfer of the inmates. Assume that the inmates will not flee
if given a chance.

MINIMAL SPANNING TREE ALGORITHM

The minimal spanning tree algorithm deals with linking the nodes of a network,
directly or indirectly, using the shortest length of connecting branches. A typical appli-
cation occurs in the construction of paved roads that link several towns. The road
between two towns may pass through one or more other towns. The most economical
design of the road system calls for minimizing the total miles of paved roads, a result
that is achieved by implementing the minimal spanning tree algorithm.

The steps of the procedure are given as follows. Let N = {1,2, ..., n} be the set
of nodes of the network and define

C, = Set of nodes that have been permanently connected at iteration k

C; = Set of nodes as yet to be connected permanently
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FIGURE 6.
Cable connections for Midwest TV Cable

Company

Step0. Set C, = G and Cy, = N.

Step 1. Start with any node, i, in the unconnected set C,and set C; = {i}, which ren-
ders C, = N — {i}.Setk = 2.

General Step k. Select a node, j*, in the unconnected set C;_; that yields the shortest
arc to a node in the connected set C,_;. Link j* permanently to C;_; and
remove it from C,_,, that is,

C,=Cy + {i*}aak = fk-l - {l}

If the set of unconnected nodes, C,, is empty, stop. Otherwise,set k = k + 1
and repeat the step.

Example 6.2-1

Midwest TV Cable Company is in the process of providing cable service to five new
housing development areas. Figure 6.4 depicts possible TV linkages among the five
areas. The cable miles are shown on each arc. Determine the most economical cable
network.

The algorithm starts at node 1 (any other node will do as well), which gives

C, = {1}, C, = {2,3,4,5,6}

The iterations of the algorithm are summarized in Figure 6.5. The thin arcs provide all
the candidate links between C and C. The thick branches represent the permanent
links among the nodes of the connected set C, and the dashed branch represents the
new (permanent) link added at each iteration. For example, in iteration 1, branch
(1,2) is the shortest link ( = 1 mile) among all the candidate branches from node 1to
nodes 2, 3, 4, and 5 of the unconnected set C,. Hence, link (1,2) is made permanent
and j° = 2, which yields

C, = {1,2},C, = {3,4,5,6}

The solution is given by the minimal spanning tree shown in iteration 6 of Figure
6.5. The resulting minimum cable miles needed to provide the desired cable service are
1+3+4+3+5=16miles.

4
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3 You can use TORA to generate the iterations of the minimal spanning tree. From
Main menu,sclect Network models = Minimal spanning tree.Next, from sorve/MopIry
menu, select solve problem = Go to output screen. In the output screen, select a
Starting node and then use Next iteration Or All iterations to generate the succes-
sive iterations. You can restart the iterations by selecting a new Starting node. Figure
6.6 gives TORA output for Example 6.2-1 (file ch6ToraMinSpanEx6-2-1.txt).
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FIGURE 6.6
Output of the minimal spanning tree of Example 6.2-1

PROBLEM SET 6.2A

1.

2.

Solve Example 6.2-1 starting at node 5 (instead of node 1), and show that the algorithm
produces the same solution.

Determine the minimal spanning tree of the network of Example 6.2-1 under each of the
following separate conditions:

(a) Nodes 5 and 6 are linked by a 2-mile cable.

(b) Nodes 2 and 5 cannot be linked.

(¢) Nodes 2 and 6 are linked by a 4-mile cable.

(d) The cable between nodes 1 and 2 is 8 miles long.

(e) Nodes 3 and 5 are linked by a 2-mile cable.

(f) Node 2 cannot be linked directly to nodes 3 and 5.

In intermodal transportation, loaded truck trailers are shipped between railroad termi-
nals by placing the trailer on special flatbed carts. Figure 6.7 shows the location of the
main railroad terminals in the United States and the existing railroad tracks. The objec-
tive is to decide which tracks should be “revitalized” to handle the intermodal traffic. In
particular, the Los Angeles (LA) terminal must be linked directly to Chicago (CH) to
accommodate expected heavy traffic. Other than that, all the remaining terminals can be
linked, directly or indirectly, such that the total length (in miles) of the selected tracks is
minimized. Determine the segments of the railroad tracks that must be included in the
revitalization program.
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FIGURE 6.7
Network for Problem 3, Set 6.2a

4. Figure 6.8 gives the mileage of the feasible links connecting nine offshore natural gas
wellheads with an inshore delivery point. Because the location of wellhead 1 is the closest
to shore, it is equipped with sufficient pumping and storage capacity to pump the output
of the remaining eight wells to the delivery point. Determine the minimum pipeline net-
work that links the wellheads to the delivery point.

| ] Delivery point FIGURE 6.8
Network for Problem 4, Set 6.2a

lgorithm

=ach of the

d termi-

 of the 5. In Figure 6.8 of Problem 4, suppose that the wellheads can be divided into two groups

e objec- depending on gas pressure: a high-pressure group that includes wells 2, 3,4,and 6;and a
caffic. In low-pressure group that includes wells 5,7, 8, and 9. Because of pressure difference, well-
CH) to heads from the two groups cannot be linked. At the same time, both groups must be con-
als can be nected to the delivery point through wellhead 1. Determine the minimum pipeline
bracks is network for this situation.

d in the 6. Electro produces 15 electronic parts on 10 machines. The company wants to group the

machines into cells designed to minimize the “dissimilarities” among the parts processed
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in each cell. A measure of “dissimilarity,” d;;, among the parts processed on machines i
1 and j can be expressed as
: n;
J
\ di=1— ——
i i =1 n; + my
\ where n;; is the number of parts shared between machines i and j, and m;; is the number of
parts that are used by either machine 7 or j only.
The following table assigns the parts to machines:

Machine Assigned parts

1,6
2,3,7,8,9,12,13,15
3,5,10,14
2,7,8,11,12,13
3,5,10,11,14
1,4,5,9,10
2,5,7,8,9,10
3,4,15

4,10

3,8,10,14,15

[« ENoRNv N le NV, N SRS I

—_

(a) Express the problem as a network model.

: (b) Show that the determination of the cells can be based on the minimal spanning tree
‘ solution.

(¢) For the data given in the preceding table, construct the two- and three-cell solutions.

6.3 SHORTEST-ROUTE PROBLEM

The shortest-route problem determines the shortest route between a source and desti-
nation in a transportation network. Other situations can be represented by the same
model as illustrated by the following examples.

6.3.1 Examples of the Shortest-Route Applications

Example 6.3-1 (Equipment Replacement)

RentCar is developing a replacement plan for its car fleet for a 4-year planning hori-
zon that starts January 1,2001, and terminates December 31, 2004. At the start of each
year, a decision is made as to whether a car should be kept in operation or replaced. A
car must be in service a minimum of 1 year and a maximum of 3 years. The following
; table provides the replacement cost as a function of the year a car is acquired and the
\ number of years in operation.

] Replacement cost ($) for given years in operation

’ Equipment

‘ acquired at start of 1 2 3

: 2001 4000 5400 9800
2002 4300 6200 8700

2003 4800 7100
2004 4900 —
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9800

e 4800

FIGURE 6.9
Equipment replace-
ment problem as a
shortest-route model

The problem can be formulated as a network in which nodes 1 to 5 represent the
start of years 2001 to 2005. Arcs from node 1 (year 2001) can reach only nodes 2, 3, and
4 because a car must be in operation between 1 and 3 years. The arcs from the other
nodes can be interpreted similarly. The length of each arc equals the replacement cost.
The solution of the problem is equivalent to finding the shortest route between nodes
1l andS.

Figure 6.9 shows the resulting network. Using TORA,,! the shortest route (shown
by the thick path) is 1 — 3 — 5. The solution means that a car acquired at the start of
2001 (node 1) must be replaced after 2 years at the start of 2003 (node 3). The replace-
ment car will then be kept in service until the end of 2004. The total cost of this replace-
ment policy is $12,500 (= $5400 + $7100).

Example 6.3-2 (Most Reliable Route)

L Q. Smart drives daily to work. Having just completed a course in network analysis,
Smart is able to determine the shortest route to work. Unfortunately, the selected
route is heavily patrolled by police, and with all the fines paid for speeding, the shortest
route may not be the best choice. Smart has thus decided to choose a route that maxi-
mizes the probability of not being stopped by police.

The network in Figure 6.10 shows the possible routes between home and work,
and the associated probabilities of not being stopped on each segment. The probability
of not being stopped on the way to work is the product of the probabilities associated
with the successive segments of the selected route. For example, the probability of not

FIGURE 6.10

Most-reliable-route network model

= Shortest routes.
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09691

>

22185
FIGURE 6.11
Most-reliable-route

representation as a shortest-
route model .52288

receiving a fine on theroute 1 -3 —5—71is.9 X .3 X .25 = .0675. Smart’s objective
is to select the route that maximizes the probability of not being fined.

The problem can be formulated as a shortest-route model by using a logarithmic
transformation that converts the product probability into the sum of the logarithms of
probabilities—that is, if p;, = p; X p, X ... X p, is the probability of not being
stopped, then log p,, = logp, + logp, + ... + logp,.

Mathematically, the maximization of py, is equivalent to the maximization of
log py,. Because log p;;, = 0, the maximization of log py, is, in turn, equivalent to the
minimization of — log py,. Using this transformation, the individual probabilities p;
in Figure 6.10 are replaced with — log p; for all j in the network, thus yielding the
shortest-route network in Figure 6.11.

Using TORA, nodes 1, 3, 5, and 7 define the shortest route in Figure 6.11 with a
corresponding “length” of 1.1707 (= —log p;). Thus, the maximum probability of not
being stopped is p; = .0675.

Example 6.3-3 (Three-Jug Puzzle)

An 8-gallon jug is filled with fluid. Given two empty 5- and 3-gallon jugs, we want to
divide the 8 gallons of fluid into two equal parts using the three jugs. No other measur-
ing devices are allowed. What is the smallest number of pourings needed to achieve
this result?

You probably can guess the solution of this puzzle. Nevertheless, the solution
process can be systematized by representing the problem as a shortest-route problem.

A node is defined to represent the amount of fluid in the 8-, 5-, and 3-gallon jugs,
respectively. This means that the network starts with node (8, 0,0) and terminates with
the desired solution node (4, 4, 0). A new node is generated from the current node by
pouring fluid from one jug into another.

Figure 6.12 shows different routes that lead from start node (8, 0, 0) to end node (4,
4,0). The arc between two successive nodes represents a single pouring, and hence can
be assumed to have a length of 1 unit. The problem reduces to determining the shortest
route between node (8, 0,0) and node (4, 4, 0).

The optimal solution, given by the bottom path in Figure 6.12, requires 7 pourings.
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Source

FIGURE 6.12

Three-jug puzzle representation as a shortest-route model

PROBLEM SET 6.3A

1. Reconstruct the equipment replacement model of Example 6.3-1, assuming that a car
must be kept in service at least 2 years, with a maximum service life of 4 years. The plan-
ning horizon is from the start of 2001 to the end of 2005. The following table provides the
necessary data.

Replacement cost (§) for given years in operation

Year acquired 2 3 4
2001 3800 4100 6800
2002 4000 4800 7000
2003 4200 5300 7200
2004 4800 5700 —
2005 5300 — —

2. Figure 6.13 provides the communication network between two stations, 1 and 7. The
probability that a link in the network will operate without failure is shown on each arc.
Messages are sent from station 1 to station 7, and the objective is to determine the route
that will maximize the probability of a successful transmission. Formulate the situation as
a shortest-route model, and solve with TORA..

3. An old-fashioned electric toaster has two spring-loaded base-hinged doors. The two doors
open outward in opposite directions away from the heating element. A slice of bread is
toasted one side at a time by pushing open one of the doors with one hand and placing
the slice with the other hand. After one side is toasted, the slice is turned over to get the
other side toasted. It is desired to determine the sequence of operations (placing, toast-
ing, turning, and removing) needed to toast three slices of bread in the shortest possible
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FIGURE 6.13
Network for Problem 2, Set 6.3a

time. Formulate the problem as a shortest-route model using the following elemental
times for the different operations:

Operation Time (seconds)
Place one slice in either side 3
Toast one side 30
Turn slice already in toaster 1

Remove slice from either side

4. Production Planning. DirectCo sells an item whose demand over the next 4 months is
100, 140,210, and 180 units, respectively. The company can stock just enough supply to
meet each month’s demand, or it can overstock to meet the demand for two or more suc-
cessive and consecutive months. In the latter case, a holding cost of $1.20 is charged per
overstocked unit per month. DirectCo estimates the unit purchase prices for the next 4
months to be $15,$12, $10, and $14, respectively. A setup cost of $200 is incurred each
time a purchase order is placed. The company wants to develop a purchasing plan that
will minimize the total costs of ordering, purchasing, and holding the item in stock.
Formulate the problem as a shortest-route model, and use TORA to find the optimum
solution.

5. Knapsack Problem. A hiker has a 5-ft® backpack and needs to decide on the most valu-
able items to take on the hiking trip. There are three items from which to choose. Their
volumes are 2, 3, and 4 ft>, and the hiker estimates their associated values on a scale from
0 to 100 as 30, 50, and 70, respectively. Express the problem as a longest-route network,
and find the optimal solution. (Hint: A node in the network may be defined as [, v],
where i is the item number considered for packing, and v is the volume remaining imme-
diately before the decision is made on i.)

6.3.2 Shortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and
acyclic networks:

1. Dijkstra’s algorithm

2. Floyd’s algorithm




6.3 Shortest-Route Problem 225

Dijkstra’s algorithm is designed to determine the shortest routes between the
source node and every other node in the network. Floyd’s algorithm is general because
it allows the determination of the shortest route between any two nodes in the network.

Dijkstra’s Algorithm. Let ; be the shortest distance from source node 1 to node i,
and define d; (= 0) as the length of arc (i, j). Then the algorithm defines the label for
an immediately succeeding node j as

[u,,l] = [u,- + dijai]ﬁ d,/ = 0

The label for the starting node is [0,—], indicating that the node has no predecessor.
Node labels in Dijkstra’s algorithm are of two types: temporary and permanent. A

temporary label is modified if a shorter route to a node can be found. At the point when

no better routes can be found, the status of the temporary label is changed to permanent.

Step 0. Label the source node (node 1) with the permanent label [0,—]. Set i = 1.

Step i. (a) Compute the temporary labels [u; + dj,i] for each node j that can be
reached from node i, provided j is not permanently labeled. If node j is
already labeled with [, k] through another node k and if u; + d; < u,
replace [u;, k] with [u; + d;, i].
(b) If all the nodes have permanent labels, stop. Otherwise, select the label
[, s] having the shortest distance (=u,) among all the temporary labels
(break ties arbitrarily). Set i = r and repeat step i.

Example 6.3-4

The network in Figure 6.14 gives the routes and their lengths in miles between city 1
(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between
city 1 and each of the remaining four cities.

Iteration 0.  Assign the permanent label [0,—] to node 1.

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently labeled) node
1. Thus, the list of labeled nodes (temporary and permanent) becomes

Node Label Status
1 [0,—1 Permanent
2 [0 + 100, 1] = [100, 1] Temporary
3 [0 + 30, 1] = [30, 1] Temporary

FIGURE 6.14

Network example for Dijkstra’s
shortest-route algorithm
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For the two temporary labels [100, 1] and [30, 1], node 3 yields the
smaller distance (u; = 30). Thus, the status of node 3 is changed to per-

manent.
Iteration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes
becomes
Node Label Status
1 [0,—] Permanent
2 [100,1] Temporary
3 [30,1] Permanent
4 [30 + 10, 3] = [40, 3] Temporary
5 [30 + 60, 3] = [90, 3] Temporary

The status of the temporary label [40, 3] at node 4 is changed to perma-
nent (1, = 40).

Iteration 3. Nodes 2 and 5 can be reached from node 4. Thus, the list of labeled
nodes is updated as

Node Label Status
1 [0,—] Permanent
2 [40 + 15, 4] = [55, 4] Temporary
3 [30,1] Permanent
4 [40, 3] Permanent
5 [90, 3] or [40 + 50, 4] = [90, 4] Temporary

Node 2’s temporary label [100, 1] in iteration 2 is changed to [55,4] in
iteration 3 to indicate that a shorter route has been found through node
4. Also, in iteration 3, node 5 has two alternative labels with the same
distance us = 90.

The list for iteration 3 shows that the label for node 2 is now perma-
nent.

Iteration 4. Only node 3 can be reached from node 2. However, node 3 has a perma-
nent label and cannot be relabeled. The new list of labels remains the
same as in iteration 3 except that the label at node 2 is now permanent.
This leaves node 5 as the only temporary label. Because node 5 does not

lead to other nodes, its status is converted to permanent, and the process
ends.

The computations of the algorithm can be carried out more easily on the network
as Figure 6.15 demonstrates.

The shortest route between nodes 1 and any other node in the network is deter-
mined by starting at the desired destination node and backtracking through the nodes
using the information given by the permanent labels. For example, the following
sequence determines the shortest route from node 1 to node 2:

(2) = [55,4] — (4)— [40,3] > (3) = [30,1] = (1)

Thus, the desired route is 1 — 3 — 4 — 2 with a total length of 55 miles.
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TORA can be used to generate Dijkstra’s iterations. From the sorve/Moprey
menu, select solve problem = Tterations => Dijkstra’s algorithm. Figure 6.16 pro-
vides TORA’s iterations output for Example 6.3-4 (file ch6ToraDijkstraEx6-3-4.txt).

:4‘ il’l
1 node |
me !

)rma- I

Derma-
ins the
1anent. ,
bes not
DTOCESS

=twork

deter-
- nodes
lowing

FIGURE 6.16
TORA Dijkstra iterations for Example 6.3-4




228 Chapter6 Network Models

PROBLEM SET 6.3B

1. The network in Figure 6.17 gives the distances in miles between pairs of cities 1, 2, ..., and
8. Use Dijkstra’s algorithm to find the shortest route between the following cities:
(a) Cities1and8
(b) Cities 1 and 6
(¢) Cities4and 8
(d) Cities2 and 6

FIGURE 6.17
Network for Problem 1, Set 6.3b

2. Use Dijkstra’s algorithm to find the shortest route between node 1 and every other node
in the network of Figure 6.18.

FIGURE 6.18
Network for Problem 2, Set 6.3b

3. Use Dijkstra’s algorithm to determine the optimal solution of each of the following
problems:

(a) Problem 1, Set 6.3a
(b) Problem 2, Set 6.3a
(¢) Problem 4, Set 6.3a

Floyd’s Algorithm. Floyd’s algorithm is more general than Dijkstra’s because it
determines the shortest route between any two nodes in the network. The algorithm
represents an n-node network as a square matrix with » rows and n columns. Entry (i,f)
of the matrix gives the distance d; from node i to node j, which is finite if i is linked
directly to j, and infinite otherwise.
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FIGURE 6.19
Floyd’s triple operation

The idea of Floyd’s algorithm is straightforward. Given three nodes i, j, and k in
Figure 6.19 with the connecting distances shown on the three arcs, it is shorter to reach
k from i passing through j if

d; + dy < dy
In this case, it is optimal to replace the direct route from i — k with the indirect route

i—j— k. This triple operation exchange is applied systematically to the network
using the following steps:

Step 0. Define the starting distance matrix D, and node sequence matrix S, as given
below. The diagonal elements are marked with (—) to indicates that they are
blocked. Set k = 1.

1 2 ] n
1 — d]z dij dln
2 d, — dy; a,,
Dy = . : : ; ‘ .
i d; dp d; d;,
n Dnl dnz dnj -
1 2 j n
1 — 2 j
2 1 — j
SO = :
i 1 2 ] n
n 1 2 j —

General Step k. Define row k and column k as pivot row and pivot column. Apply the
triple operation to each element d;;in D,_, for all i and j. If the condition

dy + dy <d (i #k,j#k, andi # j)
is satisfied, make the following changes:
(a) Create D, by replacing d;;in Dy, with dy, + d;.
(b) Create S, by replacing s;;in S, _; with k. Set k = k + 1, and repeat step k.
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Pivot
Column  column Column

Row i

Pivot row k

FIGURE 6.20 Rowp

Implementation of triple operation in
matrix form

Step k of the algorithm can be explained by representing D, _; as shown in Figure
6.20. Here, row k and column k define the current pivot row and column. Row i repre-
sents any of the rows 1,2,..., and k — 1, and row p represents any of the rows
k+1,k+ 2, ..., and n Similarly, column j represents any of the columns 1,2, ...,
and k — 1, and column ¢q represents any of the columns k + 1, k + 2, ..., and n. With
the triple operation, if the sum of the elements on the pivot row and the pivot column
(shown by squares) is smaller than the associated intersection element (shown by a
circle), then it is optimal to replace the intersection distance by the sum of the pivot
distances.

After n steps, we can determine the shortest route between nodes i and j from the
matrices D, and S, using the following rules:

1. From D,, d;; gives the shortest distance between nodes i and j.

2. From §,, determine the intermediate node k = s, that yields the route i — k — j.
If 53 = k and s;; = j, stop; all the intermediate nodes of the route have been
found. Otherwise, repeat the procedure between nodes i and k, and between
nodes k and j.

Example 6.3-5

For the network in Figure 6.21, find the shortest routes between every two nodes. The
distances (in miles) are given on the arcs. Arc (3,5) is directional so that no traffic is
allowed from node 5 to node 3. All the other arcs allow traffic in both directions.

FIGURE 6.21
Network for Example 6.3-5




n Figure
v [ Tepre-
he rows
1,2, ...,
i n. With
: column
wn by a
he pivot

from the

—k —].
2ve been
between

vdes. The
traffic is

ns.

Iteration 0.

Iteration 1.

Iteration 2.

6.3 Shortest-Route Problem 231

The matrices D, and S, give the initial representation of the network. D,
is symmetrical except that ds; = 00 because no traffic is allowed from
node 5 to node 3.

S O R S

EN N
DB W N
r-*b—kb—\b—"
EIREYINES
| | |a|o|:

Set k = 1.The pivot row and column are shown by the lightly shaded
first row and first column in the D-matrix. The darker cells, dy; and ds,,
are the only ones that can be improved by the triple operation. Thus, D,
and S, are obtained from D, and S, in the following manner:

1. Replace dy; withdy; + di3 = 3 + 10 = 13 and set 5,3 = 1.
2. Replace ds, with d; + dy, = 10 + 3 = 13 and set sy = 1.

These changes are shown in bold in matrices D, and St

S
w o

1 2 3 4 5 1 2 4 5
1 - 3 10 ) 1 — | 2 3 1 5
2 3 13 5 0 2 1 | — 1] 4 5
3 10 | 13 . 6 15 3 1 |1 | — 14 5
4 o i 5 6 — 4 4 2 3 | — 1|5
5 00 00 00 4 — 5 2 3 4 —

Set k = 2, as shown by the lightly shaded row and column in D,. The
triple operation is applied to the darker cells in D, and ;. The resulting
changes are shown in bold in D, and S.

D, S,
1 2 3 4 5 1 2 3 4 5
1 — 3 10 8 1 —| 2 |3 |2
2 3 | — 13 5 2 1 [ — 11 34
3 10 | 13 | 6 3 1 [ 1 [ — 14
4 8 5 6 | — 4 2 [ 2 [ 3 =
5 oo | oo o0 4 — 5 1|2 3[4 [Z
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Iteration 3. Set k = 3, as shown by the shaded row and column in D,. The new
matrices are given by D; and S;.

D; S,

1 2 3 4 5 1 2 3 4 5
1 — 3 10 8§ | 28 1 — | 2 J 3 2 3
2 3 — 13 5 | 28 2 1 [ — 11 | 4 3
3 10 13 — 6 | 15 3 1 |1 | — 14 5
4 8 5 6 — 4 4 2 | 2 3 | — 15
5 > | oo o« | 4 — 5 112 |3 4 | —

Iteration 4. Set k = 4, as shown by the lightly-shaded row and column in D;. The
new matrices are given by D, and S,.

D, S,

1 2 3 4 5 1 2 3 4 5
1| — 3 | 10 8 12 1 | —]2 |3 ]2 |4
2 3 — |1 5 9 2 1 | — | 4 | 4 [4
3 10 | 11| — 6 10 3 1 |4 | — |4 [a
4 8 5 6 | — 4 4 2 |2 3 [ =15
s [ 12 9 | 10 4 - 5 4 | 4 | 4 | 4 | —

Iteration 5. Set k = 5, as shown by the shaded row and column in D,. No further
improvements are possible in this iteration. Hence, Ds and S; are the
same as D, and S,.

The final matrices D5 and S5 contain all the information needed to
determine the shortest route between any two nodes in the network. For
example, consider determining the shortest route from node 1 to node 5.
First, the associated shortest distance is given by d;s = 12 miles. To
determine the associated route, recall that a segment (i, j) represents a
direct link only if 5; = j. Otherwise, i and j are linked through at least
one other intermediate node. Because s;5 = 4, the route is initially given
as 1 — 4 — 5.Now, because s, = 2 # 4, the segment (1,4) isnot a
direct link, and 1 — 4 must be replaced with 1 — 2 — 4, and the route
1 — 4 — 5now becomes 1 — 2 — 4 — 5. Next, because s, = 2, 554 = 4,
and s,; = 5,the route 1 - 2 — 4 — 5 needs no further “dissecting” and
the process ends.

As in Dijkstra’s algorithm, TORA can be used to generate Floyd’s iterations. From
the sorve/MopIFy menu, select Solve problem = Iterations = Floyd's algorithm.
Figure 6.22 illustrates TORA’s output for Floyd’s Example 6.3-5 (file ch6ToraFloyd Ex6-
3-5.txt).
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FIGURE 6.22
TORA Floyd iterations for Example 6.3-5

PROBLEM SET 6.3C

1

In Example 6.3-5, use Floyd’s algorithm to determine the shortest routes between each of
the following pairs of nodes:

(a) From node 5 to node 1
(b) From node 3 to node 5
(¢) From node 5 to node 3
(d) From node 5 to node 2
Apply Floyd’s algorithm to the network in Figure 6.23. Arcs (7,6) and (6,4) are unidirec-

tional, and all the distances are in miles. Determine the shortest route between the fol-
lowing pairs of nodes:

(a) From node 1 to node 7

(b) From node 7 to node 1

(¢) From node 6 to node 7

The Tell-All mobile phone company services six geographical areas. The satellite dis-
tances (in miles) among the six areas are given in Figure 6.24. Tell-All needs to determine

the most efficient message routes that should be established between each two areas in
the network.

Six kids—Joe, Kay, Jim, Bob, Rae, and Kim—play a variation of the game of hide and
seek. The hiding place of a child is known only to a select few of the other children. A
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FIGURE 6.23
Network for Problem 2, Set 6.3¢

FIGURE 6.24
Network for Problem 3, Set 6.3¢

child is then paired with another with the objective of finding his or her hiding place. This
may be achieved through a chain of other kids who eventually will lead to discovering
where the designated child is hiding. For example, suppose that Joe needs to find Kim and
that Joe knows where Jim is hiding, who in turn knows where Kim is. Thus, Joe can find
Kim by first finding Jim, who in turn will lead Joe to Kim. The following list provides the
whereabouts of the children:

Joe knows the hiding places of Bob and Kim.

Kay knows the hiding places of Bob, Jim, and Rae.

Jim and Bob know the hiding place of Kay only.

Rae knows where Kim is hiding.

Kim knows where Joe and Bob are hiding.
Devise a plan for each child to find every other child through the smallest number of con-
tacts. What is the largest number of contacts?

6.3.3 Linear Programming Formulation of the Shortest-Route
Problem

This section provides two LP formulations for the shortest-route problem. The formu-
lations are general in the sense that they can be used to find the shortest route between
any two nodes in the network. In this regard, the LP formulations are equivalent to
Floyd’s algorithm.

Suppose that the shortest-route network includes n nodes and that we desire to
determine the shortest route between any two nodes s and ¢ in the network.

Formulation 1: This formulation assumes that an external one unit of flow enters the
network at node s and leaves it at node f, where s and ¢ are the two target nodes
between which we seek to determine the shortest route.
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Define
x; = amount of flow in arc (i, j), for all feasible i and j
¢; = length of arc (i, j), for all feasible i and j

Because only one unit of flow can be in any arc at any one time, the variable X; must

assume binary values (0 or 1) only. Thus, the objective function of the linear program
becomes

Minimize z = E CijXjj
all defined arcs(i, j)
There is one constraint that represents the conservation of flow at each node—that is,
for any node j,

Total input flow = Total output flow

Formulation 2: The second formulation is actually the dual problem of the LP in
Formulation 1. Because the number of constraints in Formulation 1 equals the number
of nodes, the dual problem will have as many variables as the number of nodes in the
network. Also, all the dual variables must be unrestricted because all the constraints in
Formulation 1 are equations.

Let

y; = dual constraint associated with node j

Given s and ¢ are the start and terminal nodes of the network, the dual problem is

defined as
Maximize z = y, — y,
subject to
Y; — ¥i = ¢;;, for all feasible i and j
all y; and y; unrestricted in sign
Example 6.3-6

of con-
Consider the shortest route network of Example 6.3-4. Suppose that we want to deter-

mine the shortest route from node 1 to node 2; that is, s = 1 and ¢ = 2. Figure 6.25
shows how the unit of flow enters at node 1 and leaves at node 2.

FIGURE 6.25
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Using Formulation 1, the associated LP is listed below.

X12 X13 X23 X34 X35 Xp X45
Minimize z = 100 30 20 10 60 15 50
Node 1 —] -1 = -1
Node 2 1 -1 1 = 1
Node 3 1 1 —1 —1 = 0
Node 4 1 -1 —1 = 0
Node 5 1 1 = 0

The constraints represent flow conservation at each node. For example, at node 2,
“input flow = output flow” yields x;, + x4 = 1 + x,3. Note that one of the constraints
is always redundant. For example, adding the last four constraints simultaneously
yields x;, + x;3 = 1, which is the same as constraint 1.

The optimal solution (obtained by TORA)? is

ZZSS,X13=1,X34=1,X42=1

This solution gives the shortest route from node 1 tonode 2 as 1 —3 — 4 — 2 and the
associated distance is z = 55 (miles).
To use Formulation 2, the dual problem associated with the LP above is given as

Maximize z = y, — y;

subject to
y> — y1 = 100 (Route 1-2)
y; —y1 = 30(Route 1-3)
y3 — y2 = 20(Route 2-3)
ys — y3 = 10 (Route 3-4)
ys — y3 = 60 (Route 3-5)
y> — y» = 15(Route 4-2)
ys — v4 = 50 (Route 4-5)
Yis V2, ---, ys unrestricted

h

Although the dual problem given above is a pure mathematical definition derived
from the primal problem, we actually can interpret the problem in a logical manner.
Define

y; = Distance to node i

TORA does not accept a negative right-hand side. You can get around this inconvenience by selecting
the redundant constraint as the one having the negative right-hand side, then make it redundant by
changing = to = and setting the right-hand side to a very large value. Another trick is to add a new variable
whose upper and lower bounds equal 1, effectively forcing it to equal 1 in any solution. The constraint coeffi-
cients of the new variable equal those of the current right-hand side, but with opposite sign. The right-hand
side of the “new” problem must be changed to zero for all the constraints (see file ch6ToraLpShortRoute
Ex6-3-6.txt).
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With this definition, the shortest distance from the start node 1 to the terminal node 2
is determined by maximizing y, — y;. The constraint associated with route (7 j) says
that the distance from node i to node j cannot exceed the direct length of that route. It
can be less if node j can be reached from node i through other nodes that provide a
shorter path. For example, the distance from node 1 to node 2 is at most 100. With the
definition of y, as the distance to node i, we can assume that all the variables are non-
negative (instead of being unrestricted). We can also assume that y1 = 0 as the dis-
tance to node 1.

Based on the discussion above, and assuming that all the variables are nonnega-
tive, the optimum solution is given as

Z=55,y1=0,Y2=55,y3=3O,Y4=40,y5=0

The value of z = 55 gives the shortest distance from node 1 to node 2, which also
equalsy, — y; =55 — 0 = 55.

The determination of the route itself from this solution is somewhat tricky.
We note that the solution satisfies in equation form the constraints of routes 1-3, 3-4,
and 4-2 because their slacks equal zero—that is, y; — y1 =30, y, — y; = 10, and
Y2 — y4 = 15.This result identifies the shortest route as 1 — 3 — 4 — 2.

Another way for identifying the constraints that are satisfied in equation form is to
consult the dual solution of the LP of Formulation 2. Any constraint that has a nonzero
dual value must be satisfied in equation form (see Section 4.2.4). The following table
pairs the routes (constraints) with their associated dual values.

Route (constraint) 1-2 1-3 2-3 3-4 3-5 4-2 4-5

Associated dual value 0 1 0 1 0 1 0

PROBLEM SET 6.3D

1. In Example 6.3-6, use the two LP formulations to determine the shortest routes between
the following pairs of nodes:
(a) Node 1 to node 5.
(b) Node 2 to node 5.

Excel Spreadsheet Solution of the Shortest-Route Problem

The Excel spreadsheet developed for the general transportation model (Section 5.3.3)
can be modified readily to find the shortest route between two nodes. The spreadsheet
is based on Formulation 1, Section 6.3.3, and is designed for problems with a maximum
of 10 nodes. Figure 6.26 shows the application of the spreadsheet to Example 6.3-4 (file
ch6SolverShortestRoute.xls). The distance matrix resides in cells B6:K15.3 An infinite
distance (= 9999, or any relatively large value) is entered for nonexisting arcs. Because
we are seeking the shortest route between nodes 1 and 2, the supply amount for node 1
and the demand amount for node 2 is 1 unit. A zero amount is entered for the remain-
ing supply and demand entries.

*In Figure 6.26, rows 11 through 15 and column K are hidden to conserve space.
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FIGURE 6.26

Excel Solver solution of the shortest route
between nodes 1 and 2 in Example 6.3-4

Once the unit cost and supply/demand data are entered, the remainder of the
spreadsheet (intermediate calculations and optimum solution sections) is generated
automatically. Solver parameters must correspond to the input data of the problem as
shown in highlighted columns B, C, F, and G. Column B specifies the changing cells
(arcs flow) of the problem (cells B20:B39). Column C specifies the capacities of the
arcs of the network (cells C20:C39). In the shortest-route model, these capacities do
not play a role in the computations and hence are infinite (=999999). The constraints of
the model represent the balance equation for each node. Cells F19:F23 define the left-
hand side and cells G19:G23 represent the right-hand side of the flow equations. As
explained in Section 5.3.3, SUMIF is used to generate the proper net flow in each node
using the information in columns I and J. These calculations are automated by the
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spreadsheet. Thus, all you need to do after entering the input data is to update
Changing Cells and Constraints specifications of Solver to match the input data. The
Target Cell remains the same for all input data. In Example 6.3-4, we have

Changing Cells: B20:B39
Constraints: F19:F23=G19:G23

The output in Figure 6.26 yields the solution (N1-N3 = 1, N3-N4 = 1,
N4-N2 = 1) with a total distance of 55 miles. This means that the optimal route is
1-53-54->2.

PROBLEM SET 6.3E

1. Modify spreadsheet ch6SolverShortestRoute.xls (applied to Example 6.3-4) to find the
shortest route between the following pairs of nodes:
(a) Node 1tonode5
(b) Node 4 to node 3

2. Adapt spreadsheet ch6SolverShortestRoute.xls for Problem 2, Set 6.3a, to find the short-
est routes between node 4 and node 7.

MAXIMAL FLOW MODEL

Consider a network of pipelines that transports crude oil from oil wells to refineries.
Intermediate booster and pumping stations are installed at appropriate design dis-
tances to move the crude in the network. Each pipe segment has a finite maximum rate
of crude flow (or capacity). A pipe segment may be unidirectional or bidirectional,
depending on its design. A unidirectional segment has a finite capacity in one direction
and a zero capacity in the opposite direction. Figure 6.27 demonstrates a typical pipe-
line network. How can we determine the maximum capacity of the network between
the wells and the refineries?

The solution of the proposed problem requires converting the network into one
with a single source and a single sink. This requirement can be accomplished by using
unidirectional infinite capacity arcs as shown by dashed arcs in Figure 6.27.

FIGURE 6.27

Capacitated network connecting wells and
refineries through booster stations
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Given arc (i, j) with i < j, we use the notation (C;;, C;) to represent the flow
capacities in the two directions i — j and j — i, respectively. To eliminate ambiguity, we
place C; on the arc next to node i with C; placed next to node j, as shown in Figure
6.28.

FIGURE 6.28 & Gy
Arc flows C;; from i — j and C;; from j —i @ J

Enumeration of Cuts

A cut defines a set of arcs which when deleted from the network will cause a complete
disruption of flow between the source and sink nodes. The cut capacity equals the sum
of the capacities of the associated arcs. Among all possible cuts in the network, the cut
with the smallest capacity gives the maximum flow in the network.

Example 6.4-1

Consider the network in Figure 6.29. The bidirectional capacities are shown on the
respective arcs using the convention in Figure 6.28. For example, for arc (3,4), the flow
limit is 10 units from 3 to 4 and 5 units from 4 to 3.

FIGURE 6.29

Examples of cuts in flow networks

Figure 6.29 illustrates three cuts whose capacities are computed in the following
table.

Cut Associated arcs Capacity

1 (1,2),(1,3),(1,4) 20 + 30 + 10 = 60

2 (1,3),(1,4),(2,3),(2,5) 30 + 10 + 40 + 30 = 110
3 (2,5),(3.5),(4,5) 30 +20 +20 =170
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We cannot tell what the maximal flow in the network is unless we exhaustively
enumerate all possible cuts. The only piece of information we can get from the partial
enumeration of three cuts is that the maximum flow in the network cannot exceed 60
units. Unfortunately, exhaustive enumeration of all cuts is not a simple task, thus mak-
ing it necessary to develop the efficient algorithm in Section 6.4.2.

PROBLEM SET 6.4A

1. For the network in Figure 6.29, determine two additional cuts, and find their capacities.

Maximal Flow Algorithm

The maximal flow algorithm is based on finding breakthrough paths with net positive
flow between the source and sink nodes. Each path commits part or all the capacities
of its arcs to the total flow in the network.

Consider arc (i, j) with (initial) capacities (C;;, C;). As portions of these capacities
are committed to the flow in the arc, the residuals (or remaining capacities) of the arc
are updated. The network with the updated residuals is referred to as the residue net-
work. We use the notation (c;;, ¢;) to represent these residuals.

For a node j that receives flow from node i, we define a label [a;, i], where g, is the
flow from node i to node j. The steps of the algorithm are summarized as follows.

Step 1. For all arcs (i, j), set the residual capacity equal to the initial capacity—that is
(ci» ¢i) = (Cy, C;).Leta;, = oo and label source node 1 with [c0, —]. Seti = 1,
and go to step 2.

Step 2. Determine S; as the set of unlabeled nodes j that can be reached directly
from node i by arcs with positive residuals (that is, c; > 0 for all je §;). If
S; # 9, go to step 3. Otherwise, go to step 4.

Step 3. Determine k € S; such that

¢y = max {c;}
Jjes; ’
Set a, = c;, and label node k with [a,, i]. If K = n, the sink node has been
labeled, and a breakthrough path is found, go to step 5. Otherwise, set i = k,
and go to step 2.

Step 4. (Backtracking). 1fi = 1,no further breakthroughs are possible; go to step
6. Otherwise, let r be the node that has been labeled immediately before the
current node i and remove i from the set of nodes that are adjacent to 7. Set
i = r,and go to step 2.

Step 5. (Determination of Residue Network). Let N, = (1, ky, ky, ..., n)define the
nodes of the pth breakthrough path from source node 1 to sink node n. Then
the maximum flow along the path is computed as

f, = min{ay, a;, ay,..., a,

The residual capacity of each arc along the breakthrough path is de-
creased by f, in the direction of the flow and increased by f, in the reverse
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direction—that is, for nodes i and j on the path, the residual flow is changed
from the current (c;;, ¢;) to

@ (c; — f,» ¢i T f,)if the flow is from i to j

(b) (cj + f,, ¢i — f,)if the flow is from j to i

Reinstate any nodes that were removed in step 4. Set i = 1, and return to
step 2 to attempt a new breakthrough path.

Step 6. (Solution)

(a) Given that m breakthrough paths have been determined, the maximal
flow in the network is

F=f+fH+ ... +Ff,

(b) Given that the initial and final residuals of arc (i, j) are given by (C;;, C;)
and (c;, c;), respectively, the optimal flow in arc (i, j) is computed as fol-
lows: Let (o, B) = (C; — ¢;, Cji — ¢;). If « > 0, the optimal flow from i
tojis a. Otherwise, if B > 0, the optimal flow from j to i is 8. (It is
impossible to have both a and 3 positive.)

The backtracking process of step 4 is invoked when the algorithm
becomes inadvertently “dead-ended” at an intermediate node before a
breakthrough can be realized. The flow adjustment in step 5 can be
explained via the simple flow network in Figure 6.30. Network (a) gives the
first breakthrough path N, = {1, 2, 3, 4} with its maximum flow f; = 5.
Thus, the residuals of each of arcs (1,2), (2,3), and (3,4) are changed from
(5,0) to (0,5), per step 5. Network (b) now gives the second breakthrough
path N, = {1, 3, 2, 4} with f, = 5. After making the necessary flow adjust-
ments, we get network (c), where no further breakthroughs are possible.
What happened in the transition from (b) to (c) is nothing but a cancellation
of a previously committed flow in the direction 2 — 3. The algorithm is able
to “remember” that a flow from 2 to 3 has been committed previously only
because we have increased the capacity in the reverse direction from 0 to 5
(per step 5).

(5.2]
Path: 1-2—-3—-4, fi=5 Path: 1-3—-2-4, /,=5 No breakthrough
(a) (b) (©)
FIGURE 6.30

Use of residual to calculate maximum flow
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= Example 6.4-2

Determine the maximal flow in the network of Example 6.4-1 (Figure 6.29). Figure
6.31 provides a graphical summary of the iterations of the algorithm. You will find it
helpful to compare the description of the iterations with the graphical summary.

imal

s fol-

rom |

s the
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 able
only

to5

(e)fs=10 (f) No breakthrough
FIGURE 6.31

Iterations of the maximum flow algorithm of Example 6.4-2
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Iteration 1. Set the initial residuals (¢;; c;) equal to the initial capacities (C;;, C;).

Step 1. Seta, = ©0 and label node 1 with [0co, —].Seti = 1.
Step2. S, =12, 3, 4}(# O).
Step 3. k = 3 because ¢;3 = max{cy, ¢3, ¢14f = max {20, 30, 10} = 30. Set

a; = ¢;3 = 30, and label node 3 with [30,1]. Set i = 3, and repeat step 2.
Step2. S;=(4,5). |
Step 3. k = 5and as = c3s = max{10, 20} = 20. Label node 5 with [20, 3].

Breakthrough is achieved. Go to step 5.
Step 5. Breakthrough path is determined from the labels starting at node 5 and end-

ing at node 1—that is, (5) — [20, 3] — (3) — [30, 1] — (1). Thus, N, = {1, 3, 5}

and fi = min{ay, as, as} = { 00, 30, 20} = 20.The residual capacities along

path N; are

(c13, ¢31) = (30 — 20, 0 + 20) = (10, 20)

(C35, C53) = (20 - 20, 0 + 20) = (0, 20)

Iteration 2.

Step 1. Seta; = 00, and label node 1 with [co, —]. Seti = 1.

Step2. S, = {2, 3, 4}.

Step3. k =2anda, = ¢, = max{20, 10, 10} = 20.Set i = 2, and repeat step 2.

Step2. S, = {3, 5}

Step3. k = 3anda; = ¢»3 = 40. Label node 3 with [40,2]. Seti = 3, and repeat
step 2.

Step 2. S; = {4} (note that c;s = 0—hence, node 5 cannot be included in S;).

Step3. k = 4anda, = ¢33 = 10. Label node 4 with [10,3].Seti = 4, and repeat
step 2.

Step 2. S, = {5} (note that nodes 1 and 3 are already labeled—hence, they cannot be
included in S,).

Step 3. k = 5Sandas = c;s = 20. Label node 5 with [20,4]. Breakthrough has been
achieved. Go to step 5.

Step5. N, ={1,2,3,4,5}and f, = min {0, 20, 40, 10, 20} = 10.The residuals
along the path of NV, are

(c12, €21) = (20 — 10, 0 + 10) = (10, 10)
(23, €30) = (40 — 10, 0 + 10) = (30, 10)
(cags €43) = (10 — 10, 5 + 10) = (0, 15)

(css, €s4) = (20 — 10, 0 + 10) = (10, 10)

Iteration 3.

Step1. Seta, = o0 and label node 1 with [oo, —].Seti = 1.

Step2. S, = {2, 3, 4}.

Step3. k =2anda, = c;; = max{10, 10, 10} = 10 (though ties are broken arbi-
trarily, TORA always selects the tied node with the smallest index; we will
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use this convention throughout the example). Label node 2 with [10,1]. Set
i = 2,and repeat step 2.

Step2. S, = {3, 5}

Step3. k = 3anda; = ¢,; = 30. Label node 3 with [30, 2].Seti = 3,and repeat
step 2.

Step 2. S; = O (because ¢y, = ¢35 = 0). Go to step 4 to backtrack.

Stepd. The label [30,2] at node 3 gives the immediately preceding node r = 2.
Remove node 3 from further consideration in this iteration by crossing it out.
Seti = r = 2, and repeat step 2.

Step 2. S, = {5} (note that node 3 has been removed in the backtracking step).

Step3. k = 5andas = ¢,; = 30. Label node 5 with [30, 2]. Breakthrough has been
achieved; go to step 5.

StepS. N; = {1, 2, S}and ¢; = min {o0, 10, 30} = 10.The residuals along the path

of N; are
(C127 C21) = (10 - 10, 10 + 10) = (0, 20)
(C25, C52) — (30 - 10, 0 + 10) = (20’ 10)

Iteration 4. This iteration yields N, = {1, 3, 2, 5} with f, = 10 (verify!).

Iteration S. This iteration yields N5 = {1, 4, 5} with f; = 10 (verify!).

Iteration 6. All the arcs out of node 1 have zero residuals. Hence, no further break-
throughs are possible. We turn to step 6 to determine the solution.

Step 6.

Maximal flow in the network is F=f{ + f, + ... + £, =20 + 10 + 10+
10 + 10 = 60 units. The flow in the different arcs is computed by subtracting
the last residuals (c;, ¢;) in iterations 6 from the initial capacities (C;, C;), as
the following table shows.

Arc (Cy Ci) = (e ¢i)s Flow amount Direction
(1L2)  (20,0) - (0.20) = (20, —20) 20 152
(1,3) (30, 0) - (0. 30) = (30, —30) 30 153
(L4 (10,0) - (0, 10) = (10, —10) 10 14
(2,3) (40, 0) — (40, 0) = (0, 0) 0 —
2,5 (30, 0) - (10, 20) = (20, —20) 20 2555
(3.4)  (10,5) - (0, 15) = (10, ~10) 10 34
(3,5  (20,0) - (0.20) = (20, —20) 20 355
4,5  (20,0) - (0.20) = (20, —20) 20 4555

You can use TORA to solve the maximum flow model in an automated mode

or to produce the iterations outlined above. From the sorve/moprey menu select
Solve problem. After specifying the output format, go to output screen and select
either maximum Flows O Iterations. Figure 6.32 illustrates the first two iterations of
Example 6.4-2 (file ch6ToraMaxFlowEx6-4-2.txt).
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FIGURE 6.32

TORA’s maximum flow iterations for Example 6.4-2

PROBLEM SET 6.4B

1.

In Example 6.4-2,

(a) Determine the surplus capacities for all the arcs.

(b) Determine the amount of flow through nodes 2,3, and 4.

(¢) Can the network flow be increased by increasing the capacities in the directions
3—>5and4—5?

Determine the maximal flow and the optimum flow in each arc for the network in Figure
6.33.

Three refineries send a gasoline product to two distribution terminals through a pipeline

network. Any demand that cannot be satisfied through the network is acquired from

other sources. The pipeline network is served by three pumping stations as shown in

Figure 6.34. The product flows in the network in the direction shown by the arrows. The

capacity of each pipe segment (shown directly on the arcs) is in million bbl per day.

Determine the following:

(a) The daily production at each refinery that matches the maximum capacity of the
network.

(b) The daily demand at each terminal that matches the maximum capacity of the net-
work.

(¢) The daily capacity of each pump that matches the maximum capacity of the network.
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FIGURE 6.33
Network for Problem 2, Set 6.4b
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FIGURE 6.34
Network for Problem 3, Set 6.4b
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4. Suppose that the maximum daily capacity of pump 6 in the network of Figure 6.34 is lim-
ited to 60 million bbl per day. Remodel the network to include this restriction. Then

S determine the maximum capacity of the network.

5. Chicken feed is transported by trucks from three silos to four chicken farms. Some of the
igure silos cannot ship directly to some of the farms. The capacities of the other routes are lim-
ited by the number of trucks available and the number of trips made daily. The following

eline table shows the daily amounts of supply at the silos and demand at the farms (in thou-

o ‘ sands of pounds). The cell entries of the table specify the daily capacities of the associated

routes.

Silo 2 0 0 5 90 20
o 3 100 40 30 40 200

200 10 60 20
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(a) Determine the schedule that satisfies the most demand.
(b) Will the proposed schedule satisfy all the demand at the farms?

In Problem 5, suppose that transshipping is allowed between silos 1 and 2 and silos 2 and
3. Suppose also that transshipping is allowed between farms 1 and 2,2 and 3, and 3 and 4.
The maximum two-way daily capacity on the proposed transshipping routes is 50 (thou-
sand) Ib. What is the effect of transshipping on the unsatisfied demands at the farms?

A parent has five (teenage) children and five household chores to assign to them. Past
experience has shown that forcing chores on a child is counterproductive. With this in
mind, the children are asked to list their preferences among the five chores, as the follow-
ing table shows:

Child Preferred chore

Rif 3,4,0r5
Mai 1

Ben lor2
Kim 1,2,0r5
Ken 2

The parent’s modest goal now is to finish as many chores as possible while abiding by
the children’s preferences. Determine the maximum number of chores that can be com-
pleted and the assignment of chores to children.

Four factories are engaged in the production of four types of toys. The following table
lists the toys that can be produced by each factory.

Factory Toy productions mix
1 1,2,3
2 2,3
3 1,4
4 3,4

All toys require the same per unit labor and material. The daily capacities of the four
factories are 250, 180, 300, and 100 toys, respectively. The daily demands for the four toys
are 200, 150, 350, and 100 units, respectively. Determine the production schedules that will
most satisfy the demands for the four toys.

The academic council at the U of A is seeking representation from among six students
who are affiliated with four honor societies. The academic council representation includes
three areas: mathematics, art, and engineering. At most two students in each area can be
on the council. The following table shows the membership of the six students in the four
honor societies:

Society Affiliated students

1 1,2,3
2 1,3,5
3 3,4,5
4 1,2,4,6

The students who are skilled in the areas of mathematics, art, and engineering are
shown in the following table:
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Area Skilled students
Mathematics 1,2,4
Art 3,4
Engineering 4,5,6

A student who is skilled in more than one area must be assigned exclusively to one
area only. Can all four honor societies be represented on the council?

Maximal/Minimal Flow in Networks with Lower Bounds. The maximal flow algorithm
given in this section assumes that all the arcs have zero lower bounds. In some models, the
lower bounds may be strictly positive, and we may be interested in finding the maximal or
minimal flow in the network (see Comprehensive Problem 6-3). The presence of the
lower bound poses difficulty because the network may not have a feasible flow at all. The
objective of this exercise is to show that any maximal and minimal flow model with posi-
tive lower bounds can be solved using two steps.

Step 1.  Find an initial feasible solution for the network with positive lower bounds.

Step 2.  Using the feasible solution in step 1, find the maximal or minimal flow in the
original network.

(a) Show that an arc (i, j) with flow limited by li = x;; = u; can be represented equiva-
lently by a sink with demand /; at node i and a source with supply /; at node j with
flow limited by 0 =< x;; < u; — Iy

(b) Show that finding a feasible solution for the original network is equivalent to finding
the maximal flow x;; in the network after (1) modifying the bounds on x; to
0=ux; < u;; — I, (2) “lumping” all the resulting sources into one supersource with
outgoing arc capacities [, (3) “lumping” all the resulting sinks into one supersink
with incoming arc capacities /;, and (4) connecting the terminal node ¢ to the source
node s in the original network by a return infinite capacity arc. A feasible solution
exists if the maximal flow in the new network equals the sum of the lower bounds in
the original network. Apply the procedure to the following network and find a feasi-
ble flow solution:

Arc (l! ]) (lijv ui])

1,2) (5.,20)
(1,3) (0,15)
2.,3) (4,10)
(2,4) (3,15)
(3.4) (0,20)

(¢) Use the feasible solution for the network in (b) together with the maximal flow algo-
rithm to determine the minimal flow in the original network. (Hint: First compute the
residue network given the initial feasible solution. Next, determine the maximum
flow from the end node to the start node. This is equivalent to finding the maximum
flow that should be canceled from the start node to the end node. Now, combining the
feasible and maximal flow solutions yields the minimal flow in the original network.)

(d) Use the feasible solution for the network in (b) together with the maximal flow
model to determine the maximal flow in the original network. (Hint: As in part [c]

il

start with the residue network. Next apply the breakthrough algorithm to the result-
ing residue network exactly as in the regular maximal flow model.)
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Linear Programming Formulation of the Maximum Flow Model

Define x; as the amount of flow in arc (i, j) and let ¢; be the capacity of the same arc.
Assume that s and ¢ are the start and terminal nodes between which we need to deter-
mine the maximum flow in the capacitated network.

The constraints of the problem preserve the in-out flow at each node, with the
exception of start and terminal nodes. The objective function maximizes either the
total “out” flow from start node s or the total “in” flow to terminal node .

Example 6.4-3

In the maximum flow model of Figure 6.29 (Example 6.4-2),s = 1 and ¢ = 5. The fol-
lowing table summarizes the associated LP with two different objective functions
depending on whether we are maximizing the output from node 1 (=z;) or the input to
node 5 (=z,).

X12 X13 X14 X23 X25 X34 X35 X43 X4s
Maximize z; = 1 1 1
Maximize z, = 1 1 1
Node 2 1 -1 —1 0
Node 3 1 1 -1 -1 1 =0
Node 4 1 1 -1 =i 0
Capacity 20 30 10 40 30 10 20 5 20

The optimal solution using either objective function is

X1 = 20, X3 = 30, X1y = 10, Xo5 = 20, X3q = 10, X35 = 20, X45 20

The associated maximum flow is z; = z, = 60.

PROBLEM SET 6.4C

1. Rework Problem 2, Set 6.4b using linear programming.
2. Rework Problem 5, Set 6.4b using linear programming.

Excel Spreadsheet Solution of the Maximum Flow Model

The network-based Excel spreadsheet developed for the transportation model
(Section 5.3.3) is modified to determine the maximum flow in a capacitated network.
The spreadsheet is designed for problems with a maximum of 10 nodes. Figure 6.35
shows the application of the spreadsheet to Example 6.4-2 (file ch6SolverMax
Flow.xls). The capacity flow matrix resides in cells B6:K15.4 A blank cell in the capacity
matrix indicates that the associated arc has infinite capacity. A zero entry corresponds
to a nonexisting flow arc. Otherwise, all the remaining arcs must have finite capacities.

Once the flow capacity data have been entered, the remainder of the spreadsheet
(intermediate calculations and optimum solution sections) is created automatically. All

4In Figure 6.35, rows 11 through 16 and column K are hidden to conserve space.
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FIGURE 6.35

Excel Solver solution of the maximum flow
model of Example 6.4-2

\ that is needed now is to update Solver parameters to match the input data. Column B
specifies the changing cells (arcs flow) of the problem. The range for Changing Cells
must encompass all the arcs specified in column A (make sure that you give each node
aname in the input data matrix, else column A will only show a hyphen in the associ-
ated cells). In the present example, cells B20:B39 provide Changing Cells range.
Column C specifies the capacities of the arcs of the network (cells C20:C39).

The constraints of the model represent the flow balance equation for each node.,
The LP formulation in Section 6.4.3 shows that it is not necessary to construct flow
equations for the first and last nodes of the network (nodes 1 and 5 in Figure 6.35).
Thus, cells F20:F22 define the left-hand side and cells G20:G22 represent the right-
hand side of the flow equations.
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Based on given information, Solver parameters for the example in Figure 6.26
are entered as

Changing Cells: B20:B39
Constraints: B20:B39<=C20:C39 (Arc capacity)
F20:F22=G20:G22 (Flow equations for nodes 2, 3, and 4)

Note that Target Cell is automated and need not be changed. The Equal to parameter
is Max because this is a maximization problem.

The output in Figure 6.35 yields the solution (N1-N2 = 20, N1-N3 = 30,
N1-N4 = 10, N2-N5 = 20, N3-N4 = 10, N3-N5 = 20, N4-N5 = 20) with a maximum
flow of 60 units.

PROBLEM SET 6.4D

1. Solve Problem 2, Set 6.4b using Excel Solver.
2. Solve Problem 3, Set 6.4b using Excel Solver.

6.5 MINIMUM-COST CAPACITATED FLOW PROBLEM

The minimum-cost capacitated flow problem is based on the following assumptions:

1. A (nonnegative) unit flow cost is associated with each arc.
2. Arcs may have positive lower capacity limits.
3. Any node in the network may act as a source or as a sink.

The new model determines the flows in the different arcs that minimize the total
cost while satisfying the flow restrictions on the arcs and the supply and demand
amounts at the nodes. We first present the capacitated network flow model and its
equivalent linear programming formulation. The linear programming formulation is
the basis for the development of a special capacitated simplex algorithm for solving
the network flow model. The section ends with a presentation of a spreadsheet tem-
plate of the minimum-cost capacitated network.

6.5.1 Network Representation

Consider a capacitated network G = (N, A), where N is the set of nodes, and A is the
set of arcs and define

x; = amount of flow from node i to node j
u; (I;) = upper (lower) capacity of arc (i, j)
¢; = unit flow cost from node i to node j
f; = net flow at node i

Figure 6.36 depicts these definitions on arc (i, j). The label [f] assumes a positive
(negative) value when a net supply (demand) is associated with node ..

—————




6.5 Minimum-Cost Capacitated Flow Problem 253
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rameter M Example 6.5-1

= _ 130 GrainCo supplies corn from three silos to three poultry farms. The supply amounts at
jD) = IV,

the three silos are 100, 200, and 50 thousand bushels: and the demand at the three

aximum farms is 150, 80, and 120 thousand bushels. GrainCo mostly uses railroads to transport
the corn to the farms, with the exception of three routes where trucks are used.
Figure 6.37 shows the available route between the silos and the farms. The silos are
represented by nodes 1, 2, and 3 whose supply amounts are [100], [200], and [50],
respectively. The farms are represented by nodes 4, 5, and 6 whose demand amounts
'f are [—150], [-80], and [—120], respectively. The routes allow transshipping between
the silos. Arcs (1, 4), (3, 4), and (4, 6) are truck routes with minimum and maximum
capacities. For example, the capacity of route (1, 4) is between 50 and 80 thousand
| bushels. All other routes use trainloads, whose maximum capacity is practically unlim-
“‘ ited. The transportation costs per bushel are indicated on the respective arcs.
rons: [~150] FIGURE 6.37
[100] (50?180) Capacitated network for Example 6.5-1
$3 (6)[-120]
the total |
demand w [200]
=1 and its [=50]
alation is |
T solving
eet tem-
PROBLEM SET 6.5A
1. A product is manufactured to satisfy demand over a 4-period planning horizon according
5, to the following data:
d A is the

Period Units of demand Unit production cost (§) Unit holding cost ($)

1 100 24 1
2 110 26 2
3 95 21 1
4 125 24 2

Given that no back-ordering is allowed, represent the problem as a network model.

a positive 2. In Problem 1, suppose that back-ordering is allowed at a penalty of $1.50 per unit per
period. Formulate the problem as a network model.
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3. In Problem 1, suppose that the production capacities of periods 1 to 4 are 110,95, 125, and
100 units, respectively, in which case the given demand cannot be satisfied without back-
ordering. Assuming that the penalty cost for back-ordering is $1.50 per unit per period,
formulate the problem as a network model.

4. Daw Chemical owns two plants that manufacture a basic chemical compound for two
customers at the rate of 660 and 800 tons per month. The monthly production capacity of
plant 1 is between 400 and 800 tons and that of plant 2 is between 450 and 900 tons. The
production costs per ton in plants 1 and 2 are $25 and $28, respectively. Raw material for
the plants is provided by two suppliers, who are contracted to ship at least 500 and 700
tons per month for plants 1 and 2 at the costs of $200 and $210 per ton, respectively. Daw
Chemical also assumes the transportation cost of both the raw material and the final
compound. The costs per ton of transporting the raw material from supplier 1 to plants 1
and 2 are $10 and $12. Similar costs from supplier 2 are $9 and $13, respectively. The
transportation costs per ton from plant 1 to clients 1 and 2 are $3 and $4, and from plant 2
costs are $5 and $2, respectively. Assuming that 1 ton of raw material produces 1 ton of
the final compound, formulate the problem as a network model.

5. Two nonintegrated public schools are required to change the racial balance of their
enrollments by accepting minority students. Minority enrollment must be between 30%
and 40% in both schools. Nonminority students live in two communities, and minority
students live in three other communities. Traveled distances, in miles, from the five com-
munities to the two schools are summarized in the following table:

Round-trip miles from school to

Minority areas Nonminority areas
Maximum
School enrollment 1 2 3 1 2
1 1500 20 12 10 4 5
2 2000 15 18 8 6 5
Student population 500 450 300 1000 1000

Formulate the problem as a network model to determine the number of minority
and nonminority students enrolled in each school.

6.5.2 Linear Programming Formulation

The formulation of the capacitated network model as a linear program provides the
foundation for the development of the capacitated simplex algorithm, which we will
present in the next section. Using the notation introduced in Section 6.5.1, the linear
program for the capacitated network is given as
Minimize z = E Ec,-fxi,-
(i.))eA ’
subject to

;xik_ Ex”:f],]eN

(. k)eA (i. )eA
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The equation for node j measures the net flow fiinnode j as
(Outgoing flow from node j) — (Incoming flow into node j) = fi

Node j acts as a source if f; > 0 and as a sink if f; <O.
We can always remove the lower bound /; from the constraints by using the sub-
stitution

x,«j = xl‘/' + lll

The new flow variable, x;, has an upper limit of w; — ;. Additionally, the net flow
at node i becomes f; — [, and that at node j is Jf; + 1;. Figure 6.38 shows the transfor-
mation of activity (i, j) after the lower bound is substituted out.

[ Ui — 1 [f.+1;] FIGURE6.38

£
$ Cij 4 $ C-j s
L Removal of the lower bound in arcs
—>
O~ O2—®
i X' )
ij

X”

Example 6.5-2

Write the linear program for the network in Figure 6.37, before and after the lower
bounds are substituted out.

The main constraints of the linear program relate the input-output flow at each
node, which yields the following LP:

X2 X13 X14 X3 X25 X34 X35 Y46 Xs6
Minimize 3 4 1 5 6 1 2 2 4
Node 1 1 1 1 = 100
Node 2 -1 1 1 = 200
Node 3 -1 =1 1 = 50
Node 4 -1 -1 1 =—150
Node 5 —1 -1 = —-80
Node 6 -1 —1 =—120
Lower bounds 0 0 50 0 0 70 0 100
Upper bounds 00 00 80 00 00 120 00 120 00

Note the arrangement of the constraints coefficients. The column associated with
variable x; has exactly one +1 in row i and one —1 in row j. The rest of the coefficients
are 0. This structure is typical of network flow models.

The variables with lower bounds are substituted as

X4 = X4 + 50
X34 = X33 + 70

X46 = x;m + 100
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The resulting linear program is

Network Models

X12 X3 X23 X5 X3 X35 x;tﬁ Xs6
Minimize 3 4 5 6 1 2 2 4
Node 1 1 1 = 5(;1
Node 2 -1 1 1 = 200
Node 3 -1 -1 1 1 = =20
Node 4 -1 1 =-130
Node 5 -1 -1 1 = —80
Node 6 -1 -1 = =20
Upper bounds 00 00 00 00 50 00 20 00

The corresponding network after substituting out the lower bounds is shown in
Figure 6.39. Note that the lower-bound substitution can be effected directly from
Figure 6.37 using the substitution in Figure 6.38, and without the need to express the
problem as a linear program first.

FIGURE 6.39

Network of Example 6.5-2 after [50]
substituting out lower bounds

[200]

Example 6.5-3 (Employment Scheduling)

This example illustrates a network model that initially does not satisfy the “node flow”
requirement (i.e., node output flow less node input flow equals node net flow), but that
can be converted to this form readily through special manipulation of the constraints
of the linear program.

Tempo Employment Agency has a contract to provide workers over the next 4
months (January to April) according to the following schedule:

Month Jan. Feb. Mar. Apr.

No. of workers 100 120 80 170

Because of change in demand, it may be economical to retain more workers than
needed in a given month. The cost of recruiting and maintaining a worker is a function
of their employment period as the following table shows:

Employment period (months) 1 2 3 4

Cost per worker ($) 100 130 180 220
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Let

x; = number of workers hired at the start of month i and terminated at the
start of month j

For example, x;, gives the number of workers hired in January for 1 month only.

To formulate the problem as a linear program for the 4-month period, we add May
as a dummy month (month 5), so that x,5 defines hiring in April for April. The con-
straints recognize that the demand for period k can be satisfied by all x; such that
i = k <j. Lettings; = 0 be the surplus number of workers in month ;, the linear pro-
gram is given as

Minimize 100 130 180 220 100 130 180 100 130 100

Jan. 1 1 1 1 -1 =100
Feb. 1 1 1 1 1 1 -1 =120
Mar. 1 1 1 1 1 1 -1 = 80
Apr. 1 1 1 1 -1 =170

The preceding LP does not have the (—1, +1) special structure of the network
flow model (see Example 6.5-2). Nevertheless, the given linear program can be con-
verted into an equivalent network flow model by using the following arithmetic
manipulations:

1. In an n-equation linear program, create a new equation, n + 1, by multiplying
equation n by —1.

2. Leave equation 1 unchanged.

3. Fori = 2,3, ..., n,replace each equation i with (equation i) — (equation i — 1).

The application of these manipulations to the employment scheduling example
yields the following linear program whose structure fits the network flow model:

X2 X130 Xy X5 Xo3 X24 X25 X34 X35 X5 §1 8 53 S4

Minimize 100 130 180 220 100 130 180 100 130 100

Jan. 11 1 1 — = 100
Feb. -1 111 1 -1 = 20
Mar. -1 -1 11 1 -1 = —40
Apr. ~1 -1 -1 1 1 -1 = 9
May -1 -1 -1 -1 1 =-170

Using the preceding formulation, the employment scheduling model can be repre-
sented equivalently by the minimum-cost flow network shown in Figure 6.40. Actually,
because the arcs have no upper bounds, the problem can be solved also as a transship-
ment model (see Section 5.5).
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FIGURE 6.40

Network representation
of employment scheduling
problem *25

[100] : ' [~170]

PROBLEM SET 6.5B

1. Write the linear program associated with the minimum-cost flow network in Figure 6.41,
before and after the lower bounds are substituted out.

FIGURE 6.41
Network for Problem 1, Set 6.5b

2. Use inspection to find a feasible solution to the minimum-cost network model of the
employment scheduling problem in Example 6.5-3 (Figure 6.40). Interpret the solution by
showing the pattern of hiring and firing that satisfies the demand for each month, and
compute the associated total cost.

3. Reformulate the employment scheduling model of Example 6.5-3, assuming that a
worker must be hired for at least 2 months. Write the linear program, and convert it to a
minimum-cost flow network.

4. Develop the linear program and the associated minimum-cost flow network for the
employment scheduling model of Example 6.5-3 using the following 5-month demand

data. The per worker costs of recruiting and maintaining a worker for periods of 1 to 5
months are $50, $70, $85, $100, and $130, respectively.

(a)

Month 1 2 3 4 5

No. of workers 300 180 90 170 200

(b)

Month 1 2 3 4 5

No. of workers 200 220 300 50 240




ire 6.41,

f the

lution by

1. and

6.5.3

6.5 Minimum-Cost Capacitated Flow Problem 259

5. Conversion of a Capacitated Network into an Uncapacitated Network. Show that an arc
(i — j) with capacitated flow x; = u;; can be replaced with two uncapacitated arcs (i—>k)
and (j — k) with a net (output) flow of [~u;] at node k and an additional (input) flow of
[+u;] at node j. The result is that the capacitated network can be converted to an
uncapacitated transportation cost model (Section 5.1). Apply the resulting transformation
to the network in Figure 6.42 and find the optimum solution to the original network by
applying TORA to the uncapacitated transportation model.

FIGURE 6.42
Network for Problem 5, Set 6.5b

Capacitated Network Simplex Algorithm

The algorithm is based on the exact steps of the regular simplex method, but designed
to exploit the special network structure of the minimum-cost flow model.

Given f; is the net flow at node i as defined in the linear program of Section 6.5.2,
the capacitated simplex algorithm stipulates that the network must satisfy

The condition says that the total supply in the network equals the total demand.
We can always satisfy this requirement by adding a balancing dummy source or desti-
nation, which we connect to all other nodes in the network by zero unit cost and infi-
nite capacity arcs. However, the balancing of the network does not guarantee a feasible
solution as this depends on the restricting capacities of the arcs.

We will now present the steps of the capacitated algorithm. Familiarity with the
simplex method and duality theory (Chapters 3 and 4) is essential. Also, knowledge of
the upper-bounded simplex method (Section 7.3) is helpful.

Step 0. Determine a starting basic feasible solution (set of arcs) for the network. Go
to step 1.

Step 1. Determine an entering arc (variable) using the simplex method optimality
condition. If the solution is optimal, stop; otherwise, go to step 2.

Step 2. Determine the leaving arc (variable) using the simplex method feasibility
condition. Determine the new solution, and then go to step 1.

An n-node network with zero net flow (ie., f, + f, + ... + f, = 0) consists of
n — 1 independent constraint equations. Thus, an associated basic solution must
include n — 1 arcs. It can be proved that a basic solution always corresponds to a
spanning tree of the network (see Section 6.2).
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The entering arc (step 1) is determined by computing z; — c;;, the objective coef-
ficients, for all the current nonbasic arcs (i, j). If z; — ¢; = 0 for all i and j, the current
basis is optimum. Otherwise, we select the nonbasic arc with the most positive z; — ¢
to enter the basis.

The computation of objective coefficients is based on duality, exactly as we did
with the transportation model (see Section 5.3.4). Using the linear program defined in
Section 6.5.2, let w; be the dual variable associated with the constraint of node i; then
the dual problem (excluding the upper bounds) is given as

if

n
Maximize z = 2 fiw;
=1

subject to
w; — W] = Cija (l7 ])EA

w; unrestricted in sign, i = 1, 2, ...n
From the theory of linear programming, we have

w; — w; = ¢;, for basic arc (i, j)

Because the original linear program (Section 6.5.2) has one redundant constraint by
definition, we can assign an arbitrary value to one of the dual variables (compare with
the transportation algorithm, Section 5.3). For convenience, we will set w; = 0. We
then solve the (basic) equations w; — w; = ¢; to determine the remaining dual values.
From Section 4.2.3, Method 2, we know that the objective coefficient of nonbasic x;; is
the difference between the left-hand side and the right-hand side of the dual associ-
ated dual constraint—that is

Zij - Cij = W; — Wj - Cij

The only remaining detail is to show how the leaving variable is determined. We
do so by using a numeric example.

Example 6.5-4

A network of pipelines connects two water desalinization plants to two cities. The daily
supply amounts at the two plants are 40 and 50 million gallons, and the daily demand
amounts at cities 1 and 2 are 30 and 60 million gallons. Nodes 1 and 2 represent plants 1
and 2, and nodes 4 and 5 represent cities 1 and 2. Node 3 is a booster station between
the plants and the cities. The model is already balanced because the supply at nodes 1
and 2 equals the demand at nodes 4 and 5. Figure 6.43 gives the associated network.

FIGURE 6.43 Unit cost

Network for Example 6.5-4
Plant 1 [40] (1)

~ Arc capacity
$
[—30] City 1

Plant 2 [50]

[—60] City2
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Iteration 0.

Step 0.

Determination of a Starting Basic Feasible Solution: The starting feasible
spanning tree in Figure 6.44 (shown with solid arcs) is obtained by inspection.
Normally, we use an artificial variable techrique to find such a solution (for
details, see Bazaraa et al., 1990, pp. 440-46).

(50]

= ep=0-(=5)-3=2
Zos — Cys = =5 — (<15) ~1
s~ e =—5-(-15)—-4

9
6

Arc (2, 5) reaches upper bound at 30.
Substitute x,5 = 30 — xs,.

Reduce x,3 and x35 each by 30.

FIGURE 6.44

Network for iteration 0

In Figure 6.44, the basic feasible solution consists of (solid) arcs (1, 3), (1,4), (2, 3),
and (3, 5) with the feasible flows of 10, 30, 50, and 60 units, respectively. This leaves
(dashed) arcs (1, 2), (2,5), and (4, 5) to represent the nonbasic variables. The notation
x(c) shown on the arcs indicates that a flow of x units is assigned to an arc with capacity
c¢. The default values for x and c are 0 and oo, respectively.

Iteration 1.

Step 1.

Determination of the Entering Arc: ' We obtain the dual values by solving the
current basic equations

wy =0

w; — w; = ¢;, for basic (i, j)

We thus get,
Arc(l, 3): w; — w3 =7, hence wy; = =7
Arc(1,4): wy — w, = 5, hence w, = =5
Arc(2,3): w, — wy; = 2, hencew, = =5
Arc(3,5) : w3 — ws = 8, hence ws = —15

Now, we compute z; — ¢; for the nonbasic variables as
Arc(L,2):twy —wy —cp=0—-(-5-3=2
Arc(2, 5w, —ws —cs = (-5 —(-15)-1=9
Arc(4,5) :wy —ws —cis = (=5 —(-15) -4 =6

Thus, arc (2, 5) enters the basic solution.
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Step 2. Determination of the Leaving Arc: From Figure 6.44, arc (2, 5) forms a loop
with basic arcs (2, 3) and (3, 5). From the definition of the spanning tree, no
other loop can be formed. Because the flow in the new arc (2, 5) must be
increased, we adjust the flow in the arcs of the loop by an equal amount to
maintain the feasibility of the new solution. To achieve this, we identify the
positive (+) flow in the loop by the direction of flow of the entering arc (i.e..
from 2 to 5). We then assign (+) or (—) to the remaining arcs of the loop.
depending on whether the flow of each arc is with or against the direction of
flow of the entering arc. These sign conventions are shown in Figure 6.44.

Determination of the maximum level of flow in the entering arc (2, 5) is based on
two conditions:

1. New flow in current basic arcs of the loop cannot be negative.
2. New flow in the entering arc cannot exceed its capacity.

The application of condition 1 shows that the flows in arcs (2, 3) and (3, 5) cannot
be decreased by more than min {50, 60} = 50 units. Condition 2 stipulates that the
flow in arc (2, 5) can be increased to at most the arc capacity (=30 units). Thus, the
maximum flow change in the loop is min {30, 50} = 30 units. The new flows in the loop
are thus 30 units in arc (2, 5), 50 — 30 = 20 units in arc (2, 3), and 60 — 30 = 30 units
in arc (3,5).

Because none of the current basic arcs leave the basis at zero level, the new arc (2,
5) must remain nonbasic at the upper bound. However, to avoid dealing with nonbasic
arcs that are at capacity (or upper bound) level, we implement the substitution

Xos = 30 — X570, 0= X5 = 30

This substitution is effected in the flow equations associated with nodes 2 and 5 as fol-
lows. Consider

Current flow equation at node 2: 50 + xy, = x5 + X5
Current flow equation at node 5: x,5 + x35 + x45 = 60
Then, the substitution x,s = 30 — x5, gives
New flow equation at node 2: 20 + x;;, + x5, = X3
New flow equation at node 5: x35 + x45 = x5, + 30

The results of these changes are shown in Figure 6.45. The direction of flow in arc
(2,5) is now reversed to 5 — 2 with x5, = 0, as desired. The substitution also requires
changing the unit cost of arc (5, 2) to —$1. We will indicate this direction reversal on
the network by tagging the arc with an asterisk.

Iteration 2. Figure 6.45 summarizes the new values of z; — ¢; (verify!) and shows
that arc (4, 5) enters the basic solution. It also defines the loop associated with the new
entering arc and assigns the signs to its arcs.

The flow in arc (4, 5) can be increased by the smallest of

1. Maximum allowable increase in entering arc (4, 5) = 0o
2. Maximum allowable increase in arc (1, 4) = 35 — 30 = 5 units
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= =0-(=5)-3=2

Iy~ ey =15 =(=5) —(-1) = -9
45 — Cy5 = -5 - (*15) —-4=6

Arc (4, 5) enters at level 5.

Arc (1, 4) leaves at upper bound.

Substitute xy4 = 35 — x4.
FIGURE 6.45

Network for
iteration 1

Reduce x5 and x;5 each by 5.

3. Maximum allowable decrease in arc (1, 3) = 10 units
4. Maximum allowable decrease in arc (3, 5) = 30 units

Ll

‘ Thus, the flow in arc (4, 5) can be increased to 5 units, which will make (4, 5) basic
‘ and will force basic arc (1,4) to be nonbasic at its upper bound ( = 35).

Using the substitution x,, = 35 — X4, the network is changed as shown in Figure

6.46, with arcs (1, 3), (2, 3), (3, 5), and (4,5) forming the basic (spanning tree) solution.

The reversal of flow in arc (1, 4) changes its unit cost to —$5. Also, convince yourself

(
sic that the substitution in the flow equations of nodes 1 and 4 will net 5 input units at each
node.
as fol-
Ip=ep=0-(-5-3=2
41— Cq1 = —-11 -0 _(_5) = —6
I~ =15 = (=5) —(-1)= -9
‘ Arc (1, 2) enters at level 5.
|
[ Arc (1, 3) leaves at level 0.
! Increase x,; by 5.
. arc FIGURE 6.46
quires ‘ 3 Network for iteration 2
sal on
shows Iteration 3. The computations of the new z; — ¢; for the nonbasic arcs (1, 2), (4, 1),
e new

and (5, 2) are summarized in Figure 6.46, which shows that arc (1, 2) enters at level 5,
and arc (1,3) becomes nonbasic at level 0. The new solution is depicted in Figure 6.47.

Iteration 4. The new Z; — ¢; in Figure 6.47 shows that the solution is optimum.

The values of the original variables are obtained by back substitution as shown in
’ Figure 6.47.
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TS Z3—c3=0—(=5) 7= -2
Bl q} (35)* 4) Bl sg—Cn=-9-0—(=5)=—4
N o= cp=—13—(-3)~(-1)= -9
Optimum solution:
xp=5%x3=0
X, =35-0=35
Xy3 =25
X5 = 30 -0=30
X35 =25,x45=15
Total cost = $490

2 N

(20]
wy = -3

FIGURE 6.47

Network for iteration 3

PROBLEM SET 6.5C

1. Solve Problem 1, Set 6.5a by the capacitated simplex algorithm, and also show that it can
be solved by the transshipment model.

2. Solve Problem 2, Set 6.5a by the capacitated simplex algorithm, and also show that it can
be solved by the transshipment model.

. Solve Problem 3, Set 6.5a by the capacitated simplex algorithm.
. Solve Problem 4, Set 6.5a by the capacitated simplex algorithm.
Solve Problem 5, Set 6.5a by the capacitated simplex algorithm.

Solve the employment scheduling problem of Example 6.5-3 by the capacitated simplex
algorithm.

7. Wyoming Electric uses existing slurry pipes to transport coal (carried by pumped water)
from three mining areas (1,2, and 3) to three power plants (4, 5, and 6). Each pipe can
transport at most 10 tons per hour. The transportation costs per ton and the supply and
demand per hour are given in the following table.

4 5 6 Supply

1 $5 $8 $4 8
2 $6 $9 $12 10
3 $3 $1 $5 18

Demand 16 6 14

Determine the optimum shipping schedule.

8. The network in Figure 6.48 gives the distances among seven cities. Use the capacitated
simplex algorithm to find the shortest distance between nodes 1 and 7. (Hint: Assume
that nodes 1 and 7 have net flows of [+1] and [—1], respectively. All the other nodes have
zero net flow.)

9. Show how the capacitated minimum-cost flow model can be specialized to represent the
maximum flow model of Section 6.4. Apply the transformation to the network in
Example 6.4-2. For convenience, assume that the flow capacity from 4 to 3 is zero. All the
remaining data are unchanged.
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6.5.4

FIGURE 6.48
Network for Problem 8, Set 6.5¢

Excel Spreadsheet Solution of the Minimum-Cost Capacitated
Flow Model

As in the cases of the shortest-route and maximum flow models, the Excel spreadsheet
developed for the general transportation model (Section 5.3.3) applies readily to the
capacitated network flow model. Figure 6.49 shows the application of the spreadsheet
to Example 6.5-4 (file ch6SolverMinCostCapacitatedNetwork.xls). The spreadsheet is
designed for networks with a maximum of 10 nodes. In the capacity matrix (cells
N6:W15),5 a blank entry signifies an infinite capacity arc. A nonexisting arc is repre-
sented by a zero-capacity entry. As an illustration, in Example 6.5-4, infinite capacity
arc 1-2 is represented by a blank entry in cell O6, and nonexisting arc 3-4 is shown by a
zero entry in cell Q8. The unit cost matrix resides in cells B6:K15. We arbitrarily assign
zero unit cost to all nonexisting arcs.

Once the unit cost and capacity matrices are created, the remainder of the
spreadsheet (intermediate calculations and optimum solution sections) is created auto-
matically, delineating the cells needed to update Solver parameters for Changing Cells
and Constraints. Target Cell is already defined for any network (with 10 nodes or less).
Specifically, for Example 6.5-4, we have,

Changing cells: B20:B39
Constraints: B20:B39<=C20:C39 (Arc capacity)
F19:F23=G19:G23 (Node flow equation)

Figure 6.49 provides the following solution: N1-N2 = 5 N1-N4 = 35 N2-N3 = 25,
N2-N5 = 30,N3-N5 = 25, and N4-N5 = 5.The associated total cost is $490.

PROBLEM SET 6.5D

1. Solve the following problem using the spreadsheet in Section 6.5.4:
(a) Problem 3, Set 6.5¢
(b) Problem 4, Set 6.5¢

In Figure 6.49, rows 11 through 15 and column K are hidden to conserve space.
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I T ]

ToUnitCost

3
7
i
|

0
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FIGURE 6.49

Excel Solver output for
Example 6.5-4

(¢) Problem 7, Set 6.5¢
(d) Problem 8, Set 6.5¢

6.6 CPM AND PERT

CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique)
are network-based methods designed to assist in the planning, scheduling, and control of
projects. A project is defined as a collection of interrelated activities with each activity
consuming time and resources. The objective of CPM and PERT is to provide analytic
means for scheduling the activities. Figure 6.50 summarizes the steps of the techniques.
First, we define the activities of the project, their precedence relationships, and their




i

!é;

-chnique)
~ontrol of
h activity
= analytic
chniques.
and their

6.6 CPMand PERT 267

Network Time schedule
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T T Phases for project planning
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6.6.1

time requirements. Next, the project is translated into a network that shows the prece-
dence relationships among the activities. The third step involves specific network com-
putations that form the basis for the development of the time schedule for the project.

During the execution of the project, the schedule may not be realized as planned,
causing some of the activities to be expedited or delayed. In this case, it will be neces-
sary to update the schedule to reflect the realities on the ground. This is the reason for
including a feedback loop between the time schedule phase and the network phase as
shown in Figure 6.50.

The two techniques, CPM and PERT, which were developed independently, dif-
fer in that CPM assumes deterministic activity durations, whereas PERT assumes
probabilistic durations. This presentation will start with CPM and then provide the
details of PERT.

Network Representation

Each activity of the project is represented by an arc pointing in the direction of
progress in the project. The nodes of the network establish the precedence relation-
ships among the different activities of the project.

Two rules are available for constructing the network.

Rule 1. Each activity is represented by one, and only one, arc.
Rule 2. Each activity must be identified by two distinct end nodes.

Figure 6.51 shows how a dummy activity can be used to represent two concurrent
activities, A and B. By definition, a dummy activity, which normally is depicted by a
dashed arc, consumes no time or resources. Inserting a dummy activity in one of the
four ways shown in Figure 6.51, we maintain the concurrence of A and B, and also pro-
vide unique end nodes for the two activities (to satisfy rule 2).

Rule 3. 7o maintain the correct precedence relationships, the following questions must
be answered as each activity is added to the network:

(a) What activities must immediately precede the current activity?
(b) What activities must follow the current activity?
(¢) What activities must occur concurrently with the current activity?
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|

FIGURE 6.51

Use of dummy activity to produce unique representation of concurrent activities A and B

The answers to these questions may require the use of dummy activities to ensure
correct precedences among the activities. For example, consider the following segment
of a project:

1. Activity C starts immediately after A and B have been completed.
2. Activity E starts after B only has been completed.

Part (a) of Figure 6.52 shows the incorrect representation of the precedence relation-
ship because it requires both A and B to be completed before E can start. In part (b),
the use of a dummy activity rectifies the situation.

FIGURE 6.52

Use of dummy activity to ensure
correct precedence relationship

(a) (b)

Example 6.6-1

A publisher has a contract with an author to publish a textbook. The (simplified) activ-
ities associated with the production of the textbook are given below. Develop the asso-
ciated network for the project.

Activity Predecessor(s) Duration (weeks)

: Manuscript proofreading by editor -
Sample pages prepared by typesetter —
Book cover design —

. Preparation of artwork for book figures —
Author’s approval of edited manuscript
and sample pages A B 2

Ho Qx>
WA w
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F: Book typesetting E 2
G: Author checks typeset pages F 2
H: Author checks artwork D 1
I: Production of printing plates GH 2
J: Book production and binding oy 4

Figure 6.53 provides the network describing the precedence relationships among
the different activities. Dummy activity (2, 3) produces unique end nodes for concur-
rent activities A and B. The numbering of the nodes is done in a manner that indicates
the direction of progress in the project.

gment FIGURE 6.53
Project network for Example 6.6-1

ation- PROBLEM SET 6.6A
(D). 1. Construct the project network comprised of activities A to L with the following prece-

dence relationships:

(a) A, B and C, the first activities of the project, can be executed concurrently.

(b) A and B precede D.

(¢) Bprecedes E, F, and H.

(d) Fand C precede G.

(e) E and H precede [ and J.

() C D, E and J precede K.

(g) Kprecedes L.

(h) I G, and L are the terminal activities of the project.

— 2. Construct the project network comprised of activities A to P that satisfies the following
precedence relationships:

activ- (a) A, B, and C, the first activities of the project, can be executed concurrently.
asso- (b) D, E, and F follow A.

(¢) Iand G follow both B and D.

(d) H follows both C and G.

(e) K and L follow I

(f) Jsucceeds both E and H.

(g) M and N succeed F, but cannot start until both E and H are completed.

(h) O succeeds M and I.

(i) PsucceedsJ, L, and O.

(j) K N, and P are the terminal activities of the project.

o
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3. The footings of a building can be completed in four connected sections. The activities for
each section include (1) digging, (2) placing steel, and (3) pouring concrete. The digging of
one section cannot start until that of the preceding section has been completed. The same
restriction applies to pouring concrete. Develop the project network.

4. In Problem 3,suppose that 10% of the plumbing work can be started simultaneously with
the digging of the first section. After each section of the footings is completed, an addi-
tional 5% of the plumbing can be started provided that the preceding 5% portion is com-
pleted. The remaining plumbing can be completed at the end of the project. Construct the
project network.

5. An opinion survey involves designing and printing questionnaires, hiring and training
personnel, selecting participants, mailing questionnaires, and analyzing the data.
Construct the project network, stating all assumptions.

6. The activities in the following table describe the construction of a new house. Develop
the associated project network.

Activity Predecessor(s) Duration (days)
A: Clear site — 1
B: Bring utilities to site — 2
C: Excavate A 1
D: Pour foundation C 2
E: Outside plumbing B C 6
F. Frame house D 10
G: Do electric wiring F 3
H: Lay floor G 1
I Lay roof F 1
J: Inside plumbing E.H 5
K: Shingling I 2
L: Outside sheathing insulation EJ 1
M: Install windows and outside doors F 2,
N: Do brick work LM 4
O: Insulate walls and ceiling G,J 2
P: Cover walls and ceiling o 2,
Q: Insulate roof LP 1
R: Finish interior P 7
S: Finish exterior IN 7
T: Landscape N 3

7. A company is in the process of preparing a budget for launching a new product. The fol-
lowing table provides the associated activities and their durations. Construct the project
network.

Activity Predecessor(s) Duration (days)

Forecast sales volume — 1
Study competitive market
Design item and facilities

: Prepare production schedule
Estimate cost of production
Set sales price

: Prepare budget

QBT OT >
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8. The activities involved in a candlelight choir service are listed in the following table.
Construct the project network.

Activity Predecessor(s) Duration (days)

A: Select music — 2

IS com B: Learn music A 14
yuct the C: Make copies and buy books A 14
D: Tryouts B C 3

E: Rehearsals D 70
i F: Rent candelabra D 14
G: Decorate candelabra F 1

H: Set up decorations D 1

ciop I Order choir robe stoles D 7
J:  Check out public address system D 7

K: Select music tracks J 14

L: Set up public address system K 1

M: Final rehearsal E G L 1

N: Choir party H LM 1

O: Final program LN 1

9. The widening of a road section requires relocating (“reconductoring”) 1700 feet of 13.8-
kV overhead primary line. The following table summarizes the activities of the project.
Construct the associated project network.

Activity Predecessor(s) Duration (days)

Job review — 1
Advise customers of temporary outage
Requisition stores

Scout job

Secure poles and material
Distribute poles

Pole location coordination
Re-stake

Dig holes

Frame and set poles

Cover old conductors

Pull new conductors

: Install remaining material
Sag conductor

Trim trees

De-energize and switch lines
Energize and switch new line
Clean up

Remove old conductor
Remove old poles

Return material to stores

>
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10. The following table gives the activities for buying a new car. Construct the project net-
work.
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Activity Predecessor(s) Duration (days)

Conduct feasibility study —
Find potential buyer for present car
List possible models
: Research all possible models
Conduct interview with mechanic
Collect dealer propaganda
: Compile pertinent data
: Choose top three models
Test-drive all three choices
Gather warranty and financing data
Choose one car
Choose dealer
: Search for desired color and options
: Test-drive chosen model once again
: Purchase new car
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Critical Path (CPM) Computations

The ultimate result in CPM is the construction of the time schedule for the project (see
Figure 6.50). To achieve this objective conveniently, we carry out special computations
that produce the following information:

1. Total duration needed to complete the project
2. Classification of the activities of the project as critical and noncritical

An activity is said to be critical if there is no “leeway” in determining its start and
finish times. A noncritical activity allows some scheduling slack, so that the start time
of the activity may be advanced or delayed within limits without affecting the comple-
tion date of the entire project.

To carry out the necessary computations, we define an event as a point in time at
which activities are terminated and others are started. In terms of the network, an
event corresponds to a node. Define

U, = Earliest occurrence time of event j
A; = Latest occurrence time of event j
D;; = Duration of activity (i, j)

The definitions of the earliest and latest occurrence times of event j are specified rela-
tive to the start and completion dates of the entire project.

The critical path calculations involve two passes: The forward pass determines
the earliest occurrence times of the events, and the backward pass calculates their latest
occurrence times.

Forward Pass (Earliest Occurrence Times, (). The computations start at node 1 and
advance recursively to end node n.
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Initial Step. Set[J, = 0 to indicate that the project starts at time 0.

General Step j.  Given that nodes p, ¢, ...,and v are linked directly to node j by
incoming activities (p, j), (g, j),..-,and (v, j) and that the earliest occurrence
times of events (nodes) p, g, ...,and v have already been computed, then
the earliest occurrence time of event j is computed as

Djz maX{Dp"'D DC]+D(]]’ ceny DV+DV/}

PP
The forward pass is complete when [, at node 7 has been computed. By def-
inition [J; represents the longest path (duration) to node j.

Backward Pass (Latest Occurrence Times, A). Following the completion of the for-
ward pass, the backward pass computations start at node » and end at node 1.

Initial Step. Set A, = [J, to indicate that the earliest and latest occurrences of the last
node of the project are the same.

General Step j. Given that nodes p, g, ...,and v are linked directly to node j by
outgoing activities (j, p), (J, g),...,and (j, v) and that the latest occurrence
times of nodes p, ¢, ...,and v have already been computed, the latest occur-
rence time of node j is computed as

A;= min{A, - D;,, A, = Dj,,..., A, — D}

] p?

The backward pass is complete when A, at node 1 is computed.

Based on the preceding calculations, an activity (i, j) will be critical if it satisfies
three conditions.

i
iZDj_DizDi/‘

W N -

A =0
. Al
The three conditions state that the earliest and latest occurrence times of nodes i and j
are equal, and the duration D; fits “tightly” in the specified time span. An activity that
does not satisfy all three conditions is noncritical.

The critical activities of a network must constitute an uninterrupted path that

spans the entire network from start to finish.

Example 6.6-2
Determine the critical path for the project network in Figure 6.54. All the durations are
in days.

Forward Pass

Node 1. Setd, =0
Node 2. D2=D1+D12:0+5=5
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Node 3. [; = max{{J; + D3, 0, + Dy} = max{0 + 6,5 + 3} = 8
Noded. O, =0, + D,y =5+8 =13

Node 5. s = max{{J; + D35, O, + Dys} = max {8 + 2,13 + 0} = 13
Node 6. [, = max {{; + Djs, Oy + Dyg, Os + Dsg}

max {8 + 11, 13 + 1, 13 + 12} = 25

The computations show that the project can be completed in 25 days.
Backward Pass

Node 6. Set A, = s = 25
Node 5. A; = A¢ — Dsx=25-12=13
Node 4. A4 = min {A6 - D467 AS - D45} = min {25 - 1, 13 — 0} =13

Node 3. A, = min{Aq — Dsg, As — Dag} = min {25 — 11,13 — 2} = 11
Node 2. AQ = min {A4 - D24, A3 - D23} = min {13 - 8, 11 — 3} =5
NOde 1. A] = min {Ag - D13, A2 - Dl?} — min {11 - 6, 5 - 5} =0

Correct computations will always end with A; = 0.

The forward and backward pass computations are summarized in Figure 6.54. The
rules for determining the critical activities show that the critical path is defined by
1—2—4—5— 6, which spans the network from start (node 1) to finish (node 6).
The sum of the durations of the critical activities [(1,2), (2,4), (4,5), and (5, 6)] equals
the duration of the project (= 25 days). Observe that activity (4, 6) satisfies the first two
conditions for a critical activity (A4 = 00, = 13 and A; = O; = 25) but not the third
@s — O, # D). Hence, the activity is not critical.

FIGURE 6.54 Legend:
Forward and backward o
pass calculations for the A Forward pass: ) D“ - "D
project of Example 6.6-2 n Bagl.iward pass: A\<——/\
End Critical path: ~ (D)— ()
backward
pass Start
N A backward
oo o
(6
Start < End
forward X forward
pass

pass
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PROBLEM SET 6.6B

1. Determine the critical path for the project network in Figure 6.55.

FIGURE 6.55
Project network for Problem 1, Set 6.6b

2. Determine the critical path for the project networks in Figure 6.56.

Project (a) Project (b)

FIGURE 6.56
Project network for Problem 2, Set 6.6b

Determine the critical path for the project in Problem 6, Set 6.6a.
Determine the critical path for the project in Problem 8, Set 6.6a.
Determine the critical path for the project in Problem 9, Set 6.6a.
Determine the critical path for the project in Problem 10, Set 6.6a.

AN R

Construction of the Time Schedule

This section shows how the information obtained from the calculations in Section 6.6.2
can be used to develop the time schedule. We recognize that for an activity (i, j), O,
represents the earliest start time, and A, represents the latest completion time. This
means that (O, A)) delineates the (maximum) span during which activity (i, j) may be
scheduled.

Construction of Preliminary Schedule. The method for constructing a preliminary
schedule is illustrated by an example.
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Example 6.6-3

Determine the time schedule for the project of Example 6.6-2 (Figure 6.54).

We can get a preliminary time schedule for the different activities of the project by
delineating their respective time spans as shown in Figure 6.57. Two observations are in
order.

1. The critical activities (shown by solid lines) must be scheduled one right after the
other to ensure that the project is completed within its specified 25-day duration.

2. The noncritical activities (shown by dashed lines) encompass spans that are
larger than their respective durations, thus allowing slack (or “leeway”) in sched-
uling them within their allotted spans.

A-5
—
D-38
f 1 Critical
L H-12 .
B-6
e i st s, S et it -
cC-3
i i s e -
E=2
=————— | Noncritical
F-11
k- —————————— - —— |
G-1
[ i i S T i i s |
| | | . | |
5 10 15 20 25
Days
FIGURE 6.57

Preliminary schedule for the project of Example 6.6-2

How should we schedule the noncritical activities within their respective spans?
Normally, it is preferable to start each noncritical activity as early as possible. In this
manner, slack periods will remain opportunely available at the end of the allotted
span, where they can be used to absorb unexpected delays in the execution of the
activity. It may be necessary, however, to delay the start of a noncritical activity past its
earliest time. For example, in Figure 6.57, suppose that each of the noncritical activities
E and Frequires the use of a bulldozer, and that only one is available. Scheduling both
E and F as early as possible requires two bulldozers between times 8 and 10. We can
remove the overlap by starting E at time 8 and pushing the start time of F to some-
where between times 10 and 14.

If all the noncritical activities can be scheduled as early as possible, the resulting
schedule automatically is feasible. Otherwise, some precedence relationships may be
violated if noncritical activities are delayed past their earliest time. Take, for example,
activities C and E in Figure 6.57. In the project network (Figure 6.54), though C must
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be completed before E, the spans of C and E in Figure 6.57 allow us to schedule C
between times 6 and 9, and E between times 8 and 10. These spans, however, do not
ensure that C will precede E. The need for a “red flag” that automatically reveals
schedule conflict is thus evident. Such information is provided by computing the floats
for the noncritical activities.

he Determination of the Floats. Floats are the slack times available within the allotted

span of the noncritical activity. The two most common floats are the total float and the

e free float.

d- Figure 6.58 gives a convenient summary for computing the total float (7F;) and
the free float (FF;) for an activity (i, j). The total float is the excess of the time span
defined from the earliest occurrence of event i to the latest occurrence of event j over
the duration of (i, j)—that is,

FIGURE 6.58

Computation of total and free floats

The free float is the excess of the time span defined from the earliest occurrence of
event i to the earliest occurrence of event j over the duration of (i, j)—that is,

FFy =1, — U — Dy
By definition, FF; = TF;,.

Red-Flagging Rule. For a noncritical activity (i, j)

(a) If FF; = TFj, then the activity can be scheduled anywhere within its (O, A)) span
without causing schedule conflict.
(b) If FF; < TFy, then the start of activity (i, j) can be delayed by at most FF; relative

4
to its earliest start time (O;) without causing schedule conflict. Any delay larger than
n FF; (but not more than TFy) must be accompanied by an equal delay relative to UJ;

bic- in the start time of all the activities leaving node j.

The implication of the rule is that a noncritical activity (i, j) will be red-flagged if
its FF; < TF;. This red flag is important only if we decide to delay the start of the
activity past its earliest start time, [J;, in which case we must pay attention to the start

ust times of the activities leaving node j to avoid schedule conflicts.
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