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Network Models

There is a multitude of operations research situations that can be modeled and solved
as networks (nodes connected by branches). Some recent surveys report that as much
as70o/o of the real-world mathematical programming problems can be represented by
network-related models.The following list illustrates possible applications of networks.

1. Design of an offshore natural gas pipeline network connecting wellheads in the
Gulf of Mexico to an inshore delivery point. The objective of the model is to min-
imize the cost of constructing the pipeline.

2. Determination of the shortest route between two cities in a network of roads.
3. Determination of the maximum capacity (in tons per year) of a coal slurry

pipeline network joining the coal mines in Wyoming with the power plants in
Houston. (Slurry pipelines transport coal by pumping water through specially
designed pipes.)

4. Determination of the minimum-cost flow schedule from oil fields to refineries
through a pipeline network.

5. Determination of the time schedule (start and completion dates) for the activi-
ties of a construction project.

The solution of these situations, and others like it, is accomplished through a
variety of network optimization algorithms. This chapter will present five of these
algorithms.

1. Minimal spanning tree (situation 1)

2. Shortest-route algorithm (situation 2)

3. Maximum flow algorithm (situation 3)

4. Minimum-cost capacitated network algorithm (situation 4)
5. Critical path (CPM) algorithm (situation 5)

213



214 Chapter 6 Network Models

The situations for which these algorithms apply can also be formulated and

solved as explicit linear programs. However, the proposed network-based algorithms

are more efficient than the simplex method.

NETWoRK DEFINlTloNs

A network consists of a set of nodes linked by arcs (or branches). The notation for

describing a network is (lr/, Á), where N is the set of nodes, and A is the set of arcs. As
an illustration, the network in Figure 6.]. is described as

{1,z,3,4,,5)

{(1,2),(1,,3),(2,3),(2,5),(3,4),(3,5),(4,2),(4,5)}

FlGURE 6,1

Example of (N,,a) network

Associated with each network is some type of flow (e.g., oil products flow in
pipeline and automobile traffic flows on highways).In general, the flow in a network
limited by the capacity of its arcs, which may be finite or infinite.

An arc is said to be directed or oriented if it allows positive flow in one direction
andzeto flow in the opposite direction. A directed network has all directed arcs.

A path is a sequence of distinct arcs that join two nodes through other nodes

regardless of the direction of flow in each arc. A path forms a cycle if it connects a node

toltself through other nodes. For example, in Figure 6.1-, arcs (2,3),(3,5), and (5,2) form
a loop. A cycle is directed if it consists of a directed path; e,g., (Z,3), (3,4), and (4,2) in
Figure 6.1-.

A connected network is such that every two distinct nodes are linked by at least

one path. The network in Figure 6.]. demonstrates this type of network. A tree is a
connected network that may involve only a subset of all the nodes of the network
with no cycles allowed, and a spanning tree is a tree that links all the nodes of the

network, also with no cycles allowed. Figure 6.2 provides examples of a ttee and a
spanning tree for the network in Figure 6.1.

FlGURE 6.2

Examples of a tree and a spanning tree
given the network in Figure 6.1

Tree Spanning tree
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6.2 Minimal Spanning Tree Algorithm 215

PRoBLEM sET 6.1A

1. For each network in Figure 6.3 determine (a) a path, (b) a cycle, (.) u directed cycle, (d) a
tree, and (e) a spanning tree.

z

\\
1

|)(a ^

1 4V
FlGURE 6.3

Networks for Problem ].. Set 6.1a

(i) (ii)

2. Determine the sets N and Afor the networks in Figure 6.3.

3. Draw the network defined by

N : {1,,2,3,4,5,6}

A:{(1,,2),(I,5),(2,3),(2,4),(3,5),(3,4),(4,3),(4,6),(5,Z),(5,6)}

4. Consider eight equal squares arranged in three rows, with two squares in the first row,
four in the second, and two in the third. The squares of each row are arranged symmetri-
cally about the vertical axis.It is desired to fill the squares with distinct numbers in the
range I, 2,... , and 8 so that no two adjacent vertical, horizontal, or diagonal squares hold
consecutive numbers. Use network representation as a vehicle to find the solution in a
systematic way.

5. Three inmates escorted by 3 guards must be transported by boat from San Francisco to
the Alcatr az penitentiary island to serve their sentences. The boat cannot transfer more
than two persons in either direction. The inmates are certain to overpower the guards if
they outnumber them at any time. Develop a network model that deiigns the bóat trips in
a manner that ensures a safe transfer of the inmates. Assume that the inmates will not flee
if given a chance.

MlNlMAL SPANNlNG TREE ALGoRITHM

The minimal spanning tree algorithm deals with linking the nodes of a network,
directly or indirectly, using the shortest length of connecting branches. A typical appli-
cation occurs in the construction of paved roads that link several towns. The road
between two towns may pass through one or more other towns. The most economical
design of the road system calls for minimizing the total miles of paved roads, a result
that is achieved by implementing the minimal spanning tree algorithm.

The steps of the procedure are given as follows. Let N : {1, 2, ...,n}be the set
of nodes of the network and define

Ct : Set of nodes that have been permanently connected at iterationk

e t : Set of nodes as yet to be connected permanently

6.2



216 Chapter 6 Network Models

Step 0. Set Co : a and Cg - N.
Step 1. Start with any node, i in the unconnected set Co and set C1 : {i}, which ren-

derse1 - N - {l}.Set k:2.
General Step k. Select a node, i*, in the unconnected set C1_1 that yields the shortest

arc to a node in the connected set Co_r.Link i* permanently to Cp_l and
remove it from e o_r,that is,

Ct : C*l * {j\,eo : e*l, -'-}
If the set of unconnected nodes, e7,, is empty, stop. Otherwise, set k : k * t
and repeat the step.

Example 6.2-1

Midwest TV Cable Company is in the process of providing cable service to five new
housing development aróas. Figure 6.4 depicts possible TV linkages among the five

areas. The cablé miles are shown on each arc. Determine the most economical cable
network.

The algorithm starts at node 1 (any other node will do as well), which gives

Ct : {1}, e, : {2,3,4,,5,6}

The iterations of the algorithm are summ arized in Figure 6.5. The thin arcp provide all
the candidate links between C and C. The thick branches represent tHe permanent
links among the nodes of the connected set C, and the dashed branch represents the
new (permánent) link added at each iteration. For example, in iteration 1-, branch

G,z) iŠ trre shortest link ( : 1 mile) among all the candidate branches from node 1 to
nodes Z,3,4,and 5 of the unconnected set C1. Hence, link (1,2) is made permanent
and i- : 2, which yields

Cz : {I.Z},ez : {3.4,5,6}

The solution is given by the minimal spanning tree shown in iteration 6 of Figure
6.5. The resulting minimum cable miles needed to provide the desired cable service are
1+3+4+3+5:1,6miles.

FlGURE 6,4

Cable connections for Midwest TV Cable
Company
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Iteration 2

Iteration 4

Iteration 6
(Minimal spanning tree)

FlGURE 6,5

solution iterations
for Midwest TV
Cable Company

Iteration 5

You can use TORA to generate the iterations of the minimal spanning tree. From
Main menu. select NeLwork models =+ M,inimal spanning tree. Next, from S9LVE/MoDlFy
menu. select Solve problen" =+ Go Lo outp L screen. In the output Screen. Select a
ScarL Lnq node and then use NexL j terarion or A1l iLeratíons to generate the succes-
sive iterations. You can restart the iterations by selecting a new startrngr node. Figure
6.6 gives TORA output for Example 6.2-I (file ch6ToraMinSpanBx6-2-ytxt).
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FIGURE 6.6

Output of the minimal spanning tree of Example 6,2-1

PRoBLEM sET 6.2A

1. Solve Example 6.2-! staríing at node 5 (instead of node 1), and show that the algorithm

produces the same solution.

2. Determine the minimal spanning tree of the network of Examp\e 6.2-1under each of the

following separate conditions:

(a) Nodes 5 and 6 are linked by a Z-mlle cable,

(b) Nodes 2 and 5 cannot be linked.

(c) Nodes 2 and6 are linked by a 4-mile cable,

(d) The cable between nodes 1 and 2 is 8 miles long,

(e) Nodes 3 and 5 are linked by a Z-mi|e cable,

(f) Node 2 cannotbe linked directly to nodes 3 and 5,

3. In intermodal transportation,loaded truck trailers are shipped between railroad termi-

nals by placing the tiailer on special flatbed carts. Figure 6.7 shows the location of the

main railroad terminals in the United States and the existing railroad tracks. The objec-

tive is to decide which tracks should be "revitalized" to handle the intermodal traffic.In

particular, the Los Angeles (LA) terminal must be linked directly to Chicago (CH) to

accommodate expect"d h"uuy traffic. Other than that, all the remaining terminals can be

linked, directly oi indirectly, such that the total length (in miles) of the selected tracks is

minimized. DÓtermine the segments of the railroad tracks that must be included in the

r ev ttalízatio n pr o gr am.
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FlGURE 6.7

Network for Problem 3,Set 6.2a

Figure 6.8 gives the mileage of the feasible links connecting nine offshore natur4l gas
wellheads with an inshore delivery point. Because the location of wellhead lfiihe closest
to shore, it is equipped with sufficient pumping and storage capacity to pump the output
of the remaining eight wells to the delivery point. Determine the minimum pipeline net-
work that links the wellheads to the delivery point.

FlGURE 6.8

Network for Problem 4.Set6,2a

In Figure 6.8 of Problem 4, suppose that the wellheads can be divided into two groups
depending on gas pressure: a high-pressure group that includes wells 2,3,4,and 6;and a
low-pressure group that includes wells 5,7,8,and 9. Because of pressure difference, well-
heads from the two groups cannot be linked. At the same time, both groups must be con-
nected to the delivery point through wellhead 1. Determine the minimum pipeline
network for this situation.
Electro produces 15 electronic parts on ].0 machines.The company wants to group the
machines into cells designed to minimize the "dissimilarities" among the parts processed

Delivery point
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Chapter 6 Network Models

in each cell. A measuíe of "dissimilarity," dii,amongthe parts processed on machines i

and i can be expressed as

d,, :I- r=^
wheren4isthenumberofpartssharedbetweenmachinesiandj,atdmiiisthenumberof
parts that u," u,"d by either machine i ori only,

rn" t"il"*ing taUte assigns the parts to machines:

Machine Assigned parts

1

z
J

4

5

6

7

8

9

10

1-,6

2,3,,7 ,8,9,72,t3,L5
3,5,10,t4
2,7,8,11,1z,I3
3,5,10,LI,1,4
1-,4,5,9,t0
2,5,,7,8,9, 10

3,4,t5
4,10
3,8, 10, 1,4, ].5

6,3

6,3,1

(a) Express the problem as a network model,

(b)Showthatthedeterminationofthecellscanbebasedontheminimalspanningtree
solution.

(c)Forthedatagivenintheprecedingtable,constructthetwo-andthree-cellsolutions.

SHORTEST-ROUTE PROBLEM

The shortest-route problem determines the shortest route between a source and desti-

nation in a transportation ,r.,*ort . Ótn., situations can be re'resented bY the same

model as illustraáo uy the following examples.

Examples of the Shortest-Route Applications

t Replacement)

RentCar is developing a replacem.ent ptan j::*:::*""lf";..í.'í l",",:.ť3i#ť ri::i

Replacement cost ($) for given years in operation

Equipment
acquired at start of

5400
6200
7100

X"ílffiňí,:"r?T|ili i;Tr'i:;i'á",:lí,fi;p;Di*,;ň. r 31,,2004. Át tt-" start of each

year, a decision ť#;á"-;, iá *rr"It .i 
^á'"u, 

shoulď be kept in oPeration or rePlaced' A

óar must be in service a minimu;;iiy;r and 
" '".-iár* 

oi 3 Years.The fol'owing

table provides the replacement ..ri u, á function of the YeaÍ acar is acquired and the

numb^er of years in operation,

4000
4300
4800
4900

200I
2002
2003
2004

9800
8700
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FlGURE 6,9

Equipment replace-
ment problem as a
shortest-route model

The problem can be formulated as a network in which nodes 1 to 5 represent the
start of years 200I to 2005. Arcs from node 1 (year ZOOD can reach only node s 2,3, and,
4 because a car must be in operation between 1 and 3 years. The arcs from the other
nodes can be interpreted similarly. The length of each arc equals the replacement cost.
The solution of the problem is equivalent to finding the shortest route between nodes
1 and 5.

Figure 6.9 shows,the resulting network. Using TORA,1 the shortest route (shown
9Y t_t: thick path) is 1 -+ 3 -+ 5. The solution means that a car acquired at the itart of
2001 (node 1) must be replaced after 2 years at the start of 2003 (node 3). The replace-
ment car will thentekegt in service until the end of 2004.The total cost of this replace-
ment policy is $ ].2,500 1: $ 5400 + $ 7100).

Example 6.3-2 (Most Reliable Route)

I. Q. Smart drives daily to work. Having just completed a course in network analysis,
Smart is able to determine the shortest route to work. Unfortunately, the seleóted
route is heavily patrolled by police, and with all the fines paid for speeding, the shortest
route may not be the best choice. Smart has thus decided to chooie a route that maxi-
mizes the probability of not being stopped by police.

The network in Figure 6.10 shows the possible routes between home and work,
and the associated probabilities of not being stopped on each segment. The probability
o{ |ot, being stopped on the way to work is the product of the piobabilities associateá
with the successive Segments of the selected route. For examplě, the probability of not

FlGURE 6.10

Most-reliable-route network model

lFrom }ltain rrre,nu, select Networ:k ]mod,els

=+ S}rorlešt| ::,ou[es.
* Sliort,est ].oule. From sor,vn/MODIFY menu, select soi-ue l:ob.em
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FIGURE 6.,l1

Most-reliable-route
representation as a shortest-
route model

íeceiving afine onthe route 1, +3+ 5 +7 is .9 X .3 X .25 : .0675,Smart,s objective

is to select the route that maximizes the probability of not being.fined,

The problern can be formulated as á shortest_route mode[ by using a logarithmic

transformation that converts the prádrr"t probability into the sum of the logarithms. of

p-u"uirities_that is, if pu, : i, x p, Ý x.pi is the probability of not being
'stopped,then |ogpru: 1og pt.-l .Iog.p, +^", -l.|ogpp,

Mathemati.iírv, tne ňáxi*rruTron of pu, is_Jquivalent. to the maximization of

logpru.Because logp'o < 0_,_ttre maximizatión of Lógpro is, in.tT.", equivalent to the

minimization of 
'_-t6ďp*. 

Úsing this transformation, ttre individual Probabilities.P7

in Figure 6.].0 are iápr"|bo witň_'_1og pi fot all 7 in the network, thus yielding the

shortést-route network in Figure 6,11"

Using ToRÁ, nodes 1,,i,5, and 7 define the shortest route in Figure_ 6.] ]" with a

corresponoirrg "i";!iŇ; ot'1,.1707 (: _logp17). Thus, the maximum probability of not

being stopped ir pr, : .0675.

rxample 6.3-3 (Three-Jug Puzzle)

An 8_gallon jug is filled With fluid. Given two empty 5._ and 3_gallon jugs,_we want to

dividJthe 8 galions of fluid into two equalparts using the three.jugr.No other measur-

ing devices are allowed. What is the srnall-est numbér of pourings needed to achieve

this result?- Ýo" probably can guess the solution of this plzzle. Nevertheless, the solution

pro".r. cán be syštematžed by representing the problem as a shortest-route Problem.
A node is defined to représ"rrt th" amóunt Ót nrria in the 8-, 5-,and 3-gallon jugs,

."rp".tirrely. This means thai the network starts with node (9, 0, 0) and terminates with

the desirea ,otoiior, ;;d" (4, 4, 0).A new node is generated from the current node bY

pouring fluid from one jug into another,,

F ureb. ;^h;;;Éii.,."t iout e s that 1 e ad f::l :]T1,1iíj ^(1 : 9l 9 )'::"* ^"_".1,.*4,0).ŤÍ.. ur. between two successive nodes represents 
1 :1".4,"!:^:,:1 ;::1_1,1c;::íT- V 

'.

be assumed to have a length of 1 unit. The problem reduces to determining the shortest

route between node (8,0,0) and node (4,4,0),
The optimal solution, given by the bottom path in Figure 6.12,requires 7 pourings,
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F|GURE 6.12

Three-jug puzzle representation as a shortest-route model

PRoBLEM sET 6.3A

1. Reconstruct the equipment replacement model of Exampl e 6.3-I,assuming that a car
must be kePt in service at least 2 years,with a maximum service life of 4 years. The plan-
ning horizon is from the start of 2001, to the end of 2005.The following table provides the
necessary data.

Replacement cost ($) for given years in operation

Year acquired

Figure 6.13 provides the communication network between two stations, 1 and 7.The
ProbabilitY that a link in the network will operate without failure is shown on each arc.
Messages are sent from station ]. to station 7 , atd the objective is to determine the route
that will maximize the probability of a successful transmission. Formulate the situation as
a shortest-route model, and solve with TORA.
An old-fashioned electric toaster has two spring-loaded base-hinged doors. The two doors
oPen outward in opposite directions away from the heating element. A slice of bread is
toasted one side at a time by pushing open one of the doors with one hand and placing
the slice with the other hand. After one side is toasted, the slice is turned over to get tňe
other side toasted.It is desired to determine the sequence of operations (placingioast-
ing, turning, and removing) needed to toast three slices of bread in the shórtest possible

4100
4800
5300
5700

3800
4000
4200
4800
5300

2001
2002
2003
2004
2005

6800
7000
7200
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FIGURE 6.13

Network for Problem Z,Set6.3a

time. Formulate the problem as a shortest-route model using the following elemental

times for the different operations:

Operation Time (seconds)

place one slice in either side
Toast one side
Turn slice already in toaster
Remove slice from either side

4. production planning. DirectCo sells an item whose demand over the next 4 months is

ť*iť;lJ:*'*íl#f:'rH"ťÍr,Tk{ť*".,*",lffi fitť;txťť*ii:
overstocked unit per month. DirectCo estimates the unit purchase prices for the next 4

months to be $15, $12, $1_0, and $14, respectively. A setup cost of $200 is incurred each

time a purchase order is placed. The company wants to develop a purchasing Plan that

will minimize thetotal costs of ordering, purchasing, and holding the item in stock.

Formulate the problem as a shortest-route model, and use TORA to find the optimum

solution.

5. Knapsack problem. A hiker has a 5-ft3 backpack and needs to decide on the most valu-

able items to take on the hiking trip. There are three items from which to choose. Their

volumes ate2,3, and 4 ft3, and the hiker estimates their associated values on a scale from

0 to ]_00 as 30,50, and 70, respectively. Express the problem as a longest-route network,

and find the optimal solution. (Hint: A node in the network may be defined as [i v],

where l is the item number considered for packing, and v is the volume remaining imme-

diately before the decision is made on l.)

6.3.2 5hortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and

acyclic networks:

1. Dijkstra's algorithm

2. Floyd's algorithm

3

30

1

J
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Dijkstra's algorithm is designed to determine the shortest routes between the
source node and every other node in the network. Floyd's algorithm is general because
it allows the determination of the shortest route between any two nodes in the network.

Dijkstra's Algorithm. Let ui be the shortest distance from source node 1 to node i
and define d,i (= 0) as the length of arc (i, il.Then the algorithm defines the label for
an immediately succeeding node i as

Iui,i] : Ir, + d,i,if, 4,, = 0

The label for the starting node is [0, -], indicating that the node has no predecessor.
Node labels in Dijkstra's algorithm are of two types: temporary and permanent. A

temporary label is modified if a shorter route to a node can be found. At the point when
no better routes can be found, the status of the temporary label is changed to permanent.

Step 0. Label the source node (node 1) with the permanentlabel [0,-].Set l : 1.

Step i. (a) Compute the temporary labels Iu, + dil,i]for each node j that can be
reached from node i, provided j is not permanently labeled.If node i is
already labeled with [ar, k] through another node k andif.ui * di1 1 up
replace Iri, klwith [u, + dij, if.
(b) If all the nodes have permanenl labels, stop. Otherwise, select the label
fr,, ,fhaving the shortest distance(:u) among all the temporary labels
(break ties arbitrarily). Set l : r and repeat step l.

Example 6.3-4

The network in Figure 6.14 gives the routes and their lengths in miles between city 1

(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between
city 1" and each of the remaining four cities.

Iteration 0. Assign the permanentlabel [0,-] to node 1.

Iteration 1_. Nodes 2 and3 can be reached from (the last permanently labeled) node
1. Thus, the list of labeled nodes (temporary and permanent) becomes

Node Label Status

nths is
ill-to
ore Suc-

ed per
next 4

each
r that
k.

imum

ust valu-
,Their
ale from
tsork,
r"].

g imme-

I
2

J

[0,-]
[0 + 100, 1] : [100, 1]

[0 + 30, 1] : [30, 1]

permanent

Temporary
Temporary

FlGURE 6.14

Network example for Dijkstra's
shortest-route algorithm
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For the two temporary labels [100, 1] and [30, ].], node 3 yields the
smaller distancď(Ll3 : 30). Thus, the status of node 3 is changed to per-
manent.

Iteration 2. Nodes 4 and5 can be reached from node 3, and the list of labeled nodes
becomes

Node Labe1 Status

L
2

3

4

5

[0,-l
[100,1]
[30,1l
[30 + 10, 3] : [40,3]
[30 + 60, 3] : [90,3]

permanent

Temporary
permanent

Temporary
Temporary

[0,-]

()

The status of the temporary label [40,3] at node 4 is changed to perma-
nent (ua: 40).

Iteration 3. Nodes 2 and5 can be reached from node 4. Thus, the list of labeled
nodes is updated as

Node Labe1 Status

1

2
3
4
5

[0,-]
[40 + 15, 4]: |55, 4]

[30,1]
[40,3]
[90,3] or [40 + 50, 4] : [90, 4]

permanent

Temporary
permanent
permanent

Temporary

Node 2,s temporary label [100,1] in iterationZ is changed to [55,4] in
iteration 3 to]ndic ate that- a shorter route has been found through node
4. Also, in iteration 3, node 5 has two alternative labels with the same

distance us : 90.
The list for iteration 3 shows that the label for node 2 is now perma-

nent.
Iteration 4. Only node 3 canbe reached from node 2. However, node 3 has a Perma-

,r"rri label and cannot be relabeled. The new list of labels remains the
same as in iteration 3 except that the label at node 2 is now permanent.
This leaves node 5 as the only temporary label. Because node 5 does not
lead to other nodes, its status is converted to permanent, and the process
endS.

The computations of the algorithm can be carried out more easily on the network
as Figure 6.].5 demonstrates.

The shortest route between nodes 1" and any other node in the network is deter-
mined by starting at the desired destination node and backtracking through the_nodes

using th-e inforrňation given by the permanent labels. For example, the following
,equérrce determines the shortest route from node 1 to node 2:

(2) - [55,4] + (4) + [40,3] + (3) - [30, 1] -+ (1)

Thus, the desired route is ]_ + 3 + 4+ 2 with a total length of 55 miles.
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]ro+ítrr
[55,4](;)!l
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Peíma-

perína-
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nanent.
bes not
proceSS

tetwork

s deter-
e nodes
illowing

[90,3](2)
[90,4](3)[0,-]rrl

( ) : iteration
F|GURE 6.15

Dijkstra's labeling procedure

TORA can be used to generate Dijkstra's iterations. From the solvn/MoDlFy
menu, select Solve problem J 11gl-65ions =*oijkstra,s algorittrm. Figure 6.16 pro-
vides TORAs iterations output for ExampIe 6.3-4 (file ch6ToraDijkstraEx6-3-4.txt).

FlGURE 6,,l6

TORA Dijkstra iterations for Example 6.3-4

[40,3](2)

[30,1](1)
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PRoBLEM sET 6.38

1. The network in Figure 6.17 gives the distances in miles between pairs of cities t,2, ", , and

8. Use Diikstra,s aigorithm to find the shortest route between the following cities:

(a) Cities ]_ and 8

(b) Cities 1 and 6

(c) Cities 4 and 8

(d) Cities 2 and 6

FlGURE 6.,l7

Network for Problem ],, Set 6.3b

Use Dijkstra's algorithm to find the shortest route between node 1 and eveíy other node

in the network of Figure 6.18.

FlGURE 6.18

Network for Problem 2, Set 6.3b

3. Use Dijkstra,s algorithm to determine the optimal solution of each of the following

problems:
(a) Problem 1, Set 6.3a

(b) Problem Z,Set6.3a
(c) Problem 4, Set 6.3a

Floyd,s Algorithm. F,loyd,s algorithm is more general than Dijkstra's because it

determines the shortest route between any two nodes in the network. The algorithm

represents an /r_node network as a squale matrix with n rows and n columns. E,ntrY (a7)

of the matrix gives the distan ce dilťro* node i to node 7, which is finite if l is linked

directly to 7, and infinite otherwise.
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FlGURE 6.19

Floyd's triple operation

The idea of Floyd's algorithm is straightforward. Given three nodes i, j, and k in
Figure 6.19 with the connecting distances shown on the three arcs, it is shorter to reach
k from i passing throughi if

4,i +dpldtr
In this case, it is optimal to replace the direct route from i + k with the indirect route
i + j -+ k. This triple operation exchange is applied systematically to the network
using the following steps:

Súep 0. Define the starting distance matrix D6 and node sequence matrix ,56 as given
below. The diagonal elements are marked with (-) to indicates that they are
blocked.Setk: ]_.

So:

General Step k Define row k and column k as pivot row anď pivot columlz. Apply the
triple operation to each element dii ín D *, for all i and 7. If the condition

d* t du 1 d,i, Q + k, j + k, andi + j)

is satisfied, make the following changes:
(a) Create Doby replacing dilin D*twith d,n * dni.

(b) Create 
^St 

by replacing s,7 in 
^ 

p_1 with k Set k : k + 1, and repeat step k.

1

2

Do: i

i

n

drz dij dr,

dr,, dzj dr,

d,, d,, d d',

Drt )
Un2 d,,,

2 ] n

1 j n

1 2 j n

I 2 ]
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Pivot
Column column Column

jkq

FlGURE 6.20

Implementation of triple operation in
matrix form

Row l

pivot row k

Rowp

Step k of the algorithm can be explained by representing D o_, as shown in Figure

6.20.Here, row k and column k define the current pivot row and column. Row i rePte-

sents any of the rows 1,2,,..., and k - L, and row p represents any of the roWS

k + !, k + 2, ... , and n. Similarly, column i represents any of the columns 1_, 2, ... ,

andk - 1,andcolumn4representsanyof thecolumns k + l, k + 2, ...,andn.With
the triple operation, if the sum of the elements on the pivot row and the Pivot column

(shown by squares) is smaller than the associated intersection element (shown bY a

circle), then ii is optimal to replace the intersection distance by the sum of the Pivot
distances.

After n steps, we can determine the shortest route between nodes i andi from the

matrices Dn and,S, using the following rules:

1. From Dn, diigives the shortest distance between nodes i and j.

2. From ^S,, 
determine the intermediate node O - siithat yields the route i -+ k -+ j.

If s;1 : k and skj :i, stop; all the intermediate nodes of the route have been

found. Otherwise, repeat the procedure between nodes j and k, and between

nodes k and j.

Example 6.3-5

For the network in Figure 6.Z1,,find the shortest routes between every two nodel Th"
distances (in miles) are given on the arcs. Arc (3,5) is directional so that no traffic is
allowed from node 5 to node 3. A1l the other arcs allow traffic in both directions.

FlGURE 6.21

Network for Example 6.3-5
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Iteration 0. The matrices D6 and ,56 give the initial representation of the network. D3
is symmetrical except that dr, : oo beóause no traffic is allowed from
node 5 to node 3.

s0
1,2345

D0
1,2345

1,

2
aJ

4

5

1,

2

J

4

5

Iteration 1. Set k : 1.TJr9 pivot row and column are shown by the lightly shaded
first row and first column in the Do-matrix. The dďrker ce"lls, á23 and d32,
are_the only ones that can be improved by the triple operatioi. Thus, D1
and,S1 are obtained from D6 and,56 in the following manner:

1-. Replace d2rwith dn -| dn : 3 + 10 : 13 and set szs : I.
2. Replace drrwith dl t do : 10 + 3 : 13 and set szz : I.

These changes are shown in bold in matrices D, and,S1.

Iteration 2. Set k : 2,as shown by the lightly shaded row and column in Dl.The
triple operation is applied to the darker cells in Dl and,S1. The rěsulting
changes are shown in bold in D2and , 2.

Frgure
repre-
] rows
2. ... ,

r- With
olumn
nbya
: pivot

cm the

i -+i.
; been
3t\\ een

bs. The
nffic is
t

s1
lz345

DI
1,2345

I
2

J

4

5

1

2
J

4
5

s2
1,2345

D2
1,z345

1

2
J

4

5

3 10 ,$c - oo
a

5 oo
10 6 15
oo 5 6 4
co oo oo 4

2 J 4 5
1 4 5
1 .]]ij:,!iál. 4 5
1 z J 5
1 2 J 4

3 10 iiu oo
3 13 5 Oo

10 13 6 15
6 4

oo oo oo 4

z J 5
I l 4 5

1 1 4 5

2 J 5
1 z 3 4

J 10 8
*i:fiJ 13 5

10 13 6 15
8 5 6 4

oo oo oo 4

I
2
J

4
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Iteration 3. Set k : 3, as shown by the shaded row and column in D2.The new
matrices are given by D, and 53.

D3
J

sj
J

t
2

J

4

5

1

2
J

4
5

Iteration 4.

D4
J

t
2

J

4
5

1

z
J

4

5

Iteration 5. Set k : 5, as shown by the shaded row and column in Da.No furth,er

improvements are poŠsible in this iteration. Hence, D5 and 55 are the
same as Daand Sa.

The final matrices D5 and 55 contain all the information needed to
determine the shortest route between any two nodes in the network. For
example, consider determining the shortest route from node 1 to node 5.

First,the associated shortest distance is given by dr, : 12 miles. To
determine the associated route, recall that a segment (i, j) represents a

direct link only if s4 : i. Otherwise,l and j arc linked through at least
one other inteimediate node. Because 15 : 4,the route is initially given
as ], _> 4 _> 5.Now, because 14 : 2 + 4,the segment (1,4) is not a
direct link, and 1, + 4 must be replaced with I +2 ž 4,and the route
1, + 4+ 5 now becomes ! __>2 _+ 4 __>5. Next, because sI2 : 2, s24 : 4,

and sa5 : 5, the route ! -+ 2 + 4 --> 5 needs no further "dissecting" and

the process ends.

As in Dijkstra's algorithm,TORA can be used to generate Floyd's iterations. From

the smÝn/Mopry: menu, select So,lv ,,p]: er,rr *ILeration; +Flo d"s, goíithrn.

Figure 6.22 il\ustrates TORAs output for Floyd's Example 6.3-5 (file ch6ToraFloydEx6-

3-5.txt).

Set k : 4,as shown by
new matrices are given

the lightly-shaded row and column in D3.The
by Doand Sa.

S,l

tz345

,č._

J 10 8 jiiáÉlii

J t# 5 ffi,r,l

10 6 iirn.
8 5 6 4

iffi 4

2 J z .$
1 1 4 ,$...

1 fi 4

2 z J 5

1
,)

J 4

J 10 8 t2
J 11 5 9

10 11 6 10

8 5 6 4

12 9 10 4

2 J z 4
1 4 4 4

1 4 4 4

z 2 J 5

4 4 4 4
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FlGURE 6.22

TORA Floyd iterations for Example 6.3-5

PRoBLEM sET 6,3c

1. In Example 6.3-5,use Floyd's algorithm to determine the shortest routes between each of
the following pairs of nodes:
(a) From node 5 to node 1

(b) From node 3 to node 5

(c) From node 5 to node 3

(d) From node 5 to node 2
2. Apply Floyd's algorithm to the network in Figure 6.23. Arcs (7 ,6) and, (6, 4) ate unidirec-

tional, and all the distances are in miles. Determine the shortest route between the fol-
lowing pairs of nodes:
(a) From node ]. to node 7
(b) From node 7 to node 1

(c) From node 6 to node 7
The Tell-All mobile phone company services six geographical areas.The satellite dis-
tances (in miles) among the six areas are given in Figure 6.24.Tell-All needs to determine
the most efficient message routes that should be established between each two areas in
the network.

Six kids-Joe, Kay, Jim, Bob, Rae, and Kim-play a variation of the game of hide and
seek. The hiding place of a child is known only to a select few of the other children. A

j

I- -+.
:" rnd

. From
- -- - -- j.::: ,
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FlGURE 6.23

Network for Problem 2, Set 6.3c

FlGURE 6,24

Network for Problem 3, Set 6,3c

child is then paired with another with the objective of finding his or her hiding Place,This

may be achiwed through a chain of other kids who eventually willlead to discovering

where the designatea c'hild is hiding. For example, suppose that Joe needs to find Kim and

that Joe knows where Jim is hidinglwho in turn knows where Kim is.Thus, Joe can find

Kim by first finding Jim, who in tu]rn willlead Joe to Kim.The following list Provides the

whereabouts of the children:

Joe knows the hiding places of Bob and Kim,

Kay knows the hiding places of Bob, Jim, and Rae,

Jim and Bob know the hiding place of Kay only,

Rae knows where Kim is hiding.

Kim knows where Joe and Bob are hiding,

Devise a plan for each child to find every other child through the smallest number of con-

tacts.What is the largest number of contacts?

6.3.3 Linear Programmin9 Formulation of the Shortest_Route

Problem

This section provides two LP formulations for the shortest-route problem. The formu-

lations ur" g"rr..al in the sense that they can be used to find the shortest route between

any two ,rod., in the network. In this regard, the LP formulations are equivalent to

Floyd's algorithm.
su|fror" that the shortest-route network includes n nodes and that we desire to

determine the shortest route between any two nodes s and / in the network,

Formulation t This formulation assumes that an external one unit of flow enters the

network at node s and leaves it at node /, where s and t aíe the two target nodes

between which we seek to determine the shortest route,

2
400

1

700

z00

]

ja

f,oo
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Define

ti1 : zíflount of flow in atc (i,7), for all feasibl e i and j

Because,,,,, "i);Tii:T;:J:T;::TH;:|*", the varia ble ximust
assume binary values (0 or 1) only. Thus, the objective function of the linear program
becomes

Minimizez: 2r,i*,i
aII defined arcs (i, 7)

There is one constraint that represents the conservation of flow at each node-that is,
for any node 7,

Total input flow : Total output flow

Formulation 2: The second formulation is actually the dual problem of the LP in
Formulation 1. Because the number of constraints in Formulation 1 equals the number
of nodes, the dual problem will have as many variables as the number of nodes in the
network. Also, all the dual variables must be unrestricted because all the constraints in
Formulation 1 are equations.

Let

}i : dual constraint associated with node i
Given s and t are the start and terminal nodes of the network, the dual problem is
defined as

subject to

MaximizeZ:lt-!,

li - li = ',j, 
for all feasible i and j

a|I yi and y,unrestricted in sign

.: of con-

a formu-
between
ralent to

desire to

lnters the
let nodes

Example 6.3-6

Consider the shortest route network of Example 6.3-4. Suppose that we want to deter-
mine the shortest route from node ]. to node 2; that is, .l : 1 and t : 2. Figure 6.25
shows how the unit of flow enters at node 1 and leaves at node 2.

FlGURE 6.25

Insertion of unit flow to determine
shortest route between node s : 1 and
nodet:2

1!2

ru 60
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Using Formulation 1, the associated LP is listed below.

Minimize z : 100

X r<í:sXlqXzzíl:Xn

1510

Node ].

Node 2
Node 3

Node 4
Node 5

The constraints represent flow conservation at each node. For examPle, at node 2,
,,input flow : ouiput iow,,yields xtz * x42 : ,l I *rr.Note that one of the constraints

is álways redundánt. For example,"addirrg the lasť four constraints simultaneouslY

Yields ir, + XI3 : ],, which is the same as constraint ]_,' Thebptimh solution (obtained by TORA)2 is

Z : 55, X73 : I, Xy: t, x42: I

This solution gives the shortest route from node 1 to node 2 as t-> 3 -+ 4 + Zand the

associated distance is z : 55 (miles).
To use FormulatíonZ,the dual problem associated with the LP above is given as

Maximizez:lz-|t
subject to

lz - lt < 100 (Route 1-2)

ls - yI < 30 (Route 1-3)

|s - |z < 20 (Route 2-3)

lq - y3 < 10 (Route 3-4)

|s - ll < 60 (Route 3-5)

lz - |q = 15 (Route 4-2)

f s - |q < 50 (Route 4-5)

!l, !z, ... , Is unrestricted

Although the dual problem given above is a pure mathematical definition derived

from the p imal problern, *e u.iually can interpret the problem in a logical manner.

Define

y; : Distance to node l

-1
1

: -1:1
0

:0
:0-1

-1

-1
-1,

1 -1
1 -1

1

6,3.4

2ToRA does not accept a negative right_hand side. You can get,around.this.inconvenience by selecting

the redundant constraint as the one having the negative right-hand side, then_ make it redundant bv

changing : to š and setting the right-hana Šioe to a ery largě value. Another trick is to add a new variable

whosž u"pp", ana towei bounás 
"q,r 

l ]., effectively forcing it tó equal 1 in any solution. The constraint coeffi-

cients of the n"* uuriubie equal t'hose of the curient rigĚt-hand side, but with oPPosite 9rgn. 
The^righthand

side of the ,,new,, problem must be changed to zero fór a[ the constraints (see file ch6ToralPShortRoute

Ex6-3-6.txt).
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with this definition, the shortest distance from the start node 1 to the terminal node 2
is determined by maximizing h - _/r. The constraint associated with route (a 7) says
that the distance from node ito'noďe'lcannot exceed the direct length of thaiiÓ.rt.. rt
can be less if node j can be reached from node l through other ,rod"s that provide a
shorter path. For example, the distance from node 1 to ňode 2 is at most too. with the
definition of y; as the distance to node i, we can assume that all the variables are non-
negative (instead of being unrestricted). We can also assume that lt :0 as the dis-
tance to node ]_.

Based on the discussion above, and assuming that all the variables are nonnega-
tive, the optimum solution is given as

z : 55, lt:0, |z: 55, ls:30, yo: 40, _}s : 0

The value of z : 55 gives the shortest distance from node 1 to node 2, which also
equals|z-lt:55-0:55.

The determination of the route itself from this solution is somewhat tricky.
We note that the solution satisfies in equation form the constraints of routes 1,-3,3-4,
and 4-2 because their slacks equal zero-that is, y3 - |t : 30, yq - |g :10, and
|z - lq: 15.This resultidentifies the shortest route as ]. + 3 + 4+L !

AloJhel way for identifying the constraints that are satisfied in equation form is to
consult the dual solution of the LP of Formulation}.Any constraint tňat has a nonzero
dual value must be satisfied in equation form (see Section 4.2.4).The following table
pairs the routes (constraints) with their associated dual values.

Route (constraint) 1,-2

Associated dual value

PRoBLEM sET 6.3D

1. In Example 6.3-6,use the two LP formulations to determine the shortest routes between
the following pairs of nodes:
(a) Node 1 to node 5.

(b) Node 2 to node 5.

Excel spreadsheet 5olution of the shortest-Route problem

The Excel spreadsheet developed for the general transportation model (Section 5.3.3)
can be modified readily to find the shortest route between two nodes. The spreadsheet
is based on Formulation 1, Section 6.3.3,and is designed for problems with amaximum
of 10 nodes. Figure 6.26 shows the application of the spreadsheet to Example 6.3-4 (file
ch6SolverShortestRoute.xls).The distance matrix resides in cells B6:K15.3 An infinite
distance (: 9999,or any relatively large value) is entered for nonexisting arcs. Because
we are seeking the shortest route between nodes 1 and Z,the supply amount for node ]_

and the demand amount for node 2 is I unit. A zero amount is entered for the remain-
ing supply and demand entries.

3In Figure 6,26,rows 11 through 15 and column K are hidden to conserve space.

4-54-23-5I-3



238 Chapter 6 Network Models

F|GURE 6.26

Excel solver solution of the shortest route
between nodes 1, and2 in Example 6.3-4
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Once the unit cost and supply/demand data are entered, the remainder of the

spreadshe et (intermediate calculations and optimum solution sections) is generated

automatically. Solver parameters must correspond to the input data of the problem aS

shown in highlighted columns B, C, F, and G. Column B specifies the changing cells

(arcs flow) of the problem (cells B2O:B39). Column C specifies the capacities of the

arcs of the network (cells C2O:C39). In the shortest-route model, these capacities do

not play a role in the computations and hence are infinite (:999199). The constraints of

the model represent the balance equation for each node. Cells tr19:F23 define the left-

hand side and cells G]"9:G23 represent the right-hand side of the flow equations. As
explained in Section 5.3.3,SUMIF is used to generate the proper net flow in each node

using the information in columns I and J. These calculations are automated bY the

6.4

Source
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Spreadsheet. Thus, all you need to do after entering the input data is to update
Changing Cells and Constraints specifications of Solver to match the input data. The
Target Cell remains the same for all input data. In Example 6.3-4,we have

Changing Ce]fs: 82O:839
Constraint s : Fl9 :F23=GL9 :G23

The output in Figure 6.26 yields the solution (Nl-N3 : 1, N3-N4: I,
N4-I\T2 : 1) with a total distance of 55 miles. This means that the optimal route is
1,+3-->4+2.

PRoBLEM sET 6.3E

1. Modify spreadsheet ch6SolverShortestRoute.xls (applied to Example 6.3-4) to find the
shortest route between the following pairs of nodes:
(a) Node 1 to node 5

(b) Node 4 to node 3

2. Adapt spreadsheet ch6SolverShortestRoute.xls for Problem 2, Set 6.3a,to find the short-
est routes between node 4 and node 7.

MAXIMAL FLOW MODEL

Consider a network of pipelines that transports crude oil from oil wells to refineries.
Intermediate booster and pumping stations are installed at appropriate design dis-
tances to move the crude in the network. Each pipe segment has a finite maximum rate
of crude flow (or capacity). A pipe segment may be unidirectional or bidirectional,
depending on its design. A unidirectional segment has a finite capacity in one direction
and a zeío capacity in the opposite direction. Figure 6.27 demonstrates a typical pipe-
line network. How can we determine the maximum capacity of the network between
the wells and the refineries?

The solution of the proposed problem requires converting the network into one
with a single source and a single sink. This requirement can be accomplished by using
unidirectional infinite capacity arcs as shown by dashed arcs in Figure 6.27.

FlGURE 6.27

Capacitated network connecting wells and
refineries through booster stations
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Given arc (i,7) with i < j, we use the notation (e,7, Q) to represent the flow
capacities in the two directions i + jand i -+ l, respectively.To eliminate ambiguity, we

place e ;i on the arc next to node l with Cli placed next to node 7, as shown in Figure
6.28.

FlGURE 6.28

Arc flows Č4 from i --> j ande 1ifrom j -+ i

6.4,1 Enumeration of Cuts

A cut defines a set of arcs which when deleted from the network will cause a complete
disruption of flow between the source and sink nodes. The cut capacity equals the sum

of the capacities of the associated arcs. Among a// possible cuts in the network, the cut
with the smallest capacity gives the maximum flow in the network.

ExampIe 6.4-1

Consider the network in Figure 6.29.The bidirectional capacities are shown on the
respective arcs using the convention in Figure 6.28. For example, for arc (3,4),the flow
limit is ].0 units from 3 to 4 and 5 units from 4 to 3.

FlGURE 6.29

Examples of cuts in flow networks

Figure 6.29 illustrates three cuts whose capacities are computed
table.

in the following

Cut Associated arcs Capacity

6.4.2

Sl

1

2

3

(I,2), (I,3), (I,4)
(1, 3), (1, 4), (2, 3), (2, 5)

(2,5), (3,5), (4, 5)

z0+30+10:60
30+10+40+30:].10
30+Z0*20:70

l

l
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We cannot tell what the maximal flow in the network is unless we exhaustively
enumerate all possible cuts. The only piece of information we can get from the partiál
enumeration of three cuts is that the maximum flow in the network cannot excěed 60
units. Unfortunately, exhaustive enumeration of all cuts is not a simple task, thus mak-
ing it necessary to develop the efficient algorithm in Section 6.4.2.

PRoBLEM sET 6.4A

1. For the network in Figure 6.29,determine two additional cuts, and find their capacities.

6.4.2 Maximal Flow Algorithm

The maximal flow algorithm is based on finding breakthrough pa hs with net positive
flow between the source and sink nodes. Each path commits part or all the capacities
of its arcs to the total flow in the network.

Consider arc (i,7) with (initial) capacities (e ,1,e ).As portions of these capacities
are committed to the flow in the arc, the residuals (or remaining capacities) of the arc
are updated. The network with the updated residuals is referred to as the residue net-
work.We use the notation (c,7, c1,)to represent these residuals.

For a node jthat receives flow from node l, we define a label lri, if,where a, is the
flow from node l to node /. The steps of the algorithm are summ arized as follows.

Step 1. For all arcs (l, i), set the residual capacity equal to the initial capacity-that is
(c,i, ci) : eC,j,e).Let a7 : Ň and label source node 1 with t*, -].Šet l : ]_,

and go to step 2.

Step 2. Determine ,. ; as the set of unlabeled nodes j thatcan be reached directly
from node l by arcs with positive residuals (that is, cu ) 0 for all i e ,Sl). If
Si + g,go to step 3. Otherwise, go to step 4.

Step 3. Determine k eS, such that

Cik : 
T31{./

Set ap : cik and label node k with |oo, il.If k : n,the sink node has been
labeled, and a breakthrough path is found, go to step 5. Otherwise, set i : k,
and go to step 2.

Súep 4. (Backtracking). Ií i : 1, no further breakthroughs are possible;go to step
6. Otherwise,let r be the node that has been labeled immediately before the
current node l and remove l from the set of nodes that are adjacent to r. Set
i : r,and go to step 2.

Step 5. (Determination of Residue Network). Let l/, : (1, kr, kz,... , n)define the
nodes of thepth breakthrough path from source node 1 to sink node n.Then
the maximum flow along the path is computed as

Í, : min{a1, ak,, akr,..., ar}

The residual capacity of each arc along the breakthrough path is de-
creasedby Ío in the direction of the flow and increasedby írin the reverse

:-1orv

1. 'e
gure

piete
Sum

e cut

: the
:lorv

_ 
.,,, ittg



242 Chapter 6 Network Models

direction-that is, for nodes l andi on the path, the residual flow is changed

from the current(c;1, cr) to

(a) (r,i - íp, cli + ír) if the flow is from l toi
(b) (r,i * fp, cli - f) if the flow is from j to i
Reinstate any nodes that were removed in step 4. Set i : I, and return to

síep2 to attempt a new breakthrough path.

(Solution)
(a) Given that m breakthrough paths have been determined, the maximal

flow in the network is

F:ír+íz+ +í*

(b) Given that the initial and finalresiduals of arc (i, j) are given by G,i,e i)
and (ci1, ci), respectively, the optimal flow in arc (,, i) is computed as fol-

lows: Let (a, 9) : (eu _ cij, e ,, - ci). If a } 0, the optimal flow from l

toi is a. otherwise, if B > 0, the optimal flow from jto i is B. (It is

impossible to have both ct and B positive.)

The backtracking process of step 4 is invoked when the algorithm
becomes inadvertently "dead-ended" at anintermediate node before a

breakthrough can be rea\ized.The flow adjustment in step 5 can be

explained via the simple flow network in Figure 6.30. Network (a) gives the

firit breakthrough path l : {L, 2, 3, 4} with its maximum flow fi : 5.

Thus, the residuals of each of arcs (I,2),,(2,3),and (3,4) are changed from
(5,0) to (0,5), per step 5. Network (b) now gives the second breakthrough
path Nz : {!, 3, 2, 4} with f, : 5. After making the necessary flow adjust-

ments, we get network (c), where no further breakthroughs are possible.

What happened in the transition from (b) to (c) is nothing but a cancellation
of a previously committed flow in the direction 2 -->3.The algorithm is able

to "rémember" that a flow from 2to3 has been committed previously only
because we have increased the capacity in the reverse direction from 0 to 5

(per step 5).

Step 6.

[-, -]

[5, 1]

0[5
(4 [-, -]

[5,2)

Path:1- >2-+3-+ 4, fi : 5

(a)

FlGURE 6.30

use of residual to calculate maximum flow

[5,3]

[5, 1]

Path:1+3-+2-->4, íz:5
(b)

2)

No breakthrough

(")
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6.4 Maximal Flow Model

Example 6.4-2

Determine the maximal flow in the network of Example 6.4-1, (Figure 6.29). Figure
6.31- provides a graphical summary of the iterations of lhe algorithm. You *Ítt tiňo it
helpful to compare the description of the iterations with the graphical summary.

í20,3] [*, -] I20,4]

[*, -] Í30,2) [*, _]
Iz0,2)

10
[10,1] 30 10

(c)/3:10

[10,1]

[10,4]

(e)/5:10

FlGURE 6.31

Iterations of the maximum flow algorithm of Example 6.4-2

er
: _,,l1-

_ _:,L i

r--

__:.it]Il
. -l=_ 1!

40

[10,3]

400

(b) f2: I0

30 10

(d)á: 10

(a) f1:20
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Iteration 1. Set the initial residuals (c,i, cňequal to the initial capacities (e 4, e 1).

Step 1_. Set a1 : oo and label node ]. with [*, -].Set l 
: 1.

Step 2. : {2, 3, 4}(+ g).

Step 3. k : 3 because cI3 : max{c,, cs, cry}: _max {20,30,10} : 30. Set 
^

a3 : cI3: 30, and label node 3 with [30, 1]. Set l : 3, and repeat step 2.

Step 2. 53 : (4, 5).

Step 3. k : 5 and a5 : c35: max{10,20} : Z}.Label node 5 with |Z0,3].
Breakthrough is achieved. Go to step 5.

Step 5. Breakthrough path is determined from the labelsstarting at node 5 and end-

i.rg at node Í-that is, (5) -_> |20, 3] -+ (3) - [30, 1] -, (l).Thrr, /v1 : .{1, ?, 5}

and 7, : min{a1, a3,, a5}: { oo , 30,20} : 20.The residual capacities along
path l[ are

(rrr, ,rr): (30 - Z0,0 + 20) : (10, 20)

(r,r, .rr) : (20 - Z0,0 + 20) : (0, 20)

Iteration 2.

Step 1. Set a1 : N, and label node ]. with [*, -].Set 
l : 1.

Step 2. Sl : {2, 3, 4}.

Step3. k:2anda2: cI,: max{20,10, 10} :20.Setl : Z,andrepeat stePZ.

Step 2. 52 : {3, 5}.

Step 3. k : 3 and a3 : c23 : 4}.Label node 3 with I40,2].Set l : 3, and repeat
step 2.

Step 2. S, : {4} (note that ca5: O-hence, node 5 cannot be included in S3).

Step 3. k : 4 and aa : c34: ],0.Labelnode4with [10,3].Set l : 4,andrepeat
step 2.

Step 2. So : {5} (note that nodes ]_ and 3 arc already labeled-hence, they cannot be
included in Sa).

Step 3. k : 5 and a5 : c45 : Z}.Label node 5 with |20,4]. Breakthrough has been
achieved. Go to step 5.

Step 5. Nz : {!, Z, 3, 4, 5) and f2 : min {oo, 20, 40, I0,20} : ].O.The residuals
along the path of N2 are

(rrr, ,rr) : (20 - 10, 0 + 10) : (10, 1_0)

(czz, csz): (40 - 10, 0 + 10) : (30, 10)

(czq, c+z): (10 - ].0, 5 + 10) : (0, 15)

(c+s, cs+) : Q0 - ].0, 0 + 10) : (10, 10)

Iteration 3.

Step 1. Set a1 : oo and label node 1 with [*, -].Set 
l : ]_.

Step 2. St : {2,3, 4).

Step 3. k : 2 and a2 : c12 : max{10, 10, 10} : ].0 (though ties are broken arbi-
trarily,TORA always selects the tied node with the smallest index;we will

s
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6.4 Maximal Flow Model 245

use this convention throughout the example). Label node 2with [10,1]. Set
i : 2, and repeat step 2.

Step 2. ,S2 : {3, 5}.

SteP3. k : 3 anda3 : c23 : 30.Labelnode 3 with |3},Z).Setl : 3,andrepeat
step 2.

Step 2. Sz : Q (because c34 : c35 : 0). Go to step 4 to backtrack.
Step 4. The label I30,Z] at node 3 gives the immediately preceding node r : 2.

Remove node 3 from further consideratíon in this iterationby crossing it out.
Seti : T : Z,andrepeat step2.

Step 2. S, : {5} (note that node 3 has been removed in the backtracking step).
SteP 3. k : 5 and a5 : c25 : 30. Label node 5 with !30,2].Breakthrough has been

achieved;go to step 5.

SteP 5. N_, : {I, 2, 5} and c5 : min {oo, 10, 30} : ].0. The residuals along the path
of A/3 are

(cn, czt): (10 - ].0, 10 + ].0) : (0, 20)

(czs, csz): (30 - ]_0, 0 + 10) : (20, 10)

Iteration 4. This iteration yields 1/+ : {I, 3, 2, 5} with fo : ]_0 (verify!).

Iteration 5. This iteration yields AL : {I, 4,5} with ís : I0 (verify!).

Iteration 6. All the arcs out of node 1 have zero residuals. Hence, no further break-
throughs are possible. We turn to step 6 to determine the solution.

Step6. Maximal flow in the network is F: ír+ íz+ * ís:20 + 10 + 10+
].0 + 10 : 60 units. The flow in the different arcs is computed by subtracting
the last residuals.(r,i:ri) in iterations 6 from the initial capacities (eu, Q), u,
the following table shows.

Arc (C,l,eli) - (c,i, ci)s Flow amount Direction

(I,2) (20, 0) - (0, 20) : (20, -20)
(1,3) (30, 0) - (0, 30) : (30, -30)
(1,4) (10, 0) - (0, 10) : (10, -].0)(2,3) (40, 0) - (40, 0) : (0, 0)
(Z,5) (30, 0) - (10, 20) : (20, -20)(3,4) (10, 5) - (0, 15) : (10, -10)(3,5) (20, 0) - (0,20) : (20, -20)(4,5) (20, 0) - (0, 20) : (20, -20)

20
30
10

0

z0
10

z0
20

I -+2
1+3
1--+4

2--+5
3--+4
3-+5
4-+5

you can use TORA to solve the maximum flow model in an automated mode
or to produce the iterations outlined above. From the sor,vtr/MoDlFy menu select
Solve Prob]_em. After specifying the output format, go to output screen and select
either Maximum Flows or Iterations. Figure 6.32 illustrates the first two iterations of
Example 6.4 -2 (file ch6ToraM axFlo wEx6 -4 -2. txt).
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FlGURE 6.32

TORA s maximum flow iterations for Example 6.4-2

PRoBLEM sET 6.48

1. In Example 6.4-2,

(a) Determine the surplus capacities for all the arcs.

(b) Determine the amount of flow through nodes 2,3,and 4.

(c) Can the network flow be increased by increasing the capacities in the directions
3-+5and4-+5?

2. Determine the maximal flow and the optimum flow in each arc for the network in Figure
6.33.

3. Three refineries send a gasoline product to two distribution terminals through a pipeline
network.Any demand that cannot be satisfied through the network is acquired from
other sources. The pipeline network is served by three pumping stations as shown in
Figure 6.34.The product flows in the network in the direction shown by the arrows.The
capacity of each pipe segment (shown directly on the arcs) is in million bbl per day.

Determine the following:
(a) The daily production at each refinery that matches the maximum capacity of the

network.
(b) The daily demand at each terminal that matches the maximum capacity of the net-

work.
(c) The daily capacity of each pump that matches the maximum capacity of the network.
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FlGURE 6.33

Network for Problem Z-Set 6.4b

FlGURE 6.34

Network for Problem 3, Set 6.4b

Suppose that the maximum daily capacity of pump 6 in the network of Figure 6.34 is lim-
ited to 60 million bbl per day. Remodel the network to include this restriction. Then
determine the maximum capacity of the network.
Chicken feed is transported by trucks from three silos to four chicken farms. Some of the
silos cannot ship directly to some of the farms. The capacities of the other routes are lim-
ited by the number of trucks available and the number of trips made daily. The following
table shows the daily amounts of supply at the silos and demand at the farms (in thou-
sands of pounds). The cell entries of the table specify the daily capacities of the associated
routes.

Farm

1,

Silo 2

J

ions

n Figure

pipeiine
iom
nin
s-sThe
hl.

rf the

ihe net-

: network,

20
20

200

2010

30 5 0 40
0 0 5 90

100 40 30 40
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(a) Determine the schedule that satisfies the most demand.

(b) Will the proposed schedule satisfy all the demand at the farms?

6. In problem 5, suppose that transshipping is allowed between silos ]. and} and silos 2 and

3. Suppose also that transshipping is allowed between farms ]. and 2,2 and 3, and 3 and 4.

The maximum two-way daily capacity on the proposed transshipping routes is 50 (thou-

sand) lb. What is the effect of transshipping on the unsatisfied demands at the farms?

7. A parent has five (teenage) children and five household chores to assign to them. Past

experience has shown that forcing chores on a child is counterproductive.With this in

mind, the children are asked to list their preferences among the five chores, as the follow-

ing table shows:

preferred chore

3,4,or 5

1

Lot2
I,2,or 5

z

The parent's modest goal now is to finish as many chores as possible while abiding bY

the children,s preferences. Determine the maximum number of chores that can be com-

pleted and the assignment of chores to children.

Four factories are engaged in the production of four types of toYs. The following table

lists the toys that can be produced by each factory.

Factory Toy productions mix

Rif
Mai
Ben
Kim
Ken

1

z
J

4

t,2,3
z,3
1,,4

3,4

9.

A1l toys require the same per unit labor and material. The daily capacities of the four

factories are 25O,]_80, 300, and ].00 toys, respectively. The daily demands for the four toYs

are200,150,350, and 100 units, respectively. Determine the production schedules that will

most satisfy the demands for the four toys.

The academic council at the U of A is seeking representation from among six students

who are affiliated with four honor societies. The academic council representation includes

three areas: mathematics, art, and engineering. At most two students in each area can be

on the council. The following table shows the membership of the six students in the four

honor societies:

Society Affiliated students

1

Z

J

4

I,z,3
I,3,5
3,4,5
1-,2,4,6

The students who are skilled in the areas of mathematics, art, and engineering are

shown in the following table:



6.4 Maximal Flow Model

Area skilled students

s]and
: ,nd 4.

:nou-
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:.Jing by
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I the four
Duí toys
i that will
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l includes
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],. -tle

Mathematics
Art
Engineering

,l,,2,4

3,4
4,5,6

A student who is skilled in more than one area must be assigned exclusively to one
area only. Can all four honor societies be represented on the council?
Maximal/Minimal Flow in Networks with Lower Bounds. The maximal flow algorithm
given in this section assumes that all the arcs have zeto lower bounds. In some models, the
lower bounds may be strictly positive, and we may be interested in finding the maximal or
minimal flow in the network (see Comprehensive Problem 6-3).The presence of the
lower bound poses difficulty because the network may not have a feasible flow at all.The
objective of this exercise is to show that any maximal and minimal flow model with posi-
tive lower bounds can be solved using two steps.

SteP 1. Find an initial feasible solution for the network with positive lower bounds.
SteP 2. Using the feasible solution in step 1, find the maximal or minimal flow in the

original network.
(a) Show that an arc (i,i) with flow limite dby li, š xij = uijcaflbe represented equiva-

lentlY by a sink with demand l,,at node i and a source with supply lilatnode7 with
flow limited by 0 = ,',j = uij _ lii.

(b) Show that finding a feasible solution for the original network is equivalent to finding
the maximal flow xu in the network after (1) modifying the bounds on xilto
O ' x'ii = uij - l,i,(2) "lumping" all the resulting sources into one supersource with
outgoing arc capacities li1, (3) "lumping" all the resulting sinks into one supersink
with incoming arc capacities l,,,and (4) connecting the terminal node r to the source
node s in the original network by a return infinite capacity arc. A feasible solution
exists if the maximal flow in the new network equals the sum of the lower bounds in
the original network. Apply the procedure to the following network and find a feasi-
ble flow solution:

Arc (i, j) (l,i, uu)

(I,2)
(1,3)
(2,3)
(2,4)
(3,4)

(5,20)
(0,15)
(4,10)
(3,15)
(0,20)

(c) Use the feasible solution for the network in (b) together with the maximal flow algo-
rithm to determine the minimal flow in the original network. (Hint: First compute the
residue network given the initial feasible solution. Next, determine the maximum
flow from the end node to the start node. This is equivalent to finding the maximum
flow that should be canceled from the start node to the end node. Now, combining the
feasible and maximal flow solutions yields the minimal flow in the original netwoik.)
Use the feasible solution for the network in (b) together with the maximal flow
model to determine the maximal flow in the original network. (Hint:As in part [c],
start with the residue network. Next apply the breakthrough algorithm to the result-
ing residue network exactly as in the regular maximal flow model.)

(d)
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Linear Programming Formulation of the Maximum Flow Model

Define xij as the amount of flow in arc (i,7) and let cilbe the capacity of the same arc.

Assume thut, and t are the start and terminal nodes between which we need to deter-
mine the maximum flow in the capacitated network.

The constraints of the problem preserve the in-out flow at each node, with the

exception of start and terminal nodes. The objective function maximizes either the

total "out" flow from start node s or the total "in" flow to terminal node r.

Example 6.4-3

In the maximum flow model of Figure 6.29 (Example 6.4-2), s : 1 and t : 5. The fol-
lowing table summarizes the associated LP with two different objective functions
depeňding on whether we are maximizing the output from node I (:zr) or the input to
node 5 (:zr).

Xn<XqsílsXs+XzlX,,ít:Xn

!i

Maximize Z1 : 1, I
Maximíze z2:

-0:0
-1 -0

-1
-1,-I

1

Node 2
Node 3

Node 4
-I

1

1

-I
Capacity 1010

The optimal solution using either objective function is

X12 : 20, x3: 30, X,4 : I0, x25 : 20, X34 : l0, 45 : 20, xa5 : 20

The associated maximum flow is Zt : Zz: 60.

PRoBLEM sET 6.4c

1. Rework Problem 2, Set 6.4b using linear programming.

2. Rework Problem 5, Set 6.4b using linear programming.

6.4.4 Excel Spreadsheet Solution of the Maximum Flow Model

The network-based Excel spreadsheet developed for the transportation model
(Section 5.3.3) is modified to determine the maximum flow in a capacitated network.
The spreadsheet is designed for problems with a maximum of ].0 nodes. Figure 6.35

shows the application of the spreadsheet to Example 6.4-2 (file ch6SolverMax
Flow.xls).The capacity flow matrix resides in cells B6:K]_5.aA blank cell in the capacity
matrix indicates that the associated arc has infinite capacity. A zeto entry corresponds
to a nonexisting flow arc. Otherwise, all the remaining arcs must have finite capacities.

Once the flow capacity data have been entered, the remainder of the spreadsheet

(intermediate calculations and optimum solution sections) is created automatically. All

aln Figure 6.35, rows 11 through ]"6 and column K are hidden to conserve space.
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FlGURE 6,35

Excel solver solution of the maximum flow
model of Example 6,4-2

that is needed now is to update Solver parameters to match the input data. Column B
sPecifies the changing cells (arcs flow) of the problem. The range for Changing Cells
must encompass all the arcs specified in column A (make sure that you give each node
a name in the input data matrix, else column A will only show a hyphen in the associ-
ated cells). In the present example, cells B2O:B39 provide Changing Cells range.
Column C specifies the capacities of the arcs of the network (cells C2O:C39)

The constraints of the model represent the flow balance equation for each node.
The LP formulation in Section 6.4.3 shows that it is not necessary to construct flow
equations for the first and last nodes of the network (nodes 1 and 5 in Figure 6.35).
Thus, cells F2O:F22 defíne the left-hand side and cells G2O:G22 represenlthe right-
hand side of the flow equations.
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Based on given information, Solver parameters for the examPle in Figlre 6,26

are entered as

Chanqingi Ce]-]s: 82 0 : B3 9

Constraintsz 
?1Z,,TZ:áZ?',;Z1' lií:,":;i:i::l= for nodes 2, 3, and 4)

Note that Target cell is automated and need not be changed. The Equal to parameter

is Max because this is a maximizationproblem,
The output in Figure 6.35 yields the solution (Nl-Nz : 20, Nl-N3 : 30,

Nl_N4 : 10, N2_N5 : iO,N3_N4 : 10, N3_N5 : z0, N4_N5 : z0) withamaximum

flow of 60 units.

PRoBLEM sET 6.4D

1. Solve Problem 2, Set 6.4b using Excel Solver,

2. Solve Problem 5, Set 6.4b using Excel Solver,

MlNtMUM_cosT CAPAC|TATED FLoW PRoBLEM

The minimum-cos t capacitated flow problem is based on the following assumPtions:

1_. A (nonnegative) unit flow cost is associated with each arc.

2. Arcs may have positive lower capacity limits,

3. Any node in the network may act aS a Source or aS a sink.

The new model determines the flows in the different arcs that minimize the total

cost while satisfying the flow restrictions on the arcs and the supply and demand

amounts at the 
"oa.r. 

We first present the capacitated network flow model and its

equivalent linear programming iormulation. The linear programming formulation is

the basis for the d.u.lop*ent of a special capacitated simplex algorithm for solving

the network flow model. The section ends with a presentation of a sPreadsheet tem-

plate of the minimum-cost capacitated network,

6.5.1 Network Representation

Consider a capacitated network G : (l/, Á), where l/ is the set of nodes, and A is the

set of arcs and define

yii : amount of flow from node l to nodei

u,i(l,i) : upper (lower) capacity of arc (l, 7)

c,i : unit flow cost from node l to node i
f, : net flow at node l

Figure 6.36 depicts these definitions on arc (i, j).The label ffi] assumes a Positive
(negati e) value whén a net supply (demand) is associated with node i,
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Minimum-Cost Capacitated Flow Problem

FlGURE 6.36

Capacitated arc with external flow
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ExampIe 6.5-1

GrainCo supplies corn from three silos to three poultry farms. The supply amounts at
the three silos are ].00, 200, and 50 thousand bushels; and the demand at the three
farms is 150,80, and 120 thousand bushels. GrainCo mostly uses railroads to transport
the corn to the farms, with the exception of three routes where trucks are used.

Figure 6.37 shows the available route between the silos and the farms. The silos are
rePresentqa !y nodes I, 2, and 3 whose supply amounts are [100] , L200], and [50],
resPectively. The farms are represented by nodes 4,5, and,6 whose OernaňO amounts
are [-150], [-80],.3.11 |-]20], respectively. The routes allow transshipping between
the silos. Arcs (I,4), (3,4),, and (4, 6) are truck routes with minimum *a -u^imumcaPacities. For example, the capacity of route (I, 4) is between 50 and 80 thousand
bushels. Al1 other routes use trainloads, whose maximum capacity is practically unlim_
ited. The transportation costs per bushel are indicated on thó respective arcs.

[50]

W,/ (100,120i

(70,Iz0)

Y^,y
[-B0]

FlGURE 6.37

Capacitated network for Example 6.5-1

[-150]
[100]

[200]

$: í-I20]

PRoBLEM sET 6.5A

1. A Product is manufactured to satisfy demand over a 4-period planning horizon according
to the following data:

Period Units of demand Unit production cost ($) Unit holding cost ($)

1

z
J

4

Given that no back-ordering is allowed, represent the problem as a network mode1.
2. In Problem 1, suppose that back-ordering is allowed at a penalty of $1.50 per unit per

period. Formulate the problem as a network model.

100

110
95

I25

24
26
21

24

1

z
1

z
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In Problem 1, suppose that the production capacities of periods I to 4 are 110, 95 ,I25 , and

100 units, respectively, in which case the given demand cannot be satisfied without back-

ordering. Assuming that the penalty cost for back-ordering is $1.50 per unit per period,

formulate the problem as a network model.

Daw Chemical owns two plants that manufacture a basic chemical compound for two

customers at the rate of 660 and 800 tons per month. The monthly production capacity of
plant ]. is between 400 and 800 tons and that of plant 2 is between 450 and 900 tons. The
production costs per ton in plants 1 and 2 are $25 and $28, respectively. Raw material for
the plants is provided by two suppliers, who are contracted to ship at least 500 and 700

tons per month for plants ]. and 2 atthe costs of $200 and $210 per ton, respectively. Daw
Chemical also assumes the transportation cost of both the raw material and the final
compound. The costs per ton of transporting the raw material from supplier 1 to plants 1

andZ are $10 and $12. Similar costs from supplier 2 are §9 and $13, respectively.The

transportation costs per ton from plant ]. to clients 1 and 2 are $3 and $4, and from plant2
costs are $5 and $2, respectively. Assuming that ]. ton of raw material produces ]. ton of
the final compound, formulate the problem as a network model.

Two nonintegrated public schools are required to change the racial balance of their
enrollments by accepting minority students. Minority enrollment must be between30"/"

and,40"/" in both schools. Nonminority students live in two communities, and minority
students live in three other communities. Traveled distances, in miles, from the five com-

munities to the two schools are summarized in the following table:

Round-trip miles from school to

Minority areas Nonminority areas
Maximum

school enrollment

3.

4.

5.

1 1500
2 2000

Student population

20 tz 10

15188
500 450 300

45
65
1000 1000

Formulate the problem as a network model to determine the number of minority
l nonminority students enrolled in each school.

6.5.2 Linear Programmin9 Formulation

The formulation of the capacitaíed network model as a linear program provides the

foundation for the development of the capacitated simplex algorithm, which we will
present in the next section. Using the notation introduced in Section 6.5.]., the linear
program for the capacitated network is given as

Minimize z : >2r,,*,,
(i, i)eA

subject to

2*,r- 2r,, :fi,jeN
ki

Q, k)eA (i, j)eA

l,j <x,i =uii

-čr_
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The equation for node i measures the net flow f in node i as

(Outgoing flow from node 7) - (Incoming flow into node j) : íi
Nodei actsasasourcelf f,> 0andasasinkif 

' 
< 0.

We can always remove the lower bound lilfrom the constraints by using the sub-
stitution

vii :x',, *li1

The new flow variable, x'il,has an upper limit oí ui1 - /u. Additionally, the net flow
at node i becomes l - li1, and that at node j is íi + /u. Figure 6.38 shows the transfor-
mation of activity (i, j) after the lower bound is substituted out.

V1+ t,,1 FlGURE 6.38

Removal of the lower bound in arcs

Example 5.5-2

Write the linear program for the network in Figure 6.37, before and after the lower
bounds are substituted out.

The main constraints of the linear program relate the input-output flow at each
node, which yields the following LP:

_1 ,''o

,}
,-..rm-

XseX+6í:sX:+XuXrXn

Vil c. ^ Vj] V,- liJH__*o-\:-/ 0;1. u,,) \

Minimize

des the
we will
: linear

Node 1

Node 2

Node 3

Node 4

Node 5
Node 6
Lower bounds
Upper bounds

I
-1

100
: 200
:50
:-150
: -80:-1z0

-1
I

-1

0
oo

I
-I-I

1

-1 -l
100 0
r20 oo

-1

0700
oo 120 oo

-1

050
oo 80

0
oo

Note the arrangement of the constraints coefficients. The column associated with
variable xu has exactly one i1 in row i and one -]. in row/. The rest of the coefficients
are 0. This structure is typical of network flow models.

The variables with lower bounds are substituted as

xI4: y|ro + 50

x34: x\a * 70

x46: xou + 100
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The resulting linear program is

XsaXqsXzsXzlXzsXzsXtlXl,zXlz

Minimize

Node ].

Node 2
Node 3

Node 4
Node 5

Node 6
Upper bounds

1

-1

:50
: 200
: -20
: -].30

]. : -80
-1 : -20
oo

-1
I

-1,

oo

1

-I

50

1

-I
20

-L
-1-1

The corresponding network after substituting out the lower bounds is shown in
Figure 6.39. NÓte thai the lower-bound substitution can be effected directly from
Filure 6.37 using the substitution in Figure 6.38, and without the need to express the
problem as a linear program first.

FlGURE 6.39

Network of Example 6.5-2 after [50]
substituting out lower bounds

[200]

$t
t-

1 4

) \H-Ň 6,
,Y

[-80]

$: |-20]

Example 6.5-3 (Employment Schedulin9)

This example illustrates a network model that initially does not satisfy the "node flolil"
requirement (i.e., node output flow less node input flow equals node net flow), but that
can be converted to this form readily through special manipulation of the constraints
of the linear program.

Tempo Employment Agency has a contract to provide workers over the next 4
months Qanuary to April) according to the following schedule:

Month Feb. Apr.

No. of workers 100

Because of change in demand, it may be economical to retain more workers than
needed in a given month. The cost of recruiting and maintaining a worker is a function
of their employment period as the following table shows:

Employment period (months)

Cost per worker ($)

Mar.Jan.

170120

180130100

256

4

z20



=50
= ]00
= -20
=-130
= -80
= -20
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Let
vii : number of workers hired at the start ofmonth i and terminated at the

start of month i
For example,xpgives the number of workers hired in January for 1 month only.

To formulate the problem as a linear program for the 4-month period, we add May
as a dummy month (month 5), so that xa5 defines hiring in April for April. The con-
straints recognize that the demand for period k can be satisfied by all xi1 such that
i = k < j.Lettiflg ; > 0 be the surplus number of workers in month l, the linear pro-
gram is given as

Xn Xn Xu Xts Xzz Xzl Xll .,Sj,l1í:s
,,*,n in
from

:šS the
Minimize 100 130 180 2Z0 100 130 180 100 130 100

Jan.
Feb.
Mar.
Apr.

-I

:100
:I20
:80

-1 :I70

'_ -l tl-)

; :-1orr,"

*1 that
i.i.liÍltS

:-\t .4

The preceding LP does not have the (-1, +1) special structure of the network
flow model (see Example 6.5-2). Nevertheless, the given linear program can be con-
verted into an equivalent network flow model by using the following arithmetic
manipulations:

In an rr-equation linear program, create a new equation, n * I, by multiplying
equation nby -1,.
Leave equation 1 unchanged.
For l : 2, 3, ..., fl,replace each equation i with (equation l) - (equation i - 1).

The application of these manipulations to the employment scheduling example
yields the following linear program whose structure fits the network flow model:

Xl,z Xr Xu Xs Xzz Xz+ Xzs Xlq í:s ,í1

7

3.

j.92

Minimize 100 130 180 220 100 130 180 100 130 100

Jan,
Feb.
Mar.
Apr.
May

1

-l 1

-1

-1 100
L-1,:20

1, -1, : -40
11-1 90

-1 I :-I70
-1

1

-I:s than
::,-tion -1

Using the preceding formulation, the employment scheduling model can be repre-
sented equivalently by the minimum-cost flow network shown in Figure 6.40.Actually,
because the arcs have no upper bounds, the problem can be solved also as a transship-
ment model (see Section 5.5).
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FlGURE 6.40

Network representation
of employment scheduling
problem

PRoBLEM sET 6.58

1. Write the linear program associated with the minimum-cost flow network in Figure 6.41,
before and after the lower bounds are substituted out.

í20]

[-40]

6.5.3 c
T
tc

tt

F|GURE 6.41 [50]

Network for Problem ]., Set 6.5b

[-30](0, *) (10, *;

Use inspection to find a feasible solution to the minimum-cost network model of the
employment scheduling problem in Example 6.5-3 (Figure 6.40).Interpret the solution by
showing the pattern of hiring and firing that satisfies the demand for each month, and
compute the associated total cost.

Reformulate the employment scheduling model of Example 6.5-3, assuming that a
worker must be hired for at least2 months. Write the linear program, and convert it to a
minimum-cost flow network.
Develop the linear program and the associated minimum-cost flow network for the
employment scheduling model of Example 6.5-3 using the following S-month demand
data. The per worker costs of recruiting and maintaining a worker for periods of 1 to 5
months are $50, $70, $85, $100, and $130, respectively.

\t
ní
ni
So

siI
th

St

St,
(a)

Month t 2 3

No. of workers 300 ],80 90 170

Month

No. of workers

Str

(b)

n-
inc
sp(

240

z00

200 220



,- ,l
-,l

6.5 Minimum-Cost Capacitated Flow Problem 259

Conversion of a Capacitated Network into an (Jncapacitated Network. Show that an arc
(i -+ j)with capacitated flow x,7 3 urjcanbe replaced with two uncapacitated arcs (i + k)
and (7 + k)with a net (output) flow of.|-u,,] at node k and an additional (input) flow of
|+u,,] at node i. The result is that the capacitated network can be converted to an
uncapacitated transportation cost model (Section 5.1). Apply the resulting transformation
to the network in Figure 6.42 andfind the optimum solution to the original network by
applying TORA to the uncapacitated transportation model.

#hr-"
1 4

ůL \

ď
3

FlGURE 6.42

Network for Problem 5. Set 6.5b

[100] [-100]

^ ,]
- .-l.

he
rtion b1-

end

6.5.3 Capacitated Network Simplex Algorithm

The algorithm is based on the exact steps of the regular simplex method, but designed
to exploit the special network structure of the minimum-cost flow model.

Given l is the net flow at node l as defined in the linear program of Section 6.5.2,
the capacitated simplex algorithm stipulates that the network must satisfy

ží,: o
i:1,

The condition says that the total supply in the network equals the total demand.
We can always satisfy this requirement by adding a balancing dummy source or desti-
nation, which we connect to all other nodes in the network by zero unit cost and infi-
nite capacity arcs. However, the balancing of the network does not guarantee a feasible
solution as this depends on the restricting capacities of the arcs.

We will now present the steps of the capacitated algorithm. Familiarity with the
simplex method and duality theory (Chapters 3 and 4) is essential. Also, knowledge of
the upper-bounded simplex method (Section 7.3) is helpful.

Step 0. Determine a starting basic feasible solution (set of arcs) for the network. Go
to step 1.

Step 1. Determine an entering arc (variable) using the simplex method optimality
condition. If the solution is optimal, stop;otherwise, go to step 2.

Step 2. Determine the leaving arc (variable) using the simplex method feasibility
condition. Determine the new solution, and then go to step 1.

An zr-node network with zero net flow (i.e., fl + íz + l í, : 0) consists of
n - l independent constraint equations. Thus, an associated basic solution must
include n - 1, arcs. It can be proved that a basic solution always corresponds to a
spanning tree of the network (see Section 6.2).
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The entering arc (step 1) is determined by computing z;1 - cij,the objective coef-

ficients, for all the current nonbasic arcs (i, j).If zi1 - ci1 = 0 for all l and j, the current

basis is optimum. Otherwise, we select the nonbasic arc with the most positive zii - Cij

to enter the basis.
The computation of objective coefficients is based on duality, exactly as we did

with the transportation model (see Section 5.3.4). Using the linear program defined in

Section 6.5.z,let wibe the dual variable associated with the constraint of node l; then

the dual problem (excluding the upper bounds) is given as

Maximize , : ií,r,
i--I

subject to
wi- wj = r,j,(i,, j)eA

}/; llilíestricted in sign, i : I, 2, . . . n

From the theory of linear programming, we have

wi - wj : cij, forbasic arc(i, j)

Because the original linear program (Section 6.5.2) has one redundant constraint by

definition, we can assign an arbitrary value to one of the dual variables (comPare with

the transportation algorithm, Section 5.3). For convenience, we will set 'il1,: 0. We

then solvó tt 
" 

(basic) equations wi - wi : ctito determine the remaining dual values.

From Section 4.z.3,Method Z,we know that the objective coefficient of nonbasic xu is

the difference between the left-hand side and the right-hand side of the dual associ-

ated dual constraint-that is

Zij -Cij :Wi-Wj -Cij

The only remaining detail is to show how the leaving variable is determined. We

do so by using a numeric example.

Example 6.5-4

A network of pipelines connects two water desalinization plants to two cities. The daily
supply amounts at the two plants are 40 and 50 million gallons, and the daily demand
amóunts at cities ]_ and 2 are 30 and 60 million gallons.I'{odes ]. and 2 represent plants 1

and Z,and nodes 4 and 5 represent cities ]. and 2. Node 3 is a booster station between
the plants and the cities. The model is already balanced because the supply at nodes 1

and'Z equals the demand at nodes 4 and 5. Figure 6.43 gives the associated network.

[1tt1

FIGURE 6.43 l
Network for Example 6.5-4

Plant 1 [40]

Plant 2 [50]

[-30] City 1

[-60] City 2

Unit cost 1 Arc capacity

'r' l' /

ó' $1 '9
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6.5 Minimum-Cost Capacitated Flow Problem 261

Iteration 0.

Step 0. Determinatiorl of a Starting Basic Feasible Solution: The starting feasible
spanning tree in Figure 6.44 (shown with solid arcs) is obtained by inspection.
Normally, we use an artificial variable technique to find such a solution (for
details, see Bazaraa et aI.,1990,pp.aaO-aQ.

wl: -5

[-30] zn - cQ- 0 - (_5) _3 :2
zzs - czs - -5 - (-15) -1-: 9
zqs-c$--5-(-15)-4:6

m) Arc (2,5) reaches upper bound at 30.

Substitute x25: 30 - xsz.

Reduce x7 and \5 each by 30.

[-60]
15

30(35)

1w3--l

FlGURE 6.44

Network for iteration 0

In Figure 6.44, the basic feasible solution consists of (solid) arcs (]., 3), (1,,4), (Z,3),
and (3, 5) with the feasible flows of 10, 30, 50, and 60 units, respectively. This leaves
(dashed) arcs (]-, 2), (2,5), and (4, 5) to represent the nonbasic variables. The notation
x(c) shown on the arcs indicates that a flow of x units is assigned to an arc with capacity
c. The default values for x and c are 0 and oo, respectively.

Iteration 1.

Step 1. Determination of the Entering Arc: We obtain the dual values by solving the
current basic equations

Wl:0
wi - w j : cij, for basic (i, 7)

We thus get,

Arc (1_, 3) : w1 - w3: 7, henca w, : -'7
Arc (1-, 4) : w1 - w4: 5, hence wo : -5
Arc (2, 3) : w2 - w3 : 2, hencl w, : -5
Arc (3, 5) : w3 - w5 : 8, henca w, : -15

Now, we compute zi1 - c;lfot the nonbasic variables as

Arc(1, 2): w1 - w2 - cn: 0 - (-5) - 3 :2
ArcQ.,, 5) : w2 - w5 - czs: (-5) - (-15) - 1, : 9

Arc(4,5): wa - w5 - cqs: (-5) - (-15) - 4: 6

Thus, arc (2,5) enters the basic solution.

wl: 0

[40]

[50]

I

I

l

$4 l

I

I

I

I

I

I

I

$3 I

I

I

I

I

u2: -5
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Step 2. Determination of the Leaving Arc: From Figure 6.44,arc (2,5) forms a loop
with basic arcs (2,3) and (3, 5). From the definition of the spanning tree, no
other loop can be formed. Because the flow in the new arc (2,5) must be
increased, we adjust the flow in the arcs of the loop by an equal amount to
maintain the feasibility of the new solution. To achieve this, we identify the
positive (+) flow in the loop by the direction of flow of the entering arc (i.e.,
from 2 to 5). We then assign (+) or (-) to the remaining arcs of the loop,
depending on whether the flow of each arc is with or against the direction of
flow of the entering arc. These sign conventions are shown in Figure 6.44.

Determination of the maximum level of flow in the entering arc (2,5) is based on
two conditions:

1. New flow in current basic arcs of the loop cannot be negative.
2. New flow in the entering arc cannot exceed its capacity.

The application of condition ]. shows that the flows in arcs (2,3) and (3,5) cannot
be decreased by more than min {50, 60} : 50 units. Condition 2 stipulates that the
flow in arc (2,5) can be increased to at most the arc capacity (:30 units). Thus, the
maximum flow change in the loop is min {30, 50} : 30 units.The new flows in the loop
are thus 30 units in arc (2, 5),50 - 30 : 20 units in arc (Z,3),and 60 - 30 : 30 units
in arc (3,5).

Because none of the current basic arcs leave the basis at zeto level, the new arc (2,
5) must remain nonbasic at the upper bound. However, to avoid dealing with nonbasic
arcs that are at capacity (or upper bound) level, we implement the substitution

X25 :30 - Xsz,0 = X52 < 30

This substitution is effected in the flow equations associated with nodes 2 and 5 as fol-
lows. Consider

Current flow equation at node 2: 50 l xn: x23 l xzs

Current flow equation at node 5: x25 l xzs l x+s : 60

Then, the substitution x25 : 30 - x52 $ives

New flow equation at node 2:20 * xr, * xsz: x23

New flow equation at node 5: 45 l xqs : x52 + 30

The results of these changes are shown in Figure 6.45.The direction of flow in arc
(2,5) is now reversed to 5 + 2 with x52 : 0, as desired. The substitution also requires
changing the unit cost of arc (5, 2) to -$t. We will indicate this direction reversal on
the network by tagging the arc with an asterisk.

Iteration 2. Figure 6.45 summarizes the new values of zii - c4 (verify!) and shows
that arc (4,5) enters the basic solution. It also defines the loop associated with the new
entering arc and assigns the signs to its arcs.

The flow in arc (4,5) can be increased by the smallest of

1. Maximum allowable increase in enteringarc(4, 5): oo

2. Maximum allowable increase in arc (I, 4): 35 - 30 : 5 units

['t,lL- ]

'..

u

t40] (

$:

U1

rrr (

S3

t201 (
u1=
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-| tUt: 0

30(35)

l-,
V-,.-l

r Z_]- l

w3: -7

(30)*

w+: -5

I

I

I

$+ t 1-;
I

I

I

O@t

[-30]

[-30]
15

5(*)

3. Maximum allowable decreasein arc (1, 3) : ].0 units
4. Maximum allowable decreasein arc (3, 5) : 30 units

Thus, the flow in arc (4,5) can be increased to 5 units, which will make (4,5) basic
and will force basic arc (1_, 4) to be nonbasic at its upper bound ( : 35).

Using the substitution x14: 35 - xal,the network is changed as shown in Figure
6.46,with arcs (1,3), (2,3), (3,5), and (4,5) forming the basic (spanning tree) solution.
The reversal of flow in arc (1, 4) changes its unit cost to -$S. Also, convince yourself
that the substitution in the flow equations of nodes ], and 4 will net 5 input units at each
node.

w+: -II

ZD-Cn-0- (-5)-3:2
zsz- csz: -].5 -(-5) -(_1) : *9
zqs * c$ - -5 - (-15) -4:6
Arc (4,5) enters at level5.

Arc (1,4) leaves at upper bound.

Substitute xy: 35 - x41,

Reduce x13 and x35 each by 5.

Zlz-Ctz-0-(-5)-3:2
Zu,- cq1,: -],]. -0 _(_5) : -6
Zsz- csz: -15 _ (_5) _(_1): _9

Arc (1,2) enters at level5.

Arc (1,,3) leaves at level0,

Increase xpby 5.

FlGURE 6.45

Network for
iteration ].

FlGURE 6.46

Network for iteration 2

t5]

[-30]
t|5 : -15

Iteration 3. The computations of the now zi1 - cilfor the nonbasic arcs (I,2),(4,I),,
and (5,2) are summarized in Figure 6.46,which shows that arc (I,2) enters at level 5,
and arc (1,3) becomes nonbasic at level 0. The new solution is depicted in Figure 6.47.

Iteration 4. The new zij - cij in Figure 6.47 shows that the solution is optimum.
The values of the original variables are obtained by back substitution as shown in
Figure 6.47.

l20]

I

I

I

$3 l

I

I

I

I

[40]

u2: -5

u\,: 0

t5]

í20]

l

l

I

$3 l

I

I

I

a-

w2: -5
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(35)*
Zs- cB:0 - (-5) _7 : _2

Zq- cn: -9 -0 -(-5) : -+
z5z - c5z: -13 - (-3) _(-1) : -9

Optimum solution:
XIz: 5, í13 : 0

x14:35-0:35
X7:25
x25:30-0:30
X35: 25, X45: 5

Total cost : $490

:0 w4: -9

;x
5(*)

[20] (30)*

FlGURE 6,47

Network for iteration 3

[-30]
ws: -I3

6.5.1

%.

PRoBLEM sET 6.5c

Solve problem 1, Set 6.5a by the capacitated simplex algorithm, and also show that it can

be solved by the transshipment model.

Solve problem 2, Set 6.5a by the capacitated simplex algorithm, and also show that it can

be solved by the transshipment model.

Solve Problem 3, Set 6.5a by the capacitated simplex algorithm.

Solve Problem 4, Set 6.5a by the capacitated simplex algorithm.

Solve Problem 5, Set 6.5a by the capacitated simplex algorithm.

Solve the employment scheduling problem of Example 6.5-3 by the capacitated simplex

algorithm.

7. Wyoming Electric uses existing slurry pipes to transport coal (carried by pumped water)

from three mining areas (L,Z,and 3) to three power plants (4,5, and 6). Each pipe can

transport at most ].0 tons per hour. The transportation costs per ton and the supply and

demand per hour are given in the following table.

Supply

Demand

Determine the optimum shipping schedule.

The network in Figur e 6.48 gives the distances among seven cities. Use the capacitated

simplex algorithm to find the shortest distance between nodes 1 and 7. (Hint: Assume
that nodes ]. and 7 have net flows of [+1] and [-1_], respectively. A1l the other nodes have

zero net flow.)

Show how the capacitated minimum-cost flow model can be specialized to represent the

maximum flow model of Section6.4.Apply the transformation to the network in
Example 6.4-2.For convenience, assume that the flow capacity from 4 to 3 is zero. All the

remaining data are unchanged.

3.

4.

5.

6.

1

2

J

8

10

18

9.

$+

$tz
$s

$s $s
$0 $q

$: $t

t5]
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FlGURE 6,48

Network for Problem 8, Set 6.5c

6.5.4 Excel Spreadsheet Solution of the Minimum-Cost Capacitated
Flow Model

As in the cases of the shortest-route and maximum flow models, the Excel spreadsheet
developed for the general transportation model (Section 5.3.3) applies readily to the
capacitated network flow model. Figure 6.49 shows the application of the spreadsheet
to Example 6.5-4 (file ch6SolverMinCostCapacitatedNetwork.xls).Th" spreadsheet is
designed for networks with a maximum of 10 nodes. In the capacity matrix (cells
N6:W15),5 a blank entry signifies an infinite capacity arc. A nonexisting arc is repre-
sented by a zero-capacity entry. As an illustration, in Example 6.5-4, infinite capacity
arc I-2 is represented by a blank entry in cell 06, and nonexisting arc 3-4 is shown by a
zero entty in cell Q8. The unit cost matrix resides in cells B6:K15. We arbitrarily assign
zero unit cost to all nonexisting arcs.

Once the unit cost and capacity matrices are created, the remainder of the
spreadsheet (intermediate calculations and optimum solution sections) is created auto-
matically, delineating the cells needed to update Solver parameters for Changing Cells
and Constraints. Target Cell is already defined for any network (with 10 nodes or less).
Specifically, for Example 6.5-4,we have,

Changing ceffs: 820 :839
Constraints: 82O:839<=C2O:C39 (Arc capacity)

FL9:F23=Gl9 zG23 (Node flow equation)

Figure 6.49 provides the following solution:Nl-N2 : 5,N].-N4 : 35,N2-N3 : 25,
I{2-N5 : 30, N3-N5 : 25,and N4-N5 : 5. The associated total cost is $490.

PRoBLEM sET 6.5D

1. Solve the following problem using the spreadsheet in Section 6.5.4:

(a) Problem 3, Set 6.5c

(b) Problem 4, Set 6.5c

5In Figure 6.49, rows 11 through 15 and column K are hidden to conserve space.
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FlGURE 6.49

Excel Solver output for
Example 6.5-4

(c) Problem 7, Set 6.5c

(d) Problem 8, Set 6.5c

6.6 cPM AND PERT

CpM (Critical path Method) and PERT (Program Evaluation and Review Technique)

are network_based methods designed to assist in the planning, scheduling, and control of

projects. A project is defined as a collection of interrelated activities with each activitY

óonsuming ii*" and resources. The objective of CPM and PERT is to Provide analYtic

means foischeduling the activities. Figure 6.50 summarizes the steps of the techniques.

First, we define the activities of the project, their precedence relationshiPs, and their

f---
1 Prc

L T1,

6.6.1
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6.6 CPM and PERT

FlGURE 6.50

Phases for project planning
with CPM-PERT

time requirements. Next, the project is translated into a network that shows the prece-
dence relatioňships among the activities. The third step involves specific network com-
putations that form the basis for the development of the time schedule for the project.

During the execution of the project, the schedule may not be realized as planned,
causing some of the activities to be expedited or delayed. In this case, it will be neces-
sary to update the schedule to reflect the realities on the ground. This is the reason for
including a feedback loop between the time schedule phase and the network phase as
shown in Figure 6.50.

The two techniques, CPM and PERT, which were developed independently, dif-
fer in that CPM assumes deterministic activity durations, whereas PERT assumes
probabilistic durations. This presentation will start with CPM and then provide the
details of PERT.

6.6,1 Network Representation

Each activity of the project is represented by an arc pointing in the direction of
progress in the project. The nodes of the network establish the precedence relation-
ships among the different activities of the project.

Two rules are available for constructing the network.

Rule 1. Each activity is represented by one, and only one, arc.
Rule 2. Each activity must be identified by two distinct end nodes.

Figure 6.51 shows how a dummy activity can be used to represent two concurrent
activities, A and B. By definition, a dummy activity, which normally is depicted by a
dashed arc, consumes no time or resources. Inserting a dummy activity in one of the
four ways shown in Figure 6.51,,,we maintain the concurrence of.A and, B, and also pro-
vide unique end nodes for the two activities (to satisfy rule2).

Rule 3. To maintain the correct precedence relationships, the following questions must
be answered as each activity is added to the network:
(a) what activities must immediately precede the current activity?
(b) What activities must follow the current activity?
(c) What activities must occur concurrently with the current activity?

.: _- _ ,_-, _

-.....'

-_:_ ,_!

'--..-.

?l xl

{=
=i l
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FlGURE 6.51

Use of dummy activity to produce unique representation of concurrent activities A and B

The answers to these questions may require the use of dummy activities to ensure

correct precedences among the activities. For example, consider the following Segment

of a project:

1. Activity C starts immediately after A and B have been completed.

2. Activity E starts after B only has been completed.

part (a) of Figure 6.52 shows the incorrect representation of the precedence relation-

ship beca.r." it requires both A andB to be completed before E can start. In Part (b),

the use of a dummy activity rectifies the situation.

FlGURE 6,52

Use of dummy activity to ensure
correct precedence relationship

Example 6.6-1

A publisher has a contract with an author to publish a textbook.The (simplified) activ-
itiós associated with the production of the textbook are given below. DeveloP the asso-

ciated network for the project.

Activity Predecessor(s) Duration (weeks)

Manuscript proofreading by editor
Sample pages prepared by typesetter
Book cover design
Preparation of artwork for book figures
Author's approval of edited manuscript
and sample pages A,B

(a)

J

2
4

J

A:
B:
C:

D:
E:

ID

---- i -------l
I

'....*I

I

^P,r /&Ol-ě ó' ,,b
I

-_--l



6.6 CPM and PERT 269

F: Book typesetting
G: Author checks typeset pages
,É1: Author checks artwork
I: Production of printing plates
]: Book production and binding

_ $gure 6.53 provides the network describing the precedence relationships among
the different activities. Dummy activity (2,3) produces unique end nodes for concur_
rent activities Á and B. The numbering of the nodes is done in a manner that indicates
the direction of progress in the project.

FlGURE 6.53

Project network for Example 6,6-I

PRoBLEM sET 6.6A

1. Construct the project network comprised of activities Á to t with the following prece-
dence relationships:
(a) A, B, and C, the first activities of the project, can be executed concurrently.
(b) A and B precede D.
(c) B precedes E, F, and H.
(d) Fand C precede G.

(e) Eand /precede Iandl.
(0 C, D, 4 and -I precede K.
(g) K precedes l,.
(h) I, G, and L are the terminal activities of the project.

2. Construct the project network comprised of activities Á to P that satisfies the following
precedence relationships:
(a) A, B, and C, the first activities of the project, can be executed concurrently.
(b) D, E, andFfollowá.
(c) Iand G follow both B and D.
(d) 11follows both C and G.
(e) K and l, follow I
(f) " succeeds both E and H.
(g) M andNsucceed 4 but cannot start until both E and H are completed.
(h) O succeeds M and I.

(i) P succeeds J, L, and O.

0) K, N, and, P are the terminal activities of the project.

2

2
I
2

4

E
F
D
G,H
C,I

)nsure
Ement

Jtion-
l: (b).

:ati\'-
r JSSO-
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The footings of a building can be completed in four connected sections. The activities for
each section include (1) digging, (2) placing steel, and (3) pouring concrete. The digging of
one section cannot start until that of the preceding section has been completed. The same
restriction applies to pouring concrete. Develop the project network.

In Problem 3, suppose thatI}"/o of the plumbing work can be started simultaneously with
the digging of the first section. After each section of the footings is completed, an addi-
tional 5% of.the plumbing can be started provided that the preceding 5% portion is com-
pleted. The remaining plumbing can be completed at the end of the project. Construct the
project network.

An opinion survey involves designing and printing questionnaires, hiring and training
personnel, selecting participants, mailing questionnaires, and analryzing the data.
Construct the project network, stating all assumptions.

The activities in the following table describe the construction of a new house. Develop
the associated project network.

Activity Predecessor(s) Duration (days)

A: Clear site
B: Bring utilities to site
C: Excavate
D: Pour foundation
E: Outside plumbing
F: Frame house
G: Do electric wiring
,É1: Lay floor
I: Lay roof
J: Inside plumbing
K: Shingling
L: Outside sheathing insulation
M: Install windows and outside doors
M Do brick work
O: Insulate walls and ceiling
P: Cover walls and ceiling
Q: Insulate roof
R: Finish interior
S: Finish exterior
T: Landscape

A
C
B,C
D
F
G
F
E,H
I
F,J
F
L,M
G,I
o
LP
P
I,N
s

1

z
1,

2
6

10
aJ

1

1

5

2
1

2

4

2

2

1,

7

7
aJ

7. A company is in the process of preparing a budget for launching a new product. The fol-
lowing table provides the associated activities and their durations. Construct the project
network.

Activitv Predecessor(s) Duration (days)

Forecast sales volume
Study competitive market
Design item and íacilities
Prepare production schedule
Estimate cost of production
Set sales price
Prepare budget

10

7

5

J

2

1

1,4

A
C
D
B,E
E,F
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The activities involved in a candlelight choir service are listed in the following table.
Construct the project network.

Activity Predecessor(s) Duration (days)

271

/: Select music
B: Learnmusic
C: Make copies and buy books
D: Tryouts
E: Rehearsals
F: Rent candelabra
G: Decorate candelabra
,F1: Set up decorations
I: order choir robe stoles
J: Check out public address system
K: Select music tracks
L: Set up public address system
M: Fina]' rehearsal
lť: Choir party
O: Final program

A
A
B,C
D
D
F
D
D
D
J
K
E,G,L
H,L,M
I,N

2

L4
14

J

70
I4

1

1

7
,7

I4
1

t
I
1

The widening of a road section requires relocating ("reconductoring") ].700 feet of 13.8-
kV overhead primary line. The following table summarizes the activities of the project.
Construct the associated project network.

Activity Predecessor(s) Duration (days)

A: Iobreview
B: Advise customers of temporary outage
C: Requisition stores

D: Scoutjob
E: Secure poles and material
F: Distribute poles
G: Pole location coordination
-F1: Re-stake
I: Dig holes
J: Frame and set poles
k: cover old conductors
L: Pull new conductors
M: Install remaining material
M Sag conductor
O: Tiim trees
P: De-energize and switch lines

Q: Energize and switch new line
R: Clean up
S: Remove old conductor
T: Remove old poles
u: Return material to stores

aJ

4

1,

2

2

z
2

.1

.5

1

I
2

2

A
A
A
C,D
E
D
G
H
nI
F,I
J,K
L
L
D
B,M,N,o
P
a
O
s
R,T

.5

1

.5

J

3,5

.5

.5

10. The following table gives the activities for buying a new car. Construct the project net-
work.
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Activity Predecessor(s) Duration (days)

Á: Conduct feasibility study
B: Find potential buyer for present car

C: List possible models
D: Research all possible models
E: conduct interview with mechanic
F: Collect dealer propaganda
G: Compile pertinent data
11: Choose top three models
I: Test-drive all three choices
J: Gather warranty and financing data

k: choose one car
.L: choose dealer
M: Search for desired color and options
N: Test-drive chosen model once again
o: purchase new car

6.6.2 Critical Path (CPM) Computations

The ultimate result in CPM is the construction of the time schedule for the project (See

Figure 6.50). To achieve this objective conveniently, we caffy out special computations

that produce the following information:

1. Total duration needed to complete the project

2. Classification of the activities of the proje ct as critical and noncritical

An activity is said to be critical if there is no "leeway" in determining its start and

finish times. A noncritical activity allows some scheduling slack, so that the start time

of the activity may be advanced or delayed within limits without affecting the comple-

tion date of the entire project.
To carry out the necessary computations, we define an event as a point in time at

which activities are terminated and others are started. In terms of the network, an

event corresponds to a node. Define

Q : Earliest occurrence time of event i
A,, : Latest occurrence time of event i
Pii : Duration of activity (l, 7)

The definitions of the earliest and latest occurrence times of event j are specified rela-

tive to the start and completion dates of the entire project.
The critical path calculations involve two passes: The forward pass determines

the earlie, / occurrence times of the events, and the backward pass calculates their latest

occurrence times.

Forward Pass (Earliest Occurrence Times, E). The computations start at node 1 and

advance recursively to end node n.

aJ

I4
1

J

I
2
1

1

J

z
2
2

4
1

J

A
A
C
C
C
D, E,
G
H
H
I,I
K
L
L
B, M,
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Initial Step. Set !1 : 0 to indicate that the project starts at time 0.

General Stepi. Given that nodes p, !l, ... , and v are linked directly to nodei by
incoming activities (p, j), (q, j),... , and (v, j) andthat the earliest occurrence
times of events (nodes) p, Q,, ... , and y have already been computed, then
the earliest occurrence time of eventi is computed as

Q: maxflo l Dpl,J, l Dq1, ..., !, + D,}

The forward pass is complete when J,at node n has been computed. By def-
inition Q represents the longest path (duration) to node i.

Backward Pass (Latest Occurrence Times, A). Following the completion of the for-
ward pass, the backward pass computations start at node n and end at node ]_.

Initial Step. Set An : J,to indicate that the earliest and latest occurrences of the last
node of the project are the same.

General Stepj. Given that nodes p, Q,... , and v ate linked directly to nodei by
outgoing activities (j,, p), (j, q),. . . , and (j, ,) and that the latest occurrence
times of nodes p, Q,... , and y have already been computed, the latest occur-
rence time of node i is computed as

Ai : min{A, - Djr, 
^q 

- Djr,..., Au - Di,}

The backward pass is complete when 41 at node 1 is computed.

Based on the preceding calculations, an activity (a 7) will be critical lf it satisfies
three conditions.

1-. A; : !;
2,Ai:Q,
3. Al-A;:Jj -Ji:Dij

The three conditions state that the earliest and latest occurrence times of nodes i and j
are equal, and the duration D,,fits "tightly" in the specified time span. An activity that
does not satisfy all three conditions is noncritical.

The critical activities of a network must constitute an uninterrupted path that
spans the entire network from start to finish.

Example 6.6-2

Determine the critical path for the project network in Figure 6.54. Al1 the durations are
in days.

Forward pass

Node 1. Set !, : 6
Node2. l.2: !r i Dn:0 * 5:5
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Node 3.

Node 4.

Node 5.

Node 6.

FlGURE 6.54

Forward and backward
pass calculations for the
project of Example 6.6-2

The computations show that the project can be completedin25 days.

Backward pass

Node 6. Set 46 : Do : 25

Node5. As : A6 - Dss : 25 - 12 : t3
Node4. A+:min{A6 -Dou, A5- Dor): min{25 -l,L3 -0}:13
Node3. A:: min{A6 - Dru, A5 - Drs}: min{25 -I1,, 13 -2}:LI
NOde2. Lz: min{Aa _ Drl,, A3 _ Drr}: min{13 _ 8, 1, _ 3}:5
NOdel. Al: min{A3 _ Drr, 

^2_ 
Drr}: min{11 _ 6,5 _ 5}:0

Correct computations will always end with Ar : 0.
The forward and backward pass computations are summarized in Figure 6.54. The

rules for determining the critical activities show that the critical path is defined by
1,+2+4+5 +6, which spans the network from start (node 1) to finish (node 6).

The sum of the durations of the critical activities l(I,2), (Z,4), (4, 5), and (5, 6)] equals
the duration of the proje ct(: 25 days). Observe that activity (4,6) satisfies the first two
conditions for a critical activity (A+ : !+ : ].3 and As : !s : 25) but not the third

Fu - J+ * Da6). Hence, the activity is not critical.

Network Models

D3 : max{D1 * Drr,tr2 + Drr) : max{O + 6, 5 + 3} : 3

!+:ů+Dz+:5+8:13
E5 : max!3 l Drr, tr4 + Dos}: max{8 + 2, 13 + 0} : 13

!o: maxp3 t Dru, !+ * Drc,Js + Dso}
: max {8 + 1_1, ].3 + t, 13 + I2} : 25

Legend:

Forward pass:

Backward pass:

Critical path:

F-*DA*--AO*OEnd
backward
DaSS

\n
/o\
r ]_]
L9]

Start
backward
passny'

/25\

tr
\

5,6,3
,(

Start'
forward
pass

End
forward
paSs

J

1,

,,"j
//6 lC 12, /\ Y-] 4 6

5 glU
D

F
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PRoBLEM sET 6.68

1. Determine the critical path for the project network in Figure 6.55.

FlGURE 6.55

Project network for Problem 1, Set 6.6b

2. Determine the critical path for the project networks in Figure 6.56.

Project (a)

FlGURE 6.56

Project network for Problem 2, Set 6.6b

Project (b)

3. Determine the critical path for the project in Problem 6, Set 6.6a.
4. Determine the critical path for the project in Problem 8, Set 6.6a.
5. Determine the critical path for the project in Problem 9, Set 6.6a.
6. Determine the critical path for the project in Problem ].0, Set 6.6a.

6.6.3 Construction of the Time Schedule

This section shows how the information obtained from the calculations in section 6.6.2
can be used to develop the time schedule.We recognizethat for an activity (i, j),ú,
rePresents the earliest start time, and A, represents the latest completion time. This
means that (!,, A) delineates the (maximum) span during which activity (a 7) may be
scheduled.

Construction of Preliminary Schedule. The method for constructing a preliminary
schedule is illustrated by an example.
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Example 6.6-3

Determine the time schedule for the project of Example 6.6-2 (Figure 6.54).
We can get apreliminary time schedule for the different activities of the project by

delineating their iespective time spans as shown in Figure 6.57.Two observations are in
order.

1_. The critical activities (shown by solid lines) must be scheduled one right after the
other to ensure that the project is completed within its specifiedZ5-day duration.

2. The noncritical activities (shown by dashed lines) encompass spans that are
larger than their respective durations, thus allowing slack (or "leeway") in sched-
uling them within their allotted spans.

Critical
H-lz

Noncritical

Days

FlGURE 6.57

Preliminary schedule for the project of Example 6.6-2

How should we schedule the noncritical activities within their respective spans?
Normally, it is preferable to start each noncritical activity as early as possible. In this
manner, slack periods will remain opportunely available at the end of the allotted
span, where they can be used to absorb unexpected delays in the execution of the
abtivity. It may be necessary, however, to delay the start of a noncritical activity past its
earheŠt time. For example, in Figure 6.57,suppose that each of the noncritical activities
E andF requires the use of a bulldozer, and that only one is available. Scheduling both
E and F as early as possible requires two bulldozers between times 8 and ]-0. We can
remove the overlap by starting E at time 8 and pushing the start time of F to some-
where between times ],0 and ].4.

If alt the noncritical activities can be scheduled as early as possible, the resulting
schedule automatically is feasible. Otherwise, some precedence relationships may be
violated if noncritical activities are delayed past their earliest time. Take, for example,
activities C and E in Figure 6.57.In the project network (Figure 6.54), though C must

D-8
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be comPleted before E, the spans of C and E in F'igure 6.57 allow us to schedule C
between times 6 and 9, and E between times 8 and -]_0. Th"r" spans, however, do not
ensure that C will Precede E. The need for a "red flag" that-automatically reveals
schedule conflict is thus evident. Such information is pro ided by computingíhe.floats
for the noncritical activities.

: .:lš
-,-1

-1_ !-1-

Determination of the Floats. Floats are the slack times available within the allotted
SPan of the noncritical activity. The two most common floats are the total float and the
free float.

Figure 6.58 gives a convenient summary for computing the total float (TF;) and
the free float (FF) for an activity (i, j).The total float is the excess of the time'span
defined from the earliesl occurrence of event l to the latest occurrence of event 7 over
the duration of (1,7)-that is,

'F,i 
:Ai-f,,-D,i

A

,-\.-Di\ _.""'4\i
^--Pt z?

íílio-|)---'
-2222

=f' 
FF:,_:_J!-_Ji- Dii 

*F;iTLfi*-I *i

FlGURE 6.58

Computation of total and free floats

The free float is the excess of the time span defined from the earlie.y/ occurrence of
event i to the earliest occurrence of event i over the duration of (i 7)-that is,

FFij :!i-J,-D,i
By definition, FFij < TFii.

Red-Flagging RuIe. For a noncriticat activity (i, j)

(a) IÍ FF,i : TF,i, then the activity can be scheduled anywhere within its (Ji, A,) span
w ithout causing s chedule conflict.

(b) Ií FFii 1 TFii,then the start of activ,U ij, lf activity (i, j) can be delayed by at most FFi; relative
to its earliest start time (Z) without causing schedule conflict. Any delay laiger than
FFi1 @ut not more^t|12 rQ must be accompanied by an equal delay relative toJ1
in the start time of all the activities leaving node j.

The implication of the rule is that a noncritical activity (a 7) will be red-flagged if
its FF,, . 

'Fii. 
This red flag is important only if we decide to delay the start-Jf the

activitl
,/ - 'r,7. rrrrĎ rULr rrcrĚ rĎ rrrrPurtalrl Ultry u We (Jecl(le To qeray tne Start ot the
Y Past its earliest start time, !;, in which case we must pay attention to the start

times of the activities leaving node i to avoid schedule conflicts.



Chapter 6 Network Models

Example 6.6-4

Compute the floats for the noncritical activities of the network in Example 6.6-2, and
discuss their use in finalizing a schedule for the project.

The following table summarizes the computations of the total and free floats. It is
more convenient to do the calculations directly on the network using the procedure in
Figure 6.54.

Noncritical activity Duration Total float (Tfl Free float (FF)

B(1,3)
C(z,3)
E(3,5)
F(3,6)
G(4,6)

6

J

2

1,I

1

11 -0-6- 5 8-0-6: Z

11 -5-3- 3 8-5-3:0
13-8-2- 3 13-8-2:3

25-8-11 : 6 25 -8-].],:6
25 -13 -r:U. 25 -13 - 1: ],].

The computations red-flag activities B and C because their FF < TF.The remain-
ing activities (E, F, and G) have FF - TF, and hence may be scheduled anywhere
between their earliest start and latest completion times.

To investigate the significance of the red-flagged activities, consider activíty B.
Because its 7F : 5 days, this activity can start as early as time 0 or as late as time 5
(see Figure 6.57). However, because its FF : 2 days, starting B anywhere between
time 0 and time 2 will have no effect on the succeeding activities E and ^E Il however,
activity B must start at time 2 + d(<5),, then the start times of the immediately suc-
ceeding activities E andFmust be pushed forward past their earliest start time (: 8) by
at least d.In this manner, the precedence relationship between B and its successors E
and F is preserved.

Turning to red-flagged activity C, we note that its FF : 0. This means that any
delay in starting C past its earliest start time (: 5) must be coupled with at least an
equal delay in the start of its successor activities E and 

^F.'

TORA provides useful tutorial tools for CPM calculations and for constructing
the time schedule. To use these tools, select trtěryld,ě.E;,pL + d=p 

o+.e;_. 
i.ťffil

F.d.u$.iMé]nifl from $_é,.tn.Mé*r ,. In the output screen, you have the option to select dpu
e_*i:;.b:U.íá,tiffi to produce step-by-step computations of the forward pass, backward pass,
and the floats or ť.*M'i.Bálr,i:e... ffi to construct and experiment with the time schedule.

Figure 6.59 shows TORA output for the CPM calculations of Example 6.6-2 (tIle
ch6ToraCPMEx6-6-2.xls). If you elect to generate the output using the #.a_* ljdfu
option, TORA will guide you through the details of the forward and backward pass
calculations.

Figure 6.60 provides the TORA schedule produced by djÉrllli _áj#.i option for
the project of Example 6.6-2.The default bar chart automatically schedules all the non-
critical activities as early as possible. You can study the impact of delaying the start
time of a noncritical activity by using the self-explanatory drop-down lists inside the
bottom left frame of the screen. The impact of a delay of a noncritical activity will be
shown directly on the bar chart together with an accompanying explanation. For exam-
ple, if you delay the start of activity B by more than 2 time units, the succeeding activi-
ties E and F will be delayed by an amount equal to the difference between the delay

^
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FlGURE 6.59

TORA steP-by-step CPM calculations of forward pass, backward pass, and floats for Exampl e 6.6-2

and the free float of activity B. Specifically, given the free float for B is 2 time units, if B
is delayed by 3 time units, then E and F must be delayed by at least 3 - 2: 1 time
unit. This situation is demonstrated in Figure 6.60.

PRoBLEM sET 5.6c

Given an activity (i,7) with duration D,,and,its earliest start time n; and its latest comple-
tion time A;, determine the earliest completion and the latest start times of. (i, j).
What are the total and free floats of a critical activity?
For each of the following activities, determine the maximum delay in the starting time rel_
ative to its earliest start time that will allow all the immediately succeeding activities to be
scheduled anywhere between their earliest and latest completion times.
(a) TF : I0, FF: 10, D : 4

(b) TF:I0,FF:5,D:4
(c) TF:l0,FF:O,D:!
In Example 6.6-4,use the floats to answer the following:
(a) Suppose that activity B is started at time 1, and activity C is started at time 5, deter-

mine the earliest start times for E and E

,,

3.

4.
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TORA bar chart output for Example 6.6,2

(b) Suppose that activity B is started at time 3, and activity C is started at time 7,deter-
mine the earliest start times f.or E and .E

(c) If activity B starts at time 6, what effect will this have on other activities of the project?

5. Intheprojectof Example6.6-2 (Figure 6.54),assumethatthedurationsof activitiesB
and F are changed from 6 and 11_ days to 20 and 25 days, respectively.

(a) Determine the critical path.

(b) Determine the total and free floats for the network, and identify the red-flagged
activities.

Suppose that activity Á is started at time 5, determine the earliest possible start times
for activities C, D, E, and G.

Suppose that activities d G, and H reqlire the same equipment. Determine the mini-
mum number of units needed of this equipment.

6. Compute the floats and identify the red-flagged activities for projects (a) and (b) in
Figure 6.56, and then develop the time schedules under the following conditions:

Project (a)

(i) Activity (1,5) cannot start any earlier than time ].4.

(ii) Activities (5,6) and (5,7) use the same equipment, of which only one unit is available.

(iii) All other activities start as early as possible.

6.6,4

(c)

(d)

b*C,: 14 "g';''l ], lS:*lffiia;o-^,.,ra..ms," -
FlGURE 6.60
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Project (b)

_ (i) Activity (1,3) must be scheduled at its earliest start time while accounting for the
requirement that (I,2), (1, 3), and (1, 6) use special equipment, of which i unit only is
available.

(ii) All other activities start as early as possible.

6.6.4 Linear Programming Formulation of CPM

A CPM problem can be thought of as the opposite of the shortest-route problem
(Section 6.3), in the sense that we are interested in finding the longe. / route from start
to finish. We can thus apply the shortest-route LP formulation in Section 6.3.3 to CpM
in the following manner. We assume that a unit flow enters the network at the start
node and leaves at the finish node. Define

x,ii : Amount of flow in activity (1,7) for all defined i andi
P,i : Duration of activity (i,7) for all define d i and j

Thus, the objective function of the linear program becomes

Maximize z : 2D,i*,i
all defined activities (i, l)

(Compare with the shortest-route LP formulation in Section 6.3.3 where the objective
function is minimized.) There is one constraint that represents the conservation of flow
at each node-that is, for all node 7,

Total input flow : Total output flow

NaturallY, all the variables, x;1, aLía nonnegative. Note that one of the constraints is
redundant.

Again, as in the shortest-route problem, we can use the dual of the LP to solve
the CPM Problem. The following example applies the two formulations to the project
in Example 6.6-2.

Example 6.6-5

:--

:- L ,

:

.:}

_ __l-|].,l-

The LP formulation of the project of Example 6.6-2 (Figure 6.54) is given below. Note
that nodes 1- and 6 are the start and finish nodes, respectively.

Dummy

X+s JsoX:o.TssXzqXzlXt:Xn

Maximizez: 121,1

Node 1

Node 2
Node 3

Node 4
Node 5
Node 6

-1
1, -1

I

:-1
:0
:0
:0
:0
:1

-1
-1-1

-I
-1

-1
1

.,,_.lble, -1
1
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TORA giuer the optimum solution as

z : 25, xp(A) : L, x24(D) : I, xr(Dummy) : I, x56(a : I, all others : 0

The solution defines the critical path as Á + D +Dummy ) H, and the duration of
the project is 25 days.

The dual problem of the LP given above is:

Minimizew:lo-!t
subject to

lz-tt>5 (A)

ls-|t>6 (B)

ll-!z>3 (q

lq-Y2>8 (D)

ls-!t>2 (E)

|a - lz > 1-]- (4

ls-!l>0 (Dummy)

fe-!+>í (G)

|a - ls > 12 (II)

all yi unrestricted

The dual formulation, though purely mathematical, reveals an interesting definition of
the dual variables that is consistent with the precedence relationships of the CPM net-
work. Specifically, consider the following definition:

}i : Occurrence time of node i
In this case, w : |e - y1 will represent the duration of the project. Each constraint is
associated with an activity, and it specifies the precedence relationships among the dif-
ferent activities. For example,yz - lt > 5 is equivalent to yz > .}r * 5, which says that
y2,the earliest occurrence time for node 2,cannot be any earlier than time y, + 5. By
minimizing the objective function, we obtain the shortest time span in which all prece-
dence relationships are satisfied. Also, notice that with the (new) practical meaning
used to describe the dual variables, these variables can be restricted to nonnegative
values. In fact, the start time, lu of the project can be set equal to zero, in which case
the objective function reduces to minimizingw : y6. Setting!l,:0 is also consistent
with the fact that one of the primal constraints is redundant.

Under the nonnegativity restriction, the optimal dual solution (obtained by
TORA) is given as

w :25,.}t : 0, lz: 5, ls: It, !+: 13, ls: 13, le :25
The solution shows that the duration of the project is lv : 25 days.

The critical activities correspond to the constraints that are satisfied as strict equa-
tions by the given solution; namely, A+ D + Dummy + H. These constraints are
identified by their zero surplus variables or by realizing that if a constraint is satisfied
in equation form in the solution, then its associated dual value must be positive.

6.6,5
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constraints with their associated dual solution (as determined by
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The conclusion is that the critical path is given as A+ D +Dummy _+ H. Observe
that Positive dual values will alwayŠ equal Í be.ause a delay of one dáy in any critical
activitY will increase the duration of tňe project by one day (remember that the dual
variable is interpreted as the worth per unit of a reŠource, rée Šection 4.3.1).

PRoBLEM sET 6.6D

1. Use LP to determine the critical path for the project network in Figure 6.55.
2. Use LP to determine the critical path for the project networks in Figure 6.56.

6.6.5 PERT Networks

PERT differs from CPM in that it bases the duration of an activity on three estimates:

1-. OPtimistic time,4 which assumes that execution goes extremely well.
2. Most likely time, m, which assumes that execution is done under normal condi_

tions.

3. Pessimistic time, b, which assumes that execution goes extremely poorly.

The range (a, b) is assumed to enclose all possible estimates of the duration of an activ-
itY. The estimate m thus must lie somewhere in the range (o, b).Based on the estimates,
the average duration time, Ď, and, variance, v, are computed as follows:

D: a]-4m*b

(u-o\'Y:(- 6-)
CPM calculations given in Sections 6.6.2 and 6.6.3 may be applied directly, with D
replacing the single estimate D.

It is now Possible to estimate the probability that a node i in the network will
occur bY a PresPecified scheduled time, Si. Let ei be the earliest occurrence time of
node i. Because the durations of the activities leading from the start node to node j are
random variables, e1 a|so must be a random variable. Assuming that all the activities in
the network are statistically independent, we can determine tňe mean, E{r},and vari_
ance, var {e},in the following manner. If there is only one path from the start node to
node j, then the mean is the sum of expected durations,D,tor all the activities along
this path and the variance is the sum of the variances, y, of the same activities. on the
other hand, if more than one path leads to node /, then it is necessary first to compute

BC
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the statistical distribution of the duration of the longest path before the correct mean

and variance can be calculated. This problem is rather difficult because it is equivalent

to determining the distribution of the maximum of several random variables. A simpli-

fying assumption thus calls for computing the mean and variance, E{e} and var{er}, as

those of the path to node jthathas the largest sum of expected activity durations.If two

or more paths have the same mean, the one with the largest variance is selected

because it reflects the most uncertainty, hence leads to a more conservative estimate of

probabilities.
once the mean and variance of the path to node j, E{r} and var{er}, have been

computed, the probability that node 7 will be reaLízed by a preset time 57 is calculated

using the following formula:

P{ri <

where

( ei - EÝ} _ Si - E{e}').}:P<-_-J) 
L Vuurlr,l = @} 

:'{' < Kl

z : Standard normal random variable

Si - E{e}
r\i - 

Ýr^r{r}

The standard normal variable z has mean 0 and standard deviation 1 (see Appendix
C). Justification for the use of the normal distribution is that elis the sum of indepen-

dent random variables.According to the Central LimitTheorem (see SectionI2.5.4),e1
is approximately normally distributed.

Example 6.6-6

Consider the project of Example 6.6-2.To avoid repeating critical path calculations, the
values oí a, m, and b in the table below are selected such that D,, - P iifor all l and i in
Example 6.6-2.

Activity i-j (a,m,b) Activitv i-j (a,m,b)

E 3-5

F 3-6
G 4-6
H 5-6

A
B
C
D

I-2 (3,5,7)
I-3 (4,6,8)
z-3 (1,3,5)
2-4 (5,8, ].1,)

(I,2,3)
(9,11,,13)

(]., ],, ].)

(I0,!2,1,4)

The mean Ďilandvariance Vilfot the different activities are given in the following
table. Note that fbr a dummy activity (o, b, m) : (0, 0, 0), hence its mean and variance
also equalzero.

Activity L-J yti5ii Activity vij5iii-j

E3-52
F 3-6 1l
G4-6 1

H 5-6 I2

A
B
C
D

l-z
I-3
2-3
z-4

5

6
J

8

.444

.444

.444
1.000

.111

,444
.000

.444
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The next table gives the longest path
with their associated mean and variance.
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from node 1 to the different nodes, together

Node Longest path based on mean durations path mean path standard deviation

2
J

4

5

6

1-2
1-2-3
I-2-4
I-2-4-5
I-2-4-5-6

5.00
8.00

13.00
13.00
25.00

0,67
0.94
I.20
I.20
1,,37

FinallY, the following table computes the probability that each node is realized by a
preset time,,S7, specified by the analyst.

Node7 Longest path path mean path standard deviation Kjsl P{z = K}
2
aJ

4

5

6

1,-z

I-2-3
I-2-4
1-2-4-5
1,-2-4-5-6

5.00
8.00

13.00
13.00
25,00

5.00
11.00
1z.00
14.00
26.00

0

3.I9

-.B3
.83

.lJ

.5000

.9993

.2033
,7967

.7673

0.67
0,94
I.20
I.20
1,,37pendix

depen-
'-5.4), e1

ons, the
and 7 in

__ _llving
-..:iance

TORA Provides a module for carrying out PERT calculations. To use this mod-
ule, select eloject Planning 9 PERT-P_rogram Evaluation and Review Techníque from
Main. Ménu. In the outPut screen, you have the Óption to select activi_ty $e.r,lvar: to
compute the mean and variance for each activity or pERT calculat j.-ons to compute the
mean and variance of the longest path to each node in the network.

Figure 6.61 shows TORA output for the PERT calculations of Example 6.6-6
(file ch6ToraPERTE x6 -6 -6.txt) .

PRoBLEM sET 6.6E

L Consider Problem 2, Set 6.6b. The estimates (o, *, b) arelisted below. Determine the
Probabilities that the different nodes of the project will be realized,without delay.

Project (a) Project (b)

Activity (a,m, b) Activity (a,m,b) Activity (a,m, b) Activity (a, m, b)

1,-2

1-4
1-5

z-3
2-5
2-6
3-4

3-6
4-6
4-7
5-6
5-7
6-7

"J,-2

I-3
I-4
1,-6

2-3
2-5
3-4

(5,6,8)
(I,3,4)
(2,4,5)
(4,5,6)
(7,8, 10)
(8,9, 13)
(5,9, 19)

(3,4,5)
(4,8, 10)
(5,6,8)

(9, 10, 15)
(4,6,8)
(3,4,5)

(I,3,4)
(5,7,8)
(6,7,9)
(I,2,3)
(3,4,5)
(7,8,9)

(I0,15,20)

3-7 (I2,I3,1,4)
4-5 (I0,I2,I5)
4-7 (8,10,12)
5-6 (7,8,II)
5-7 (2,4,8)
6-7 (5,6,7)
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FlGURE 6,61

TORA PERT calculations for Example 6,6-6
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COMPREHENSIVE PROBLEMS

6.1 An outdoors person who lives in San Francisco (SF) wishes to spend a 15-daY vacation vis-

iting four naiional parks: Yosemite (YO), Yellowstone (YE), Grand Teton (GT), and

Moirnt Rushmore (MR).The tour, which starts and ends in San Francisco, visits the Parks

in the following order and includ es a Z-day stay at each park: SF -+ YO -+ YE -+ GT -->

MR _+ SF.Travel from one park location to another is either by air or car. Each leg of the

trip takes 1,12 day if traveleďby air. Travel by car takes tll day from SF to YO, 3 days from

yó to yE, one day from yE to GT,2 days from GT to MR, and 3 days from MR back to

SF. The trade_off is that car travel generally costs less but takes longer. Considering the

fact that the individual must return to work in 15 days, the objective is to make the tour as
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inexpensive as possible within the 15-day limit. The following table provides the one-way
cost of traveling by car and air. Determine the mode of travel on each leg of the tour.

Air travel cost ($) to Car travel cost ($) to

YE GT YE MRGTsFMR

SF
Yo
YE
GT
MR

*
350
380
450

150 350 380 450 130 175
400 290 340 130 z00

400 150 3z0 I75 ž00
290 150 300 z00 1,45 70
340 320 300 230 180 150

z00 z30
1,45 180

70 150
100

100

6.26 A benefactor has donated valuable books to the Springdale Public Library. The books
come in four heights: IZ,I0,8, and 6 inches. The head librarian estimates that 12 feet of
shelving will be needed for the lZ-inchbooks,18 feet for the lO-inch ones,9 feet for the 8-
inch books, and 10 feet for the 6-inch ones. The construction cost of a shelf includes both a
fixed cost and a variable cost per foot length as the following table shows.

Shelf height (in) Fixed cost ($) Variable cost ($/ft length)

12

10

8

6

25
25

z2
22

5.50
4.50
3.50
2.50

Given that smaller books can be stored on larger shelves, how should the shelves be
designed?

A shipping company wants to deliver five cargo shipments from ports A, B, and, C to ports
D and.E The delivery dates for the five shipments are

Shipment Shipping route Delivery date_, ,-,,/l_.

lI ile1.

] !, --_1.--1-].!ai

1

2

J

4

5

Ato D
Ato E
BtoD
BtoE
Cto E

10

15

4

5

18

The following table gives trip times (in days) between ports
assumed to take less time).

(the return trip is

6Based on A. Ravindran, "On Compact Storage in Libraries ," Opsearch, Vol. 8, No. 3, pp.245_52,197I.

A
B
C
D
E

J 4
ft J z

J 5

2 2 2
J 1 4

Yo.F
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The company wants to determine the minimum number of ships needed to carry out

the given shipping schedule.

6.47 several individuals have set up separate brokerage firms that traded in highly speculative

stocks. The brokers operated under a loose financial system that allowed extensive inter-

brokerage transactions, including buying, selling, borrowing, and lending. For the grouP of

brokers as a whole, the main source of income was the commission theY received from

sales to outside clients.
Eventually, the risky trading in speculative stocks became unmanageable, and all the

brokers declared bankruptcy. At the time the bankruptcy was declared, the financial situa-

tion was that all brokers owed money to outside clients and the interbroker financial

entanglements were so complex that almost every broker owed moneY to everY other bro-

ker in the group.
The brokers whose assets could pay for their debts were declared solvent. The

remaining brokers were referred to alegalbody whose purpose was to resolve the debt

situation in the best interest of outside clients. Because the assets and receivables of the

nonsolvent brokers were less than their payables, all debts weíe prorated. The final effect

was a complete liquidation of all the assets of the nonsolvent brokers.

In resolving it 
" 

financial entanglements within the group of nonsolvent brokers, it

was decided that the transactions would be executed only to satisfy certain legal require-

ments because, in effect, none of the brokers would be keeping any of the funds owed bY

others. As such, the legal body requested that the number of interbroker transactions be

reduced to an absolutó minimum. This means that if Á owed B an amount x, and B owed

A an amount y the two "loop" transactions were reduced to one whose amount is

lX _ yl. This amount would go from A to B if, X > Y andfrom B to A if- Y > X.If-
x : y,the transactions were completely eliminated. The idea was to be extended to all

loop transactions involving any number of brokers,

How would you handle this situation? Specifically, you are required to answer two

questions.

1. How should the debts be prorated?

2. How should the number of interbroker transactions be reduced to a minimum?

7Based on H. Taha,,,Operations Research Analysis of a Stock Market Problem," Computers and OPerations

Research,Vol. 18, No. 7, pp. 597 -602, 1991,.

7.1
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7.1

ffiffi&ffi ffiffi

Advanced Linear
Programming

This chaPter Presents a matrix version of linear programming that allows the develop_
ment of a number of computationally efficient algorithms: revised simplex metho-d,
uPPer and lower bounding, decomposition, and parametric programming. The chapter
also Presents the totally different Karmarkar interior-poinf algorithm, ,i,hi.h upp.u^
quite efficient in handling very large LPs.

SIMPLEX METHOD FUNDAMENTALS

In linear Programming, the feasible solution space is said to form a conyex set if the
line segment joining any íwo distincr feasible points also falls in the set. An extreme
Point of the convex set is a feasible point that cannot lie on a line segment joining any
two distincr feasible Points in the set. Actually, extreme points are the same as corner
points, the more apt name used in Chapters2,3,and 4.

Figure 7.1 illustrates two convex sets. Set (a), which is typical of the solution space
of a linear Program, is convex (with six extreme points), wheieas set (b) is nonconr]ex.

In the graphical LP solution given in Section 2.3,we demonstrated that the opti-
mum solution can always be associated with a feasible extreme (corner) point ot itre
solution sPace. This result makes sense intuitively because in Lp every ieásible point

ffiffi
(a) (b)

FIGURE 7.1

Examples of a convex and a nonconvex set

289
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can be determined as a function of the extreme points. For example, in convex set (a)

of Figure 7.1, given the extreme points Xt,Xz,Xs,X+,Xs, and X6, a feasible point X can
be expressed as a conyex combination of the extreme points using

X : ctlX1 * o.2X2 i a3X3 * ctaXa i ct5X5 f a6X6

where

ctr * o.z* ar * aq * cts * cto : 1

ct; ž 0, i : I,2, ... ,6

This observation shows that extreme points provide all that is needed to define the

solution space completely.

Example 7.1-1

Show that the following set is convex:

C : {(xl,xr)|r, < Z,xz < 3,xt > 0,x2 > 0}

Let X1 : {*|,,r'r} and X2 : {*?,*3} be any two distinct points in C.If C is convex, then
X : (xl,xr) : orX, * u2X2 must also be in C. To show that this is true, we need to
show that all the constraints of C are satisfied by the line segment X-that is,

\ : afi! + u2x], a{2) + u2(2) : 2

x2: op) t u2x22 = ct1(3) + ct2(3) : 3

Thus, xt š 2 and xz š 3 because at * o.2: ].. Additionally, the nonnegativity condi-
tions are satisfied because cr1 and o.2are nonnegative.

7.1.1

PRoBLEM sET 7.1A

1. Show that the set Q : {xl,xz|", + x2 3 1,,x1 ž 0,xz = 0} is convex.Is the nonnegativity
condition essential for the proof?

2. Show that the set Q : {xt,xz | ,, > 1, or x2 = 2} is not convex.

3. Determine graphically the extreme points of the following convex set:

Q : {rr,xrl x, -| xz š 2,xt > 0,x2 > 0}

Show that the entire feasible solution space can be determined as a convex combination
of its extreme points. Hence conclude that any convex (bounded) solution space is totally
defined once its extreme points are known.

4. In the solution space in Figure 7.2 (drawn to scale), express the interior point (3,1) as a

convex combination of the extreme points A, B, C, and D where each extreme point car-
ries a strictly positive weight.

From Extreme points to Basic solutions

It is convenient to express the general LP problem in equation form (see Section 3.1_)

using matrix notation. Define X as an n-vector representing the variables, A as an



7.1 Simplex Method Fundamentals

FlGURE 7,2

Solution space for Problem 4,Set7.Ia

Qn x n)-matrix representing the constraint coefficients, and C as an n-vector repre-
senting the objective function coefficients. The LP is then written as

Maximize or minimize z : cx
subject to

AX:b
x>0

Using the format of Chapter 3 (see also Figure 4.I), the rightmost m columns of A
always can be made to represent the identity matrix I through proper arrangements of
the slack/artificial variables associated with the starting basic solution.

A basic solution of AX : b is determined by setting n - m variables equal to
Zero, and then solving the resulting m equations in the remainin g m lnknowns, pro-
vided that the resulting solution is unique. Given this definition, the theory of linear
Programming establishes the following result between the geometric definition of
extreme points and the algebraic definition of basic solutions:

Extreme points of {X l Ax - b} <+ Basic solutions of AX : b

The relationship means that the extreme points of the LP solution space are totally
defined by the basic solutions of the system AX : b, and vice versa. Thus, we conclude
that the basic solutions of Ax : b contain all the information we need to determine
the optimum solution of the LP problem. Furthermore, if we impose the nonnegativity
restrictiotr, X > 0, the search for the optimum solution is confined to the feasible basic
solutions only.

To forma|ize the definition of a basic solution, the system AX : b can be
expressed in vector form as follows:
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The vector Pi is the ith column of A. A subset of m vectors is said to form a basis, B, il
and only if, the selected m vectors are linearly independent. In this case, the matrix B is
nonsingular. If X6 is the set of m variables associated with the vectors of nonsingular
B, then X6 must be a basic solution. In this case, we have

BXu:5
Given the inverse B-1 of B, we then get the corresponding basic solution as

Xa : B-lb

If B-lb > 0, then X6 is feasible. The definition, of course, assumes that
n - m variables are nonbasic at zero level.

The previous result shows that in a system of m equations and n
maximum number of (feasible and infeasible) basic solutions is given by

the remaining

unknowns, the

Example 7.1-2

Determine and classify (as feasible and infeasible) all the basic solutions of the follow-
ing system of equations.

B is determined by

(: -:, -l)(ii)
The following table summarizes the results.

using one of the methods in Section A.2.7.
Th

()

e inverse of

BXr:6 Solution Status

(Pr,Pr)

(P,,Pr)

(Pr,P,)

(: _))(::): (:)
(Not a basis)

(_; _:,)(::):()

(;) :(i il(ll 
:(i)

(;:):(-i-ilr;l:(_i)

Feasible

Infeasible

We can also investigate the problem by expressing it in vector form as follows:

(1)",- (_;)", * ( -:)-,: (:)
Each of P1, Pz,Ps, and b is a two-dimensional vector, which can be represented generi-
cally as (al,ar)r.Figtlre 7.3 graphs these vectors on the (al,a2)-plane. For example, for

b:(4,2)r,h:4andaz:2.
Because we are dealing with two equations (* :2), a basis must include exactly

two vectors, selected from among PtPz, and P3. From Figure 7.3, the combinations
(Pr,Pr) and(P2,P3) form bases because their associated vectors are independent.In the
combination (P1, P) the two vectors are dependent, and hence do not constitute a
basis.

^
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FlGURE 7.3

Vector representation of LP solution space

Algebraically, a combination forms a basis if its
|J.!o." A.2.5). The following computations show that
(Pr, P,) are bases, and the combinati,on (Pr, Pr) is not.

determinant is not zero (see
the combinations (Pl,P) and

det(Pr, Pr) :

det(P2, P,) :

det(Pr, Pr) :

o"r(; _'r):Gx -2)-Qx3): -8 + 0

/ 1, _r\d.t(_; _;) :Qx -2)-(-2 x -1): -8 * 0

o", (: _'r) : G x -2) - Q x-1) : 0

We can take advantage of the vector representation of the problem to discuss how
the starting solution9f lhe simplex methodls determined. Froá the vector representa_
tion in Figure 7.3,the basis B:.(lr,Pr) can be used to start the simplex iierations
because it Produces the basic feasible sóiution Xr : (*r,*r)'.However, in the absence
.o| 

t!. vector rePresentation, the only course of aótion'avaíable to us is to try all possi_
ble bases (3 in this example, as shown above). The difficutty with trial and error is thatit is not suitable for automatic computationi. In a typicat ip with thousands of vari_
ables and constraints where the use Ót tt e computer-ii a must, trial and error simply is
19t u Practical oPtion because of the tremendous 

"o^p.rtational 
overhead. ro ailwiáte

this Problem, the simPlex method always uses an idóntity matrix, B : I, to start the
iterations. WhY does a starting B : r offer an advan tagé? The answer is that it wi1l
alwaYs Provide a feasible starting basic solution (provideá that the right-hand side vec_
tor of the equations_is nonnegative). You 

"u., 
."Ó this result in Figure 7.3 by graphing

the vectors of B : I and notin g that they coincide with the hoíizontal and vertical
axes, thus always guaranteeing a starting basic feasible solution.

The basis B : r automatically forms part of the T P equations if all the original
constraints are <,. In other cases, we simply add the unit veciors where needed. This iswhat the artificial variables accomplish (SÓction 3.4). We ttre1 p"nulize these extrane_
ous variables in the objective function to'force them t o zerolevól in the final solution.
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PRoBLEM sET 7,1B

1. In the following sets of equations. (a) and (b) have unique (basic) solutions, (c) has infin-
ity of solutions, and (d) has no solution. Show how these results can be verified using
graphical vector representation. From this exercise, state the general conditions for vec-

tor dependence-independence that lead to unique solution, infinity of solutions, and no
solution.
(a) x1 * 3x2:2

3x1 -| xz: 3

(c) 2x1 * 6x2: 4

x1 * 3x2: 2

2. Determine graphically (using vectors) if each of the sets of equations below has a unique

solution, infinity of solutions, or no solution. For the cases of unique solutions, indicate
from the vector representation (and without solving the equations algebraically) whether

the values of the x1 and x2 áía positive, zeío, or negative.

(b)

(d)

2x1 * 3x2: I
Zxt - xz:2
2x, - 4x2:2
-h * 2x2: 1,

(a) (; _1)(;;) : (i) .') (l -?)(::):

(c) (l iX;;) : (:?) (d) (l ;X;;) : (

(e) (-l _:)(::): (?) (0 (l -l)(::):
3. Consider the following system of equations:

(1)

s)

(i)

(1),, - (?)", - (l)", - (í)" : (i)

Determine if any of the following combinations forms a basis.

(a) (Pl,P2,P3)
(b) (P1, P2, P4)

(c) (P2, P3, P4)

(d) (Pr,Pr,Pr,Po)
4. True or False?

(a) The system BX : b has a unique solution if B is nonsingular.

(b) The system BX : b has no solution if B is singular and b is independent of B.

(c) The system BX : b has infinity of solutions if B is singular and b is dependent.

7.1.2 Generalized Simplex Tableau in Matrix Form

In this section, we use matrices to develop the general simplex tableau. This represen-
tation will be the basis for subsequent developments in the chapter.

Consider the LP in equation form:

Maximize z : CX, subject to AX : brX > 0

The problem can be written equivalently as

(l ť)(;) :(l)
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Suppose that B is a feasible basis of the system AX : b,X > 0, and let X6 be the
corresPonding set of basic variables with Cu as its associated objective vector. The cor_
resPonding solution may then be computed as follows (the method for inverting parti-
tioned matrices is given in Section A.2.7):

(;) :(á T,)-(i) :(á "á";')(;) :(?;')
The general simplex tableau in matrix form can be derived from the original

equations as follows:

Matrix manipulations yield the following set of equations:

(l c,B*i|f 
"X;) : (?1,;,)

Given P, is the 7th vector of A, the simplex tableau column associated with variable x7
can be represented as follows:

Basic Solution

CrB-Ip, - c, crB-lb

B-'P, B-lb

In fact, the tableau above is the same as the one we presented in Chapter 3 (see
Problem 5 of Set 7.Ic). An impoftant property of this table is that the inverse, B-1, is
the only element that changes from one tableau to the next, and that the entire tableau
can be generated once B-1 is known. This point is important because the computa-
tional roundoff error in any tableau can be controlled by controlling the accuraiy of
B-1. This result is the main reason for the development of the reviseďsimplex met-hod
in Section 7.2.

Example 7.1-3

Consider the following LP:

Maximize Z : x, l 4x2 * 74 1- 5xa
subject to

2x1 * x2 l 24 * 4xa: ]_0

3xr-x2-24l6xo:5
XyX2rX3,Xa > 0

Generate the simplex tableau associated with the basis B : (Pl,P2).
Given B : (Pr,P2), then Xa : @r.*r)' and C6 : (1,4).Thus,

v, : (2 1)-' : r+ it\s 4) : \i -,r)

(l 'ň-;'Xí ť)(;) : (á 'í"-''XS)

xj

xB

:_
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We then get

xr: (;;) : B-lb: (i áXT) 
: (i)

To compute the constraint columns in the body of the tableau, we have

B-,(p,,p2,p3,*r:(i il(a : _?, i) :(á ? i 3)

Next, we compute the objective row as follows:

culn-l1r bpz,p2,po)] - c : (1,u(á ? i 3)-o, 4,7,5): (0,0,1, -3)

Finally, we compute the value of the objective function as follows:

z : c.B-lb : crxu : (1,u(i) : 19

Thus, the entire tableau can be summarized as shown below.

The main conclusion from
the entire simplex tableau can
problem.

this example is that
be generated from

x, Solution

once the inverse, B-1, is known.
B-1 and the original data of the

X3XlX1

19-J

X1

X2

10203
010z4

PRoBLEM sET 7.1c

1. In Example7.1,-3,consider B : (Pr, Pa) . Show that the corresponding basic solution is

feasible, and then generate the corresponding simplex tableau.

2. Consider the following LP:

subject to

Maximize z : 5xt + I2x2 + 4x,

x1l2x2*4lxa:t0
2xr-2x2-x3 -2

XlrX2,X3rX4 ž 0

Check if each of the following vector sets forms a (feasible or infeasible) basis:
(Pr, Pr), (Pr, Pr), (P,, Po).

3. In the following LP, compute the entire simplex tableau associated with Xu : (x,l,x2,x5)T :

Minimizez:2x1 *x2



subject to

7.2 Revised Simplex Method

3x1* xz-xl -3
4x1 -l 3x2 -x4 -6
xrl2x2 lx5:3

XlrX2,X3,X4rís ž 0

The following is an optimal LP tableau:

Basic X1 X5 Solution

X3

X2

X1

The variables x3,X4,and.r5 are slacks in the original problem. Use matrix manipulations to
reconstruct the original Lp, and then compute the optimum objective value.
In the generalized simplex tableau, suppose that X : (Xr,XrI)r, where X11 corresponds to
a tYPical StartinT basic solution (consisting of slack and/or artificial variables) wiih B : I;
and let C : (Cr,Cfl and A : (D,I)be the corresponding partitions of C and A, respec-
tivelY. Show that the matrix form of the simplex tableau reduces to the following form,
which is exactly the form used in Chapter 3.

Basic Solution

cBB 1D - CI CBB-1 - CI] CBB-lb

xB B-lD

REVISED slMPLEx METHoD

Section 7.1.1, shows that the optimum solution of a linear program is always associated
With a basic (feasible) solution. The simplex method searóh fór the optimum starts by
selecting a feasible basis, B, and then moving to another feasible basis, Bo"*t , that leads
to a better (or, at least, no worse) value of the objective function. co"ti""i"g in this
manner, the optimum feasible basis is eventually reached.

The iterative steps of the revised simplex method are exactly the same as in the
tableau simPlex method presented in Chapter 3. The main differenóe is that the compu_
tations in the revised method are based on matrix algebra rather than on ,o* op"iu_
tions. The use of matrix algebra reduces the adverse effect of machine roundoff errór by
controlling the accuracy of computing B-1. This result follows because, as Section 7.1
shows, the entire simPlex tableau can be computed from íhe original dataand the cur_
rent B-1. In the tableau simplex method of Chapter 3, each tabÉau is generated from
the immediatelY Preceding one, which tends to worsen the problem of roundoff error.

X^Xj

0011-1 2
010106
100-1 t2

:_ _-, 
1,\ n.

._ ih- X,,xI

3t B-lb

7.2

4.
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7.2.1 Development of the optimality and Feasibility Conditions

The general Lp problem can be written as follows:

Maximize or minim ize z : Žr,r,subject to jrr", - b,xj> 0,i : 1,2, ", )n
j:1, j-1

For a given basic vector X6 and its corresponding basis B,and objective vector Cu, the

g"r,.rul simplex tableau developed in Secti on7 .1,.2 shows that any simPlex iteration can

be represented by the following equations:

z + ilzi - c)xi: CgB-lb
i:I

(Xu), * Ž(u-'P);x1: (B-lb);
j:l

where

Zi -cj :CaB-Ipj _cj

The notation (V); is used to represent the lth element of the vector V.

optimality condition. From the z-equation given above, an increase in nonbasic x,

above its currení zero value will improve the value of. z relative to its current value,

ÓuB-rb, only if its z7 - c, is strictly negative in the case of maximization and strictlY

pósitive in the case of *irri-irution. Otherwise, xi cannot imPr.ove the solution and

must remain nonbasic at zero level. Though any nonbasic variable satisfYing the given

condition can be chosen to improve the solution, the simplex method uses a rule of

thumb that selects the entering variable as the one with the most negative (most

positive) Zj _ cjin case of maximization (minimization).

Feasibility Condition. The determination of the leaving vector is based on examining

the constraint equation associated with the lth basic variable. SPecificallY, we have

(Xr), * Ž(u-'P)ix1: (B-lb),
j:1

When the vector pi is selected by the optimality condition to enter the basis, its

associated variable x, wiil increase above zero level. At the Same time, all the remain-

ing nonbasic variables remai n aí zero level. Thus, the lth constraint equation reduces to

(Xu), : (B-lb); - (B-lP),xj

The equation shows that if (B-1P)J ) 0, an increase in x jcuflcause (Xu), to become

negative, *hi.h violates the nonnegativity condition, (Xu), > 0 for all i. Thus, we have

(B-'b), - (B-'P),x j ž 0, for all i

This condition yields the maximum value of the entering variable xi as

r íB-lb), l ')

xi: m,!ntffi|(B-'p), = oi

The basic variable responsible for producing the minimum ratio leaves the basic solu-

tion to become nonbasic atzero level.



. 1,1

3. the
n can

. i].- 1,

,, -:1ue.

:: _,^t1\

:. Jnd

_:_\ en
_!

-._9 L|l

; 1.1_)_ i

sis its
]main-
rceS to

Ecome
have

:- _:_1nq

7.2 Revised Simplex Method 299

PRoBLEM sET 7,2A

1. Consider the following LP:

Maximize Z : clx1 * c2x2 * cax, l c4x4

subject to

Plx1 * P2x2 l P3x3 i Paxa: b

XyX2rX3rX4 ž 0

The vectors Pr, P2, Pr, and Pa are shown in Figure 7.4. Assume that the basis B of the cur-
rent iteration is comprised of P, and P2.
(a) If the vector p, enters the basis, which of the current two basic vectors must leave in

order for the resulting basic solution to be feasible.
(b) Can the vector Po be part of a feasible basis?

2. Prove that, in any simplex iteration l Z1 - c1 : 0 for all the associated basic variables.
3. Prove that if zj - cj > 0 (<0) for all the nonbasic variables x, of a maximization (mini-

mization) LP Problem, then the optimum is unique. Else, if z1 - c7 equals zero for a non-
basic xl,then the problem has an alternative optimum solutión.

4. In an all-slack starting basic solution, show using the matrix form of the tableau that the
mechanical procedure used in Section 3.3 in which the objective equation is set as

Z- rClX1 
:0

j:1

automatically computes the proper zj - cjfor all the variables in the starting tableau.
5. Using the matrix form of the simplex tableau, show that in an all-artificial starting basic

solution, the Procedure employed in Section 3.4.I thatcalls for substituting out tňe artifi_
cial variables in the objective function (using the constraint equations) actually computes
the proper zj - cjfor all the variables in the starting tableau.

6. Consider an LP in which the variable xl is unrestricted in sign. prove that by substituting
xt : xt - xi ,where xf and xo are nonnegative, it is impossible that xf and"xewill replale
one another in an alternative optimum solution.

7. Given the general LP in equation form with m equations and n unknowns, determine the
maximum number of adjacenl extreme points that can be reached from a nondegenerate
extreme point of the solution space.

FlGURE 7.4

Vector representation of Problem I,Set7.Za
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8. In applying the feasibility condition of the simplex method, supPose that x,: 0 is a basic

variable and that x; is thó entering variable. why is it necessary for the leaving variable x,

a t 
""" rn-rpr), = br wnut is the}alacy if (B-lP), = 0? (Hint: Basic x, must remain non-

negative.)

9. In the implementation of the feasibility condition of the simPlex method, what are the

conditions for encountering a degenerate solution for the first time? For continuing to

obtain a degenerate solution in the next iteration? For removing degeneracY in the next

iteration? Éxplain the answer mathematically.

10. What are the relationships between extreme points and basic solutions under degeneracY

uJ rrorro"g"r.ru.y_wnát is the maximum number of iterations that can be Performed at

a given extreme point assuming no cycling?

11. Consider the LP
Maximize e : CX subject to AX = b,X > 0,b = 0

Suppose that the entering vector p; is such that at least one element of B-lP, is Positive,

(a) If pi is replaced witlr apr, where ct is a positive scalar, and Provided xi remains the

entering variable, find the relationship b"t*""r, the values of x, corresponding to P/

and ctP7.

(b) Answer part (a) if, additionally, b is replaced with Bb, where B is a Positive scalar,

t2. Consider the LP
Maximize z: CXsubjecttoAX = b,X > 0,b > 0

After obtaining the optimum solution, it is suggested that a nonbasic variable x, can be

made basic (profitable) by reducing the requirements per unit of xlfor the different

;;..* L'i o, their original valuás, a ) 1 . Because the requirements per unit are

reduced, it is expected that the profit per unit of x; will also be reduced to I of its original

value.Will these changes make x, a profitable variable? Explain,

13. Consider the LP
Maximize z : CXsubject to (A,I)X : b,X > 0

Define X6 as the current basic vector with B as its associated basis and C6 as its vector of

objective coefficients. Show that if C3 is replaced with the new coefficients Dr, the values of

z j _ cjfor the basic vector X6 will rJmain equal to zero.What is the significance of this result?

Revised 5implex Algorithm

Having developed the optimality and feasibility conditions in Section7.2.1'' we now

pr.r"rr-t the computationál steps of the revised simplex method,

step 0. construct a starting basic feasible solution and let B and c6 be its associated

basis and objective coefficients vector, respectively.

Step 1. Compute the inverse B-l by using an appropriate inversion

7.2,2

method.1

"" 
,o-, * ,."-rr"tions, including the first six editions of this book, the product form method for inverting

a basis (see Section A.z.1)is integrated il;; til" ,"ui."o simplex algorithm because the Product form |ends

itself neatly to the revised computation. *h.." successive baŠes diffěr in exactlY one column,The author has

removed this detail from this presentation b""u.rr" it makes the algorithm appear more complex than it

really is. Moreove r,the produc! formi, .ur"t u,"di"tt 
" 

á"*roprn"rrT of LP codéstecause it is not designed

for automatic compuiáíion. *n!r" machine roundoff 
"rro, "urr'b" 

a serious issue. NormallY, some advanced

numeric analysis method, such as tue ti áicoiuorh;ormethod, is used to obtain the inverse,IncidentallY,

T6RA matrii inversion module is based on LU decomposition,
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Step 2. For each nonbasic variable. 
7, coífipute

Zi -cj :CaB-Ipj _cj
If. z1 - li =- 0 in maximization (< 0 in minimization) for all nonbasic x;, stop;
the optimal solution is given by

Xa:B-lb, Z:C3X3
Else, apply the optimality condition and determine the enterin7 ya ab|e x,as
the nonbasic variable with the most negative (positive) zj - cjin case of
maximization (minimiz ati on) .

Step 3. Compute B-'Pi.If all the elements of B-'Pi are negative or zeío,stop;the
problem has no bounded solution. Else, compute B-lb. Then for all the
strictly positive elements of B-lP7, determine the ratios defined by the feasi-
bility condition. The basic variable x, associated with the smallest ratio is the
leaving variable.

Step 4. From the current basis B, form a new basis by replacing the leaving vector P,
with the entering vector Pr. Go to step ]. to start a new iteration.

Example 7.2-1

The Reddy Mikks model (Section 2.1) is solved by the revised simplex algorithm. The
Same model was solved by the tableau method in Section 3.3.2.A comparison between
the two methods will show that they are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

Maximize Z : (5, 4, 0, 0, 0, 0)(x 1, x2, x 3, x 4, x 5, x 6)T

subject to

T
|)

i)
(:

4100
2 010
100I
1000

XbXz,,... ,Xe ž 0
We use the notation C : (cr,c2, ... ,cu) to represent the objective function coefficients
and (P1, Pr, ... ,Pq) to represent the column vectors of the constraint equations. The
right-hand side of the constraints gives the vector b.

In the computations below we will give the algebraic formula for each step and its
final numeric answer without detailing the arithmetic operations. You wili find it
instructive to fill in the gaps in each step.

Iteration 0.

Thus,

Xro (X3,X4,X5,X6),Can : (0,0,0,0)
Bo : (P.,Po,Pr,Po) : I,Bo1 : r

Xro Bo'b : Q4,,6,1,,2)r,Z : CgnXBn : 0

,

I
!

l
t
:

l
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O ptimality C omputations:

CroBo' : (0,0,0,0)

{zi - c}l:tz: CuoBo'(Pr,Pr) - (rr,rr) : (-5, -4)
Thus, P1 is the entering vector.

Feasibility C omputations:

Xao (x3,x4,x5,xu)' : (24,6,,I,2)'

Bo'p, : (6,].,-]_,0)Z

Hence,

-}:4XI : *" 
{ +,1,-,- } 

: min {4,6, -,

and Pa becomes the leaving vector.
The results above can be summarized

The presentation should help convince you
Same.

in the familiar simplex tableau format.
that the two methods are essentially the

Basic X1 X5X4x" Solution

-4-5

X1

X1

X5

X6

6

1

-1
0

24
6

1

z

Iteration 1.

Xr, (XI,X4,X5,,X6),Cr, : (5,0,0,0)

Bt : (Pr, Po, Pr, Pu)

l 6 0 0 0\
I l 1 0 0l:| |

1-1 0 1 0/
\ 0 0 0 Il

By using an appropriate inversion method (see Section A.2.6,in particular the product
form method), the inverse is given as

Bi' :

Thus,

Xr, Bi'b : (4,z,5,z)r,,z : Cil,Xn,: 20

i o 0 0\
-ž 1 0 0l
i o 1 0l
0 0 0 Il

--&
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Optimality C omputations:

Cu,Bi' : (;,0,0,0)

{zi - c,}1:z,z: Cu,Bi'(Pr,Pr) - (rr,c:) : (-?,Z)

Thus, P, is the entering vector.

Feasibility C omputations:

Xa, (x,1,,x4,x5,xu)' : (4,2,5,Z)r

Bi'p, : (?,t,tr,t)'

Hence,

x2 : -ir, { +,?,1,+) : min {6, )3,z} : }- t í ] i L)

and Pa becomes the leaving vector. (You will find it helpful to summaize the results
above in the simplex tableau format as we did in iteration 0.)

Iteration 2.

: (5,4,0,0)

Hence,

Br' :

Thus,

Xa, Br'b : (3,'r,'r,i)', z : Cg,Xa, : 2I

O p tim ality C omputati ons:

Cr,Bi' : (1,r1,o,o)

{zi - c}l:z1: Cr,Bi'(Pr,Po) - (rr,r : (1,L)

Thus, X6, is optimal'and the computations end.

Summary of Optimal Solution:

x1 :3,X2:1.5,z:2I

X4 (Xl,X2,X5,Xu)',Cr,

B: : (Pt,Pz,P.r,Po/

l 6 4 0 0\
í r 2 0 0l:1-1 1 1 0l
\ 0 1 0 Il

i -: 0 0\

-* j o 0l
á j 1 0l
á -i 0 Il
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PRoBLEM sET 7.2B

1. In Example7 .2-1,,summarize the data of iteration 1 in the tableau format of Section 3.3.

2. Solve the following LPs by the revised simplex method:
(a) Maximize z : 6xt - 2x, * 3x3

subject to

2xt-x21-24=2
x7 *44<4

XyX2,X3 ž 0

(b) Maximize z :Zxt * x2 l 2x3

subject to

4x1l3xrl 84<12
4xlt x2*IZry<8
4xt- xz* 3x3<8

XyX2,X3 ž 0

(c) Minimize 7 :2x1 l x2

subject to

3x1 t xz: 3

4x1l3x2>6
xr*2x2<3
xyx2> 0

(d) Minimize z : 5xt - 4x, * 64 -l 8xa

subject to

x1*7x2*34*7xa<46
3xt- xzl 4l2xa<20
2x,-|3xz- x:* xa>18

XllX2rX3rX4 ž 0

3. Solve the following LP by the revised simplex method given the starting basic feasible
vector Xao (x2,xa,x5)r. ,/

Minimize z :jxz -l II4 - Ilxa -l 26x6

subject to

x2- x3 *xr-| Xa:6
x2- x3lxa *3xu:6

xl*x2-3xslxa*x5 :12

XlrX2rX3rX4rX5rX6 > 0

7.3
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4. Solve the following using the two-phase revised simplex method:
(a) Problem 2-c

(b) Problem 2-d

(c) Problem 3 (ignore the given starting X'o )

5. Revised Dual Simplex Method. The steps of the revised dual simplex method (using
matrix manipulations) can be summarized as follows:
Step 0. Let B9 : I be the starting basis and that at least one of the elements of Xuo is

negative (infeasible).

Step 1. Compute Xr : B-lb, the current values of the basic variables. Select the leaving

;fi 
,í:l",:;li;T 

,:,1fi:,:ilHi::ifi :i"fl : J.?ii: á#' JffiT,Tents 
o f X6

SteP 2. (a) Compute zj - cj: CaB-lP; - c; for all the nonbasic variables xr.

(b ) *:[* il,1',T:,.:T,:i|;:i ",Tí;;:"íT:: 
s traint c o ef fici e n ts (B - i p),

(c) The entering variable is associated with

e:-;n{ |ffi|,{n-'r),.o}
If all (B-lP), ž 0, no feasible solution exists.

Step 3. Obtain the new basis by interchanging the entering and leaving vectors ( P7 and
P, ). Compute the new inverse and go to Step 1_.

Apply the method to the following problem:

subject to

Minimizez:2x1 *x2

3x1 * xz= 3

4x1 * 3x2> 6

hl xz<3
XyX2 > 0

BOUNDED VARIABLES ALGOR|THM

In LP models, variables may have explicit positive upper and lower bounds. For example, in
production facilities, lower and upper bounds can represent the minimum and maximum
demands for certain products. Bounded variables also arise prominently in the course of solv-
ing integer programming problems by the branch-and-bound algorithm (see Section 9.3.1).

The bounded algorithm is efficient computationally because it accounts for the
bounds implicitly. We consider the lower bounds first because it is simpler. Given
X = L, we use the substitution

X:L*X', X'>0
and solve the problem in terms of X' (whose lower bound now equals zero). The origi-
nal X is determined by back-substitution, which is legitimate because it guarantees that
X : X' + L will remain nonnegative for all X' > 0.



306 Chapter 7 Advanced Linear Programming

Next, consider the upper bounding constraints, X < U. The idea of direct sub-
stitution (i.e., X - U - X",X" > 0 ) i, not correct because back-substitution,
X : U - X", does not ensure that X willremain nonnegative. A different procedure
is thus needed.

Define the upper bounded LP model as

Maximizez: {CX|(A,I)X: b,0 = X = U}

The bounded algorithm uses only the constraints (A,I)X : b,X > 0 explicitly and
accounts for X < U implicitly by modifying the simplex feasibility condition.

Let X6 : B-lb be a current basic feasible solution of (A,IX : b,X = 0 and
suppose that, according to the (regular) optimality condition, P7 is the entering vector.
Then, given that all the nonbasic variables are zero, the constraint equation of the lth
basic variable can be written as

(Xu)i : (B-rb), - (B-lP), xl

When the entering variable x7 increases above zeío level, (X"), will increase or decrease
depending on whether (B-lP); is negative or positive, respectively.Thus, in determining
the value of the entering variable xpthree conditions must be satisfied:

1. The basic variable (X6); remains nonnegative-that is, (Xu), > 0 .

2. The basic variable (X6), does not exceed its upper bound-that is, (Xu), < (Uu), ,

where U3 comprises the ordered elements of U corresponding to X6.

3. The entering variable x7 cannot assume a value larger than its upper bound-that
is, x7 < u1 ,where ui is theith element of U.

The first condition (Xr), > 0 requires that

It is satisfied if

This condition is the same as the feasibility condition of the regular simplex method.
Next, the condition (X6); š (Uu), specifies that

(B-'b), - (B-'P),*i š Qu),

It is satisfied if

(B-'b), - (B-lP),ri > 0

xi < 0t: -i"{e*|tu-'r), r o}

xi = 0z: -i"{
(B-'b), - (Uu),l

(B-T) 
l

(B-lP), . o 
}(B-lP)l

Combining the three restrictiofls,.I7 enters the solution at the level that satisfies

xi : min (01,02,u)

The change of basis for the next iteration depends on whether x, enters the solu-
tion at level \y1z, or ui. Assuming that (X3). is the leaving variable, then we have the
following rules:

^
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1. x1 : 0; (Xu),Ieaves the basic solution (becomes nonbasic) at level zeto.The new
iteration is generated in the normal simplex manner by using x, and (Xu), as the
entering and the leaving variables, respectively.

2. x1 : 02: (Xu), becomes nonbasic at its upper bound. The new iteration is gen-
erated as in the case of x1 : 0r, with one modification that accounts for the
fact that (Xu) will be nonbasic at upper bound. Because the values of 01 and 02

are developed under the assumption that all nonbasic variables are at zero
level (convince yourself that this is the case!), we must convert the new non-
basic (Xu), at upper bound to a nonbasic variable at zero level. This is
achieved by using the substitution (Xr), : (Uu) - (Xu)l , where (Xu)l > 0 .It
is immaterial whether the substitution is made before or after the new basis is
computed.

3. x1 : tl.| The basic vector X3 remains unchanged because xi : ujstops short of
forcing any of the current basic variables to reach its lower (: 0) or upper bound.
This means that x7 will remain nonbasic but at upper bound. Following the argu-
ment just presented, the new iteration is generated by using the substitution
xj:uj-xi.

A tie among lt,Oz, and ulmay be broken arbitrarily. However, it is preferable,
where possible, to implement the rule for xj : ujbecause it entails less computations.

The substitutioo . , : uj - xi will change the original cpPp and b to ci :
-ri,Pi - -P- , and b to b' - b - a7P7. This means that if the revised simplex method
is used, all the computations (e.g., B-',Xu, and z1 - ,) should be based on the updated
values of C, A, and b at each iteration (see Problem 5, Set 7.3a for further details).

:_-thod.

satisfies

s the solu-
l have the

Example 7.3-1

Solve the following LP model by the upper-bounding algorithm.2

subject to

Maximizez:3xr+5y*2x3

hl yt24<14
2x1 -|4y+34<43

0 š xr = 4,7 = y = ].0,0 < 4 š 3
is accounted for using the substitution ! : xz * 7, whereThe lower bound on y

0 < *, < ]"0 - 7 :3.
We will not use the revised simplex method to carry out the computations, to

avoid being "sidetracked" by the computational details. Instead, we will use the com-
pact tableau form. Problems 5, 6, and 7, Set 7.3a address the revised version of the
algorithm.

zYOU can use TORAs rrnelar'p"ug"J irlg, + sojne'Ó:l+r,l; + Átgellrárc + TLerations +
Bounded simpl ex to produce the associated simplex iterations.
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Iteration 0.

X4

X5

Xl

X5

-1
-4

Thus,

7

15

: I and Xa : @o,xr)' : B-lb : Q,1_5)r. Given .r2 is the enter-
-5), we get

B-'pr: (I,4)r

X3X1

35
.1

-L-5-J

X4X3x)

X5 Solution

1121,0
z4301"

WehaveB:B-1
ing variable (zz - c2 :

which yields

0t : ** 
{ +,+\ 

: 3.ll,corresponding to x5

0z: Ň (becauseB-lP2 > 0)

Next, given the upper bound on the entering variable, xz š 3, it follows that

x2 : min {3.75,oo,3} : 3 (:uz)

Because x2 enters at its upper bound (: ur:3),X6 remains unchanged, and x2
becomes nonbasic at its upper bound. We use the substitution xz : 3 - x; to obtain
the new tableau as

Basic X1 Solution

-2-J

2l04
301,3

1,

2

The substitution in effect changes the original right-hand side vector from 6 : Q,1,5)r
to b' : (4,3)' . This change should be considered in future computations.

Iteration 1. The entering variable is x1. The basic vector X3 and B-' (:I) are the same
as in Iteration 0. Next,

B-'p, : (I,2)r

0t : -i" {1,i} 
:1.5, corresponding to basicx5

0z: oo (because B-lP, > 0)

x1 : min {1.5, -,4} : 1.5 (:0r)

Thus, the entering variable x1 becomes basic, and the leaving variable x5 becomes non-
basic atzero level, which yields



X3X;X1
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-í5 Solution

109

z-1

X4

X1

0

1

1

^-L

I-+}
0+}

enter-

and x2
obtain

í7.15)'"

le Same

Iteration 2. The new inverse is

Now

Xa : @o,xr)' - B-lb, : G,})'
where b' : (4,,3)' as computed at the end of Iteration 0. We select x) as the entering
variable, and, noting that Pi : -Pr,we get

B-Ip;: (1, -2)'
Thus,

0l : -i" { +,-} : '.r,corresponding 
to basic xa

0z : 
"r* { -,+\ 

: 
'.r.r,corresponding 

to basic x1

we then have

x), : min {2.5,1.25,3} : 1.Z5 (:0r)

Because x1 becomes nonbasic at its upper bound, we apply the substitution
xt: 4 - xi to obtain

X5 Solution

109
2

Next, the entering variable xi becomes basic and the leaving variable x1 becomes
nonbasic at zero level, which yields

Basic xi x) Solution

u-,:(á )

x)xi

-1

x401!t-+;
xi-1-2jo:-}

x4-+0;I-ii
x))t-'^0-i;

X3

223
1

.: : iit]Il-

7_

1
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The last tableau is feasible and optimal. Note that the last two steps could have been
reversed-meaning that we could first make x) basic and then apply the substitution
xl: 4 - xi (try it!). The sequence presented here involves less computations, how-
ever.

The optimal values of x1,,,x2, and 4 are obtained by back-substitution &s 11:
ul- xi - 4 - 0:4,xz: ll2- x) - 3 _ 1:l,andx3:0.Finally,we gety: lzl
xz:7 + l: Ť.rrr" associated optimalvalue of zis2ff.

PRoBLEM sET 7.3A

1. Consider the following linear program:

subject to

Maximizez:2x1 lx2

x1l x2š3
0=xt -2,0=xz=2

Solve the problem graphically, and trace the sequence of extreme points leading to
the optimal solution.

Solve the problem by the upper bounding algorithm and show that the method pro-
duces the same sequence of extreme points as in the graphical optimal solution (use
TORA to generate the iterations).

(c) How does the upper-bounding algorithm rccognize the extreme points?

2. Solve the following problem by the bounded algorithm:

subject to

Maximize z : 6xt -l 2x2 i 8x3 * 4xa -l 2x5 -l 10x6

8x1 * x2 * 84 * Zxa t 2xs -l 4x6 < 13

0=*i =I,j:I,2,...,6
3. Solve the following problems by the bounded algorithm:

(a) Minimize z : 6xt - 2x, - 3x,

subject to

2x1 -| 4x, -| 24 = 8

x1-2x2*34=7
0<xr'2,0=xz32,0'xs=I

(b) Maximize z : 3xt * 5x2 l 2x3

subject to

x1*2x2*24<I0
2x1 *4x2*34<1,5

0=xt -4,0<xzš 3,0= 4š3

(a)

(b)
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In the following problems, some of the variables have positive lower bounds. Use the
bounded algorithm to solve these problems.
(a) Maximize z :3xt * 2x2 - 2x,

subject to

2x1 -| x2*4<8
x1*2x2-xz=3

I=xt=3,0=xzš3,2<x3
(b) Maximize z : x1 ,1 2x2

subject to

-xt*2xr=g
3x1*2x2=l0

-xll x2šl
I=xr=3,0šxz=I

(c) Maximize z : 4xt * 2x2 1- 6x3

subject to

4xl-x2 <9

-xtlx2l24=8
3xl*x2l44<12

I=xt=3,0=x2š5,0=xz,2
Consider the matrix definition of the bounded variables problem. Suppose that the vector
X is partitioned into (X., Xu), where X, represents the basic and nonbasic variables that
are substituted at upper bound.The problem may thus be written as

Using Xu : U, - Xi where U, is a subset of U representing the upper bounds for X,,let
B (and X6) be the basis of the current simplex iteration after X, has been substituted out.
Show that the associated general simplex tableau is given as

Solution

CBB-ID. - C. -CBB-ID' + C, C,,B-lb, + CuI-Ju

x8 B-'D. -B-'Du B-lb,

whereb':b-DuUu.
6. In Example 7.3-1,, do the following:

(a) In Iteration 1, verify thatX6 : @l,xt)r : (},'r)' by using matrix manipulation.
(b) In Iteration 2, show how B-1 can be computed from the original data of the problem.

Then verify the given values of basic xa and xj using matrix manipulation.

(l ;; ;:.)(1) : 
{;)

X: X,l
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Step 1.

Step 2.

Step 3.

Step 4.

If any of the current basic variables (X3); exceeds its upper bound, use the sub-

stitution (Xr); : (Ur), - (Xu)i .Go to stepZ,

If all the basic variables are feasible, stop. Otherwise, select the leaving variable

x, as the basic variable having the most negative value. Go to step 3,

Select the entering variable using the optimality condition of the regular dual

simplex method. Go to step 4.

Perform a change of basis. Go to step 1,

7. Solve part (a) of problem 3 using the revised simplex (matrix) version for uPPer bounded

variables.

8. Bounded Dual Simptex Algorithm, The dual simplex algorithm (Section 4.4) canbe

modified to accommodate the bounded variables as follows. Given the upper bound con-

straint xi š ulfor alli (if u; is infinite, replace it with a sufficiently large uPPer bound M),

the Lp problóm is convertód to a dual fóasible (i.e., primal optimal) form by using the

substitutioíxj : ui - xj,where necessary,

Applythegivenalgorithmtothefollowingproblems:
(a) Minimize z : 3xI - 2xz * 2x3

subject to
2x1 -| x2*4š8

-xtl2x2*4>13
0=x, =2,0Sx2S 3,0= 4šI

(b) Maximize z : xI t 5x2 - 2xz

subject to
4x1 -| 2x2 t 24 = 26

x1 * 3x2* 44> 17

0=x, =2,0šxrš3,4>0

7.4 DEcoMPoslTloN ALGoR|THM

Consider the situation of developing a master corporate plan for several Production
facilities. Although each facility has its own independent capacity and production con-

straints, the different facilities are tied together at the corporate level bY budgetarY

considerations. The resulting model includes two types of constraints: common) rePre-

senting the corporate budgátury constraints, and independent, re9íesenting the inter-

nal capacity aná production resirictions of each facility. Figure 7.5 dePicts the laYout of

the resulting 
"onitraints 

for n activities (facilities). In the absence of the common con-

straints, all activities operate independently,
The decompositi,on algorithm improves the computational efficiencY of the Prob-

lem depicted in Řg,rr" 7.5 Ěy breaking it down into n subproblems that can be solved

almost independ"rrtty. We point out, however, that the need for the decomPosition

algorithm *u, -o.. justifiábte in the past when the speed and memorY of the com-

puter were modest. Today, computers 
-boast 

impressive capabilities, and the need for

the decomposition algoriiňm máy not be warranted. Nevertheless, We Present the algo-

rithm here because of its interesting theoretical contribution.

^
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Independent
constraints

FlGURE 7.5

Layout of a decomposable linear
program

The corresponding mathematical model is given as

Maximize z: ClX1 + C2X2+ + CrX,
subject to

ArXr+A2X2+ +A,x,=

DrXr'

4 = 0, j :1-,2,..., n

The slack and surplus variables are added as necessary to convert all the inequal-
ities into equations.

The decomposition principle is based on representing the entire problem in
terms of the extreme points of the sets D7\ = bi,\ = 0,j : I,2, ...,n.To do so, the
solution space described by each Di 4 i br,\ = d must be bounded. This require_
ment can always be satisfied for any set 7 by adding the artificial restriction lxr. - M,
where M is sufficiently large.

Suppose that the extreme points of Dl\ = bl,\ = 0 are defined u, {.o,k:I,2, ... ,Ki. We then have

ki

where 9;o = 0 for all k and Ž pn : t
k:I

We can reformulate the entire problem in terms of the extreme points to obtain
the following masúer problem:

-Kt^K2^K,

k:I k:I t :l,

ffiffi

b0

b1

b2

b,

4: ÍUn&*, j:I,2,...,ft
k:1,
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subject to

tr1tt - Í Ar*,rogro+ +
k:t

Kz

29ro
k:I

K,

) B,o
k:I

?io = 0, for all j and k

The new variables in the master problem are B1,. Once their optimal values, B} ,

are determined, we can find the optimal solution to the original problem by back-
substitution as

Ki

\: )Bi&*,i : I,2,",,fi
k:I

It may appear that the solution of the master problem requires prior determina-
tion of all the extreme points &.o ,u difficult task indeed! Fortunately, it is not so.

To solve the master problem by the revised simplex method (Section 7.2), we
need to determine the entering and the leaving variables at each iteration. Let us start
first with the entering variable. Given Cr and B-1 of the current basis of the master
problem, then for nonbasic Bi1 , we have

Zjt - Cjk: CrB-tP1, - Cit,

where

A
Cik: C io and Pr,t :

Now, to decide which, if any, of the variable
to determine

enter the solution, we need

zí*- - Cít- :,,,Ť,r"t 
o{zir - ci*}

If. zit - cj-t- < 0, then, according to the maximization optimality condition, 97-t- must
enter the solution;otherwise, the optimum has been reached.

3X,*,oP,o
k:l

K,

)^t,*
k:l
K1

) ts,o
k:I

=bo

-1

-1,

-1

1d97t shou
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We still have not shown how zi-t- - cit is computed numerically. The idea lies in
the following identity

.,,T"1|} o{zio - ct} : m;n{min{\r - cip}}

The reason we are able to establish this identity is that each convex set Q\ = bi,

4 = 0 has its independent set of extreme points. In effect, what the identity says is
that we can determine zít - cip- in two steps:

Step 1. For each convex set QX7 = br,4 > 0, determine the extreme point &o" that
yields the smallest zy - cit -that is, zit, mint{z* - c1 .

Step 2. Determine zík- - cj-t- : m;n{z*- - clr-}.

From LP theory, we know that the optimum solution, when finite, must be associ-
ated with an extreme point of the solution space. Because each of the sets D7X7 = bi,

\ = 0 is bounded by definition, step 1 is mathematically equivalent to solvingnlinear
programs of the form

Minimize wi : {zi - ri|Di\ = b1,4 = 0}

Actually, the objective functíonwiis a linear function in 4 (see Problem 8, Set 7.4a).
The determination of the entering variable Fl,.- in ihe master problem reduces

to solving zr (smaller) linear programs to determine the "entering" extreme point

4-r- .This approach precludes the need to determine all the extreme points of all n
convex sets. Once the desired extreme point is located, all the elements of the col-
umn vector Pip- are at hand. Given that information, we can then determine the leav-
ing variable and, subsequently, compute the next B-1 using the revised simplex
method computations.

Example 7.4-1

Solve the following LP by the decomposition algorithm:

subject to

Maximize z : 3x, * 5x2 * xa l x5

xllx2l4l xa<40

5xl*x2 <I2

xz* xq>5

4l 5xa < 50

XyX2,X3,X4 > 0
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The problem has two subproblems that correspond to the following sets of variables:

Xr : @r,*r)',Xz: (rr,*o)'

The master problem corresponding to the problem above may thus be represented as
follows:

Notice that x5 is the slack variable that converts the common constraint to the follow-
ing equation

xllx2*4*xa*x5:40
Recall that subproblems 1 and 2 accolnt for variables xyx2,x3, and xa only. This is the
reason x5 must appear explicitly in the master problem. The remaining starting basic
variables, x6 zíId x7, zía artificial.

Iúeration 0.
Xa : (x5,x6,x7)r: (40,I,I)'

CB:(O,-M,-U,,B:B-1 :I

Iteration 1.

Subprobleml(i :1).

Zl- Ct

: (0, -M,

- -3x, -
Thus, the corresponding LP is

Minimize wI : -3*, - 5x, - M

We have

l
: CrB-'l

\

A,X,\

á j-",*,

-,('í)(;;))_o,,,(;])

5x2- M

Subproblem 1 Subproblem 2

Starting basic
solution

F,, 9n Fr^, 9r,, 9r, Fzx. X5 X6 X7

^AAcrxil clxrz ctxtr,
AAAczxn czxzz crxrr. 0 -M -M

AAAArXil ArXrz AtXtr,
111
000

AAALzXn LzXzz AzXzr,
000
11I

1

0

0

0

1

0

0 :40
0 -I
1 -1,

Cl : (3,5)

A1 : (1,1,)

Solution space, DlX1 < b1 :

5xl+.x2=12
Xl,X2 > 0

C2 : (1,,1,)

A2 : (1,1)

Solution space,DrX2 < br:
4l xa> 5

xri5xa<50
X3,X4 > 0
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5xl*x2=12
Xl,X2 > 0

(by the simplex method) yields

(O,,I})r,zi - ci: ,I: _60 _ M

associated linear program is given as

/A.x,\
,c2:CuB-'| O"|-CrX,

\t l

hl xq>5

4l5xa<50
X3,X4 > 0

The optimal solution of the problem yields

*r, : (50,0)Z, zž - cž: -50 - M
Because the master problem is of the maximization type and zi - ci < zž - cž

and zi - ci < 0, it follows that B,1 associated with extreme point *r, must enter the
solution. To determine the leaving variable,

p : |", ,,] : l,,i,,(,l)) : /':)r -\ 
á /:|á, 

,):[á/

Th.u!,B-lPrl 7 (Z,1,0)'. Given Xa : @s,xa,xl)r : (40, I,I)',it follows that x6(an arti-
ficial variable) leaves the basic solution (permanently).

The new basis is determined by replacing the vector associated with xu with the
vector P11, which gives (verify!)

subject to

The solution of this problem

*r, :

Subproblem2 (j:2). The

Minimize z2 -

subject to

Thus,

l--.
L; \.

.J as

. __.L

,i>-i!

: (0, _M, _I|4)(' 

ť'(r'))-,,, 
,)(;;)

- -x3- x+- M

i)

i)

lt
:(,3

:(i3-t

12
1,

0

-12
1,

0
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The new basic solution is

Xr : (*r, 9rr,*r)7 : B-1(40,1,,I)' : (28,t,I)r

Ca : (0, C1*11, - I|0 : (0,60, - 
^4)

Iteration 2.

Subproblem 7 (i : 1). The associated objective function is

Minimize w1, : -3x, _ 5x, + 60

(verify!). The optimum solution yields zi - ci : w1,: 0, which means that none of the
remaining extreme points in subproblem ]. can improve the solution to the master problem.

Iteration 3.

subproblem 7 (j : 1). you should verify that the associated objective function is

Minimize w1,: á- 2)x1 + é - 4)r, - ff + 48

The associated optimum solution is

*r, : (0,0)', zi - cI : -# + 48

318

Subproblem 2 (j : 2). The associated objective function is (coincidentally) the same
as for j : 2 in Iteration 1 (verify!).The optimum solution yields

*rr: (50,0)',zž - cž: _50 - M
Note that*,rris actually the same extreme point u. *r, .We use the subscript2tor
notational convenience to represent Iteration 2.

Flom the results of the two subproblems, z) - ,) < 0 indicates that B22 associated
with *r, enters the basic solution.

To determine the leaving variable, consider

pzz :|"Ť,,) : |,,í,(*)) : (l)-LL 
\r / \1

Thus, B-'Pr, : (50,0, 1)' . Because Xr : (rr,9rr,rr)r : (28,I,I)r,x5leaves.
The new basis and its inverse are given as (verify!)

lso 12 0\n:lo 1 0l
\r 0 l
l + -5012 0\3--t_l } ?]\ so 50 Ll

Xr : (Fzz,Fl,xr)' : 8-1(40, I,I)' : é,I,*)'
Ca : (Cr*rr,Crtr,, -^o : (50,60,-10
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Subproblem 2 (i : 2). The objective function can be shown to equal (verify!)

Minimize w2: (#)(*, 1 ,o) - M
The associated optimum solution is

*r, : (5,0)', zž - cž : -T

Nonbasic Variable x5. From the definition of the master problem, zi - ciof ,r5 must
be computed and compared separately. Thus,

Zs - cs: CaB-lps _ cs

: (1 + #,+a - w,-IVr(I,0,0)r - 0

:I+#
Thus, x5 cannot improve the solution.

From the preceding information, B23 associated with *1 enters the basic solution.
To determine the leaving variable, consider

/n"*,.\ lul(
Prr:I

\ ?-):| ?'';)) 
:(,)

Thus,B-'Prr: (ro!,0,*)' . Given Xa : (\zz,}l,xr)' : ffi,1,,ft1',the artificial variable
x7leaves the basic solution (permanently).

The new basis and its inverse are thus given as (verify!)

- ^.r:

,. - - - J._:.-!]

lso 12 5\n:l0 1 0l
\r 0 Il
l*-E-*\3-t-t_f } s]
\ 45 45 lsl

Xa : (9rr,9rr,9rr)': 8-1(40,I,I)' : (ft,I,ft)'
Ca : (Cr*rr,Crtr,, Cr*rr): (50,60,5)

rteration 4.

Subproblem 1(j :1). w1,: -2*, - 4xr, + 48.Ityields zi - cI: wi:0.

Subproblem 2 (j : 2). w2 : 0x3 * \xa -| 48 : 48.

Nonbasic Variable x5 | z5 - cs : "]-. The preceding information shows that ltera-
tion 3 is optimal.
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We can compute the optimum solution of the original problem by back-substitution:

Xi : @r,*r)': Brr*r, : 1(0, IZ)T : (0,I2)T

X]:o"-^I_e,r&IXť;,"o,,

: 128,0)T

The optimum value of the objective function can be obtained by direct substitution.

PRoBLEM sET 7.4A

1. In each of the following cases, determine the feasible extreme points graphically and
express the feasible solution space as a function of these extreme points. If the solution
space is unbounded, add a proper artificial constraint.
(a)

x1*2x2<6

2x1* x2š8

-h* x23I
x2š2

xyx2 š Q
(b)

2x1 -| xr=2
3x1 l 4x2> 12

xyx2 > 0

(c)
xl-x2=I0

2x, < 40

Xl,X2 ž 0
In Example7. -I,the feasible extreme points of subspaces DlXi : br,Xt > 0 and
DzXz : bz,Xz > 0 can be determined graphically. Use this information to express the
associated master problem explicitly.Then show that the application of the simplex
method to the master problem produces the same entering variable F7* as that generated
by solving subproblems 1 and Z.Hence,convince yourself that the determination of the
entering variable pit is exactly equivalent to solving the two minimizationsubproblems.
Consider the following linear program:

Maximize Z: x7 * 3x2 -l 5x3 * Zxa

subject to

x1 * 4x2

2x1 -| x2

5x1 -| 3x2 * 4x3

<8

<o

>10

",
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4-Sxa<4
h* xa=IO

XlrX2,X3rX4 ž 0

Construct the master problem explicitly by using the extreme points of the subspaces, and
then solve the resulting problem directly by the simplex method.

4. Solve Problem 3 using the decomposition algorithm and compare the two procedures.
5. Apply the decomposition algorithm to the following problem:

Maximize z : 6xt * 7x2 t 34 * 5xa l x5 l x6

subject to

xllx2l x3i'xa*x5* x6<50

xl*x2 <10

X2 <8

5rylxa <I2

xs* xa>5

x5*5x6<50

Xl,X2rX3,X4lX5rX6 ž Q

Indicate the necessary changes for applying the decomposition algorithm to minimization
LPs.Then solve the following problem:

Minimize Z : 5x1 -l 3x2 f 8x3 - 5xo

subject to

x3*x3*xa>25
x2 <20

X2 >5

4 * xa:20
XllX2rX3rX4 ž 0

7. Solve the following problem by the decomposition algorithm:

Minimize z : I)y, t 2y, * 4yz -ť 8yo * y5

subject to

|t]-4yz-ys >8

2yr+ !z-|!s >Z

3y, + yq-|ys=4

lt * 2yo -./s > 10

!t,|z,!s,|+,Ys ž 0
(Hint: Solve the dual problem first by decomposition.)

\*
5x, f
5x. -

Dn.
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8. In the decomposition algorithm, suppose that the number of common constraints in the
original problem is r. Show that the objective function for subproblemi can be written as

Minimize VVj : zj (CuR{ - CJ)4 i C6V,li

The vector R represents the first r columns of B-1 and V,*; is its (r + Ď th column.

7.5 DUALITY

We have dealt with the dual problem at an elementary level in Chapter 4. This section
presents a more rigorous treatment of duality and allows us to verify the primal-dual
relationships that formed the basis for sensitivity analysis in Chapter 4. The presenta-
tion also lays the foundation for the development of parametric programming.

7.5.1 Matrix Definition of the Dual Problem

Suppose that the primal problem in equation form with m constraints and n variables
is defined as

subject to

Maximize e : CX

AX:b
x>0

Letting the vector Y : (yr,yr, ... ,!*) represent the dual variables, the rules in
Table 4.2produce the following dual problem:

subject to

Minimize w : Yb

YA>C
y unrestricted

Note that some of the constraints YA > C may override unrestricted Y.

PRoBLEM sET 7.5A

1. Prove that the dual of the dual is the primal.
2. Suppose that the primal is given as min z : {CX|AX > brx > 0}. Define the corre-

sponding dual problem.

7.5.2 Optimal Dual Solution

This section establishes relationships between the primal and dual problems and shows
how the optimal dual solution can be determined from the optimal primal solution. Let
B be the current optimal primal basis, and define Ca as the objective function coeffi-
cients associated with the optimal vector X6.



._fn
: ia1
.__Ll

,:_eS

:i ]ll

shorr-s

n. Let
:oetfi-

7.5 Duality 323

Theorem 7.5-I. (Weak Duality Theory). For any pair of feasible primal and dual
solutions (X, Y), the value of the objective function in the minimization problem sets an
upper bound on the value of the objective function in the maximizaíionproblem. For the
optimalp air (X- ,Y-) ,the values of the objective functions in the two problems are equal.

Proof, The feasible pair (X, Y) satisfies all the restrictions of the two problems.
Premultiplying both sides of the constraints of the maximization problem with
(unrestricted) Y, we get

YAX:Yb:w
Also, for the minimization problem, postmultiplying both sides by X(>0) , we get

YAx > Cx
or

YAX>CX:z (2)

(The nonnegativity of the vector X is essential for maintaining the direction of the
inequality.) Combining (1) and(2),we get z = wf.or any feasible pair (X,Y).

Note that the theorem does not depend on labeling the problems as primal or
dual. What is important is the sense of optimization in each problem. Specifically, for
any pair of feasible solutions, the objective value in the maximization problem does
not exceed the objective value in the minimization problem.

The implication of the theorem is that, given z š w for any feasible solutions, the
maximum of z and the minimum of w are achieved when the two objective values are
equal. A consequence of this result is that the "goodness" of any feasible primal and
dual solutions relative to the optimum. may be checked by comparing the difference
(w - z) to L}l. The smaller the ratio 'H, the closer the two solutions are to being
optimal. The suggested rule of thumb does not imply that the optimal objective value is
zlw

2

What happens if one of the two problems has an unbounded objective value?
The answer is that the other problem must be infeasible. For if it is not, then both prob-
lems have feasible solutions, and the relationship z š w must hold-an impossible
result because eithet z : + oo ot w : - oo by assumption.

The next question is: If one problem is infeasible, is the other problem
unbounded? Not necessarily. The following counterexample shows that both the pri-
mal and the dual can be infeasible (verify graphically!):

Primal. Maximize z: {x, * xzlxt - xz - -1,,-h * xz š -1,,xl,x2 > 0}

Dual. Minimize w : {-yl - |zlIt - lzž L,-yt * yz> I,!t,!z > 0}

Theorem 7.5-2. Given the optimal primal basis B and its associated objective
coefficient vector C3 ,the optimal solution of the dual problem is

Y : CrB-1

Proof, The proof rests on verifying two points: Y : C6B-1 is a feasible dual solution
and z : w perTheorem 7.5-1,.

(1)
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The feasibility of Y : CaB-1 is guaranteed by the optimality of the primal,

zj - ci> 0 for a117'-that is,

CBB-IA-C>0
(SeeSection7.Z.1,.)Thus,YA - C > 0orYA = C,whichshowsthatY: CrB-1 isa
feasible duaI solution.

Next, we show that the associated w : z by noting that

vy : yb : CaB-lb (1)

Similarly, given the primal solution Xa : B-lb, we get

z : CaXa : CaB-lb (2)

From relations (1) and (2), we conclude z : w.

The dual variables Y : CrB-I are sometimes referred to as the simplex multipli-
ers. They are also known as the shadow prices, a name that evolved from the economic

interpretation of the dual variables (see Section 4.3.1).

Given P, is the ith column of A, we note from Theorem 7 .5-2 that

Zj - cj: CaB-lpi ypi _ c1

represents the difference between the left- and right-hand sides of the dual con-

straints. The maximization primal starts with z7 - ci 10 for at least one 7, which
means that the corresponding dual constraint, YP7 2 c| is not satisfied. When the

primal optimal is reached, we get z1 - c.> 0, for all7, which means that the corre-

sponding dual solution Y : CrB-1 becomes feasible. We conclude that while the pri-

mal is seeking optimality, the dual is automatically seeking feasibility. This point is
the basis for the development of the dual simplex method (Section 4.4) in which the

iterations start better than optimal and infeasible and remain so until feasibility is

acquired at the last iteration. This is in contrast with the (primal) simplex method

(Chapter 3), which remains worse than optimal but feasible until the optimal itera-
tion is reached.

Example 7.5-1

Tlne optimal basis for the following LP is B : (Pr,Pa). Write the dual and find its opti-
mum solution using the optimal primal basis.

Maximizez:3xt*5x2
subject to

x1l2x2*x3

-x1 l3x2 lxq
XyX2,X3rX4 > 0

The dual problem is given as

Minimizew:5yt*2y,

-5
-1-L
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subject to

|l- |z>3
2yr+3yr>5

!r!z ž 0
We have Xa : (rr,*o)';it follows that C3: (3,0). The optimal basis and its inverse

are given as

*: (_t ?) *ou-,: (t
The associated primal and dual values are

?)

@,,,x+)r:B-lb:(5,7)T

t,!z): CaB-1 : (3,0)

Both solutions are feasible and z : w : ].5 (verify!). Thus, the two solutions are
optimal.

PRoBLEM sET 7,5B

1. VerifY that the dual problem of the numeric example given at the end of Theorem 7.5_1 is
correct. Then verify graphically that both the primal and dual problems have no feasible
solution.

2. Consider the following LP:

Maximize z : 50x, -| 30x2 i 10x3

subject to

2X, -| x2 :
.l-"
LL2

4x, l xz:
Xl,X2rX3 ž 0

(a) Write the dual.
(b) Show by inspection that the primal is infeasible.
(c) Show that the dual in (a) is unbounded.
(d) From Problems 1 and 2, develop a general conclusion regarding the relationship

between infeasibility and unboundedness in the primal and duál problems.
Consider the following LP:

subject to

Maximize z : 5x, * I2x2 * 4x3

2*r- x2*3x3 -2
x1*2x2l x3lxa:5

XlrX2rX3,X4 ž 0

1,

-5
6
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(a) Write the dual.

(b) In each of the following cases, first verify that the given basis B is feasible for the Pri
mal. Next, using Y : CaB-1 , compute the associated dual values and verify whether

or not the primal solution is optimal.

(D B : (Pa,P)
(ii) B : (P2,P)

4. Consider the following LP:

subject to

Maximize z : Zxt -l 4x2 -l 44 - 3xq

hl x2*x3 -4
x1 -l 4x2* ixa:8

XyX2rX3rX4 ž 0

(a) Write the dual problem.

(b) Verify that B : (Pz, Ps) is optimal by computing z1 - c,fot all nonbasic P, .

(c) Find the associated optimal dual solution.

5. An Lp model includes two variables x1 and x2and three constraints of the type <.The

associated slacks gría x3,x4,and x5. Suppose that the optimal basis is B : (Pr, P2, P3), and

its inverse is

(iii) B : (Pr,Pz)

(iv) B : (Pl,Pa)

lo -1
n,l :l0 1

\r 1 i)

7.6

The optimal primal and dual solutions are given as

X,a : (xl,x2,4)r : Q.,6,2)r

Y : (yr,yr,ys): (0,3,2)

Determine the optimal value of the objective function in two ways using the primal and

dual problems.

6. prove the following relationship for the optimal primal and dual solutions:

)i! p i(B-lP t)i : žT: ů ia rt

where Cn : (rr,cr, ... ,c*)and p* : (aft,a, , ... ,a*t)T ,fot k : I,2, ... ,ft ,and (B-lp1), is

the lth element of B-lPo.

7. Write the dual of

Maximimize z : {CX|AX : b, X unrestricted}

8. Show that the dual of

Maximizez : {CX|AX = b,0 < L < X = U}

always possesses a feasible solution.

PARAMETRlc LlNEAR PRoGRAM MlNG

Parametric linear programming is an extension of the sensitivity analysis procedures

presented in Section 4.5.h investigates the effect of" predetermined continuous varia-
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tions in the objective function coefficients and the right-hand side of the constraints onthe optimum solution.
Suppose that the LP is defined as

Maximize.: 
{"*lá*,",: b,x = ,}

In Parametric analysis, the objective function and right-hand side vectors, C and b, arerePlaced with the parameterized functions C(r) anJ b(r), where / is the parameter ofvariation, MathematicallY, t can assume any positive or negative value. In practice,
however, / usuallY rePresents time, and hence it assumes nonnegative values only. In
this presentation we will assume / > 0 .

The general idea of parametric analysis is to start with the optimal solution at t : 0.
Then, using the oPtimality and feasibility conditions of the simplex method, we determine
the range 0 = t š /l for which the solution at t : }remains Óptimal and ieasible.In this
case, /1 is referred to as a critical yalue. The process continu., 

^by 
determining successive

critical values and their corresponding optimal feasible solutions. The proces! wiil termi_
nate at t : t, when there is indication that either the last solution ,.-uirs unchanged fort } t, or that no feasible solution exists beyond that critical value.

7.6.1 Parametric Changes in C

L2'XrtBrCr,(t) be the elements that define the optimal solution associated with criti_
cal ti (the comPutations start at /o : 0 with Bo u. it. optimal basis). Next, the critical
value ti*l and its oPtimal basis, if one exists, is determined. Because chanles in C can
onlY affect the optimality of the problem, the current solution Xr; : B;r;;iil remain
oPtimal for some 

' = tiso long as the following optimality condition is satistied:

ziG) - ,iG): Cu,Q)B,lP, - ,iG) > 0, foralli
The value of t,*, equals the largest t > tithatsatisfies all the optimality conditions.

Note that nothing in the inequalities requires C(r) to be]inear in r. Any function
C(/), linear or nonlinear, is acceptable. Howev.., *Íth nonlinearity the numerical
maniPulation of the resulting inequalities may be cumbersome. (Seó problem 5, Set7.6afor an illustration of the nonlinear case.)

Pis
Example 7.6-1

subject to
Maximize z: (3 - 6t)x, + (2 - 2t)x, + (5 + 5t)x,

x7*2x2* 4<40
3x, t- 24 < 60

x1*4x2 <30
XyX2,X3 > 0

C(/) : (3 - 6t,2 - 2t,5 + 5t),í > 0
The variables xa,x5, and x6 &íe slacks.

We have

*l,_:^U

,_.nd

cedures
s varia-



328 Chapter 7 Advanced Linear Programmin9

Optimal Solution at t - /o : 0

Basic X1

X2

X3

X6

X5XlX3X2 Solution

160

-ilOi-i0
)o10!o
2O0-2 1, 1

5

30

10

Xao (x2,4,x6)r : (5,30,il)Z

Cuír) :Q-2t,5+5t,0)
l+-i0\

nnl :| 0 i ol
\-z I Il

The optimality conditions for the current nonbasic Vectors PuP+,and P5 are

{Cu(r)BolP i -,i(ůi:t,4,5 = (4 + 1,4t,I - t,Z + 3t) > 0

Thus, XBo toí lztins optimal so long aS the following conditions are satisfied:

4+1,4t>0
1,-t>0

z+3t>0
Because t ž O, the second inequality stipulates that t < ]_ and the

inequalities are satisfied |ol .uli t 

= 
0. We.thus have h: L, which

,"--uirn optimal (and feasible) for 0 < t = I,
Att: l,z44) _ cq(t) _ 1, _ requals zeroandbecomesnegativeforr > 1.Thus,Pa

must enter the basis for / ) ].. In this case, P2 must leave the basis (see the oPtimal

tableau at t :0). The new basic solution X6, is the alternative solution obtained at

t : Iby letting Pa enter the basis-that is, Xa, @o,rr,ru)' and 81 : (P+, Pr, Po) ,

remaining two
means that X6o

Alternative Optimal Basis att : t1

lt t
l

B, : l0 2

\00
Thus,

lI -+ 0\

|o i ol
\o 0 1,1

-t

l)
Bi' :

xB, : @o,*r,*u)': Bilb : (10,30,30)7

Cu,(í):(0,5+5r,0)

The associated nonbasic vectors are P1, P2,and P5, and we have

{Cr,(r)BllPi - ,i(Ď}i:I,2,5: (\#,-2 + zt,5-}}t1 > o

According to these conditions, the basic solution X6, remains oPtimal for all t > 1"

Observe that the optimality conditioí, -2 + 2t > 0, áutomaticallY "remembers" that

7,6,2
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X6, is oPtimal for 1 range of r that starts from the last critical value tl : LThis will
always be the case in parametric programming computations.
. The oPtimal solution for the entire range-Ót r i, .ummarized below. The value of eis computed by direct substitution.

0<t<'l-
t>1

160 + I40t
150 + 150/

PRoBLEM sET 7.6A

1. In ExamPle7.6-1,,suPpose that t is unrestricted in sign. Determine the range of t for which
X6o remains optimal.

2. Solve ExamPle 7.6-I,assuming that the objective function is given as
(a) Maximize z : Q + 3t)q * 2x2 + - 6t)x,
(b) Maximize z:Q -2t)xr+ Q+ t)x2* (5 +2t)x3
(c) Maximize z:(3 + t)xr+ Q+2t)xr+(5 - t)x,

3. StudY the variation in the optimal solution of the following parameteri zed,Lpgiven t > 0.

Minimize z: (4 - t)*, + (1 - 3t)x2 + (2 - Zt)x,

subject to

3x1* x2l24:3
4x1 *3x2-|24>6
x1*2x2*54<4

XlrX2rX3 ž 0

4. The analYsis in this section assumes that the optimal solution of the Lp at/ : 0 is
obtained bY the (Primal) simplex method.In some problems, it may be more convenient
to obtain the optimal solution by the dual simplex method (Section 4.4). Show how the
Parametric analYsis can be carried out in this case, and then analyzethe Lp of Example
4.4-1,,assuming that the objective function is given as

Minimize z : (3 -l t)x1 + Q + 4t)xr, t > 0
5, In ExamPIe7.6-1,,suPpose that the objective function is nonlinear ín t(t > 0)and is

defined as

Maximize z : (3 * 2t2)x1 + (2 - 2t2)x, + (5 - t)x3

Determine the first critical value /1.

7.6.2 Parametric Changes in b

The Parameterized right-hand side b(l) can only affect the feasibility of the problem.
The critical values ot t are thus determined from the following condition:

Xu(r) :B-lb(/)>0

X1X2X1

0530
0030

E two
at X6_

hus Pa
ptima1
ned at

::"ihet
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Example 7.6,2

subject to

Maximize z : 3xt * Zx2 * 5x3

xl*Zx2* 4<40
3\ * 24 < 60

x1 l 4x2 <30

XlrX2rX3 >_ 0

Assume thatt > 0.
At t __ ro : o, ttre problem is identical with that in Example 7 .6-1,.We thus have

Xro (x2,4,x6)T : (5,30,]0)T

l, -i 0\

n;1 :| 0 j ol
\-z t Il

To determine the first critical value /1, Wo apply the condition X3(Í) : BOlb(/) > 0

which yields

-t
+2t

-7t

(í) :(r,?,) =(l)

These inequalities are satisfied for r = t^, meaning that t1: f and that the basis

Bg remains feasible for the range 0 = t = +.However, the values of the basic variables

xz,x3,and, x6will change with / as given above,

The value of the basic variabĚ xo (:1_0 - 3t)will equalzero at t : h : t and will

become negative for r > f. Th.r., at t : T ,*" can determine the alternative basis 81

by applying the revised dual simplex metňod (see Problem 5, Set 7 .2b fot details), The

leaving variable is x6 .

Alternative Basis at t : h : T
ciu"",u is the t"anirrg uuiiublé, we determine the entering variable as follows:

XBo : @r,rr,ru)',Cuo: Q,5,0)

Thus,

{zi - c}l:t,+,s: {CaoBo'Pl - c}l:t,+,s : (4,t,,2)

Next, for nonbasic x;,i : t,4,5, we compute

(Row of 86-1 associated with xo)(Pr,Po,Pr) : (Third row of Bo')(Pr,Po,Ps)

: (-2,1, 1XP1, Po, Pr)

-- Q, -z,I)

The entering variable is thus associated with

0 - ,r,i., 
{-,

1 | -\ :,
-2|, J ,



Thus, Pa is the entering vector.
The alternative basis is

Thus,
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X3

Bt : (P2, P3, P4)

Bi' :

:(i i i)

(i jj)
r. have

t- b(r) > 0

: :he basis
; l ariables

, and will
,,. basis Bl
;:ails). The

_ P,)

The new XB, : @r,,*r,*o)' .

The next critical value r, is determined from the condition Xu,(/) : Bilb(/) > 0,
which yields

|*,\ l+\ /o\
l"; l:lsoi,l=íól
u;/ \-5"/ \ó/

These conditions show that B, remains feasible for f - t - T .

At t : b : T, an alternative basis can be obtained by the revised dual simplex
method. The leaving variable is x2 because it corresponds to the condition yielding the
critical value t2.

Alternative Basis att : b: T.
Given x2is the leaving variable, we determine the entering variable as follows:

Xa, (rr,*r,*o)',Cr, : Q,5,0)
Thus,

{zi - c}l:ys,e : {Ca,BirP, - c}l:ys,e : é,rr,+)

Next, for nonbasic xi, j : I,5, 6, we compute

(Row of Bllassociated with x2)(Pr,Ps,Po) : (F'irst row of Bi'XPr,Ps,Pu)
: (0,0,lXpr,pr,po)

: (1,o,1)

Because all the denominator elements, fi,0,}), are > 0, the problem has no feasible
solution for r > Ť q"{ the parametric analysiŠ ends att : b : T .

The optimal solution is summarized as

X1 Xl

0</<
]9=r-
t>!

10

3
30
7

0 5-r 30+t 160+3t
0 'T 3o+t rcs+)t

(No feasible solution exists)
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PRoBLEM sET 7.68

1. In Example7.6-2,find the first critical value, tl,znd define the vectors of B1 in each of the

following cases:

(a) b(/) : (40 + 2t,60 - 3t,30 + 6t)r

(b) b(r) : (40 - t,60 + 2t,30 - 5t)r

2. Study the variation in the optimal solution of the following parameterizedlP given t > 0.

Minimizez:4xtlx2 l2x3

subject to

3xr* x1*24:3*3t
4x1 -|3xrt2xs>6+2t

x1*2x2*5x3<4-t
XlrX2rX3 >- 0

3. The analysis in this section assumes that the optimal LP solution at t : 0 is obtained bY

the (primal) simplex method. In some problems, it may be more convenient to obtain the

;íí*:::,Jť::",,1;T#ťlr:ffi ii",1!iT;T*i} ji3:Hl;liffi iT,:T::"-
ing that the right-hand-side vector is

b(r) : (3 + 2t,6 - t,3 - 4t)'

Assume t > 0.

4. Solve problem 2 assuming that the right-hand side is changed to

b(/) : (3 + 3t2,6 + 2P,4 - t')'

Further assume that t can be positive, zeío, oí negative.

7.7 KARMARKARlNTERloR-PolNTMETHoD

The simplex method obtains the optimum solution by following a Path of adjacent

extreme points along the edges of the solution space. Although in Practice the simPlex

method ňu. ,.ru"d well in solving large problems, theoretically the number of itera-

tions needed to reach the optimum solution can grow exponentially. In fact, research-

ers have constructed a class of LPs in which atl feasible extreme Points are visited

before the optimum is reached.
In ].984, N. Karmarkar developed a polynomial-time algorithm that cuts across

the interior of the solution space. The algorithm is effective for extremelY large LPs.

We start by introducing the main idea of the Karmarkar method and then pro-

vide the computational details of the algorithm,

7.7.1 Basic ldea of the lnterior-Point Algorithm

Consider the following (trivial) example:

Maximize Z : Xt
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using x2&s a slack variable, the problem can be rewritten as

subject to

Maximize Z : xL

x1 * x2:2

7.7 Karmarkar lnterior-Point Method

0=xl=2

FlGURE 7.6

Illustration of the general idea of
Karmarkar's algorithm

Xl,X2 > 0
Figure 7,6 dePicts the Problem. The solution space is given by the line segmentAB.The direction of increas e in z is in the positive direction"of x1.
Let us start with anY arbitr ary interioi (nonextreme) point b i., tt 

" 
feasible space(line AB), The gradient of the objective function (maxiÁiŽa z :- x7) at Cis the direc_tion of fastest increase in z. If we locate an arbitrary point along the gradient and then

Project it PerPendicularly on the feasible space (line,aB), *. Jbtuin the new point Dwith a better objective value z. Such improvem"nt i. obtáined by moving in the direc_tion of the Projected gradient CD.If we repeat the procedur e at b,we will determine anew closer-to-oPtimum Point E Conceivably, if we move (cautiously) in the directionof the Projected gradient, we will "stumble"-on the optimum point B. Ifwe are mini_mizing e (instead of maximizing),the projected gradiint will lorrectly move us awayfrom point B toward the minimum at pbi"i A @r"- 0)
The given stePs hardly define an algorithm in the normal sense, but the idea isintriguing! We need Some modifications that will guarantee that (r) Íhe steps g..r"._

ated along the Projected gradient will not "overshoót" the optimum point atB, and, (2)in the general n-dimensional case, the direction created by the projected gradient will

Gradient of z
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not cause an "entrapment" of the algorithm at a nonoptimum point. This, basicallY, is

what Karmarkar's interior_point algorithm accomplishes.

7.7.2 lnterior-PointAIgorithm

Several variants of Karmarkar's algorithm are available in the literature. Our Presenta-
tion follows the original algorithm. Karmarkar assumes that the LP is given as

Minimize e : CX

subject to

AX:0
lX:]_
x>0

A11 the constraints are homogeneous equations except for the constraint 1X:
2i:rx1 : I ,which defines an n-dimensional simplex. The validity of Karmarkar's algo-

rithm rests on satisfying two conditions:

1. X : (I,I,...,bsatisfies AX : 0

2. mine:0

Karmarkar provides modifications that allow solving the Problem when the second

condition is not satisfied. These modifications will not be presented here.

The following example illustrates how a general LP may F9 prr' in the homoge-

neous form AX:0 with 1X: ]., which alsďprovides X: (I,I,...,l) as a feasible

solution (condition 1). A second example shows how the transformation can be made

to satisfy both conditions, albeit involving tedious computations.

Example 7.7-1

Consider the problem.

subject to

Maximizez:lt*lz

y1 -l 2y2=2

|t!z ž 0
The constraint lt ]- 2!z < 2 is converted into an equation by augmenting a slack vari-
able y3 > 0 to yield

lt -l Zyz * yz: 2

Now define

!l,-|lz*yr=U
where U is sufficiently large so as not to eliminate any feasible points in the original
solution space.In our example, U : 5 will be adequate as can be_ determined from the
equation y, + 2y, * yz : 2. Augmenting a slack variable lq > 0, we obtain
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|t*lz*yl+!+:5
We can homogenize the constraint yt * 2y, + ls : 2
hand side by bl'ifu because the latter fraction
simplification,

3y, + 8y, + 3y, - 2yl: O

To conveft yt -| yz * h ]- |q: 5 to a simplex, we define
i : I,2,3, 4,to obtain
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by multiplying the right-
equals 1. This yields, aíter

the new variable x, : V.

jl

subject to

Maximizez:5xrl5x2

3x, l 8x2 l 3x, - 2xa: 0

xtl xz* xsl xq:1

3x1 * 8x, -| 3x, - 2xo - I2x, : g

Xtl xz* xzl xq* xs:L
xi >0,j :1,2,...,5

Xj žO,j:I,2,3,4
. FinallY, We can ensure that the center X : (I,i,... ,}) or the simplex is a feasible

Point for homogeneous equations by subtracting'Tróm thé left-hand side of 
"u.r, 

;q;._
tion an artificial variable whose coefficient eq ah the algebraic sum of all the con_straintcoefficientsontheleft-handside-thaiis,3+8i:_2:IZ.Theartificial
variables are then added to the simplex equation and are penalized appropriatei in
the objective function.In our exampie, the ártificial x5 is augmented u, fálo*r, J

Maximize z : 5x, -| 5x2 - Mx,
subject to

. For this syste- 9f equations, the rrew simplex center (1,1, ... ,i) i, feasible for the
homogeneous equation. The value M in the Óbjective funótion ÍJ 

"nosen 
sufficientlyrrUrrrUBoIIeOu cqualron. rne VatUe lvl ln the ob;ectrve tunction is chosen sufficiently

large to drive x5to zero level (compare with the"M-method, Section 3.4.I).

Example 7.7-2

This examPle shows that any LP can. satisfy conditions (1) and (2) required by
Karmarkar's algorithm. The transformation, ar-e tedious arrd, hórrce, not recommended
in Practice. Instead, a variation of the algorithm that does ,rót ,"qui." .orrditior, (i) i,
advisable.

Consider the same LP of Example 7.8-1-namely,

Maximizez:|tllz
subject to

y1*2y2<2

!u|z ž 0
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We start by defining the primal and dual problems of the LP:

DualPrimal

Maximize lo: lt * lz
subject to

y1,1 2y2<2

YbYz > 0

Minimize 1ilg: 2W1

subject to

,l:=1}* wt > I

Wl,W2 ž 0

The primal and dual constraints can be put in equation forms as

yl*2!zlyz:Z,yz>0
W1 -W2:I,w2>0

At the optimum lo : wo, which yields

lt*lz-Zwr:g
Selecting M sufficiently large, we have

|t* lzt yr+ wtl w2= M

Now, converting (3) into an equation we get

li :(M+I)xpi
wi_3 : (M + I)x1, i

st: (M + 1)x6

sz: (M + I)x7

Substitution in equations (2), (5), and (6) will produce the following equations:

(1)

(z)

(3)

(4)lt -| !z* yl -| wl l wz* sI : M, r > 0

Next, define a new variable s2 . From (a) the following two equations hold if, and only
it the condition sz : I holds:

lt -| lz t y. + wl t wz * s1 - Ms2 : 0

|t* |z* ys* wt* w2 l s1 l sz: M + I

Now, given sz : Ias stipulated by (5), the primal and dual equations (1) can be written
aS

Yl * 2!z

W1 -

Now, define

(5)

(6)

*yz-2s2:0
w2-1s2:0

-lx5*x6

*x5lx6

1,,2,3

4,5

xt* x2 -Zxl
hl x2l4l x4

\l x2*4* x4

x1*2x2*x3

-0
-Mxr:g
+ xl:I

2x1:0
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Xq-Xs Xl:0
xj ž 0, j : I,2, ... ,7

The final steP calls for.augmenting the artificial variable y3 in the left-hand side ofeach equation; the new objeciive funciion will call for minimi Žiig yr,whose minimumvalue must be zero (assuming the primal is feasible). Note, t o*" 
"r, 

that Karmarkar,s
algorithm requires the solutión

X : (á,á,á,*,á,á,á,á).

to be feasible for AX - 0 . This will be true for the homogeneous equations (with zeroright-hand side) if the associated coefficient of the arti!]cial xg equals the (algebraic)
sum of all the coefficients on the left-hand side.It thus follows ťhat'the transior"med Lpis given as

Minimize z : x8
subject to

xt* x2 -Zxo
xtl xz* xs* xq* x5 * x6- Mx,
x1l2x2l4 2x,

Xl- Xs X7

h* x2*4l x+*x5*x6* x7

xj ž 0, j : L,2,...,8
Note that the solution of this problem automatically yields the optimum solutions ofthe primal and dual problems through substitution.

We now Present the main steps of the algorithm. Figure 7.7 (a)provides a typicalillustration of the solution space in three áimensions with the ňomogerreous setAX : 0 consisting onlY of one equation. By definition, the solution space consisting of
the line segment AB ties entirely i,n,tl"re two-dimensional simplex 1* : 1 and pu....
through the feasible interior point G1,1,á), In a similar fashion, Figure 7.7 (b)provides anillustration of the solution space ,qEČ in four dimensions witň the homogeneous set
a.8ain consisting of one constraint only. In this case, the center of the three_dimensional
simplex is given by G,i,i,b.

Karmarkar's algorithm starts from an interior point represented by the center of
the simPlex and then advances in the direction of thé projecied gradient todetermine a
new solution Point. The new point must be strictly interiór, meJning that all its coordi-
nates must be positive. The validity of the algorithm rests on this condition.

For the new solution point to be strictly interior, it must not lie on the boundaries
of the simPlex. (In terms of Figure 7.7, points ,4 and B in three dimensions and lines
AB, BC, and AC in four dimensions must be excluded.) To guarantee this result, a
sPhere with its center coinciding with that of the simplex is inscribed tightly inside the
simPlex. In the n-dimensional case, the radius r of this spher. .quu], .# . e
smaller sPhere with radius c, r (0 < o < 1) will be a subset of the spher., urJď'árry'loint
in the intersection of the smaller sphere with the homogeneous system AX : 0 will be

rI

0r3:0
-(6- M)xg:0

2x,: g

+ /s:0
+ Xs:I-l

<|
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FlGURE 7.7

Illustrations of the simplex lX : ].

(0,0, 1,0)

(a) Three dimensions

(b) Four dimensions

Center of
simplex

Intersection of
AX:OandlX:

(0,0,0, 1)

Simplex 1X : 1

Intersection of

(0, 1,0,0)

Center of
simplex

1, 0)
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an interior point, with strictly positive coordinates. Thus, we can move as far as possiblein this restricted SPace (intersection of AX : 0 and the ct r-sphere) along the projectedgradient to determine the new (necessarily improved) soluti,on point.
The new solution Point no longer will be at the center of the simplex. For the pro_cedure to be iterative, we need to biing the new solution point to the center of a sim_

Plex, Karmarkar satisfies this requirerr nt by proposing tie following intriguing idea,called projective úransformaúion. Let l

li: : Ir2, ... )n

where xpi is the ith element of the current solution point
valid, because all xl,i > 0 by design. You will also notice that
definition. This transformation is equivalent to

lL
xki-i-,l

íi

.1l X7;

i:1

X6. The transformation is
2?:lt: 1, or lY : 1 , by

\/ _ D;'XI - lDo-*
where D6 is a diagonal matrix whose ith diagonal elements equal xpi.Thetransforma_tion maPs the X-sPace onto the Y-spa." urríqu.ly becaus. *ó can directly show thatthe last equation yields

By definition, min CX
gram is equivalent to

subject to

x- DoY
1DAY

: 0, Because 1D6Y is always positive, the original linear pro-

Minimize z : CDIY

AD6Y : 0

1Y:1
Y>0

The transformed Problem has the same format as the original problem. We can thusstart with the simPlex center Y : (I,:,^.... ,!) and repeat the iterative step. After eachiteration, we can comPute the valuď Ót tn"'Ó.iginal X variables from the y solution.we show now how the new solution poinican be determined for the transformedproblem. At any iteration k, the problem is given by

Minimize z : CDpy
subject to

AD6Y - 0

Y lies in the or -sphere
Because the ar -sPhere is a subset of the space of the constraints lX : 1 and x = 0,these two constraints can be dispensed with. As a result, the optimum solution of the

0- 0)



Chapter 7 Advanced Linear Programming

preceding problem lies along the negative projection of the gradient co (minimization)
and is given as

Yo"* : Yo - ct 
cP

'lb,ll

whereyo : (:,I, ... ,I)' and c, is the projected gradient, which can be shown to be

c, : [I - p'(pp1-1rlcno;r

where

P : rAP-)
\I /

The selection of 69 is crucial to enhancing the efficiency of the algorithm. Nor-
mally, we select ct as large as possible to acquire large jumps in the solution. However,
by cfioosing ct too large, we may come too close to the prohibited boundaries of the

simplex. There is no general answer to this problem, but Karmarkar suggests the use of
n-ta: 3n

The steps of Karmarkar's algorithm are

Step 0. 
:rTr.,w]r\ 

the solution point Xo : (:,I, ... ,}) and compute r
a: 3,

General step k. Define

and compute

: --}: andnv|n - ),)

Yrr.*
cp

"'l1.oll

Dt : diag {x6, ... ,xkn}

* : ("|-)

,:), -
DOYn"*

1D6Yr,"*

:(:

Xt*,

where

co : [I - p'(pp1-1rllcoo;I

ExampIe 7.7-3

subject to

Minimize z : Zxt * 2x2 - 3xl

-X1 - 2X2 -|

hl xz*
XlrX2rX3

34: 0

Xl: I

>0



7.7 Karmarkar lnterior-Point Method 341

two conditions imposed by the interior-point algorithm-

X: @r,*z,xs)r : (1,_+,+)'

The problem satisfies the
namely,

satisfies both constraints and the optimum solution

X* : (*i,ň,*á)' : (0,.6,.4)r

yields z : 0.

Iteration 0.

ation)

l Nor-
| ,ever,

of the
; use of

: afld

: (-1, -2,3)

!,r : *," :3
3), A
&(,

0\
l0l

il

c : (2,2, -
Xo : É,!,!)',,

l: 0
Do:l0 

+

\o0
Using projective transformation, we get

Y0 : (j,1,1),

i)

l! 0 0\
(2,2,4)|0 j q l : (3,;,-t)

\0 0 :l
l+ 0 0\

(_1,-2,3)1 0 j ol:(-j,-'r,t)
\0 0 ll

(r i -1 1)(-i i)) 
' : (Ť ?)

(, i i) (-i i)(Ť ix-i -i

lzs -20 -s\
LI -zo 1,6 +|*\-5 4 tJ

Iteraúion 1.

CDo :

ADo :

(PPr;-i :

l - rrlrpr)-tp :

Thus,

cp : (I - r(rr)-1r;lcoo;Z

It then follows that

:r(i? ?2 
i)( il:,,,-( 

::g)

: .257172
252 + (-20)'+ (-5r
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Thus,

Next,

Now

Advanced Linear Programming

yn"* : (1,1,1). - i x fr x #_ x ftlzs,-20,-5)r
: (.2633 40, .389328, .3 47 332)r

1D6Y,,"* : 1(1, LD(.263340,,.389328,.347332)' : l

Xr:
{l

DOY,r"*

1DOY,r"*

.26334

1Yn.* _ .,1 - ^new 
: (263340,,.389328,.347T2)r

3

Iteration 2.

l.zegzlo 0 0 \
CDt : Q,2,4)l 0 38g3z8 0 |: éruu80,.778656,-1,.0419g6)

\ 0 0 .34733zl

l.zeEg+o 0 0 \
AD1 :et,-23)| 0 389328 0 l:e.ru3340,-."778656,1,.04tgg6)

\ 0 0 .34733zl

(PP1-,: ({ 
-26334 -778656 1,0n996)(rtrí:ť:i)) ' - (sanzl

I - pl(pp,r,p: |á ? 3) -(_11'rZ?,2I\1,*u,,
\0 0 Il \ 1.041996 1/.

(-.zan+o -.778656 rcnwa)

l .azlzga -.449746 -.177550\
= l - .++gl rc 322451, .tzlzgs l

\-.rzzsso .L27z95 .osozs+f

Thus,

| .ezlzlo -.449746 -.177550\/ .szooso\
cp: (I - rrlrr}lr;lco,;r : |-.++ll+a 32245L .tzlzls|| .llsase 

I

\-.177550 .127295 .050254l \-I.041996 l
/ .tostqg\

: l -.tts +zslt

\-.o+ew J

It then follows that

0\
.llszn 

)

.rr|rrr)

||coll : .208571,.1651932 + (-.1184ssf + (-.o+al5l1z :
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y,,"* : G,!,*)' - i x frx v*<,T(.I65193,-.1n8435,-.04675Tr
: (.26147 9, .384849, .35367 I)r

Next,

DlYn"* :

1DlYn..u :

Now
/ 

",ororo\
xz: #*:|,iiizil
Zz: ,201,615

Repeated application of the algorithm will move the solution closer to the opti-
mum point (0,.6,.4). Karmarkar does provide an additional step for rounding the opti-
mal solution to the optimum extreme point.

PRoBLEM sET 7 .7 A
1. Use TORA to show that the solution of the transformed LP given at the end of

Example 7.7-2 does yield the optimal primal and dual solutions of the parent problem.
(Hint: Use M:]-0 and make sure that TORA's output gives at least 5 decimal points
accuracy.)

2. T ansform the following LP to Karmarkar's format.

subject to

Maximizez:ltt2y,

lt-lz<2
Zyr+lz<4

lyYz ž 0
3. Carry out one additional iteration in Example7.7-3,and show that the solution is moving

toward the optimuítr z : 0.

4. Carry out three iterations of Karmarkar's algorithm for the following problem:

subject to
Maximizez:4xr*x, lxa

-2x1 * 2x2 * x3 - x4: 0

xl*x2*4*xl:1
XlrX2rX3rX4 ž 0

(Hint: The problem must be converted to Karmarkar format first.)

l.zass+o 0 0 \l.zetug\
I o 389328 0 I| .ss+s+l I 

:
\ 0 0 .347332l\.35367Il

.34l53I

/.oossss\
I .t$sEzl
\nzanJ

-.ó )

0\
t_1333 

/
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5. Carry out three iterations of Karmarkar's algorithm for the following linear píogram:

Maximize1:2x1 lx2
subject to

xl*x2š4
XyX2 ž 0

(Hint:The problem must be converted to Karmarkar format first.)
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COMPREHENSIVE PROBLEMS

7.I Suppose that you are given the points

A : (6,4,6,-2), B : (4,12,-4,8), C : (-4,0,8,4)

Develop a systematic procedure that will allow determining whether or not each of
the following points can be expressed as a convex combinatíon of A, B, and C:

(a) (3,5,4,2)
(b) (5,8,4,9)

7.2 Consider the following LP:

Maximize z : 3xt -l 2x2

subject to

x1*2x2=6
2x7-| xz=8

-\* x2š1
xyx2> 0

Determine the optimum simplex tableau (use TORA for convenience), and then directly
use the information in the optimum simplex tableau to determine the second best
extreme-point solution (relative to the "absolute" optimum) for the problem. Verify the

answer by solving the problem graphically. (Hint: Consult the extreme points that are

adjacent to the optimum solution.)

7.3 Interval Programming. Consider the following LP:

Maximizez : {CX|L < AX < U,X > 0}
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where L and u are constant column vectors. Define the slack vector such thatAX + Y : U. Show that this LP is equivalent to

Maximizez : {CXIAX + Y: U,0 < y < U _ L,x > 0}

Use the proposed procedure to solve the following LP:

subject to

Minimize z : 5x, - 4x, -| 6x3

20< x1*7x21-3x1<46

10<3x1- xzl 4<20
t8=2xr*3x2- 4=35

XlrX2rX3 ž 0

7.4 Consider the following 0-1_ integer LP:

Minimizez : {CX|AX = b,X: (0,1)}

Suppose that z.1,, is a known upper bound on z. Define the constraint

TjŤ"1,35t*@ - Ax) * (z -,n - cx)} > 0

where p > 0. This constraint does not violate any of the restrictions of the original 0-1
Problem. The min-max problem is one way of identifying the "tightest" such constraint
through ProPer selection of p(>0). Show that the proposed mixed 0-1 definition for deter_
mining p actually reduces to solving an ordinary LP problem. (Hint: The integer restric_
tion X : [0,1] is equivalent to the continuous range 0 = X < 1. Use the dual problem to
define the desired LP.)
The optimum solution of the LP in Problem 7-2 isgil9n ás . 1 : !, rr : !, and z : t.Plot the change in optimum e with 0 given that x1: + + 0 , wheie ďis unrestricted in
sign. Note that x1: ť + 0 tracks x1 abóve and below its optimal value.
Suppose that the optimum linear program is represented as

jeNB

subject to

jeNB

where NB is the set of nonbasi.,".r"ol,'"-;;;*=;at for a current basic variable xi : xI
we imPose the restriction x; > di,where d;is the smallest integer greater than x]. Estimate
an upper bound on the optimum value of z after the constraint is augmented to the prob-
lem. RePeat the Same procedure assuming that the imposed restrictiJn is x, < ,,,*li"r" r,
is the largest integer smaller than xj.

7.7 Consider the following minimization LP:

Minimize z : (1,0t - 4)x, + (4t - 8)x,

7.5

7.6



subject to

2x1*2x2*4 -8
4x1*2x2 *x4:6-2t

XlrX2rX3rX4 ž 0

where -oo < 1 < oo.The parametric analysis of the problem yields the following results:

-oo < t = -S:Optimatbasis is B : (Pl,Pa)

-5 = r < -1:OptimalbasisisB: (Pl,P2)

-]- < t < 2:Optimalbasis is B : (Pr,Pr)

Determine all the critical values of t that may exist for t > 2 .

8.1
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Goal Programming

The LP models Presented in the preceding chapters are based on the optímization of asingle objective function. There are situátioni where. mutti|te fuossibly conflicting)objectives maY be more aPProPriate. For e"ampl", aspiring politicians may promise toreduce the national debt and, simultaneously, oif.. irróo-Jtáx relief.In such situations,it maY be imPossible to find a single solution that optimizes the conflicting objectives.Instead, we maY seek a Compromlse solution based Ón the relative importance of eachobjective.
This chaPter.Presents the goal programming technique for solving multiobjectivemodels, The PrinciPal idea is to .o.ru".i the original multiple objectives into a singlegoal, The resulting model Yields *l1t is usuall referred jo u. an eíficient solutionbecause it may not be optimum with resp ect tá ail the conflicting objectives of theproblem.

A GOAL PROGRAMM|NG FORMULAT|ON

The idea of goal programming is illustrated by an example.

Example 8.1-1

Fairville is a small city with a population of about 20,000 residents. The city council is inthe Process of developing urr'"quitubfe city i;;; table. rn. unrrual taxation base forreal estate ProPertY iŠ $sso miliion. The annual taxatio., bur"" io. rooa and drugs andtor general sales are $35 million and $55 Tilliorr" respectively. Annual local gasolineconsumption is estimated at 7.5 million gatto"s. Tire city .ourriii *u.rt, to develop thetax rates based on four main goals.

L Tax revenues must be at least $16 million to meet the city,s financial commit_ments.
2. Food and drug taxes cannot exceed 10% ofall taxes collected.

347
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Chapter 8 Goal Programming

3. General sales taxes cannot exceed 20"/" of. all taxes collected.

4. Gasoline tax cannot exceed 2 cents per gallon.

Let the variables x, x,,and x, represent the tax rates (e,xpressed as proportions of
taxation bases) for pro'perty, fooďand drugs, and general sales; and define the variable
.r8 as the gasÓline 

-taf 
in cents per gallon. The goals of the city council are then

expressed as

550x, + 35x7 * 55r, *

35x7 < .L(550x, t- 35x7

55x,<.2(550xr+35x7

xrš2
XolXpX,Xrž0

These constraints are then simplified as

550ro * 35x7 * 55x, * .075x, >_ 1,6

55xo - 31,.5x7 * 5.5x, i .0075x, > 0

l!\x, * 7\ - 44x, * .015r, > 0

xrš2
Xol X7, Xv X, ž 0

Each of the inequalities of the model represents a goal that the city council asPires

to satisfy. Most likeiy, however, the best we can do is seek a comPromise solution
among these conflicting goals.

Tňe manner in whiiň goal programming finds a compromise solution is to convert

each inequality into a flexíble goaÍin which the corresponding constraint maY be vio-
lated, if necesŠary. In terms ofihe Fairville model, the flexible goals are exPressed as

follows:

550x, t 35x7 t 55r, * .075xr+ si - si : 16

55xo - 3!.5x7 * 5.5x, + .0075x, + sj - si :0
l!\xo * 1ry - 44x, * .015x, + sj - si : 0

x, 1-s[-si:2
Xo, X7, Xv Xr ž 0

sI, s; = 0, i : I,2,3, 4

The nonnegative variables s| and si, i : !, Z, 3,, 4, ate called deviational variables
because thěy represent the deviations above and below the right-hand side of con-

straint l.

The deviational variables s| and s; are by definition dependent and, hence, caírnot

be basic variables simultaneously. This means that in any simplex iteration, at most one

of the two deviational variables can assume a positive value. If the original lth inequal-
ity is of the type = and its . I > 0, then the lth goal will be satisfied;otherwise, if s; > 0-

góal iwill noibe satisfied. In essence, the definition of s| and s; allows us to meet or vio-

.075xr > t6

i 55x, + .075xr)

* 55x, + .075xr)

(Tax revenue)

(Food/drug tax)

(General tax)

(Gasoline tax)
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late the ith.goal at will. This is the type of flexibility that characterizes goal program_
ming when it seeks a compíomise solution. Naturall , a good compromisJsolulioňaims
at minimizingthe amount by which each goal is violated.

In the Fairville model, given that the first three constraints are of the tvoe >
and the fourth constraint is of the type <, the deviational variables s|, sj, sj, and s; of
the Problem rePresent the amounts by which the respective goals ai" uiotáted. Thus,
the comPromise solution tries to satisfy the following four-objectives as much as
possible:

Minimize Gl : si
Minimize Gz : si
Minimize G: : si
Minimize Gq : si

These functions are minimized subject to the constraint equations of the model.

How can we optimize a multiobjective model with possibly conflicting goals?
Two methods have been developed for this purpose: (1) the weights metňoá and
(2) the Preemptive method. Both methods are based on converting tňe multiple objec_
tives into a single function as detailed in Section 8.2.

PRoBLEM sET 8.1A

1. Formulate the Fairville tax problem, assuming that the town council is specifying an addi_
tional goal, G5, that requires gasoline tax to equal at least 1,0% ofthe total tax bill.

2. The NW ShoPPing Mall conducts special events to attractpotential patrons. The two most
PoPular events that seem to attract teenagers, the youngimiddle-ag.-d group, and senior
citizens are band concerts and art and craft shows. The Óosts p", pi"..rrtation of the band
and art show are $1500 and $3000, respectively. The total (strict) annual budget allocated
to the two events is $15,000. The mall manager estimates the attendance of the events as
follows:

Number attending per presentation

Event Teenagers Young/middle age Seniors

Band concert
Art show

:

100

400

200
0

0
250

The manager has set the minimum annual goals of 1000, I200,and 800 for the attendance
of teenagers, the Young/middle-aged group, and seniors, respectively. Formulate the prob-
lem as a goal programming model.
Ozark UniversitY admissions office is processing freshman applications for the upcoming
academic Year.The aPPlications fall into three categories: inslate, out-of-state, and inter-
national.The male-female ratios for in-state and out-of-state applicants are 1:1 and
3:2, resPectivelY. For the international students, the corresponding ratio is 8:1. The
American College Test (ACT) score is an important factor in accépting new students.
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Statistics indicate that the average ACT scores for in-state, out-of-state, and international
students are27,26,and23,respectively.The committee on admissions has established the

following desirable goals for the new freshman class:

(a) The incoming class is at least 1200 freshmen.

(b) The average ACT score for all incoming students is at least 25.

(c) International students constitute at least t0"/" of the incoming class.

(d) The female-male ratio is at least 3:4.

(e) Out-of-state students constitute at least 20% of,the incoming class.

Formulate the problem as a goal programming model.

4. Circle K farms consume 3 tons of special feed daily.The feed-a mixture of limestone,

corn, and soybean meal-must satisfy the following nutritional requirements:

Calcium. At least 0.8% but not more thant.2"Á

Protein. Atleast22o/"

Fiber. At most 5%

The following table gives the nutritional content of the feed ingredients.

lb per lb of ingredient

Ingredient protein Fiber

Limestone
Corn
Soybean meal

.380

.001

.00z

.00

.09

.50

.00

.02

.08

5.

Formulate the problem as a goal programming model, and state your opinion regarding

the applicability of goal programming to this situation.

Mantel produces a toy carriage, whose final assembly must include four wheels and two

seats. The factory producing the parts operates three shifts a day. The following table pro-

vides the amounts produced of each part in the three shifts.

Units produced per run

Shiít

Ideally, the number of produced wheels is exactly twice that of the number of seats.

However, because the production rates vary from shift to shift, exact balance in pro-
duction may not be possible. Mantel is interested in determining the number of pro-
duction runs in each shift that minimizes the imbalance in the production of the parts.

The capacity limitations restrict the number of runs to between 4 and 5 for shift 1, ].0

and20 for shift 2,and 3 and 5 for shift 3. Formulate the problem as a goal program-
ming model.

6. Camyo Manufacturing produces four parts that require the use of a lathe and a drill
press. The two machines operate 10 hours a day. The following table provides the time in
minutes required by each part:

300
280
360

500
600
640

1

z
J
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production time in min

Drill press

It is desired to balance the two machines by limiting the difference between their total
operation times to at most 30 minutes. The market demand for each part is at least 10
units. Additionally, the number of units of part 1 may not exceed that of partZ.Formulate
the problem as a goal programming model.
Two products are manufactured on two sequential machines.The following table gives
the machining times in minutes per unit for the two products.

Machining time in min

Machine Product ] Product2

1

2

The daily production quotas for the two products are 80 and 60 units, respectively. Each
machine runs 8 hours a day. Overtime, though not desirable, may be used if necessary to
meet the production quota. Formulate the problem as a goal programming model.
Vista City Hospital plans the short-stay assignment of surplus beds (those that are not
already occupied) 4 days in advance. During the 4-day planning period about 30,25,and
20 patients will require I-,2-, or 3-day stays, respectively. Surplus beds during the same
period are estimated at 20,30,30, and 30. Use goal programming to resolve the problem
of overadmission and underadmission in the hospital.
The Von Trapp family is in the process of moving to a new city where both parents have
accepted new jobs. In trying to find an ideal location for their new home, the Von Trapps
list the following goals:

(a) It should be as close as possible to Mrs. Von Trapp's place of work (within t of. a .
mile).

(b) It should be as far as possible from the noise of the airport (at least 10 miles).
(c) It should be reasonably close to a shopping malt (within 1 mile).

Mr. and Mrs.VonTrapp use a landmark in the city as a reference point and locate the
x-y coordinates of work, airport, and shopping mall at (1, t),(20,15), and (4,7),respec-
tively (all distances are in miles). Formulate the problem as a goal programming model.
(Note:The resulting constraints are not necessarily linear.)
Regression Analysis. In a laboratory experiment, suppose that yiis the lth observed
(independent) yield associated with the dependent observational measurements
Xij, i: I,2, ..., ffi, j : I,2, ..., n.Itisdesiredtodeterminealinearregressionfitinto
these data points. Given bp i : 0, 1, . . . ) n) as the regression coefficients, all b, are deter-
mined such that the sum of the absolute deviations between the observed and the esti-
mated yield is minimized. Formulate the problem as a goal programming model.
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1_1. Chebyshev Problem. An alternative goal for the regression model in Problem ].0 is to
minimize ovet b,the maximum of the absolute deviations. Formulate the problem as a

goal programming model.

8.2 GoAL PRoGRAMMING ALGoR|THMs

This section presents two algorithms for solving goal programming. Both methods con-
vert the multiple goals into a single objective function. In the weights method, the sin-

gle objective function is the weighted sum of the functions representing the goals of
the problem. The preemptive method starts by prioritízing the goals in order of impor-
tance. The model is then optimized using one goal at a time such that the optimum
value of a higher priority goal is never degraded by a lower priority goal.

The proposed two methods do not generally produce the same solution. Neither
method, however, is superior to the other because each technique is designed to satisfy
certain decision-making preferences.

8.2.1 The Weights Method

Suppose that the goal programming model has n goals and that the lth goal is given as

Minimize Gi, i : 1,, 2, ... ) n

The combined objective function used in the weights method is defined as

Minimize z: wtG1 l w2G2 l * wnG,

The parameter wi, i : I, 2, ... , fl,represents positive weights that reflect the decision
maker's preferences regarding the relative importance of each goal. For example,
wi : 1_, for all i signifies that all goals carry equal weights. The determination of the
specific values of these weights is subjective. Indeed, the apparently sophisticated ana-
lytic procedures developed in the literature (see, e.g., Cohon, 1978) are still rooted in
subj ective assessments.

Example 8.2-1

TopAd, a new advertising agency with ]_0 employees, has received a contract to pro-
mote a new product. The agency can advertise by radio and television. The following
table provides data about the number of people reached by each type of advertise-
ment, and the cost and labor requirements.

Data/min advertisement

Radio

Exposure (in millions of persons)
Cost (in thousands of dollars)
Assigned employees

The contract prohibits TopAd from using more than 6 minutes of radio advertisement.
Additionally, radio and television advertisements need to reach at least 45 million peo-

8

24
2

4
8

1

Television
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Ple- ToPAd has set a budget goal of $100,000 for the project. How many minutes of
radio and television advertisement should TopAd use?

Let xl and x2 be the minutes allocated to radio and television advertisements. The
goal programming formulation for the problem is given as

Minimize Gt : s| (Satisfy exposure goal)

Minimize Gz : s| (Satisfy budget goal)

subject tos:n-
_: t_)l

_ t l_L -

:,]n1

_-_1gl

-, - ir-

_ > _.rn

____ _!.

j _- _

. | ,-
- * _ii

nent.
, peO-

4x1l 8x2lsi-si
8x1 *24x2 +si
\* 2x,

X1

: 45 (Exposure goal)

- si : 100 (Budget goal)

XI, x2, si, si, si, sz, > 0

_ , 
TopAd's management assumes that the exposure goal is twice as important as the

budget goal. The combined objective function thus becómes

Minimize z:zGI t Gz:2s| + s;
The optimum solution (obtained by TORA) is

z:I0
xt : 5 minutes, xz : 2.5 minutes, s| : 5 million persons

A1l the remaining variables equal zeto.
The fact that the optimum value of e is not zero indicates that at least one of the

goals is not met. Specifically, si : 5 means that the exposure goal (of at least 45 million
Perryls) is missed by 5 million individuals. Conversel , the budget goal (of not exceed-
ing $100,000) is not violated because s| : g.

Goal,programming yields only an efficient solution to the problem, which is not
necessarily. optimum_. For example, the solution 11 : 6 and xz : 2 yields the same
ejp9l1l9 L4 x 6 + 8 X 2 : 40 million persons) but costs leis (8 x 6 + 24 x 2:
$ 96,000)- In essence, _what goal programming dóes is to find u ,ol.rtion that simply
17til[ies the goals of the model with no regard to optimization. Such "deficiency,iin
finding an optimum solution raises doubts about the viability of goal programmiňg as
an optimizingtechnique (see Example 8.2-3 for further discuisioň).

PRoBLEM sET 8.2A

1. Consider Problem 1, Set 8.1a dealing with the Fairville tax situation. Solve the problem,
assuming that all five goals have the same weight. Does the solution satisfy all the
goals?

2. In Problem 2, Set 8.1a, suppose that the goal of attracting young/middle-aged people is
twice as important as either of the other two categories (teens and seniors). Find th" ur.o-
ciated solution, and check if all the goals have been met.

3. In the Ozark University admission situation described in Problem 3, Set 8.1a, suppose
that the limit on the size of the incoming freshman class must be met, but the ."..ruir,i.rg
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requirements can be treated as flexible goals. Further, assume that the ACT score goal is
twice as important as any of the remaining goals.

(a) Solve the problem, and specify whether or not all the goals are satisfied.

(b) It in addition, the size of the incoming class can be treated as a flexible goal that is
twice as important as the ACT goal, how would this change affect the solution?

In the Circle K model of Problem 4, Set 8.1a, is it possible to satisfy all the nutritional
requirements?

In Problem 5, Set 8.1a, determine the solution, and specify whether or not the daily pro-
duction of wheels and seats can be balanced.

In Problem 6, Set 8.1a, suppose that the market demand goal is twice as important as that
of balancing the two machines, and that no overtime is allowed. Solve the problem, and

determine if the goals are met.

In Problem 7, Set 8.1a, suppose that the production quota for the two products needs to
be met, using overtime if necessary. Find a solution to the problem, and specify the
amount of overtime, if any, needed to meet the production quota.

In the Vista City Hospita1 of Problem 8, Set 8.1a, suppose that only the bed limits repre-
sent flexible goals and that all the goals have equal weights. Can all the goals be met?

The Malco Company has compiled the following table from the files of five of its employ-
ees to study the relationship between income and age, education (expressed in number of
college years completed), and experience (expressed in number of years in the business).

Age (yr) Education (yr) Experience (yr) Annual income ($)

40,000
48,000
38,000
36,000
4].,000

Use the goal programming formulation in Problem 10, Set 8.1a to fit the data into
the linear equation y : bo l bp1 l b2x2 * b34.

10. Solve Problem 9 using the Chebyshev Method proposed in Problem 11, Set 8.].a.

8.2.2 The Preemptive Method

In the preemptive method, the decision maker must rank the goals of the problem in
order of importance. Given an n-goal situation, the objectives of the problem are writ-
ten as

Minimize Gl : p1 (Highest priority)

'rrrr*rr" 
G, : pn (Lowest priority)

The variable p; is either s| or s, representing goal í. For example, in the TopAd model
(Example 8.2-I),pr : si and p2 : ^r.

The solution procedure considers one goal at a time, starting with the highest
priority, G1, and terminating with the lowest, Gn.The process is carried out such that

7.
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the solution obtained from a lower priority goal never degrades any higher priority
solutions.

The literature on goal programming presents a "special" simplex method that
guarantees the nondegradation of higher priority solutions. The method uses the
column,dropping rule that calls for eliminating a nonbaslc variable x, with z1 - c1 # 0
from the optimal tableau of goal G1 before solving the problem of góal Gl,*"1. Thó rule
recognizes that such nonbasic variables, if elevated above zero level in the optimiza_
tion of succeeding goals, can degrade (but never improve) the quality of a highir prior-
ity goal. The procedure requires modifying the simplex tableau so that it witt cariy the
objective functions of all the goals of the model.

The proposed column-dropping modification needlessly complicates goal pro-
gramming. In this presentation, we show that the same results can be achieved ln a
more straightforward manner using the following steps:

SteP 0. Identify the goals of the model and rank them in order of priority:

Gt: pr) Gz:pzž žGr:p,
Set l : ]..

SteP i. Solve LP, that minimize, G,, and let p; : pi define the correrpoodirrg opti-
mum value of the deviational variable p;. If i : n,stop; LP, solves the n-goal
Program. Otherwise, augment the constraint pr : pi to the constraints of the
G,-Problem to ensure that the value of p; will not be degraded in future prob-
lems. Set l : i + I,and repeat step l.

The successive addition of the special constraints p; : pI may not be as "elegant''
theoreticallY as the column-dropping rule. Nevertheless, it achieves the exact iu,o"
result. More important, it is easier to understand.

Some may argue that the column-dropping rule offers computational advan-
tages. EssentiallY, the rule makes the problem smaller successively by removing vari_
ables, whereas our Procedure makes the problem larger by adding new constraints.
However, considering the nature of the additional constraints (p, : pi), we should be
able to modify the simplex algorithm to implement the additional consiraint implicitly
through direct substitution of the variable p;. This substitution affects only the con_
straint in which pi aqpears and, in effect, reduces the number of variables ui *. move
from one goal to the next. Alternatively, we can use the bounded simplex method of
Section 7.3 bY replacing pi : pI with p, = pi, in which case the additional constraints
are accounted for implicitly. In this regard, the column-dropping rule, theoretical
aPPeal aside, does not appear to offer a particular computational advantage. For the
sake of comPleteness, however, we will demonstrate in Example 8.2-3how the column_
dropping rule works.

Example 8.2-2

The Problem of Example 8.2-1, is solved by the preemptive method. Assume that the
exposure goal has a higher priority.

rhat
ld
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Step 0.

Goal Programming

Gl>G2
G1: Minimíze s| (Satisfy exposure goal)

G2: Minimize sl (Satisfy budget goal)

Solve LP1.

Minimize Gr : si
subject to

4x1 l 8x, * si - si : 45 (Exposure goal)

8x1 * 24x2 + sl - sz : 100 (Budget goal)

X1 
x1, xz;si, i, sj, s2 > 0

Step 1.

The optimum solution (determined by TORA) is 11 : 5 minutes, x2 : 2.5
minutes,si : 5 million people, with the remaining variables equal to zero.The
solution shows that the exposure goal, G1, is violated by 5 million persons.

In LPr, we have pr : si.Thus, the additional constraint we use with the
G2-problem is s| : 5.

Step 2. We need to solve LP2, whose objective function is

Minimize Gz : si
subject to the same set of constraints as in step 1_ plus the additional con-
straint si : 5. We can solve the new problem by using TORA s MODIFY
option to add the constraint si : 5.

The additional constraint s| : 5 can also be accounted for by substituting
out s| in the first constraint. The result is that the right-hand side of the expo-
sure goal constraint will be changed from 45 to 40, thus reducing LP2to

Minimize Gz: si
subject to

4x1 1- 8x2 - s1 : 40 (Exposure goal)

8x1 t 24x2 + sl - si : 100 (Budget goal)

x1,, x2, si, si, s' > 0

The new formulation is one variable less than the one in LP1, which is the
general idea advanced by the column-dropping rule.

In reality, the optimization of LP2 is not necessary in this example because
the optimum solution to problem Gl abeady yields si : 0. Flence, the solu-
tion of LP1 is automatically optimum for LP2 as well (you can verify this
answer by solvin ELPzwith TORA).

,--



.- The
!.
j_l
:_ !

8.2 Goal Programming Algorithms 357

Next, we use an example to show that a better solution for the problem of
Example 8.2-2 can be obtained if the preemptive method is used to optimiee objectives
rather than to satisfy goals. The example also serves to demonstrate the column-
dropping rule for solving goal programs.

Example 8.2-3

The goals of Example 8.2-2 can be restated as

Priority ].: Maximize exposure (P1)

Priority 2: Minimize cost (P2)

Mathematically, the two objectives are given as

Maximize Pt : 4x1 * 8x, (Exposure)

Minimize Pz: 8x1 -l 24x2 (Cost)

The specific goal limits for exposure and cost ( : 45 and 100) are removed because the
simplex method will determine them optimally.

The new problem can thus be stated as

Maximize Pt: 4x1 -| 8*,

Minimize Pz : 8x1 -l 24x2

subject to

x1 l2x2 < ].0

X1 <6

XyX2>0
We first solve the problem using the procedure introduced in Example 8.2-2.

Súep 1. Solve LP1.

Maximize Pt : 4x1 * 8x2

subject to

x1*2x2<10
X1 <6

Xy, X2> 0

The optimum solution (obtained by TORA) is x1 : 0, x2 : 5 with
Pt : 40, which shows that the most exposure we can get is 40 million
persons.

Step 2. Add the constraint 4x1 t 8r, = 40 to ensure that goal G1 is not degraded.
Thus, we solve LP2 as

Minimize Pz : 8x1 -| 24x2

uting
Iexpo-
)

n-
ry
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subject to

x1l2x2<10
X1 <6

4x, -| 8x2 > 40 (Additional constraint)

xyx2ž0
The TORA optimum solution of LP2 is P2 : $ 96,000, xt : 6 minutes, and x2 :

2 minutes. It yields the same exposure (Pt :40 million people) but at a smaller cost
than the one in Example 8.2-2 where the main objective is to satisfy rather than opti-
mize the goals.

The same problem is solved now by using the column-dropping rule.The rule calls
for carrying the objective rows associated with all the goals in the simplex tableau.

LP1 (Expo ure Maximization): The LP1 simplex tableau carries both objective rows,
P1 and P2.The optimality condition applies to the P1-objective row only. The P2-row
plays a passive role in LP1, but must be updated with the rest of the simplex tableau in
preparation for the optimization of LPr.

LP1 is solved in two iterations as follows:

Iteration Basic x1 x2 , 1 S2 Solution

ijÉjriilj'iijlfi'
P,-8-24000

The last tableau yields the optimal solution x1, : 0, xz: 5, and Pt : 40.
The column-dropping rule calls for eliminating any nonbasic variable 17 with

zi - cj * 0 from the optimum tableau of LP1 before LP2 is optimized. The reason for
doing so is that these variables, if left unchecked, could become positive in lower prior-
ity optimizationproblems, which would degrade the quality of higher priority solutions.

LP2 (Cost Minimization): The column-dropping rule eliminates s1 (with zi - ci - 4).
We can see from the P2-tow that if s, is not eliminated, it will be the entering variable at
the start of the P2-iíerations and will yield the optimum solution x1, : x2: 0, which will
degrade the optimum objective value of the Pl-problem from Pt : 40 to Pt : 0. (Try it!)

The P2-problem is of the minimization type. Following the elimination of s1, the
variable x, with zi - cj : 4 (>0) can improve the value of P,r. The following table
shows theLPriterations. The elements of Pl-row has been deleted because the row no
longer serves a purpose in the optimization of LP2.
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Iteration Basic X1 ,l1X2 S2 Solution

X2

S2

40
0 I20

P1

P240

5

6

0

I

1-r
2L
10

40

-4 96

PI
Pz00

2

6

X201
XI 10

_1
2

1

The_optimum solution (,r1 - 6, x2 : 2) with atotalexposure oí P' : 40and a total
cost of Pz : 96 is the same as obtained earlier.

PRoBLEM sET 8.2B

1. In E,xamPle 8.2-2,suppose that the budget goal i increased to $110,000. The exposure
goal remains unchanged at 45 million persons. Show how the preemptive method will
reach a solution.

2. Solve Problem 1, Set 8.1a (Fairville tax model) using the following priority ordering for
the goals: Gl > Gz ) Gz ) Gq > G5.

3. Consider Problem 2, Set 8.1a, which deals with the presentation of band concerts and art
shows at the NW ShoPPing Mall. Suppose that the goals set for teens, the young/middle-
aged grouP, and seniors are referred to as Gt, Gz,and G3, respectively. Soíve the problem
for each of the following priority orders:
(a) Gr ) Grž G,
(b) Gs) Gz> Gt

Show that the satisfaction of the goals (or lack of it) can be a function of the priority
order.

4. Solve the Ozark University model (Problem 3, Set 8.1a) using the preemptive method,
assuming that the goals are prioritized in the same order giverr in tire pro'bl"-.
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COMPREHENS|VE PROBLEMS

8,11 The Warehouzer Company manages three sites of forestland for timber production and
reforestation with the respective areas of 100,000, 180,000, and 200,000 ácres. The main

1Based on K, P, Rustagi, 
_|o_rrr_t_ 

Management Planning for Timber Production: A Goal programming
Approach, Bulletin No. 89,Yale University Press, New Hivón ,CT,!g76,



360 Chapter 8 Goal Programming

timber products include three categories:pulpwood, plywood, and sawlogs. Several refor-
estation alternatives are available for each site, each with its cost, number of rotation years
(i.e., number of years from seedling size until harvesting), return from rent, and produc-

tion output. The following table summarizes this information.

Annual $/acre Annual m3/acre

Alternative Rent
Rotation

yr Pulpwood Plywood Sawlogs

AI
A2
A3
A4
A5
A6
A7
A1,

A2
A3
A4
A5
A6
Al
A2
A3
A4
A5

1000
800

1500
1200
1300
1200
1500
1000
800

1500
1200
1300
1200
1000
800

1500
1200
1300

lz
10

5

4

J

2
aJ

9

8

z
J

2

2
7

6

2
2
I

20
25

40
15

40
40
50
20
25
40
15

40
40
z0
25

40
15

40

160
ll7
1,40

195
I82
180
135
I02
55

95

tzl
100
90
60
48
60
65
35

0

0

6

7
0

0

0

0

0

5

4

0

0

0

4

0

0

0

0

0

0

0

7

6

5

0

0

0

0

5

4

0

0

4
J

5

To guarantee sustained future production, each acre of reforestation in each alternative
requires that as many acíes as years in rotation be assigned to that alternative. The rent

column represents the stumpage value per acre.
The goals of Warehoulzet aíe as follows:

1. Annual outputs of pulpwood, plywood, and sawlogs are 200,000, ].50,000, and 350,000

cubic meters, respectively.

2. Annual reforestation budget is $2.5 million.

3. Annual return from land rent is $100 per acre.

How much land at each site should be assigned to each alternative?

A charity organizatíon runs a children's shelter. The organization relies on volunteer
service from 8:00 A.M. until 2:00 p.tr,t. Volunteers may begin work at the start of any
hour between 8:00 A.M. and ].1,:00 A.M. A volunteer works a maximum of 6 hours and a

minimum of 2 hours, and no volunteers work during lunch hour between 12:00 noon and
].:00 p.vt. The charity has estimated its goal of needed volunteers throughout the day (from
8:00 e.v. to 2:00 p.M., and excluding the lunch hour between 12:00 noon and 1:00 P.M.) as

!5,1,6,18,20, and 1_6, respectively. The objective is to decide on the number of volunteers
that should start at each hour (8:00, 9:00, ].0:00, ]_].:00, and 1:00) such that the given goals

are met as much as possible.

9.1

8,2
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lnteger Linear Prog ramming

Integer linear Programs (ILPs) are linear programs in which some or all the variables
are restricted to integer (or discrete) values. ILP has important practical applications.
UnfortunatelY, desPite decades of extensive research, computational 

"*p.ii"rr.e 
with

ILP has been less than satisfactory.To date,there does not Óxist an ILp cómputer code
that can solve integer programming problems consistently.

l LLU STRATIVE APPLICATIoN s

The ILP aPPlications in this section start with simple formulations and then graduate
to more comPlex ones. For convenience, we define a pure integer problem as tňe one in
which all the variables are integer. Otherwise, the problem is á mixed integer program.

Example 9.1-1 (Capita! Budgeting)

{ve Projects are being evaluated.over.a 3-year planning horizon. The following table
gives the exPected returns for each project ánd tňe assoc]ated yearly expenditurěs.

9.1

Expenditures (million $)/yr

Returns (million $)

1,

2
aJ

4

5
Available funds (million $)

20
40
20
15

30

518
4710
392
741,
8610

25 25 25

which projects should be selected over the 3-year horizon?

Project
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The problem reduces to a
variable xi as

Xj :

The ILP model is thus given as

Maximize 1 : 20x1 * 40x2 * 204 * I5xa -l 30x5

subject to
5x1 4- 4x2 * 3x, * 7xa -| 8x5 < 25

xt* 7x2 194-|4xa* 6x5<25

8x1 * I0x2 t 24 -| xa t llx, - 25

X1,X2,X3,Xa,X5 : (0, 1-)

The optimum integer solution (obtained by TORA1) is x1 : x2: x3: x4: I,
x5 : 0, with z : 95 (million $). rhe solution shows that all but project 5 must be
selected.

It is interesting to compare the continuous LP solution with the ILP solution. The
LP optimum, obtained by replacing x1 : (0,1) with 0 < x. < 1, for all j, yields
h : .5789, xz: x3 : x4 : 1,, xs : .7368, and z : ].08.68 (million $). The solution is
meaningless because two of the variables assume fractional values. We may round the
solution to the closest integer values, which yields x1" : x5 : 1. However, the resulting
solution is infeasible because the constraints are violated. More important, the concept
of roundiltg should not apply here because .ri represents a "yes-no" decision for which
fractional values are meaningless.

PRoBLEM sET 9.1A2

In the capital budgeting model of Example 9.1,-1,,suppose that project 5 must be selected
if either project 1 or project 3 is selected. Modify the model to include the new restriction
and find the optimum solution withTORA.
Five items are to be loaded in a vessel.The weightw;and volume v; together with the
value r, for item i are tabulated below.

Item l Unit weight, w, (tons) Unit volume, v; (yd3) Unit worth, r; (100 $ )

5

8

J

2

7

The maximum allowable cargo weight and volume are I!2 tons and 109 yd3, respec-
tively. Formulate the ILP model, and find the most valuable caígo using TORA.

1To useTORA, select r*tó ai''.e",bg, from 'ffi,After inputting the problem (file Ch9ToraCapital
BudgetEx9-1-1.txt), go to output screen and select Áot"n"iea..ei,e to obtain the optimum solution.
ZProblems 3 to 6 are adapted from Malba Thhan, El Hombre Que Calculaba, Edítorial Limusa, Mexico City,
1994,pp.39-1,82.

"yes-no" decision for each project. Define the binary

tt, if project i is selected

IO, if project i is not selected

4

7
6

5

4

1

8

6
5

4

1,

z
J

4

5
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3. Supposethatyouhave7 fullwinebottles,7half-full, and7 empty.Youwouldliketo
divide the2l bottles among three individuals so that each will receive exactly 7.
Additionally, each individual must receive the same quantity of wine. Express the prob-
lem as an ILP constraint equations, and find a solution using TORA. (Hint: Use a dummy
objective function in which all the objective coefficients are zeros.)

4. An eccentric sheikh left a will to distribute a herd of camels among his three children:
Tarek receives at least one-half of the herd, Sharif gets at least one-third, and Maisa gets
at least one-ninth. The remainder goes to a charity organízation. The will does not specify
the size of the herd except to say that it is an odd number of camels and that the named
charity receives exactly one camel. How many camels did the sheikh leave in the estate,
and how many did each child get?

5. A farm couple is sending their three children to the market to sell 90 apples with the
objective of educating them about money and numbers. Karen, the oldest, carries
50 apples;Bill, the middle child, carries 30; and John, the youngest, carries only 10. The
parents have stipulated five rules: (a) The selling price is either $1 for 7 apples or $3 for
1 apple, or a combination of the two prices; (b) each child may exercise one or both
options of the selling price;(c) each of the three children must return with exactly the
same amount of money;(d) each child's income must be in whole dollars (no cents
allowed);and (e) the amount received by each child must be the largest possible under
the stipulated conditions. Given that the three children are able to sell all they have, how
can they satisfy their parents' conditions?

6. Once upon a time, there was a captain of a merchant ship who wanted to reward three
crew members for their valiant effort in saving the ship's cargo during an unexpected
storm in the high seas. The captain put aside a certain sum of money in the purser's office
and instructed the first officer to distribute it equally among the three mariners after the
ship had reached shore. One night, one of the sailors, unbeknownst to the others, went to
the purser's office and decided to claim (an equitable) one-third of the money in advance.
After dividing the money into three equal shares, an extra coin remained, which the
mariner decided to keep (in addition to one-third of the money).The next night, the sec-
ond mariner got the same idea and, repeating the same three-way division with what was
left, ended up keeping an extra coin as well. The third night, the third mariner also took a
third of what was left, plus an extra coin that could not be divided. When the ship reached
shore, the first officer divided what was left of the money equally among the three
mariners, also to be left with an extra coin. To simplify things, the first officer put the extra
coin aside and gave the three mariners their allotted equal shares. How much money was
in the safe to start with? Formulate the problem as an ILP, and find the solution using
TORA. (Hint: The problem has a countably infinite number of integer solutions. For con-
venience, assume that we are interested in determining the smallest sum of money that
satisfies the problem. Then, boosting the resulting solution by 1, augment it as a lower
bound and obtain the next smallest solution. Continuing in this manner, a general solu-
tion pattern will evolve.)

7. You have the following three-letter words: AFf, FAR, TVA, ADV JOE, FI\ OSF, and
KEN. Suppose that we assign numeric values to the alphabet starting with _4 : 1 and
ending with Z : 26. Each word is scored by adding the numeric codes of its three letters.
For example,AFT has a score of 1 + 6 + 20 : 27.You are to select five of the given
eight words that yield the maximum total score. Simultaneously, the selected five words
must satisfy the following conditions:

(sum of letter 
') . (sum of letter r) . (sum of letter 3)

\scores/\scores/\scores/
Formulate the problem as an ILP, and find the optimum solution using TORA.

,i
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The Record-a-Song Company has contracted with a rising star to record eight songs. The
durations of the different songs are 8, 3,5,5,9,6,7 ,and12 minutes, respectively. Record-
a-Song uses a two-sided cassette tape for the recording. Each side has a capacity of
30 minutes.The company would like to distribute the songs on the two sides in a balanced
manner. This means that the length of the songs on each side should be about the same, as

much as possible. Formulate the problem as an ILP, and find the optimum solution.

In Problem 8, suppose that the nature of the melodies dictates that songs 3 and 4 cannot
be recorded on the same side. Formulate the problem as an ILP.Would it be possible to
use a 25-minute tape (each side) to record the eight songs? If not, use ILP to determine
the minimum tape capacity needed to make the recording.

Example 9.1-2 (Fixed-Charge Problem)

I have been approached by three telephone companies to subscribe to their long dis-
tance service in the United States. MaBell will charge a flat $16 per month plus $.25 a
minute. PaBell will charge $25 a month but will reduce the per minute cost to $.21-. As
for BabyBell, the flat monthly charge is $18, and the cost per minute is $.22.I usually
make an average of 200 minutes of long-distance calls a month. Assuming that I do not
pay the flat monthly fee unless I make calls and that I can apportion my calls among all
three companies as I please, how should I use the three companies to minimize my
monthly telephone bill?

This problem can be solved readily without ILP. Nevertheless, it is instructive to
formulate it as an integer program.

Define

11 : MaBelllong-distance minutes per month

x2 : PaBelllong-distance minutes per month

4 : BabyBell long-distance minutes per month

lt:tifxr}OandOifxr:6
lz: Iif x2 > 0 and 0if xr: g

ll:Ilf.4>0andOifr3:0
We can ensure that ylwill equall íf. xiis positive by using the constraint

xi <Myi,j:L,2,3
The value of, M should be selected sufficiently large so as not to restrict the variables x7

artificially. Because I make about 200 minutes of phone calls a month, then x1 < 200
for all7, and it is safe to select M : 200.

The complete model is

Minimize 1 : .25x1 -l .2Ix2 * .224 + t6y1 + 25y2 + 18y3

subject to

x1l x2t 4>200
x1 < 200y1

x2 < 200y2

9.
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x3 < 200y3

X1,, X2, Xz ž a

The formulation shows ,nur'in"'ir;';;l};'r", fee will be part of the objective
function e 99]v i! | j : L,which can happen only If x1 > 0 (per the last three consiraints
of the model). If x1 : 0 at the optimum, then the minimization of 1, together with the
fact that the objective coefficient of y, is strictly positive, will force }i tó equal zero, as
desired.

The optimum solution (file Ch9ToraFixedChargeBx9-1,-2.txt) yields x3: 200,
!? : I, and all the remaining variables are equal to zeto,, which shows that BabyBell
should be selected as my long-distance carrier. Observe that the information conveyed
by yr: 1 is redundant because the same result is implied by *, > 0 (: 200).Actually,
the main reason for using !t, !z, and y3 is to account for the monthly flat fee. In effect,
the three binary variables convert an ill-behaved (nonlinear) model into an analyti-
c,9lly tractable formulation. This conversion has resulted in introducing the integer
(binary) variables in an otherwise continuous problem.

The concept of "flat fee" is typical of what is known in the literature as the íixed
charge problem.

PRoBLEM sET 9.1B

1. Jobco is planning to produce at least 2000 widget on three machines.The minimum lot size
on any machine is 500 widget.The following table gives the pertinent data of the situation.

Machine Setup cost Production cost/unit Capacity (units)

Formulate the problem as an ILP, and find the optimum solution using TORA.
Oilco is considering two potential drilling sites for reaching four targets (possible oil
wells). The following table provides the preparation costs at each of the two sites and the
costof drillingfromsite itotarget j(i: I,2; j : I,2,3,4).

Drilling cost (million $) to target

Preparation cost (million $)

z
4

Formulate the problem as an ILP, and find the optimum solution using TORA.
3. Three industrial sites are considered for locating manufacturing plants. The plants

send their supplies to three customers. The supply at the plants and the demand at the

300
100
200

z 600
10 800
5 1200

5

6

185
63I

-:_

___]
-:!-l

, 1\

1

z
J

1,

2
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customers, together with the unit transportation cost from the plants to the customers, are
given in the following table.

Supply

1

2

J

$10 $15 $rz
$17 $14 $20
$15 $to $11

1800
1400
1300

Demand 1700 1600

In addition to the transportation costs, fixed costs also are incurred at the rate of
$].2,000, $].].,000, and $12,000 for plants L,Z,and 3, respectively. Formulate the problem as

an ILP and find the optimum solution usingTORA.
4. Repeat Problem 3 assuming that the demands at each of customers 2 and 3 are changed

to 800.

Example 9.1-3 (Set Coverang Problem)

To promote on-campus safety, the U of A Security Department is in the process of
installing emergency telephones at selected locations. The department wants to install
the minimum number of telephones provided that each of the campus main streets is
served by at least one telephone. Figure 9.1 maps the principal streets (A to K) on
campuS.

It is logical to place the telephones at the intersections of streets so that each tele-
phone will serve at least two streets. Figure 9.1 shows that the layout of the streets
requires a maximum of eight telephone locations.

Define

f t, a telephone is installed in location i
', - l0, otherwise

F|GURE 9.1

Street map of the U of A campus

v
O
O
ti
(,

Street C
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The constraints o_{ try problem require installing at least one telephone on each of the
1"1 streets (A to K). Thus, the model becomes

Minimize Z : x1, * x, * 4 l xat x, -| x6 * x7 l xg

subject to

X1l X2

x2* x3

x4lx5

x4 lxl >]_

x2 *xq >]_

x5 *x3>1
x3 lxs >].

xj : (0, I), j : I,2, ..., 8

The optimum solution of the problem (obtained by TQRA, file Ch9ToraSetCover
Fx9-1-3.txt) requires installing four telephones at intěrsections 1,,Z,5,and7.The prob-
lem has alternative optima.

The Preceding model is typical of what is generically known as the set covering
Problem. In this model, all the variables are binary. For each constraint, all the left_
hand-side coefficients are 0 or 1, and the right-hand side is of the form (=t).The objec_
tive function always minimizes cp: l c2x2 l * c, r,,where c7 ) 0 for all j:1,
2, ... , n.In the Present example, cj : I for all i. However, if ., ,epierents the installa-
tion cost in location7, then these coefficients may assume valuós oth", than 1.

PRoBLEM sET 9.1c

1. ABC is an LTL trucking company that delivers loads on a daily basis to five customers.
The following table provides the customers associated with each route:

Route customers

X2

>].

>I
>]_

x7 l xg> 1,

x6* x7 > ]_

*xa >1-

*xa >1

(Street Á)

(Street B)

(Street Q
(Street D)

(Street E)

(Street fl
(Street G)

(Street.č|

(Street 
^|

(Street "|
(Street r!

X1

1, 1-,2,3,4
2 4,3,5
3 1-,2,5
4 2,3,5
5 1-,4,z
6 1-,3,5
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The segments of each route are dictated by the capacity of the truck delivering the
loads. For example, on route 1, the capacity of the truck is sufficient to deliver the loads to
customers I,2,3,and 4 only. The following table lists distances (in miles) among the truck
terminal (ABC) and the five customers.

ABC

The objective is to determine the least distance needed to make the daily deliveries
to all five customers. Though the solution may result in a customer being served by more
than one route, the implementation phase will use only one such route. Formulate the

problem as an ILP and solve using TORA.
The U of A is in the process of forming a committee to handle the students' grievances.

The directive received from the administration is to include at least one female, one male,

one student, one administrator, and one faculty member. Ten individuals (identified, for
simplicity, by the letters a to j) have been nominated.The mix of these individuals in the
different categories is given as follows:

Category Individuals

Females a, b, c, d, e

Males í, g, h, i, j
Students a,b,c,j
Administrators e, f
Faculty d, g, h, i

The U of A wants to form the smallest committee with representation from each of
the five categories. Formulate the problem as an ILP, and find the optimum solution using
ToRA.
Washington County includes six towns that need emergency ambulance service. Because
of the proximity of some of the towns, a single station may serve more than one commu-
nity. The stipulation is that the station must be within ]_5 minutes of driving time from the
towns it serves.The table below gives the driving times in minutes among the six towns.

Formulate an ILP whose solution will produce the smallest number of stations and
their locations. Find the solution usingTORA.

ABC
1

2
aJ

4

5

1

z
J

4
5

6

010121698
1003281710
12 32 0 t4 21, 20

1,6 8 1,4 0 15 18

9 t7 2I ].5 0 11,

8102018I1,0

02314181032
23 0 24 13 22 1].

1,4 24 0 60 19 20

18136005517
],0 22 19 55 0 12

32112017120
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FlGURE 9.2

Museum layout for Problem 4, Set 9.1c

ne
Dore
E

4' The treasures of King Tirt are on display in a museum in New Orleans. The layout of themuseum is shown in Figure 9.2,withthe different rooms joined by open doors.A guardstanding at a door can watch two adjoining rooms. The museum wants to ensure guard
Presence in everY room, using the minimumlrumber possible. Formulate the problem asan ILP, and find the optimum solution with TORA. 

)

Example 9.1-4 (Either-ortorrstra;ntsl
Jobco uses a singJe machine to process three j9bs Both the processing time and thedue date (indaYs) for each job aie given i" trre"roilowing table. The due dates are mea_sured from the zero datum, th" asstimed start time of thE fi.;tJ"b. 

-

1

2
aJ

Processing time (days) Due date (days) Late penalty $/day

MY,i * @, - x) = plandM(I - !i) + @i - x) > pi

19

12

34

25
22
35

5

z0
15

The objective of the Problem is to determine the minimum late-penalty sequence forprocessing the three jobs.
Define

x, : start date in days for job i (measured from the zerodatum)
The Problem has two tYPes of constraints: The noninterference constraints (guarantee_ing that jobs are not prbcessed concurrently) and the ou" out" .onstraints. Considerthe noninterference cónstraints first.

Two jobs i and i with Processing time pi.and p1 witl lot .b9 processed concurrentlyif either Xi Ž Xi +..P1o' !i-> xi + piaep"rrdi.rl oir whether jobi precedes job l, or viceversa, Because ail ňrath'ematical programs děal with simuttaiiius constraints only,we transform the either-or constráinti by introáucing the ioirori.,g auxiliary binaryvariable:

,,, : {á,, if;fi:::í::i

X::X ::Í::r;:lt'r' 
large, the either-or constraint is converted to the following simulta_
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The conversion guarantees that only one of the two constraints can be active at
any one time. If !ii: 0, the first constraint is active, and the second is redundant
(because its left-hand side will include M,which is much larger than pi).If lti : 1, the
first constraint is redundant, and the second is active.

Next, the due date constraint is considered. Given Qis the due date for job,l, let s7

be an unrestricted variable. Then, the associated constraint is

xi tpi *si :d1

If s7 > 0, the due date is met, and if sr. { 0, a late penalty is incurred. Using the
substitution

i:si- i,s|,s7 >0

the constraint becomes

xi+s|-,': di _pi

The late penalty cost is proportional to s7 .

The model for the given problem is

Minimize z : I9s, + I2sj + 34s3

subject to
Xt- Xz

-x1 l x2

X1

-X1

Xz- Xz

- X2* X3

:
!-lsj-s3:

* MY,

- MYrz

-x3 tMy3
l xl - My3

20

5-M
15

5-M
15

20-M
25-5
22-20
35-15

t MY*

- MYr.

+s|-s1
+sj-s!

t-!Xl,X2,X:, i, l, 2,.2,,j, : ŽU

|tz, !lz, lzs : (0, 1)

The integer variables- !p, !tt, and y7 -are introduced to convert the either-or
constraints into simultaneous constraints. The resulting model is a mixedlLP.

To solve the model, we choose M : 1000, a value that is larger than the sum of the
processing times for all three activities.

The optimal solution (obtained by TORA, file Ch9ToraEitherOrBx9-I-4.txt3) is
x1 : 20, x2, : 0, and x3 : 25. This means that job 2 starts at time 0, job ]_ starts at time
Z},andjob 3 starts at time 25, thus yielding the optimal processing sequenceZ + 1 + 3.
The solution calls for completing job 2 at time 0 + 20 : 20, job ]_ at time :
20 + 5:Zí,andjob3at25 + 15 :4}days.Job3isdelayedby40 - 35: 5dayspast
its due date at a cost of 5 x $ 34 : $ rZO.

3Because TORA does not accept a negative right-hand side, the variable (RHS-), whose value is always 1,

assumes the role of the right-hand side of the constraints.

X3

-5-
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PRoBLEM sET 9.1D

1. A game board consists of nine equal squares. You are required to fill each square with a
number between 1 and 9 such that the sum of the numbeis in each ,o*, 

"u.h 
.olumn, and

each diagonal equals 15. Use ILP to determine the number in each square such that no
two adjacent numbers in any row, column, or diagonal are equal. Solve with ToRA.

2. A machine is used to produce two interchangeable products.The daily capacity of the
machine can produce at most 20 units of product ]. and 10 units of product 2.
AlternativelY, the machine can be adjusted to produce at most ]_2 units of product 1 and
ZZunits of Product 2 daily.Market analysis shows that the maximum daily demand for the
two Products combined is 35 units. Given that the unit profits for the two respective prod_
ucts are $10 and $].2, which of the two machine settings should be selected? Formulate
the Problem aS an ILP, and find the optimum usingTORA. (Note:This two-dimensional
Problem can be solved by inspecting the graphical solution space, This is not the case for
the n-dimensional problem.)

3. GaPco manufactures three products, whose daily labor and raw material requirements
are given in the following table.

Product
Required daily labor

(hr/unit)
Required daily raw material

(lb/unit)

4

J

6

aJ

4
5

1

2
J

100
90

1

z

The profits perunit of the three products are $25, $30, and $22,respectively. Gapco
has two oPtions for locating its plant.The two locations differ primarily in the availatility
of labor and raw material as shown in the following table:

Location Available daily labor (hr) Available daily raw material (lb)

Formulate the problem as a mixed ILP, and use TORA to determine the optimum
location of the plant.

4. Consider the job-shop scheduling problem that produces two end products using a single
machine. The Precedence relationships among the eight operations are summa ized, in
Figure 9.3.Let plbe the processing time for operations j el, 2, ... , n).Thedue dates,
measured from the zero datum, for products 1 and 2, are dl and dr,respectrvely. An oper-
ation, once started, must be completed before another starts. Formulate the proble- u, u
mixed ILP.

FlGURE 9,3

product , Precedence relationships for the job-shop
situation of Problem 4, Set 9.1d

Product 2

100

D0
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5. Jaco owns a plant in which three products are manufactured.The labor and raw material
requirements for the three products are given in the following table.

Product
Required daily labor

(hr/unit)
Required daily raw material

(lb/unit)

1,

z
Ĵ

Daily availability

The profits per unit for the three products are $25, $30, and $45, respectively. If prod-

uct 3 is to be manufactured at all, then its production level must be at least 5 units daily.

Formulate the problem as a mixed ILP, and find the optimal mix usingTORA.

Show how the nonconvex shaded solution spaces in Figure 9.4 can be represented by a set

of simultaneous constraints. Then use TORA to find the optimum solution that maxi-
mizes z : zxl * 3x2subject to the solution space given in (a).

Suppose that it is required that any k ollt of the following m consttaints must be active:

Tt(xl, X2, ",, xn) š b, i : 1, 2, ", ) m

Show how this condition may be represented.

8. In the following constraint, the right-hand side may assume one of the values,b1,, br, .. . ,

andb^.

8@u xz, ... , Xr) ' br, br, ... , ot b-

Show how this condition is represented.

4

J

6
1,00

J

4

5

100

9.2,1

7.

FlGURE 9,4

Solution spaces for Problem 6,

Set 9.].d

!NTEGER PRoGRAM MlNG ALGoRITH Ms

The ILP algorithms are based on exploiting the tremendous computational success of
LP. The strategy of these algorithms involves three steps.

Step 1. Relax the solution space of the ILP by deleting the integer restriction on all
integer variables and replacing any binary variable y with the continuous
range 0 < y < ]_. The result of the relaxation is a regular LP.

Step 2. Solve the LP, and identify its continuous optimum.

1M,lM,,
012301z3

(b) (c)
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SteP 3. Starting from the continuous optimum point, add special constraints that
iteratively modify the LP solution space in a manner that will eventually ren-
der an optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints
in step 3.

1_. Branch-and-bound (B&B) method
2. Cutting plane method

Although neither method is consistently effective computationally, experience shows
that the B&B method is far more successful than the cutting plane method. This point
is discussed further in this chapter.

9.2.1 Branch-and-Bound(B&B)Algorithm

The first B&B algorithm was developed in 1960 by A.Land and G. Doig for the gen_
eral mixed and pure ILP problem. Later, in 1965, E. Balas developed the additive algo-
rithm for solving ILP problems with pure binary (zero or one) variables. The additive
algorithm computations were so simple (mainly addition and subtraction) that it was
hailed as a possible breakthrough in the solution of general ILP.4 Unfortunately, the
algorithm failed to produce the desired computational advantages. Moreover, the algo-
rithm, which initially appeared unrelated to the B&B technique, was shown to be but a
special case of the general Land and Doig algorithm.

This section will present the general Land-Doig B&B algorithm only. A numeric
example is used to explain the details.

Example 9.2-1

Maximizez:5xr*4x2
subject to

xllx2<5
10x1*6xr<45

x1,, x2nonnegative integer

The lattice points (dots) in Figure 9.5 define ILP solution space. The associated LP
Problem, LP0, is defined by removing the integer restrictions. Its optimum solution is
h : 3.75, x2: 1,.25,and z : 23.75.

Because the optimum LPO solution does not satisfy the integer requirements, the
B&B algorithm modifies the solution space in a manner that eventually identifies the

aA 8eneral ILP can be expressed in terms of binary (0-1) variables as follows. Given an integer variable ,r
with afinite upperbound u (i.e.,O = x < z ),then

x:20yo t 2'y, t 2'y, * ... -l 2kye

Thevariabl S./o, /r, ... ,and lparebinaryandtheindexkisthesmallestintegersatisfying 2k+I - 1, > u,
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FlGURE 9.5

ILP solution space of Example 9.2-1

ILP optimum. First, we select one of the integer variables whose optimum value at LPO
is not integer. Selecting x1(335) arbitrarily, the region 3 1 xt < 4 of the LPO solu-
tion spaceiontains no integer values of x1 and can be eliminated as nonpromising.This
is equivalent to replacing the original LPO with two new LPs, LP]- and LPZ,defined as

LP1 space : LPO space + (x1 < 3)

LP2 space : LPO space + @, > 4)

Figure 9.6 depicts the LP1 and LP2 spaces. The two spaces contain the same feasi-
ble intéger pointďof the original ILP, which means that, from the standpoint of theinte-
ger solution, dealing with LP1 and LP2 is the same as dealing with the original LPO.

If we intelligently continue to remove the regions that do not include integer solu-
tions by imposing the appropriate constraints (e.g.,3 1 x, < 4 atLP0), we will eventu-
ally produce LPs whose optimum extreme points satisfy the integer restrictions. In
efťeď, we will be solving the ILP by dealing with a succession of (continuous) LPs.

The new restrictions, x1 < 3 and xl ž 4,ate mutually exclusive, so that LPL andLPZ
must be dealt with as separate LPs as Figure 9.7 shows.This dichotomization gives rise to
the concept of branching in the B&B algorithm with x1 being the branching variable.

The optimum ILP lies in either LP]. or LPZ. Hence, both subproblems must be
examined.We arbitrarily examine LP1 (associated with x, = 3) first.

Maximizez:5x1 t4x2

subject to

h* xz<5
Ilxlt6x2<45

X1 <3

xy xrž 0

Feasible integer points

Optimum(continuous):
x1: 3.75, x2: 1,.25

z :23,75

4

J

2

1
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FlGURE 9.6

Solution spaces of LP1 andLP2
for Example 9,2-I

FlGURE 9.7

Using branching variable J1 to cre-
ate LP1 andLP2 for Example9.2-t

The solution of !!1 (*t ich can be solved efficiently by the upper-bounded algorithm
of Section 7.3) yields the optimum solution

X1: 3, X2: 2,and z : 23

The LP1 solution satisfies the integer requirements for h and x2.Hence, Lp1 is said tobe faÚhomed. This means that LP1 need ňot be investigated unyi"itt er because it can_not yield any better ILP solution.
We cannot at this Point say that the_integer solution obtained from Lp1 is opti-

T'.- for the original problem because LP2 máy yield a better integer solution (wiiil ahigher value of, z).All we can say is that z : 23 i.'u to,n". bound o.,Th" optiÁum'(ma*_
imum) objective Yu,lY. of the original ILP. This means that any u.r.*u-ineo suupráu-lem that cannot Vigld a better objéctive value than the lower báund must be discarded
aS nonPromising. If an unexamined subproblem produces a better intege6oiuiio",
then the lower bound must be updated accordingly.

LP1
X1,: 3, X2: 2, z : 23

Lower bound (optimum)

LP0
x1: 3,75, x2: 1.25, z : 23.75
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Given the lower bound z : Z3,we examineLP2 (the only remaining unexamined
subproblem). Because optimum z : 23.75 at LPO and all the coefficients of the o.bj9c,

tive function happen to be integers, it is impossible thatLP} (which is more restrictive
thaň LpO) will pioduce a better integer solution. As a result, we discardLPZ and con-
clude that it has been/athomed.

The B&B algorithm is now complete because both LP]. and LP}have been exam-

ined and fathorňed (the first for pioducing an integer solution and the second for
showing that it 

"urrrrot 
produce a better integer solution). We thus conclude that the

optimtrňr ILP solution is the one associated with the lower bound-namelY, XI: 3,

x2:Z,andz:23.- 
Two questions remain unanswered regarding the procedure:

1. At Lpg, could we have selected x2 zs the branching variable in place of x1?

2. When selecting the next subproblem to be examined, could we have solved LP2
first instead of LP1?

The answer to both questions is "yes." However, ensuing computations coUld differ
dramatically. Figure 9.8, in which LPŽ is examined first, illustrates this por1! The_oPti-

mum Lp2 solut on is xt: 4, x2: .83,and z : 23.33 (verify usingTORA LP module).
Because x2(.83) is nónintegér, LP2 is investigated further by creating subproblems
Lp3 and LP4 using the branches x, < 0 and xz ž 1, respectively. This means that

LP3 space : LPZ space + (x2 < 0)

: LPO space t (r, = 4) + (r, = 0)

LP4 space : LPZ space + @, > 1)

: LPO space + (", = 4) + @, > I)

We have three "dangling" subproblems that must be examined: LP1, LP3, and
Lp4.Suppose that we arbitraiily exámineLP4 first. LP4 has no solution, and hence it is

fathoméd. Next, let us examine LP3. The optimum solution is x1 : 4.5, x2: 0,, and
z : 22.5. The noninteger value of x1(:4.5) leads to the two branches x1 < 4 and
xt ž 5, and the creation of subproblems LP5 and LP6 from LP3.

LPsspace: LPOSpace t (r, > a)+ @, = 0) + (*r< 4) = Lpospace * (xr:4) + (x2 < 0)

LP6space: LP0space *(", > a)+@r=0) + (r, = 5) = LPOspace * (x, > 5)+(x2 < 0)

Now, subproblems LP1, LP5, and LP6 remain unexamined. LP6 is fathomed
because it has no feasible solution. Next, LP5 has the integer solution (x, : 4, X2:
0,, z : 20) and, hence, yields a lower bound (z : 20) on the optimum ILP solution. We
are left with subproblÓm LP]., whose solution yields a better integer \*, 

= 
3, x2 : 2,

z : Z3).Thus, thó lower bound is updateďto z : Z3.Because allthe subproblems have
been fáthomed, the optimum solution is associated with the most up-to-date lower
bound-namely, x1, : 3, x2 : Z,,and z : 23.

The solution sěquence in Figure 9.8 (LP0 +LPZ +LP4 -+ LP3 + LP6 + LP5 +
Lp1) is a worst-case scenario tňat, nevertheless, may occur in practic".T" examPle
points to a principal weakness of the B&B algorithm: How do we select the next sub-

problem to-be exámined, and how do we choose its branching variable?
In Figure 9.7 , we were lucky to "stumble" upon a good lower bound at the very

first subpioblem, Lp1, thus allowing us to fathom LP2 without further comPutations
and to términate the B&B search. In essence, we completed the procedure by solving

I
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xt>5

FlGURE 9.8

Alternative B&B tree for Example 9.2-I

9ne_subproblem only. In Figure 9.8, we had to examine seven subproblems before the
q&B algorithm could be terminated. Although there are heuristiós for enhancing the
ability of B&B to_ "guess" which branch can lead to an improved ILP solution-(see
Taha,, 1975, pp. I54-17I), there is no solid theory that will always yield consistent
results, and herein lies the difficulty that plagues computations in ILP. Indeed in
Section 9.2.2, Problem ]., Set 9.2b, demonstrates with thé help of TORA the bizarre
behavior of the B&B algorithm, even for a small 16-variabló ].-constraint problem,
where the optimum is found in 9 iterations (subproblems) but requir", oué, 25,000
iterations to verify optimality.It is no wonder that to this da}, and aftěr four decades of
research, available computer codes (commercial and academic alike) lack consistency
(a la simplex method) in solving ILPs.

We now summarize the B&B algorithm. Assuming a maximization problem, set
an initial lower bound z - -oo on the optimum objective value of ILP. Set i : 0.

Step 1. (Fathoming/bounding). SelectLPi, the next subproblem to be examined.
Solve LP4 and attempt to fathom it using one of three conditions.

LP1
x1_: 3, x2: 2, z : 23

Lower bound (optimum)

LP5
X1,: 4, X2: 0, z : 20

Lower bound

xt<3 xl,> 4

xz= 0 Xz> I

x1= 4
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(a) The optimal z-value of LPl cannot yield a better objective value than
the current lower bound.

(b) LPl yields a better feasible integer solution than the current lower
bound.

(c) LPi has no feasible solution.

Two cases will arise.

(a) If LPi is fathomed and a better solution is found, update the lower
bound. If. all subproblems have been fathomed, stop; the optimum ILP
is associated with the current lower bound, if any. Otherwise, set
i : i t 1, and repeat step 1-.

(b) If LPi is not fathomed, go to step2 for branching.

Step 2. (Branching). Select one of the integer variables xi, whose optimum value xj
in the LPl solution is not integer. Eliminate the region

ki] <xi <Iil+l
(where [v] defines the largest integer < v) by creating two LP subproblems
that correspond to

x1 = |xjl and x1 = ki] + 1

Set l : i + 1,,and go to step 1.

The given steps apply to maximization problems. For minimization, we replace
the lower bound with an upper bound (whose initial value is z : +oo).

The B&B algorithm can be extended directly to mixed problems (in which only
some of the variables are integer). If a variable is continuous, we simply never select it
as a branching variable. A feasible subproblem provides a new bound on the objective
value if the values of the discrete variables are integer and the objective value is im-
proved relative to the current bound.

PRoBLEM sET 9.2A

Solve the ILP of Example 9.2-t by the B&B algorithm starting with x2 as the branching
variable. Solve the subproblems withTORA using the MODIFY option for the upper
and lower bounds. Start the procedure by solving the subproblem associated with
xz = W)\
Develop the B&B tree for each of the following problems. For convenience, always select
x1 as the branching variable at node 0.

(a) Maximize z :3xt * 2x2

subject to
2x1 -| 5x2 < 9

4x1 -| 2x2 < 9

(b) Maximize z : 2xt + 3x2 
X1' X2 > 0 and integer

)

9.2,,
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subject to

(c) Maximize e

subject to

:XllX2

(d) Minimize z
subject to

(e) Maximize z : 5x, *'7x2
subject to
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5x1*7x2=35

4x1*9x2<36

xb x2 > 0 and integer

2x1*5x2=16

6x1*5x2=27

xb x2 > 0 and integer

3xli2x2>5
Zxt t 3x2> 7

x7,, x2 > 0 and integer

2x1* xr=I3
5x1*9x2=4I

x7, x2 > 0 and integer

: 5xt * 4x2

3. Repeat Problem 2, assuming that x1 is continuous.
4. Show graPhically that the following ILP has no feasible solution, and then verify the

result using B&B.

Maximizez:2x1 *x2
subject to

10x1 * I0x2=9

10x1 * 5x2> I

xI, x2 > 0 and integer

5. Solve the following problems by B&B.

Maximize z : I8x; * I4x2 * 8x3 -l 4xa

subject to

-;ilr
- -- ] t
-, - ll

, --,r -

.-^.: .1ll-

:-----

15x1 * l2x2 *

Xy X2, X3,

*x5<37
(0, 1)

7x, * 4xa

,Xn^X.:

9.2.2 TORA-Generated B&B Tree

TORA integer programming module is equipped with a facility for generating the
B&B tree interactively. To use this facility, select Fa,a*.+=s,ataéd in the output screen
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FlGURE 9,9

Starting solution of the B&B tree in Example 9.2-1

of the integer programming module. The resulting screen provides all the information
needed to create the B&B tree. Figure 9.9 shows the layout of the screen representing
the root of the search tree, N]"0, which corresponds to LPO in Figure 9.6 (file ch9ToraB
&BEx9-2-1.txt). Each node is identified by two digits, prefixed with the letter N. The
left digit identifies the grid row in which the node resides, and the right digit gives a

unique numeric value within the same row.Thus, N].0 in Figure 9.9 shows that node 0 is
situated in row 1 (which is the only node in this row).TORA Iimits the number of sub-
problems per row to ].0. The reasoning is that once this limit is reached, the tutorial
nature of the interactive procedure becomes unwieldy.A message indicating that the
algorithm is reverting to automatic mode is given whenever the number of subprob-
lems per row exceeds 10. Keep in mind that in the automated mode, no limit is set in
any way on the number of generated subproblems.

The screen is now set for the selection of the branching variable by clicking any
node tagged with "x?" Such nodes are highlighted in green. If you click anywhere in
the entries of the node, the associated solution is exposed in the area on top of the
B&B tree, as shown in Figure 9.].0 where the solution of N]_0 shows that x1 : 3.75 and
xz : I.25.It also points out which variables are restricted to integer values. Clicking on
either variable automatically creates two subproblems that correspond to the selected

@
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FlGURE 9.10

Selection of the branching variable from the starting solution of Example 9.2-1
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branching variable. Figure 9.11 shows the result of selectinE \ as the branching vari_
able at N10. Node N20 (correspondin g to h š 3) and N21 (.or..rponding to x1 > 4)
are added to the tree. Node N20 yields an integer solution, and hence it is fathomed. A
fathomed node is highlighted in red or magenta. The magenta color is used if the fath_
omed node provides the current best lower bound, as is the case with node N20. Node
N21 has not Yet been fathomed, and clicking it will create further nodes in row 3 of the
tree. The process continues until all nodes have been fathomed (highlighted in red or
magenta).

The toP right box in the output screen automatically keeps track of the upper and
lower bounds for the problem. The default calls for activating the bounds to fathom
the nodes. TORA will automatically discard subproblems whóse objective value vio_
lates the current bounds. However, you can deactivate the bounds (i.e., remove check
in box) to create the entire search tree. In this case, a node is fathomed only if it yields
an integer solution or if it is infeasible.

It is imPortant to note that in the search,TORA's automated B&B mode is coded
to generate and scan subproblems on a strict LIFO basis. For this reason, most likely
the user-guided search may lead to a more efficient search tree, mainly because the
user invokes good judgment in selecting the next node to be investigated.
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FlGURE 9.,l1

Creation of the first two subproblems in the B&B tree of Example 9.2-1

PRoBLEM sET 9.2B

1. The following problem is designed to demonstrate the bizarre behavior of the B&B algo-
rithm even for small problems.In particular, note how many subproblems are examined
before the optimum is found and how many are needed to verify optimality.

Minimize y

subject to

2@r+xzl",*xrs)ty:t5
All variables are (0, 1)

Use the automated option of TORA to answer the following:

(a) How many subproblems are solved before the optimal solution is found?

(b) How many subproblems are solved before the optimality of the solution found in (a)

is verified?
2. Consider the following ILP:

subject to

Maximize z: I8x, * 14x2 * 8x3

1,5x1 -| I2x2 * 74 < 43

X1,, X2,.r3 nonnegative integers
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Use TORA's B&B user-guided option to generate the search tree with and without acti-
vating the objective value bound. What is the impact of activating the objective value
bound on the number of generated subproblems? For consistency, alwayi select the
branching variable as the one with the lowest index and investigate all the subproblems in
a current row from left to right before moving to the next row.
Reconsider Problem 2 above. Convert the problem into an equivalent 0-1 ILp, and then
solve it with TORA's automated option. Compare the size of the search trees in the two
problems.

In the following 0-1 ILP use TOR,{s user-guided option to generate the associated
search tree.In each case, show how z-bound is used to fathom subproblems.

Maximize z : 3xt l 2x2 - 5x, - 2xo l 3x5

subject to

\l xzl 4*2xal xrš4
7xt *34-4xo*3x5<8

IIx1-6x2 *3xa-3x5>3
xI, X2, x3, x4, x5 : (0, 1)

Show by using TORA's user-guided option that the following problem has no feasible
solution.

Maximizez:2x1 *x,
subject to

I0x1*I0x2=9

1_0x1 * 5x2> I

xI, x2: (0, 1)

Use TORAs user-guided option to generate the B&B tree associated with the following
mixed ILP problem and give the optimum solution.

MaximizeZ:xl *2x2-3xs
subject to

3x1 -| 4x, - x3 < 10

Zxr-3x2*44=20
x7, x2nonnegative integers

x:ž0
7. Use TORA to generate the B&B tree for the following problem assuming that only one

of the two constraints holds.

subject to

MaximizeZ:x7*2x2-3x,

20x1*I5x2- 4<I0
I2x1 t 3x2 -| 44 = 13

XI, X2, X3 ž 0
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8. Convert the following problem into a mixed ILP, and then use TORA to generate its
B&B tree.What is the optimal solution?

subject to

Maximize Z : x1, -l 2x2 * 5x3

l-r, * I0x2- 3x3| > 15

2xr* xzl x3 <].0

XbXz,X:=0

Cutting P!ane Algorithm

As in the B&B algorithm, the cutting plane algorithm also starts at the continuous
optimum LP solution. Special constraints (called cuts) are added to the solution space

in a manner that renders an optimum integer extreme point.In Example9.2-2,we first
demonstrate graphically how cuts are used to produce an integer solution and then
implement the idea algebraically.

Example 9.2-2

Consider the following ILP.

subject to

Maximizez:7x1 *I0x2

-\*3xr= 6

7x1* x2=35
xb x2 > 0 and integer

The cutting plane algorithm modifies the solution space by adding cuts that pro-
duce an optimum integer extreme point. Figure 9.12 gives an example of two such cuts.

Initially, we start with the continuous LP optimum z : 66t, xt : 4i,, xz : 3i,. Next,
we add cut I, which produces the (continuous) LP optimum solution z : 62, x1 : 4+,

xz : 3.Then, we add cut II, which, together with cut I and the original constraints, pro-

,t2 Optimum:1+|,S)

F|GURE 9.12

Illustration of the use of cuts in ILp

Optimum: (4,3)

aooo

aaaa

x2 Optimum: 1+!,S!)

X1

Oaao

aooo

aOao

oaoa
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duces the LP optimum z : 58, x1, : 4, x2 :3. The last solution is all integer, as
desired.

The added cuts do not eliminate any of the original feasible integer points, but
must Pass through at least one feasible or infeasible integer point. rt esó are basic
requirements of any cut.

.It is purely accidental that a Z-variable problem used exactly 2 cuts to reach the
optimum integer solution.In general, the number of cuts, though iinite, is independent
of the size of the problem, in the sense that aproblem with a small number of viriables
and constraints may require more cuts than alarger problem.

Next, We use the same example to show how the cuts are constructed and imple-
mented algebraically.

Given the slacks 4 and xafor constraints 1 and 2,the optimum LP tableau is given as

Basic X1 X4 Solution

X2

X1

X3

zoOE+66l;
01++3+
10-)ri4:

The. optimum continuous solution is z : 66+, h : 4+,, xz : 3*, x3 : 0, x+ : 0.
The cut is developed under the assumption that alťthe variábles (inciuding the Šlacks
4 and xa) are integer. Note also that because all the original objeČtive coefŤicients are
integer in this example, the value of z is integer as well.

The information in the optimum tableau can be written explicitly as

z+ xrtťzxq:
xz+Lz s*bro:
*,-*xrtfuo:

66+ (z-equation)

3+ (x2-equation)

4+ (xl-equation)

A constraint equation can be used as a source row for generating a cut provided its
right-hand side is fractional. We also note that the z-equátion can.-b" .rr"d as a source
row because Z haPpens to be integer in this example. Wi will demonstrate how a cut is
generated from each of these source rows, starting with the z-equation.

First, we factor out all the noninteger coefficients of the equation into an integer
value and a fractional component, provided that the resulting fiactional comporrit i,
strictly positive. For example, 

'ž : Q + ;)

-l:(-3+)
The factoring of the z-equation yields

z + (2 + B)*, + (1 + *)*o: $e + }1

Moving all the integer components to the left-hand side and al1 the fractional compo_
nents to the right-hand side, we get

7 * 24 * Ixa - 66 : -9u*, - **o + i (1)

Because x3 and X4 aíe nonnegative and all fractions are originally strictly positive, the
right-hand side must satisfy the following inequality:

-#r, - fuo + (2)1=1z-2

4
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Next, because the left-hand side in Equation (1_), 7 * 24 ,* Ixa - 66, is an integer
value by construction, the right-hand side, -|rx, - zr 

o * |, must also be integer. It
then folIows that (2) can be replaced with the inequality:

-Br, - **o + } = 0

This is the desired cut, and it represents a necessary condition for obtaining an inte-
ger solution. It is also referred to as the fractional cut because all its coefficients are
fractions.

Because x3 : x4: 0 in the continuous LP tableau given above, the current contin-
uous optimum violates the cut (because it yields i = O).Thus, if we add this cut to the
optimum tableau, the resulting optimum extreme point moves the solution toward sat-

isfying the integer requirements.
Before showing how a cut is implemented in the optimal tableau, we will demon-

strate how cuts can also be constructed from the constraint equations. Consider the
.Tl-fOWl

x1 -Lr*r+ar*o:ai
Factoring the equation yields

x1 +(-1 +#)rr+(0+ *)*o:g+;)
The associated cut is

-ar*, - arlo + 1 = O

Similarly, the x2-equation

xz+Lnxz+jxa:3l
is factored as

x2 + (0 + *)*r+ (0 + L)ro : 3 +'
Flence, the associated cut is given as

-**r-Lr_*o+i-O
Any of the three cuts given above can be used in the first iteration of the cutting plane

algorithm.As such, it is not necessary to generate all three cuts before selecting one.
Arbitrarily selecting the cut generated from the x2-row, we can write it in equation

form as

-**,- L"lo t,1: -r1,,, = 0 (CutI)

This constraint is added as a secondary constraint to the LP optimum tableau as follows:

Basic

The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4)
to recover feasibility, which yields
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Basic X1 X2 Solution

X2

X1

X3

0

1

0

1

0

0

0

0

1

The last solution is still noninteger in xl and .r3. Let us arbitrarily select .r1 as the
next source row-that is,

.r1 +(0+i)*o+(-1 +Í)r,
The associated cut is

-i*o - fs1 + s2 :

62

13
_1 A7-1
22 .4

-7 11

szž0

:4++

(Cut II)

X1 X2 x3 X4

000

The dual simplex method yields the following tableau:

Basic X1

X2

X1

X3

x^

1,

0

0

0

0

0

1,

0

Basic s2 Solution

Xlx3 Solution

01
0-1
0-4
l6

0

1,

0

0

0

1,

1,

-7

J

4

1

4

_ The optimum solution @t : 4, xz : 3, z
that all the coefficients of the last tabÉ au are
implementation of the fractional cut.

: 58) is all integer. It is not accidental
integers. This is a typical property of the

It is important to point out that the fractional cut assumes that altthe variables,
including slack and surpllts, are integer. This means that the cut deals with pure integer
Problems onlY. The importance of this assumption is illustrated by an example.

consider the constraint
x1+!x2=t

xI, x2 > 0 and integer

From the standPoint of solving the associated ILP, the constraint is treated as an equa_
tion by using the nonnegative slack s1 -that is,

x1+!x2ts1: 13

2

lal]É

rn*nn
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The application of the fractional cut assumes that the constraint has a feasible
integer solution in all xL, x2 and s1. However, the equation above will have a feasible
integer solution in x1 and x2 only if q is noninteger. This means that cutting-plane algo-
rithm will show that the problem has no feasible integer solution, even though the vari-
ables of conceril,. 1 oírd x2,cdí| assume integer feasible values.

There are two ways to remedy this situation.

1. Multiply the entire constraint by a proper constant to remove all the fractions.
For example, multiplying the constraint above by 6, we get

6x1*2x2=39

Any integer solution of x1 and x2automatically yields integer slack. However, this
type of conversion is appropriate for only simple constraints because the magnitudes
of the integer coefficients may become excessively large in some cases.

2. IJse a special cut, called the mixed cut, which allows only a subset of variables
to assume integer values, with all the other variables (including slack and surplus)
remaining continuous. The details of this cut will not be presented in this chapter (see

Taha, I97 5,, pp. 198-202).

PRoBLEM sET 9.2c

1. In Example 9.2-2,show graphically whether or not each of the following constraints can
form a legitimate cut:

(a) x1 * 2x2 < I0
(b) 2x1 * x2 < I0
(c) 3x2 < I0
(d) 3x, -t- x2 = 1,5

2. In Examp\e9.Z-Z,show graphically how the following two (legitimate) cuts can lead to
the optimum integer solution:

x1 -l 2x2 < I0 (Cut I )

3x1 * x2 = 15 (Cut II)

3. Express cuts I and II of Exam pLe 9 .2-2 in terms of x1 and x2, líId show that they are the
same ones used graphically in Figure 9.12.

In Example 9.2-Z,derive cut II from the .í3-fow of the tableau resulting from the applica-
tion of cut I. Use the new cut to complete the solution of the example.

Show that, even though the following problem has a feasible integer solution in xl and x2,

the fractional cut would not yield a feasible solution unless all the fractions in the con-
straint have been eliminated.

subject to

Maximize Z : x1 -l 2x2

xl+tx2=f;
xI, x2 > 0 and integer

9,2
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Solve the following Problems by the fractional cut, and compare the true optimum inte_ger solution with the solution obtained by rounding the coniinuous optimum.
(a) Maximize z : 4x, * 6x2 * 2x3

subject to

4x1-4x2 <5

-x1 l6x2 <5

-ít* x2l4<5
X7, x2, x: ž 0 and integer

Maximizez:3x1 lx2 l3x3
subject to

-\l2x2* xsš4
4xr-3x^=2

x1-3x2*24<3
xyx2,x3 > 0 andinteger

9.2.4 Computationat Considerations in lLP

(b)

To date, and de_sPite over 40 Years of research, there does not exist a computer codethat can solve IlPconsistently. Nevertheless, of the two solution algorithms'p..."rrt.o
in this chaPter, B&B is more reliable. Indeed, practically all commercial ILp codesare B&B-based. Cutting Plane methods u." g".róraily difficult and uncertain, and theroundoff error Presents a serious problem. Thougir attempts have been made toimProve the cutting Plane computati,onal efficacy, thé end ,.r,rlt, are not encouraging.In most cases, the cutting Plane method is useá in a secondary capacity to improveB&B performance at each subproblem.

The most imPortant factor affecting computations in integer programming is thenumber of integer variables and the feasible ,á.rg" in which thJy apply. Because avail_able algorithms are not consistent in producin! a numeric ILp solution, it may beadvantageous comPutationally to reduóe the number of integer variables in the ILpmodel as much as possible. The following suggestions may prove helpful:

1, APProximate integer variables by continuous ones wherever possible.
2, For the integer variables, restrict their feasible ranges as much as possible.
3. Avoid the use of nonlinearity in the model.

The imPortance of the integer problem in practice is not yet matched by reliablesolution algorithms.It is unlikely thit anew theóretical breaktňrough will be achievedin the area of integer Programming. Instead, new technological advances in computers(such as Parallel Processing) may offer the best hope forlmproving the efficiency ofILP codes.

sible
sible
algo-
l-ari-
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SOLUTION OF THE TRAVELING SALESPERSON PROBLEM

In the obvious sense, the traveling salesperson problem deals with finding the shortest
(closed) tour in an n-city situation where each city is visited exactly once. The problem,
in essence, is an assignment model with additional restrictions that guarantee the
exclusion of subtours in the optimum solution. Specifically, in ann-city situation, define

_ |t, if cityi is reached from city i
'u - l0, otherwise

Given dilisthe distance from city i to city j, the traveling salesperson model is given as

Minimize r:),20,o,,,4,, :* fori: j
i--I i:I

subject to

:I,i:I,2,...)n (1)

:I,j:I,2,...)n (Z)

1cri : (0, 1) (3)

Solution forms a tour (4)

Constraints (1), (2), and (3) define a regular assignment model (Section 5.4). In gen-

eral, the assignment problem will produce subtour solutions rather than a complete
tour that encompasses all n cities. Figure 9.13 demonstrates a 5-city problem. The arcs
represent two_way routes. The figure also illustrates a tour and a subtour solution of
the associated assignment model. If the assignments form a tour solution, then it is
optimum. Otherwise, additional restrictions are added to the assignment model to
remove the subtours. The use of these restrictions is given later in this section.

S-city problem Tour solution subtour solution
(Xn: X25: X54: X43: Xl:1) (Xzz: X32: X15: X54: X1;_: I)

FlGURE 9.,l3

A S-city traveling salesperson example with tour and subtour solutions of the associated assignment model

2*,j:1

ž',,
i--I

J

!
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9.3 Solution of the Traveling Salesperson Problem 391

Available solution methods for the traveling salesperson problem are rooted in
the ideas of the general B&B or cutting plane algorithms presented in Section 9.2.
Before presenting these algorithms, we give an example that demonstrates the versatil-
ity of the traveling salesperson model in representing other practical situations (see
also Problem Set 9.3a).

Example 9.3-1

The daily production schedule at the Rainbow Company includes batches of white
(W), yellow (Y), red (R), and black (B) paints. Because Rainbow uses the same facili-
ties for all four types of paint, proper cleaning between batches is necessary. The fol-
lowing table summarizes the cleanup time in minutes where the row-designated color
is followed by the column-designated color. For example, when white is followed by
yellow, the cleanup time is 10 minutes. Because a color cannot follow itself, the corre-
sponding entries are assigned infinite setup time. Determine the optimal sequencing
for the daily production of the four colors that will minimize the associatbd totil
cleanup time.

Cleanup min given next paint is

Current paint white yellow Red

White
Ye1low
Black
Red

Pu,"h paint is thought of as a"city" where the "distances" represent the cleanup time
needed to switch from one paint batch to the next. The situation thus reduces to deter-
mining the shortest loop that starts with one paint batch and passes through each of the
remaining three paint batches exactly once before returning back to the stárting paint.

We can solve this problem by exhaustively enumerating the six I@ - 1)! : :t : 6]
possible loops of the network. The following table shows that W + Y+ Ř + B + w
is the optimum loop.

Production loop Total cleanup time

oo 10 17 15
20 oo 19 18
50 44 oo 25
45 40 20 oo

W --> Y -+ B --> R -->W
W--+Y-+ R--> B --+W
W --> B -->Y --> R--+W
W--+B-+R-+Y--+W
W--+ R--+ B -->Y -->W
W --+ R-->Y --> B -->W

10+19+25+45:99
10+18+20+50:98
17+44+18+45:l24
17+25+40+20:I02
15+20+44+20:99
15+40+19+50:I24

Exhaustive enumeration of the loops is not practical in general. Even a modest-
sized 11-city proltem will require enumerating 10! : 3,628,800 tours, a demanding
task indeed. For this reason, the problem must be formulated and solved in a different
manner, as we will show later in this section.

To develop the assignment-based formulation for the paint problem, define

tii : 1 if paint i follows paint i and zero otherwise
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Letting M be a sufficiently large positive value, we can formulate the Rainbow prob-
lem as

Minimize z : Mxww -l 1,\xygy * I7xq3 * l5xryp -l ZOxyy * Mxyy -f I9xy3 t 18xya

*50x3yy * 44x3y * Mx33 -l 25x3p * 45xplr * 40xpy * 20xp l Mxpp

subject to

xww * xwy * xwr l xwn: I

xyw * xvv l xva l xyn: I

xaw * xay l xaa * xna: I
Xaw l Xnv * Xna l Xan: I
xwwlXvw*xawlxaw:1
Xwv * Xyy l Xav * Xay: I

Xwa l Xva * Xaa l Xna: I

Xwn l Xva * Xrn l Xan: I

yri : (0, 1) for all i and j
Solution is a tour (loop)

The use of. M in the objective function guarantees that a paint job cannot follow itself.

PRoBLEM sET 9.3A

1. A manager has a total of 10 employees working on six projects.There aíe overlaps among

the assignments as the following table shows:

Project
1,23456

1

z
óJ

4

Employee 5

6

7

8

9

10

The manager must meet all 10 employees once a week to discuss their progress.

Currently, the meeting with each employee lasts about 20 minutes-that is, a total of
3 hours and20 minutes for all 10 employees.A suggestion is made to reduce the total
time by holding group meetings, depending on the projects the employees share.The

x
x

xx
x

xx
xx
x

x

xx
x

x
xx

x
x

x
x

xx

x
x
x
x

x

x
x

x
x
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manager wants to schedule the projects in a way that will reduce the traffic (number of
emPloYees) in and out of the meeting room. How should the projects be scheduled?
A book salesPerson who lives in Basin must call once a month on four customers located
in Wald, Bon, Mena, and Kiln. The following table gives the distances in miles among the
different cities.

Basin Wald

0 I20 2z0 150 zn
I20 0 80 110 130
z20 110 0 160 185
150 110 160 0 190
2t0 130 185 190 0

Bon Kiln

Basin
Wald
Bon

Mena
Kiln

The objective is to minimize the total distance traveled by the salesperson.
Formulate the problem as an assignment-based ILP.

3. Circuit boards (such as those used with PCs) are fitted with holes to allow mounting dif-
ferent electronic components. The holes are drilled with a movable drill. The following
table Provides the distances (in centimeters) between pairs of 10 holes of a specific cii-
cuit board. The objective is to determine the optimum sequence for drilling at tn" holes.

l- L2 .5

l ,., 3.4

ua,,tl: 
| )1.a '^2 ;
l 4.1 2.9 4.6

\r., 5.2 6.2

2.6
4.6
3.5

3.8
.9

4.1, 3.2
2.9 5.2
4.6 6.2
3.8 .9

t.9
1.9

Formulate the problem as an assignment-based ILP.

9.3.1 B&B So!ution Algorithm

The idea of the B&B algorithm is to start with the solution of the associated assign_
ment Problem. If the solution is a tour, then there is nothing more to be done and the
process ends. otherwise, we need to introduce restrictions that remove the subtours.
This can be achieved by creating as many branches as the number of x,;variables asso_
ciated with one of the subtours. Each branch will then correspond to sótting one of the
variables of the subtour to zero (recall that all the variables associated with a subtour
equal 1). The solution of the resulting assignment problem may or may not produce a
tour. If it does, We use its objective value as an upper bound on the true minimum
tour length. If it does not, further branching will be necessary, again creating as
manY branches as the number of variables in one of the subtours. Thé process contin_
ues until all unexplored subproblems have been fathomed, either by pioducing a bet_
ter (smaller) upper bound or because there is evidence that the subproblem cannot
Produce a better solution. The optimum tour is the one associated witň the best upper
bound.

The following example provides the details of the traveling salesperson B&B
algorithm.
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Example 9.3-2

The

lowing solution:

Z : 15, (Xr : X3t : t), @r5 : X54 : X42: 1),

This solution yields two subtours: (1-3-1) and (2-5-4-2) as
9.1,4.The associated total distance is z : ].5, which provides
mal length of the S-city tour.

A straightforward way to determine an upper bound is to select any tour and then
sum its respective distances to obtain an upper bound estimate. For example, the tour ]_-

2-3-4-5-1(selectedtotallyarbitrarily) hasatotal lengthof ].0 + 5 + 7 + 4 -l 3:29.
(You may be able to find a better upper bound by inspection. Remember that the
smaller the upper bound, the more efficient the B&B search.)

The calculation of the lower and upper bounds now tells us that the optimum
length of the tour must lie in range (I5,29).A solution that yields a tour length larger
than29 is discarded as nonpromising.

To eliminate the subtours at node 1, we need to "disrupt" its loop by forcing its
member variables, xi1, to zero level. Subtour 1,-3-I is broken if we impose xI3 :
oT x31: 0 (i.e., one at a time) on the assignment problem at node ].. Similarly, subtour

matrix below summarizes the distances in a S-city traveling salesperson problem.

/* 10 3 6 g\
ls oo 5 4 2l

lla,,l|:| + g oo 7 8 
l\] , 2 ? :/\ z o ) *l

We start by solving the associated assignment (using TORA), which yields the fol-

all others : 0

shown at node 1 in Figure
a lower bound on the opti-

FlGURE 9.,l4

B&B solution of the traveling salesperson
problem of Example 9.3-2

z: 16
(1-3-4-2-5-L)

z: I7
(2-5-2)(I-4-3-I)

z: 19
(1,-4-2-5-3-r)
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2-5-4-2 is eliminated by imposing one of the restrictions x25 : O, xsq: 0, or xa2 : Q.In
terms of the B&B tree, each of these restrictions gives rise to a branch and henóe a new
subProblem. It is important to notice that branching both subtours at node 0 is not nec-
essary.Instead, only one subtour needs to be disrupted at any one node.The idea is that
a breakup of one subtour automatically alters the member variables of the other sub-
tour and hence produces conditions that are favorable to creating a tour. Under this
argument, from the computational standpoint, preference is given to the shortest sub-
tour because it creates the smallest number of branches.

Targeting the shorter subtour (1-3-1), two branches x13 : 0 and x3, : 0 are created
at node ]-. The associated assignment problems are constructed by removing the row and
column associated with the zero variable, which will make the assignrnent problem
smaller. Another way of achieving the same result is to leave the size of the assignment
problem unchanged and simply assign an infinite distance to the branching variaĎle. For
example, the assignm9nl problem associated with xr, : 0 requires substituting dn : @
in the assignment model at node 0. Similarly, for x3I : 0, we substitute dzl : oo. 

-"

. InFigure9.1,4,we arbitrarily solve the subproblem associated with i:r : 0.Node 2
gives the solution z : 17 but continues to produce the subtours (z-s)"ánd (1-4-3-1).
RePeating the procedure we made at node 1 gives rise to two branches: x25 :0 and
Xsz : 0.

We now have three unexplored subproblems, one from node 1 and two from node2,
and we are free to investigate any of them at this point. Arbitrarily exploring the
subproblem associated with x25 : 0 from node 2, we sét dr, : oo and'd25 

' oo ,. tt 
"original assignment problem, which yields the solutioll 7 : ŽI and, the toui solution 1-4-

5-2-3-I at node 3. Node 3 need not be investigated any further and hence is fathomed.
The solution at node 3 provides an improved upper bound, z : ZL,on the optimal

length of the tour. This means that any unexplored Šubproblem that can be shówn to
yield ? tour length larger than (or equal to) 21, must be discarded as nonpromising.

We now have two unexplored subproblems. Selecting subproblem 4 for e-xplo-
ration, we set dr : oo and dsz : oo in the original assignment, which yields the tour
solution I-4-2-5-3-1 with z: 19. The new tour solution provides thó better upper
bound z : 19.

. Only subproblem 5 remains unexplored. Substituting fu.: oo in the original
assignment problem at node 1, we get the tour solution13-+-2-51with e : 6,ut
node 5. Once again, this is a better solution than the one associated with node 3 and
thus requires updating the upper bound to 1 : 16.

There are no remaining unfathomed nodes, which completes the search tree. The
optimal tour is the one associated with the current upper bound: I-3-4-2-5-1 with
length 16 miles.

One remark is in order:The search sequence 1 + 2 + 3 -> 4 +5 for exploring the
nodes demonstrates once again one of the difficulties associated with the b&n ilgo-
rithm. We have no Way of predicting in advance which sequence we should follow to
exPlore subproblems in the B&B tree. For example, had we started with node 5, we
would have obtain_ed the tight upper bound z : I6,which will automatically fathom
subProblem} andhence eliminate the need to create subproblems 4 and 5.

Of course, there are heuristics that can be of help in l'foreseeing" which sequence
could lead to a more efficient tree. For example, after specifying ail tňe branches i.o- u
given node, We can start with the branch associated with the largest dilamong all the cre_
ated branches. This heuristic calls for exploring branch 41: Oit ,roáe 0. Hád this been
done, the upper bound e : 16 would have been encountered at the first subproblem.

..:g its

.,:U
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PRoBLEM sET 9.3B

1. Solve Example 9.3-2 using subtour 2-5-4-2 to start the branching process at node 0 and
the following sequences for exploring the nodes.

(a) Explore all the subproblems horizontally from left to right in each tier before pro-
ceeding to the next tier.

(b) Follow each path vertically from node 0 until it ends with a fathomed node.

2. Solve Problem 1, Set 9.3a using B&B.
3. Solve Problem 2, Set 9.3a using B&B.
4. Solve Problem 3, Set 9.3a using B&B.

9.3.2 Cutting Plane Algorithm

The idea of the cutting plane algorithm is to add a set of constraints, which when added
to the assignment problem are guaranteed to prevent the formation of a subtour. The
additional constraints are defined as follows. In an n-city, associate a continuous vari-
able u1(>0) with citiesZ, 3, ... , and n. Next, define the required set of additional con-

straints as

ui-uj lnxi1 <n-1,,i:2,3,...,ft, i:2,3,...,fli i+ j

These constraints, when added to the assignment model, will automatically remove all
subtour solutions but will not eliminate any tour solution.

Example 9.3-3

Consider the following distance matrix of a 4-city traveling salesperson problem.

|ld,ill :

The associated LP consists of the assignment model constraints plus the following
additional constraints that prevent the formation of subtour solutions. AlI x,, : (0, 1)

and all ui > O.The problem is solved as a mixed integer linear program.

Xl Xn Xr Xtq Xzt Xzz Xzs Xzq Xzt Xsz Xsl Xz+ X4 X+z Xqs U2 U3 U4

<?
<?

=3
<?
<1
<1

The optimum solution, obtained by TORA s ILP module (file Ch9ToraTraveling
SalespersonEx9-3-3.txt), is given as

U2 : 0, u3 : 1, U4 : 2, XI2 : Xzz -- X34 : X41, : I, tOUrlength : 59

/oo 13 21 26\
lro oo 29 20l

\rz 30 7 */

4 1 -1,
4 1 -1

4 -1 1

4 1, -1
4 -1, 1

4 -1 1
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This corresponds to the tour solution1,-2-3-4-1. The solution satisfies all the additional
constraints in u, (verify!).

To show that subtour solutions do not satisfy the additional constraints, consider
the subtour solution (I-Z-t,3-4-3). This solution corresponds to x12 : x21 : !,, x34 :
x43 : 1. Now, consider constraints 4 and 6 in the tableau above-namely,

o;,^^,::,, 

-:^^=:
Substituting 4a: x43: 1 and summing the two inequalities yields 8 < 6, which is
impossible, thus disallowing the formation of the subtour.

The main disadvantage of the cutting plane model is that its size grows exponen-
tially with the number of cities. For this reason, the B&B algorithm offers a more effi-
cient way for solving the problem.

added
nr. The
s vari-
al con-

ove all

PRoBLEM sET 9.3c

1. Solve the following traveling salesperson problem by the cutting plane algorithm.

(a) lld,il|:

l@ 43 21 20\
íro oo g 22]i

lro 10 oo 5l
\42 50 27 xl

Iorr.ing
= (0, 1)

<3

-3
-3
-3

<3

.,, eling

(b) Problem 2,Set9.3a.
(c) Problem 3, Set 9.3a.
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COM PREHENSIVE PROBLEMS

9.1 A development company owns 90 acres of land in a growing metropolitan area, where it
intends to construct office buildings and a shopping center. The developed property is
rented for 7 years and then sold. The sales price for each building is estimated at ]_0 times
its operating net income in the last year of rental. The company estimates that the project
will include a 4.5-million-square-foot shopping center. The master plan calls for construct-
ing three high-rise and four garden office buildings.

The company is faced with a scheduling problem. If a building is completed too
early, it may stay vacant;if it is completed too late, potential tenants may be lost to other
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projects. The demand for office space over the next 7 years based on appropriate market
studies is

Demand (thousands of fť)

Year High-rise space Garden space

I
z
J

4

5

6

7

The following table lists the proposed capacities of the seven buildings:

Garden building Capacity (ft2) High-rise building Capacity (ft2)

1

z
J

4

200
2z0
z42
266
293
3z2
354

100

110

u,
I33
I46
I6l
177

60,000
60,000
75,000
75,000

1,

2

3

350,000
450,000
350,000

The gross rental income is estimated at $25 per square foot. The operating expenses
are $5.75 and $9.75 per square foot for the garden and high-rise buildings, respectively.
The associated construction costs are $70 and $105 per square foot, respectively. Both the
construction cost and the rental income are estimated to increase at roughly the inflation
rate of 4"/".

How should the company schedule the construction of the seven buildings?
9.25 In a National Collegiate Athletic Association women's gymnastics meet, competition

includes four events:vault, uneven bars, balance beam, and floor exercises. Each team may
enter the competition with six gymnasts per event. A gymnast is evaluated on a scale of 1

to 10. Past statistics for the U of A team produce the following scores:

U of A Scores for Gymnast

Event

Vault
Bars
Beam
Floor

6

7

9

6

8

7

10

5

8

8

9

9

9

9

8

6

4I0
95
98

109

The total l

scores for each
rounder" in all

score for a team is determined by summarizing the top five individual
event. An entrant may participate as a specialist in one event or an "all-
four events, but not both. A specialist is allowed to compete in at most

sBased on P. Ellis and R. Corn, "IJsing Bivalent Integer Programming to Select Teams of Intercollegiate
Women's Gymnastic Competition," Interfaces, Vol. 14, No. 3, pp. 41,46, 1984.

34
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three events, and at least four of the team participants must be all-rounders. Set up an ILp
model that can be used to select the competing team, and find the optimum solution using
ToRA.

9.36 In 1990, approximately 180,000 telemarketing centers employing 2 million individuals
were in operation in the United States. In the year 200Q more than 700,000 companies
employed approximately 8 million people in telemarketing their products. The questions
of how many telemarketing centers to employ and where to locate them are of paramount
importance.

The ABC company is in the process of deciding on the number of telemarketing cen-
ters to employ and their locations. A center may be located in one of several candidate
areas selected by the company and may serve (partially or completely) one or more geo-
graphical areas. A geographical area is usually identified by one or more (telephone) area
codes.ABC's telemarketing concentrates on eight area codes:501,918,31,6,4I7,3!4,81,6,
502, and 606. The following table provides the candidate locations, their served areas, and
the cost of establishing the center.

center location served area codes Cost ($)

Dallas,TX
Atlanta, GA
Louisville, KY
Denver, CO
Little Rock,AR
Memphis,TN
St. Louis, MO

501,918, 31,6,417
3I4,816,502,606
918,31,6,4l7 ,3I4,816
50I,502,606
4I7,31,4,8t6,502
606,501, 316,4I,7
8t6,502,606,3I4

500,000
800,000
400,000
900,000
300,000
450,000
550,000

ryenseS
rtivelr-.
oth the
nflation

ptition
lm maY
ale of 1

.:- _]
- _-*-11

,: :_i-

>L

Customers in all area codes can access any of the centers 24 hours a day.
The communication costs per hour between the centers and the area codes are given

in the following table.

From area code

501 91B 316 4l7 314 816 502

Dallas,TX
Atlanta, GA
Louisville, KY
Denver, CO
Little Rock,AR
Memphis, TN
St. Louis,MO

$14
$18

$zz
$z+

$19
$23

$17

$zg
§zz
$rz
$19
$23

$17
$12

$3z
$18
$19

$14
$16

$21

$10

$13

$23

$17

$16
$tt
$23

$zz

$14 $20
$lz $15
$26 $25

$18 $30
$28 $tz
$20 $10
$16 $zz

$25
$26
$30
$12
$23

$20
$19

$35
$18
$25

$so
$zo
$2I
$1s

ABC would like to select between three and four centers. Where should they be
located?

6Based on T. SPencer, A. Brigandi, D. Dargon, and M. Sheehan, "AT&T,s Telemarketing Site Selection
System Offers Customer Support," Interfaces, Vol.20, No. 1, pp. 83-96, 1990.

606
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9.47 An electric utility company serving a wide rural area wants to decide on the number and
location of Customer-Service Linemen (CSL) centers that will provide responsive service
regarding repairs and connections. The company groups its customer base in five clusters
according to the following data:

Cluster

Number of customers

The company has selected five potential locations for its CSL centers. The following table
summarizes the average travel distance in miles from the CSLs to the different clusters.

The average speed of the service truck is approximately 45 miles per hour.

CSL center

Cluster

The company would like to keep the response time to a customer request to around
90 minutes. How many CSL centers should be in operation?

7Based on E. Erkut, T. Myrdon, and K. Strangway, "Transatlanta Redesigns Its Service Delivery Network"'
Interfaces, Vol. 30, No. 2, pp. 54-69,2000.

40 100 z0 50 30
l20 90 80 30 70
40 50 90 80 40

80 70 110 60 I20
90 100 40 110 90

1

2

J

4

5

_&.--

300 600 700


