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We are often interested in grouping together objects that have common charac-
teristics or features. We might be interested in the integers 1, 2, 3, 4, or in all the
integers. Such a group is called a set. The set of all points in a plane would consist
of pairs of numbers of the form (x, y), where x and y are coordinates which can
take any real values. These examples all involve numbers, but the elements of sets
can be other objects such as functions, or matrices, or Fourier series, or Laplace
transforms, etc.

A setis a collection of objects or elements. The elements in the set can be defined
by a rule or in any descriptive manner. Sets are usually denoted by capital letters
such as S, A, B, X, etc., and their elements by lowercase letters such as s,a, b, x,
etc. The elements in a set are listed between braces { ... }. If the set A consists of
just two numbers 0 and 1, then we write

A={0,1}, or A={1,0}, (35.1)

the order being a matter of indifference. We say that 0 and 1 are the elements or
members of the set A, or belong to A. We write

0eA, 1eA,

read as ‘0 belongs to the set A’, etc. The number 2 does not belong to A, and we
write

2¢A,

that is 2 does not belong to the set A’.
The set defined by (35.1) is the binary set, which could represent the 07 and off
states of a system. This could be the state of a light switch, for example.
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Sets can be either finite, having a finite number of elements, or infinite, in which
case the set contains an infinite number of elements. Thus the set given by (35.1)
defines a finite set A, while

B={1,2,3,...},

the list of all positive integers, defines an infinite set.
Some of the more common sets have their own special symbols:

Notation for sets of numbers

R, the set of all real numbers

C, the set of all complex numbers

R, the set of all positive real numbers (excludes zero)

Z, the set of all integers (positive, negative, and zero)

N*, the set of all positive integers

N, the set of all negative integers

@, the set of all rational numbers (i.e. numbers of the form p/q where g # 0 and

p are integers) (35.2)

Often the elements are defined by a rule rather than by a list or formula. We
write the set as

S = {x|x satisfies specified rules},

which can be translated as S is the set of values of x which satisfy the stated rules’.
The rules occur after the vertical |. Thus

S={x|xeNtand2 <=x =<8}
is an alternative way of writing S = {2, 3,4, 5, 6,7, 8}. As another example,
S={x|xeRand 0 =x =<1}

is the closed interval [0, 1], that is, all real numbers between 0 and 1 including 0
and 1.

Self-test 35.1

List in full the elements in the following sets:

(a) S;={x|xeNrand-2<x =<8},
(b) S,={p/glpeN,g eN", 1<p=<3and2=<g=<4}.

Equality, union, and intersection

Two sets A and B are said to be equal if they contain exactly the same elements. If
this is the case, we write

A=B.
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For example,
A={1,2,3}, B={3,2,1}, C={3,1,2,1}

are all equal, that is A = B = C. The order of the elements is immaterial, and
repeated elements are discounted.

In a given context, the set of all elements of interest is known as the universal
set, usually denoted by U. The definition of U depends on the context. For example,
for the set A above, the universal set might be N (the set of all positive integers), or
R* (the set of all positive numbers), or some other set which includes {1, 2, 3},
depending on the particular application.

We now define how sets can be combined to create new sets. The union of two
sets A and B is the set of all elements that belong to A, or to B, or to both. It is
written as

AUB={x|x€Aorxe Borboth},

and read as ‘A union B’.

Example 35.1  Find the union of
A={x|xeRand0<x<2} and B={x|xeRandl<x<3}.
The elements in the union have to belong to one or other of the intervals 0 < x < 2, or

1 < x =3, or to both. The condition is satisfied by all numbers in the interval 0 < x < 3,
and by no others. Hence

AUB={x|Rand 0= x=<3)}.

The intersection of two sets A and B is the set A N B that contains all elements
common to both A and B. It is written and defined by

AN B={x|xe€Aand x eB}.

Example 35.2  Find the intersection of the sets A and B in Example 35.1.

The elements in the intersection have to belong simultancously to both intervals, that
is to the overlapping part of the intervals [0, 2] and [1, 3], which is [1,2]. Thus

ANB={x|xeRand 1 < x<2}.

In the definitions of A U Band A N B above, we can see that the logical opera-
tion ‘or’ is associated with union, while ‘and’ is associated with intersection.

If A and B have no elements in common, then A and B are said to be disjoint.
The set with no elements is called the empty set and denoted by @. Thus, if A
and B are disjoint, then A N B=@. Thus if A = {1, 2, 3} and B= {4, S, 6} then
ANB=@.

The complement of a set A is the set of all those elements which belong to the
universal set U but do not belong to A. We denote this set by A (the notations
Ac¢and A’ are also frequently used): it will depend on the definition of U. Hence,
the complement of A is, assuming that x € U,
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35 SETS

A={x|xgA}.

We say that A is a subset of B, expressed as A C B, if every element of A also
belongs to the set B. It follows that A ¢ U if B ¢ U. If there are elements of B
which are not in A, then A is called a proper subset of B and written A  B. The
statement A C B includes the possibility that A = B, while A © Bdoes not. If Ac B
and BC A, then all elements in A are contained in B, and vice versa; in other words,
A=B.

The sets of integers Z and rational numbers Q are proper subsets of the real
numbers R, that is

Z cR, and QcR.

We can summarize the results as follows.

Set operations

a) Union: A U B= {x|x € A or x € Bor both}.

b) Intersection: AN B= {x|x € A and x € B}.

¢) Complement: A = {x|x¢&A}.

d) Empty set: &, the set with no elements.

e) Subset: A C B means that A is a subset of B.

f) Proper subset: A c B means that A € Bbut A #B. (35.3)

(
(
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Self-test 35.2

Find the union and intersection of A = {x|x € R and -1 = x =< 23,
B={x|xeNtand 1 < x =<4}.

Venn diagrams

Useful graphical views and interpretations of sets and operations on them can
be provided by Venn diagrams. We represent sets by regions in the plane, with
the interpretation that the region stands for those elements belonging to the given
set. The diagrams are symbolic: the set A = {1, 2}, for example, could be repres-
ented by the circle as shown in Fig. 35.1. Usually, sets are represented by the
interiors of circles, but any closed curves can be used. In a given context, all the
sets are subsets of a certain universal set U, whose nature will differ according to
the context.

If the universal set is represented by a rectangle, then a subset A of U is repres-
ented by the interior of a circle within the rectangle shown in Fig. 35.2. This is a
Venn diagram for U and A. Remember that A could represent an infinite number
of elements, or one element, or be the empty set &. Two regions in U may have
elements in common. For example, A = {1, 2,3} and B= {3, 4, 5} have the common
element 3. In a Venn diagram this is represented by intersecting regions A and B as
in Fig. 35.3a.
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Fig. 35.1 Fig. 35.2 Venn diagram for the universal
set U and a set A.

©) (d)

Fig. 35.3 (a) Union A U B. (b) Intersection A N B. (c) Complement A. (d) Proper subset A < B.

The union, intersection, complement, and proper subset can be represented by
the Venn diagrams shown in Fig. 35.3. The shaded regions indicate the elements
defined by the operations.

From the definitions of union, intersection, and complement, or from Venn
diagrams, the following laws of the algebra of sets can be deduced:

(a) Algebra of sets
AUA=A, AnA=A.

(b) Commutative laws:
AUB=BUA, ANB=BnNA.
(c) Associative laws (see Fig. 35.4):
(AVUBIUC=AU(BU) (),
(AnBINC=An (Bn (). ”
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(a) (b)

Fig.35.4 (a) (AUB)UCor AU (BUC).(b)(AnB)NnCorAn (BN C).

(d) Distributive laws:
AnBUC)=(AnBU(AN C),
AUBNC)=(AUB N (AUC).

~

(35.4)
Sets also satisfy the following identity and complementary laws:
Identity laws: AU =A, AnU=A.
Complementary laws:

For example, A consists of all elements that do not belong to A, and none that do;
so there are no elements common to A and A. Therefore AN A =(.

The difference of the sets A and B, written as A\B, consists of the set of those
elements that belong to A but do not belong to B. Thus

A\B={x|x€eAandxeB} or ANBNA.

(The notation A — B is also used for A\B.) Figure 35.5b shows a Venn diagram
for A\B.

Fig. 35.5 Venn diagram for the difference Fig. 35.6
A\B (shaded).

Ex:
she
(a)
(d)
Th
(A
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Example 35.3  Using Fig. 35.6 as the Venn diagram of two sets A and B, mark by
shading the following sets:

(a) AUB,(b) ANB, (c) AnB,(d) AUB, (¢) AUB, (f) AnB.

Venn diagrams of the sets are shown in Fig. 35.7.

SINVHODVIA NNIA  €°G¢

Fig. 35.7

Examples 35.3c, e and 35.3d confirm de Morgan’s laws, which are

De Morgan’s laws
AUB=ANB, ANnB=AUB. (35.6)

Example 35.4  Using Fig. 35.8 as the Venn diagram of three sets A, B, and C,
shade the following sets:

(@) (ANB)UC, (b) (ANB)NC, () (ANB) N (ANC),

(d (AUB)UANC).

The required sets are shown in Fig. 35.9. (Figs. 35.9b, ¢ confirm that
(ANB)NC=(ANB) N (ANC).) ”
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Example 35.4 continued

35 SETS

AN

Fig. 35.8

(@) AnB)LC (b) AnB)nC

() AnB N(ANnC) (d) (AuB)U(ANC)

Fig. 35.9

Example 35.5 Show that (AN B) U (AN B)=A.

By the distributive law (35.4),
(ANB)U(ANB)=AN (BUB)
=ANU (bythe complementary law)
=A (by the identity law).
This can be confirmed graphically by drawing a Venn diagram.

H‘




Example 35.6 Show that (A U B) U (A\B)=A U B.

From Fig. 35.5, we can observe that A\B= A N B. Hence

(AUB)U(A\B)=(AUB)U (AN B)
=AU (BU(ANB)) (associative law)
=AU ((BUA) N (BUB)) (distributive law)
=AU ((BUA)NU)
=AU (BUA) (identity law)
=(BUA)UA (commutative law)
=BUAUA)=BUA
=AUB.

Alternatively, and more intuitively, we may notice that, since A\B is a subset of A, it is
therefore also a subset of A U B, and so adds nothing to A U B when united with it.

Example 35.7  In a manufacturing process, a product passes through three
production stages and is given a quality check at all three stages, which it either
passes or fails. Let P, represent the set of products passing the quality check at
stage i. Draw a Venn diagram of the process. Interpret the quality failures of
the products in the sets given by P,, P)\(P, U P;), and (P, U P,) N P;. What set
represents the completely satisfactory products?

A production run of 1000 occurs, of which 8 fail all stages, 20 pass only stage
Py, 31 only stage P,, and 17 only stage P;; 814 pass stages P, and P,, 902 stages P,
and Py, and 800 stages P; and P,. Determine the final number which pass all
quality checks.

P, represents all products which fail the P, quality check.

P,\(P; U Py) represents those products which pass only P, stage.

(P; U P,) N P; represents those products which are satisfactory at stages P, and P, or P,.
The set P, ™ P, M Py represents those products which are satisfactory at all stages.

The numbers associated with each subset of the universal set U are shown in Fig. 35.10.

Since 8 fail all quality checks, then the number of elements in P, U (P, U P;) is 992. In
the figure, & represents the number of products which pass all the quality checks. Hence
800 — &, for example, represents those products which are satisfactory in stages P, and
Py, but fail in P;. Thus P, U P, U P, contains

Fig. 35.10
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Example 35.7 continued

992 =20+ 31+ 17 + (814 — k) + (902 — k) + (800 — k) + k
products. Hence 992 = 2584 — 2k, and so
k=796.
Of the 1000 products manufactured, 796 passed all the quality checks.

In the previous Example, we are really interested in the numbers of elements
in each of the sets. For example, the number of elements in U is 1000 and the
number of elements in P\(P, U P;), those products which pass only stage 2, is 31.
We write

n(U)=1000,  n[P\(P,UP,)]=31.

The number of elements in the set S is n(S): this number is known as the car-
dinality of S. Many sets can have infinite cardinality. For example, n(Q), where
Q is the set of rational numbers, is an infinite number. We write n(Q) = co. The
empty set & has no elements: hence n(J) =0.

The following results apply to finite sets. If two finite sets A and B are disjoint,
then they have no elements in common. It follows that

n(A U B)=n(A) +n(B).

This result applies to any number of disjoint sets. It is clear that they must be
disjoint, since otherwise elements would be counted more than once.

This last result is also a useful method of counting elements when combined
with a Venn diagram. Consider just two sets A and B as shown in Fig. 35.11. The
sets representing each of the subsets in the Venn diagram A\B, AN B, and B\ A are
shown in Fig. 35.11. Since these sets are disjoint, then we can obtain a formula for
the number of elements in the union of A and B, namely

n(A U B)=n(A\B) +n(A N B) + n(B\ A). (35.7)
For sets A and B separately,
n(A) =n(A\B) +n(A N B), n(B) =n(B\A) + n(A N B). (35.8)

Elimination of n(A\B) and n(B\A) between (35.7) and (35.8) leads to the altern-
ative result

n(A U B)=n(A) +n(B) —n(A N B).

Fig. 35.11 Counting elements in
the union of two sets.




For three finite sets A, B, and C the corresponding result is

n(AuBUC)=n(A)+n(B)+n(C)+n(ANBNC)—nBNC)
—n(CNA)—-n(ANB).

This result can be constructed from the Venn diagram.
Further discussion of sets and their algebra can be found in Garnier and

Taylor (1991).

Self-test 35.3

In Fig. 35.8, shade
@ AN(BNC); (b) AUB;

(c) (AuC)N(BUC).

Problems

35.1 (Section 35.1). List the elements in the

following sets:

(a) S={x|xeN'and3 < x < 10};

b) S={x|xeNtand -2 < x < 4};

c) S={x|xeZand -2 < x <4};

d) S={x|xeNtorN-,and -2 < x <4},

e) S={l/x|xeNrand3 < x <8},

f) S={x*|xeN*rand|x|=<3};

g) S={x+iy|xeNrLyeN,1=<x=<4,
2=sy=35}.

= L

(a) A={x|xeR,and 2 < x <1},
B={x|xeR,and -1 <x <2};

(b) A={x|xeNrand -5 < x <2},
B={x|xeR,and -5 < x <2};

(c) A={n|n=1/mand me N},
B={n|n=1/m?and m e N*};

(d) A={x|xeRand x*-3x+2=0},
B={x|x € Rand 2x*+x-3=0};

() A={x|xeRand|x|=<2},
B={x|xeRand|x—-1]<1}.

35.2 (Section 35.3). Show on Venn diagrams the 35.5 (Section 35.3). Construct a set formula for

following_ sets:
(a) AUB; (b) AnB;
ANn(BUC); (d) (AnB) U (BNC);

)
) AnB;
)

of each of the following pairs of sets A and B:

(@) A={x|xeRand -1 = x <2},
B={x|xeRand -1 < x <4}

(b) A={x|xeRand-1<x <0},
B={x|xeRand 0 < x < 1};

() A={1,2,3,4},B={-4,-3,-2,-1};

(d) A={yly=cosx,x € R,and 0 < x < in},

XN

| . ‘T.‘
35.3 (Section 35.2). Determine the union A U B

the shaded sets of Fig. 35.12:

(a)

35.4 (Section 35.2). Determine the intersections

A N B of the following sets:

Fig. 35.12

SIN31904d
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Fig. 35.12 (continued)

35.6 The set S consists of products, each of which
is given # pass/fail tests, numbered 1 to n. The set
S, , consists of those products that pass test 7. What
is the set of products that

(a) failsall tests, (b) fails only test 1,

(c) fails some tests?

35.7 At Keele University, all first-year students
must take three subjects of which at least one must
be a science subject, and at least one must be a
humanities or social science subject. Let A be the
set of all first-year students in a given year, A,

the set of students who take exactly one science
subject, B, the set of students who take just one
humanities subject, and B, the set of those who
take two social science subjects. Draw a Venn
diagram to represent the different sets of students
classified by groups of subjects. Give set formulae
for students who take

(a) just one social science subject,

(b) no humanities subject,

(c) one subject from each group.

35.8 (Section 35.3). The rules listed in (35.4)
illustrate the duality principle which states that
every statement involving sets which is true for all
sets has a dual in which U and N are interchanged,
and @ and U are interchanged everywhere.

Use Venn diagrams to establish the following:
(a) (A\B)"C=(AN C)\B;
(b) An(BUC)=(ANB)U(ANC).
What are their dual identities?

35.9 Three sets A, B, and C satisfy

ANBAC=(ANC)U(BNC).

Explain why the duality principle of Problem 34.8
does not apply. What condition of the duality
principle is violated?

35.10 The cartesian product of two sets A and B is
the set of all ordered pairs {(a, b)}, where a € A and
b € B. It is written as

AXB={(a,b)lae Aand b € B}.

If A=B, then we write AX A=A% Let A= {1,2}
and B= {1, 2, 3}; write down all the elements in
the sets A X B, Bx A, A%, and B~

35.11 The cartesian product extends to the
products of three or more sets. Thus

AXBXC={(a,b,c)|ac AandbeBandce C}.

Let A={1,2,3},B={0,1},and C= {1, 2}. Write
down all the elements in

AXBXC,A*’xC,(AUB)XC,(AnB)xC.

35.12 At the end of a production process, 500
electrical components pass through three quality
checks P, O, and R. It is found that 38 components
fail check P, 29 fail O, 30 fail R, 7 fail Pand Q, 5
fail O and R, 8 fail R and P, and 3 fail all checks.
Determine how many components:

(a) pass all checks,

(b) fail just one check,

(c) fail just two checks.

35.13 (Section 35.4). For three finite sets A, B, and
C, show that the number of elements in the union
of the sets is given by

n(A U BUC)=n(A) +n(B) +n(C)
+n(ANBNC)-n(BNC)
—n(CAA)—n(ANB).

35.14 If A and B are two finite sets, explain why,
for the cartesian product (defined in Problem 35.10
above),

n(A X B) =n(A)n(B).

35.15 The menu in a restaurant contains three
courses: 4 starters (set A), 5 main courses (set B),
and 3 sweets (set C). Customers can choose either
the full menu or, alternatively, a main course and a
sweet. In terms of cartesian products what is the set
of all possible meals (the answer is really a sef of
pairs and triples). For how many different orders
can customers ask?

35.16 Given A={1,2,3},B={3,4},and C= {2, 3,
4, 5}, find the elements in the sets BU C, BN C, and
the cartesian products A X B and A X C. Verify that

AX((BUC)=(AXB)U (AxC),
AX (BN C)=(AXB) N (AxC).

(This example suggests general results which are
true for all sets.)
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We are now going to present some new operations between special entities. They
have analogies with ordinary addition and multiplication, and the symbols for
them will be similar; but not the same, since we need to emphasize that these are
Boolean operations. The algebra involved is named after George Boole (1815—
64) who first developed the modern ideas of symbolic logic. Boolean algebra has
applications in logic and switching circuits.

aws of Boolean algebra

Consider a set B which consists of just two elements 0 and 1, that is B= {0, 1}. We
shall denote the sum of two elements a and b of B by a @ b (the notations v, U,
and +, and the alternative term join are also used); we denote the product of the
two elements by a * b (the notations A, M, X, and -, or simply ab, and the alterna-
tive term meet are also in use) and the complement of @ by @ (~a and —a are used

in logic). These binary operations applied to the members of B are defined to give
the elements shown in Table 36.1.

Table 36.1 Binary operations

Sum Product Complement
ala

0f1
110
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Thus, for example
0®1=1, 1®1=1, 0+0=0, 1=1=1, 0=1, 1=0.

The elements of B are known as Boolean variables. We have restricted our set B
to one with just two elements or binary digits, because this is the main applica-
tion in circuits and computer design, but definitions can be interpreted for more
general sets. A Boolean algebra is a set with the operations @, *, and ~ defined on
it, together with the following laws on any elements 4, b, ¢ which belong to B:

Commutative laws:
a®b=b®a, a*b=b+*a;
Associative laws:
a®b®c)=a®b)Dc, as*brc)=(a*bh)*c
Distributive laws:
a*(b®c)=(a*b)® (axc),
a®brc)=a®b)* (a® ). (36.1)

In addition, the set must contain distinct identity elements 0 and 1 for the opera-
tions @ and * respectively. For these elements we must have the identity and com-
plement laws:

Identity laws:
a®0=a, axl=a
Complement laws:

a@a_=1, a+*a=0 (36.2)

To summarize, we can say that a Boolean algebra consists of the collection
(B,®,*,7,0,1),

in other words, a set B, the binary operations @ and *, the complement ~, and the
identity elements 0 and 1.

In our case B= {0, 1}, the binary set, which consists simply of identity elements.
We can check that the definitions in Table 36.1 satisfy the laws in (36.1). They are
essentially the laws of set operations with sum @ and product * replacing union U
and intersection N, and with 1 replacing the universal set U and 0 the empty set &.

Just as with sets, we can deduce further laws, some of which are included
in (36.3):

Absorption laws:
a®(a+b)=a, a*(a®
de Morgan’s laws:a @ b=a =+ b, arb=a®b;
Identity laws:
1©a=—a®1=1, O0*ta=a*0=0;
Reflexive law: a=a. (36.3)

=

:a;




Note that = takes precedence over ® in the absence of brackets. Thus, in the first
absorption law, 2 @ a * b means a ® (a » b); in the second absorption law, the
brackets are essential.

We will prove one of the absorption laws to illustrate how proofs are ap-
proached in Boolean algebra.

Example 36.1 Provethata® a=*b=a.

Foralla,b eB
a®a+b=a+1®axb (identity law)
=a*(1®b) (distributive law).
Now
1®b=(1®b)+1 (identity law)
=1+ (b@®1) (associative law)
=(b®b)»(b®1) (complement law)
=b®b+1 (distributive law)
=b®b (identity law)
=1 (complement law).
Finally

a®arb=g=1=a.

Logic gates and truth tables

Any expression made up from the elements of B and the operations @, =, and ~ is
known as a Boolean expression. For example,

a®b, a®b, a®a~b,

are Boolean expressions. For the binary set, the elements 1 and 0 can represent
‘on’ or ‘off’ states in digital circuits. The basic components in a computer are
logic gates which can produce an output from inputs. All the outputs and inputs
can be in one of two states, usually either low voltage (0) or high voltage (1).

The fundamental Boolean operations of @, *, and ~ correspond to devices
known respectively as the Or gate, AND gate, and NOT gate. As with circuit com-
ponents such as resistance and inductance, each has its own symbol.

The oR gate has two inputs and a single output represented by the symbol in
Fig. 36.1. The output is f = a @ b. The inputs a and b can each take either of the
values 0 or 1. Hence there are four possible inputs into the device as listed in
Table 36.2. The final column f can be completed using the sum rule in Table 36.1.
Then, if a is ‘on’ (1) and b is ‘off’ (0), the output fis ‘on’ (1). Table 36.2 is known
as the truth table of the or gate.
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PP

Table 36.2 Truth table for the or gate

a b f=a®b
0 0 0
0 1 1
Fig. 36.1 The or gate. 1 0 1
1 1 1

The symbol and truth table for the aND gate are shown in Fig. 36.2 and
Table 36.3. Again the device has two inputs and the single output f = a = b, the
product of a and b.

Table 36.3 Truth table for the AND gate

] o a b f=a+b

0
0
1

Fig. 36.2 The AND gate.

==
= O = O

Finally the NoT gate is shown in Fig. 36.3 with its truth table given as
Table 36.4. The NOT gate has a single input and a single output which is the com-
plement of its input.

Table 36.4 Truth table for the NOT gate

>o0—— a f=a

Fig. 36.3 The NoT gate.

There is further jargon associated with these gates. The output a @ b is known
as the disjunction of @ and b, while a * b is known as the conjunction of @ and b,
and 4 is called the negation of a.

These devices can be connected in series and parallel to create new logic
devices, each of which will have its own truth table.

A series connection between a NOT gate and an AND gate is shown in Fig. 36.4a.
The output a * b of the AND gate becomes the input of the NOT gate which results
in the output @ * b. This combined device is known as the NAND gate, and it has
its own symbolic representation shown in Fig. 36.4b. Its truth table is given in
Table 36.5.




Table 36.5 Truth table for the NaND gate

a b f=a=*b
0 0 1
0 1 1
1 0 1
1 1 0

Fig. 36.4 The NAND gate.

A series connection between a NOT gate and an OR gate produces the NOR gate
as shown in Fig. 36.5a. The output f is the complement of the sum of @ and b. The
NOR gate also has its own symbol contraction shown in Fig. 36.5b. It has the truth
table shown in Table 36.6.

Table 36.6 Truth table for the NOR gate

a b f=a®b
0 0 1
0 1 0
1 0 0
1 1 0

Fig. 36.5 The NoOR gate.

Self-test 36.1

The output of an AnD gate (Fig. 36.2) is attached to a NoT gate (Fig. 36.3).
Construct the truth table for the system.

The five gates introduced in the previous section can be linked in series and
parallel combinations to create further logic networks. Some examples are
presented here.

Example 36.2 Construct the Boolean expression for the output f of the device
shown in Fig. 36.6.

Starting from the left in Fig. 36.6, the upper AND gate produces an output 4 * b and the
lower OR gate has an output ¢ @ d. These become the inputs into the Or gate on the
right. Hence the final output is ~
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36 BOOLEAN ALGEBRA: LOGIC GATES AND SWITCHING FUNCTIONS

Example 36.2 continued

Fig. 36.6

f=(a*b)®c®d.

Since there are four inputs, the output f can be determined for each of the 2*=16
possible inputs. Hence if, for example,a=1,5=0, c=0, d =1, then the output f=1.

Example 36.3  Figure 36.7 shows a logical network with three inputs a, b, ¢, and
four devices. Find a Boolean expression for the output f. Write down the truth
table for the system.

B>
. ‘:D* Fig. 36.7

Note that the input b is the same in both devices P and Q. The output from the AND gate
Pis a = b, and the output from R is @ * b. The output from Q is b @ c. Hence the inputs
a*band b ® cinto S produce an output

f=a*b®b®ec.

The truth table for this network is given in Table 36.7. Whatever the inputs, the device
is always ‘on’.

Table 36.7
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Example 36.4 Show that, using just the NOR gate, it is possible to build a logic
network to model any Boolean expression.

Given inputs 2 and b, we have to show that devices can be constructed using just NOR
gates with outputs of @ ® b, a * b, and 4. For inputs of @ and b, the single NOR gate
generates an output of a ® b. Figure 36.8 shows three devices which simulate the
required outputs.

(a) a®b a@®b®a®b=a®b
b

(b) E) : i®a=a
a
/“{Dorrj.—l
b®b=0>b

Fig. 36.8 The simulations are: (a) OR gate; (b) AND gate (c) NOT gate.

Example 36.5 Design a logic network using OR, AND, and NOT gates to
reproduce the Boolean expression f=a* b @ a for inputs a and b.

From input b we obtain b by a NoT gate. The inputs @ and b are then fed into an AND
gate to produce a * b. Finally a spur from the a input and the 4 » b output are fed into
an OR gate as shown in Fig. 36.9.

Fig. 36.9

Self-test 36.2

An AND gate with inputs @ and b, and a NOT gate with input ¢ are connected
to a NOR gate. Find a Boolean expression for the output £, and construct a
truth table for the system.
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' The inverse truth-table problem

In this problem we attempt the inverse problem; of creating a Boolean expression
for a given truth table. For example, Table 36.8 is a truth table for two inputs a
and b. We illustrate a method for the construction of a Boolean expression which
will generate this truth table. Pick out cases for which f=1. For the case a=0,b=1,
write down 4 * b, and for a = 1, b = 0 write down a * b, using in the products,
the complement of any zero element. Thus, for example, if a =0 and b =1, then
d=1and d+b=1.Similarly a * b= 1. Hence by Table 36.3

arb®arb=1

Table 36.8 Truth table for EXOR gate

a b f
0 0 0
0 1 1
Fig. 36.10 The exclusive-or gate. 1 0 1
1 1 0

for these cases. f remains zero for the remaining outputs. We obtain
f=a+b®axb, (36.4)

and the final output f can be checked.

This particular gate is known as the exclusive-or gate, or EXOR gate, and has
its own symbol shown in Fig. 36.10. This form of f obtained by the construction
just described is known as the disjunctive normal form. By the definitions in
Table 36.1, the construction guarantees a Boolean expression for any truth table.

Applied to the truth table for the or gate (Table 36.2), the disjunctive form gives

f=a®b)®a®b)® a®b),

which is evidently a more complicated version of a @ b.
The method can be applied to more complex truth tables. Table 36.9 shows an
output for three inputs. The output 1 appears in rows 2,4, 5,7, 8. Inrow 2,a=0,

Table 36.9
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b=0and c=1. Hence we introduce @ * b * ¢ which equals 1. Apply the same pro-
cedure to rows 4, 5, 7, 8 introducing the complement for zero Boolean variables.
The disjunctive normal form for a corresponding Boolean expression is, follow-
ing the rules for products of elements and their complements,

f=arbrc®arb+c@®axb*c®arb+c@®axbxc.

Check that f does give the required output. The disjunctive normal form always
guarantees an answer, but it is not necessarily the simplest or most efficient in
circuit architecture.

/ Self-test 36.3 \

Construct a Boolean expression for the truth table

a b a+b
0 0 1
0 1 1
1 0 1
1 1 0

using the disjunctive normal form. Compare the answer with the answer of

@lf—test 36.2. /

Switching circuits

A circuit of on—off switches can also be represented by Boolean expressions. For
example, Fig. 36.11 shows a simple on—off switch in part of a circuit. Current
flows if the switch S is in the o7 or closed position (2= 1), and does not flow if the
switch is in the off or open position (a = 0). The variable a represents the state of
the switch.

a Fig. 36.11 On—off switch.

Consider two switches S; and S, in series (Fig. 36.12). Current only flows if both
switches are closed, that is when @, = 1 and a, = 1, where 4, and 4, represent the
states of the switches. Hence the truth table for the series switches is as shown in
Table 36.10. Thus the state of current flow is given by f = a * b, the product of
aand b.

Similarly two switches in parallel (Fig. 36.13) correspond to the sum of g and b.
The truth table is given in Table 36.11. The final column indicates that f=a @ b.

The complement of a, the state of switch S, is another switch S, in the circuit
which is always in the complementary state to S,, off when S, is on and vice versa.
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Table 36.10  Truth table for two switches

[72] in series

5

= 5 A 5 A a b f
&) o—>—

= a b 0 0 0
L.

0] Fig. 36.12 Two switches in series. 0 1 0
=z 1 0 0
5 1 1 1
=

=
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% Table 36.11  Truth table for two switches
< in parallel

i .

:: a b f
8 . 0 0 0
g s 0 1 1
- Fig. 36.13 Two switches in parallel. 1 0 1
<

o 1 1 1
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Fig. 36.14 Complement of a
switch using a rigid tie.

It can be represented symbolically by Fig. 36.14, in which the switches S, and S,
are joined by a rigid tie.

These devices are analogous to the gates of Section 36.3. For switching circuits,
the Boolean expressions are often referred to as switching functions.

Example 36.6 Find a switching function f for the system shown in Fig. 36.15.

Y
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Example 36.6 continued

Let a,, a,, a;, a, represent respectively the states of each switch S,, S,, S5, S,. Since S, and
S; are in parallel, their output will be a, ® a;. This combined in series with a, will give
an output of (a, ® a,) * a,. In turn, this is in parallel with S,. Hence, the final output is

(a, D a5) * a, D a,.

Example 36.7 A light on a staircase is controlled by two switches S, and S,, one
at the bottom of the stairs and one at the top. Switches can be separately ‘up’ or
‘down’. If both switches are up, the light is off. Either switch changed to down
switches the light on, and any subsequent change to a switch alters the state of
the light. Design a truth table for the circuit.

The truth table is shown in Table 36.12, where the state of S, (i =1, 2) is @,= 0 when the
switch is up (off) and @;=1 when the switch is down (on). The light on is f=1, and

the light off is /= 0. This truth table is the same as that for the exclusive-or gate in
Section 36.4. Hence, from (36.4), the circuit can be represented by the switching
function

f=a,%a,®a, *a,.
The actual circuit is shown in Fig. 36.16, where S, and S, are one-pole two-way switches.

At S, the state a, represents the switch ‘up’ and its complement 4, is the switch down.
A similar state operates at S,.

Table 36.12
Switch S, Switch S, Light a, a, f
up up off 0 0 0
down up on 1 0 1
down down off 1 1 0
up down on 0 1 1
AC
@ supply
@ Fig. 36.16 Two-switch light

Light control.

Further explanation of Boolean algebra with many applications to switching
circuits can be found in Garnier and Taylor (1991).
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36 BOOLEAN ALGEBRA: LOGIC GATES AND SWITCHING FUNCTIONS

Problems

36.1 Read through Example 36.1. Now prove the
other absorption law:

ar*a®b=a.

(Example 36.1 and this result illustrate the duality
principle, which states that any theorem which
can be proved in Boolean algebra implies another
theorem with = and @ interchanged for the same
elements.)

36.2 (Section 36.1). Prove the de Morgan result
a®b=axb,

by showing that (a ® b) @ (@ = b) = 1. Explain how
the duality result (Problem 36.1) gives the other de
Morgan theorem.

36.3 (Section 36.1). Let B be the Boolean algebra
with the two elements 0 and 1. For arbitrary

a,b € B, prove the following;:

(@) a=(@®b)=a=b;
(b) @®b)* (a@b)=a;
(c) (@a®b)=a=b=0.

36.4 (Section 36.1). Using the laws of Boolean
algebra for the set with two elements 0 and 1,
show that:

() arb®axb=u

b) a®axbrc=a®b+c.

Use the result to obtain the truth tables in each case.

36.5 (Section 36.4). In Problem 36.4b, it is
shown that
a®arbrc=a®b=c.

Design two sequences of gates which give the same
output for the inputs 4, b, and c. The resultant
gates are said to be logically equivalent.

36.6 (Section 36.4). Design a circuit of gates to
produce the output

(@®b)+(a®?).

Construct the truth table for this Boolean
expression.

36.7 (Section 36.1). Show that the Boolean
expressions (a® b) * (G® b) ®aand a® b are
equivalent.

36.8 (Section 36.1). Show that the following
Boolean expressions are equivalent:

(a) a®b; (b) a®@b=b.

36.9 (Section 36.3). Find a Boolean expression f
which corresponds to the truth table shown in
Table 36.13.

Table 36.13

a b ¢ /
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

36.10 (Section 36.3). Construct Boolean

expressions for the output fin the devices shown
in Figs 36.17a—d. Construct the truth tables in
each case.

(@)

Fig. 36.17
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Table 36.16

a b c f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

36.15 (Section 36.4). Find switching functions for
the switching circuits shown in Figs 36.19a,b.

(a) S A
O——

36.3). Reproduce the logic gate in
ust the NOR gate.

5"
¥

). Us:it:lg,t’hé disjunctive normal
lean expression f for the truth

ilar to that explained in
. Fig. 36.19

36.16 A lecture theatre has three entrances and the
lighting can be controlled from each entrance; that
is, it can be switched on or off independently. The
light is ‘on’ if the output fequals 1 and ‘off’ if f=0.
Leta,=1(i=1, 2, 3) when switch i is up, and let g,
=0 (i=1,2,3) when it is down. Construct a truth
table for the state of the lighting for all states of the
switches. Also specify a Boolean expression which
will control the lighting.
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A graphis a network or diagram composed of points, or nodes or vertices, joined
together by lines or edges, each of which has a vertex at each end. Figure 37.1
shows a graph which has four vertices {a, b, ¢, d} and six edges {ab, ab, ad, bd, bc,
cd}. Two vertices are not joined in this graph, namely a and ¢, while a and b are
joined by two edges. Generally, it is not the shape of the graph which is important;
it is usually the number and connection of the edges which is significant. The
terminology is unfortunate. Graphs in this context should not be confused with
curves generated by functions as in Chapter 1. ‘Networks’ might be a more
appropriate term but historical precedent is difficult to overturn. However the
context usually fixes the meaning.

c Fig. 37.1




Examples of graphs

Here are some practical examples of situations and objects which can be usefully
represented by graphs.

(i) Electrical circuits. Figure 37.2a shows an electrical circuit with three resistors
R, R,, and R;, an inductor L, and a voltage source V,. Each edge has just one
component, and the joins between components are the vertices (the term node is
frequently used in circuit theory) in the graph. Care has to be taken with the
definition of nodes (see Section 37.6): they are not necessarily where three or more
wires meet. This circuit has four vertices a, b, ¢, d, and it can be represented by the
graph in Fig. 37.2b if we are only interested in the links, not what they contain. The
presence of a line or edge between two nodes in the graph indicates that there is a
component between the nodes.

Wy

(b) d

Fig. 37.2

Figure 37.3 shows another circuit with six vertices in which the boxes indicate
electrical components. The wires joining c to f and b to e cross over each other.
In the design of printed circuits, it is useful to know whether the circuit can be
redrawn so that no wires cross. Such a graph, with no edges crossing, is known
as a planar graph. The graph in Fig. 37.2 is planar, but the graph of the circuit in
Fig. 37.3 has no planar drawing: at least two edges will cross in any plane diagram
of it. We shall discuss this notion in Section 37.8.

de 1 £

[l

Fig. 37.3

(ii) Chemical molecules. Molecular diagrams look like candidates for graphs. The
molecule of ethanol can be represented by Fig. 37.4a. In its graph representation
in Fig. 37.4b, the vertices represent atoms and the edges bonds. The number of

w
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37 GRAPH THEORY AND ITS APPLICATIONS

(a) H H (b)
Gadtag

| .

Fig. 37.4 Ethanol molecule.
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Fig. 87.5 (a) Traffic flow in a road grid, (b) Digraph representation of the roads in (a).

bonds which meet at an atom is the valency of the atom. Thus carbon (C) has
valency 4, oxygen (O) valency 2, and hydrogen (H) valency 1. Generally in graphs,
the number of edges that meet at a vertex is known as the degree of the vertex.

(iii) Road maps. Road maps and street plans are graphs with roads as edges and
junctions as vertices. However, most road networks include one-way streets.
Hence graphs need to be modified to indicate directions in which movement or
flow is permitted. Figure 37.5a shows a typical section of a street plan with some
one-way streets. We have to associate directions with the edges as shown in the
graph of the plan in Fig. 37.5b. Note that two-way streets now have two directed
edges associated with them. This is an example of a directed graph, which is also
known by the shortened term digraph.

(iv) Shortest paths. Figure 37.6 shows a digraph with weights associated with
each edge. The graph could represent routes between towns S and F which pass

Fig. 37.6




through intermediate towns A, B, ... , the weights associated with each directed
edge could stand for distances or times. This graph is shown as a digraph, but
weights could be present without directions in some cases. We might be interested
in this example in the shortest distance between the start (S) and the finish (F).

Definitions and properties of graphs

As we have seen, a graph is an object composed of vertices and edges with one
vertex at each end of every edge. An edge which joins a vertex to itself is known
as a loop. If two or more edges join the same two vertices then they are known as
multiple edges. A graph with no loops or multiple edges is known as a simple
graph. A graph with loops and/or multiple edges is known as a multigraph.

A graph in which every vertex can be reached from every other vertex along
a succession of edges is said to be connected. Otherwise the graph is said to be
disconnected. A connected graph is in one piece; a disconnected graph is in two
or more pieces.

The degree of a vertex x is the number of edges that meet there, denoted by
deg(x). If, in a graph G, all the vertices have the same degree 7, then G is said to be
regular of degree 7.

Example 37.1  Find the degree of the vertices in the graph in Fig. 37.1.

Three edges meet at the vertex a. Hence deg(a) = 3. Four edges meet at b. Hence
deg(b) =4. Similarly, deg(c) =2 and deg(d) = 3.

A simple graph in which every vertex is joined to every other vertex by just one
edge is called a complete graph (see also Section 37.8).
Figure 37.7 shows some examples of the various graphs described above.

Multiple

AN T o@

€

©) (d) (e)

Fig. 37.7 (a) Connected simple graph. (b) Connected multigraph. (c) Disconnected multigraph.
(d) Regular graph of degree 3. (¢) Complete graph with five vertices: deg(a) = 4.
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37 GRAPH THEORY AND ITS APPLICATIONS

Since every edge has a vertex at each end, it follows that the sum of all the vertex
degrees equals twice the number of edges. This is known as the handshaking
lemma. For example, from Example 37.1,

deg(a) + deg(b) + deg(c) + deg(d) =3 +4+2+3=12,

which is twice the number of edges in the graph shown in Fig. 37.1.
There are two immediate consequences of the handshaking lemma:

(i) the sum of all the vertex degrees in a graph is an even number;

(ii) the number of vertices of odd degree is even.

Self-test 37.1

List the degrees of each vertex, as an increasing sequence, for each graph
in Fig. 37.7.

. How many simple graphs are there?

Graphs can be described as labelled, in which case the vertices are distinguishable
as in Fig. 37.8a or unlabelled as in Fig. 37.8b. If we look at graphs with just three
vertices, there are eight labelled simple graphs as shown in Fig. 37.9, but there are
just four distinct unlabelled graphs as shown in Fig. 37.10. In Fig. 37.9, the three
labelled graphs with one edge will correspond to the one unlabelled graph in
Fig. 37.10.

The number of labelled simple graphs with # vertices is fairly easy to calculate.
Between any two vertices, there is the possibility of an edge. Any vertex can be
joined to 7 — 1 other vertices. Since this will duplicate edges, there will be 372(n— 1)
possible edges. Each edge may be either present or not. Hence the number of
possible combinations of present and absent edges will be 22", which is the
number of labelled graphs (this number increases extremely rapidly, with #).
Thus there must be 224" = 26 = 64 labelled graphs with four vertices; of these,

Fig. 37.8
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a a

° ° /
° ° [ 3 ° \ ®
c c b c

a 1
c b c

b c b c b

Fig. 37.9 Labelled graphs with three vertices.

.

Fig. 37.10 Unlabelled graphs with three vertices.

ANE%

Fig. 37.11 All unlabelled graphs with four vertices.

11 can be identified as unlabelled graphs. The latter graphs are shown in Fig. 37.11.
Of the 11 unlabelled graphs it can be seen that six are connected and four are
regular.

For applications involving electrical circuits, the main interest is in connected
graphs. The numbers of the various categories of graphs up to n =7 vertices are

819
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37 GRAPH THEORY AND ITS APPLICATIONS

Table 37.1

n 1 2 3 -+ 5 6 7
Labelled graphs 1 2 8 64 1024 32768 2097 152
Unlabelled graphs 1 2 4 11 34 156 1044
Connected graphs 1 1 2 6 21 112 853
Regular graphs 1 2 2 3 8 6

given in Table 37.1. It can be seen from the table that the number of unlabelled
graphs is a considerable reduction on the labelled set, and that regular graphs
are comparatively rare. The counting of unlabelled graphs does not follow from a
simple formula.

Self-test 37.2

List all unlabelled simple graphs with five vertices. Indicate which graphs
are connected, and which are regular. What are the degrees of the regular
graphs?

Paths and cycles

Suppose we follow a succession of connected edges between two vertices a and z
in a graph, along which there may be repeated edges and vertices. This is known
as a walk between a and z. If all the edges walked are different (i.e. no edge is
covered more than once but vertices may be visited more than once), then the walk
defines what is known as a trail. A trail is said to be closed if the first and last
vertices are the same. If all the vertices on a trail are different, except possibly the
end pair, then the succession defines a path. A closed path is known as a cycle. For
example, in Fig. 37.12, a—f-b—c—d is a path between a and d, but a—b—f—e—b—c—d
is only a trail since vertex b is passed through twice. Also, a—b—c—d—e—f-ais an
example of a cycle.

a {
b </\ |
c d Fig. 37.12




Example 37.2  Electrical circuits are usually such that every edge of their
representative graph is part of a cycle. List all the distinct cycles in the graph
in Fig. 37 2a.

The graph of the circuit is repeated in Fig. 37.13. The complete list of cycles is:
3-edge cycles: a—b-c-a, a—-b-d-a, a-d-c-a, b-d-c-b;
4-edge cycles: a—b—d—c—a, a—d-b—c-a, a-b—c—d-a.

Fig. 37.13 d
Fig. 37.14

Some graphs have special closed-path and cycle properties. A connected graph
G is said to be eulerian if there exists a closed trail that includes every edge in G.
A connected graph G is said to be hamiltonian if there exists a cycle that includes
every vertex in G. The graph in Fig. 37.13 is hamiltonian but not eulerian. One
hamiltonian cycle in its graph is a—b—d—c—a. Note that this cycle does not have to
cover every edge in the graph.

The graph in Fig. 37.14 is both eulerian and hamiltonian. An eulerian trail is

a—b—c—d—ef-gecgbf-a,
and a hamiltonian cycle is
a—b—c—d-e—g-f-a.

It can be shown that a connected graph is eulerian if and only if every vertex
has even degree. This provides an easy test for the eulerian property of a graph.

A connected graph which has no cycles is known as a tree. An example of a tree is
shown in Fig. 37.15. The edges in a tree are called branches.

Suppose that a graph G consists of the set V(G) of vertices and the set E(G) of
edges. Then any graph whose vertices and edges are subsets of V(G) and E(G)
respectively is called a subgraph. It is important to note that the subgraph must
be a graph whose vertices and edges come from G; and only edges that join two
vertices of the subgraph are permitted in the subset of E(G).

S33dl G'/¢€



37 GRAPH THEORY AND ITS APPLICATIONS

Fig. 37.15 Anexample of a tree.

Suppose that G is a connected graph.

A spanning tree of G is a subgraph of G which is a tree and includes all vertices
of G.

Figure 37.16a shows a connected graph G and Fig. 37.16b shows a spanning tree
of G. Graphs can have many different spanning trees. The set of edges that are not
part of the spanning tree (the broken edges in Fig. 37.16b) is known as the cotree
and its edges are called links.

Fig. 37.16 (a) Connected graph. (b) The same graph with a spanning tree.

Construct a tree from a vertex by adding edges. Fach edge added must introduce
a new vertex, since otherwise a cycle would be created and the graph would no
longer be a tree. A tree with two vertices has one edge, a tree with three vertices
has two edges and so on. Hence a tree with # vertices must have just n — 1
branches. It follows that a graph with # vertices must have a cotree with e —# + 1
links, where e is the number of edges of the graph.

We now introduce the cutset, by which we can disconnect a graph into two sub-
graphs which together contain all the original vertices, by removing a minimum
set of edges in the graph.

Cutset

In a connected graph, a cutset is a set of edges (a) whose removal disconnects
the graph into two subgraphs and (b) no proper subset of the cutset disconnects
the graph.




Fig. 37.17 A cutset of a graph.

A proper subset of the cutset is one which does not include the cutset. There must
be no redundancy in the cutset. Thus, for example in Fig. 37.17a, the broken line
C,, which removes the edges ba, bf, and bc, defines a cutset {ba, bf, bc}, since {b}
and {a, ¢, d, e, f} are disconnected subgraphs. C, in Fig. 37.17b does not define a
cutset, since the subset {ab, bf, bc} of edges disconnects the graph.

Self-test 37.3

(a) What are the degrees of the vertices in the spanning tree in Fig. 37.16(b)?
Design a spanning tree with vertex degrees {1, 1, 2, 2, 2}. (b) Indicate span-
ning trees of the graph in Fig. 37.14 with vertex degrees (i) {1,1,2,2,2,2,2},
GELa 1122 9

",Electrical circuits: the cutset method

In this section we give a brief description of the representation of circuits by
graphs, and show how Kirchhoff’s laws can be applied to cutsets of the resulting
graphs. Figure 37.18a shows a plan of a circuit with seven resistors, a voltage sup-
ply, and two capacitors. This particular circuit has 10 components and 10 edges.

. A
2 BB C D .
S .

< . = V 25
2R, R, 'O ZR=2R,

Fig. 37.18 A circuit and its graph.
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Note that A will be a vertex or node (a preferred term in circuits) but that the
joins B, C, and D are not separate nodes but can be coalesced into a single node.
The equivalent graph is shown in Fig. 37.18b: it has five nodes and 10 edges. Note
that it is a multigraph with two nodes joined by two edges and two nodes joined
by four edges.

A circuit loop in the circuit is a cycle in the graph.

Kirchhoff’s laws have already been stated in eqn (21.8), but for convenience they
are given again here in graph terms. They state (i) that the algebraic sum of the
voltages around any loop is zero, and (ii) that the algebraic sum of the currents
entering any node is zero.

In addition, for resistors we also have Ohm’s law which states that the voltage
across a resistor is directly proportional to the current flowing through it, that is

voci or v=Ri,

where the constant R is measured in units called ohms (Q). Figure 37.19 shows a
circuit with two independent maintained current sources 7y and iy: the symbol of
the circle enclosing an arrow represents a maintained current in the direction
of the arrow.

The corresponding six-node digraph with currents i,, 4, ... , iy in the directions
indicated is shown in Fig. 37.20. If any current turns out to be negative then its
direction will be opposite to that shown.

o
o

A

A

Fig. 37.19 Fig. 37.20

Now introduce nodal voltages v, 1, ... , vy as shown in Fig. 37.21. The use
of nodal voltages means that effectively Kirchhoff’s first law is automatically
satisfied. The earthing at e makes v, = 0 and other voltages can be measured rela-
tive to this zero ground potential.

This circuit has 13 unknowns: 8 currents and 5 nodal voltages. The problem
with circuits is the selection of the minimum number of consistent equations
from Kirchhoff’s laws and Ohm’s law sufficient to determine the unknowns.

The graph of this circuit is the same as that in Fig. 37.16a, and we shall use the
same spanning tree as shown in Fig. 37.16b. In this graph, the number of nodes 7 is
6, the number of edges e is 10. Hence the cotree has, from the previous section,
e—n+1=10-6+1=35 links. Any cutset of the original graphs which contains
one and only one branch of the spanning tree (the rest of the cutset consisting of
links) is known as a fundamental cutset of the circuit. Hence we can associate five
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Fig. 37.21 Fig. 37.22

fundamental cutsets with the spanning tree in Fig. 37.16b. Five possible cutsets
Cy, C,, ..., Csare shown in Fig. 37.22.

By repeated use of Kirchhoff’s second law to the nodes on one side of a cutset,
it follows that the algebraic sum of the currents crossing the cutset must be zero.
Hence the five cutset equations are:

Cyiy—iy+iy=0, (37.1)
Cyuiy—iy+ig+is+i,—ig=0, 37.2)
Cydi—i,+i,—ig=0, (37.3)
Cyig—is—i,+ig=0, (87.4)
Csiiy—ig=0. (37.5)

These equations must be independent since each one contains a current from a
branch of the spanning tree which does not appear in any other equation. Further
any non-fundamental cutset equation will be a linear combination of the five
fundamental cutset equations. The number of branches in the spanning tree
defines the number of independent equations.

We can also apply Ohm’s law to each resistor (note that current flows from
high to low potential). Thus the voltage difference across R, is v, — v, so that

iy=(v.—v,)/R;. (37.6)
Similarly
i, = (v—v.)/R,, (37.7)
iy= (v, — v7)/R,, (37.8)
iy= (= v,)/Ry, 87.9)
is=v /R, (37.10)
is=(—v,)/R, (37.11)
i=v,/R,, (37.12)
ig= (v;—v,)/Rs. (37.13)

We can now substitute for the currents from (37.6) to (37.13) into (37.1) to (37.5)
resulting in five linear equations to determine the nodal voltages v, v, v., v, 7 in
terms of the known currents iy and 7y. The remaining currents can then be
calculated from (37.6) to (37.13).
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Example 37.3  Using the cutset method, find all currents and nodal voltages in
the circuit shown in Fig. 37.23.

Fig. 37.23

The circuit can be represented by a graph with five nodes (Fig. 37.24) with the currents
iy 1y, I3, 14y is in the directions shown.

37 GRAPH THEORY AND ITS APPLICATIONS

Fig. 37.24 Fig. 37.25 Fundamental cutsets.

A spanning tree with three links is shown in Fig. 37.25 together with cutsets C;, C,,
C,, C,. Hence Kirchhoff’s second law implies:

Cyiy—i3+4,=0, (37.14)
Cyrix—i3+14,=0, (37.15)
Cyi—iy+is—i3+45,=0, (37.16)
Cy: —iy+ig+iy=0. (37.17)
With v, =0, the currents in terms of the nodal voltages v,, v, v, v; are, by Ohm’s law:
i1 = (U, — v,)/[R = 2(v,— v), (37.18)
h= (.= v)/Ry= 3.~ v,), (37.19)
i;=(v,— v))/Ry=v, — vy, (37.20)
iy= (v~ vg)IRy= (v, — vy), (37.21)
is=v,/Rs= 1v,. (37.22)
Eliminate the currents in (37.14) to (37.17) using (37.18) to (37.22):
20, — Ly, + v, + 1, =0, (37.23)
33— v=2, (37.24)
—~3tp+ s — =2, (37.25)
-ty +3y -3y =1 (37.26)
”~




Example 37.3 continued

Thesc are linear equations which can be solved using the methods of Chapter 12.
Computer algebra is also very useful in solving sets of equations of this type (see the
computer algebra applications for Chapter 12 in Chapter 42). The answers are

v,=5V, v, =4V, v.=4V, v;=2V.

Since v, = v, no current flows through the resistor on bc.

We can summarize the result for an earthed circuit which contains only resistors and
current sources. Suppose that the representative graph of the circuit contains #z nodes and
e edges of which f contain known current sources. The curcuit will have e — funknown
currents and 7 — 1 unknown nodal voltages giving e — f+ n — 1 unknowns in total. Its
spanning tree will have  — 1 edges which will lead to # — 1 fundamental cutset equations,
and Ohm’s law will apply to e — f resistors. Hence we shall always have a consistent set
of e — f+ n— 1 equations to find the unknowns.

This result can be extended to circuits with current sources, voltage sources (batteries),
and resistors. If the representative graph has # nodes and e edges of which f contain
current sources and s maintained voltage sources, then the number of unknown currents
will be e — f and the number of unknown nodal voltages will be # — 1 — s since the nodal
voltage difference across a battery will be known. Hence the number of unknowns is
e—f+n—1—s which will satisfy n — 1 cutset equations and e — f— s Ohm’s laws.

Signal-flow graphs

Figure 37.26 shows a block diagram of a negative-feedback control system. The
input into the system is P(s) and the output O(s). All operations are defined by their
transfer functions (see Section 25.4). The boxes represent devices or controllers.
The circle represents a sum operator, and the return sign on F(s) indicates positive
or negative feedback. The output signal O(s) is fed back into the input through
H(s), and it is a negative feedback which will reduce the output. In a later problem,
we shall consider a device with a positive feedback. Thus the input into G(s) is

A(s) =P(s) — F(s). (37.27)
The boxes each produce outputs given by the transfer functions

O(s) = G(s)A(s), (37.28)

F(s) =H(s)O(s). (37.29)

We wish to find Q(s) in terms of P(s), G(s), and H(s), from the equations (37.27)
to (37.29). Thus, from (37.28)

Fig. 37.26 Negative-feedback
control system.
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P(s) Gls) Ofs)
1+ G(s)H(s) el Fig. 37.27 Block-reduced diagram
for Fig. 37.26.
Hi(s) [«
.
Pls) o + Ofs)
Gi(s) Gs(s) > Gsls) >
Hyls) |«

Fig. 37.28 A multiple-feedback control system.

Hence the output transfer function is

G(s)

08 = T G oHE

P(s).
This is the closed-loop transfer function. The actual signal can be obtained by
finding the inverse Laplace transform for O(s). Hence the system is equivalent to
that shown in Fig. 37.27.

If the feedback reinforces the input signal it is called positive feedback.
Figure 37.28 shows a multiple-feedback control system with a positive and a
negative feedback. The output signal is given by

_ G1(8) G, (5) G5(s)
1= Gy(s)H,(s) + G4(s) G, (s) Gs(s)H, (s)

Qls) P(s), (37.30)
which can be obtained by the method of block-diagram reduction. For example,
the feedback through H, makes the system equivalent to that shown in Fig. 37.29.
We can now combine the series devices which reduce the system to the negative-
feedback control system considered at the beginning of this section. The details
are omitted here.

PO + o)
Gl | Tk > G >
Hy(s) |«

Fig. 37.29 First stage in the block reduction of the multiple-feedback control system.

This block-reduction method can get quite complicated for a complex feedback
system. Instead of using block reduction in this way, represent the system by a
weighted digraph as shown in Fig. 37.30, where the weights are the transfer
functions — except that the edges representing the input and output are assigned




Fig. 37.30 Signal-flow graph for the multiple-feedback control system shown in Fig. 37.28.

weight 1 since they carry no devices. Also the negative feedback is replaced by
—H,(s), to make sure that it reduces the input into G,(s). This is the signal-flow
graph of the system. Let the inputs into the nodes be x,, x,, x;, and x, as shown;
then, for the positive-feedback cycle,

x3=G,x,, x,=Gx, + Hx;.
(The argument (s) has now been dropped from the working.) Hence
_ GG

1-G,H,

X3

In other words, we can replace (a) by (b) in Fig. 37.31.

H,

G,G,
G, 1—GH,
by &——3»—@e
Xy X X3 X1 X3
G,
(a) (b)

Fig. 37.31

There are other rules, and a complete list now follows for the replacements for
subgraphs in the graph.
(a) Multiple edges. See Fig. 37.32. This follows since
x,=Gx;+ Hx, = (G + H)x,.

G
G+H
by e—> o
X1 Xy X1 Xy
H Fig. 37.32 Multiple edges.

(b) Edges in series. See Fig. 37.33. This follows since
x3=Hx,=H(Gx,) = HGx,.

H GH
>

X X X3 X4 %3 Fig. 37.33 Edges in series.

829
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(c) Cycles. See Fig. 37.34. This follows since
x;=Hx, and x,=Gx;+ Jx;.

Assume that HJ # 1; otherwise there is infinite gain.

H GH
G 1-HJ
by L e S ]
x5 x) Xy X %
J Fig. 37.34 Cycle.

(d) Loops. See Fig. 37.35. This follows since
x,=Gx,+ Hx,
with H # 1.
(e) Stems. See Fig. 37.36. This follows since
x, = Gxy, x;=Hx,=HGx,, x,=Jx,=JGx,.
Apply these rules to the successive reduction of the feedback system in Fig. 37.30.
The sequence of steps in the reduction of the signal-control graph to a single-edge

graph is shown in Fig. 37.37. The weight of the final edge agrees with the output in
eqn (37.38).

37 GRAPH THEORY AND ITS APPLICATIONS

Fig. 37.35 Loop. l rule (b)

GGGl - H.G)

P(s) $ O(s)
1 1
l rule (c)

Cll
Pl 1-HG,+GGGH, Qls)

PS 3> °
> et

1 l 1
G,G,G,

- H,G. GG GH

® Y o

Fig. 37.36 Stem.

Fig. 37.37 Successive steps in the
reduction of the signal-flow graph of
the control system shown in Fig. 37.28.




Essentially the operations in a signal-flow graph are those applied to a
weighted digraph as illustrated in the following example.

Example 37.4  Find the output—input relation in the signal-flow graph shown in
Fig. 37.38.

Applying rule (a) to the multiple edge, and rule (c) to the cycle, the graph is reduced
to Fig. 37.39. Apply the series rule to the divided edges to give Fig. 37.40. Finally the
multiple-edge and series rules give Fig. 37.41. Thus the output is given by
abd
= + he(g + f).
9= 1o T helg + 1)

In the actual control system a4, b, c, ... will be transfer functions.

ab

gt/

Fig. 37.38 Fig. 37.39
abd
1-bc i

1 an e
2 / 2 P ]__[7C+/Jz(g+f) q
e tile Fig. 37.41
Fig. 37.40

Self-test 37.4

Suppose that c is in the opposite direction in the signal-flow graph Fig. 37.38.
Find the new output—input relation.

Planar graphs

As we remarked in Section 37.1, planar graphs are important in circuit design
since planar circuits can be manufactured as a single board. A planar graph is
a graph that can be drawn with no edges crossing or meeting except at vertices.
The standard example of a simple application which cannot be represented by a
planar graph is the delivery of three services, water (W), gas (G), and electricity (E),
to three houses A, B, C (Fig. 37.42). This graph has no plane drawing. The reorgan-
ization of the graph in Fig. 37.43 shows the impossibility of this; if W and C are
connected last then this edge must cross cither AE or BG.

SHAVHD HVNV1d 8°.¢
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W G E
A B C
Fig. 37.42 Bipartite graph K; ;. Fig. 37.43

The graph in Fig. 37.42 is an example of a bipartite graph in which one set
of vertices may be connected to another set of vertices, but not to vertices in the
same set. If every vertex in one set is connected by one edge to every vertex in the
other set then it is called a complete bipartite graph. If the sets have 7 and n
vertices respectively, then the notation K, , denotes the complete bipartite graph.
Figure 37.42 shows the graph Kj; and this graph is not planar. Check that the
graphs K, , and K, ; are planar.

In planar graphs there is a relation between the numbers of vertices, edges, and
faces. In a plane drawing of a graph, the plane is divided into regions called faces.
One face is the region external to the graph. Figure 37.44 shows a planar graph
with five vertices and seven edges, and with four faces: A, B, C, and the external
face D.

A remarkable formula, due to Euler, links the numbers of vertices, edges, and
faces of a graph.

Theorem (Euler). Suppose that the graph G has a planar drawing, and let v be
the number of vertices, ¢ the number of edges, and f the number of faces of G.
Then

v—e+f=2.

Proof. For the graph G, define a spanning tree (see, for example, Fig. 37.45). The
spanning tree must have 7 vertices and # — 1 edges (see Section 37.5). It must also
have just one face. Since

n—n—-1+1=2,

Euler’s formula holds for the spanning tree. Successively replace the other edges
in the graph. Each time an extra edge is added, a face is divided and one extra face
is added. However, algebraically, this cancels the additional edge in the accumu-
lation to Euler’s formula for the spanning tree. Hence

v—e+f=2

for the reconstructed graph G.
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e d >

0

Fig. 37.44 A planar graph with Fig. 37.45 A graph with a spanning tree. %

fiver vertices, seven edges, and

four faces.

The complete graph with 7 vertices is denoted by K. Since every vertex is joined
to n — 1 vertices, K, has 3n(n — 1) edges. The graphs of K,, K, K,, and K; are
shown in Fig. 37.46. Of these graphs, K,, K, and K, are planar, but K; and all
succeeding complete graphs are not.

K,

Fig. 37.46 The complete graphs K, for n=2, 3, 4, 5.

The graphs K; ; and K are the keys to tests for planarity of graphs, and whether
it is possible to design, for example, a plane printedcircuit board to make the re-
quired connections between electronic components. It was proved by Kuratowski
in 1930 that every non-planar graph contains subgraphs which are either K; ; or
Ky, or K; ; or K with additional vertices on their edges.

Further discussion of graph theory with many applications can be found in the
introductory text by Wilson and Watkins (1990).

Self-test 37.5

(a) A regular dodecahedron has 12 faces (pentagons) and 30 edges. How
many vertices does it have?

(b) An icosahedron has 20 faces (triangles) and 12 vertices. How many edges
does it have?
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Further applications

Braced frameworks

Consider a frame which consists of four struts in the shape of a rectangle
(Fig. 37.47a) with pin joints at each corner. Without a diagonal tie the structure will
not support a vertical load, but will collapse into a parallelogram as shown in
Fig. 37.47b. The structure can be made rigid and load bearing by the insertion of
a diagonal strut as in Fig. 37.48.

Load

Fig. 37.47 Single unbraced
pin-jointed frame.

Fig. 37.48 Braced frame.

Consider now a pinjointed framework with m X #n rectangular frames with
some individual frames braced. How can we decide whether a particular frame-
work is braced, that is no part of it can be sheared? And if it is braced, how many
ties could be removed to leave a minimum bracing? The framework is similar to a
vertical section of scaffolding or a steel-framed building, although in both cases
the joins are bolted but can still need bracing to ensure rigidity.

Figure 37.49 shows a 5 X 6 framework with 11 braces as shown (braces can be
diagonal struts in either direction). Label the cell rows 7, ,, ..., 7; and the cell
columns ¢, ¢,, ..., ¢s as shown in Fig. 37.49. The framework will be represented
by a bipartite graph (see Section 37.8) with the cell rows and columns as vertices.
Arrange them in rows as shown in Fig. 37.50.

5! 163 73 74 s

PR

c1 < I 4 cs [

Fig. 37.50
Fig. 37.49 5 X6 framework.




If a particular rectangular cell is braced then the identifying row and column
vertices are joined by an edge. Thus the cell 7,¢, is braced so that an edge joins 7,
and ¢, in the bipartite graph. No edge joins 7, and ¢, since this cell is not braced.
The bipartite graph representing the framework is shown in Fig. 37.50. If the
graph is connected, then the framework is braced since the shearing of any cell or
group of cells is not then possible. The graph is connected in this case, and the
framework is braced. Can any braces be removed in such a way that the frame-
work is still braced? Any brace which is removed must not disconnect the graph.
If the graph contains a cycle (Section 37.4) then any edge removed from the cycle
will not disconnect the graph. This removal rule can be applied to each cycle in
the graph. If, at the end of this process, there are no cycles remaining and the
graph remains connected, then the framework is said to have a minimum bracing.
The framework graph in Fig. 37.50 contains just one cycle, namely r,¢, 7,csr,cor,¢,7;
(see Fig. 37.49). Any edge can be removed from this cycle leaving a minimum
bracing. The removal of any further edges will disconnect the graph.

If every cell is braced in a framework then the bipartite graph will be complete,
and the framework will be seriously overbraced. You might note that a complete
bipartite graph K,, , has mn edges but a minimum bracing for an 7 X n frame-
work has 7 + n — 1 edges: for example, if 7 = 5 and 1 = 6 then mn = 30 whilst
m+n—-1=10.

Figure 37.51 shows an unbraced 4 x 5 framework, its (disconnected) graph, and
the same framework sheared.

Fig. 37.51 An unbraced framework.

Phasing of traffic signals

Figure 37.52 shows a road junction with eight incoming lanes of traffic and a one-
way exit. Suppose that each lane can be controlled by its own individual signal.

One solution for traffic management would be to allow each lane to have a green
signal in sequence with the remaining all on red, but this would be inefficient
since obviously several lanes of traffic can move simultaneously without risk.
How can an efficient phasing of the signals be designed?

Label each incoming lane a, b, ¢, ..., b as shown, and let these be vertices of a
graph (Fig. 37.53). Starting, say, with 2 we decide which traffic lanes are compat-
ible with a; that is, which lanes can also have green lights simultaneously without
risk of a collision. Thus 2 and b are compatible, and we therefore join a and b by
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Fig. 37.52 Road junction. Fig. 37.53

an edge. Lanes a and ¢ are also compatible, and we therefore join @ and b by an
edge. Lanes a and ¢ are also compatible, but 2 and e are not, and so on. The graph
G in Fig. 37.53 shows which lanes are compatible, and is known as the compatibility
graph for this junction.

We now look for complete subgraphs (Section 37.8) in G. An edge is a complete
subgraph (K,), a triangle (K;) is a complete subgraph with three vertices, K, with
four vertices, and so on. We try to use the largest subgraphs in any covering of G,
that is a list of subgraphs which includes all vertices. In G, abcd, abdf, and abfg
are K, subgraphs, and there are a large number of triangles. For example, we can
cover G by the set of subgraphs

{abcd, abfg, def, fgh}.

Generally, we include as many large subgraphs as possible. In this list it is better
to use fgh rather than just gh: this could be chosen since f is included in other
subgraphs.

Suppose that the period of the traffic signal sequence is T seconds with each
lane having a green light for at least +T. There are four different traffic flows
represented by the subgraphs. Suppose that each subgraph list of lanes has a
green light for 2T. The green/red phasing sequence is shown in Table 37.2.

The actual phasing lane by lane is shown in Fig. 37.54 where the solid line
indicates the green light for a lane. For example, between T andiT,lanesa, b, e,
f are on green with the others on red.

Table 37.2

Subgraph
Time abcd abfg
03T green red
1T-1T red green
1T-3T red red

3T-T red red




—abed —— abfg ——def —— fgh —

i - -

f-=-=--
)7 ————————————— ey

Fig. 87.54 Traffic phasing.

~abed T abfg —def ——fgh—

o
. e -
C e = — e
d — - —_— -
¢ ———mm————— —_————
]( P
P =
Fig. 37.55

The total waiting time for the traffic at the junction is a measure of the effici-
ency of the timings and phases. Let Z,, ,, t,, ... be the waiting times of the lanes so
i hatt,=1T, t,=4T,t =3T H h 1

that, from Fig. 37.54, we can see that t,=3T,t,=5T,t.=5T, etc. Hence the tota

waiting time W is given by

Wr=t,+ty++t,=3T+ 3T+ 3T+ 5T+ 3T+ 1T + 1T + 3T =T,

Can the waiting time be reduced within the time constraints by choosing either
a different set of subgraphs to cover G, or a different sequence of timings?
Figure 37.55 shows the same choice of subgraphs but with different timings.
The result is a slightly shorter waiting time of ZT,

Problems

37.1 (Section 37.2). Write down the degree of each
vertex in the graph in Fig. 37.56.

Fig. 37.56

37.2 (Section 37.2). Draw the complete graph with
six vertices. How many edges does it have?

37.3 (Section 37.2). Sketch the 21 connected
unlabelled graphs with five vertices. How many of
them are planar?

37.4 Sketch the eight regular graphs with six
vertices. How many of them are connected?

37.5 The adjacency matrix of a graph G with
no loops is a vertex—vertex matrix, in which
the element in the ith row and jth column is 0
if vertices i and j are not joined by an edge,
and 7 if i and j are joined by r edges. Thus,

if we list the vertices a, b, ¢,d as 1, 2, 3, 4
respectively, then the adjacency matrix of

the graph in Fig. 37.1 is

0 2 0 1

2201 1
A_0101'
11 1.0

Note that the leading diagonal has zeros if there
are no loops. The adjacency matrix is a formula
for the graph.

Evaluate A%. What is the interpretation of the
matrix in terms of the edges of G?

837
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37.6 Draw the graphs defined by the following
adjacency matrices:

1

N N =T
P Y

ey e e
N = V)
= O = O

37.7 Write down the adjacency matrices of

the graphs in Fig. 37.7. Note that a single loop
introduces an element 1 into the appropriate
position on the leading diagonal. What
characterizes the matrix of a disconnected graph?

37.8 (Section 37.4). How many different cycles
pass through a single vertex in a complete graph
with four vertices?

37.9 (Section 37.4). List all trails between vertices
a and f in the graph shown in Fig. 37.57. Identify
which trails in the list are also paths.

37.10 (Section 37.4). Is the graph in Fig. 37.57
eulerian? If it is find an eulerian closed trail. Is it

hamiltonian?

37.11 (Section 37.5). Construct a spanning tree

for the graph shown in Fig. 37.57. Draw its cotree.

Show that there is a spanning tree in which no
vertex has degree more than two.

[

Fig. 37.57

37.12 Figure 37.58 shows a graph with seven
vertices.

(a) Decide whether the graph is eulerian.

(b) Construct a spanning tree for the graph.
How many branches does the tree have?

(c) Draw a cutset which disconnects the vertices
a, b, g, f from the vertices ¢, d, e.

o == o

41
%

d

Fig. 37.58

37.13 Figure 37.59 shows a digraph. How many
trails are there between a and e? Which of them
are also paths? Can you find a four-edge cycle?

Fig. 37.59

37.14 (Section 37.6). Figure 37.60 shows a circuit
with an independent current source 7,. Represent
the circuit by a graph. How many vertices does the
graph have?

Fig. 37.60

37.15 (Section 37.6). A circuit is represented by the
graph shown in Fig. 37.61. The current i, is from
an independent source, and all other edges contain
a resistor in which the current 7, passes through a
resistor R; and so on. Define a spanning tree for the




i (a) ix=1A {
i
= > 5] !
u m
o ®
- R,=3
§R1AZQ § i II'I_'I
R,=1Q
<
R-10Q iy=2A 2}
AN —
i,=2A )
R;=20 R,=1Q
Fig. 37.61

graph. How many fundamental cutsets are required?
Werite down the current equations associated with
each of the cutsets. If i; =2 A, a maintained current,
v, =0 (earthed),and R,=1Qfork=0,1,2,...,7,
find the remaining voltages v,, v, vy, v,.

37.16 (Section 37.6). Figures 37.62a,b show two
circuits with current sources and resistors. Use
the cutset method to find the modal voltages and
currents through the resistors.

37.17 Complete the block-reduction method
for the multi-feedback control system shown
in Fig. 37.28.

37.18 (Section 37.5). Figure 37.63 shows a
positive-feedback control system. If P(s) is the
system input, find its output Q(s), and the transfer
function of a single equivalent device.

37.19 (Section 37.7). Find the outputs in the
systems shown in Figs 37.64a,b by progressively
replacing parts of the system by equivalent devices
until just one device remains. Find the transfer Fig. 37.63
function of the resulting equivalent single device.

H,(s)

A

P(s) + Q(s)
G, (s) Gy(s) Gs(s)

Y
Y

(b)

Py _¢ Qs
Gyls) —>O+ Gyls) P> Gs(s)
+

H,(s)

=
=
A

Y
Y
Y

A

Hy(s) |

Fig. 37.64
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37 GRAPH THEORY AND ITS APPLICATIONS

Fig. 37.65

37.20 (Section 37.7). Reduce each of the signal-
flow graphs in Figs 37.65a,b,c,d to an equivalent
single edge, and (e) to a stem, and find the transfer
function in each case.

37.21 (Section 37.8). Label the edges, vertices, and
faces of the graphs shown in Figs 37.66a,b and
verify Euler’s formula.

Fig. 37.66

37.22 (Section 37.8). Show that the bipartite
graph K, ; has a planar representation.

37.23 (Section 37.8). The complete graph K; does
not have a plane drawing. What is the minimum
number of edge crossings in a plane representation
of the graph?

37.24 (Section 37.1). List all the paths between

S and T in the network given in Fig. 37.6, and
hence find the shortest and longest paths. (This
method of simply listing all paths can become very
extensive for larger networks: efficient algorithms
are really required to reduce the number of
calculations.)

37.25 (Section 37.9). Show that the framework
in Fig. 37.67 is overbraced. How many ties can
be removed to leave a minimum bracing?

Ll

L
ae

| DNz
e

Fig. 37.67

37.26 (Section 37.9). How many ties will be
needed to secure a minimum bracing for the
framework shown in Fig. 37.68? Draw in a
suitable set of ties for a minimum bracing.

37.27 (Section 37.9). Decide whether the
frameworks shown in Fig. 37.69 arc overbraced,
have a minimum bracing, or are not braced.

Fic

Fig




Fig. 37.68 %

(a)

,<b? 1

Fig. 37.69

37.28 (Section 37.9). The framework in Fig. 37.69¢
is required to be strengthened so that it is
overbraced with each diagonal tie as an edge in at
least one cycle in the associated bipartite graph.
What is the minimum number of ties which must

be added?

37.29 Figure 37.70 shows a junction with eight
distinct lanes of traffic each controlled by a
separate traffic signal. This is really a ‘design and
solve’ problem. Here is one model: of the doubtful
cases assume that lane a is compatible with both

c and e, and that e is compatible with /. Draw

the compatibility graph for this junction. List all
complete subgraphs with four and three vertices.
If the period of the traffic signal cycle is T and the
subgraphs

{abef, cdg, aeh}

are chosen with each allowed green for 17,
calculate the total waiting time. Suppose that
the subgraph abef runs for 3T and the others
for 1T each. How does this affect the total
waiting time?

ol

- --=-=-

Fig. 37.70
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In many applications, functions can only take discrete values — that is, they can-
not (for various reasons) take a continuous spectrum of values. It is reasonable to
model the temperature in a room by a function which varies continuously with
time — most of the calculus in this book is concerned with such functions. On the
other hand, the population size of a country can only take integer values. As
births and deaths occur, the population size is discontinuous in time, and the
graph of population size against time will be a step function. Between births and
deaths the population number will be constant so that we are only concerned
with changes which take place at these events. In this problem jumps occur at
variable time intervals.

We can obtain discrete data from a continuous signal or function by sampling
the signal at regular time steps rather than keeping a continuous record. This is
often the situation in microprocessor-driven operations.

The progress of events is often described in the form of equations linking several
successive events: so-called difference equations. The reader may notice analogies
between the solutions of these and the solutions of differential equations.

Discrete variables

Let us start by considering a simple financial application which generates discrete
values. In compound interest the sum of £F, is invested in an account to which
interest accrues annually at a compound rate of 1001%. If £P; is the amount in
the account at the end of the first year, then

P=(1+1)F,. (38.1)




Let £P, be the sum after # years. Then, similarly
P=(1+IDP,_,. (38.2)

This is an example of a difference equation or recurrence relation. It gives the
values of P, at the integer values 1, 2, ... in terms of the immediately preceding
value. Treating the variable as 7, the difference in this case is 1. The notation P(n)
instead of P, is often used to emphasize the function aspect of P but we have
chosen the more economical subscript form P,.

It is fairly easy to solve (38.2) by repeated application of the formula starting
with (38.1). Thus

P,=(1+1)P,= (1+1)P,
P,=(1+1)P,=(1+1)°P,
and so the formula
P,=(1+1)"P, (38.3)

holds at least for values of 7 up to 3. Suppose that (38.3) holds for # = k. Then
(38.2) implies that

P = (1+1)P,= (1 +1)*1P,.

So the same formula holds for P,,,. Hence, if the result is true for k then it is also
true for k + 1. Equation (38.1) confirms that it is true for k = 1. It follows sequen-
tially that it is true for n=2, n =3, and so on. (This method of proof is known as
induction.)

Example 38.1  £1000 is invested for S years at the following rates: (a) 5%
annually; (b) 5% calendar monthly; (b)s=% daily (ignoring leap years).
(¢) Calculate the final amount in the account in each case.
In each case the formula is
P,=(1+1)"PR,
with P, = 1000, but the I and # differ.
(a) This is the original problem with # =5 and I =0.05. Hence
P;=(140.05)° x 1000 =1.05° x 1000 = 1276.28
(in £, to the nearest penny).

(b) This account has 12 compounding periods each year, giving a total of 60 over the
5 years. Hence we require

60
0.05
Po=|1+—2]| x1000 =1283.36.
12
(c) For the daily rate, there are 365 x 5 = 1825 compounding periods. Thus we require

0 1825
Bos=|1+—=| x1000 = 1284.00.
365

There is a slight gain with increasing number of compounding periods.
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38 DIFFERENCE EQUATIONS

The following financial application of a loan repayment leads to a difference
equation.

The general mortgage problem is as follows. An amount £P is borrowed for a
period of N years, at an interest rate of 1% per annum (as a fraction I this is equi-
valent to £(i/100) per year per pound of debt). Repayment is made by N equal
payments £A, one at the end of every year, starting at the end of of the first year.
There are two constituents of each payment A. One part goes to pay the interest
on the debts that was carried during the previous year. The rest is used for capital
repayment to reduce future debt. Given P, N and I, we want to know the regular
annual repayment A required to exactly clear the debt at the end of year N. (There
are other mortgage models that are used which calculate interest daily or
monthly: the above method can be adapted by changing N to handle these cases.)

The nth payment A is made at the end of year n, after which the debt out-
standing is denoted by #,. The payment A comprises:

(interest owed on u,_, through year #) + (a capital repayment)
Therefore

A=Iu, +wu,,—u,) or wu,=—A+(1+Du,, (38.4)
wheren=1,2, ..., N, #,=P, and the constant A is to be chosen so that the final
payment clears the debt, that is u#, =0.

The difference equation can be solved by step-by-step employment of the
recurrence relation (38.4). In general

u,=—A+ PBu,, (we put 1+ 1= p, for brevity).

Start with #, =P, and calculate the sequence u, u,, 13, ... , uy:
u,=—A+ P,
u,=—A+Pu,=—A+ B(A+ BP)=-A(1+B) + B*P,
uy=—A+Pu,=—A+ B{-A(1+ ) + P} =—-A(1+ B+ B* + p*P,

and so on — the rule for subsequent terms of the sequence is clear. Use eqn (1.36)
to sum N terms of the emerging geometric series in 3; then

A(BN-1)

uy=—A(1+p+p*+ - +,BN*1)+/3NP=—Tﬁ:1—)—

+ BNP.

Using the condition uy = 0, we find that

_I(1+D)NP
T A+DN=1

Example 38.2 The sum of £50 000 is borrowed over 25 years to be repaid in
equal instalments, the interest on the outstanding balance in any year being 8%.
Find the annual repayments over the term of the loan.

In the notation above, P = £50 000, I =0.08, N = 25. Therefore the annual repayment to
the nearest penny is

_I(1+DNP 008 x 1.08% X 50 000

= = =£4683.94
1+nN-1 1.08% -1
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Example 38.2 continued

The total repayment over 25 years is
NA=25A=£117098.47.

The capital repayment included in A at the end of year 1 is only
uy—uy=A—IP=£683.94,

which indicates how interest payment predominates in the carly years of the mortgage.

_ Difference equations: general properties
Any equation of the form
Uy = [y thyy gy e s 10, ) (38.5)

(where 72 is an integer = 1) for consecutive sequence of integers 7, which may
or may not terminate, is known as a difference equation. The term discrete
dynamical system is also frequently used. Thus

u,=2u, | +2, (38.6)
u,=3u, | +2u,_,+n’, (38.7)
Uy =kt (1 — 1) (38.8)

are examples of difference equations.
The number 7 in (38.5) is known as the order of the difference equation: it is
the difference between the largest and smallest subscripts attached to , namely

n—(n—m)=m.

Thus (38.6) and (38.8) are first-order difference equations, while (38.7) is second-
order. The sequence of integers attached to u can be translated (i.e. any integer
can be added to the index #) without affecting the difference equation. The dif-
ference equation

un+2 = 3l'tn+l + zun + (7’1 + 2')29

is the same as (38.7): n has been replaced by # + 2 throughout, although the limits
on n change.

Given initial conditions, the successive terms are very easy to compute. For a
first-order difference equation, we can assume that u, is given, but it could be any
term, say #,, which is taken as the initial condition. Generally, our aim is to find a
sequence {u,} and a formula for u, for n = r which satisfies the difference equation.

The difference equation (38.8) (which is known as the logistic equation) with
k=2is

U1 = 2u,(1 - u,). (38.9)
Suppose that we put #,=1; then the sequence

3 15 255 65535
M="7s Uy="T7, U3=——, U=—T—,
512 131072

cey

8 C 32
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38 DIFFERENCE EQUATIONS

L 1 ! ! Fig. 38.1 Iterations of the sequence
a 3 4ty =2u,(1—u,) withuy= 4.

follows by successive substitution. This sequence of numbers is actually approach-
ing the value 1 as # increases. We can sketch the sequence by discrete values at
integer values of x in the usual cartesian axes. The series of dots in Fig. 38.1 is a
graphical representation of the sequence.

The implied limiting value of #, as n — o for this particular sequence suggests
that #, =1 is a constant solution of the difference equation (38.9), and this can be
confirmed. We can find all constant solutions by simply putting u, = u for all .
From (38.9), the constant solutions are given by

u=2u(l—u), or2u>—u=0,

which implies that # =0 and u =1 are solutions. These are also known as the fixed
points or equilibrium values of the difference equation.

Fixed points or equilibrium values

For any first-order difference equation u,,; = f(u,), its fixed points are given
by solutions of

u=fu). (38.10)

You might notice, by trial computation, that the solutions of (38.9) vary quan-
titatively with the initial value, u,. If 0 < 4, < 1, then u, appears to approach 5 as
n becomes large, but, if #, > 1 or ©, < 0, then u, becomes unbounded for large #.
We shall discuss the logistic equation further in Section 38.5.

For the second-order difference equations, the same process gives equilibrium
values. For example, if

un+2 _zun+1 + 4un = 65

then this equation has an equilibrium value obtained by putting u,,, = u,,, = u,=u,
so that

u—-2u+4u=6 or wu=2.

On the other hand, the second-order difference equation (38.7) has no equilib-
rium values since

u—=3u—-2u—n*=—4u—n?

can never be zero for constant # and all .




Self-test 38.1

(38.2) The sum of £100 000 is borrowed over a 25 year term at an annual
interest rate of 6.5%. Find the annual repayment assuming that the interest
rate remains the same throughout. At the end of 5 years, the interest rate is
increased to 7%. What should the annual repayments be increased to repay
the outstanding loan over the remaining 20 years?

First-order difference equations and the cobweb

An alternative method of representing solutions of difference equations graphic-
ally is the cobweb construction. Consider the first-order difference equation

1
un+l = f(un) = Eun + 1

The equation has a fixed point or equilibrium value where
u=3u+1 sothat u=2.

With this in view plot the lines y = x and y = 1x + 1 (Fig. 38.2) in the x,y plane.
These straight lines intersect at x =y =2, which corresponds to the fixed point.

Select an initial value, say, #,= %, and represent it by the point P, : (¢, 0) = (3, 0)
in the x,y plane. From the difference equation

1 1
w=lugt1=1-141=5,

We can represent this by the point P, : (4, u,) = (3, 3) in Fig. 38.2. Join P, to P, and
then to Q, : (u, u,) = (3, 3) on the line y=x. Now join Q, to P, = (u,, u,) = €, Yon
y=3x+ 1. Repeat the process by drawing lines between y=x and y = 1x+ 1 using
the same rules.

The usefulness of the method is that a graphical representation and inter-
pretation of the solutions can be achieved by simple line drawings as shown in
Fig. 38.2 and in the following example. It is particularly helpful for finding fixed
points and assessing their stability. The connected lines are known as cobwebs
for obvious reasons. We can observe that this difference equation has only one
fixed point at (2, 2), which is stable, since all cobwebs approach the point form
any initial point.

| Fig. 38.2
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38 DIFFERENCE EQUATIONS

For a general difference equation u,,, = f(1,), the cobweb construction takes
place between the straight line y = x and the curve y = f(x).

Example 38.3 Sketch a cobweb solution for
Up = _kun + ka

for (a) k = 1, (b) k = 3, (c) k=1, using the initial value u, = 5 in each case.

O

Fig. 38.3 Cobweb for Fig. 38.4 Cobweb for

1 1 . 3 - 3
Uy =—5U, +5 With uy=1. Uy =20, + 2 With uy=1.

Fig. 38.5 Cobweb for

- 3
Uy =4, + 1 withu,==.

y=x \P, y=-—x+1
X = N yox
NY=—5x+ = y=—x N
N\ . B
\P2 P, N Q,
0, \
(O]} N N Py
Qs Py N P, 0O, '\\\
- i'a‘\ )”\
Py 1 O Py 1

(a) Plot the lines y=x and y = —+x + 1. They intersect at the fixed point (3, $). Starting
from Py : (£, 0), the cobweb traces P,P,O,P,Q,P; ... in Fig. 38.3. Evidently it approaches the

fixed point as # — o, indicating stability.

(b) The lines are y=x and y = —3x + 3. The fixed point is at (2, 2), and the cobweb
path is P,P,Q,P,Q,; ... in Fig. 38.4. The path moves away from the fixed point implying

its instability.

(c) The lines are y=x and y =—x + 1 with fixed point (

2272

1

). The path starting at Py :

(3, 0) follows the rectangle P,Q,P,0Q,, indicating periodicity (Fig. 38.5). This is true for

any starting value except that of the fixed point itself.
Grapbhs of the sequences u, versus 7 are shown in Fig. 38.6.




The stability of the fixed point of the general first-order linear difference equa-
tion can be summarized as follows.

Stability
The first-order difference equation u,,,; = —ku, + a has a fixed point at
u=al(1+k), (k#-1). The fixed point is stable if | k| < 1, unstable if | k| > 1,
and periodicif k= 1.
If k=—1, the equation has no fixed point unless a = 0. (38.11)

Self-test 38.2

Consider the difference equation u,,, = f(u,) = 3 — u2. Plot the curve y = f(x) =
3 — x* and the straight line y = x. What are the coordinates of the fixed point
in the x,y plane? Given u, = 0.2, compute u,, u;, u,, us. Draw the corres-
ponding cobweb. Does it indicate stability of the fixed point?

onstant-coefficient linear difference equations
Any difference equation of the form

Mn+an~1un—l+“'+d u m:f(n)a

n—m-"n—
where the g; (i=n —m, ..., n— 1) are constants, is a constant-coefficient linear
difference equation. We shall look in detail at the second-order case

U,y +2au,, +bu,=f(n), (38.12)

where @ and b are constants and f(n) is a given function. The methods generalize in
a fairly obvious way to higher-order systems.

There are many parallels between the difference equation (38.12) and second-
order constant-coefficient equations (Chapters 18—19). The equation is said to be
homogeneous if f(n) = 0, and inhomogeneous otherwise, just as in the case of
second-order differential equations. However, this section is self-contained and
reference back is not necessary. The general solution of the inhomogeneous case
requires that of the homogeneous case: hence we start with the latter.

Homogeneous equations
We can see how to proceed by looking at the first-order constant-coefficient equation
U, —cu,=0. (38.13)
As can be seen from (38.2) or verified directly, the general solution of this equa-
tion is
u,=Ac", (38.14)
where A is any constant. Notice that we could equally well write

— —~1 - +1.
u,=Ac*', or wu,=Ac"":

(o]
S
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38 DIFFERENCE EQUATIONS

the result would be equally correct, although A would take different values for the
same initial condition. The significant property of (38.13) and its solution (38.14) is
that u,,, is a constant multiple of #,,.

With this in view, we attempt to find solutions of

U, +2au,,, +bu,=0 (38.15)
in the form u, = p", where p is a constant. Thus

Uy + 201, +bu, = p"? + 2ap™' + bp" = (p* + 2ap + b)p" =0,
forall n,if p=0or

pr+2ap+b=0. (38.16)

The case p = 0 leads to the self-evident solution u, = 0. We are interested in
solutions of (38.16), which is known as the characteristic equation of (38.15).

There are various cases to consider. Suppose that the roots of (38.16) are the dis-
tinct numbers p, and p,. Hence u,, = p% and u,, = p% are solutions of (38.15). Since
this equation is homogeneous and linear, it follows that any linear combination
of py and p?% is also a solution. We state this as follows.

Distinct roots
The general solution of #,,, + 2au,,, + bu,, = 0 for distinct roots p, and p, of
pP+2ap+b=0is

u,=Ap}+ Bp%, forany constants A and B. (38.17)

Example 38.4  Find the general solution of

Uy — Uy —6u,=0. (38.18)
The characteristic equation of (38.18) is

p*—p—6=0, or (p-3)(p+2)=0.
The roots are p, =3, p, =—2. Hence the general solution is

U, = A-3"+ B(-2)",

Example 38.5 Find the solution of
Upy + 20,4 —3u,=0
that satisfies uy=1, u, =2.
The characteristic equation is
P*+2p—-3=0, or (p+3)(p—1)=0.
The roots are p; =—3, p, = 1. Hence the general solution is
u,=A-3)"+B-1"=A(-3)"+B.
From the initial conditions,
uy=1=A+B, wu;=2=-3A+B.
Hence A = —% and B = 2. The required solution is

u,=—L(3) + 3.

n




The characteristic equation can have equal roots, which is a special case.
Consider the difference equation

Mn+2 - zaurﬂ—l + azun = 05
where a # 0. Its characteristic equation is
p*—2ap+a*=0, or (p—a)=0,
which has the repeated root p = a. One solution is Aa”; but we require a second
independent solution. Consider the expression u, = na”. Then
Uy —2au,,, +a*u, = (n+2)a""?* = 2(n + 1)a"? + na"*
=a"?(n+2-2(n+1)+n)=0.

Hence a further independent solution is #, = Bna".

Equal roots
The general solution of u,,, — 2au,,, + a*u, =0 is
u,=(A+ Bn)a". (38.19)

Roots can also be complex. Consider the difference equation

Uy + 20, +2u,=0.
Its characteristic equation is

PP+2p+2=0
with roots p; =—1+1, p, =—1—i. The method still works and the general solution
becomes

u, = A(=1+1)"+ B(=1 —i)".
For a real-valued problem, the constants A and B will be complex conjugates
which ensure that u, is real. The solution can be cast in real form by using the
polar forms (Section 6.3) of the complex numbers. In this case

—1+i=4/2em,
Hence

u, = A2i"eimin 4 B)in g inin

= 23"[A(cos 2Tn+ isin 27n) + B(cos %ﬂtn — isin 27tn)]
= 2"(C cos %nn + D sin %Tcn),
where C=A+Band D= (A - B)i.
Complex roots, atiff=re*?

The general complex solution of

Uy +2au, .+ bu,=0,
where > < b, is

u,=Ala+iB)" + Blo—if)".
The general real solution is

u,=1"(C cos n@+ D sin n0). (38.20)
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38 DIFFERENCE EQUATIONS

Example 38.6  Obtain the general solution of
U, +u,=0.
The characteristic equation is
pPP+1=0,
giving roots p, =1, p, =—i. Hence
u, = Ai"+ B(=i)".
In polar form, i = 2™, —i = ¢77™. Hence the real form of the solution is

u, = C cos $7n + D sin 3 7n.

Inhomogeneous equations
The general inhomogeneous equation is
u,.,+2au, +bu,=f(n) (38.21)

(see (38.12)). Let u, = v, + q,,, where v, is the general solution of the corresponding
homogeneous equation. Substitute this form of «, into (38.21):

(Ves2 + Gusd) + 20U + gd) + 0V, + q,) = f(n),
or
(Vni2 + 20,1 + bv,) + (G0 + 244,41 + bq,) = ().
Since v, satisfies the homogeneous equation, it follows that

qn+2 + 2’aqn+1 + bqn = f(n) ’

which means that g, must be a particular solution of the inhomogeneous equa-
tion. As in differential equations, v, is known as the complementary function.

We construct particular solutions by appropriate choices of functions usually
containing adjustable parameters which are suggested by the form of the function
f(n). If a particular choice fails, then we reject it and try something else.

Example 38.7 Obtain the general solution of
Uppp = Uy — 6Z/tn =4.

From Example 38.4, the complementary function is
v, = 3"A + (=2)"B.

For the particular solution, we try g, = C, since f(n) =4. Then
9pi2— qu1—69,—4=C-C-6C—-4=-6C-4=0,

if C = —%. Hence g, = —%, and the general solution is
u,=3"A+ (-2yB — 2.

Example 38.8 Obtain the general solution of

U+ 20, —3u,=4.

From Example 38.5, the complementary function is
v,=(-3)"A+B. ”

ticu
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Example 38.8 continued
In this case we expect the choice g, = C to fail, since it must make the left-hand side of
the difference equation vanish. When this happens, we try
q,=Cn.
Then
Grsr ¥ 20— 3G, —4=C(n+2) +2C(n+1) - 3Cn—4=2C+2C—4=4C—4=0,
if C=1. Hence the general solution is
u,=(-3)"A+B+n.

Table 38.1 lists some simple forcing terms f(n) with suggested forms of par-
ticular solution and alternatives containing parameters to be determined by
direct substitution.

Table 38.1

f(n) Trial solution g,

k (a constant) C; or Cn, if C fails;
or Cn?, if C and Cn fail; etc.

k" Ck"; or Cnk”, if Ck” fails; etc.

n Cy+Cin

n? (p an integer) Co+ Cn+---+ Cyn? (may need higher
powers of n in special cases)

sin kn or cos kn C, cos kn+ C, sin kn

Example 38.9  Find the general solution of
U, —4u,=n.
The characteristic equation is
p*—4=0, or (p—2)(p+2)=0.
The roots are p; =2, p, =—2. Hence the complementary function is
v, =2"A + (<2)"B.
For the particular solution, try (choosing from Table 38.1)
q,=Cy+ Cn.
Then
Quir— 44 —n=Cy+ Ci(n+2) —4Cy—4Cin—n=(-3C,+2C,) + n(-3C, - 1).
The right-hand side vanishes for all # if
—3C,+2C,=0, —3C,—1=0.
Hence C, = -1, C,=2C,/3 = -2, and the general solution is

99

u,=2"A+ (-2yB—%—1in.
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38 DIFFERENCE EQUATIONS

Self-test 38.3

Find the general solution of u,,, — 4u,,,, +4u,=2".

The logistic difference equation
Consider again the logistic difference equation
U, =0u,(1—u,), (38.22)

where ocis a parameter which will take various values. This nonlinear equation can
model population growth of generations. If u, represents the population size of
generation # and @ is the birthrate, then we might expect the population size of
the next generation to be o, in the absence of any inhibiting factors such as lack
of resources or overcrowding. If & > 1, then the population model given by the
first-order difference equation u,,, = &tu,, would imply that the population would
grow to infinity, since the equation has the solution #, = a"u,. To counter this
possibility, we can introduce a feedback term —au? which will tend to reduce
population growth when the population is large.
Fixed points of the equation (38.22) occur where

u=ou(l—u);

thatis, for u=0and #=1—1/0. We can adapt the cobweb method of Section 38.3
to this nonlinear difference equation by plotting graphs of the parabola y=f(x) =
ox (1 —x) and the straight line y = x. Fixed points of the difference equation occur
where the line and the parabola intersect. The values of x at these points are given
by the solutions of

ox(l-x)=x, or x(ox—1-—a)=0.

In the cobweb, the fixed points have coordinates (0,0) and P: (1 - (1/0), 1 — (1/cx)).
We shall only look at values of & > 1, so that one fixed point is in the first
quadrant, x > 0, y > 0. A cobweb solution starting at for the case ov = 2.8 is
shown in Fig. 38.7.

Notice that, for this choice of & and u,, the fixed point P appears to be stable;
that is, the cobweb solution approaches P. The slope of the graph of y = ax(1 — x)
at P determines the stability or instability of the solutions. The slope at P is

Fig. 38.7 Cobweb solution for
#,,,=2.8u,(1 —u,) showing a
solution starting from x =,

1, | x  approaching the fixed point at P.




mf'(1- (1) =a-2a(1 - (1/a) =—a+2.

As with the cobweb for two intersecting lines for the linear difference equation
in Section 38.3, the fixed point P is locally stable if m = 2 — ot > —1, in that all
cobweb paths starting close to (0t— 1)/capproach the fixed point P as 7 — oo, This
inequality implies that ot < 3. Notice also that, if 1 < < 2, then y = x intersects
the parabola y = ox(1 — x) between the origin and its maximum value. This
follows since the maximum occurs at x =% and 0 < 1— 1/ < Limplies 1 < o < 2.

For a = 3 the solutions become more complicated. The fixed point at the
origin is unstable: hence there is no stable fixed point to which solutions can
approach. We can obtain a clue as to what happens if we look at the function of a
function given by

y=F(f(x)) = afox(1 - x)][1 — ax(1 — x)] = 02x(1 — x) — 03x2(1 — x)2.

When « = 3, this curve intersects y = x at x = 0 and at P only. This can be
checked by noting that fixed points can be found from

x=9%(1 —x) —27x*(1 —x)?
which can be written as
x(27x* —54x* +36x—8) =0, or x(3x—2)>=0.
Graphs of the curves y = f(x) and y = f{f(x)) for ot = 3 are shown in Fig. 38.3a.

The fixed point P on y = f(x) is at (, 3). As « increases two additional fixed
points develop on the line y = x. Further graphs of the two functions y = f(x)
and y = f{f(x)) for a=3.4 are shown in Fig. 38.8b, together with the line y = x. The
graph indicates that there are now four fixed points at O, A, B, C.

For general «, the fixed points of y = f(f(x)) occurs where
x=0x(1—x) —o®x*(1 —x)?,
or

x(1-a—ox)[o*x*—o(1+o)x +1+ ] =0,

&
e T
=

Fig. 38.8 (a) Graph of y = f(f{(x)) for the critical case a= 3. (b) Graph of y=f(f(x)) for x=3.4
showing fixed points O, A, B, C. The dashed curve shows y = f(x) in both cases.
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where we could have predicted the solution x = (1 — &)/ corresponding to the
point B in Fig. 38.8b. The solutions of

o’x*—o(l+o)x+1+a=0 (38.23)
are

Xy

1 —
xz} =£[1 +oFV{(a+1)(@=3)}] (o> 3)

which determine, respectively, the coordinates of A and C.
From (38.23)
x,+x,=(1+a) o (38.24)
Also
floey) = o (1 —x,) = ax, — axt
=ox,— (Vo)[a(l+ a)x,—1—a] (using (38.23))
=(l/o)(—ox, +1+ o) =x,
by eqn (38.24). Similarly f(x,) = x;.
It follows that
fiflx)) =flx)) =%, and  f(f(x,)) =flx;) = x,.

Hence if x = x, initially then subsequently x alternates between x, and x, shown
by the square in Fig. 38.8b. This phenomenon is known as period doubling.
The values x = x; and x = x, are fixed points of y = f(f(x)), and their stability is
determined by the slopes of y = f(f(x)) at the points.

The critical slopes for stability at A and C are both (—1); we now find the value
of o at which this occurs. We have

di Af(x) = a? =202 — 03 (2x — 6% + 4x°)
X
=o?-20%1+ o)x + 6a3x?* —4a3x>. (38.25)

We require the value of o given by
di ff(x)==1 or 40’x*—-60’x*>+20*(1+)x—a’=1, (38.26)
x

when x satisfies (38.23).

Remove the x* term from (38.26) by multiplying (38.3) by 4x, and subtracting
it from (38.26). Then

=20 (00— 2)x*+ 20000 —2) (ot + 1)x — (1 + &) = 0. (38.27)

Equations (38.26) and (38.27) must have the same roots in x. In each case, make
the coefficient of x? equal to 1. The equations for comparison are

x2_(a+l)x+(a+1)=()’
o o?
(ax+1) + (2 +1)

X
l04 20 (o — 2)

=0.

x2 —




These equations have the same roots if

o+1 (02 +1)
o? 202 (0 - 2)’

or
o’ -20-5=0. (38.29)

We are interested in values of o¢ > 3, so that the required root of (38.29) is
a=1+V6=3.449... . In fact the slopes at both A and C both become —1 for this
value of a. Thus, for

3<a<1+v6,

the 2-cycle solution is stable.

As atin creases from 1, the stable fixed point at x = (& — 1)/0 becomes unstable
at o= 3. This bifurcates into a stable period 2 solution.

At a=1+6, the system bifurcates again into a 4-cycle or period-4 solution,
which corresponds to the set of stable fixed points of y = f(f(f(f(x)))). A graph of
this function for &=3.54 is shown in Fig. 38.9 together with the eight fixed points.
The cycle doubles again at about = 3.544, ... and so on. The intervals between
the bifurcations of the period doubling rapidly decrease, until a limit is reached
at about or=3.570, ... beyond which chaos occurs. The iterations are no longer
periodic for most values of o beyond this point, although there are some brief
intervals of periodicity.

' \ Fig. 38.9 Fixed points of
: . y=Fff(f(f(x))) for o= 3.54,
given by the intersection of
o 1 x  the curve and the line y = x.

Logistic equation
un+1 = f(un) = aun(l = un)‘

Fixed point for &> 0, x > 0 at x,= (a.— 1)/v.
Fixed point x, stable if

f(x) = 00— 20xy=—a+2 > —1, thatis if & < 3.
Period-2 solution: fixed points (o > 3)
x,%,= {1+ aFV[(a+ 1)(a—3)]}/2a).

Period-2 solution stable if 3 < a < 1 + V6. (38.28)

857
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38 DIFFERENCE EQUATIONS

The sequence of period-doubling bifurcations is known as the Feigenbaum
sequence, and it has certain universal aspects in that it is not just a consequence of
the logistic equation, but has common features with other difference equations
which generate period doubling.

The simplest way to view the progressively complex behaviour is through a
computer-drawn picture of the iterations of

Uy = aun(l - un)

for stepped increases in o¢starting at o¢=2.8 up to a=3.8, which covers the main area
of interest. The result is shown in Fig. 38.10. The series of single dots for each o
in 2.8 < o < 3 indicates the fixed point, which then bifurcates into a stable 2-cycle
attractor for 3 < o< 1+6. This in turn bifurcates into a stable 4-cycle attractor
at oe=1+6 and so on. The effect of infinite period doubling is that the solution is
ultimately non-periodic. The generally chaotic and noisy behaviour of the differ-
ence equation can clearly be seen in the large number of dots for larger values of a.
These non-periodic sets are known as strange attractors. The successive iterates
of the logistic equation wander about in a seemingly random but bounded man-
ner, and never settle into a periodic solution. However, within the chaotic band of
o values, there appear windows of periodic cycles. Problem 38.26, for example,
confirms that there is a 3-cycle around o= 3.83.

The logistic equation can be thought of as a relatively simple model example.
Many similar nonlinear difference equations also exhibit similar period-doubling
bifurcations and strange attractors.

Fig. 38.10 Period doubling for the
logistic equation for increasing ¢,

! | followed by chaotic iterations
30 30 34 35 38 40 beyond about a=3.57.




Problems

38.1 £1000 is invested over 10 years at an interest
rate of 6% annually. Find the final total investment.
What should the monthly interest rate be to achieve
the same final total?

38.2 The sum of £50 000 is borrowed over 25
years and the money is repaid in equal annual
instalments. The interest rate on the outstanding
balance in any year is 10%. Find what the annual
repayments would be. After 5 years, the interest
rate is reduced to 9%.

(a) Find the required adjustment to the annual
repayments for the loan to be repaid over the
original term.

(b) If the repayments are not changed, by how
much will the mortgage term be reduced?

38.3 Find the fixed points of the following
difference equations:

(@) u,,=u,2-u,);

(b) #y41=14,(1+14,)(2—3u,);

(©) tp=sinu,; (d) u,, =2sinu,;

(e) Up = =

n+l

38.4 Given the initial value u, in each case,
calculate the sequence of terms up to u; for each
of the following first-order difference equations:
(@) #,,,=2u,3-u,),u=1;

(b) u n+1=2u (I—un,), uy=5;
(©) iy =32u,(1-u,), u=73;
(d) Uy = 4“n(1 un)’ Uy=3-

38.5 (Section 38.3). Sketch the cobweb solutions
for the following first-order equations with the
stated initial conditions, and discuss the stability
of the fixed point:

1 1 -3
Q) Uy =tu,+ 3 uy=2and uy=3;

3
5
3
b) #,,=2u,—2, uy=2%and u,=3;
3.
e}

d) 4, =—3u, + 3, uy=2and u,= 2;

(
(
(€) ty=—u,+2,u=1%and u,=
( 3
( 3

€) Uy =—2u,+3,u,=12and u,=

38.6 The function f(n)
fin) = fzm) + 1.

Put n=2" and g(m) = f(2™), and show that
glm)=gm—1)+1.

Hence find f(n) given that f(1) =

satisfies

38.7 Use the method suggested in the previous
problem to solve

f(n) = f(3n) + 5,

given the initial condition f(1) =0.

38.8 (Section 38.3). Find the general solutions of
the following difference equations:

Up3— t, = 0;
Upsz — 3y + 300, — 1, = 0;
Upiy = Uy — U, + U, 1= 0.

EE®E

(@) s,y +2u,,—3u,=0;
(b) #4400 —9u,=0;

(€) #,45+9u,=0;

(d) u,—4u,,+5u, ,=0;

(€) sy — 41, +4u,=0;

() U3 — Upiy T Uy — 14, = 0;
(

(

(

38.9 Express the solution of the initial-value
problem

U, —6u,.+13u,=0, uy=0, wu,=1,

in real form.

38.10 Find the difference equation satisfied by
u,=A-2"+B-(=5)",
for all A and B.

38.11 Obtain particular solutions of the following
inhomogeneous difference equations:
() #,,,+2u,,—3u,=f(n), where
(i) f(n) =27 (ii) f(n) = m; (iii) f(n) =2
(iv) f(n) = (=3)".
(b) #,.,+2u,,,+2u,=f(n), where
(Q) f(n) =1; (il) f(n) =n+3;
(iii) f(n) = cos 2Tn.
(€) #,03—3u,,,+ 3u,,+1 +u,=f(n), where
(i) f(n) = 1; (ii) f(n) = n; (iii) f(n) =n’
(d) #,4,—601,,1+9u,={(n) Where (i) f(n) =
(i) £(r) = 3; (i) f(n) = 3"; (iv) f(n) ‘"3”

38.12 A ball bearing is dropped from a height
z=h, on to a metal plate, and the coefficient of
restitution between the ball and the plate is g,
where 0 < £ < 1. Set up a difference equation for
the maximum height reached after #» impacts.
Solve the equation. (Assume that a ball dropped

from a height b hits the plate with speed v =V(2gh),

where g is the acceleration due to gravity. The
rebound speed of the ball is €v.) Instead of being
stationary, the plate now oscillates so that it is
moving upwards at a speed # (a constant) at the
moment of each impact with the ball. Find the
difference equation for b,. Show that the difference
equation has a fixed point and interpret its
meaning.
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38 DIFFERENCE EQUATIONS

38.13 D, (x) is the 7 X n determinant defined by

2x. 7L 0 20
D=t ¥ T2
0 =00 35 2%

2x -1
D,(x) = 1 aale D, (x) = 2x.
Show that

D,(x)=2xD,_,(x) = D, ,(x).

Solve the difference equation for x # 1 and x = 1.

38.14 Let {u,} (n=0,1,...) be a sequence. The
power series

fltyy )= 3, u, 5"

n=0

is known as the generating function of the
sequence. Thus, for example, if u, = (—1)"/n!, then

i
flo,, x) = Z%x =e,
n=0

which means that e is the generating function
of {u,}.

The generating function of {u,,} is

i o Gl
fltt, 40 x) = ;urﬁlx 2> ) x
= l[i = X" — 1} =—[flu,, x) = 1]
X\ Gz ol

Consider the difference equation
Uyttt —2u,=0, uy=1, wu=-2.

By taking the generating function of the equation,
show that

1
u,,x)= ;
flu,, x) T

Using the binomial theorem find #,,.

38.15 A Fibonacci sequence is defined as a
sequence in which any term is the sum of the two
preceding terms. For the Fibonacci sequence
starting with #, =1, u, = 2, find and solve the
difference equation for u,,.

38.16 Solve the initial-value difference equation
314,10 — 204, — 1, =0, M1=2, w=1,

and show that u, — > as 1 — oo

38.17 A symmetric random walk takes place on

the integer steps on the line between x =0 and
x=N. Atany positionx=7r (1 <r=< N —1), the

probability that the walker moves to either x =7+ 1
or x=r— 1 at any stage is 3. The probability u, that
the walker reaches x =0 first, given an initial
position x = k, satisfies the difference equation

w = gty + Fh =1, uy=0,
for 1 < k< N — 1. Find u,. What is the probability
that the walker reaches x = N first?

If d, is the expected number of steps in the walk
before it reaches 0 or N, then d, satisfies

dk=%(1+dk+l)+—12_(1+dk—l), d():dN':O
for 1 < k< N — 1. Find the expected duration of
the walk.

38.18 Show that u#,=#! is a solution of the second-
order difference equation

= (n+2)(n+ Du,.

By using the substitution u, = v,n!, find a second
independent solution.

38.19 Given that
s = 2 R,
=1

find a first-order difference equation for s,. Solve
the equation to find a formula for the sum s,,.

38.20 Show that the difference equation
U+ 2au,,, +bu,=0

can be expressed as
L= Az,,

where

u, |24 b
ool e
Deduce that
2. A
Consider the case with =1 and b =-8. Find the
eigenvalues of A and use the methods of Section

13.5 to find a formula for A”. Hence solve the
difference equation for u, in terms of #, and ;.

38.21 (Section 38.5). Consider the logistic
equation

Uy = O, (1 — ).
Draw cobweb solutions starting at #, = 3 for the
cases 00=2.7, 0= 2.9, and o= 3.3. What do you
infer about the stability of the fixed point in the
first quadrant?

38.22 (Section 38.5). In the logistic equation ‘
41 = 0, (1 —u,), for what positive values
of atis the origin a stable fixed point?
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stable values 38.26 By starting from u,=0.957 417, compute
in the Uy, Uy, ... , us for the difference equation )
sy = Cu,(l—u,), =383, 3
and confirm that the logistic equation appears to FE
have a 3-cycle for this value of a. E
[}

38.27 Find the fixed points of the difference
equation
un+1 = aun(l o un>2>

in the three cases (a) @=9, (b) =4, (c) o= 3.

Discuss the stability of the fixed points in each case.

38.28 Show that the special logistic equation
Uy =4u,(1-u,)
has the solution
 u,=sin’(2"Cm)
where C is any constant. This general solution

 includes closed-form chaotic solutions. For
example, if C = 1/, then

u,=sin*(2")

: 'Which never repeats itself forn=0,1,2, ....




