CHAPTER 6

Network Models

There is a multitude of operations research situations that can be modeled and solved
as networks (nodes connected by branches). Some recent surveys report that as much
as 70% of the real-world mathematical programming problems can be represented by
network-related models. The following list illustrates possible applications of networks.

1. Design of an offshore natural gas pipeline network connecting wellheads in the
Gulf of Mexico to an inshore delivery point. The objective of the model is to min-
imize the cost of constructing the pipeline.

2. Determination of the shortest route between two cities in a network of roads.

3. Determination of the maximum capacity (in tons per year) of a coal slurry
pipeline network joining the coal mines in Wyoming with the power plants in
Houston. (Slurry pipelines transport coal by pumping water through specially
designed pipes.)

4. Determination of the minimum-cost flow schedule from oil fields to refineries
through a pipeline network.

S. Determination of the time schedule (start and completion dates) for the activi-
ties of a construction project.

The solution of these situations, and others like it, is accomplished through a
variety of network optimization algorithms. This chapter will present five of these
algorithms.

Minimal spanning tree (situation 1)

Shortest-route algorithm (situation 2)

Maximum flow algorithm (situation 3)

Minimum-cost capacitated network algorithm (situation 4)
Critical path (CPM) algorithm (situation 5)
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6.1

FIGURE 6.2

Examples of a tree and a spanning tree
given the network in Figure 6.1

Chapter 6 Network Models

The situations for which these algorithms apply can also be formulated and
solved as explicit linear programs. However, the proposed network-based algorithms
are more efficient than the simplex method.

NETWORK DEFINITIONS

A network consists of a set of nodes linked by ares (or branches). The notation for
describing a network is (N, A), where N is the set of nodes, and A is the set of arcs. As
an illustration, the network in Figure 6.1 is described as

N = {1,2,3,4,5}
A = {12),(1.3),23).(2.5).34),(3.5).(4.2),(4.5)}

FIGURE 6.1
Example of (N, A) network

Associated with each network is some type of flow (e.g., oil products flow in a
pipeline and automobile traffic flows on highways). In general, the flow in a network is
limited by the capacity of its arcs, which may be finite or infinite.

An arc is said to be directed or oriented if it allows positive flow in one direction
and zero flow in the opposite direction. A directed network has all directed arcs.

A path is a sequence of distinct arcs that join two nodes through other nodes
regardless of the direction of flow in each arc. A path forms a cycle if it connects a node
to itself through other nodes. For example, in Figure 6.1, arcs (2,3), (3,5), and (5,2) form
aloop. A cycle is directed if it consists of a directed path; e.g., (2,3), (3,4), and (4,2) in
Figure 6.1.

A connected network is such that every two distinct nodes are linked by at least
one path. The network in Figure 6.1 demonstrates this type of network. A tree is a
connected network that may involve only a subset of all the nodes of the network
with no cycles allowed, and a spanning tree is a tree that links a/l the nodes of the
network, also with no cycles allowed. Figure 6.2 provides examples of a tree and a
spanning tree for the network in Figure 6.1.

Tree Spanning tree
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ed and PROBLEM SET 6.1A

— 1. For each network in Figure 6.3 determine (a) a path, (b) a cycle, (c) a directed cycle, (d) a

tree, and (e) a spanning tree.

e FIGURE 6.3
Networks for Problem 1, Set 6.1a
1on for
arcs. As
(@) (i)
2. Dectermine the sets N and A for the networks in Figure 6.3.
3. Draw the network defined by
N ={1,2,3,4,5,6}
A = {12),(1,5),(2.3),2:4).3.5).3:4),(4.3),(4.6).(5.2).(5.6)}
. 4. Consider eight equal squares arranged in three rows, with two squares in the first row,
pw i 4 four in the second, and two in the third. The squares of each row are arranged symmetri-
rwork is cally about the vertical axis. It is desired to fill the squares with distinct numbers in the
range 1, 2,..., and 8 so that no two adjacent vertical, horizontal, or diagonal squares hold
irection consecutive numbers. Use network representation as a vehicle to find the solution in a
S. systematic way.
r nodes 5. Three inmates escorted by 3 guards must be transported by boat from San Francisco to
s a node the Alcatraz penitentiary island to serve their sentences. The boat cannot transfer more
2) form than two persons in either direction. The inmates are certain to overpower the guards if
(4.2)1in they outnumber them at any time. Develop a network model that designs the boat trips in
a manner that ensures a safe transfer of the inmates. Assume that the inmates will not flee
bt Tesamt if given a chance.
ree is a
etwork 6.2 MINIMAL SPANNING TREE ALGORITHM
s of Elhe The minimal spanning tree algorithm deals with linking the nodes of a network,
¢ and a

directly or indirectly, using the shortest length of connecting branches. A typical appli-
cation occurs in the construction of paved roads that link several towns. The road
between two towns may pass through one or more other towns. The most economical
design of the road system calls for minimizing the total miles of paved roads, a result
that is achieved by implementing the minimal spanning tree algorithm.

The steps of the procedure are given as follows. Let N = {1, 2, ..., n} be the set
of nodes of the network and define

Ci = Set of nodes that have been permanently connected at iteration k

C, = Set of nodes as yet to be connected permanently
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FIGURE 6.4

Cable connections for Midwest TV Cable
Company

Chapter 6 Network Models

Step0. Set C, = O and Cy = N.

Step 1.  Start with any node, i, in the unconnected set C, and set C; = {i}, which ren-
ders C; = N — {i}.Setk = 2.

General Step k. Select a node, ', in the unconnected set Cy_, that yields the shortest
arc to a node in the connected set C,_;. Link j* permanently to C,_; and
remove it from C,_,, that is,

Co=Ciy +{{1Ci=Cyi — {7}

If the set of unconnected nodes, C,, is empty, stop. Otherwise,set k = k + 1
and repeat the step.

Example 6.2-1

Midwest TV Cable Company is in the process of providing cable service to five new
housing development areas. Figure 6.4 depicts possible TV linkages among the five
areas. The cable miles are shown on each arc. Determine the most economical cable
network.

The algorithm starts at node 1 (any other node will do as well), which gives

C, = {1}, C, = {2,3,4,5,6}

The iterations of the algorithm are summarized in Figure 6.5. The thin arcs provide all
the candidate links between C and C. The thick branches represent the permanent
links among the nodes of the connected set C, and the dashed branch represents the
new (permanent) link added at each iteration. For example, in iteration 1, branch
(1,2) is the shortest link ( = 1 mile) among all the candidate branches from node 1 to
nodes 2, 3, 4, and 5 of the unconnected set C;. Hence, link (1,2) is made permanent
and j° = 2, which yields

C, = {1,2},C, = {3,4,5,6}

The solution is given by the minimal spanning tree shown in iteration 6 of Figure
6.5. The resulting minimum cable miles needed to provide the desired cable service are
1+3+4+3+5=16miles
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Iteration 1 Iteration 2

Iteration 3

Alternate

FIGURE 6.5
Solution iterations
Iteration 5 Iteration 6 for Midwest TV
(Minimal spanning tree) Cable Company

You can use TORA to generate the iterations of the minimal spanning tree. From
Main menu,select Network models = Minimal spanning tree. Next, from soLve/MopTEyY
menu, select solve problem => Go to output screen. In the output screen, select a
Starting node and then use Next iteration Orall iterations to generate the succes-
sive iterations. You can restart the iterations by selecting a new starting node. Figure
0.6 gives TORA output for Example 6.2-1 (file ch6ToraMinSpanEx6-2-1.txt).
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FIGURE 6.6
Output of the minimal spanning tree of Example 6.2-1

PROBLEM SET 6.2A

1. Solve Example 6.2-1 starting at node 5 (instead of node 1), and show that the algorithm
produces the same solution.

2. Determine the minimal spanning tree of the network of Example 6.2-1 under each of the “
following separate conditions: |
(a) Nodes 5 and 6 are linked by a 2-mile cable.

(b) Nodes 2 and 5 cannot be linked. ‘
(¢) Nodes 2 and 6 are linked by a 4-mile cable. ‘
(d) The cable between nodes 1 and 2 is 8 miles long.

(e) Nodes 3 and 5 are linked by a 2-mile cable.

(® Node 2 cannot be linked directly to nodes 3 and 5.

3. Inintermodal transportation, loaded truck trailers are shipped between railroad termi-
nals by placing the trailer on special flatbed carts. Figure 6.7 shows the location of the
main railroad terminals in the United States and the existing railroad tracks. The objec-
tive is to decide which tracks should be “revitalized” to handle the intermodal traffic. In
particular, the Los Angeles (LA) terminal must be linked directly to Chicago (CH) to
accommodate expected heavy traffic. Other than that, all the remaining terminals can be
linked, directly or indirectly, such that the total length (in miles) of the selected tracks is
minimized. Determine the segments of the railroad tracks that must be included in the
revitalization program.
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FIGURE 6.7
Network for Problem 3, Set 6.2a

. Figure 6.8 gives the mileage of the feasible links connecting nine offshore natural gas

wellheads with an inshore delivery point. Because the location of wellhead 17s the closest
to shore, it is equipped with sufficient pumping and storage capacity to pump the output
of the remaining eight wells to the delivery point. Determine the minimum pipeline net-
work that links the wellheads to the delivery point.

Delivery point FIGURE 6.8
Network for Problem 4, Set 6.2a

- In Figure 6.8 of Problem 4, suppose that the wellheads can be divided into two groups

depending on gas pressure: a high-pressure group that includes wells 2, 3, 4, and 6; and a
low-pressure group that includes wells 5,7, 8, and 9. Because of pressure difference, well-
heads from the two groups cannot be linked. At the same time, both groups must be con-
nected to the delivery point through wellhead 1. Determine the minimum pipeline
network for this situation.

- Electro produces 15 electronic parts on 10 machines. The company wants to group the

machines into cells designed to minimize the “dissimilarities” among the parts processed
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in each cell. A measure of «dissimilarity,” d;;, among the parts processed on machines i
and j can be expressed as

4 n; + m;

where n;;is the number of parts shared between machines i and j, and m;; is the number of
parts that are used by cither machine i or j only.

The following table assigns the parts to machines:

-

Machine Assigned parts

-
1,6
2,3,7,8,9,12,13,15
3,5,10,14
2,7,8,11,12,13
3,5,10,11,14
1,4,5,9,10
2,5,7,8,9,10
3,4,15

4,10

3,8,10,14,15

QoW A WL

—_
o O o

(a) Express the problem as a network model.

(b) Show that the determination of the cells can be based on the minimal spanning tree
solution.

(¢) For the data given in the preceding table, construct the two- and three-cell solutions.

SHORTEST-ROUTE PROBLEM

The shortest-route problem determines the shortest route between a source and desti-
nation in a transportation network. Other situations can be represented by the same
model as illustrated by the following examples.

Examples of the Shortest-Route Applications

Example 6.3-1 (Equipment Replacement)

RentCar is developing a replacement plan for its car fleet for a 4-year planning hori-
zon that starts January 1, 2001, and terminates December 31,2004. At the start of each
year, a decision is made as to whether a car should be kept in operation or replaced. A
car must be in service a minimum of 1 year and a maximum of 3 years. The following
table provides the replacement cost as a function of the year a car is acquired and the
number of years in operation.

Replacement cost ($) for given years in operation

Equipment
acquired at start of 1 2 3
2001 4000 5400 9800
2002 4300 6200 8700
2003 4800 7100 —
2004 4900 — —
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9800

FIGURE 6.9
Equipment replace-
ment problem as a
shortest-route model

The problem can be formulated as a network in which nodes 1 to 5 represent the
start of years 2001 to 2005. Arcs from node 1 (year 2001) can reach only nodes 2, 3, and
4 because a car must be in operation between 1 and 3 years. The arcs from the other
nodes can be interpreted similarly. The length of each arc equals the replacement cost.
The solution of the problem is equivalent to finding the shortest route between nodes
1 and 5.

Figure 6.9 shows the resulting network. Using TORA,! the shortest route (shown
by the thick path) is 1 —3 — 5. The solution means that a car acquired at the start of
2001 (node 1) must be replaced after 2 years at the start of 2003 (node 3). The replace-
ment car will then be kept in service until the end of 2004. The total cost of this replace-
ment policy is §$12,500 (= $5400 + $7100).

Example 6.3-2 (Most Reliable Route)

I. Q. Smart drives daily to work. Having just completed a course in network analysis,
Smart is able to determine the shortest route to work. Unfortunately, the selected
route is heavily patrolled by police, and with all the fines paid for speeding, the shortest
route may not be the best choice. Smart has thus decided to choose a route that maxi-
mizes the probability of not being stopped by police.

The network in Figure 6.10 shows the possible routes between home and work,
and the associated probabilities of not being stopped on each segment. The probability
of not being stopped on the way to work is the product of the probabilities associated
with the successive segments of the sclected route. For example, the probability of not

FIGURE 6.10

Most-reliable-route network model

'From main menu, select Network models => Shortest route. From sorve/mopiey menu, select solve problem

= Shortest routes.
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.09691 ‘/4\ A5593

.30103

FIGURE 6.11

Most-reliable-route
representation as a shortest-
route model .52288

receiving a fine on the route 1 -3 —5—7 is .9 X .3 X .25 = .0675.Smart’s objective
is to select the route that maximizes the probability of not being fined.

The problem can be formulated as a shortest-route model by using a logarithmic
transformation that converts the product probability into the sum of the logarithms of
probabilities—that is, if py = py X p2 X ... X p, is the probability of not being
stopped, then log py, = logp; + logp, + ... +logpy.

Mathematically, the maximization of py is equivalent to the maximization of
log py;- Because log py = 0, the maximization of log py is, in turn, equivalent to the
minimization of — log py. Using this transformation, the individual probabilities p;
in Figure 6.10 are replaced with — logp; for all j in the network, thus yielding the
shortest-route network in Figure 6.11.

Using TORA, nodes 1, 3, 5, and 7 define the shortest route in Figure 6.11 with a
corresponding “length” of 1.1707 (= —log p 17)- Thus, the maximum probability of not
being stopped is py; = .0675.

Example 6.3-3 (Three-Jug Puzzle)

An 8-gallon jug is filled with fluid. Given two empty 5- and 3-gallon jugs, we want to
divide the 8 gallons of fluid into two equal parts using the three jugs. No other measur-
ing devices are allowed. What is the smallest number of pourings needed to achieve
this result?

You probably can guess the solution of this puzzle. Nevertheless, the solution
process can be systematized by representing the problem as a shortest-route problem.

A node is defined to represent the amount of fluid in the 8-, 5-, and 3-gallon jugs.
respectively. This means that the network starts with node (8,0, 0) and terminates with
the desired solution node (4, 4, 0). A new node is generated from the current node by
pouring fluid from one jug into another.

Figure 6.12 shows different routes that lead from start node (8, 0,0) to end node (4,
4,0). The arc between two successive nodes represents a single pouring, and hence can
be assumed to have a length of 1 unit. The problem reduces to determining the shortest
route between node (8,0,0) and node (4,4,0).

The optimal solution, given by the bottom path in Figure 6.12, requires 7 pourings.
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1. Reconstruct the equipment replacement model of Example 6.3-1, assuming that a car
11 with a must be kept in service at least 2 years, with a maximum service life of 4 years. The plan-
+v of not ning horizon is from the start of 2001 to the end of 2005. The following table provides the
’ necessary data.
Replacement cost (§) for given years in operation
Year acquired 2 3 4
2001 3800 4100 6800
2002 4000 4800 7000
= want to 2003 4200 5300 7200
N 2004 4800 5700 —
f measut- 2005 5300 — —
o achieve
- solution

2. Figure 6.13 provides the communication network between two stations, 1 and 7. The
probability that a link in the network will operate without failure is shown on each arc.
Messages are sent from station 1 to station 7, and the objective is to determine the route
that will maximize the probability of a successful transmission. Formulate the situation as
a shortest-route model, and solve with TORA.

d node (4, 3. An old-fashioned electric toaster has two spring-loaded base-hinged doors. The two doors

hence can open outward in opposite directions away from the heating element. A slice of bread is

k shortest toasted one side at a time by pushing open one of the doors with one hand and placing
the slice with the other hand. After one side is toasted, the slice is turned over to get the

pourings. other side toasted. It is desired to determine the sequence of operations (placing, toast-

ing, turning, and removing) needed to toast three slices of bread in the shortest possible
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FIGURE 6.13
Network for Problem 2, Set 6.3a

time. Formulate the problem as a shortest-route model using the following elemental
times for the different operations:

Operation Time (seconds)
Place one slice in either side 3
Toast one side 30
Turn slice already in toaster 1
Remove slice from either side 3

4. Production Planning. DirectCo sells an item whose demand over the next 4 months is
100, 140, 210, and 180 units, respectively. The company can stock just enough supply to
meet each month’s demand, or it can overstock to meet the demand for two or more suc-
cessive and consecutive months. In the latter case, a holding cost of $1.20 is charged per
overstocked unit per month. DirectCo estimates the unit purchase prices for the next 4
months to be $15, $12, $10, and $14, respectively. A setup cost of $200 is incurred each
time a purchase order is placed. The company wants to develop a purchasing plan that
will minimize the total costs of ordering, purchasing, and holding the item in stock.
Formulate the problem as a shortest-route model, and use TORA to find the optimum
solution.

5. Knapsack Problem. A hiker has a 5-ft* backpack and needs to decide on the most valu-
able items to take on the hiking trip. There are three items from which to choose. Their
volumes are 2,3, and 4 ft®, and the hiker estimates their associated values on a scale from
0 to 100 as 30, 50, and 70, respectively. Express the problem as a longest-route network,
and find the optimal solution. (Hint: A node in the network may be defined as [5 v],
where i is the item number considered for packing, and v is the volume remaining imme-
diately before the decision is made on i.)

6.3.2 Shortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and
acyclic networks:

1. Dijkstra’s algorithm
2. Floyd’s algorithm
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Dijkstra’s algorithm is designed to determine the shortest routes between the
source node and every other node in the network. Floyd’s algorithm is general because
it allows the determination of the shortest route between any two nodes in the network.

Dijkstra’s Algorithm. Let u; be the shortest distance from source node 1 to node i,
and define d; (= 0) as the length of arc (i, j). Then the algorithm defines the label for
an immediately succeeding node j as

[uj,i] = [u,' + d,‘/,i], d” = 0

The label for the starting node is [0,—], indicating that the node has no predecessor.
Node labels in Dijkstra’s algorithm are of two types: temporary and permanent. A

temporary label is modified if a shorter route to a node can be found. At the point when

no better routes can be found, the status of the temporary label is changed to permanent.

Step 0. Label the source node (node 1) with the permanent label [0,—]. Seti = 1.

Stepi. (a) Compute the temporary labels [u; + d;,i] for each node j that can be
reached from node i, provided j is not permanently labeled. If node j is
already labeled with [u;, k] through another node k and if u; + d; < u;,
replace [u;, k] with [u; + d, i].
(b) If all the nodes have permanent labels, stop. Otherwise, select the label
[u,, s] having the shortest distance (=u,) among all the temporary labels
(break ties arbitrarily). Set i = r and repeat step i.

Example 6.3-4

The network in Figure 6.14 gives the routes and their lengths in miles between city 1
(node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between
city 1 and each of the remaining four cities.

Iteration 0.  Assign the permanent label [0,—] to node 1.

Iteration 1. Nodes 2 and 3 can be reached from (the last permanently labeled) node
1. Thus, the list of labeled nodes (temporary and permanent) becomes

Node Label Status
1 [0,—] Permanent
2 [0 + 100, 1] = [100, 1] Temporary
3 [0 + 30, 1] = [30, 1] Temporary

FIGURE 6.14

Network example for Dijkstra’s
shortest-route algorithm
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For the two temporary labels [100, 1] and [30, 1], node 3 yields the
smaller distance (15 = 30). Thus, the status of node 3 is changed to per-

manent.
Iteration 2. Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes
becomes
Node Label Status

1 [0,—1 Permanent
2 [100,1] Temporary
3 [30,1] Permanent [0,~]
4 [30 + 10, 3] = [40, 3] Temporary
5 [30 + 60, 3] = [90, 3] Temporary

The status of the temporary label [40, 3] at node 4 is changed to perma-
nent (uy = 40).

Iteration 3. Nodes 2 and 5 can be reached from node 4. Thus, the list of labeled
nodes is updated as

Node Label Status
1 [0,—1 Permanent
2 [40 + 15, 4] = [55, 4] Temporary
3 [30,1] Permanent
4 [40, 3] Permanent
5 [90,3] or [40 + 50, 4] = [90, 4] Temporary

Node 2’s temporary label [100, 1] in iteration 2 is changed to [55,4] in
iteration 3 to indicate that a shorter route has been found through node
4. Also, in iteration 3, node 5 has two alternative labels with the same
distance us = 90.

The list for iteration 3 shows that the label for node 2 is now perma-
nent.

Iteration 4. Only node 3 can be reached from node 2. However, node 3 has a perma-
nent label and cannot be relabeled. The new list of labels remains the
same as in iteration 3 except that the label at node 2 is now permanent.
This leaves node 5 as the only temporary label. Because node 5 does not
lead to other nodes, its status is converted to permanent, and the process
ends.

The computations of the algorithm can be carried out more easily on the network
as Figure 6.15 demonstrates.

The shortest route between nodes 1 and any other node in the network is deter-
mined by starting at the desired destination node and backtracking through the nodes
using the information given by the permanent labels. For example, the following
sequence determines the shortest route from node 1 to node 2:

2)— [55,4] > (4) —[40,3] > (3) —~ [30,1] > (1)

Thus, the desired route is 1 — 3 — 4 — 2 with a total length of 55 miles.
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“A60:7;
[55.4]3)

[90.3] 2
[90.4] 3

[07_](1)

FIGURE 6.15

() = iteration Dijkstra’s labeling procedure

TORA can be used to generate Dijkstra’s iterations. From the sorve/moprry
menu, select Solve problem = Iterations = Dijkstra’s algorithm. Figure 6.16 pro-
vides TORA’s iterations output for Example 6.3-4 (file ch6ToraDijkstraEx6-3-4.txt).

FIGURE 6.16
TORA Dijkstra iterations for Example 6.3-4
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PROBLEM SET 6.3B

1. The network in Figure 6.17 gives the distances in miles between pairs of cities 1,2, ..., and
8. Use Dijkstra’s algorithm to find the shortest route between the following cities:

(a) Citiesland8
(b) Cities1and 6
(¢) Cities4and8
(d) Cities2and6

FIGURE 6.17
Network for Problem 1, Set 6.3b

2. Use Dijkstra’s algorithm to find the shortest route between node 1 and every other node
in the network of Figure 6.18.

FIGURE 6.18
Network for Problem 2, Set 6.3b

3. Use Dijkstra’s algorithm to determine the optimal solution of each of the following
problems:

(a) Problem 1,Set 6.3a
(b) Problem 2, Set 6.3a
(¢) Problem4,Set 6.3a

Floyd’s Algorithm. Floyd’s algorithm is more general than Dijkstra’s because it
determines the shortest route between any two nodes in the network. The algorithm
represents an n-node network as a square matrix with n rows and n columns. Entry (i,))
of the matrix gives the distance d; from node i to node j, which is finite if i is linked
directly to j, and infinite otherwise.
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..and
FIGURE 6.19
Floyd’s triple operation
The idea of Floyd’s algorithm is straightforward. Given three nodes i, j, and k in
Figure 6.19 with the connecting distances shown on the three arcs, it is shorter to reach
k from i passing through j if
dl'l‘ + d]k < dik
In this case, it is optimal to replace the direct route from i — k with the indirect route
Az i— j— k. This triple operation exchange is applied systematically to the network
6 using the following steps:
Step 0. Define the starting distance matrix D, and node sequence matrix S, as given
below. The diagonal elements are marked with (—) to indicates that they are
T node blocked. Set k = 1.
1 2 j n
1 — di d; dy,
2 d21 _ dZ] d2n
Dy = s : s
L dy dp di] d;,
n Dn] an dn] -
1 2 j n
_ 2 j
2 1 — j
So = : :
i 1 2 j n
n 1 2 ] Fa—
General Step k. Define row k and column k as pivot row and pivot column. Apply the
triple operation to each element d;; in D, _, for all i and j. If the condition
cause it dy + dyy < dy, (i # k,j # k, andi # ))
corithm ) o .
ntry (i,j) is satisfied, make the following changes:
s linked (a) Create D, by replacing d;; in D,_, with d; + dy,.

(b) Create S by replacing s;; in S, with k. Set k = k + 1, and repeat step k.
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Rowi

Pivot row k

FIGURE 6.20 Row p

Implementation of triple operation in
matrix form

Step k of the algorithm can be explained by representing D, as shown in Figure
6.20. Here, row k and column k define the current pivot row and column. Row i repre-
sents any of the rows 1,2,..., and k — 1, and row p represents any of the rows
k+ 1,k + 2, ..., and n. Similarly, column j represents any of the columns 1,2, ...,
and k — 1, and column ¢ represents any of the columns k + 1, k + 2, ..., and n. With
the triple operation, if the sum of the elements on the pivot row and the pivot column
(shown by squares) is smaller than the associated intersection element (shown by a
circle), then it is optimal to replace the intersection distance by the sum of the pivot
distances.

After n steps, we can determine the shortest route between nodes i and j from the
matrices D, and S, using the following rules:

1. From D,, d; gives the shortest distance between nodes i and j.

2. From S,, determine the intermediate node k = s;; that yields the route i — k—j.
If s, = k and s;; = j, stop; all the intermediate nodes of the route have been
found. Otherwise, repeat the procedure between nodes i and k, and between
nodes k and j.

Example 6.3-5

For the network in Figure 6.21, find the shortest routes between every two nodes. The
distances (in miles) are given on the arcs. Arc (3,5) is directional so that no traffic is
allowed from node 5 to node 3. All the other arcs allow traffic in both directions.

FIGURE 6.21
Network for Example 6.3-5
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The matrices D, and S, give the initial representation of the network. D,

is symmetrical except that ds; = ©o0 because no traffic is allowed from
node S to node 3.

S O R S

2] |on |8
[ |=]3]8 |8

DN AW =
>—~>—->-—&o—~l

SNIRENENES
| [ |on ||

Set k = 1.The pivot row and column are shown by the lightly shaded
first row and first column in the Dy-matrix. The darker cells, dy; and d,,
are the only ones that can be improved by the triple operation. Thus, D,
and S are obtained from D, and S, in the following manner:

1. Replace dp; with dy; + di; = 3 + 10 = 13 and set 5,3 = 1.
2. Replace dy, with dy; + djy = 10 + 3 = 13 and set s, = 1.

These changes are shown in bold in matrices D, and S,.

D, Sy
1 2 3 4 5 1 2 3 4 5
1 — 3 1 5
2 — 2 4 5
3 13 3 4 5
4 5 4 — 5
5 o0 5 4 —

Set k = 2, as shown by the lightly shaded row and column in D,. The

triple operation is applied to the darker cells in D, and S,. The resulting
changes are shown in bold in D, and S,.

D, Sy
1 2 3 4 5 1 2 3 4 5
1 — 3 10 8 1 — 2 3 2
2 3 — 13 5 2 1 — 1 4
3 10 13 — 6 3 1 1 — 4
4 8 5 6 — 4 2 2 3 —
5 00 0 00 4 — 5 1 2 3 4 —
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Iteration 3. Setk = 3, as shown by the shaded row and column in D,. The new
matrices are given by D; and S;.

D; S;
1 2 3 4 5 1 2 3 4 5
1 3 10 8 1 — | 2 3 2 |3
9 — b 5 2 1 | — | 1 4 3
3 3| — 6 3 1 (1 | — 14 |5
4 5 6 - 4 2 2 3 | — |5
5 - B — 5 12 |3 4 | —

Iteration 4. Set k = 4,as shown by the lightly-shaded row and column in D;. The
new matrices are given by D, and S,.

D, S,

1 2 3 4 5 1 2 3 4 5
1 | — 3 10 8 12 1 | — |2 13 ]2 |4
2 3| — | 1 5 9 2 1 | — | 4|4 [a
3 0 | 11| — 6 10 3 1 | 4 | — |4 [4a
4 8 5 6 | — 4 4 2 |2 [ 3 [ —15
s [ 12 9 | 10 4 - 5 4 | 4 | 4 | 4 |—

Iteration 5. Set k = 5, as shown by the shaded row and column in D,. No further
improvements are possible in this iteration. Hence, Ds and Ss are the
same as D, and S,.

The final matrices Ds and Ss contain all the information needed to
determine the shortest route between any two nodes in the network. For
example, consider determining the shortest route from node 1 to node 5.
First, the associated shortest distance is given by d;s = 12 miles. To
determine the associated route, recall that a segment (i, j) represents a
direct link only if s;; = j. Otherwise, i and j are linked through at least
one other intermediate node. Because s;5 = 4, the route is initially given
as 1 — 4 — 5. Now, because s, = 2 # 4, the segment (1,4) isnot a
direct link, and 1 — 4 must be replaced with 1 — 2 — 4, and the route
1 — 4 — 5 now becomes 1 — 2 — 4 — 5. Next, because s, = 2, 54 = 4,
and 5,5 = 5, the route 1 — 2 — 4 — 5 needs no further “dissecting” and
the process ends.

As in Dijkstra’s algorithm, TORA can be used to generate Floyd’s iterations. From
the sorve/mopiry menu, select Solve problem = Iterations = Floyd's algorithm.
Figure 6.22 illustrates TORA’s output for Floyd’s Example 6.3-5 (file ch6ToraFloydEx6-
3-5.txt).
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|3 |
3
he
4
5 FIGURE 6.22
_ TORA Floyd iterations for Example 6.3-5
er PROBLEM SET 6.3C
K 1. In Example 6.3-5, use Floyd’s algorithm to determine the shortest routes between each of
3 the following pairs of nodes:
.rk IIc;or (a) From node S to node 1
ode 5. (b) From node 3 to node 5
D (¢) From node 5 to node 3
nis a (d) From node 5 to node 2
-ast 2. Apply Floyd’s algorithm to the network in Figure 6.23. Arcs (7,6) and (6, 4) are unidirec-
; given

tional, and all the distances are in miles. Determine the shortest route between the fol-
lowing pairs of nodes:

(a) From node 1 to node 7
(b) From node 7 to node 1
(¢) From node 6 to node 7

3. The Tell-All mobile phone company services six geographical areas. The satellite dis-
tances (in miles) among the six areas are given in Figure 6.24. Tell- All needs to determine

s From the most efficient message routes that should be established between each two areas in
brithm. the network.
vdEx6- 4. Six kids—Joe, Kay, Jim, Bob, Rae, and Kim—play a variation of the game of hide and

seek. The hiding place of a child is known only to a select few of the other children. A
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FIGURE 6.23
Network for Problem 2, Set 6.3¢

FIGURE 6.24
Network for Problem 3, Set 6.3¢

child is then paired with another with the objective of finding his or her hiding place. This
may be achieved through a chain of other kids who eventually will lead to discovering
where the designated child is hiding. For example, suppose that Joe needs to find Kim and
that Joe knows where Jim is hiding, who in turn knows where Kim is. Thus, Joe can find
Kim by first finding Jim, who in turn will lead Joe to Kim. The following list provides the
whereabouts of the children:

Joe knows the hiding places of Bob and Kim.

Kay knows the hiding places of Bob, Jim, and Rae.

Jim and Bob know the hiding place of Kay only.

Rae knows where Kim is hiding.

Kim knows where Joe and Bob are hiding.
Devise a plan for each child to find every other child through the smallest number of con-
tacts. What is the largest number of contacts?

Linear Programming Formulation of the Shortest-Route
Problem

This section provides two LP formulations for the shortest-route problem. The formu-
lations are general in the sense that they can be used to find the shortest route between
any two nodes in the network. In this regard, the LP formulations are equivalent to
Floyd’s algorithm.

Suppose that the shortest-route network includes n nodes and that we desire to
determine the shortest route between any two nodes s and ¢ in the network.

Formulation 1: This formulation assumes that an external one unit of flow enters the
network at node s and leaves it at node , where s and 7 are the two target nodes
between which we seek to determine the shortest route.
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Define
; = amount of flow in arc (i, j), for all feasible i and j
¢; = length of arc (i, j), for all feasible i and j

Because only one unit of flow can be in any arc at any one time, the variable X; must

assume binary values (0 or 1) only. Thus, the objective function of the linear program
becomes

Minimize z = 2 CijXij
all defined arcs(i, j)

There is one constraint that represents the conservation of flow at each node—that is,
for any node j,

Total input flow = Total output flow

Formulation 2: The second formulation is actually the dual problem of the LP in
Formulation 1. Because the number of constraints in Formulation 1 equals the number
of nodes, the dual problem will have as many variables as the number of nodes in the
network. Also, all the dual variables must be unrestricted because all the constraints in
Formulation 1 are equations.

Let

y; = dual constraint associated with node j

Given s and ¢ are the start and terminal nodes of the network, the dual problem is
defined as

Maximize z = y, — y,
subject to
Y; — ¥i = ¢;;, for all feasible i and j

all y; and y; unrestricted in sign

Example 6.3-6

Consider the shortest route network of Example 6.3-4. Suppose that we want to deter-
mine the shortest route from node 1 to node 2; that is, s = 1 and ¢ = 2. Figure 6.25
shows how the unit of flow enters at node 1 and leaves at node 2.

FIGURE 6.25

Insertion of unit flow to determine
shortest route between node s = 1 and
nodet = 2
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Using Formulation 1, the associated LP is listed below.

X12 X13 X23 X34 X35 X4 X45
Minimize z = 100 30 20 10 60 15 50
Node 1 =, -1 = -1
Node 2 1 -1 1 = 1
Node 3 1 1 —q -1 = 0
Node 4 1 -1 -1 = 0
Node 5 1 1 = 0

The constraints represent flow conservation at each node. For example, at node 2,
“input flow = output flow” yields x;, + x4, = 1 + x»3. Note that one of the constraints
is always redundant. For example, adding the last four constraints simultaneously
yields x;, + x;3 = 1, which is the same as constraint 1.

The optimal solution (obtained by TORA)? is

z=55,x13=1,x34=1,x42=1

This solution gives the shortest route from node 1 to node 2 as 1—3—>4—2andthe
associated distance is z = 55 (miles).
To use Formulation 2, the dual problem associated with the LP above is given as

Maximize z = y, — 1
subject to

y, — y; = 100 (Route 1-2)
)

y; — y1 = 30(Route 1-3
y; — y» = 20 (Route 2-3)
ys — y3 = 10 (Route 3-4)
ys — y3 = 60 (Route 3-5)
y, — ys = 15 (Route 4-2)
ys — ys = 50 (Route 4-5)
Vi, Y2, ---» Y5 unrestricted

6.3.4
Although the dual problem given above is a pure mathematical definition derived

from the primal problem, we actually can interpret the problem in a logical manner.
Define

y; = Distance to node i

’TORA does not accept a negative right-hand side. You can get around this inconvenience by selecting
the redundant constraint as the one having the negative right-hand side, then make it redundant by
changing = to = and setting the right-hand side to a very large value. Another trick is to add a new variable
whose upper and lower bounds equal 1, effectively forcing it to equal 1 in any solution. The constraint coeffi- ‘
cients of the new variable equal those of the current right-hand side, but with opposite sign. The right-hand ‘
side of the “new” problem must be changed to zero for all the constraints (see file ch6ToraLpShortRoute \
Ex6-3-6.txt). ‘
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With this definition, the shortest distance from the start node 1 to the terminal node 2
is determined by maximizing y, — y;. The constraint associated with route (i, ) says
that the distance from node i to node j cannot exceed the direct length of that route. It
can be less if node j can be reached from node i through other nodes that provide a
shorter path. For example, the distance from node 1 to node 2 is at most 100. With the
definition of y; as the distance to node i, we can assume that all the variables are non-
negative (instead of being unrestricted). We can also assume that y, = 0 as the dis-
tance to node 1.

Based on the discussion above, and assuming that all the variables are nonnega-
tive, the optimum solution is given as

Z=55,y1=0,y2255,y3=30,y4=40,y5=0

The value of z = 55 gives the shortest distance from node 1 to node 2, which also
equalsy, — y; =55 — 0 = 55.

The determination of the route itself from this solution is somewhat tricky.
We note that the solution satisfies in equation form the constraints of routes 1-3, 3-4,
and 4-2 because their slacks equal zero—that is, y; — y; = 30, y, — y; = 10, and
Y2 — y4 = 15.This result identifies the shortest route as 1 — 3 — 4 — 2.

Another way for identifying the constraints that are satisfied in equation form is to
consult the dual solution of the LP of Formulation 2. Any constraint that has a nonzero
dual value must be satisfied in equation form (see Section 4.2.4). The following table
pairs the routes (constraints) with their associated dual values.

Route (constraint) 1-2 1-3 2-3 34 3-5 4-2 4-5

Associated dual value 0 1 0 1 0 1 0

PROBLEM SET 6.3D

1. In Example 6.3-6, use the two LP formulations to determine the shortest routes between
the following pairs of nodes:
(a) Node 1 to node 5.
(b) Node 2 to node 5.

Excel Spreadsheet Solution of the Shortest-Route Problem

The Excel spreadsheet developed for the general transportation model (Section 5.3.3)
can be modified readily to find the shortest route between two nodes. The spreadsheet
is based on Formulation 1, Section 6.3.3, and is designed for problems with a maximum
of 10 nodes. Figure 6.26 shows the application of the spreadsheet to Example 6.3-4 (file
ch6SolverShortestRoute.xls). The distance matrix resides in cells B6:K15.3 An infinite
distance (= 9999, or any relatively large value) is entered for nonexisting arcs. Because
we are seeking the shortest route between nodes 1 and 2, the supply amount for node 1
and the demand amount for node 2 is 1 unit. A zero amount is entered for the remain-
ing supply and demand entries.

*In Figure 6.26, rows 11 through 15 and column K are hidden to conserve space.
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FIGURE 6.26

Excel Solver solution of the shortest route
between nodes 1 and 2 in Example 6.3-4

Once the unit cost and supply/demand data are entered, the remainder of the |
spreadsheet (intermediate calculations and optimum solution sections) is generated ;
automatically. Solver parameters must correspond to the input data of the problem as \
shown in highlighted columns B, C, F, and G. Column B specifies the changing cells }
(arcs flow) of the problem (cells B20:B39). Column C specifies the capacities of the ‘
arcs of the network (cells C20:C39). In the shortest-route model, these capacities do Source
not play a role in the computations and hence are infinite (=999999). The constraints of
the model represent the balance equation for each node. Cells F19:F23 define the left-
hand side and cells G19:G23 represent the right-hand side of the flow equations. As \
explained in Section 5.3.3, SUMIF is used to generate the proper net flow in each node |
using the information in columns I and J. These calculations are automated by the
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spreadsheet. Thus, all you need to do after entering the input data is to update
Changing Cells and Constraints specifications of Solver to match the input data. The
Target Cell remains the same for all input data. In Example 6.3-4, we have

Changing Cells: B20:B39
Constraints: F19:F23=G19:G23

The output in Figure 6.26 yields the solution (N1-N3 =1, N3-N4 = 1,
N4-N2 = 1) with a total distance of 55 miles. This means that the optimal route is
153542

PROBLEM SET 6.3E

1. Modify spreadsheet ch6SolverShortestRoute.xls (applied to Example 6.3-4) to find the
shortest route between the following pairs of nodes:
(a) Node 1tonode5
(b) Node 4 to node 3

2. Adapt spreadsheet ch6SolverShortestRoute.xls for Problem 2, Set 6.3a, to find the short-
est routes between node 4 and node 7.

MAXIMAL FLOW MODEL

Consider a network of pipelines that transports crude oil from oil wells to refineries.
Intermediate booster and pumping stations are installed at appropriate design dis-
tances to move the crude in the network. Each pipe segment has a finite maximum rate
of crude flow (or capacity). A pipe segment may be unidirectional or bidirectional,
depending on its design. A unidirectional segment has a finite capacity in one direction
and a zero capacity in the opposite direction. Figure 6.27 demonstrates a typical pipe-
line network. How can we determine the maximum capacity of the network between
the wells and the refineries?

The solution of the proposed problem requires converting the network into one
with a single source and a single sink. This requirement can be accomplished by using
unidirectional infinite capacity arcs as shown by dashed arcs in Figure 6.27.

FIGURE 6.27

Capacitated network connecting wells and
refineries through booster stations
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Given arc (i, j) with i < j, we use the notation (C;, C;) to represent the flow
capacities in the two directions i —j and j — i, respectively. To eliminate ambiguity, we
place C; on the arc next to node i with Cj; placed next to node j, as shown in Figure
6.28.

FIGURE 6.28 Gy Ci

Arc flows C; from i — j and C; from j — i @ J

6.4.1 Enumeration of Cuts

A cut defines a set of arcs which when deleted from the network will cause a complete 6.4.2
disruption of flow between the source and sink nodes. The cut capacity equals the sum

of the capacities of the associated arcs. Among all possible cuts in the network, the cut

with the smallest capacity gives the maximum flow in the network.

Example 6.4-1

Consider the network in Figure 6.29. The bidirectional capacities are shown on the
respective arcs using the convention in Figure 6.28. For example, for arc (3,4), the flow
limit is 10 units from 3 to 4 and 5 units from 4 to 3.

FIGURE 6.29
Examples of cuts in flow networks

ran

¥ 2

|
§ S
|
Figure 6.29 illustrates three cuts whose capacities are computed in the following 1
table. ‘ S
Cut Associated arcs Capacity !
1 (1,2),(1,3),(1,4) 20 + 30 + 10 = 60

2 (1,3),(1,4),(2,3),(2,5) 30 + 10 + 40 + 30 = 110
3 2.,5).(3,5).(4,5) 30 + 20 +20 =70
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flow We cannot tell what the maximal flow in the network is unless we exhaustively
b we enumerate all possible cuts. The only piece of information we can get from the partial
bure enumeration of three cuts is that the maximum flow in the network cannot exceed 60

units. Unfortunately, exhaustive enumeration of all cuts is not a simple task, thus mak-
ing it necessary to develop the efficient algorithm in Section 6.4.2.

PROBLEM SET 6.4A

1. For the network in Figure 6.29, determine two additional cuts, and find their capacities.

plete 6.4.2 Maximal Flow Algorithm
sum

¢ The maximal flow algorithm is based on finding breakthrough paths with net positive
ecu

flow between the source and sink nodes. Each path commits part or all the capacities
of its arcs to the total flow in the network.

Consider arc (4, j) with (initial) capacities (C;, C;). As portions of these capacities
are committed to the flow in the arc, the residuals (or remaining capacities) of the arc
are updated. The network with the updated residuals is referred to as the residue net-
work. We use the notation (c;;, c;) to represent these residuals.

For a node j that receives flow from node i, we define a label [a;, i], where a;is the
flow from node i to node j. The steps of the algorithm are summarized as follows.

n the
flow

Step 1. For all arcs (i, j), set the residual capacity equal to the initial capacity—that is
(c» ¢i) = (Cy, C;).Leta, = oo and label source node 1 with [0, —]. Seti = 1,
and go to step 2.

Step 2. Determine §; as the set of unlabeled nodes j that can be reached directly
from node i by arcs with positive residuals (thatis,c; > 0 forall je S)). If
S; # O, go to step 3. Otherwise, go to step 4.

5) Step 3. Determine k € S, such that

cx = max {c;}
J€Si

Set a, = c; and label node k with [a,, i].If k = n, the sink node has been
labeled, and a breakthrough path is found, go to step 5. Otherwise, set i = k,
and go to step 2.

Stepd4. (Backiracking). 1fi = 1,no further breakthroughs are possible; go to step
6. Otherwise, let r be the node that has been labeled immediately before the
current node i and remove i from the set of nodes that are adjacent to . Set
i = r,and go to step 2.

Step 5. (Determination of Residue Network). Let N, =(, ky, k,, ..., n)define the
nodes of the pth breakthrough path from source node 1 to sink node n. Then
the maximum flow along the path is computed as

owing

J, = min{ay, ay, ay,..., a,}

The residual capacity of each arc along the breakthrough path is de-
creased by f, in the direction of the flow and increased by /» in the reverse
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Step 6.

Path: 152—3—4, fi=5

Network Models

direction—that is, for nodes i and j on the path, the residual flow is changed
from the current (c;, ¢;) to

@) (c; — f,» i + f,)if the flowis from itoj

() (¢; + f,» ¢ — ) if the flow is from j to i

Reinstate any nodes that were removed in step 4. Set i = 1, and return to
step 2 to attempt a new breakthrough path.

(Solution)

(a) Given that m breakthrough paths have been determined, the maximal
flow in the network is

F=f1+f2+ s +ﬁ71

(b) Given that the initial and final residuals of arc (i, j) are given by (Cy, C;)
and (c;, c;), respectively, the optimal flow in arc (i, j) is computed as fol-
lows: Let (o, B) = (C; — ¢; Cji — ¢;)- If @ > 0, the optimal flow from i
to j is a. Otherwise, if B > 0, the optimal flow from j to i is B. (It is
impossible to have both a and B positive.)

The backtracking process of step 4 is invoked when the algorithm
becomes inadvertently “dead-ended” at an intermediate node before a
breakthrough can be realized. The flow adjustment in step 5 can be
explained via the simple flow network in Figure 6.30. Network (a) gives the
first breakthrough path N, = {1, 2, 3, 4} with its maximum flow f; = 5.
Thus, the residuals of each of arcs (1,2), (2,3), and (3,4) are changed from
(5,0) to (0,5), per step 5. Network (b) now gives the second breakthrough
path N, = {1, 3, 2, 4} with f, = 5. After making the necessary flow adjust-
ments, we get network (c), where no further breakthroughs are possible.
What happened in the transition from (b) to (c) is nothing but a cancellation
of a previously committed flow in the direction 2 — 3. The algorithm is able
to “remember” that a flow from 2 to 3 has been committed previously only
because we have increased the capacity in the reverse direction from 0 to 5

(per step 5).

[5,2] [5,1]
Path: 153—52—4, /, =5 No breakthrough
() (b) (©)

FIGURE 6.30

Use of residual to calculate maximum flow
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Example 6.4-2

Determine the maximal flow in the network of Example 6.4-1 (Figure 6.29). Figure
6.31 provides a graphical summary of the iterations of the algorithm. You will find it
helpful to compare the description of the iterations with the graphical summary.

FIGURE 6.31

Iterations of the maximum flow algorithm of Example 6.4-2

(f) No breakthrough
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Iteration 1. Set the initial residuals (¢, ¢;) equal to the initial capacities (Cy;, C.).

Step 1.
Step 2.
Step 3.

Step 2.
Step 3.

Step 5.

Set a; = 00 and label node 1 with [oco, —]. Seti = 1.

S, = {2, 3, 4} (# 9).

k = 3 because ¢;3 = max{cy,, ¢3, ¢4} = max {20, 30, 10} = 30. Set

a; = ¢;3 = 30, and label node 3 with [30,1]. Set i = 3, and repeat step 2.
S;=(4,5).

k = 5and as = ¢35 = max{10, 20} = 20. Label node 5 with [20, 3].
Breakthrough is achieved. Go to step 5.

Breakthrough path is determined from the labels starting at node 5 and end-
ing at node 1—that is, (5) — [20, 3] > (3) — [30, 1] — (1). Thus, N, = {1, 3, 5}
and f; = min{a,, a3, as} = { 00, 30, 20} = 20.The residual capacities along
path N, are

(C13, C31) = (30 - 20, O + 20) = (10’ 20)
(¢35, €53) = (20 — 20, 0 + 20) = (0, 20)

Iteration 2.

Step 1.
Step 2.
Step 3.
Step 2.
Step 3.

Step 2.
Step 3.

Step 2.
Step 3.

Step 5.

Set a, = 00, and label node 1 with [oo, —].Seti = 1.

S, =12, 3, 4}.

k = 2and a, = ¢;; = max{20, 10, 10} = 20.Set i = 2, and repeat step 2.
S, = {3, 5}.

k = 3 and a; = c,; = 40. Label node 3 with [40,2]. Set i = 3, and repeat
step 2.

S, = {4} (note that c;s = 0O—hence, node 5 cannot be included in S;).

k = 4and a, = c3; = 10. Label node 4 with [10,3]. Set i = 4, and repeat
step 2.

S, = {5} (note that nodes 1 and 3 are already labeled—hence, they cannot be
included in S,).

k = 5and as = c;s = 20. Label node 5 with [20,4]. Breakthrough has been
achieved. Go to step 5.

N, ={1,2,3,4,5 and f, = min {0, 20, 40, 10, 20} = 10.The residuals
along the path of N, are

—~

20 — 10, 0 + 10) = (10, 10)
40 — 10, 0 + 10) = (30, 10)
10 — 10, 5 + 10) = (0, 15)
20 — 10, 0 + 10) = (10, 10)

(c12 €21) =
(€23 €3) =
(Ca4s C43) =
(

Cisy Csa) =

o~ o~ o~

Iteration 3.

Step 1.
Step 2.
Step 3.

Set a; = 00 and label node 1 with [0, —]. Seti = 1.

S, =142, 3, 4}

k = 2and a, = ¢;, = max{10, 10, 10} = 10 (though ties are broken arbi-
trarily, TORA always selects the tied node with the smallest index; we will

N ran
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Step 2.
Step 3.

Step 2.
Step 4.
Step 2.

Step 3.

Step 5.
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use this convention throughout the example). Label node 2 with [10,1]. Set

[ = 2,and repeat step 2.

S, = {3, 5}.

k =3anda; = c); = 30. Label node 3 with [30,2]. Set i = 3, and repeat
step 2.

S; = O (because ¢34 = ¢35 = 0). Go to step 4 to backtrack.

The label [30, 2] at node 3 gives the immediately preceding node r = 2.
Remove node 3 from further consideration in this iteration by crossing it out.
Seti = r = 2,and repeat step 2.

S, = {5} (note that node 3 has been removed in the backtracking step).

k = 5Sand as = c,s = 30.Label node 5 with [30, 2]. Breakthrough has been
achieved; go to step 5.

N; = {1, 2, S}and ¢s = min {o0, 10, 30} = 10.The residuals along the path
of N; are

(C125 Cz]) = (].0 - ].0, 10 + 10) = (0, 20)
(25 €52) = (30 — 10, 0 + 10) = (20, 10)

Iteration 4. This iteration yields N, = {1, 3, 2, 5} with f; = 10 (verify!).

Iteration 5. This iteration yields N5 = {1, 4, 5} with f; = 10 (verify!).

Iteration 6. All the arcs out of node 1 have zero residuals. Hence, no further break-
throughs are possible. We turn to step 6 to determine the solution.

Step 6.

Maximal flow in the network is F=fi + f, + ... + =20+ 10 + 10+
10 + 10 = 60 units. The flow in the different arcs is computed by subtracting
the last residuals (c;, ¢;) in iterations 6 from the initial capacities (Cyj, Cp), as
the following table shows.

Arc (Cyr C) = (e s Flow amount Direction
(1,2) (20, 0) = (0,20) = (20, —20) 20 152
(1,3) (30, 0) = (0,30) = (30, —30) 30 153
(1,4 (10,0) — (0, 10) = (10, —10) 10 14
2,3) (40, 0) — (40, 0) =(0, 0) 0 —
2.5 (30, 0) — (10, 20) = (20, —20) 20 255
(3.4)  (10,5) - (0, 15) = (10, —10) 10 354
(3.5)  (20,0) — (0,20) = (20, —20) 20 3555
(4,5)  (20,0) - (0,20) = (20, —20) 20 4555

You can use TORA to solve the maximum flow model in an automated mode

or to produce the iterations outlined above. From the sorve/mobiey menu select
Solve Problem. After specifying the output format, go to output screen and select
either Maximum Flows Or Iterations. Figure 6.32 illustrates the first two iterations of
Example 6.4-2 (file ch6ToraMaxFlowEx6-4-2.txt).
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FIGURE 6.32

TORA’s maximum flow iterations for Example 6.4-2

PROBLEM SET 6.4B

1. In Example 6.4-2,
(a) Determine the surplus capacities for all the arcs.
(b) Determine the amount of flow through nodes 2, 3, and 4. |
(¢) Can the network flow be increased by increasing the capacities in the directions |
3—5and4—5?
2. Determine the maximal flow and the optimum flow in each arc for the network in Figure i
6.33.
3. Three refineries send a gasoline product to two distribution terminals through a pipeline ‘
network. Any demand that cannot be satisfied through the network is acquired from ‘
other sources. The pipeline network is served by three pumping stations as shown in
Figure 6.34. The product flows in the network in the direction shown by the arrows. The
capacity of each pipe segment (shown directly on the arcs) is in million bbl per day.
Determine the following:
(a) The daily production at each refinery that matches the maximum capacity of the
network.
(b) The daily demand at each terminal that matches the maximum capacity of the net-
work.
(¢) The daily capacity of each pump that matches the maximum capacity of the network.
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FIGURE 6.33
Network for Problem 2, Set 6.4b
. Refineries | Pumping stations | Terminals \
| | i i
I | | I
I | | |
| I | |
| I | I
| | |
| |
| | L
| | I
I I
I 1 I
I | |
| | |
| T 1
| | !
1 | I
I I
I I |
I I |
| I |
| |
i | |
; ! ! FIGURE 6.34
| 1 | Network for Problem 3, Set 6.4b
4. Suppose that the maximum daily capacity of pump 6 in the network of Figure 6.34 is lim-
ited to 60 million bbl per day. Remodel the network to include this restriction. Then
ons determine the maximum capacity of the network.
5. Chicken feed is transported by trucks from three silos to four chicken farms. Some of the
n Figure silos cannot ship directly to some of the farms. The capacities of the other routes are lim-
ited by the number of trucks available and the number of trips made daily. The following
sipeline ; table shows the daily amounts of supply at the silos and demand at the farms (in thou-
rom sands of pounds). The cell entries of the table specify the daily capacities of the associated
- in i routes.
ws. The “
ay. | Farm
1 2 3 4
JEsbe 1| 30 | 5| o[ 4| 20
i Silo 2 0 0 5 90 20
he net- ; 3 100 40 30 40 200
200 10 60 20
- network.
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(a) Determine the schedule that satisfies the most demand.
(b) Will the proposed schedule satisfy all the demand at the farms?

In Problem 5, suppose that transshipping is allowed between silos 1 and 2 and silos 2 and
3. Suppose also that transshipping is allowed between farms 1 and 2,2 and 3, and 3 and 4.
The maximum two-way daily capacity on the proposed transshipping routes is 50 (thou-
sand) Ib. What is the effect of transshipping on the unsatisfied demands at the farms?

A parent has five (teenage) children and five household chores to assign to them. Past
experience has shown that forcing chores on a child is counterproductive. With this in
mind, the children are asked to list their preferences among the five chores, as the follow-
ing table shows:

Child Preferred chore

Rif 3,4,0r5
Mai 1

Ben lor2
Kim 1,2,0r5
Ken 2

The parent’s modest goal now is to finish as many chores as possible while abiding by
the children’s preferences. Determine the maximum number of chores that can be com-
pleted and the assignment of chores to children.

Four factories are engaged in the production of four types of toys. The following table
lists the toys that can be produced by each factory.

Factory Toy productions mix
1 1,2,3
2 2,3
3 1,4
4 3,4

All toys require the same per unit labor and material. The daily capacities of the four
factories are 250, 180, 300, and 100 toys, respectively. The daily demands for the four toys
are 200, 150, 350, and 100 units, respectively. Determine the production schedules that will
most satisfy the demands for the four toys.

The academic council at the U of A is seeking representation from among six students
who are affiliated with four honor societies. The academic council representation includes
three areas: mathematics, art, and engineering. At most two students in each area can be
on the council. The following table shows the membership of the six students in the four
honor societies:

Society Affiliated students

1 1,2,3
2 1,3,5
3 3,4,5
4 1,2,4,6

The students who are skilled in the areas of mathematics, art, and engineering are
shown in the following table:




s 2 and

: and 4.

(thou-

ns?

Past

s in
follow-

biding by
= com-

able

' the four
1T toys
: that will

idents
 includes
can be
he four

ng are

10.

6.4 Maximal Flow Model
Area Skilled students
Mathematics 1,2,4
Art 3,4
Engineering 4,5,6

A student who is skilled in more than one area must be assigned exclusively to on
area only. Can all four honor societies be represented on the council?
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Maximal/Minimal Flow in Networks with Lower Bounds. The maximal flow algorithm

given in this section assumes that all the arcs have zero lower bounds. In some models,
lower bounds may be strictly positive, and we may be interested in finding the maxima
minimal flow in the network (see Comprehensive Problem 6-3). The presence of the

the
lor

lower bound poses difficulty because the network may not have a feasible flow at all. The
objective of this exercise is to show that any maximal and minimal flow model with posi-

tive lower bounds can be solved using two steps.
Step 1.  Find an initial feasible solution for the network with positive lower bounds.

Step 2.  Using the feasible solution in step 1, find the maximal or minimal flow in
original network.

the

(a) Show that an arc (i, j) with flow limited by lj = x;; = u; can be represented equiva-

i =
lently by a sink with demand J; at node i and a source with supply l; at node j with
flow limited by 0 = x; < u; — |,

ij i

(b) Show that finding a feasible solution for the original network is equivalent to finding

the maximal flow x;; in the network after (1) modifying the bounds on x;; to

0=ux; = u; — I, (2) “lumping” all the resulting sources into one supersource with

outgoing arc capacities /;;, (3) “lumping” all the resulting sinks into one supersink

with incoming arc capacities /;, and (4) connecting the terminal node ¢ to the source

node s in the original network by a return infinite capacity arc. A feasible solution

exists if the maximal flow in the new network equals the sum of the lower bounds in
the original network. Apply the procedure to the following network and find a feasi-

ble flow solution:

Arc (i, )) (I, uy)
(1,2) (5,20)
(1,3) (0,15)
2,3) (4,10)
2,4) (3,15)
(3,.4) (0,20)

(¢) Use the feasible solution for the network in (b) together with the maximal flow algo-
rithm to determine the minimal flow in the original network. (Hint: First compute the

residue network given the initial feasible solution. Next, determine the maximum
flow from the end node to the start node. This is equivalent to finding the maximum

flow that should be canceled from the start node to the end node. Now, combining the
feasible and maximal flow solutions yields the minimal flow in the original network.)

(d) Use the feasible solution for the network in (b) together with the maximal flow
model to determine the maximal flow in the original network. (Hint: As in part [c],
start with the residue network. Next apply the breakthrough algorithm to the resul
ing residue network exactly as in the regular maximal flow model.)

t-
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Linear Programming Formulation of the Maximum Flow Model

Define x;; as the amount of flow in arc (i, j) and let ¢; be the capacity of the same arc.
Assume that s and ¢ are the start and terminal nodes between which we need to deter-
mine the maximum flow in the capacitated network.

The constraints of the problem preserve the in-out flow at each node, with the
exception of start and terminal nodes. The objective function maximizes either the
total “out” flow from start node s or the total “in” flow to terminal node .

Example 6.4-3

In the maximum flow model of Figure 6.29 (Example 6.4-2),s = 1 and t = 5. The fol-
lowing table summarizes the associated LP with two different objective functions
depending on whether we are maximizing the output from node 1 (=z,) or the input to
node 5 (=z,).

X12 X13 X14 X23 X25 X34 X35 Xa3 X4s
Maximize z, = 1 1 1
Maximize z, = 1 1 1
Node 2 1 -1 -1 0
Node 3 1 1 ~1 -1 1 =0
Node 4 1 1 -1 -1 0
Capacity 20 30 10 40 30 10 20 5 20

The optimal solution using either objective function is
X1 = 20, X3 = 30, X4 = 10, Xo5 = 20, X3y = 10, Xgg = 20, Xg5 = 20

The associated maximum flow is z; = z, = 60.

PROBLEM SET 6.4C

1. Rework Problem 2, Set 6.4b using linear programming,.
2. Rework Problem 3, Set 6.4b using linear programming.

Excel Spreadsheet Solution of the Maximum Flow Model

The network-based Excel spreadsheet developed for the transportation model
(Section 5.3.3) is modified to determine the maximum flow in a capacitated network.
The spreadsheet is designed for problems with a maximum of 10 nodes. Figure 6.35
shows the application of the spreadsheet to Example 6.4-2 (file ch6SolverMax
Flow.xls). The capacity flow matrix resides in cells B6:K15.4 A blank cell in the capacity
matrix indicates that the associated arc has infinite capacity. A zero entry corresponds
to a nonexisting flow arc. Otherwise, all the remaining arcs must have finite capacities.

Once the flow capacity data have been entered, the remainder of the spreadsheet
(intermediate calculations and optimum solution sections) is created automatically. All

4In Figure 6.35, rows 11 through 16 and column K are hidden to conserve space.
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FIGURE 6.35

Excel Solver solution of the maximum flow
model of Example 6.4-2

that is needed now is to update Solver parameters to match the input data. Column B
specifies the changing cells (arcs flow) of the problem. The range for Changing Cells
must encompass all the arcs specified in column A (make sure that you give each node
a name in the input data matrix, else column A will only show a hyphen in the associ-
ated cells). In the present example, cells B20:B39 provide Changing Cells range.
Column C specifies the capacities of the arcs of the network (cells C20:C39).

The constraints of the model represent the flow balance equation for each node.
The LP formulation in Section 6.4.3 shows that it is not necessary to construct flow
equations for the first and last nodes of the network (nodes 1 and 5 in Figure 6.35).
Thus, cells F20:F22 define the left-hand side and cells G20:G22 represent the right-
hand side of the flow equations.
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Based on given information, Solver parameters for the example in Figure 6.26
are entered as

Changing Cells: B20:B39
Constraints: B20:B39<=C20:C39 (Arc capacity)
F20:F22=G20:G22 (Flow equations for nodes 2, 3, and 4)

Note that Target Cell is automated and need not be changed. The Equal to parameter
is Max because this is a maximization problem.

The output in Figure 6.35 yields the solution (N1-N2 = 20, N1-N3 = 30,
N1-N4 = 10, N2-N5 = 20, N3-N4 = 10, N3-N5 = 20, N4-N5 = 20) with a maximum
flow of 60 units.

PROBLEM SET 6.4D

1. Solve Problem 2, Set 6.4b using Excel Solver.
2. Solve Problem 3, Set 6.4b using Excel Solver.

6.5 MINIMUM-COST CAPACITATED FLOW PROBLEM

The minimum-cost capacitated flow problem is based on the following assumptions:

1. A (nonnegative) unit flow cost is associated with each arc.
2. Arcs may have positive lower capacity limits.
3. Any node in the network may act as a source oOr as a sink.

The new model determines the flows in the different arcs that minimize the total
cost while satisfying the flow restrictions on the arcs and the supply and demand
amounts at the nodes. We first present the capacitated network flow model and its
equivalent linear programming formulation. The linear programming formulation is |
the basis for the development of a special capacitated simplex algorithm for solving ‘l”
the network flow model. The section ends with a presentation of a spreadsheet tem-
plate of the minimum-cost capacitated network. |

6.5.1 Network Representation

Consider a capacitated network G = (N, A), where N is the set of nodes, and A is the
set of arcs and define

x; = amount of flow from node i to node j

w; (I = upper (lower) capacity of arc @i, ))

c; = unit flow cost from node i to node j

f. = net flow at node i '

Figure 6.36 depicts these definitions on arc (i, ). The label [f;] assumes a positive
(negative) value when a net supply (demand) is associated with node i.
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[£] . [£] FIGURE 6.36
. Cij ‘ Capacitated arc with external flow
(lip ulj)
X

]

Example 6.5-1

GrainCo supplies corn from three silos to three poultry farms. The supply amounts at
the three silos are 100, 200, and 50 thousand bushels; and the demand at the three
farms is 150, 80, and 120 thousand bushels. GrainCo mostly uses railroads to transport
the corn to the farms, with the exception of three routes where trucks are used.

Figure 6.37 shows the available route between the silos and the farms. The silos are
represented by nodes 1, 2, and 3 whose supply amounts are [100], [200], and [50],
respectively. The farms are represented by nodes 4, 5, and 6 whose demand amounts
are [—150], [—80], and [—120], respectively. The routes allow transshipping between
the silos. Arcs (1, 4), (3, 4), and (4, 6) are truck routes with minimum and maximum
capacities. For example, the capacity of route (1, 4) is between 50 and 80 thousand
bushels. All other routes use trainloads, whose maximum capacity is practically unlim-
ited. The transportation costs per bushel are indicated on the respective arcs.

[—150] FIGURE 6.37

4 Capacitated network for Example 6.5-1

(50, 80)

[100]

[200]

PROBLEM SET 6.5A

1. A product is manufactured to satisfy demand over a 4-period planning horizon according
to the following data:

Period Units of demand Unit production cost ($) Unit holding cost ()

1 100 24 1
2 110 26 2
3 95 21 1
4 125 24 2

Given that no back-ordering is allowed, represent the problem as a network model.

2. In Problem 1,suppose that back-ordering is allowed at a penalty of $1.50 per unit per
period. Formulate the problem as a network model.
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3. In Problem 1, suppose that the production capacities of periods 1 to 4 are 110, 95,125, and
100 units, respectively, in which case the given demand cannot be satisfied without back-
ordering. Assuming that the penalty cost for back-ordering is $1.50 per unit per period,
formulate the problem as a network model.

4. Daw Chemical owns two plants that manufacture a basic chemical compound for two
customers at the rate of 660 and 800 tons per month. The monthly production capacity of
plant 1 is between 400 and 800 tons and that of plant 2 is between 450 and 900 tons. The
production costs per ton in plants 1 and 2 are $25 and $28, respectively. Raw material for
the plants is provided by two suppliers, who are contracted to ship at least 500 and 700
tons per month for plants 1 and 2 at the costs of $200 and $210 per ton, respectively. Daw
Chemical also assumes the transportation cost of both the raw material and the final
compound. The costs per ton of transporting the raw material from supplier 1 to plants 1
and 2 are $10 and $12. Similar costs from supplier 2 are $9 and $13, respectively. The
transportation costs per ton from plant 1 to clients 1 and 2 are $3 and $4, and from plant 2
costs are $5 and $2, respectively. Assuming that 1 ton of raw material produces 1 ton of
the final compound, formulate the problem as a network model.

5. Two nonintegrated public schools are required to change the racial balance of their
enrollments by accepting minority students. Minority enrollment must be between 30%
and 40% in both schools. Nonminority students live in two communities, and minority
students live in three other communities. Traveled distances, in miles, from the five com-
munities to the two schools are summarized in the following table:

Round-trip miles from school to

Minority areas Nonminority areas
Maximum
School enrollment 1 2 3 1 2
1 1500 20 12 10 4 5
2 2000 15 18 8 6 5
Student population 500 450 300 1000 1000

Formulate the problem as a network model to determine the number of minority
and nonminority students enrolled in each school.

6.5.2 Linear Programming Formulation

The formulation of the capacitated network model as a linear program provides the
foundation for the development of the capacitated simplex algorithm, which we will
present in the next section. Using the notation introduced in Section 6.5.1, the linear
program for the capacitated network is given as
Minimize z = >, > c;x;
e
subject to

ink_ > xj=f,jeN
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The equation for node j measures the net flow f;in node j as
(Outgoing flow from node j) — (Incoming flow into node j) = f;

Node j acts as a source if f; > 0 and as a sink if f; < 0.
We can always remove the lower bound /; from the constraints by using the sub-
stitution

xl'j = x;l + lz]
The new flow variable, x}]«, has an upper limit of u; — [;. Additionally, the net flow
at node i becomes f; — [;, and that at node jis f; + [;. Figure 6.38 shows the transfor-

mation of activity (i, j) after the lower bound is substituted out.

[fl i — I [f+1; FIGURE6.38

[f]
$c; ! $c; .
! L Removal of the lower bound in arcs
—_—
()~ Ot
j X

Xij

Example 6.5-2

Write the linear program for the network in Figure 6.37, before and after the lower
bounds are substituted out.

The main constraints of the linear program relate the input-output flow at each
node, which yields the following LP:

X12 X13 X14 X23 X5 X34 X35 K46 Xs6
Minimize 3 4 1 5 6 1 2 2 4
Node 1 1 1 1 = 100
Node 2 -1 1 1 = 200
Node 3 -1 -1 1 1 = 50
Node 4 -1 -1 1 =-150
Node 5 -1 -1 1 = -80
Node 6 -1 -1 =-120
Lower bounds 0 0 50 0 0 70 0 100 0
Upper bounds 00 00 80 00 00 120 00 120 00

Note the arrangement of the constraints coefficients. The column associated with
variable x; has exactly one +1 in row i and one —1 in row j. The rest of the coefficients
are 0. This structure is typical of network flow models.

The variables with lower bounds are substituted as

X4 = X’14 + 50
X34 = x£;4 + 70

X46 — x;;é + 100
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The resulting linear program is

X12 X13 x14 X3 X25 X3 X35 X6 Xs6

Minimize 3 4 1 5 6 1 2 2 4

Node 1 1 1 1 = 50
Node 2 -1 1 1 = 200
Node 3 -1 —i 1 1 = =20
Node 4 -1 -1 1 =-130
Node 5 -1 -1 1 = —80
Node 6 -1 -1 = =20
Upper bounds 00 00 30 00 00 50 00 20

The corresponding network after substituting out the lower bounds is shown in
Figure 6.39. Note that the lower-bound substitution can be effected directly from
Figure 6.37 using the substitution in Figure 6.38, and without the need to express the
problem as a linear program first.

FIGURE 6.39

Network of Example 6.5-2 after
substituting out lower bounds

Example 6.5-3 (Employment Scheduling)

This example illustrates a network model that initially does not satisfy the “node flow™
requirement (i.e., node output flow less node input flow equals node net flow), but that
can be converted to this form readily through special manipulation of the constraints
of the linear program.

Tempo Employment Agency has a contract to provide workers over the next 4
months (January to April) according to the following schedule:

Month Jan. Feb. Mar. Apr.

No. of workers 100 120 80 170

Because of change in demand, it may be economical to retain more workers than
needed in a given month. The cost of recruiting and maintaining a worker is a function
of their employment period as the following table shows:

Employment period (months) 1 2 3 4

Cost per worker (§) 100 130 180 220
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Let

x; = number of workers hired at the start of month i and terminated at the
start of month j

For example, x;, gives the number of workers hired in January for 1 month only.

To formulate the problem as a linear program for the 4-month period, we add May
as a dummy month (month 5), so that x,; defines hiring in April for April. The con-
straints recognize that the demand for period k can be satisfied by all x; such that
i = k < j. Lettings; = 0 be the surplus number of workers in month ;, the linear pro-
gram is given as

X2 X130 Xy X5 Xo X24 X2s X34 X35 X45 S 52 83 S4

Minimize 100 130 180 220 100 130 180 100 130 100

Jan. 1 1 1 1 -1 =100
Feb. 1 1 1 1 1 1 -1 =120
Mar. 1 1 1 1 1 1 -1 = 80
Apr. 1 1 1 1 -1 =170

The preceding LP does not have the (—1, +1) special structure of the network
flow model (see Example 6.5-2). Nevertheless, the given linear program can be con-
verted into an equivalent network flow model by using the following arithmetic
manipulations:

1. In an n-equation linear program, create a new equation, n + 1, by multiplying
equation n by —1.

2. Leave equation 1 unchanged.
3. Fori = 2,3, ..., n,replace each equation i with (equation i) — (equation i — 1).

The application of these manipulations to the employment scheduling example
yields the following linear program whose structure fits the network flow model:

X1z X130 Xy X5 Xo3 X24 X25 X34 X35 X4s5 S 5 S3 S4

Minimize 100 130 180 220 100 130 180 100 130 100

Jan. 1 1 1 1 -1 = 100
Feb. -1 1 1 1 1 -1 = 20
Mar. -1 -1 1 1 1 -1 = —40
Apr. -1 -1 -1 1 1 -1 = 90
May -1 -1 -1 -1 1 =-170

Using the preceding formulation, the employment scheduling model can be repre-
sented equivalently by the minimum-cost flow network shown in Figure 6.40. Actually,
because the arcs have no upper bounds, the problem can be solved also as a transship-
ment model (see Section 5.5).
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FIGURE 6.40

Network representation
of employment scheduling
problem

[100] : [~170]

X25

PROBLEM SET 6.5B

1. Write the linear program associated with the minimum-cost flow network in Figure 6.41,
before and after the lower bounds are substituted out.

(20]
6.5.3
T
1«
th
FIGURE 6.41 (501 (0,%) (10,%) =0
Network for Problem 1, Set 6.5b 0]
A
2. Use inspection to find a feasible solution to the minimum-cost network model of the ¥ ,
employment scheduling problem in Example 6.5-3 (Figure 6.40). Interpret the solution by I
showing the pattern of hiring and firing that satisfies the demand for each month, and L
compute the associated total cost. SC
3. Reformulate the employment scheduling model of Example 6.5-3, assuming that a ]
worker must be hired for at least 2 months. Write the linear program, and convert it to a SI
minimum-cost flow network. th
4. Develop the linear program and the associated minimum-cost flow network for the ‘
employment scheduling model of Example 6.5-3 using the following 5-month demand ! St
data. The per worker costs of recruiting and maintaining a worker for periods of 1 to 5 ‘
months are $50, $70, $85, $100, and $130, respectively. ‘ St
(@)
Month 1 2 3 4 5 St

No. of workers 300 180 90 170 200

(b)
Month 1 2 3 4 5

No. of workers 200 220 300 50 240
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5. Conversion of a Capacitated Network into an Uncapacitated Network. Show that an arc
(i — j) with capacitated flow x; = u; can be replaced with two uncapacitated arcs (i — k)
and (j — k) with a net (output) flow of [—u;] at node k and an additional (input) flow of
[+u;] at node j. The result is that the capacitated network can be converted to an
uncapacitated transportation cost model (Section 5.1). Apply the resulting transformation
to the network in Figure 6.42 and find the optimum solution to the original network by
applying TORA to the uncapacitated transportation model.

FIGURE 6.42
Network for Problem 5, Set 6.5b

[~100]

Capacitated Network Simplex Algorithm

The algorithm is based on the exact steps of the regular simplex method, but designed
to exploit the special network structure of the minimum-cost flow model.

Given f; is the net flow at node i as defined in the linear program of Section 6.5.2,
the capacitated simplex algorithm stipulates that the network must satisfy

The condition says that the total supply in the network equals the total demand.
We can always satisfy this requirement by adding a balancing dummy source or desti-
nation, which we connect to all other nodes in the network by zero unit cost and infi-
nite capacity arcs. However, the balancing of the network does not guarantee a feasible
solution as this depends on the restricting capacities of the arcs.

We will now present the steps of the capacitated algorithm. Familiarity with the
simplex method and duality theory (Chapters 3 and 4) is essential. Also, knowledge of
the upper-bounded simplex method (Section 7.3) is helpful.

Step 0. Determine a starting basic feasible solution (set of arcs) for the network. Go
to step 1.

Step 1. Determine an entering arc (variable) using the simplex method optimality
condition. If the solution is optimal, stop; otherwise, go to step 2.

Step 2. Determine the leaving arc (variable) using the simplex method feasibility
condition. Determine the new solution, and then go to step 1.

An n-node network with zero net flow (i.e., f; + f, + ... + f, = 0) consists of
n — 1 independent constraint equations. Thus, an associated basic solution must
include n — 1 arcs. It can be proved that a basic solution always corresponds to a
spanning tree of the network (see Section 6.2).




260

Chapter 6 Network Models

The entering arc (step 1) is determined by computing z; — ¢, the objective coef-
ficients, for all the current nonbasic arcs (i, j). If z; — ¢; = 0 for all i and j, the current
basis is optimum. Otherwise, we select the nonbasic arc with the most positive z; — ¢;
to enter the basis.

The computation of objective coefficients is based on duality, exactly as we did
with the transportation model (see Section 5.3.4). Using the linear program defined in
Section 6.5.2, let w; be the dual variable associated with the constraint of node 7; then
the dual problem (excluding the upper bounds) is given as

n
Maximize z = >, fw;
i=1
subject to
w; = w; = ¢ (i, e A

w; unrestricted in sign, i = 1, 2, ...n
From the theory of linear programming, we have

w; — w; = ¢;, for basic arc (i, j)

Because the original linear program (Section 6.5.2) has one redundant constraint by
definition, we can assign an arbitrary value to one of the dual variables (compare with
the transportation algorithm, Section 5.3). For convenience, we will set w; = 0. We
then solve the (basic) equations w; — w; = ¢; to determine the remaining dual values.
From Section 4.2.3, Method 2, we know that the objective coefficient of nonbasic x; is
the difference between the left-hand side and the right-hand side of the dual associ-
ated dual constraint—that is

Zj TG = Wi T WG

The only remaining detail is to show how the leaving variable is determined. We
do so by using a numeric example.

Example 6.5-4

A network of pipelines connects two water desalinization plants to two cities. The daily
supply amounts at the two plants are 40 and 50 million gallons, and the daily demand
amounts at cities 1 and 2 are 30 and 60 million gallons. Nodes 1 and 2 represent plants 1
and 2, and nodes 4 and 5 represent cities 1 and 2. Node 3 is a booster station between
the plants and the cities. The model is already balanced because the supply at nodes 1
and 2 equals the demand at nodes 4 and 5. Figure 6.43 gives the associated network.

FIGURE 6.43 Unit cost \ Arc capacity
Network for Example 6.5-4 $5

Plant 1 [40]

Plant 2 [50]
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: coef- Iteration 0.
arrent
Step 0.  Determination of a Starting Basic Feasible Solution: The starting feasible
spanning tree in Figure 6.44 (shown with solid arcs) is obtained by inspection.
ve did Normally, we use an artificial variable techrique to find such a solution (for
N details, see Bazaraa et al., 1990, pp. 440-46).

ij

ned in
i: then
Wy = _5
=501 2= ¢p=0-(-5)-3=2
Zys— Cs=—5—(=15)-1=9
Z45*C45:_5_(_15)“4:6
$4 1 (o0) Arc (2, 5) reaches upper bound at 30.
Substitute x,5 = 30 — xs.
Reduce x,3 and x35 each by 30.
_ - [-60] FIGURE 6.44
st l:l\l = ws=—15 Network for iteration 0
[C W1
0. We
values. In Figure 6.44, the basic feasible solution consists of (solid) arcs (1, 3), (1,4), (2, 3),
iC X; IS and (3, 5) with the feasible flows of 10, 30, 50, and 60 units, respectively. This leaves
2ssOCi- (dashed) arcs (1, 2), (2,5), and (4, 5) to represent the nonbasic variables. The notation
x(c) shown on the arcs indicates that a flow of x units is assigned to an arc with capacity
c. The default values for x and c are 0 and oo, respectively.
ed. We ‘ Iteration 1.
Step 1.  Determination of the Entering Arc: We obtain the dual values by solving the
current basic equations
| w; =0
ff.;izﬁé ' w; — w; = ¢;, for basic (i, j)
plants 1 | We thus get,
;gf:arll i Arc(1, 3): w; — wy =7, hence wy; = —7
ork. | Arc(1,4): w; — wy = 5, hence w, = =5
i Arc(2,3): w, — wy; = 2, hence w, = =5
Arc(3,5): wy — ws = 8, hence ws = —15

Now, we compute z; — ¢; for the nonbasic variables as
Arc(1,2):w; —wy —c¢cp=0—(=5-3=2
Arc(2,5):w, —ws — s = (=5 —(-15-1=9
Arc(4,5):wy —ws —cys =(=5)—(-15) -4 =6

Thus, arc (2, 5) enters the basic solution.
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Step 2. Determination of the Leaving Arc:  From Figure 6.44, arc (2, 5) forms a loop
with basic arcs (2, 3) and (3, 5). From the definition of the spanning tree, no
other loop can be formed. Because the flow in the new arc (2, 5) must be
increased, we adjust the flow in the arcs of the loop by an equal amount to
maintain the feasibility of the new solution. To achieve this, we identify the
positive (+) flow in the loop by the direction of flow of the entering arc (i.e.,
from 2 to 5). We then assign (+) or (—) to the remaining arcs of the loop,
depending on whether the flow of each arc is with or against the direction of
flow of the entering arc. These sign conventions are shown in Figure 6.44.

Determination of the maximum level of flow in the entering arc (2, 5) is based on
two conditions:

1. New flow in current basic arcs of the loop cannot be negative.
2. New flow in the entering arc cannot exceed its capacity.

The application of condition 1 shows that the flows in arcs (2, 3) and (3, 5) cannot
be decreased by more than min {50, 60} = 50 units. Condition 2 stipulates that the
flow in arc (2, 5) can be increased to at most the arc capacity (=30 units). Thus, the
maximum flow change in the loop is min {30, 50} = 30 units. The new flows in the loop
are thus 30 units in arc (2,5),50 — 30 = 20 units in arc (2, 3), and 60 — 30 = 30 units
in arc (3,5).

Because none of the current basic arcs leave the basis at zero level, the new arc (2,
5) must remain nonbasic at the upper bound. However, to avoid dealing with nonbasic
arcs that are at capacity (or upper bound) level, we implement the substitution

Xo5 = 30 — X502, 0= X5 = 30

This substitution is effected in the flow equations associated with nodes 2 and 5 as fol-
lows. Consider

Current flow equation at node 2: 50 + x, = X3 + X5
Current flow equation at node 5: x5 + x35 + x45 = 60
Then, the substitution x,; = 30 — x5, gives
New flow equation at node 2: 20 + x, + x5, = X3
New flow equation at node 5: x35 + x45 = x5, + 30

The results of these changes are shown in Figure 6.45. The direction of flow in arc
(2,5) is now reversed to 5 — 2 with xs, = 0, as desired. The substitution also requires
changing the unit cost of arc (5, 2) to —$1. We will indicate this direction reversal on
the network by tagging the arc with an asterisk.

Iteration 2. Figure 6.45 summarizes the new values of z; — ¢; (verify!) and shows
that arc (4, 5) enters the basic solution. It also defines the loop associated with the new
entering arc and assigns the signs to its arcs.

The flow in arc (4,5) can be increased by the smallest of

1. Maximum allowable increase in entering arc (4, 5) = o0
2. Maximum allowable increase in arc (1, 4) = 35 — 30 = 5 units

[40]

[20]
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Z1z—clz=0*(*5)—3=2
5~ ¢ = —15=(=5) ~(-1) = -9
Z45 = Cy5 = —§ — (_15) —4=6

Arc (4, 5) enters at level 5.
Arc (1, 4) leaves at upper bound.

Substitute x14 = 35 — x44.
FIGURE 6.45

Network for
iteration 1

Reduce x5 and x35 each by 5.

3. Maximum allowable decrease in arc (1, 3) = 10 units
4. Maximum allowable decrease in arc (3, 5) = 30 units

Thus, the flow in arc (4, 5) can be increased to 5 units, which will make (4, 5) basic
and will force basic arc (1, 4) to be nonbasic at its upper bound ( = 35).

Using the substitution x4 = 35 — x4, the network is changed as shown in Figure
6.46, with arcs (1, 3), (2,3), (3,5), and (4,5) forming the basic (spanning tree) solution.
The reversal of flow in arc (1, 4) changes its unit cost to —$5. Also, convince yourself
that the substitution in the flow equations of nodes 1 and 4 will net 5 input units at each
node.

212—612=0—(*5)“3=2
41—y = —11 -0 _(_5) = -6
25~ 5y = —15 = (=5) = (1) = =9
Arc (1, 2) enters at level 5.

Arc (1, 3) leaves at level 0.

Increase x,; by 5.

FIGURE 6.46

Network for iteration 2

Iteration 3. The computations of the new z; — ¢; for the nonbasic arcs (1, 2), (4, 1),
and (5, 2) are summarized in Figure 6.46, which shows that arc (1, 2) enters at level 5,
and arc (1, 3) becomes nonbasic at level 0. The new solution is depicted in Figure 6.47.

Iteration 4. The new z; — ¢; in Figure 6.47 shows that the solution is optimum.
The values of the original variables are obtained by back substitution as shown in
Figure 6.47.
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25 —cp=—13-(=3) —(-1)= -9

-Gy ; - e =0 (=5) =7 =2
[5] ﬂlli (35)* ‘@ [5] zj; - le;= ok o
s

Optimum solution:
x1=5,x3=0
X4 =35-0=35
Xp3 =25

X5 = 30-0=30
X35 =25,X45 =15
(30)* Total cost = $490

wy=—3 ws = —13

FIGURE 6.47

Network for iteration 3

PROBLEM SET 6.5C

1.

2.

o os W

Solve Problem 1, Set 6.5a by the capacitated simplex algorithm, and also show that it can
be solved by the transshipment model.

Solve Problem 2, Set 6.5a by the capacitated simplex algorithm, and also show that it can
be solved by the transshipment model.

Solve Problem 3, Set 6.5a by the capacitated simplex algorithm.
Solve Problem 4, Set 6.5a by the capacitated simplex algorithm.
Solve Problem 5, Set 6.5a by the capacitated simplex algorithm.

Solve the employment scheduling problem of Example 6.5-3 by the capacitated simplex
algorithm.

Wyoming Electric uses existing slurry pipes to transport coal (carried by pumped water)
from three mining areas (1,2, and 3) to three power plants (4,5, and 6). Each pipe can
transport at most 10 tons per hour. The transportation costs per ton and the supply and
demand per hour are given in the following table.

4 5 6 Supply

1 $5 $8 $4 8
2 $6 $9 $12 10
3 $3 $1 $5 18

Demand 16 6 14

Determine the optimum shipping schedule.

The network in Figure 6.48 gives the distances among seven cities. Use the capacitated
simplex algorithm to find the shortest distance between nodes 1 and 7. (Hint: Assume
that nodes 1 and 7 have net flows of [+1] and [—1], respectively. All the other nodes have
zero net flow.)

Show how the capacitated minimum-cost flow model can be specialized to represent the
maximum flow model of Section 6.4. Apply the transformation to the network in
Example 6.4-2. For convenience, assume that the flow capacity from 4 to 3 is zero. All the
remaining data are unchanged.

6.5.4
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FIGURE 6.48
Network for Problem 8, Set 6.5¢

Excel Spreadsheet Solution of the Minimum-Cost Capacitated
Flow Model

As in the cases of the shortest-route and maximum flow models, the Excel spreadsheet
developed for the general transportation model (Section 5.3.3) applies readily to the
capacitated network flow model. Figure 6.49 shows the application of the spreadsheet
to Example 6.5-4 (file ch6SolverMinCostCapacitatedNetwork.xls). The spreadsheet is
designed for networks with a maximum of 10 nodes. In the capacity matrix (cells
N6:W15),> a blank entry signifies an infinite capacity arc. A nonexisting arc is repre-
sented by a zero-capacity entry. As an illustration, in Example 6.5-4, infinite capacity
arc 1-2 is represented by a blank entry in cell O6, and nonexisting arc 3-4 is shown by a
zero entry in cell Q8. The unit cost matrix resides in cells B6:K15. We arbitrarily assign
zero unit cost to all nonexisting arcs.

Once the unit cost and capacity matrices are created, the remainder of the
spreadsheet (intermediate calculations and optimum solution sections) is created auto-
matically, delineating the cells needed to update Solver parameters for Changing Cells
and Constraints. Target Cell is already defined for any network (with 10 nodes or less).
Specifically, for Example 6.5-4, we have,

Changing cells: B20:B39
Constraints: B20:B39<=C20:C39 (Arc capacity)
F19:F23=G19:G23 (Node flow equation)

Figure 6.49 provides the following solution: N1-N2 = 5,N1-N4 = 35 N2-N3 = 25,
N2-N5 = 30,N3-N5 = 25,and N4-N5 = 5.The associated total cost is $490.

PROBLEM SET 6.5D

1. Solve the following problem using the spreadsheet in Section 6.5.4:
(a) Problem 3, Set 6.5¢
(b) Problem 4, Set 6.5¢

3In Figure 6.49, rows 11 through 15 and column K are hidden to conserve space.
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4B$20:4$B439 3
FE191$F$23 = $a$19:$GH23

FIGURE 6.49

Excel Solver output for
Example 6.5-4

ﬁ

(¢) Problem 7, Set 6.5¢ \i
(d) Problem 8, Set 6.5¢ ‘,
/

6.6 CPM AND PERT

CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique)
are network-based methods designed to assist in the planning, scheduling, and control of
projects. A project is defined as a collection of interrelated activities with each activity
consuming time and resources. The objective of CPM and PERT is to provide analytic
means for scheduling the activities. Figure 6.50 summarizes the steps of the techniques.
First, we define the activities of the project, their precedence relationships, and their
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Network Time schedule
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T T Phases for project planning
I with CPM-PERT

time requirements. Next, the project is translated into a network that shows the prece-
dence relationships among the activities. The third step involves specific network com-
putations that form the basis for the development of the time schedule for the project.

During the execution of the project, the schedule may not be realized as planned,
causing some of the activities to be expedited or delayed. In this case, it will be neces-
sary to update the schedule to reflect the realities on the ground. This is the reason for
including a feedback loop between the time schedule phase and the network phase as
shown in Figure 6.50.

The two techniques, CPM and PERT, which were developed independently, dif-
fer in that CPM assumes deterministic activity durations, whereas PERT assumes
probabilistic durations. This presentation will start with CPM and then provide the
details of PERT.

Network Representation

Each activity of the project is represented by an arc pointing in the direction of
progress in the project. The nodes of the network establish the precedence relation-
ships among the different activities of the project.

Two rules are available for constructing the network.

Rule 1.  Each activity is represented by one, and only one, arc.
Rule 2. Each activity must be identified by two distinct end nodes.

Figure 6.51 shows how a dummy activity can be used to represent two concurrent
activities, A and B. By definition, a dummy activity, which normally is depicted by a
dashed arc, consumes no time or resources. Inserting a dummy activity in one of the
four ways shown in Figure 6.51, we maintain the concurrence of A and B, and also pro-
vide unique end nodes for the two activities (to satisfy rule 2).

Rule 3.  To maintain the correct precedence relationships, the following questions must
be answered as each activity is added to the network:

(a) What activities must immediately precede the current activity?
(b) What activities must follow the current activity?
(¢) What activities must occur concurrently with the current activity?




268

Chapter 6 Network Models

FIGURE 6.51
Use of dummy activity to produce unique representation of concurrent activities A and B

The answers to these questions may require the use of dummy activities to ensure
correct precedences among the activities. For example, consider the following segment
of a project:

1. Activity C starts immediately after A and B have been completed.
2. Activity E starts after B only has been completed.

Part (a) of Figure 6.52 shows the incorrect representation of the precedence relation-
ship because it requires both A and B to be completed before E can start. In part (b),
the use of a dummy activity rectifies the situation.

FIGURE 6.52

Use of dummy activity to ensure
correct precedence relationship

(@ (b)

Example 6.6-1

A publisher has a contract with an author to publish a textbook. The (simplified) activ-
ities associated with the production of the textbook are given below. Develop the asso-
ciated network for the project.

Activity Predecessor(s) Duration (weeks)

Manuscript proofreading by editor —
Sample pages prepared by typesetter —
Book cover design —
: Preparation of artwork for book figures —
Author’s approval of edited manuscript

and sample pages A, B 2

moQE e
WA N W
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F: Book typesetting E 2
G: Author checks typeset pages F 2
H: Author checks artwork D 1
I:  Production of printing plates GH 2
J: Book production and binding CI 4

Figure 6.53 provides the network describing the precedence relationships among
the different activities. Dummy activity (2, 3) produces unique end nodes for concur-
rent activities A and B. The numbering of the nodes is done in a manner that indicates
the direction of progress in the project.

nsure
zment FIGURE 6.53

Project network for Example 6.6-1

ation- PROBLEM SET 6.6A
rt (b), 1. Construct the project network comprised of activities A to L with the following prece-

dence relationships:

(a) A, B and C, the first activities of the project, can be executed concurrently.

(b) A and B precede D.

(¢) Bprecedes E, E and H.

(d) Fand Cprecede G.

(e) E and H precede I and J.

(f) C D, E and J precede K.

(g) Kprecedes L.

(h) [, G, and L are the terminal activities of the project.

— 2. Construct the project network comprised of activities A to P that satisfies the following
precedence relationships:

activ- (a) A, B, and C, the first activities of the project, can be executed concurrently.
> asso- (b) D, E, and F follow A.
(¢) Iand G follow both B and D.
(d) H follows both C and G.
(e) Kand L follow L
(f) Jsucceeds both E and H.
(g) M and N succeed F but cannot start until both E and H are completed.
(h) O succeeds M and I
(i) Psucceeds/, L, and O.
() K, N, and P are the terminal activities of the project.
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3. The footings of a building can be completed in four connected sections. The activities for
each section include (1) digging, (2) placing steel, and (3) pouring concrete. The digging of
one section cannot start until that of the preceding section has been completed. The same
restriction applies to pouring concrete. Develop the project network.

4. In Problem 3, suppose that 10% of the plumbing work can be started simultaneously with
the digging of the first section. After each section of the footings is completed, an addi-
tional 5% of the plumbing can be started provided that the preceding 5% portion is com-
pleted. The remaining plumbing can be completed at the end of the project. Construct the
project network.

5. An opinion survey involves designing and printing questionnaires, hiring and training
personnel, selecting participants, mailing questionnaires, and analyzing the data.
Construct the project network, stating all assumptions.

6. The activities in the following table describe the construction of a new house. Develop
the associated project network.

Activity Predecessor(s) Duration (days)

Clear site —
Bring utilities to site
Excavate
Pour foundation
Outside plumbing
Frame house
Do electric wiring
Lay floor
Lay roof
Inside plumbing
Shingling
Outside sheathing insulation
: Install windows and outside doors
Do brick work
Insulate walls and ceiling
Cover walls and ceiling
Insulate roof
Finish interior
Finish exterior
Landscape
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7. A company is in the process of preparing a budget for launching a new product. The fol-
lowing table provides the associated activities and their durations. Construct the project
network.

Activity Predecessor(s) Duration (days)
A: Forecast sales volume - 10
B: Study competitive market — 7
C: Design item and facilities A 5
D: Prepare production schedule C 3
E: Estimate cost of production D 2 J
F: Setsales price B E 1 l’
G: Prepare budget EF 14 I
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T 8. The activities involved in a candlelight choir service are listed in the following table.
 of Construct the project network.
ne
- Activity Predecessor(s) Duration (days)
it
A: Select music — 2
m- B: Learn music A 14
‘he C: Make copies and buy books A 14
D: Tryouts B C 3
E: Rehearsals D 70
F: Rent candelabra D 14
G: Decorate candelabra F 1
H: Setup decorations D 1
I:  Order choir robe stoles D 7
J:  Check out public address system D 7
K: Select music tracks J 14
L: Set up public address system K 1
M: Final rehearsal E G L 1
N: Choir party HILM 1
O: Final program LN 1

9. The widening of a road section requires relocating (“reconductoring™) 1700 feet of 13.8-
kV overhead primary line. The following table summarizes the activities of the project.
Construct the associated project network.

Activity Predecessor(s) Duration (days)

Job review — 1
Adpvise customers of temporary outage
Requisition stores

: Scout job

Secure poles and material
Distribute poles

: Pole location coordination
Re-stake

Dig holes

Frame and set poles

Cover old conductors

Pull new conductors

: Install remaining material
Sag conductor

Trim trees

De-energize and switch lines
Energize and switch new line
Clean up

Remove old conductor
Remove old poles

Return material to stores
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10. The following table gives the activities for buying a new car. Construct the project net-
work.
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Activity Predecessor(s) Duration (days)

: Conduct feasibility study —
Find potential buyer for present car
List possible models
: Research all possible models
Conduct interview with mechanic
Collect dealer propaganda
: Compile pertinent data
: Choose top three models
Test-drive all three choices
Gather warranty and financing data
Choose one car
Choose dealer
: Search for desired color and options
Test-drive chosen model once again
: Purchase new car
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Critical Path (CPM) Computations

The ultimate result in CPM is the construction of the time schedule for the project (see
Figure 6.50). To achieve this objective conveniently, we carry out special computations
that produce the following information:

1. Total duration needed to complete the project
2. Classification of the activities of the project as critical and noncritical

An activity is said to be eritical if there is no “leeway” in determining its start and
finish times. A noneritical activity allows some scheduling slack, so that the start time
of the activity may be advanced or delayed within limits without affecting the comple-
tion date of the entire project.

To carry out the necessary computations, we define an event as a point in time at
which activities are terminated and others are started. In terms of the network, an
event corresponds to a node. Define

O, = Earliest occurrence time of event j
A; = Latest occurrence time of event j
D;; = Duration of activity (i, )

The definitions of the earliest and latest occurrence times of event j are specified rela-
tive to the start and completion dates of the entire project.

The critical path calculations involve two passes: The forward pass determines
the earliest occurrence times of the events, and the backward pass calculates their latest
occurrence times.

Forward Pass (Earliest Occurrence Times, (). The computations start at node 1 and
advance recursively to end node .
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Initial Step. Setd; = 0 to indicate that the project starts at time 0.

General Step j. Given that nodes p, ¢, ...,and v are linked directly to node j by
incoming activities (p, j), (¢, j),...,and (v, j) and that the earliest occurrence
times of events (nodes) p, g, ...,and v have already been computed, then
the earliest occurrence time of event j is computed as

Dj = max {Dp + Dpj? Dq =+ Dt]f’ vesy DV + DV]}

The forward pass is complete when [, at node 7 has been computed. By def-
inition [, represents the longest path (duration) to node .

Backward Pass (Latest Occurrence Times, A). Following the completion of the for-
ward pass, the backward pass computations start at node n and end at node 1.

Initial Step. Set A, = O, to indicate that the earliest and latest occurrences of the last
node of the project are the same.

General Step j. Given that nodes p, g, ...,and v are linked directly to node j by
outgoing activities (j, p), (J, g),...,and (j, v) and that the latest occurrence
times of nodes p, g, ..., and v have already been computed, the latest occur-
rence time of node j is computed as

A;j= min{A, - Dj, A, — Dj,,..., A, — D}

wp?

The backward pass is complete when A, at node 1 is computed.

Based on the preceding calculations, an activity (i, j) will be critical if it satisfies
three conditions.

1. A,‘ — Di
2. A] = i
3. AJ—AIZD]_DlzD,]

The three conditions state that the earliest and latest occurrence times of nodes i and j
are equal, and the duration D; fits “tightly” in the specified time span. An activity that
does not satisfy all three conditions is noncritical.

The critical activities of a network must constitute an uninterrupted path that
spans the entire network from start to finish.

Example 6.6-2
Determine the critical path for the project network in Figure 6.54. All the durations are
in days.

Forward Pass

Node 1. Set, = 0
Node2. 0, =0, + D, =0+5=5
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Node 3. [0; = max{J; + D3, 0, + Dy} = max{0 + 6,5+ 3} =8
Noded4. O, =0, + D)y =5+8=13

Node 5. (05 = max {{J; + Dss, Oy + Dyst = max {8 + 2,13 + 0} = 13
Node 6. [0, = max {{J; + Ds4, O, + Dys, Os + Dsg}

Il

max {8 + 11,13 + 1, 13 + 12} = 25

The computations show that the project can be completed in 25 days.

Backward Pass AN
Node 6. Set A, = = 25
Node 5. AS = A6 - D56 =25-12=13
Node 4. A, = min{A; — Dy, As — Dys} = min {25 — 1,13 — 0} = 13
Node 3. A; = min{A¢ — D3, As — D35} = min {25 — 11,13 — 2} = 11
Node2. A, = min{A; — Dy, A3 — Dy} = min{13 — 8,11 — 3} =5
Nodel. A, = min{A; — D3, A, — Dy} =min{11 = 6,5 -5} =0
Correct computations will always end with A, = 0.
The forward and backward pass computations are summarized in Figure 6.54. The
rules for determining the critical activities show that the critical path is defined by
1—2 —4—5— 6, which spans the network from start (node 1) to finish (node 6).
The sum of the durations of the critical activities [(1, 2), (2,4), (4,5), and (5, 6)] equals
the duration of the project (= 25 days). Observe that activity (4, 6) satisfies the first two
conditions for a critical activity (A, = O, = 13 and A5 = 05 = 25) but not the third
(O — O, # Dyg). Hence, the activity is not critical.
FIGURE 6.54 T
Forward and backward
pass calculations for the A Forward paset | |—- ]
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PROBLEM SET 6.6B

1. Determine the critical path for the project network in Figure 6.55.

FIGURE 6.55
Project network for Problem 1, Set 6.6b

2. Determine the critical path for the project networks in Figure 6.56.

Project (a) Project (b)

FIGURE 6.56
Project network for Problem 2, Set 6.6b

Determine the critical path for the project in Problem 6, Set 6.6a.
Determine the critical path for the project in Problem 8, Set 6.6a.
Determine the critical path for the project in Problem 9, Set 6.6a.
Determine the critical path for the project in Problem 10, Set 6.6a.

AR

Construction of the Time Schedule

This section shows how the information obtained from the calculations in Section 6.6.2
can be used to develop the time schedule. We recognize that for an activity (i, j), O
represents the earliest start time, and A; represents the latest completion time. This

means that ((J, A)) delineates the (maximum) span during which activity (i, j) may be
scheduled.

Construction of Preliminary Schedule. The method for constructing a preliminary
schedule is illustrated by an example.
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Example 6.6-3

Determine the time schedule for the project of Example 6.6-2 (Figure 6.54).

We can get a preliminary time schedule for the different activities of the project by
delineating their respective time spans as shown in Figure 6.57. Two observations are in
order.

1. The critical activities (shown by solid lines) must be scheduled one right after the
other to ensure that the project is completed within its specified 25-day duration.

2. The noncritical activities (shown by dashed lines) encompass spans that are
larger than their respective durations, thus allowing slack (or “leeway”) in sched-
uling them within their allotted spans.

A-5
p—
D -8
— { Critical
. H-12 .
I 1
B-6
_______________ -
Cc-3
——————— -
E-2
F=—————- | Noncritical
F-11
—————_——_———— e —— |
G-1
—_——————————————— |
. | | | . | |
5 10 15 20 25
Days
FIGURE 6.57

Preliminary schedule for the project of Example 6.6-2

How should we schedule the noncritical activities within their respective spans?
Normally, it is preferable to start each noncritical activity as early as possible. In this
manner, slack periods will remain opportunely available at the end of the allotted
span, where they can be used to absorb unexpected delays in the execution of the
activity. It may be necessary, however, to delay the start of a noncritical activity past its
earliest time. For example, in Figure 6.57, suppose that each of the noncritical activities
E and F requires the use of a bulldozer, and that only one is available. Scheduling both
E and F as early as possible requires two bulldozers between times 8 and 10. We can
remove the overlap by starting E at time 8 and pushing the start time of F to some-
where between times 10 and 14.

If all the noncritical activities can be scheduled as early as possible, the resulting
schedule automatically is feasible. Otherwise, some precedence relationships may be
violated if noncritical activities are delayed past their earliest time. Take, for example.
activities C and E in Figure 6.57. In the project network (Figure 6.54), though C must




ct by
rein

r the
tion.
are

hed-

6.6 CPM and PERT 277

be completed before E, the spans of C and E in Figure 6.57 allow us to schedule C
between times 6 and 9, and E between times 8 and 10. These spans, however, do not
ensure that C will precede E. The need for a “red flag” that automatically reveals
schedule conflict is thus evident. Such information is provided by computing the floats
for the noncritical activities.

Determination of the Floats. Floats are the slack times available within the allotted
span of the noncritical activity. The two most common floats are the total float and the
free float.

Figure 6.58 gives a convenient summary for computing the total float (TF;) and
the free float (FF) for an activity (i, j). The total float is the excess of the time span
defined from the earliest occurrence of event i to the latest occurrence of event j over
the duration of (i, j)—that is,

FIGURE 6.58
Computation of total and free floats

The free float is the excess of the time span defined from the earliest occurrence of
event i to the earliest occurrence of event j over the duration of (i, j)—that is,

By definition, FF; < TF;.

Red-Flagging Rule. For a noncritical activity (i, j)

(a) If FF; = TF, then the activity can be scheduled anywhere within its @, A) span
without causing schedule conflict.

(b) If FF; < TFy, then the start of activity (i, j) can be delayed by at most FF; relative
to its earliest start time () without causing schedule conflict. Any delay larger than
FF; (but not more than TF;) must be accompanied by an equal delay relative to 0
in the start time of all the activities leaving node |.

The implication of the rule is that a noncritical activity (i, j) will be red-flagged if
its FF; < TF;. This red flag is important only if we decide to delay the start of the
activity past its earliest start time, [, in which case we must pay attention to the start
times of the activities leaving node j to avoid schedule conflicts.
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Example 6.6-4

Compute the floats for the noncritical activities of the network in Example 6.6-2, and
discuss their use in finalizing a schedule for the project.

The following table summarizes the computations of the total and free floats. It is
more convenient to do the calculations directly on the network using the procedure in
Figure 6.54.

Noncritical activity Duration Total float (TF) Free float (FF)
B(1,3) 6 11-0-6=5 8-0-6= 2
C(2,3) 3 11-5-3=3 8§-5-3=0
E(3,5) 2 13-8-2=3 13-8-2=3
F(3,6) 11 25-8—-11= 6 25-8-11= 6
G(4,6) 1 25-13-1=11 25-13-1=11

The computations red-flag activities B and C because their FF < TF.The remain-
ing activities (E, F, and G) have FF = TF, and hence may be scheduled anywhere
between their earliest start and latest completion times.

To investigate the significance of the red-flagged activities, consider activity B.
Because its TF = 5 days, this activity can start as early as time O or as late as time 5
(see Figure 6.57). However, because its FF = 2 days, starting B anywhere between
time 0 and time 2 will have no effect on the succeeding activities E and F If, however,
activity B must start at time 2 + d (<5), then the start times of the immediately suc-
ceeding activities E and F must be pushed forward past their earliest start time (= 8) by
at least d. In this manner, the precedence relationship between B and its successors £
and Fis preserved.

Turning to red-flagged activity C, we note that its FF' = (. This means that any
delay in starting C past its earliest start time (= 5) must be coupled with at least an
equal delay in the start of its successor activities £ and F

TORA provides useful tutorial tools for CPM calculations and for constructing
the time schedule. To use these tools, select Project Planning => CBM-Critical
Path Method from mMain Menu. In the output screen, you have the option to select crm
calculations to produce step-by-step computations of the forward pass, backward pass,
and the floats or ¢pM Bar Chart to construct and experiment with the time schedule.

Figure 6.59 shows TORA output for the CPM calculations of Example 6.6-2 (file
ch6ToraCPMEx6-6-2.xls). If you elect to generate the output using the Next step
option, TORA will guide you through the details of the forward and backward pass
calculations.

Figure 6.60 provides the TORA schedule produced by cpm Bar chart option for
the project of Example 6.6-2. The default bar chart automatically schedules all the non-
critical activities as early as possible. You can study the impact of delaying the start
time of a noncritical activity by using the self-explanatory drop-down lists inside the
bottom left frame of the screen. The impact of a delay of a noncritical activity will be
shown directly on the bar chart together with an accompanying explanation. For exam-
ple, if you delay the start of activity B by more than 2 time units, the succeeding activi-
ties £ and F will be delayed by an amount equal to the difference between the delay
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FIGURE 6.59
TORA step-by-step CPM calculations of forward pass, backward pass, and floats for Example 6.6-2

and the free float of activity B. Specifically, given the free float for B is 2 time units, if B
is delayed by 3 time units, then E and F must be delayed by at least 3 — 2 = 1 time
unit. This situation is demonstrated in Figure 6.60.

PROBLEM SET 6.6C

1.

Given an activity (i, j) with duration D and its earliest start time [J, and its latest comple-
tion time A;, determine the earliest completion and the latest start times of @ ).

What are the total and free floats of a critical activity?

For each of the following activities, determine the maximum delay in the starting time rel-
ative to its earliest start time that will allow all the immediately succeeding activities to be
scheduled anywhere between their earliest and latest completion times.

(@ TF =10, FF=10,D =4
(b) TF=10,FF=5,D =4
(¢ TF=10,FF=0,D =4
In Example 6.6-4, use the floats to answer the following:

(a) Suppose that activity B is started at time 1, and activity Cis started at time 5, deter-
mine the earliest start times for E and F
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FIGURE 6.60

TORA bar chart output for Example 6.6-2

(b) Suppose that activity B is started at time 3, and activity C is started at time 7, deter- i
mine the earliest start times for £ and F.

(¢) Ifactivity B starts at time 6, what effect will this have on other activities of the project?

5. In the project of Example 6.6-2 (Figure 6.54), assume that the durations of activities B
and F are changed from 6 and 11 days to 20 and 25 days, respectively.

(a) Determine the critical path.

(b) Determine the total and free floats for the network, and identify the red-flagged
activities.

(¢) Suppose that activity A is started at time 5, determine the earliest possible start times
for activities C, D, E, and G.

(d) Suppose that activities £ G, and H require the same equipment. Determine the mini-
mum number of units needed of this equipment.

6. Compute the floats and identify the red-flagged activities for projects (a) and (b) in
Figure 6.56, and then develop the time schedules under the following conditions:

Project (a)
(i) Activity (1,5) cannot start any earlier than time 14.
(ii) Activities (5,6) and (5,7) use the same equipment, of which only one unit is available.

(iii) All other activities start as early as possible.
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Project (b)

(i) Activity (1,3) must be scheduled at its earliest start time while accounting for the
requirement that (1,2), (1,3), and (1, 6) use special equipment, of which 1 unit only is
available.

(ii) All other activities start as early as possible.

Linear Programming Formulation of CPM

A CPM problem can be thought of as the opposite of the shortest-route problem
(Section 6.3), in the sense that we are interested in finding the longest route from start
to finish. We can thus apply the shortest-route LP formulation in Section 6.3.3 to CPM
in the following manner. We assume that a unit flow enters the network at the start
node and leaves at the finish node. Define

x; = Amount of flow in activity (i, ) for all defined i and j
D;; = Duration of activity (i) for all defined i and j

Thus, the objective function of the linear program becomes

Maximize z = ED[]'XI']'
all defined activities (i, j)
(Compare with the shortest-route LP formulation in Section 6.3.3 where the objective
function is minimized.) There is one constraint that represents the conservation of flow
at each node—that is, for all node j,

Total input flow = Total output flow

Naturally, all the variables, Xx;, are nonnegative. Note that one of the constraints is
redundant.

Again, as in the shortest-route problem, we can use the dual of the LP to solve
the CPM problem. The following example applies the two formulations to the project
in Example 6.6-2.

Example 6.6-5

The LP formulation of the project of Example 6.6-2 (Figure 6.54) is given below. Note
that nodes 1 and 6 are the start and finish nodes, respectively.

A B C D E F Dummy G H

X12 X3 X23 Xo4 X35 X36 X45 X46 Xs6
Maximize z = 5 6 3 8 2 11 0 1 12
Node 1 -1 -1 =-1
Node 2 1 -1 =1 =0
Node 3 1 1 -1 -1 =0
Node 4 1 -1 -1 =0
Node 5 1 1 -1 =0
Node 6 1 1 =1
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TORA gives the optimum solution as
7 =25, x1,(A) = 1, x54 (D) = 1, x45(Dummy) = 1, x5s(H) = 1, all others = 0

The solution defines the critical path as A — D — Dummy — H, and the duration of
the project is 25 days.
The dual problem of the LP given above is:

Minimize w = ys — y;
subject to
n-n=z=s5 (4
ys=yn=z6 (B

»=y»=3 (O
yi—y=8 (D)
ys—ys=2 (E)
Yo —ys =11 (F)

ys —y4 =0 (Dummy)
Yo —ya=1 (

Yo —ys =12 (H)
all y; unrestricted

The dual formulation, though purely mathematical, reveals an interesting definition of
the dual variables that is consistent with the precedence relationships of the CPM net-
work. Specifically, consider the following definition:

y; = Occurrence time of node j

In this case, w = y; — y; will represent the duration of the project. Each constraint is
associated with an activity, and it specifies the precedence relationships among the dif-
ferent activities. For example, y, — y; = Sisequivalent to y, = y; + 5, which says that
y,, the earliest occurrence time for node 2, cannot be any earlier than time y; + 5. By
minimizing the objective function, we obtain the shortest time span in which all prece-
dence relationships are satisfied. Also, notice that with the (new) practical meaning
used to describe the dual variables, these variables can be restricted to nonnegative
values. In fact, the start time, y;, of the project can be set equal to zero, in which case
the objective function reduces to minimizing w = ye. Setting y; = 0 is also consistent
with the fact that one of the primal constraints is redundant.

Under the nonnegativity restriction, the optimal dual solution (obtained by
TORA) is given as

w=25y,=0,y,=5y; =11, y, = 13, y5s = 13, ys = 25

The solution shows that the duration of the projectis w = 25 days.

The critical activities correspond to the constraints that are satisfied as strict equa-
tions by the given solution; namely, A — D — Dummy — H. These constraints are
identified by their zero surplus variables or by realizing that if a constraint is satisfied
in equation form in the solution, then its associated dual value must be positive.

6.6.5
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Indeed, pairing the constraints with their associated dual solution (as determined by
TORA) we get,

Constraint A B C D E F Dummy G H

Associated dual value 1 0 0 1 0 0 1 0 1

The conclusion is that the critical path is given as A — D — Dummy — H. Observe
that positive dual values will always equal 1 because a delay of one day in any critical
activity will increase the duration of the project by one day (remember that the dual
variable is interpreted as the worth per unit of a resource, see Section 4.3.1).

PROBLEM SET 6.6D

1. Use LP to determine the critical path for the project network in Figure 6.55.
2. Use LP to determine the critical path for the project networks in Figure 6.56.

PERT Networks

PERT differs from CPM in that it bases the duration of an activity on three estimates:

1. Optimistic time, 4, which assumes that execution goes extremely well.

2. Most likely time, m, which assumes that execution is done under normal condi-
tions.

3. Pessimistic time, b, which assumes that execution goes extremely poorly.

The range (a, b) is assumed to enclose all possible estimates of the duration of an activ-
ity. The estimate m thus must lie somewhere in the range (a, b). Based on the estimates,
the average duration time, D, and variance, v, are computed as follows:

a+4m + b
6

= ( b — a>2
6
CPM calculations given in Sections 6.6.2 and 6.6.3 may be applied directly, with D
replacing the single estimate D.

It is now possible to estimate the probability that a node j in the network will
occur by a prespecified scheduled time, S ;- Let e; be the earliest occurrence time of
node j. Because the durations of the activities leading from the start node to node j are
random variables, ¢; also must be a random variable. Assuming that all the activities in
the network are statistically independent, we can determine the mean, E{e;}, and vari-
ance, var {ej}, in the following manner. If there is only one path from the start node to
node j, then the mean is the sum of expected durations, D, for all the activities along
this path and the variance is the sum of the variances, v, of the same activities. On the
other hand, if more than one path leads to node J, then it is necessary first to compute

E:
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the statistical distribution of the duration of the longest path before the correct mean
and variance can be calculated. This problem is rather difficult because it is equivalent
to determining the distribution of the maximum of several random variables. A simpli-
fying assumption thus calls for computing the mean and variance, E{e;} and var{ej}, as
those of the path to node j that has the largest sum of expected activity durations. If two
or more paths have the same mean, the one with the largest variance is selected
because it reflects the most uncertainty, hence leads to a more conservative estimate of
probabilities.

Once the mean and variance of the path to node j, E{e} and var{e;}, have been
computed, the probability that node j will be realized by a preset time §; is calculated
using the following formula:

Ple < 8} = P{ e; — Ele} - S — E{ei}} _ Pz = K}
! ! \/;é@ V var{e;} !

where
z = Standard normal random variable
S; — Ele}
\V var{e;}
The standard normal variable z has mean 0 and standard deviation 1 (see Appendix
C). Justification for the use of the normal distribution is that e; is the sum of indepen-

dent random variables. According to the Central Limit Theorem (see Section 12.5.4), ¢,
is approximately normally distributed.

Example 6.6-6

Consider the project of Example 6.6-2.To avoid repeating critical path calculations, the
values of a, m, and b in the table below are selected such that D; = D; for alli and j in
Example 6.6-2.

Activity i-j (a,m, b) Activity i-J (a,m, b)
A 12 (357 E 3.5 (1,2,3)
B 13 (4,6,8) F 36 (9,11,13)
c 2-3 (1,3,5) G 4-6 1,1,1)
D 24 (5,8,11) H 56 (10,12,14)

The mean 5[]- and variance V; for the different activities are given in the following
table. Note that for a dummy activity (a, b, m) = (0, 0, 0), hence its mean and variance
also equal zero.

Activity i D; Vi Activity i-j D; Vi
A 1-2 5 444 E 3-5 2 A11
B 1-3 6 444 F 3-6 11 444
G 2-3 3 444 G 4-6 1 .000
D 2-4 8 1.000 H 5-6 12 444
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Rl The next table gives the longest path from node 1 to the different nodes, together
valent with their associated mean and variance.
simpli-
{e}, as
If two Node Longest path based on mean durations Path mean Path standard deviation
lected 2 12 5.00 0.67
nate of 3 1-2-3 8.00 0.94
4 1-2-4 13.00 1.20
- been 5 1-2-4-5 13.00 1.20
= be 6 1-2-4-5-6 25.00 137
ulated
Finally, the following table computes the probability that each node is realized by a
preset time, S, specified by the analyst.
Node j Longest path Path mean Path standard deviation S; K, Pz = K}
2 1-2 5.00 0.67 5.00 0 .5000
3 1-2-3 8.00 0.94 11.00 3.19 .9993
4 1-24 13.00 1.20 12.00 -.83 2033
5 1-2-4-5 13.00 1.20 14.00 .83 71967
6 1-2-4-5-6 25.00 1.37 26.00 .73 7673
pendix
depen-
S.4).¢
TORA provides a module for carrying out PERT calculations. To use this mod-
ule, select Project Planning = PERT-Program Evaluation and Review Technique from
— Main Menu. In the output screen, you have the option to select Activity Mean/Var to
compute the mean and variance for each activity or perT caleulations to compute the
ons, the mean and variance of the longest path to each node in the network.
and j in Figure 6.61 shows TORA output for the PERT calculations of Example 6.6-6
(file ch6ToraPERTEx6-6-6.txt).
PROBLEM SET 6.6E
1. Consider Problem 2, Set 6.6b. The estimates (a, m, b) are listed below. Determine the
probabilities that the different nodes of the project will be realized without delay.
‘qumg Project (a) Project (b)
ariance
Activity  (a,m,b)  Activity (a,m,b) Activity (a,m,b) Activity (a,m,b)
12 (5,6,8) 3-6 (3,4,5) 1:3 (1,3,4) 37 (12,13,14)
14 (1,3,4) 4-6 (4,8,10) 13 (5,7,8) 45 (10,12,15)
15 (2,4,5) 4.7 (5,6,8) 1-4 (6,7,9) 4.7 (8,10,12)
2-3 (4,5,6) 56 (9,10, 15) 1-6 (1,2,3) 5-6 (7,8,11)
25 (7,8,10) 5-7 (4,6,8) 2-3 (3,4,5) 5-7 (2,4,8)
2-6 (8,9,13) 6-7 (3,4,5) 25 (7.8,9) 6-7 (5,6,7)
3-4 (5,9,19) 34 (10,15,20)
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FIGURE 6.61
TORA PERT calculations for Example 6.6-6
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COMPREHENSIVE PROBLEMS

6.1 An outdoors person who lives in San Francisco (SF) wishes to spend a 15-day vacation vis-
iting four national parks: Yosemite (YO), Yellowstone (YE), Grand Teton (GT), and
Mount Rushmore (MR). The tour, which starts and ends in San Francisco, visits the parks
in the following order and includes a 2-day stay at each park: SF - YO — YE — GT —
MR —> SF. Travel from one park location to another is either by air or car. Each leg of the
trip takes 1/2 day if traveled by air. Travel by car takes 1/2 day from SF to YO, 3 days from
YO to YE, one day from YE to GT, 2 days from GT to MR, and 3 days from MR back to
SF. The trade-off is that car travel generally costs less but takes longer. Considering the
fact that the individual must return to work in 15 days, the objective is to make the tour as
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inexpensive as possible within the 15-day limit. The following table provides the one-way
cost of traveling by car and air. Determine the mode of travel on each leg of the tour.

Air travel cost ($) to Car travel cost ($) to

From SF YO YE GT MR SF YO YE GT MR

SF e 150 350 380 450 — 130 175 200 230
YO 150 — 400 290 340 130 E— 200 145 180
YE 350 400 — 150 320 175 200 E— 70 150
GT 380 290 150 —_— 300 200 145 70 e 100
MR 450 340 320 300 R 230 180 150 100 —

6.26 A benefactor has donated valuable books to the Springdale Public Library. The books
come in four heights: 12, 10, 8, and 6 inches. The head librarian estimates that 12 feet of
shelving will be needed for the 12-inch books, 18 feet for the 10-inch ones, 9 feet for the 8-
inch books, and 10 feet for the 6-inch ones. The construction cost of a shelf includes both a
fixed cost and a variable cost per foot length as the following table shows.

Shelf height (in) Fixed cost ($) Variable cost ($/ft length)

12 25 5.50
10 25 4.50
8 22 3.50
6 22 2.50

Given that smaller books can be stored on larger shelves, how should the shelves be
designed?

6.3 A shipping company wants to deliver five cargo shipments from ports A, B, and C to ports
D and E. The delivery dates for the five shipments are

Shipment Shipping route Delivery date

1 AtoD 10
2 AtoFE 15
3 BtoD 4
4 BtoE S
5 Cto E 18

The following table gives trip times (in days) between ports (the return trip is
assumed to take less time).

A B C D E
A 3 | 4
B ‘ 3 | 2
C - 3 | 5
D[ 2 2 | 2 |
E [ 3 1 4

fBased on A. Ravindran, “On Compact Storage in Libraries,” Opsearch, Vol. 8, No. 3, pp. 245-52,1971.
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6.47

The company wants to determine the minimum number of ships needed to carry out
the given shipping schedule.

Several individuals have set up separate brokerage firms that traded in highly speculative
stocks. The brokers operated under a loose financial system that allowed extensive inter-
brokerage transactions, including buying, selling, borrowing, and lending. For the group of
brokers as a whole, the main source of income was the commission they received from
sales to outside clients.

Eventually, the risky trading in speculative stocks became unmanageable, and all the
brokers declared bankruptcy. At the time the bankruptcy was declared, the financial situa-
tion was that all brokers owed money to outside clients and the interbroker financial
entanglements were so complex that almost every broker owed money to every other bro-
ker in the group.

The brokers whose assets could pay for their debts were declared solvent. The
remaining brokers were referred to a legal body whose purpose was to resolve the debt
situation in the best interest of outside clients. Because the assets and receivables of the
nonsolvent brokers were less than their payables, all debts were prorated. The final effect
was a complete liquidation of all the assets of the nonsolvent brokers.

In resolving the financial entanglements within the group of nonsolvent brokers, it
was decided that the transactions would be executed only to satisfy certain legal require-
ments because, in effect, none of the brokers would be keeping any of the funds owed by
others. As such, the legal body requested that the number of interbroker transactions be
reduced to an absolute minimum. This means that if A owed B an amount X, and B owed
A an amount Y, the two “loop” transactions were reduced to one whose amount is
|X — Y|. This amount would go from A to Bif X > Y and from Bto Aif Y > X. If
X = Y, the transactions were completely eliminated. The idea was to be extended to all
loop transactions involving any number of brokers.

How would you handle this situation? Specifically, you are required to answer two
questions.

1. How should the debts be prorated?
2. How should the number of interbroker transactions be reduced to a minimum?

7Based on H. Taha, “Operations Research Analysis of a Stock Market Problem,” Computers and Operations
Research, Vol. 18, No. 7, pp. 597-602, 1991.
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Operations

CHAPTER 7

Advanced Linear
Programming

This chapter presents a matrix version of linear programming that allows the develop-
ment of a number of computationally efficient algorithms: revised simplex method,
upper and lower bounding, decomposition, and parametric programming. The chapter
also presents the totally different Karmarkar interior-point algorithm, which appears
quite efficient in handling very large LPs.

SIMPLEX METHOD FUNDAMENTALS

In linear programming, the feasible solution space is said to form a convex set if the
line segment joining any two distinct feasible points also falls in the set. An extreme
point of the convex set is a feasible point that cannot lie on a line segment joining any
two distinct feasible points in the set. Actually, extreme points are the same as corner
points, the more apt name used in Chapters 2, 3, and 4.

Figure 7.1 illustrates two convex sets. Set (a), which is typical of the solution space
of a linear program, is convex (with six extreme points), whereas set (b) is nonconvex.

In the graphical LP solution given in Section 2.3, we demonstrated that the opti-
mum solution can always be associated with a feasible extreme (corner) point of the
solution space. This result makes sense intuitively because in LP every feasible point

FIGURE 7.1

Examples of a convex and a nonconvex set

(a) (b)
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can be determined as a function of the extreme points. For example, in convex set (a)
of Figure 7.1, given the extreme points X;,X,, X3, X, X5, and X, a feasible point X can
be expressed as a convex combination of the extreme points using

X = o, X; + X, + o3X; + oy Xy + asXs + agX
where
o+, tagtoytastoa=1
o =0,i=12,..,6

This observation shows that extreme points provide all that is needed to define the
solution space completely.

Example 7.1-1
Show that the following set is convex:
C = {(xl,xZle = 2,x2 = 3,x1 = O,XZ = 0}

Let X, = {x},x}} and X, = {x},x3} be any two distinct points in C. If C is convex, then
X = (x,%) = o;X; + a,X, must also be in C. To show that this is true, we need to
show that all the constraints of C are satisfied by the line segment X—that is,

X, = ouxt + oox! = oy(2) + ap2) =2
o3) + a3) = 3

Thus, x, = 2 and x, = 3 because a; + «, = 1. Additionally, the nonnegativity condi-
tions are satisfied because «; and a, are nonnegative.

IA

X, = ouxh + opx3

PROBLEM SET 7.1A

1. Show that the set Q = {x;,x,|x, + x, = 1,x; = 0,x, = 0} is convex. Is the nonnegativity
condition essential for the proof?

2. Show that the set Q = {x;,x, | x; = 1 orx, = 2}is not convex.
3. Determine graphically the extreme points of the following convex set:

O ={xpx|x +x=2x=0x=0}

Show that the entire feasible solution space can be determined as a convex combination
of its extreme points. Hence conclude that any convex (bounded) solution space is totally
defined once its extreme points are known.

4. In the solution space in Figure 7.2 (drawn to scale), express the interior point (3,1) as a
convex combination of the extreme points 4, B, C, and D where each extreme point car-
ries a strictly positive weight.

From Extreme Points to Basic Solutions

It is convenient to express the general LP problem in equation form (see Section 3.1)
using matrix notation. Define X as an n-vector representing the variables, A as an
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(m X n)-matrix representing the constraint coefficients, and C as an n-vector repre-
senting the objective function coefficients. The LP is then written as

Maximize or minimize z = CX
subject to
AX =b
X=0

Using the format of Chapter 3 (see also Figure 4.1), the rightmost m columns of A
always can be made to represent the identity matrix I through proper arrangements of
the slack/artificial variables associated with the starting basic solution.

A basic solution of AX = b is determined by setting n — m variables equal to
zero, and then solving the resulting m equations in the remaining m unknowns, pro-
vided that the resulting solution is unique. Given this definition, the theory of linear
programming establishes the following result between the geometric definition of
extreme points and the algebraic definition of basic solutions:

Extreme points of {X | AX = b} < Basic solutions of AX = b

The relationship means that the extreme points of the LP solution space are totally
defined by the basic solutions of the system AX = b, and vice versa. Thus, we conclude
that the basic solutions of AX = b contain all the information we need to determine
the optimum solution of the LP problem. Furthermore, if we impose the nonnegativity
restriction, X = 0, the search for the optimum solution is confined to the feasible basic
solutions only.

To formalize the definition of a basic solution, the system AX = b can be
expressed in vector form as follows:

j=1
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The vector P; is the jth column of A. A subset of m vectors is said to form a basis, B, if,
and only if, the selected m vectors are linearly independent. In this case, the matrix B is
nonsingular. If X;; is the set of m variables associated with the vectors of nonsingular
B, then Xz must be a basic solution. In this case, we have

BXB = b
Given the inverse B™! of B, we then get the corresponding basic solution as
XB = B_lb

If B™'b = 0, then Xj is feasible. The definition, of course, assumes that the remaining
n — m variables are nonbasic at zero level.

The previous result shows that in a system of m equations and » unknowns, the
maximum number of (feasible and infeasible) basic solutions is given by

n!

Cn = ml(n — m)!

Example 7.1-2

Determine and classify (as feasible and infeasible) all the basic solutions of the follow-

ing system of equations.
13 -1\ (4
2 =2 =217 2
X3

The following table summarizes the results. The inverse of B is determined by
using one of the methods in Section A.2.7.

B BX; =b Solution Status

1 3\(x)_ (4 o) _ (i E\(4\_ /(i .
(P, Py) > 2\ =1 o)~ )= Feasible

& ) 8 1
(P, Py) (Not a basis) _ .
1 1 3

3 —-1\/x 4 X i Tg\[4 4 .
) )= 2)E)-() e
en (0 @00 e

We can also investigate the problem by expressing it in vector form as follows:

(2t (D) (Z)o= )

Each of P,,P,,P;, and b is a two-dimensional vector, which can be represented generi-
cally as (a,,a,)". Figure 7.3 graphs these vectors on the (a;,a,)-plane. For example, for
b =4,2)"a, =4anda, =2.

Because we are dealing with two equations (m = 2), a basis must include exactly
two vectors, selected from among P,,P,, and P;. From Figure 7.3, the combinations
(P,,P,) and (P,,P;) form bases because their associated vectors are independent. In the 1
combination (P;,P3) the two vectors are dependent, and hence do not constitute a |
basis.
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Vector representation of LP solution space

Algebraically, a combination forms a basis if its determinant is not zero (see
Section A.2.5). The following computations show that the combinations (P,,P,) and
(P,,P;) are bases, and the combination (P, P3)is not.

det(P,,P;) = det (; _g) —(X-2)-(2X3) =80

det(P,,P;) = det(_; :;) =@BX-2)—(2X-1)=-8%0

det(P,,P;) = det G :;) =1X-=-2)-2x-1)=0

We can take advantage of the vector representation of the problem to discuss how
the starting solution of the simplex method is determined. From the vector representa-
tion in Figure 7.3, the basis B = (P,,P,) can be used to start the simplex iterations
because it produces the basic feasible solution X, = (x1,x2)". However, in the absence
of the vector representation, the only course of action available to us is to try all possi-
ble bases (3 in this example, as shown above). The difficulty with trial and error is that
it is not suitable for automatic computations. In a typical LP with thousands of vari-
ables and constraints where the use of the computer is a must, trial and error simply is
not a practical option because of the tremendous computational overhead. To alleviate
this problem, the simplex method always uses an identity matrix, B = I, to start the
iterations. Why does a starting B = I offer an advantage? The answer is that it will
always provide a feasible starting basic solution (provided that the right-hand side vec-
tor of the equations is nonnegative). You can see this result in Figure 7.3 by graphing
the vectors of B = I and noting that they coincide with the horizontal and vertical
axes, thus always guaranteeing a starting basic feasible solution.

The basis B = I automatically forms part of the LP equations if all the original
constraints are <. In other cases, we simply add the unit vectors where needed. This is
what the artificial variables accomplish (Section 3.4). We then penalize these extrane-
ous variables in the objective function to force them to zero level in the final solution.
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PROBLEM SET 7.1B

1. In the following sets of equations, (a) and (b) have unique (basic) solutions, (c) has infin-
ity of solutions, and (d) has no solution. Show how these results can be verified using
graphical vector representation. From this exercise, state the general conditions for vec-
tor dependence-independence that lead to unique solution, infinity of solutions, and no

solution.

@ x; +3x = (b) 2x; +3x, =1
3+ x=3 2% — x, =12

(€) 2x, +6x, =4 d 2x;, —4x,=2
x, +3x, =2 X +2x, =1

2. Determine graphically (using vectors) if each of the sets of equations below has a unique
solution, infinity of solutions, or no solution. For the cases of unique solutions, indicate
from the vector representation (and without solving the equations algebraically) whether
the values of the x; and x, are positive, zero, or negative.

w (3 (- o (7 3))-0)
o (- @)
o (7T -0 o6 -0

3. Consider the following system of equations:

1 0 1 2 3
2 X1 + (2 Xo + 14 X3 +10 X4 = 4
3 1 2 0 2

Determine if any of the following combinations forms a basis.
(a) (P,P,,P;)
) (P.P,Py
(o) (P,,P;,P,)
d) (P,P,P;P)
4. True or False?
(a) The system BX = b has a unique solution if B is nonsingular.
(b) The system BX = b has no solution if B is singular and b is independent of B.
(¢) The system BX = b has infinity of solutions if B is singular and b is dependent.

7.1.2 Generalized Simplex Tableau in Matrix Form

In this section, we use matrices to develop the general simplex tableau. This represen-
tation will be the basis for subsequent developments in the chapter.
Consider the LP in equation form:

Maximize z = CX, subject to AX = b,X = 0

The problem can be written equivalently as

¢ X0-0

wn
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Suppose that B is a feasible basis of the system AX = b,X = 0, and let X, be the
corresponding set of basic variables with Cj as its associated objective vector. The cor-
responding solution may then be computed as follows (the method for inverting parti-
tioned matrices is given in Section A.2.7):

infin-
g

vee-

G)-G6 ) 6) -6 %)) - ()

The general simplex tableau in matrix form can be derived from the original
equations as follows:

1 CB\(1 -C\(z)_ (1 CB\/0
mique 0o B! Jlo AJ/\X 0 B! )\pb

:;Ifher Matrix manipulations yield the following set of equations:
1 CB'A-C\(z)_[CsB
0 B'A X B'b
Given P; is the jth vector of A, the simplex tableau column associated with variable x;
can be represented as follows:
Basic X; Solution
z CBB’le =g CzB'b
X; B'P, B'b
In fact, the tableau above is the same as the one we presented in Chapter 3 (see
Problem 5 of Set 7.1c). An important property of this table is that the inverse, B, is
the only element that changes from one tableau to the next, and that the entire tableau
can be generated once B™' is known. This point is important because the computa-
tional roundoff error in any tableau can be controlled by controlling the accuracy of
B~". This result is the main reason for the development of the revised simplex method
in Section 7.2.
| Example 7.1-3
;,_ Consider the following LP:
Maximize z = x; + 4x, + 7x; + 5x,
subject to
oresen- le + Xy + 2.X3 + 4X4 = 10

3x1_xZ—2.X3+6X4=5
X1,X2,X3,X4 =

Generate the simplex tableau associated with the basis B = (P, P,).
Given B = (PlvPZ)v then XB = (xl,xZ)T and CB = (1,4 .Thus,

v ) - )

~—

NI =
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e (2)-me- (000

To compute the constraint columns in the body of the tableau, we have

1 1

_ P2 1 2 4\_(1 0 0 2

Bl(Pl»Pz’Ps’PO:(S _§><3 -1 -2 6>=(0 12 o)
5 b

We then get

Next, we compute the objective row as follows:
C,[B(P,, P, P, P)] — C = (1,4)((1) > 3)—(1,4,7,5) = (0,0,1,-3)
Finally, we compute the value of the objective function as follows:

z=CzB'b = CpXj = (1,4)(2) =19

Thus, the entire tableau can be summarized as shown below.

Basic b X, X3 X4 Solution
z 0 0 1 -3 19
X 1 0 2 0 3
X, 0 1 0 2 4

The main conclusion from this example is that once the inverse, B, is known,
the entire simplex tableau can be generated from B~ and the original data of the

problem.

PROBLEM SET 7.1C

1. In Example 7.1-3, consider B = (P;, P,) . Show that the corresponding basic solution is
feasible, and then generate the corresponding simplex tableau.

2. Consider the following LP:
Maximize z = 5x; + 12x, + 4x;3
subject to
x, +2x, + x5+ x, =10
2% — 2%, — X3 =2
X1,X2,X3,X4 = 0

Check if each of the following vector sets forms a (feasible or infeasible) basis:
(Pl’ PZ)’ (P29 P3)7 (P37 P4) .
3. In the following LP, compute the entire simplex tableau associated with X = (x;,x2,x3)" :

Minimize z = 2x; + x,

7.2
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subject to
3+ X - x; =3
4x, + 3x, — Xy =6
x; + 2x, +x5=3

X1,X2,X3,X4,X5 = 0

4. The following is an optimal LP tableau:

Basic X X, X3 Xy X5 Solution
z 0 0 0 3 2 ?
X3 0 0 1 1 -1 2
X, 0 i 0 1 0 6
X 1 0 0 — 1 2

The variables x3, x,, and x5 are slacks in the original problem. Use matrix manipulations to
reconstruct the original LP, and then compute the optimum objective value.

5. In the generalized simplex tableau, suppose that X = (X1, X)), where Xj; corresponds to
a typical starting basic solution (consisting of slack and/or artificial variables) with B = I;
andlet C = (C,,Cy) and A = (D, I) be the corresponding partitions of C and A, respec-
tively. Show that the matrix form of the simplex tableau reduces to the following form,
which is exactly the form used in Chapter 3.

nown,

of the Basic X, X Solution
b4 CsB''D - C; C;B! - ¢y C;B'b
X5 B'D B! Bb

- 7.2 REVISED SIMPLEX METHOD

Section 7.1.1 shows that the optimum solution of a linear program is always associated
with a basic (feasible) solution. The simplex method search for the optimum starts by
selecting a feasible basis, B, and then moving to another feasible basis, B,,.,, , that leads
to a better (or, at least, no worse) value of the objective function. Continuing in this
manner, the optimum feasible basis is eventually reached.

The iterative steps of the revised simplex method are exactly the same as in the
tableau simplex method presented in Chapter 3. The main difference is that the compu-
tations in the revised method are based on matrix algebra rather than on row opera-
tions. The use of matrix algebra reduces the adverse effect of machine roundoff error by
controlling the accuracy of computing B™. This result follows because, as Section 7.1
shows, the entire simplex tableau can be computed from the original data and the cur-
rent B™. In the tableau simplex method of Chapter 3, each tableau is generated from
the immediately preceding one, which tends to worsen the problem of roundoff error.
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Development of the Optimality and Feasibility Conditions

The general LP problem can be written as follows:

n n

Maximize or minimize z = Zijj subject to EP_,-x,— =bx;=0,j=12,....,n
=1 j=1

For a given basic vector X and its corresponding basis B and objective vector Cp, the

general simplex tableau developed in Section 7.1.2 shows that any simplex iteration can

be represented by the following equations:
z+ E(Zj - Cj).x]‘ = CBBilb
j=1

n

Xp) + 2 BP)x; = (B™'b);

j=1
where

— - = —
ZI‘ Cj = CBB P] C,’

The notation (V); is used to represent the ith element of the vector V.

Optimality Condition. From the z-equation given above, an increase in nonbasic x;
above its current zero value will improve the value of z relative to its current value,
C;B'b, only if its z; — ¢; is strictly negative in the case of maximization and strictly
positive in the case of minimization. Otherwise, x; cannot improve the solution and
must remain nonbasic at zero level. Though any nonbasic variable satisfying the given
condition can be chosen to improve the solution, the simplex method uses a rule of
thumb that selects the entering variable as the one with the most negative (most
positive) z; — ¢; in case of maximization (minimization).

Feasibility Condition. The determination of the leaving vector is based on examining
the constraint equation associated with the ith basic variable. Specifically, we have

Xp): + i(Bile)ixj = (B'b);

When the vector P; is selected by the optimality condition to enter the basis, its
associated variable x; will increase above zero level. At the same time, all the remain-
ing nonbasic variables remain at zero level. Thus, the ith constraint equation reduces to

(Xp) = (B7'b) — (B'P))x;

The equation shows that if (B™'P;); > 0, an increase in x; can cause (X); to become
negative, which violates the nonnegativity condition, (Xp); = 0 for alli. Thus, we have

(B7'b), — (B"'P).x; = 0, for all i
This condition yields the maximum value of the entering variable x; as
, { (B"'b),
;= ming ——
x] 1’1 (BfIPj)i

The basic variable responsible for producing the minimum ratio leaves the basic solu-
tion to become nonbasic at zero level.

(B'P), > 0}
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PROBLEM SET 7.2A
1. Consider the following LP:

Maximize z = cix; + %, + x5 + cuxy

subject to
5 the Px; + Pox, + Poxy + Pox, = b
n can
X1,X2,X3,X4 =0
The vectors P, P,,P;, and P, are shown in Figure 7.4. Assume that the basis B of the cur-
rent iteration is comprised of P, and P,.
(a) If the vector P; enters the basis, which of the current two basic vectors must leave in
order for the resulting basic solution to be feasible.
(b) Can the vector P, be part of a feasible basis?

2. Prove that, in any simplex iteration, z; — ¢; = Ofor all the associated basic variables.

3. Prove thatif z; — ¢; > 0 (<0) for all the nonbasic variables x; of a maximization (mini-
mization) LP problem, then the optimum is unique. Else, if z; — c¢;equals zero for a non-
basic x;, then the problem has an alternative optimum solution.

3SIC X; 4. In an all-slack starting basic solution, show using the matrix form of the tableau that the
bt mechanical procedure used in Section 3.3 in which the objective equation is set as
trictly <

- z—= 2,¢x;=0
n and /:21 T
gl I\EI; automatically computes the proper z; — c; for all the variables in the starting tableau.
nle o

(most 5. Using the matrix form of the simpl.ex tabl'eau, show that in an all—arti.ﬁcial starting basi'c-
solution, the procedure employed in Section 3.4.1 that calls for substituting out the artifi-
cial variables in the objective function (using the constraint equations) actually computes

b ine the proper z; — ¢; for all the variables in the starting tableau.

o 6. Consider an LP in which the variable x; is unrestricted in sign. Prove that by substituting

X = X; — Xz, where x} and x; are nonnegative, it is impossible that x; and x; will replace
one another in an alternative optimum solution.

Ic

7. Given the general LP in equation form with m equations and n unknowns, determine the
maximum number of adjacent extreme points that can be reached from a nondegenerate

SIS, 1S extreme point of the solution space.
‘main-
ices to
FIGURE 7.4
Vector representation of Problem 1, Set 7.2a
ecome s
.\'e b
Py
: Py
|
¢ solu- | P,
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8. In applying the feasibility condition of the simplex method, suppose that x, = 0 is a basic
variable and that x; is the entering variable. Why is it necessary for the leaving variable x,
to have (B™'P), > 0? What is the fallacy if (B"'P)), = 0? (Hint: Basic x, must remain non-
negative.)

9. In the implementation of the feasibility condition of the simplex method, what are the
conditions for encountering a degenerate solution for the first time? For continuing to
obtain a degenerate solution in the next iteration? For removing degeneracy in the next
iteration? Explain the answer mathematically.

10. What are the relationships between extreme points and basic solutions under degeneracy
and nondegeneracy. What is the maximum number of iterations that can be performed at
a given extreme point assuming no cycling?

11. Consider the LP

Maximize z = CX subject to AX = b, X = 0,b=0
Suppose that the entering vector P, is such that at least one element of B™'P; is positive.
(a) IfP;is replaced with oP;, where o is a positive scalar, and provided x; remains the
entering variable, find the relationship between the values of x; corresponding to P;
and oP;.
(b) Answer Part (a) if, additionally, b is replaced with 8b, where 8 is a positive scalar.
12. Consider the LP

Maximize z = CX subject to AX = b, X = 0,b=0

After obtaining the optimum solution, it is suggested that a nonbasic variable x; can be
made basic (profitable) by reducing the requirements per unit of x; for the different
resources to  of their original values, & > 1. Because the requirements per unit are
reduced, it is expected that the profit per unit of x; will also be reduced to é of its original
value. Will these changes make x; a profitable variable? Explain.

13. Consider the LP

Maximize z = CX subject to (A, DX = b,X = 0

Define X as the current basic vector with B as its associated basis and C as its vector of
objective coefficients. Show that if C is replaced with the new coefficients D, the values of
z; — ¢;for the basic vector X, will remain equal to zero. What is the significance of this result?

Revised Simplex Algorithm

Having developed the optimality and feasibility conditions in Section 7.2.1, we now
present the computational steps of the revised simplex method.

Step 0. Construct a starting basic feasible solution and let B and Cy be its associated
basis and objective coefficients vector, respectively.

Step 1. Compute the inverse B! by using an appropriate inversion method.!

1Tn most LP presentations, including the first six editions of this book, the product form method for inverting
a basis (see Section A.2.7) is integrated into the revised simplex algorithm because the product form lends
itself neatly to the revised computations where successive bases differ in exactly one column. The author has
removed this detail from this presentation because it makes the algorithm appear more complex than it
really is. Moreover, the product form is rarely used in the development of LP codes because it is not designed
for automatic computations where machine roundoff error can be a serious issue. Normally, some advanced
numeric analysis method, such as the LU decomposition method, is used to obtain the inverse. Incidentally,
TORA matrix inversion module is based on LU decomposition.
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Step 2. For each nonbasic variable x;, compute

Zj - C/‘ = CBB_lpj - C/'
If z; — ¢; = 0 in maximization (=< 0 in minimization) for all nonbasic x;, stop;
the optimal solution is given by

Xz = B7'b, z = CpX,
Else, apply the optimality condition and determine the entering variable X; as
the nonbasic variable with the most negative (positive) z; — ¢;in case of
maximization (minimization).

Step 3. Compute B‘le. If all the elements of B‘le are negative or zero, stop; the
problem has no bounded solution. Else, compute B™'b. Then for all the
strictly positive elements of B™'P;, determine the ratios defined by the feasi-
bility condition. The basic variable x; associated with the smallest ratio is the
leaving variable.

Step 4. From the current basis B, form a new basis by replacing the leaving vector P,
with the entering vector P;. Go to step 1 to start a new iteration.

Example 7.2-1

The Reddy Mikks model (Section 2.1) is solved by the revised simplex algorithm. The
same model was solved by the tableau method in Section 3.3.2. A comparison between
the two methods will show that they are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

Maximize z = (5, 4, 07 07 O’ 0)(x1,x2,x3,x4,x5,x6)T

subject to
X1
6 4 1 0 0 0\|x, 24
1 2 0 1 0 Ofjlxs|_|6
-1 1 0 0 1 0ffxg| |1
01 0 0 0 1/|xs 2
X6
X1,X0 .., % = 0
We use the notation C = (c;,c,, ...,c) to represent the objective function coefficients
and (P, P, ..., Py) to represent the column vectors of the constraint equations. The

right-hand side of the constraints gives the vector b.

In the computations below, we will give the algebraic formula for each step and its
final numeric answer without detailing the arithmetic operations. You will find it
instructive to fill in the gaps in each step.

Iteration 0.

Xz, = (¥3,X4%5,%6), C, = (0,0,0,0)
By = (P3,P,,Ps,P;) = LB;' = 1
Thus,
X3z, = By'b = (24,6,1,2)",z = Cp X5 =0
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Optimality Computations:
CyB;' = (0,0,0,0)
{z; — cjm12 = CBUBBI(Pth) = (c1,¢) = (=5.74)

Thus, P, is the entering vector.

Feasibility Computations:
XBo = (x37x47x5’x6)T = (24,6,1,2)T
B,'P, = (6,1,—1,0)"

Hence,

-67’Ta—a

and P, becomes the leaving vector.
The results above can be summarized in the familiar simplex tableau format.
The presentation should help convince you that the two methods are essentially the

X = min{246 —}= min {4,6,—,—} = 4

same.
Basic X, X, X3 Xy X5 Xe Solution
z =5 -4 0 0 0 0 0
X3 6 24
X4 1 6
X5 -1 1
Xg 0 2

Iteration 1.
XB = (xl’x47x5vx6)7CBl = (5,0,0,0)

1

B, = (Pl’ P, P5>P6)

6 0 0 O
1 1 0 O
-1 0 1 0
0 0 0 1

By using an appropriate inversion method (see Section A.2.6, in particular the product
form method), the inverse is given as

O al=al—al—

B! =

S S = o
O = O O
= o o O

Thus,
XBl = BIlb = (4,2,5,2)T,Z = (:letg1 =20
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Optimality Computations:

Cz B! = (2,0,0,0)

{z; — climas = CBlel(Pz’ P3) — (cp05) = (—%,%)
Thus, P, is the entering vector.

Feasibility Computations:
Xy, = (¥1,X4%5,%) = (4,2,5,2)7
B/'P, = (5331

Hence,
X, = min { g,%,%,%} = min {6,%,3,2} = %
333
and P, becomes the leaving vector. (You will find it helpful to summarize the results
ormat. above in the simplex tableau format as we did in iteration 0.)
lly the
Iteration 2.
X35, = (%1, %2, X5, %) Cs, = (5,4,0,0)
B, = (P,,P,,Ps,Py)
6 4 0 O
_| 1 2 00
-1 1 1 0
01 0 1
Hence,
bk
L oo
B, = 3 5
s 5 10
bl
Thus,
Xz =Bib =(3,33,5),2 = Cs X5, =21
product Optimality Computations:

CpB;' = (3,5,0,0)
{z; = c}j=34 = Cy B3'(P3,Py) — (c3,¢9) = (53]

Thus, X is optimal and the computations end.

Summary of Optimal Solution:
x;=3,x,=15z=21
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PROBLEM SET 7.2B

1. In Example 7.2-1, summarize the data of iteration 1 in the tableau format of Section 3.3.
2. Solve the following LPs by the revised simplex method:
(a) Maximize z = 6x; — 2x, + 3x;3
subject to

2] — X, + 2x3 = 2
X1 + 4X3 =4
X1,X2,X3 =0

(b) Maximize z = 2x; + x, + 2x;
subject to

4x; + 3x, + 8x3 =12

4x, + x, + 12x3 = 8

4, — x, + 3x3; =8
X1,X%2,%3 = 0

(¢) Minimize z = 2x; + x,
subject to

3+ x, =3

4x; + 3x, =6
X +2x, =3
X% =0

(d) Minimize z = 5x; — 4x, + 6x; + 8x,4
subject to

x; + 7x; + 3x3 + Tx, < 46

3 — x+ x3+ 2x, =20

2%+ 3%, — x3+ x, =18
X1,X2,X3,X4 = 0

3. Solve the following LP by the revised simplex method given the starting basic feasible
vector Xy = (5,4, X5)"

Minimize z = 7x, + 11x; — 10x, + 26x,

subject to
X, — X3 + x5+ x=206
X, — X3t X4 +3x, =8
X+ x, — 3x3 + x4 + x5 =12

X1,X2,X3,X4,X5,Xg =0

7.3




-
(5]
(98]

7.3
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4. Solve the following using the two-phase revised simplex method:
(a) Problem 2-c
(b) Problem 2-d
(c) Problem 3 (ignore the given starting X )

5. Revised Dual Simplex Method. The steps of the revised dual simplex method (using
matrix manipulations) can be summarized as follows:
Step 0. Let By = I be the starting basis and that at least one of the elements of X is
negative (infeasible).
Step 1. Compute X; = B™'b, the current values of the basic variables. Select the leaving
variable x, as the one having the most negative value. If all the elements of X
are nonnegative, stop; the current solution is feasible (and optimal).

Step2. (a) Computez; — ¢; = CBB’IP]- — ¢;for all the nonbasic variables x;.
(b) For all the nonbasic variables x;, compute the constraint coefficients (B’lP]),
associated with the row of the leaving variable x,.
(¢) The entering variable is associated with
Z;— ¢

6 = min
j { (B'P),
If all (B™'P)), = 0, no feasible solution exists.

Step 3.  Obtain the new basis by interchanging the entering and leaving vectors ( P; and
P, ). Compute the new inverse and go to Step 1.

Apply the method to the following problem:

(B'P), < 0}

Minimize z = 2x; + x,
subject to
3+ x,=3
4x, +3x, =6
X+ x =3

X% =0

BOUNDED VARIABLES ALGORITHM

In LP models, variables may have explicit positive upper and lower bounds. For example, in
production facilities, lower and upper bounds can represent the minimum and maximum
demands for certain products. Bounded variables also arise prominently in the course of solv-
ing integer programming problems by the branch-and-bound algorithm (see Section 9.3.1).

The bounded algorithm is efficient computationally because it accounts for the
bounds implicitly. We consider the lower bounds first because it is simpler. Given
X = L, we use the substitution

X=L+X, X =0

and solve the problem in terms of X' (whose lower bound now equals zero). The origi-
nal X is determined by back-substitution, which is legitimate because it guarantees that
X = X' + L will remain nonnegative for all X' = 0.
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Next, consider the upper bounding constraints, X = U. The idea of direct sub-
stitution (i.e.,, X =U — X", X"" = 0 ) is not correct because back-substitution,
X = U — X", does not ensure that X will remain nonnegative. A different procedure
is thus needed.

Define the upper bounded LP model as

Maximize z = {CX|(A, X = b,0 = X = U}

The bounded algorithm uses only the constraints (A,DX = b,X = 0 explicitly and
accounts for X = U implicitly by modifying the simplex feasibility condition.

Let Xz = B™'b be a current basic feasible solution of (A,)X = b,X = 0 and
suppose that, according to the (regular) optimality condition, P, is the entering vector.
Then, given that all the nonbasic variables are zero, the constraint equation of the ith
basic variable can be written as

(XB)[ = (Bflb)i - (B_lp/‘)i X;

When the entering variable x; increases above zero level, (Xp); will increase or decrease
depending on whether (B™'P)), is negative or positive, respectively. Thus, in determining
the value of the entering variable x;, three conditions must be satisfied:

1. The basic variable (Xj); remains nonnegative—that is, (Xp), = 0.

2. The basic variable (Xp); does not exceed its upper bound—that is, (Xp); = (Up);,
where Uy comprises the ordered elements of U corresponding to Xp.

3. The entering variable x; cannot assume a value larger than its upper bound—that
is, x; = u; , where u; is the jth element of U.
The first condition (Xp), = 0 requires that
(B—lb)]_ - (B_IP])IX/ = 0
It is satisfied if
B 'b),
( — ) B7'P), > 0}
(B™'P),

This condition is the same as the feasibility condition of the regular simplex method.
Next, the condition (Xp); = (Up); specifies that

(B™'b), — (B™'P).x; = (Uy),

X, =60, = min{

j=
1

It is satisfied if
(B ') — (Up);
(B_le)i

Combining the three restrictions, x; enters the solution at the level that satisfies

X =0,= mjn{
1

B'P), < o}

x, = min (91,92,Uj)

The change of basis for the next iteration depends on whether x; enters the solu- |
tion at level 6,,6,, or u;. Assuming that (Xp), is the leaving variable, then we have the ‘
following rules: !
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1. x; = 6;: (Xp), leaves the basic solution (becomes nonbasic) at level zero. The new
iteration is generated in the normal simplex manner by using x; and (Xp), as the
entering and the leaving variables, respectively.

2. x; = 0,: (Xp), becomes nonbasic at its upper bound. The new iteration is gen-
erated as in the case of x; = 6, with one modification that accounts for the
fact that (X;), will be nonbasic at upper bound. Because the values of 8, and 0,
are developed under the assumption that all nonbasic variables are at zero
level (convince yourself that this is the case!), we must convert the new non-
basic (X;), at upper bound to a nonbasic variable at zero level. This is
achieved by using the substitution (Xj), = (Up), — (Xjp), , where (Xp), = 0.1t
is immaterial whether the substitution is made before or after the new basis is
computed.

3. x; = u;: The basic vector Xp remains unchanged because x; = u; stops short of
forcing any of the current basic variables to reach its lower (= 0) or upper bound.
This means that x; will remain nonbasic but at upper bound. Following the argu-
ment just presented, the new iteration is generated by using the substitution
X =u — Xx.

A tie among 64,6,, and u; may be broken arbitrarily. However, it is preferable,
where possible, to implement the rule for x; = u; because it entails less computations.

The substitution x; = u; — x{ will change the original c,P;, and b to ¢/ =
—c;,P/ = —P;,and btob’ = b — u/P,. This means that if the revised simplex method
is used, all the computations (e.g., B, X, and z; — ¢; ) should be based on the updated

values of C, A, and b at each iteration (see Problem 5, Set 7.3a for further details).

Example 7.3-1
Solve the following LP model by the upper-bounding algorithm.2
Maximize z = 3x; + Sy + 2x;
subject to
X1+ y+ 2, =14
2x; + 4y + 3x; = 43
0=x=47=y=100=x;,=3

The lower bound on y is accounted for using the substitution y = x, + 7, where
0=x,=10-7=3.

We will not use the revised simplex method to carry out the computations, to
avoid being “sidetracked” by the computational details. Instead, we will use the com-
pact tableau form. Problems 5, 6, and 7, Set 7.3a address the revised version of the
algorithm.

2You can use TORA’S Linear Programming = Solve‘problem => Algebraic => Iterations =
Bounded simplex to produce the associated simplex iterations.
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Iteration 0.

Basic X, X, X3 Xy Xs Solution
z —3 —5 -2 0 0 35
X4 1 1 2 1 0 7
X5 2 4 3 0 1 15

We have B = B! = I and X = (x,,x5)” = B™'b = (7,15)". Given x, is the enter-

ing variable (z, — ¢, = —5), we get
B'P, = (1,4)
which yields
6; = min { %%} = 3.75, corresponding to x;s
9, = oo (because B™'P, > 0)

Next, given the upper bound on the entering variable, x, = 3, it follows that
X, = min {3.75,00,3} = 3 (=u,)

Because x, enters at its upper bound (= u, = 3),X; remains unchanged, and x,
becomes nonbasic at its upper bound. We use the substitution x, = 3 — x, to obtain
the new tableau as

Basic X X5 X3 Xy X5 Solution
z —83 ) —2 0 0 50
X4 1 -1 2 1 4
Xs 2 -4 3 0 1 3

The substitution in effect changes the original right-hand side vector from b = (7,15)”
tob’ = (4,3)" . This change should be considered in future computations.

Iteration 1. The entering variable is x,. The basic vector Xz and B™' (=I) are the same
as in Iteration 0. Next,

B'P, = (1,2)"

Il

6, = min {%,%} = 1.5, corresponding to basic x;s

6, = oo (because B™'P; > 0)
Thus,
X = min {15,00,4} = 15 (=91)

Thus, the entering variable x; becomes basic, and the leaving variable x5 becomes non-
basic at zero level, which yields
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Basic b X, X3 Xy X5 Solution
3 109
z 0 -1 5 0 5 -5
1 1 5
X 0 L3 2 2
3 1 3
X1 1 2 3 0 2 "

Iteration 2. The new inverse is
enter- B = <1 —

Now

e)
NN
N———

Xp = (xx)" = B7'b" = (%’%)T

where b’ = (4,3)" as computed at the end of Iteration 0. We select x, as the entering

variable, and, noting that P, = —P, , we get
B'P, =(1,-2)
Thus,
S
. 6; = min { %, —} = 2.5,corresponding to basic x,
8
obtain 3
6, = min { —,2_—2} = 1.25,corresponding to basic x;
We then have
x, = min{2.5,1.25,3} = 1.25 (=6,)
Because x; becomes nonbasic at its upper bound, we apply the substitution
x; = 4 — x{ to obtain
- 1x\T ‘ Basic x{ X, X X b Solution
.15) 1 1 2 3 4 s
i z o -1 & 0 3 10
e same | Xy 0 1 3 1 -1 3
“ xf -1 -2 3 0 5 -3
‘}
I
i Next, the entering variable x, becomes basic and the leaving variable x; becomes
nonbasic at zero level, which yields
Basic x{ X, X3 X4 X5 Solution
T
! X4 _% 0 % 1 _4l 3
s non- x) ! 1 -3 0 -1 ;
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The last tableau is feasible and optimal. Note that the last two steps could have been
reversed—meaning that we could first make x; basic and then apply the substitution
x; = 4 — x{ (try it!). The sequence presented here involves less computations, how-
ever.

The optimal values of x;,x,, and x; are obtained by back-substitution as x;=
w—x=4-0=4x,=u,—x; =3 —%=%,andx3=0.Fina11y,wegety=12+
X, = 7 + 1 = £ The associated optimal value of z is 5.

PROBLEM SET 7.3A

1. Consider the following linear program:
Maximize z = 2x; + x,
subject to
x +tx=3
0=x=20=x,=2

(a) Solve the problem graphically, and trace the sequence of extreme points leading to
the optimal solution.

(b) Solve the problem by the upper bounding algorithm and show that the method pro-
duces the same sequence of extreme points as in the graphical optimal solution (use
TORA to generate the iterations).

(¢) How does the upper-bounding algorithm recognize the extreme points?
2. Solve the following problem by the bounded algorithm:

Maximize z = 6x; + 2x, + 8x3 + 4x, + 2x5 + 10x4
subject to
8x; + x; + 8x3 + 2x, + 2x5 + 4xs = 13
0=x=1,j=12,..,6

3. Solve the following problems by the bounded algorithm:
(a) Minimize z = 6x; — 2x, — 3x;
subject to

2x, + 4x, + 2x; = 8
X, — 2% +t3x =7
0=x=20=x=20=x;=1

(b) Maximize z = 3x; + 5x, + 2x;3
subject to

x; + 2x, + 2x3 = 10
2x; + 4x, + 3x3 = 15

0=x=40=x,=30=x;=3




7.3 Bounded Variables Algorithm 311

- been 4. In the following problems, some of the variables have positive lower bounds. Use the
itution bounded algorithm to solve these problems.
. how- (a) Maximize z = 3x; + 2x, — 2x3
subject to
S X = 20+ x, tx3=8
=L+

X1+ 2x —x3=3
- 1Sx153,0SxZS3,25)C3

(b) Maximize z = x; + 2x,
subject to

—x; +2x, =0

3x; + 2x, = 10

Xt =1
l=x=30=x=1

(¢) Maximize z = 4x; + 2x, + 6x;

, subject to
ing to

4x1 - X =9
»d pro- X, X, +2x; =8
on (use

—3x; +x, +4x;, =12
1SX1S3,OSX2SS,OSX3SZ

5. Consider the matrix definition of the bounded variables problem. Suppose that the vector
X is partitioned into (X, X,), where X, represents the basic and nonbasic variables that
are substituted at upper bound. The problem may thus be written as

( 1 1 CZ —C”> XZ N ( O)
Z
0 D. D, X b
Using X,, = U, — X, where U,, is a subset of U representing the upper bounds for X,, let

B (and X3) be the basis of the current simplex iteration after X,, has been substituted out.
Show that the associated general simplex tableau is given as

Basic X! x'T Solution
g CB'D.-C. -CB'D,+C, CB'b +C,U,
X, B'D. -B'D, B b’

whereb’ =b - D,U,.
6. In Example 7.3-1, do the following:
(a) InTIteration 1, verify thatXy = (x,,x,)” = (3,2)7 by using matrix manipulation.
(b) In Iteration 2, show how B! can be computed from the original data of the problem.
Then verify the given values of basic x, and x, using matrix manipulation.
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7. Solve part (a) of Problem 3 using the revised simplex (matrix) version for upper bounded
variables.

8. Bounded Dual Simplex Algorithm. The dual simplex algorithm (Section 4.4) can be
modified to accommodate the bounded variables as follows. Given the upper bound con-
straint x; = u; for all j (if u; is infinite, replace it with a sufficiently large upper bound M),
the LP problem is converted to a dual feasible (i.e., primal optimal) form by using the
substitution x; = u; — x; , where necessary.

Step 1.  If any of the current basic variables (X 5); exceeds its upper bound, use the sub-
stitution (Xz); = (Ug), — (Xp)/ . Go to step 2.

Step 2. If all the basic variables are feasible, stop. Otherwise, select the leaving variable
x, as the basic variable having the most negative value. Go to step 3.

Step 3. Select the entering variable using the optimality condition of the regular dual
simplex method. Go to step 4.

Step 4. Perform a change of basis. Go to step 1.

Apply the given algorithm to the following problems:
(a) Minimize z = 3x; — 2x, + 2x3
subject to

26, + x, +x3=8
—x; +2x, +x; =13
0=x=20=x,=30=x=1

(b) Maximize z = x; + 5x; — 2x3
subject to
4x, + 2x, + 2x; = 26

X, + 3x, +4x; = 17

0=x=20=x,=3x=0

DECOMPOSITION ALGORITHM

Consider the situation of developing a master corporate plan for several production
facilities. Although each facility has its own independent capacity and production con-
straints, the different facilities are tied together at the corporate level by budgetary
considerations. The resulting model includes two types of constraints: common, repre-
senting the corporate budgetary constraints, and independent, representing the inter-
nal capacity and production restrictions of each facility. Figure 7.5 depicts the layout of
the resulting constraints for # activities (facilities). In the absence of the common con-
straints, all activities operate independently.

The decomposition algorithm improves the computational efficiency of the prob-
lem depicted in Figure 7.5 by breaking it down into n subproblems that can be solved
almost independently. We point out, however, that the need for the decomposition
algorithm was more justifiable in the past when the speed and memory of the com-
puter were modest. Today, computers boast impressive capabilities, and the need for
the decomposition algorithm may not be warranted. Nevertheless, we present the algo-
rithm here because of its interesting theoretical contribution.
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unded
be
d con-
d M),
the
Independent
e sub- constraints
) FIGURE 7.5
ariable Layout of a decomposable linear
program
-dual
The corresponding mathematical model is given as
Maximize z = CX; + CX, + ... + C)X,
subject to
AX +AX, + ... +AX, <b,
D]Xl = bl
DX, =b,
DX, =b,
X/ = 0, ] =l 1,2,,.., n
The slack and surplus variables are added as necessary to convert all the inequal-
ities into equations.
The decomposition principle is based on representing the entire problem in
terms of the extreme points of the sets D;X; =b,X; =0,/ =1,2,....,n.To do so, the
duction solution space described by each D;X; = b,X; = 0 must be bounded. This require-
on con- ment can always be satisfied for any set j by adding the artificial restriction X, = M,
dgetary where M is sufficiently large.
epre- Suppose that the extreme points of D;X; = b,X; = 0 are defined as f\(jk,k=
e inter- 1,2, ...,K;.We then have
wvout of K,
- /\ .
n con- X, = kzlﬁjkxjk, i=12...n
< prob- k;
 solved where B = 0 for all k and 2 B =1
f .. k=1
josion We can reformulate the entire problem in terms of the extreme points to obtain
pe com- the following master problem:
ced for X,
ae algo-

L. X, A LS A
MalelZe = Eclxlkﬁlk + 2C2ﬁ2k82k + .t EC”X’lkB”k
k=1 k=1

=1

=~
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subject to

K, A L6 A K, A
EAlxlkBlk + EAzxszyc + ...+ zAnxnank =b,
=1 =1

k=1
K,
EBlk =1
k=1
K,
Esz =1
k=1
K,
EBnk =1
k=1

Bix = 0, foralljand k

The new variables in the master problem are 8 . Once their optimal values, B ,
are determined, we can find the optimal solution to the original problem by back-
substitution as

K.
: * VAN .
X] = kzlsjkxjk,] = 1,2,...,7’[

It may appear that the solution of the master problem requires prior determina-
tion of all the extreme points X , a difficult task indeed! Fortunately, it is not so.

To solve the master problem by the revised simplex method (Section 7.2), we
need to determine the entering and the leaving variables at each iteration. Let us start
first with the entering variable. Given Cz and B! of the current basis of the master
problem, then for nonbasic B, , we have

— = —1 —
Zip — e = CeB Py — cji

where
AN
A X
0
5 :
C/'k = C]X/k and P/k = 1
0

Now, to decide which, if any, of the variable B, should enter the solution, we need
to determine

Zirpr — G == min Zik — Cik
! / alljandk{ ¢ it

If zjy» — ¢pie < 0, then, according to the maximization optimality condition, ;- must
enter the solution; otherwise, the optimum has been reached.
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We still have not shown how z;+ — ¢ is computed numerically. The idea lies in
the following identity
min {z; — ¢;} = min{min{z; — ¢;
ol fand k{z]k ]k} i { X {Z/k /k}}
The reason we are able to establish this identity is that each convex set D;X; =< b,

X; = 0 has its independent set of extreme points. In effect, what the identity says is
that we can determine z;, — ¢ in two steps:

Step 1.  For each convex set D;X; = b;,X; = 0, determine the extreme point ﬁjk* that
yields the smallest z; — ¢ —thatis, z; — cje = ming{z; — cyl.

Step 2. Determine z;4 — ¢ = mjin{zjk- - ci}

From LP theory, we know that the optimum solution, when finite, must be associ-
ated with an extreme point of the solution space. Because each of the sets D, X; < b,
X; = 0is bounded by definition, step 1 is mathematically equivalent to solving # linear
programs of the form

s. B
back-

Minimize w; = {z; — ¢;|D;X; = b, X; = 0}

Actually, the objective function w; is a linear function in X (see Problem 8, Set 7.4a).
_ The determination of the entering variable 8 in the master problem reduces
ina- to solving n (smaller) linear programs to determine the “entering” extreme point
X i . This approach precludes the need to determine all the extreme points of all n

2). we convex sets. Once the desired extreme point is located, all the elements of the col-
S start umn vector P;,- are at hand. Given that information, we can then determine the leav-
naster ing variable and, subsequently, compute the next B™' using the revised simplex
method computations.
Example 7.4-1
Solve the following LP by the decomposition algorithm:
Maximize z = 3x; + 5x, + x; + x5
subject to
f.—iied x1+x2+x3+ X4S40
5x1 + x, =12
X3 + X4 =5
x; + 5x, = 50
must

X1, X0, X3,%4 = 0
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The problem has two subproblems that correspond to the following sets of variables:

X, = (x1,x2)T, X, = (x3»x4)T

The master problem corresponding to the problem above may thus be represented as

follows:
Starting basic
Subproblem 1 Subproblem 2 solution
B B BlKl Bai B2 Bk, X5 X6 X7
A A A A A A
CX, CXp CiX, CXy CXyp .o CXyg 0 -M -M
AI)A(U Alﬁm Aﬁuq Azﬁu Azﬁzz Azﬁsz 1 0 0 =40
1 1 o1 0 0 .. 0 0 1 0 =1
0 0 .. 0 1 1 Lo 1 0 0 1 =1
C, =3.95 G, =(1,1)
A =11 A, =(1,1)
Solution space, D;X; = b, : Solution space,D,X, = b, :
Sxp +x, =12 x3tx, =5
X% =0 x3 + 5x, = 50

X%, = 0

Notice that x; is the slack variable that converts the common constraint to the follow-
ing equation

X1+X2+X3+X4+xS=4O
Recall that subproblems 1 and 2 account for variables x;,x,,x3, and x4 only. This is the

reason xs; must appear explicitly in the master problem. The remaining starting basic
variables, x¢ and x-, are artificial.

Iteration 0.
XB = (x55x6>x7)T = (4091’1)T

C, = (0,-M,~M),B =B =1

Iteration 1.

Subproblem 1 (j =1). We have
Alxl
21— ¢ = CBB71 1 _CIX]
0
(1’1)<i1) X
=0, -M, -M)| 1 \"?*/|-(3, 5)( 1)
0 ©
= _3)(1 - SX2 - M
Thus, the corresponding LP is
Minimize w, = —3x; — 5x, — M
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subject to
Sxp +x, =12
X%, =0
The solution of this problem (by the simplex method) yields
X =012z —c,=w = —-60 - M

Subproblem 2 (j = 2). The associated linear program is given as

AX,
Minimize z, — ¢, = C;B™!| 0 |-CX,
1
(1’1)<§3> X
=0, -M, -M)| 0 ¥/ |-, 1)< 3)
1 x‘*

= X3~ x4 — M

subject to

X3+t x=5

x; + 5x, = 50

X3, =0
The optimal solution of the problem yields
Xo = (50,0725 — ¢; = =50 — M
Because the master problem is of the maximization type and z; — ¢ < z5 — ¢,

and z; — ¢; < 0, it follows that 3, associated with extreme point X,, must enter the
solution. To determine the leaving variable,

AR, (1,1)( 102> 12
Pll = 1 = 1 = 1

‘; 0 0 0

Thus, B™'P;; = (12,1,0)". Given Xj3 = (x5, X, x7)" = (40,1,1)7, it follows that x (an arti-
ficial variable) leaves the basic solution (permanently).

The new basis is determined by replacing the vector associated with x, with the
vector Py, which gives (verify!)

1 12 0
B=[0 1 o0
0 0 1
Thus,
1 12 0
“ B=|0 1 0
0 o0 1
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The new basic solution is
XB = (XS’ Bllax7)T = B_1(407171)T = (28,131)T
CB = (O’ Clﬁlb _]W) = (Oa 603 _M)

Iteration 2.

Subproblem 1 (j = 1). The associated objective function is
Minimize w; = —3x; — 5x, + 60

(verify!). The optimum solution yields z; — ¢; = w; = 0, which means that none of the
remaining extreme points in subproblem 1 can improve the solution to the master problem.

Subproblem 2 (j = 2). The associated objective function is (coincidentally) the same
as for j = 2 in Iteration 1 (verify!). The optimum solution yields

VAN Bl B
X22 = (SO,O)T,ZZ - C = =50 - M
5. . S :
Note that X,, is actually the same extreme point as X,; . We use the subscript 2 for
notational convenience to represent Iteration 2.

From the results of the two subproblems, z; — ¢, < 0 indicates that 8,, associated

with ﬁzz enters the basic solution.
To determine the leaving variable, consider

AKX, (1,1)(50‘)) 50
Po=| 0 |=|o0 = |0
1 1 1

Thus, B™'P,, = (50,0,1)” . Because X = (x5, B11,%7)" = (28,1,1)", x5 leaves.
The new basis and its inverse are given as (verify!)

50 12 0
B={(0 1 0
1 0 1
% ~% 0
B! = 0 1 0
1 12 1
50 50

Xp = (By, Brxy) = B40,1,1)" = (33,1,5)"
AN AN
Cp = (CXp, C Xy, —M) = (50,60, —M)

Iteration 3.

Subproblem 1 (j =1). Youshould verify that the associated objective function is
Minimize w; = (% — 2)x; + (% — 4)x, — 5' + 48
The associated optimum solution is
ﬁn =(0,00,2] — ¢| = _% +48
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Subproblem 2 (j = 2). The objective function can be shown to equal (verify!)
Minimize w, = (38)(x; + x;) — M
The associated optimum solution is

ﬁz3 = (S,O)T,Z; - C; = _%4

Nonbasic Variable xs. From the definition of the master problem, z; — ¢; of xs must
be computed and compared separately. Thus,

Zs — C5 = CBB71P5 — Cs
= (1 + 5,48 — ZL —M)(1,0,0)" — 0
=1+%
Thus, x5 cannot improve the solution.

From the preceding information, 3,3 associated with X,; enters the basic solution.
To determine the leaving variable, consider

AKXy, (Ll)(f)) 5
P23 = 0 = 0 = 0
1

1 1

Thus, B'Py; = (55,0,55)" . Given X = (B, B11,x:)" = (41,17, the artificial variable
x7 leaves the basic solution (permanently).
The new basis and its inverse are thus given as (verify!)

50 12 5
B=(0 1 0
1 0 1
11 s
45 45 45
B'=| 0 1 0
1L 12 %0
45 45 45

X5 = (B2, Bu,Bx) = B'(40,1,1)" = (£, 1,3
/\ A A\
CB = (C2X22,C1X11,C2X23) = (50, 60, 5)

Iteration 4.
Subproblem 1 (j=1). w, = —2x; — 4x, + 48.Ityields z; — ¢| = w} = 0.
Subproblem 2 (j =2). w, = Ox; + Ox, + 48 = 48.

Nonbasic Variable x;s : z; — ¢; = 1. The preceding information shows that Itera-
tion 3 is optimal.
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We can compute the optimum solution of the original problem by back-substitution:
X = (xl,xz)r = 311)/\(11 = 1(0a12)T = (0, 12)T
X; = (x3,xy) = Bzzﬁzz + 323)223
= (3)(50,0" + ()(5,0)"
= (28,0)"

The optimum value of the objective function can be obtained by direct substitution.

PROBLEM SET 7.4A

1. In each of the following cases, determine the feasible extreme points graphically and
express the feasible solution space as a function of these extreme points. If the solution
space is unbounded, add a proper artificial constraint.

(@)
X +2x, =6

25+ x, =8

Xt x =1
X, =2

x,% =0

(b)
2%+ x, =2
3x; + 4x, = 12
XX, =0
(0
X1 — X =10
2x, = 40
X1,Xy = 0

2. In Example 7.4-1, the feasible extreme points of subspaces D;X; = b;,X; = 0 and
D,X, = by, X, = 0 can be determined graphically. Use this information to express the
associated master problem explicitly. Then show that the application of the simplex
method to the master problem produces the same entering variable 3 as that generated
by solving subproblems 1 and 2. Hence, convince yourself that the determination of the
entering variable B, is exactly equivalent to solving the two minimization subproblems.

3. Consider the following linear program:

Maximize z = x; + 3x, + S5x; + 2x,

subject to
X + 4x, =8
2x; + x, =9
Sx; + 3x, + 4x; =10
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X3—SX4S4

ution:
x3+ x, =10
X1,X2,X3,X4 = 0
Construct the master problem explicitly by using the extreme points of the subspaces, and
i then solve the resulting problem directly by the simplex method.
h 4. Solve Problem 3 using the decomposition algorithm and compare the two procedures.
on. j 5. Apply the decomposition algorithm to the following problem:
Maximize z = 6x; + 7x, + 3x3 + 5x, + x5 + x4
subject to
d X+ xt x3+x+x+ x=50
- X+ x, =10
‘{ X, =38
5x; + x4 =12
Xxs+ xg=5
x5 + 5x4 = 50
X13X0,X3,X4,X5,X = 0
6. Indicate the necessary changes for applying the decomposition algorithm to minimization
LPs. Then solve the following problem:
Minimize z = 5x; + 3x, + 8x3 — 5x,4
subject to
X+t x;3+ x5+ x, =25
S5x; + x, =20
Sxy — x, =5
x3+x, =20
X1,X,X3,%X4 = 0
the 7. Solve the following problem by the decomposition algorithm:
;rated Minimize z = 10y, + 2y, + 4y; + 8y, + s
f the subject to
dems.
yit 4y, =y =3
2y, + yat+ys =2
3y T oytys=4
» +2y, -y =10

YuY2Y3Y4,Ys = 0
(Hint: Solve the dual problem first by decomposition.)
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8. In the decomposition algorithm, suppose that the number of common constraints in the
original problem is z. Show that the objective function for subproblem j can be written as

Minimize w; = z; — ¢; = (C3RA; — C)X; + CpV

Ftj

The vector R represents the first 7 columns of B and V,,; is its (r + j) th column.

DUALITY

We have dealt with the dual problem at an elementary level in Chapter 4. This section
presents a more rigorous treatment of duality and allows us to verify the primal-dual
relationships that formed the basis for sensitivity analysis in Chapter 4. The presenta-
tion also lays the foundation for the development of parametric programming.

Matrix Definition of the Dual Problem

Suppose that the primal problem in equation form with m constraints and n variables
is defined as

Maximize z = CX
subject to
AX =b
X=0

Letting the vector Y = (y,y,, ...,V,,) represent the dual variables, the rules in
Table 4.2 produce the following dual problem:

Minimize w = Yb
subject to
YA =C
Y unrestricted

Note that some of the constraints YA = C may override unrestricted Y.

PROBLEM SET 7.5A

1. Prove that the dual of the dual is the primal.

2. Suppose that the primal is given as min z = {CX|AX = b,X = 0}. Define the corre-
sponding dual problem.

Optimal Dual Solution

This section establishes relationships between the primal and dual problems and shows
how the optimal dual solution can be determined from the optimal primal solution. Let
B be the current optimal primal basis, and define Cj as the objective function coeffi-
cients associated with the optimal vector Xg.
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Theorem 7.5-1. (Weak Duality Theory). For any pair of feasible primal and dual
solutions (X, Y), the value of the objective function in the minimization problem sets an
upper bound on the value of the objective function in the maximization problem. For the
optimal pair (X', Y"), the values of the objective functions in the two problems are equal.

Proof. The feasible pair (X, Y) satisfies all the restrictions of the two problems.
Premultiplying both sides of the constraints of the maximization problem with
(unrestricted) Y, we get

YAX = Yb = w (1)
Also, for the minimization problem, postmultiplying both sides by X(=0), we get
YAX = CX
or
YAX = CX = ¢ )

(The nonnegativity of the vector X is essential for maintaining the direction of the
inequality.) Combining (1) and (2), we get z = w for any feasible pair (X, Y).

Note that the theorem does not depend on labeling the problems as primal or
dual. What is important is the sense of optimization in each problem. Specifically, for
any pair of feasible solutions, the objective value in the maximization problem does
not exceed the objective value in the minimization problem.

The implication of the theorem is that, given z =< w for any feasible solutions, the
maximum of z and the minimum of w are achieved when the two objective values are
equal. A consequence of this result is that the “goodness” of any feasible primal and
dual solutions relative to the optimum may be checked by comparing the difference

(w — z)to“=5.The smaller the ratio AH) , the closer the two solutions are to being

optimal. The suggested rule of thumb does not imply that the optimal objective value is
Z+tw
2

What happens if one of the two problems has an unbounded objective value?
The answer is that the other problem must be infeasible. For if it is not, then both prob-
lems have feasible solutions, and the relationship z =< w must hold—an impossible
result because eitherz = + 00 orw = — 00 by assumption.

The next question is: If one problem is infeasible, is the other problem
unbounded? Not necessarily. The following counterexample shows that both the pri-
mal and the dual can be infeasible (verify graphically!):

Primal. Maximize z = {x; + x,|x; — x, = —1,—x; + x, = —1,x,x, = 0}
Dual. Minimize w = {=y; = y,|y1 =y, = 1,—y; + ¥, = Ly,y, = 0}
Theorem 7.5-2. Given the optimal primal basis B and its associated objective
coefficient vector Cy , the optimal solution of the dual problem is
Y = CBB_1

Proof. The proof rests on verifying two points: Y = CzB ! is a feasible dual solution
and z = w per Theorem 7.5-1.
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The feasibility of Y = Cz;B™! is guaranteed by the optimality of the primal,
z; — ¢; = 0 for all j—that is,

C:B'A-C=0

(See Section 7.2.1.) Thus, YA — C = 0 or YA = C, which shows that Y = C:Blisa
feasible dual solution.
Next, we show that the associated w = z by noting that

w=Yb = CzB'b (¢8)
Similarly, given the primal solution X; = B™'b, we get
Z = CBXB = CBBilb (2)

From relations (1) and (2), we conclude z = w.

The dual variables Y = CzB ™! are sometimes referred to as the simplex multipli-
ers. They are also known as the shadow prices, a name that evolved from the economic
interpretation of the dual variables (see Section 4.3.1).

Given P, is the jth column of A, we note from Theorem 7.5-2 that

Z]‘ - Cj = CBB‘IP]‘ - Cj = YP] - Cj

represents the difference between the left- and right-hand sides of the dual con-
straints. The maximization primal starts with z; — ¢; < 0 for at least one j, which
means that the corresponding dual constraint, YP; = ¢;, is not satisfied. When the
primal optimal is reached, we get z; — ¢; = 0, for all j, which means that the corre-
sponding dual solution Y = CzB™" becomes feasible. We conclude that while the pri-
mal is seeking optimality, the dual is automatically seeking feasibility. This point is
the basis for the development of the dual simplex method (Section 4.4) in which the
iterations start better than optimal and infeasible and remain so until feasibility is
acquired at the last iteration. This is in contrast with the (primal) simplex method
(Chapter 3), which remains worse than optimal but feasible until the optimal itera-
tion is reached.

Example 7.5-1

The optimal basis for the following LP is B = (P, P,). Write the dual and find its opti-
mum solution using the optimal primal basis.

Maximize z = 3x; + 5x,
subject to
X, + 2%, + x5 =5
—x; + 3x, + x4 =2
X1, X2, X3,%4 = 0
The dual problem is given as

Minimize w = S5y; + 2y,
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subject to
yi— =3
2y, + 3y, =5
Yy =0
We have Xj = (x;,x,)’; it follows that C; = (3,0). The optimal basis and its inverse

are given as
_( 1 0 4_f(1 0
b= (2 Daman— (1)

The associated primal and dual values are
(xl’x4)T = B_lb = (577)T
(ylvyZ) = CB]‘?'_1 = (3’0)

Both solutions are feasible and z = w = 15 (verify!). Thus, the two solutions are
optimal.

PROBLEM SET 7.5B

1. Verify that the dual problem of the numeric example given at the end of Theorem 7.5-1 is

correct. Then verify graphically that both the primal and dual problems have no feasible
solution.

2. Consider the following LP:

Maximize z = 50x; + 30x, + 10x;

subject to

2%+ x, =1

2x, = -5
4x, +x3;=6
X1,%2,X3 = 0

(a) Write the dual.
(b) Show by inspection that the primal is infeasible.

(¢) Show that the dual in (a) is unbounded.

(d) From Problems 1 and 2, develop a general conclusion regarding the relationship
between infeasibility and unboundedness in the primal and dual problems.
3. Consider the following LP:

Maximize z = 5x, + 12x, + 4x;
subject to
21— x, + 3x5 =2
x+2%+ x3+x,=5

X1,X9,%3,%4 = 0
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(a) Write the dual.

(b) In each of the following cases, first verify that the given basis B is feasible for the pri-
mal. Next, using Y = CzB™!, compute the associated dual values and verify whether
or not the primal solution is optimal.

(i) B=(P,P;) (iii) B = (P,P)y)
(ii) B = (P,,Py) (iv) B = (PP
4. Consider the following LP:

Maximize z = 2x; + 4x, + 4x; — 3xy4

subject to

3+ xtx =4

x +4x,+ t+tx,=38

X1, X0, X3,%4 = 0

(a) Write the dual problem.
(b) Verify that B = (P,,P;)is optimal by computing z; — ¢; for all nonbasic P; .
(c) Find the associated optimal dual solution.

5. An LP model includes two variables x; and x, and three constraints of the type =<.The
associated slacks are x3,x,, and xs. Suppose that the optimal basis is B = (P, P,,P3),and
its inverse is

0 -1 1
B'=|0 1 0
1 1 -1

The optimal primal and dual solutions are given as
XB = (xl)x27x3)T = (2,632)T
Y = (ny2y3) = (0,3,2)

Determine the optimal value of the objective function in two ways using the primal and
dual problems.

6. Prove the following relationship for the optimal primal and dual solutions:
SicBPY) = iy

where Cy = (¢y,¢3, -+ ,Cp) and Py = (ayy, az, cosay)’ fork = 1,2, ...,n ,and (B7'P))is
the ith element of B7'P,.

7. Write the dual of

Maximimize z = {CX|AX = b, X unrestricted}
8. Show that the dual of

Maximize z = {CX|AX = b,0 <L =X = U}

always possesses a feasible solution.

7.6 PARAMETRIC LINEAR PROGRAMMING

Parametric linear programming is an extension of the sensitivity analysis procedures
presented in Section 4.5. It investigates the effect of predetermined continuous varia-
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tions in the objective function coefficients and the right-hand side of the constraints on
the optimum solution.
Suppose that the LP is defined as

Maximize 7z = {CX

j=1

In parametric analysis, the objective function and right-hand side vectors, C and b, are
replaced with the parameterized functions C(?) and b(r), where ¢ is the parameter of
variation. Mathematically, ¢ can assume any positive or negative value. In practice,
however, ¢ usually represents time, and hence it assumes nonnegative values only. In
this presentation we will assume ¢ = 0 .

The general idea of parametric analysis is to start with the optimal solution at ¢ = (.
Then, using the optimality and feasibility conditions of the simplex method, we determine
the range 0 =< ¢ = 1, for which the solution at # = 0 remains optimal and feasible. In this
case, t; is referred to as a critical value. The process continues by determining successive
critical values and their corresponding optimal feasible solutions. The process will termi-
nate at + = ¢, when there is indication that either the last solution remains unchanged for
t > t, or that no feasible solution exists beyond that critical value.

Parametric Changes in C

Let X, B;, Cp(f) be the elements that define the optimal solution associated with criti-
cal #; (the computations start at ¢, = 0 with B, as its optimal basis). Next, the critical
value 7, and its optimal basis, if one exists, is determined. Because changes in C can
only affect the optimality of the problem, the current solution X3 = B;'b will remain
optimal for some ¢ = ¢, so long as the following optimality condition is satisfied:

z{t) = ¢;(t) = Cg()B;'P; — ¢i(t) = 0, for all j

The value of ¢, equals the largest ¢ > ¢, that satisfies all the optimality conditions.

Note that nothing in the inequalities requires C(¢) to be linear in #. Any function
C(?), linear or nonlinear, is acceptable. However, with nonlinearity the numerical
manipulation of the resulting inequalities may be cumbersome. (See Problem 5, Set
7.6a for an illustration of the nonlinear case.)

Example 7.6-1
Maximize z = (3 — 61)x, + (2 — 20)x, + (5 + 5t)x;

subject to

X +2x + x3=40

3x; + 2x; = 60

x; + 4x, =30

X,X5,%x3 = 0

We have

CH)=(CB—-60,2-2t,5+50)t=0

The variables x,, x5, and x; are slacks.
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Optimal Solution att = 7, = 0

Basic X, X, X3 X4 X5 X¢ Solution
z 4 0 0 1 2 0 160
% -4 1 S - 0 5
X 0 0 1o 30
Xg 2 0 =2 1 10

X, = (0,x3.%9)" = (5,30,10)"
Cp(f) = 2 — 24,5 + 5t,0)

1

;73 0
Bi'=| 0 3 O
-2 11

The optimality conditions for the current nonbasic vectors P, P,, and Ps are
(C(OB'P; — ¢i()j=1a5 = (4 + 1461 — 1,2 + 3 =0
Thus, X, remains optimal so long as the following conditions are satisfied:
4 +14t=0
1-t=0
2+3t=0

Because ¢ = 0, the second inequality stipulates that ¢ = 1 and the remaining two
inequalities are satisfied for all ¢ = 0. We thus have #, = 1, which means that Xp
remains optimal (and feasible) for 0 = ¢ = 1.

Att = 1,z,1) — c,f) = 1 — t equals zero and becomes negative for t > 1.Thus, P,
must enter the basis for ¢ > 1. In this case, P, must leave the basis (see the optimal
tableau at ¢ = 0). The new basic solution Xj is the alternative solution obtained at
t = 1 by letting P, enter the basis—that is, Xp = (x4, %3,X¢)" and B, = (P, P3,Pg).

Alternative Optimal Basisatt = t; = 1

1
B1= 0
0

o N
=)
=
o
Il
S =R
O NI NI
- o o

Thus,
X5, = (rxs%)" = Bi'b = (10,30,30)"
C(7) = (0,5 + 51,0)
The associated nonbasic vectors are P;,P,, and Ps, and we have 7.6.2
{C(OBT'P; — ¢;(O}j=1.25 = (?+—227‘[, -2+ 2t,5—+2—5’) =0

According to these conditions, the basic solution X, remains optimal for all £ = 1.
Observe that the optimality condition, =2 + 2¢ = 0, automatically “remembers” that
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X3, is optimal for a range of ¢ that starts from the last critical value t; = 1. This will
always be the case in parametric programming computations.

The optimal solution for the entire range of ¢ is summarized below. The value of z
is computed by direct substitution.

t X, X, X3 z

0=sr=1 0 5 30 160 + 140¢
t=1 0 0 30 150 + 150¢

PROBLEM SET 7.6A

1. In Example 7.6-1, suppose that ¢ is unrestricted in sign. Determine the range of f for which
X, remains optimal.

2. Solve Example 7.6-1, assuming that the objective function is given as
(@) Maximize z = (3 + 30)x; + 2x, + (5 — 61)x;
(b) Maximize z = (3 — 20)x; + 2 + f)x, + (5 + 20) x3
() Maximize z = (3 + f)x; + (2 + 20)x, + (5 — 1)x3
3. Study the variation in the optimal solution of the following parameterized LP given ¢ = 0.
Minimize z = (4 — )x; + (1 = 30)x, + 2 — 20)x,
subject to
3+ x +2x,=3
o two 4x; + 30, + 26, = 6
al XB x1+2x2+5x354
b’JS. P_; X1,X2,X3 =0

ptimal 4. The analysis in this section assumes that the optimal solution of the LP at f = 0 is

ned at obtained by the (primal) simplex method. In some problems, it may be more convenient
to obtain the optimal solution by the dual simplex method (Section 4.4). Show how the
parametric analysis can be carried out in this case, and then analyze the LP of Example
4.4-1, assuming that the objective function is given as

Minimize z = (3 + 0)x; + 2 + 40)x,, 1 = 0

5. In Example 7.6-1, suppose that the objective function is nonlinear in t(t = 0)and is
defined as

Maximize z = 3 + 26%)x; + (2 = 2%)x, + (5 — 1)x;

Determine the first critical value t,.

7.6.2 Parametric Changes in b

The parameterized right-hand side b(r) can only affect the feasibility of the problem.
The critical values of ¢ are thus determined from the following condition:

<" that X(t) = B'bo) = 0
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Example 7.6-2
Maximize z = 3x; + 2x, + 5x3
subject to
X1+ 2%+ x3=40—1¢
3x; + 2xy = 60 + 2f
x; + 4x, =30 -7t
X1, X%0,%3 = 0

Assume thatt = 0.
Att = t, = 0, the problem is identical with that in Example 7.6-1. We thus have

XBU = (x2’x3>x6)T = (5,30,10)T
1

;73 0
Bi'=| 0 3 0
-2 1 1
To determine the first critical value #,, we apply the condition Xp(0) = B;'b(r) = 0
which yields
Xy 5—t 0
X3 | = 30 + ¢ =10

X 10 — 3¢ 0

These inequalities are satisfied for 7 = Y meaning that #, = % and that the basis
B, remains feasible for the range 0 =t = % However, the values of the basic variables
X,, X3, and x¢ will change with 7 as given above.

The value of the basic variable x; (=10 — 3f) will equal zero at ¢ = 1, = 10 and will
become negative for ¢ > Y Thus,att = ? . we can determine the alternative basis B,
by applying the revised dual simplex method (see Problem 5, Set 7.2b for details). The
leaving variable is x; .

Alternative Basisat = 1, = 5
Given x is the leaving variable, we determine the entering variable as follows:
XBO = (x27x3>x6)Ta CBO = (2,5,0)
Thus,
{z; = ¢}jm1a5 = {CpBo'P; — ¢timias = (4,1.2)
Next, for nonbasic x;,j = 1,4,5, we compute
(Row of By! associated with x¢)(P;, Py, Ps) = (Third row of By")(Py, Py, Ps)

= (_25 1, 1)(1)1’ Py, PS)
=(2,-2,1)

The entering variable is thus associated with

-l |}
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Thus, P, is the entering vector.
The alternative basis is

2 1 1
B, = (P,P;,P)=(0 2 0
4 0 0
Thus,
o o !
Bi'=(0 5 0
1 5

The new Xp = (x,x3,x,)" .
The next critical value , is determined from the condition Xy (f) = B;'b(f) = 0,
which yields

x2 30 Z Tt 0
x| =130+¢t]=10
=10 + 3¢
X — 0

These condltlons show that B, remains feasible for 2 < ¢ < v,

Att=1 = 7, an alternative basis can be obtalned by the revised dual simplex
method. The leaving variable is x, because it corresponds to the condition yielding the
critical value ¢, .

Alternative Basis at 1 = 1, = 2,

Given x, is the leaving variable, we determine the entering variable as follows:

XB = (xz’x3’x4)T7 CB1 = (2’ 550)

1

Thus,
{z; = cli-15.6 = {CaBi'P; = ¢lim15.6 = (5.3,
Next, for nonbasic x;, j = 1, 5, 6, we compute
(Row of B;associated with x,)(P;,Ps,P¢) = (First row of B;')(P,,Ps, P,)
= (O’O’i)(PlaPs,Pﬁ)
= (3:0.7)

Because all the denommator clements, (3,0,3), are = 0, the problem has no feasible

solution for ¢ > 7 0 and the parametric analysisends att = 1, = E .

The optimal solution is summarized as

t X X, X3 z
0=¢r=? 0 5-—¢ 30+t 160 + 3t
D=r=2 0 o 30 + ¢ 165 + 3t

(No feasible solution exists)
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PROBLEM SET 7.6B

1. In Example 7.6-2,find the first critical value, 7, and define the vectors of B, in each of the
following cases:

(a) b() = (40 + 21,60 — 34,30 + 61!
() b() = (40 — 1,60 + 21,30 — 51)"
2. Study the variation in the optimal solution of the following parameterized LP givent = 0.
Minimize z = 4x; + x, + 2x3
subject to
3x;+ x; +2x3=3+3¢
dx, +3x, +2x3= 6 + 2t
X+ 2% +t5x=4—1t
X1,X2,X3 =0
3. The analysis in this section assumes that the optimal LP solution at t = 0 is obtained by
the (primal) simplex method. In some problems, it may be more convenient to obtain the
optimal solution by the dual simplex method (Section 4.4). Show how the parametric

analysis can be carried out in this case, and then analyze the LP of Example 4.4-1, assum-
ing that the right-hand-side vector is

b)) = 3 + 26,6 — 1,3 — 41)"
Assume t = 0.
4. Solve Problem 2 assuming that the right-hand side is changed to
b(f) = (3 + 32,6 + 2154 — )"

Further assume that ¢ can be positive, zero, or negative.

7.7 KARMARKAR INTERIOR-POINT METHOD

The simplex method obtains the optimum solution by following a path of adjacent
extreme points along the edges of the solution space. Although in practice the simplex
method has served well in solving large problems, theoretically the number of itera-
tions needed to reach the optimum solution can grow exponentially. In fact, research-
ers have constructed a class of LPs in which all feasible extreme points are visited
before the optimum is reached.

In 1984, N. Karmarkar developed a polynomial-time algorithm that cuts across
the interior of the solution space. The algorithm is effective for extremely large LPs.

We start by introducing the main idea of the Karmarkar method and then pro-
vide the computational details of the algorithm.

7.7.1 Basic Idea of the Interior-Point Algorithm
Consider the following (trivial) example:

Maximize z = x;
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subject to
O0=x =2
Using x;, as a slack variable, the problem can be rewritten as
Maximize z = x,
subject to
X1 +x,=2
XX =0

Figure 7.6 depicts the problem. The solution space is given by the line segment
AB. The direction of increase in z is in the positive direction of x;.

Let us start with any arbitrary interior (nonextreme) point C in the feasible space
(line AB). The gradient of the objective function (maximize z = x, ) at C is the direc-
tion of fastest increase in z. If we locate an arbitrary point along the gradient and then
project it perpendicularly on the feasible space (line AB), we obtain the new point D
with a better objective value z. Such improvement is obtained by moving in the direc-
tion of the projected gradient CD. If we repeat the procedure at D, we will determine a
new closer-to-optimum point E. Conceivably, if we move (cautiously) in the direction
of the projected gradient, we will “stumble” on the optimum point B. If we are mini-
mizing z (instead of maximizing), the projected gradient will correctly move us away
from point B toward the minimum at point A (x; = 0).

The given steps hardly define an algorithm in the normal sense, but the idea is
intriguing! We need some modifications that will guarantee that (1) the steps gener-
ated along the projected gradient will not “overshoot” the optimum point at B, and (2)
in the general n-dimensional case, the direction created by the projected gradient will

” FIGURE 7.6

Illustration of the general idea of
Karmarkar’s algorithm

Gradient of z
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7.7.2

not cause an “entrapment” of the algorithm at a nonoptimum point. This, basically, is
what Karmarkar’s interior-point algorithm accomplishes.

Interior-Point Algorithm

Several variants of Karmarkar’s algorithm are available in the literature. Our presenta-
tion follows the original algorithm. Karmarkar assumes that the LP is given as

Minimize z = CX

subject to
AX =10
IX=1
X=0

All the constraints are homogeneous equations except for the constraint 1X =
7.x; = 1, which defines an n-dimensional simplex. The validity of Karmarkar’s algo-
rithm rests on satisfying two conditions:

1. X =L .. ) satisfies AX = 0

2. minz =0

Karmarkar provides modifications that allow solving the problem when the second
condition is not satisfied. These modifications will not be presented here.

The following example illustrates how a general LP may be put in the homoge-
neous form AX = 0 with 1X = 1, which also provides X = (%,%,... ,%) as a feasible
solution (condition 1). A second example shows how the transformation can be made
to satisfy both conditions, albeit involving tedious computations.

Example 7.7-1
Consider the problem.
Maximize z = y; + ¥»
subject to
yit 2y, =2
yy2 =0

The constraint y; + 2y, < 2 is converted into an equation by augmenting a slack vari-
able y; = 0 to yield

yit+2, +y; =2
Now define
vty tyy=U

where U is sufficiently large so as not to eliminate any feasible points in the original
solution space. In our example, U = 5 will be adequate as can be determined from the
equation y; + 2y, + y; = 2.Augmenting a slack variable y, = 0, we obtain




nta-

. hgl
I

155
G
<

noge-
:s1ble
made

; vari-

riginal

ym the

7.7 Karmarkar Interior-Point Method 335

ity tysty, =5
We can homogenize the constraint y, + 2y, + Y3 =2 by multiplying the right-
hand side by (—yw because the latter fraction equals 1. This yields, after
simplification,
3y + 8y, +3y; =2y, =0

To convert y; + y, + y; + y,=5to a simplex, we define the new variable x; = %,
i =1, 2,3, 4,to obtain

Maximize z = 5x; + 5x,
subject to
3x; + 8x) + 3x3 - 2x, =0
X+ nt+t xn+ =1
x;=0,j=12734

Finally, we can ensure that the center X = (1,1 . .5y of the simplex is a feasible

point for homogeneous equations by subtracting from the left-hand side of each equa-
tion an artificial variable whose coefficient equals the algebraic sum of all the con-
straint coefficients on the left-hand side—that is, 3 + 8 + 3 — 2 = 12. The artificial
variables are then added to the simplex equation and are penalized appropriately in
the objective function. In our example, the artificial X5 is augmented as follows:

Maximize z = 5x; + 5x, — Mx;
subject to

3x1 + 8x2 + 3X3 - 2.X4 - 12x5 = O

x1+ X2+ X3+ X4+ x5=1

x;=0,j=12,..,5
11

For this system of equations, the new simplex center (5., -..,3) is feasible for the
homogeneous equation. The value M in the objective function is chosen sufficiently
large to drive x5 to zero level (compare with the M-method, Section 3.4.1).

Example 7.7-2

This example shows that any LP can satisfy conditions (1) and (2) required by
Karmarkar’s algorithm. The transformations are tedious and, hence, not recommended
in practice. Instead, a variation of the algorithm that does not require condition (2) is
advisable.

Consider the same LP of Example 7.8-1—namely,
Maximize z = y, + y,
subject to
yit2y,=2
Yy =0
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We start by defining the primal and dual problems of the LP:

Primal Dual
Maximize y, = y; + ¥» Minimize wy, = 2w,
subject to subject to

w, =1
yt2y,=2 2w121}=>w121
Yy, =0 wi,w, = 0

The primal and dual constraints can be put in equation forms as
VT2 +y3=2y;=0 €]
wi—w,=1Lw, =0
At the optimum y, = w, , which yields
yit+y,— 2w =0 2)
Selecting M sufficiently large, we have
ity tytwtw=M 3)
Now, converting (3) into an equation we get
yi+y,tystwtwts=Ms5=0 4)

Next, define a new variable s, . From (4) the following two equations hold if, and only
if, the condition s, = 1 holds:

y1+y2+y3+w1+w2+s1—Ms2=O
ywtymtytwtw s+ s, =M+ 1 (5

Now, given s, = 1 as stipulated by (5), the primal and dual equations (1) can be written
as

yi1+2,+ys—25=0
w,—w, —1s, =0 6)
Now, define
=M+ Dx,j =123
=M+ Dx;, j
= (M +1)
=M +1)

Substitution in equations (2), (5), and (6) will produce the following equations:

X6

X7

X1 + Xy - ZX4 =0
X1 =+ Xy + X3 + X4 + X5 + Xg — MX7 =0
X+ xtxt xytxstx+ x=1

x1+2x2+x3 - 2x7—_—0
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X4 — X5 - X7=0
% =0,j=12,..7

The final step calls for augmenting the artificial variable ys in the left-hand side of
each equation; the new objective function will call for minimizing yg, whose minimum
value must be zero (assuming the primal is feasible). Note, however, that Karmarkar’s
algorithm requires the solution

=(111111117
X = (385355585

to be feasible for AX = 0. This will be true for the homogeneous equations (with zero

right-hand side) if the associated coefficient of the artificial xg equals the (algebraic)

sum of all the coefficients on the left-hand side. It thus follows that the transformed LP
(1) is given as

Minimize z = xg

subject to
) X+ x — 2xy - Oxg =0
X+ x4 x+ Xyt X5+ xg — Mx; — (6 — Mxg =0
(3) X1+ 2x, + x5 - 2x; — 2xg =0
X4 — Xs - x + xg =10
(4) Y1ttt xtxs+txg+ ox o+ xg =1
oy x,=0,j=1,2,..,8

Note that the solution of this problem automatically yields the optimum solutions of
the primal and dual problems through substitution.

We now present the main steps of the algorithm. Figure 7.7 (a) provides a typical
illustration of the solution space in three dimensions with the homogeneous set
AX = 0 consisting only of one equation. By definition, the solution space consisting of
the line segment AB lies entirely in the two-dimensional simplex 1X = 1 and passes
through the feasible interior point (£, 13- In a similar fashion, Figure 7.7 (b) provides an
illustration of the solution space ABC in four dimensions with the homogeneous set
again consisting of one constraint only. In this case, the center of the three-dimensional
simplex is given by (,5,4,3).

Karmarkar’s algorithm starts from an interior point represented by the center of
the simplex and then advances in the direction of the projected gradient to determine a
new solution point. The new point must be strictly interior, meaning that all its coordi-
nates must be positive. The validity of the algorithm rests on this condition.

For the new solution point to be strictly interior, it must not lie on the boundaries
of the simplex. (In terms of Figure 7.7, points A and B in three dimensions and lines
AB, BC, and AC in four dimensions must be excluded.) To guarantee this result, a
sphere with its center coinciding with that of the simplex is inscribed tightly inside the
simplex. In the n-dimensional case, the radius r of this sphere equals ﬁ LA
smaller sphere with radius a 7 (0 < « < 1) will be a subset of the sphere, and any point

in the intersection of the smaller sphere with the homogeneous system AX = 0 will be
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FIGURE 7.7 X3
Illustrations of the simplex 1X = 1

(0,0,1)

Simplex 1X =1

Intersection of

Center of AX = 0and 1X = 1

simplex

(1,0,0)

(0,1,0)

X2

(a) Three dimensions

(0,0,0,1)

Simplex1X =1

Intersection of
AX =0and1X =1

C

Center of
simplex

(1,0,0,0)
(0,0,1,0)

0,1,0,0)

(b) Four dimensions
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an interior point, with strictly positive coordinates, Thus, we can move as far as possible
in this restricted space (intersection of AX = 0 and the a r-sphere) along the projected
gradient to determine the new (necessarily improved) solution point.

The new solution point no longer will be at the center of the simplex. For the pro-
cedure to be iterative, we need to bring the new solution point to the center of a sim-
plex. Karmarkar satisfies this requirement by proposing the following intriguing idea,
called projective transformation. Lct

X

Xii i
yi= m—i=12,....,n

X

Xy
j=1
where x,; is the ith element of the current solution point X,. The transformation is
valid, because all x;; > 0 by design. You will also notice that Sty =1lorly =1 , by

definition. This transformation is equivalent to
D;/'X
1D, 'X
where D, is a diagonal matrix whose ith diagonal elements equal x,,. The transforma-

tion maps the X-space onto the Y-space uniquely because we can directly show that
the last equation yields

DY

X= 1y

By definition, min CX = 0. Because 1D, Y is always positive, the original linear pro-
gram is equivalent to

Minimize z = CD,Y
subject to
AD,Y =0

1Yy =1

Y=0
The transformed problem has the same format as the original problem. We can thus
start with the simplex center Y = (. ,+) and repeat the iterative step. After each
iteration, we can compute the values of the original X variables from the Y solution.

We show now how the new solution point can be determined for the transformed

problem. At any iteration k, the problem is given by

Minimize z = CD,Y

subject to
ADkY = 0

Y lies in the ar -sphere

Because the ar -sphere is a subset of the space of the constraints 1X = 1 and X = 0,
these two constraints can be dispensed with. As a result, the optimum solution of the
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preceding problem lies along the negative projection of the gradient ¢, (minimization)
and is given as

Cp
Yoew = Yo — ari—
eyl

11

Ayt

%)T and ¢, is the projected gradient, which can be shown to be

¢, = [I - P(PP')'P|(CD))’

r-(2)

The selection of « is crucial to enhancing the efficiency of the algorithm. Nor-
mally, we select « as large as possible to acquire large jumps in the solution. However,
by choosing « too large, we may come too close to the prohibited boundaries of the
simplex. There is no general answer to this problem, but Karmarkar suggests the use of
o ="5"

The steps of Karmarkar’s algorithm are

where Y, =

where

Step 0. Start with the solution point X, = t: ...
a = n 3‘ 1

1 =1
,>) and compute r = oD and

General step k. Define
D, = diag {x;, ... X}

and compute

X D Yiew
LT DY e
where
¢, = [I — P'(PP")'P)(cD,)"
Example 7.7-3
Minimize z = 2x; + 2x, — 3x;
subject to

—x1—2x2+3x3=0
x1+ x2+ X3=1

X1,X2,X3 =0
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The problem satisfies the two conditions imposed by the interior-point algorithm—
namely,
X = (x1’x2’x3)r = (%%’%)T
satisfies both constraints and the optimum solution
X' = (x1,x5,x3)" = (0,.6,.4)"
yields z = 0.

Iteration 0.

Yo = G6.3.3)'

Iteration 1.

D, = (2,2,-3)

1
3
0
0
AD, = (-1, 23(

-1 _% _§1 _é %
<PP7)=<1 11)‘71 =<o

1 0 0
I-PPPY'P=(0 1 ol
00 1

Owi—O

O O wim
Owi—O

Wik O
N

|

-5 4 1
Thus,
2
_ 25 -20 -5\ 3 25
¢, =T —P(PP)'P)(cDy) =5 20 16 4| %|=-20
-5 4 1)\ -5
It then follows that

25% + (—20)° + (—57
loll = f ZHCI A EF o710
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Thus,
Yoew = 533" — § X 5 X z5mm X (25,20, —5)"
= (.263340,.389328,.347332)"
Next,
1D,Y,.. = 4(1,1,1)(.263340,.389328,.347332)" = }
Now,

1
DOYnew _ §YHEW

X, = = Y, = (:263340,.389328,.347332)"

1])OYnew B %
2, = 26334
Iteration 2.
263340 0 0
D, = (22-3) 0 389328 0 |=(526680,778656,~1.041996)
0 0 347332
263340 0 0
AD, = (-1,-2,3)| 0 389328 0 | = (—.263340,~.778656,1.041996)
0 0 347332
-1
(26334 —778656 1.041996\[ 20330 1N\ sermar 0
(PP = _ 778656 1|| =
1 1 1 e 0 333333
100\ [—263340 1
- PIPPTY'P = [0 1 0|-|—778656 1 <'56Z)727 332333)
001/ \1.04199% 1 :
263340 —.778656 1.041996
1 1 1
627296 — 449746 — 177550
_ | —449746 322451 127295
_177550 127295 050254
Thus,
627296 — 449746 —177550\ 526680
¢, = (I - PPy 'P)(cD))’ = | —449746 322451 127295 | 778656
~177550 127295 050254 )\ —1.041996
165193
— | —118435
— 046757

It then follows that
||cp|| = V165193 + (—.11843;5)2 + (-—.046757)2 = 208571
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Thus,
Yoew = G:3:3) = 5 X Uz X as71(-165193, —.118435, —.046757)"
= (.261479,.384849, .353671)"
Next,
263340 0 0 261479 068858
D\Y,,=| 0 389328 0 384849 | = |.149832
0 0 347332\ 353671 122841
1D,Y,., = .341531
Now,
X, = D _ (500
Phnew 359677
z, = 201615

Repeated application of the algorithm will move the solution closer to the opti-
mum point (0, .6, .4). Karmarkar does provide an additional step for rounding the opti-
mal solution to the optimum extreme point.

PROBLEM SET 7.7A

1. Use TORA to show that the solution of the transformed LP given at the end of
Example 7.7-2 does yield the optimal primal and dual solutions of the parent problem.
(Hint: Use M=10 and make sure that TORA’s output gives at least 5 decimal points
accuracy.)

2. Transform the following LP to Karmarkar’s format.

LI =
[9%)
(98]
(95

Maximize z = y; + 2y,
subject to
yi—y, =2
2y +y, =4

Y. Y2 =0

3. Carry out one additional iteration in Example 7.7-3, and show that the solution is moving
toward the optimum z = 0.

30 . . : :
\h \ 4. Carry out three iterations of Karmarkar’s algorithm for the following problem:
356
204 | Maximize z = 4x; + x; + x4

subject to

2%+ 2%, +x3—x, =0
X1+ x+x3+x,=1
X1, X9, X3,%4 = 0

(Hint: The problem must be converted to Karmarkar format first.)
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5. Carry out three iterations of Karmarkar’s algorithm for the following linear program:
Maximize z = 2x; + x;
subject to
X tx=4
X% =0

(Hint: The problem must be converted to Karmarkar format first.)
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COMPREHENSIVE PROBLEMS
7.1 Suppose that you are given the points
A =(6,4,6,-2), B = (4,12,—4,8), C = (—4,0,8,4)

Develop a systematic procedure that will allow determining whether or not each of
the following points can be expressed as a convex combination of A, B, and C:

(a) (3,5,4,2)
) (5,8,4,9)
7.2 Consider the following LP:
Maximize z = 3x; + 2x,
subject to
X +2x, =6
2%, + x, =8
X+ =1
X% =0

Determine the optimum simplex tableau (use TORA for convenience), and then directly
use the information in the optimum simplex tableau to determine the second best
extreme-point solution (relative to the “absolute” optimum) for the problem. Verify the
answer by solving the problem graphically. (Hint: Consult the extreme points that are
adjacent to the optimum solution.)

7.3 Interval Programming. Consider the following LP:

Maximize z = {CX|L = AX = U,X = 0}
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where L and U are constant column vectors. Define the slack vector such that
AX + Y = U. Show that this LP is equivalent to

Maximize z = {CX|[AX + Y=U,0=Y =U - L)X = 0}
Use the proposed procedure to solve the following LP:

Minimize z = 5x; — 4x, + 6x;

subject to
20 = x; + Tx, + 3x; = 46
10=3x— x,+ x3=20
Wiley. 18 =2x; +3x, — x;=35
-5 00, X%0,%3 = 0

7.4 Consider the following 0-1 integer LP:
Minimize z = {CX|AX = b,X = (0,1)}
Suppose that z i, is a known upper bound on z. Define the constraint

min In(ng){p.,(b - AX) + (Z min CX)} =0

r=0x=(0,1
where w = 0. This constraint does not violate any of the restrictions of the original 0-1
problem. The min-max problem is one way of identifying the “tightest” such constraint
through proper selection of p(=0). Show that the proposed mixed 0-1 definition for deter-
mining p actually reduces to solving an ordinary LP problem. (Hint: The integer restric-

tion X = [0,1] is equivalent to the continuous range 0 = X =< 1. Use the dual problem to
define the desired LP)

7.5 The optimum solution of the LP in Problem 7-2 is given as x=2x= {,and z = 3
Plot the change in optimum z with 6 given that x; = %O + 6 , where 6 is unrestricted in

sign. Note that x;, = ]3—0 + 8 tracks x; above and below its optimal value.
7.6 Suppose that the optimum linear program is represented as
Maximize z = ¢y — D (z; — ¢)x;
JjeNB
subject to

X =x — Eo&,v]vxj,z =12,....m
jeNB

all x;and x; = 0

et where NB is the set of nonbasic variables. Suppose that for a current basic variable X =x

Dest we impose the restriction x; = d;, where d, is the smallest integer greater than x;. Estimate
iy th an upper bound on the optimum value of z after the constraint is augmented to the prob-
Ihat are lem. Repeat the same procedure assuming that the imposed restriction is x; =< ¢;, where ¢,
is the largest integer smaller than x].

7.7 Consider the following minimization LP:

Minimize z = (10t — 4)x, + (4 — 8)x,




subject to
2%, + 2x, + x3 =38
4x, + 2x, +x,=6-—2t
X1, X0, X3,%4 = 0
where —c0 = ¢ = 0. The parametric analysis of the problem yields the following results:
—00 < t = —5: Optimal basis is B = (P,,P,)
—5 =t = —1:Optimal basisis B = (P, P,)
—1 = t = 2:Optimal basis is B = (P,,P;)

Determine all the critical values of ¢ that may exist for# = 2.

8.1
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CHAPTER 8

Goal Programming

The LP models presented in the preceding chapters are based on the optimization of a
single objective function. There are situations where multiple (possibly conflicting)
objectives may be more appropriate. For example, aspiring politicians may promise to
reduce the national debt and, simultaneously, offer income tax relief. In such situations,
it may be impossible to find a single solution that optimizes the conflicting objectives.
Instead, we may seek a compromise solution based on the relative importance of each
objective.

This chapter presents the goal programming technique for solving multiobjective
models. The principal idea is to convert the original multiple objectives into a single
goal. The resulting model yields what is usually referred to as an efficient solution
because it may not be optimum with respect to all the conflicting objectives of the
problem.

A GOAL PROGRAMMING FORMULATION

The idea of goal programming is illustrated by an example.

Example 8.1-1

Fairville is a small city with a population of about 20,000 residents. The city council is in
the process of developing an equitable city tax rate table. The annual taxation base for
real estate property is $550 million. The annual taxation bases for food and drugs and
for general sales are $35 million and $55 million, respectively. Annual local gasoline
consumption is estimated at 7.5 million gallons. The city council wants to develop the
tax rates based on four main goals.

L. Tax revenues must be at least $16 million to meet the city’s financial commit-
ments.

2. Food and drug taxes cannot exceed 10% of all taxes collected.

347
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3. General sales taxes cannot exceed 20% of all taxes collected.
4. Gasoline tax cannot exceed 2 cents per gallon.

Let the variables x,, x;, and x, represent the tax rates (expressed as proportions of
taxation bases) for property, food and drugs, and general sales; and define the variable
x, as the gasoline tax in cents per gallon. The goals of the city council are then
expressed as

550x, + 35x; + 55x, + .075x, = 16 (Tax revenue)

35x; = .1(550x, + 35x; + 55x, + .075x,)  (Food/drug tax)

55x, = .2(550x, + 35x; + 55x, + .075x,)
X 2

8

IA

General tax)

(
(

IA

Gasoline tax)
Xpy Xpy Xy Xg = 0
These constraints are then simplified as
550x, + 35x; + 55x, + .075x, = 16
55x, — 31.5x; + 5.5x, + 0075x, = 0
110x, +  7x; — 44x, + .015x, =0
Xp =2
Xpy Xy Xy Xg = 0

Each of the inequalities of the model represents a goal that the city council aspires
to satisfy. Most likely, however, the best we can do is seek a compromise solution
among these conflicting goals.

The manner in which goal programming finds a compromise solution is to convert
each inequality into a flexible goal in which the corresponding constraint may be vio-
lated, if necessary. In terms of the Fairville model, the flexible goals are expressed as
follows:

550x, + 35x; + 55x, + .075x, + 57 — s = 16
55x, — 31.5x; + 5.5x, + .0075x, + s5—5;,=0
110x, +  7x; — 44x, + .015x, + s1—s57=0
By T8 =8y =2
Xy, Xp Xgy Xg = 0
shs =0,i=12734

The nonnegative variables s; and s;, i =1, 2, 3, 4, are called deviational variables
because they represent the deviations above and below the right-hand side of con-
straint i.

The deviational variables s; and s; are by definition dependent and, hence, cannot
be basic variables simultaneously. This means that in any simplex iteration, at most one
of the two deviational variables can assume a positive value. If the original ith inequal-
ity is of the type =< and its 57 > 0, then the ith goal will be satisfied; otherwise, if s5; > 0.
goal i will not be satisfied. In essence, the definition of s and s7 allows us to meet or vio-
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late the ith goal at will. This is the type of flexibility that characterizes goal program-
ming when it seeks a compromise solution. Naturally, a good compromise solution aims
at minimizing the amount by which each goal is violated.

In the Fairville model, given that the first three constraints are of the type =
and the fourth constraint is of the type <, the deviational variables s1, 5%, 55, and s of
the problem represent the amounts by which the respective goals are violated. Thus,
the compromise solution tries to satisfy the following four objectives as much as
possible:

Minimize G, = s}
Minimize G, = s}
Minimize G; = s}

Minimize G, = s

These functions are minimized subject to the constraint equations of the model.

How can we optimize a multiobjective model with possibly conflicting goals?
Two methods have been developed for this purpose: (1) the weights method and
(2) the preemptive method. Both methods are based on converting the multiple objec-
tives into a single function as detailed in Section 8.2.

PROBLEM SET 8.1A

1. Formulate the Fairville tax problem, assuming that the town council is specifying an addi-
tional goal, G, that requires gasoline tax to equal at least 10% of the total tax bill.

2. The NW Shopping Mall conducts special events to attract potential patrons. The two most
popular events that seem to attract teenagers, the young/middle-aged group, and senior
citizens are band concerts and art and craft shows. The costs per presentation of the band
and art show are $1500 and $3000, respectively. The total (strict) annual budget allocated

to the two events is $15,000. The mall manager estimates the attendance of the events as
follows:

Number attending per presentation

Event Teenagers Young/middle age Seniors
Band concert 200 100 0
Art show 0 400 250

The manager has set the minimum annual goals of 1000, 1200, and 800 for the attendance
of teenagers, the young/middle-aged group, and seniors, respectively. Formulate the prob-
lem as a goal programming model.

3. Ozark University admissions office is processing freshman applications for the upcoming
academic year. The applications fall into three categories: instate, out-of-state, and inter-
national. The male—female ratios for in-state and out-of-state applicants are 1:1 and
3:2, respectively. For the international students, the corresponding ratio is 8:1. The
American College Test (ACT) score is an important factor in accepting new students.
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Statistics indicate that the average ACT scores for in-state, out-of-state, and international
students are 27, 26, and 23, respectively. The committee on admissions has established the
following desirable goals for the new freshman class:

(a) The incoming class is at least 1200 freshmen.

(b) The average ACT score for all incoming students is at least 25.

(c) International students constitute at least 10% of the incoming class.
(d) The female-male ratio is at least 3:4.

(e) Out-of-state students constitute at least 20% of the incoming class.
Formulate the problem as a goal programming model.

Circle K farms consume 3 tons of special feed daily. The feed—a mixture of limestone,
corn, and soybean meal—must satisfy the following nutritional requirements:

Calcium. Atleast 0.8% but not more than 1.2%

Protein. Atleast 22%

Fiber. Atmost 5%

The following table gives the nutritional content of the feed ingredients.

1b per Ib of ingredient
Ingredient Calcium Protein Fiber
Limestone .380 .00 .00
Corn .001 .09 .02
Soybean meal .002 .50 .08

Formulate the problem as a goal programming model, and state your opinion regarding
the applicability of goal programming to this situation.

Mantel produces a toy carriage, whose final assembly must include four wheels and two
seats. The factory producing the parts operates three shifts a day. The following table pro-
vides the amounts produced of each part in the three shifts.

Units produced per run

Shift Wheels Seats
1 500 300
2 600 280
3 640 360

Ideally, the number of produced wheels is exactly twice that of the number of seats.
However, because the production rates vary from shift to shift, exact balance in pro-
duction may not be possible. Mantel is interested in determining the number of pro-
duction runs in each shift that minimizes the imbalance in the production of the parts.
The capacity limitations restrict the number of runs to between 4 and 5 for shift 1,10
and 20 for shift 2, and 3 and 5 for shift 3. Formulate the problem as a goal program-
ming model.

Camyo Manufacturing produces four parts that require the use of a lathe and a drill
press. The two machines operate 10 hours a day. The following table provides the time in
minutes required by each part:
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Production time in min

Part Lathe Drill press
1 S 3
2 6 2
3 4 6
4 7 4

It is desired to balance the two machines by limiting the difference between their total
operation times to at most 30 minutes. The market demand for each part is at least 10
units. Additionally, the number of units of part 1 may not exceed that of part 2. Formulate
the problem as a goal programming model.

. Two products are manufactured on two sequential machines. The following table gives

the machining times in minutes per unit for the two products.

Machining time in min

Machine Product 1 Product 2

1 5 3
2 6 2

The daily production quotas for the two products are 80 and 60 units, respectively. Each
machine runs 8 hours a day. Overtime, though not desirable, may be used if necessary to
meet the production quota. Formulate the problem as a goal programming model.

Vista City Hospital plans the short-stay assignment of surplus beds (those that are not
already occupied) 4 days in advance. During the 4-day planning period about 30, 25, and
20 patients will require 1-,2-, or 3-day stays, respectively. Surplus beds during the same
period are estimated at 20, 30,30, and 30. Use goal programming to resolve the problem
of overadmission and underadmission in the hospital.

The Von Trapp family is in the process of moving to a new city where both parents have
accepted new jobs. In trying to find an ideal location for their new home, the Von Trapps
list the following goals:

(a) Itshould be as close as possible to Mrs. Von Trapp’s place of work (within 1 of a *
mile).

(b) It should be as far as possible from the noise of the airport (at least 10 miles).

(¢c) It should be reasonably close to a shopping mall (within 1 mile).

Mr. and Mrs. Von Trapp use a landmark in the city as a reference point and locate the
x-y coordinates of work, airport, and shopping mall at (1, 1), (20, 15), and (4, 7), respec-
tively (all distances are in miles). Formulate the problem as a goal programming model.
(Note: The resulting constraints are not necessarily linear.)

Regression Analysis. In a laboratory experiment, suppose that y; is the ith observed
(independent) yield associated with the dependent observational measurements
xpi=1,2, ...,m;j=1,2, ..., n.Itis desired to determine a linear regression fit into
these data points. Given b;, j = 0, 1, ..., n, as the regression coefficients, all b; are deter-
mined such that the sum of the absolute deviations between the observed and the esti-
mated yield is minimized. Formulate the problem as a goal programming model.
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11. Chebyshev Problem. An alternative goal for the regression model in Problem 10 is to
minimize over b; the maximum of the absolute deviations. Formulate the problem as a
goal programming model.

GOAL PROGRAMMING ALGORITHMS

This section presents two algorithms for solving goal programming. Both methods con-
vert the multiple goals into a single objective function. In the weights method, the sin-
gle objective function is the weighted sum of the functions representing the goals of
the problem. The preemptive method starts by prioritizing the goals in order of impor-
tance. The model is then optimized using one goal at a time such that the optimum
value of a higher priority goal is never degraded by a lower priority goal.

The proposed two methods do not generally produce the same solution. Neither
method, however, is superior to the other because each technique is designed to satisfy
certain decision-making preferences.

The Weights Method
Suppose that the goal programming model has n goals and that the ith goal is given as
Minimize G, i =1,2, ..., n
The combined objective function used in the weights method is defined as
Minimize z = w,G; + w,G, + ... + w,G,

The parameter w;, i = 1, 2, ..., n,represents positive weights that reflect the decision
maker’s preferences regarding the relative importance of each goal. For example,
w,; = 1, for all i, signifies that all goals carry equal weights. The determination of the
specific values of these weights is subjective. Indeed, the apparently sophisticated ana-
lytic procedures developed in the literature (see, e.g., Cohon, 1978) are still rooted in
subjective assessments.

Example 8.2-1

TopAd, a new advertising agency with 10 employees, has received a contract to pro-
mote a new product. The agency can advertise by radio and television. The following
table provides data about the number of people reached by each type of advertise-
ment, and the cost and labor requirements.

Data/min advertisement

Radio Television
Exposure (in millions of persons) 4 8
Cost (in thousands of dollars) 8 24
Assigred employees 1 2

The contract prohibits TopAd from using more than 6 minutes of radio advertisement.
Additionally, radio and television advertisements need to reach at least 45 million peo-
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ple. TopAd has set a budget goal of $100,000 for the project. How many minutes of
radio and television advertisement should TopAd use?

Let x; and x, be the minutes allocated to radio and television advertisements. The
goal programming formulation for the problem is given as

Minimize G, = si (Satisfy exposure goal)

Minimize G, = s, (Satisfy budget goal)

subject to
dx; + 8x, + 57 — 57 = 45 (Exposure goal)
8x; + 24x, + 5 —s; =100 (Budget goal)
X+ 2x, = 10 (Personnel limit)
X = 6 (Radio limit)

F o ot o
X1, X2, 81, §1, $2, 82, =0

TopAd’s management assumes that the exposure goal is twice as important as the
budget goal. The combined objective function thus becomes

Minimize z = 2G, + G, = 25 + 55
The optimum solution (obtained by TORA) is
z =10
X1 = 5 minutes, x, = 2.5 minutes, s] = 5 million persons

All the remaining variables equal zero.

The fact that the optimum value of z is not zero indicates that at least one of the
goals is not met. Specifically, s = 5 means that the exposure goal (of at least 45 million
persons) is missed by 5 million individuals. Conversely, the budget goal (of not exceed-
ing $100,000) is not violated because s; = 0.

Goal programming yields only an efficient solution to the problem, which is not
necessarily optimum. For example, the solution x; = 6 and x, = 2 yields the same
exposure (4 X 6 + 8 X 2 = 40 million persons) but costs less (8 X 6 + 24 X 2=
$96,000). In essence, what goal programming does is to find a solution that simply
satisfies the goals of the model with no regard to optimization. Such “deficiency” in
finding an optimum solution raises doubts about the viability of goal programming as
an optimizing technique (see Example 8.2-3 for further discussion).

PROBLEM SET 8.2A

1. Consider Problem 1, Set 8.1a dealing with the Fairville tax situation. Solve the problem,
assuming that all five goals have the same weight. Does the solution satisfy all the
goals?

2. In Problem 2, Set 8.1a, suppose that the goal of attracting young/middle-aged people is
twice as important as either of the other two categories (teens and seniors). Find the asso-
ciated solution, and check if all the goals have been met.

3. In the Ozark University admission situation described in Problem 3, Set 8.1a, suppose
that the limit on the size of the incoming freshman class must be met, but the remaining
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requirements can be treated as flexible goals. Further, assume that the ACT score goal is
twice as important as any of the remaining goals.

(a) Solve the problem, and specify whether or not all the goals are satisfied.
(b) If,in addition, the size of the incoming class can be treated as a flexible goal that is
twice as important as the ACT goal, how would this change affect the solution?
4. In the Circle K model of Problem 4, Set 8.1a, is it possible to satisfy all the nutritional
requirements?
5. InProblem 5, Set 8.1a, determine the solution, and specify whether or not the daily pro-
duction of wheels and seats can be balanced.

6. In Problem 6, Set 8.1a, suppose that the market demand goal is twice as important as that
of balancing the two machines, and that no overtime is allowed. Solve the problem, and
determine if the goals are met.

7. In Problem 7, Set 8.1a, suppose that the production quota for the two products needs to
be met, using overtime if necessary. Find a solution to the problem, and specify the
amount of overtime, if any, needed to meet the production quota.

8. In the Vista City Hospital of Problem 8, Set 8.1a, suppose that only the bed limits repre-
sent flexible goals and that all the goals have equal weights. Can all the goals be met?

9. The Malco Company has compiled the following table from the files of five of its employ-
ees to study the relationship between income and age, education (expressed in number of
college years completed), and experience (expressed in number of years in the business).

Age (yr) Education (yr) Experience (yr) Annual income ($)

30 4 5 40,000
39 5 10 48,000
44 2 14 38,000
48 0 18 36,000
37 3 9 41,000

Use the goal programming formulation in Problem 10, Set 8.1a to fit the data into
the linear equationy = by + byx; + byx, + bsxs.
10. Solve Problem 9 using the Chebyshev Method proposed in Problem 11, Set 8.1a.

The Preemptive Method

In the preemptive method, the decision maker must rank the goals of the problem in
order of importance. Given an n-goal situation, the objectives of the problem are writ-
ten as

Minimize G; = p; (Highest priority)

Minimize G, = p, (Lowest priority)

The variable p; is either s or s; representing goal i. For example, in the TopAd model
(Example 8.2-1),p; = s{ and p, = s,.

The solution procedure considers one goal at a time, starting with the highest
priority, G, and terminating with the lowest, G,. The process is carried out such that
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the solution obtained from a lower priority goal never degrades any higher priority
solutions.

The literature on goal programming presents a “special” simplex method that
guarantees the nondegradation of higher priority solutions. The method uses the
column-dropping rule that calls for eliminating a nonbasic variable x;withz; —¢; # 0
from the optimal tableau of goal G, before solving the problem of goal G, ;. The rule
recognizes that such nonbasic variables, if elevated above zero level in the optimiza-
tion of succeeding goals, can degrade (but never improve) the quality of a higher prior-
ity goal. The procedure requires modifying the simplex tableau so that it will carry the
objective functions of all the goals of the model.

The proposed column-dropping modification needlessly complicates goal pro-
gramming. In this presentation, we show that the same results can be achieved in a
more straightforward manner using the following steps:

Step 0. Identify the goals of the model and rank them in order of priority:
Gi=pi>G=p> .. >G,=p,

Seti=1.

Stepi. Solve LP; that minimizes G, and let p; = p; define the corresponding opti-
mum value of the deviational variable p;. If i = n, stop; LP, solves the n-goal
program. Otherwise, augment the constraint p; = p; to the constraints of the
G-problem to ensure that the value of p; will not be degraded in future prob-
lems.Seti = i + 1,and repeat step i.

The successive addition of the special constraints p; = p; may not be as “elegant”
theoretically as the column-dropping rule. Nevertheless, it achieves the exact same
result. More important, it is easier to understand.

Some may argue that the column-dropping rule offers computational advan-
tages. Essentially, the rule makes the problem smaller successively by removing vari-
ables, whereas our procedure makes the problem larger by adding new constraints.
However, considering the nature of the additional constraints (p, = p), we should be
able to modify the simplex algorithm to implement the additional constraint implicitly
through direct substitution of the variable p;. This substitution affects only the con-
straint in which p; appears and, in effect, reduces the number of variables as we move
from one goal to the next. Alternatively, we can use the bounded simplex method of
Section 7.3 by replacing p; = p; with p; < p;, in which case the additional constraints
are accounted for implicitly. In this regard, the column-dropping rule, theoretical
appeal aside, does not appear to offer a particular computational advantage. For the
sake of completeness, however, we will demonstrate in Example 8.2-3 how the column-
dropping rule works.

Example 8.2-2

The problem of Example 8.2-1 is solved by the preemptive method. Assume that the
exposure goal has a higher priority.
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Step 0.

Step 1.

Step 2.

Goal Programming

G, > G,
G,: Minimize s7 (Satisfy exposure goal)
G,: Minimize s, (Satisfy budget goal)
Solve LP;.
Minimize G, = s{
subject to
dx, + 8x, + 57 — 51 = 45 (Exposure goal)
8x; + 24x, + 55 — 57 = 100 (Budget goal)
X+ 2x = 10 (Personnel limit)
X = 6 (Radio limit)

I
X1, X2y 815 815 82, S220

The optimum solution (determined by TORA) is x; = 5 minutes, x, = 2.5
minutes,s; = 5 million people, with the remaining variables equal to zero. The
solution shows that the exposure goal, G, is violated by 5 million persons.

In LP,, we have p; = s7. Thus, the additional constraint we use with the
G,-problem is s; = 5.
We need to solve LP,, whose objective function is
Minimize G, = s,

subject to the same set of constraints as in step 1 plus the additional con-
straint s = 5. We can solve the new problem by using TORA’s MODIFY
option to add the constraint s = 5.

The additional constraint s; = 5 can also be accounted for by substituting
out sT in the first constraint. The result is that the right-hand side of the expo-
sure goal constraint will be changed from 45 to 40, thus reducing LP, to

Minimize G, = s,
subject to
4x; + 8x, — 57 40 (Exposure goal)
8x; + 24x, + 55 —s; =100 (Budget goal)
10 (Personnel limit)
Xy = 6 (Radio limit)

IA

X1 + 2x2

-4 -
X1, X, 81, 85,5, = 0

The new formulation is one variable less than the one in LP;, which is the
general idea advanced by the column-dropping rule.

In reality, the optimization of LP, is not necessary in this example because
the optimum solution to problem G, already yields s; = 0. Hence, the solu-
tion of LP; is automatically optimum for LP, as well (you can verify this
answer by solving LP, with TORA).
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Next, we use an example to show that a better solution for the problem of
Example 8.2-2 can be obtained if the preemptive method is used to optimize objectives
rather than to satisfy goals. The example also serves to demonstrate the column-
dropping rule for solving goal programs.

Example 8.2-3
The goals of Example 8.2-2 can be restated as
Priority 1: Maximize exposure (P;)
Priority 2: Minimize cost (P,)
Mathematically, the two objectives are given as

Maximize P, = 4x; + 8x,  (Exposure)

5 Minimize P, = 8x; + 24x, (Cost)
. The The specific goal limits for exposure and cost ( = 45 and 100) are removed because the
S simplex method will determine them optimally.
he The new problem can thus be stated as
Maximize P; = 4x; + 8x,
Mlnlmlze P2 = 8x1 + 24x2
) subject to
["—&v x1 + 2x2 = 10
, X1 =6
uting
€Xpo- X, X, =0
) We first solve the problem using the procedure introduced in Example 8.2-2.
Step 1. Solve LP,.
Maximize P, = 4x; + 8x,
subject to
X+ 2x, =10
X =6
X1, X2 =10
the The optimum solution (obtained by TORA) is x; = 0, x, = 5 with
P, = 40, which shows that the most exposure we can get is 40 million
ecause persons.
= solu- Step 2. Add the constraint 4x; + 8x, = 40 to ensure that goal G, is not degraded.
fv this Thus, we solve LP, as

Minimize P, = 8x; + 24x,
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subject to
x; +2x, =10
X =6
4x, + 8x, = 40 (Additional constraint)
X, X, =0

The TORA optimum solution of LP, is P, = $ 96,000, x, = 6 minutes, and x, =
2 minutes. It yields the same exposure (P; = 40 million people) but at a smaller cost
than the one in Example 8.2-2 where the main objective is to satisfy rather than opti-
mize the goals.

The same problem is solved now by using the column-dropping rule. The rule calls
for carrying the objective rows associated with all the goals in the simplex tableau.

LP, (Exposure Maximization): The LP, simplex tableau carries both objective rows,
P, and P,. The optimality condition applies to the P;-objective row only. The P,-row
plays a passive role in LP;, but must be updated with the rest of the simplex tableau in
preparation for the optimization of LP,.

LP, is solved in two iterations as follows:

Iteration Basic X3 X, 51 55 Solution
. T

P, -8 —24 0 0 0

5 1 2 1 0 10

5, 1 0 0 1 6

2 P, 0 0 4 0 40

P, 4 0 12 0 120

X ! 1. 0 5

55 1 0o 8 1 6

The last tableau yields the optimal solution x; = 0, x, = 5,and P; = 40.

The column-dropping rule calls for eliminating any nonbasic variable x; with
z; — ¢; # 0 from the optimum tableau of LP; before LP, is optimized. The reason for
doing so is that these variables, if left unchecked, could become positive in lower prior-
ity optimization problems, which would degrade the quality of higher priority solutions.

LP, (Cost Minimization): The column-dropping rule eliminates s, (with z; — ¢; = 4).
We can see from the P,-row that if s, is not eliminated, it will be the entering variable at
the start of the P,-iterations and will yield the optimum solution x; = x, = 0, which will
degrade the optimum objective value of the P;-problem from P, = 40to P, = 0. (Tryit!)

The P,-problem is of the minimization type. Following the elimination of sy, the
variable x; with z; — ¢; = 4 (>0) can improve the value of P,. The following table
shows the LP, iterations. The elements of P;-row has been deleted because the row no
longer serves a purpose in the optimization of LP,.
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Iteration Basic X X, K ) Solution
1 P 40
P, 4 0 0 120
x ] 1 0 5
S5 1 0 1 6
2 P, 40
P, 0 0 -4 96
X 0 1 -1 2
X3 1 0 1 6

The optimum solution (x; = 6, x, = 2) with a total exposure of P; = 40 and a total
cost of P, = 96 is the same as obtained earlier.

PROBLEM SET 8.2B

1. In Example 8.2-2, suppose that the budget goal is increased to $110,000. The exposure

goal remains unchanged at 45 million persons. Show how the preemptive method will
reach a solution.

2. Solve Problem 1, Set 8.1a (Fairville tax model) using the following priority ordering for
the goals: G; > G, > G; > G, > Gs.

3. Consider Problem 2, Set 8.1a, which deals with the presentation of band concerts and art
shows at the NW Shopping Mall. Suppose that the goals set for teens, the young/middle-

aged group, and seniors are referred to as G,, G, and G;, respectively. Solve the problem
for each of the following priority orders:

@ G, > G, > G;
®) G; > G, > G

Show that the satisfaction of the goals (or lack of it) can be a function of the priority
order.

4. Solve the Ozark University model (Problem 3, Set 8.1a) using the preemptive method,
assuming that the goals are prioritized in the same order given in the problem.

SELECTED REFERENCES
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COMPREHENSIVE PROBLEMS
8.1' The Warehouzer Company manages three sites of forestland for timber production and

reforestation with the respective areas of 100,000, 180,000, and 200,000 acres. The main

'Based on K. P. Rustagi, Forest Management Planning for Timber Production: A Goal Programming
Approach, Bulletin No. 89, Yale University Press, New Haven, CT, 1976.
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8.2

timber products include three categories: pulpwood, plywood, and sawlogs. Several refor-
estation alternatives are available for each site, each with its cost, number of rotation years
(i.e., number of years from seedling size until harvesting), return from rent, and produc-
tion output. The following table summarizes this information.

Annual $/acre Annual m¥/acre
- Rotation
Site Alternative Cost Rent yr Pulpwood Plywood  Sawlogs
1 Al 1000 160 20 12 0 0
A2 800 117 25 10 0 0
A3 1500 140 40 5 6 0
A4 1200 195 15 4 7 0
AS 1300 182 40 3 0 7
A6 1200 180 40 2 0 6
A7 1500 135 50 3 0 5
2 Al 1000 102 20 9 0 0
A2 800 55 25 8 0 0
A3 1500 95 40 2 5 0
A4 1200 120 15 3 4 0
A5 1300 100 40 2 0 5
A6 1200 90 40 2 0 4
3 Al 1000 60 20 7 0 0
A2 800 48 25 6 4 0
A3 1500 60 40 2 0 4
A4 1200 65 15 2 0 3
A5 1300 35 40 1 0 5

To guarantee sustained future production, each acre of reforestation in each alternative
requires that as many acres as years in rotation be assigned to that alternative. The rent
column represents the stumpage value per acre.

The goals of Warehouzer are as follows:
1. Annual outputs of pulpwood, plywood, and sawlogs are 200,000, 150,000, and 350,000

cubic meters, respectively.

2. Annual reforestation budget is $2.5 million.
3. Annual return from land rent is $100 per acre.

How much land at each site should be assigned to each alternative?
A charity organization runs a children’s shelter. The organization relies on volunteer
service from 8:00 A.M. until 2:00 PM. Volunteers may begin work at the start of any
hour between 8:00 A.M. and 11:00 A.M. A volunteer works a maximum of 6 hours and a
minimum of 2 hours, and no volunteers work during lunch hour between 12:00 noon and
1:00 PM. The charity has estimated its goal of needed volunteers throughout the day (from
8:00 A.M. to 2:00 PM., and excluding the lunch hour between 12:00 noon and 1:00 PM.) as
15,16, 18,20, and 16, respectively. The objective is to decide on the number of volunteers
that should start at each hour (8:00, 9:00, 10:00, 11:00, and 1:00) such that the given goals
are met as much as possible.

9.1
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Integer Linear Programming

Integer linear programs (ILPs) are linear programs in which some or all the variables
are restricted to integer (or discrete) values. ILP has important practical applications.
Unfortunately, despite decades of extensive research, computational experience with
ILP has been less than satisfactory. To date, there does not exist an ILP computer code
that can solve integer programming problems consistently.

ILLUSTRATIVE APPLICATIONS

The ILP applications in this section start with simple formulations and then graduate
to more complex ones. For convenience, we define a pure integer problem as the one in
which all the variables are integer. Otherwise, the problem is a mixed integer program.

Example 9.1-1 (Capital Budgeting)

Five projects are being evaluated over a 3-year planning horizon. The following table
gives the expected returns for each project and the associated yearly expenditures.

Expenditures (million $)/yr

Project 1 2 3 Returns (million $)
1 S 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30
Available funds (million $) 25 25 25

Which projects should be selected over the 3-year horizon?

361
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The problem reduces to a “yes-no” decision for each project. Define the binary
variable x; as

v = 1, if project j is selected
i 0, if project j is not selected

The ILP model is thus given as

Maximize z = 20x; + 40x, + 20x; + 15x, + 30x;
subject to
le + 4x2 + 3X3 + 7X4 + 8x5 = 25

X, + Tx, + 9x3 + 4x, + 6x5 = 25
8x; + 10x, + 2x3 + x4 + 10x5 = 25
xl’x23x35x4ax5 = (091)

The optimum integer solution (obtained by TORA!) is x; = x, = x3 = x4 = 1,
xs = 0, with z = 95 (million $). The solution shows that all but project 5 must be
selected.

It is interesting to compare the continuous LP solution with the ILP solution. The
LP optimum, obtained by replacing x; = (0, 1) with 0 = x; =1 for all j, yields
x; = .5789, x, = x3 = x4 = 1, x5 = .7368, and z = 108.68 (million $). The solution is
meaningless because two of the variables assume fractional values. We may round the
solution to the closest integer values, which yields x; = x5 = 1. However, the resulting
solution is infeasible because the constraints are violated. More important, the concept
of rounding should not apply here because x; represents a “yes-no” decision for which
fractional values are meaningless.

PROBLEM SET 9.1A2

1. In the capital budgeting model of Example 9.1-1, suppose that project 5 must be selected
if either project 1 or project 3 is selected. Modify the model to include the new restriction
and find the optimum solution with TORA.

2. Five items are to be loaded in a vessel. The weight w; and volume v, together with the
value r,; for item i are tabulated below.

Itemi  Unit weight, w; (tons) Unit volume, v; (yd®) Unit worth, r; (100 §)

(O RV S
~N DN W oo W
& LN 00—
S N3

The maximum allowable cargo weight and volume are 112 tons and 109 yd®, respec-
tively. Formulate the ILP model, and find the most valuable cargo using TORA.

1To use TORA, select Tnteger programming from Main venu. After inputting the problem (file Ch9ToraCapital
BudgetEx9-1-1.txt), go to output screen and select autonated 258 to obtain the optimum solution.

2Problems 3 to 6 are adapted from Malba Tahan, El Hombre Que Calculaba, Editorial Limusa, Mexico City,
1994, pp. 39-182.
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13Ty 3. Suppose that you have 7 full wine bottles, 7 half-full, and 7 empty. You would like to
) divide the 21 bottles among three individuals so that each will receive exactly 7.
Additionally, each individual must receive the same quantity of wine. Express the prob-
lem as an ILP constraint equations, and find a solution using TORA. (Hint: Use a dummy
objective function in which all the objective coefficients are zeros.)

4. An eccentric sheikh left a will to distribute a herd of camels among his three children:
Tarek receives at least one-half of the herd, Sharif gets at least one-third, and Maisa gets
at least one-ninth. The remainder goes to a charity organization. The will does not specify
the size of the herd except to say that it is an odd number of camels and that the named
charity receives exactly one camel. How many camels did the sheikh leave in the estate,
and how many did each child get?

S. A farm couple is sending their three children to the market to sell 90 apples with the
objective of educating them about money and numbers. Karen, the oldest, carries
50 apples; Bill, the middle child, carries 30; and John, the youngest, carries only 10. The
parents have stipulated five rules: (a) The selling price is either $1 for 7 apples or $3 for
-1 1 apple, or a combination of the two prices; (b) each child may exercise one or both

b options of the selling price; (c) each of the three children must return with exactly the
same amount of money; (d) each child’s income must be in whole dollars (no cents
The allowed); and (e) the amount received by each child must be the largest possible under
elds the stipulated conditions. Given that the three children are able to sell all they have, how
i is can they satisfy their parents’ conditions?
7 the 6. Once upon a time, there was a captain of a merchant ship who wanted to reward three
il

crew members for their valiant effort in saving the ship’s cargo during an unexpected

storm in the high seas. The captain put aside a certain sum of money in the purser’s office

and instructed the first officer to distribute it equally among the three mariners after the
ship had reached shore. One night, one of the sailors, unbeknownst to the others, went to

- the purser’s office and decided to claim (an equitable) one-third of the money in advance.
After dividing the money into three equal shares, an extra coin remained, which the
mariner decided to keep (in addition to one-third of the money). The next night, the sec-
ond mariner got the same idea and, repeating the same three-way division with what was
left, ended up keeping an extra coin as well. The third night, the third mariner also took a
third of what was left, plus an extra coin that could not be divided. When the ship reached
shore, the first officer divided what was left of the money equally among the three
mariners, also to be left with an extra coin. To simplify things, the first officer put the extra
coin aside and gave the three mariners their allotted equal shares. How much money was
in the safe to start with? Formulate the problem as an ILP, and find the solution using
TORA. (Hint: The problem has a countably infinite number of integer solutions. For con-
venience, assume that we are interested in determining the smallest sum of money that
satisfies the problem. Then, boosting the resulting solution by 1, augment it as a lower
bound and obtain the next smallest solution. Continuing in this manner, a general solu-
tion pattern will evolve.)

7. You have the following three-letter words: AFT, FAR, TVA, ADV, JOE, FIN, OSF, and
KEN. Suppose that we assign numeric values to the alphabet starting with A = 1 and
ending with Z = 26. Each word is scored by adding the numeric codes of its three letters.
For example, AFT has ascore of 1 + 6 + 20 = 27. You are to select five of the given
eight words that yield the maximum total score. Simultaneously, the selected five words
must satisfy the following conditions:

“apital (sum of letter 1) = (sum of letter 2) o (sum of letter 3)

'
D‘EUQ

Lal
S b
) €1

5 A

scores scores scores
Formulate the problem as an ILP, and find the optimum solution using TORA.




364 Chapter9 Integer Linear Programming

8. The Record-a-Song Company has contracted with a rising star to record eight songs. The
durations of the different songs are 8,3,5,5,9, 6,7, and 12 minutes, respectively. Record-
a-Song uses a two-sided cassette tape for the recording. Each side has a capacity of
30 minutes. The company would like to distribute the songs on the two sides in a balanced
manner. This means that the length of the songs on each side should be about the same, as
much as possible. Formulate the problem as an ILP, and find the optimum solution.

9. In Problem 8, suppose that the nature of the melodies dictates that songs 3 and 4 cannot
be recorded on the same side. Formulate the problem as an ILP. Would it be possible to
use a 25-minute tape (each side) to record the eight songs? If not, use ILP to determine
the minimum tape capacity needed to make the recording.

Example 9.1-2 (Fixed-Charge Problem)

I have been approached by three telephone companies to subscribe to their long dis-
tance service in the United States. MaBell will charge a flat $16 per month plus $.25 a
minute. PaBell will charge $25 a month but will reduce the per minute cost to §.21. As
for BabyBell, the flat monthly charge is $18, and the cost per minute is $.22. I usually
make an average of 200 minutes of long-distance calls a month. Assuming that I do not
pay the flat monthly fee unless I make calls and that I can apportion my calls among all
three companies as I please, how should I use the three companies to minimize my
monthly telephone bill?

This problem can be solved readily without ILP. Nevertheless, it is instructive to
formulate it as an integer program.
Define

x; = MaBell long-distance minutes per month
x, = PaBell long-distance minutes per month
x; = BabyBell long-distance minutes per month
yp = 1lifx; > 0and0Oifx;, =0
y, = 1lifx, > 0and0ifx, =0
y3=1ifx; > 0and0ifx; = 0
We can ensure that y; will equal 1 if x; is positive by using the constraint
x;=My,j=123

The value of M should be selected sufficiently large so as not to restrict the variables x;
artificially. Because I make about 200 minutes of phone calls a month, then x; = 200
for all j, and it is safe to select M = 200.

The complete model is

Minimize z = 25x; + 21x, + 22x; + 16y, + 25y, + 18y;
subject to
X, + xy + x5 = 200
X = 200y,
X = 200y,
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X3 = 200y,
X1, X, X3 = 0

Y1 Y2, ¥3 = (0, 1)

The formulation shows that the jth monthly flat fee will be part of the objective
function z only if y; = 1, which can happen only if x; > 0 (per the last three constraints
of the model). If x; = 0 at the optimum, then the minimization of z, together with the
fact that the objective coefficient of y; is strictly positive, will force yj to equal zero, as
desired.

The optimum solution (file Ch9ToraFixedChargeEx9-1-2.txt) yields x; = 200,
y3 = 1, and all the remaining variables are equal to zero, which shows that BabyBell
should be selected as my long-distance carrier. Observe that the information conveyed
by y; = 1is redundant because the same result is implied by x; > 0 (= 200). Actually,
the main reason for using y;, y,, and y; is to account for the monthly flat fee. In effect,
the three binary variables convert an ill-behaved (nonlinear) model into an analyti-
cally tractable formulation. This conversion has resulted in introducing the integer
(binary) variables in an otherwise continuous problem.

The concept of “flat fee” is typical of what is known in the literature as the fixed
charge problem.

PROBLEM SET 9.1B

1. Jobco is planning to produce at least 2000 widget on three machines. The minimum lot size
on any machine is 500 widget. The following table gives the pertinent data of the situation.

Machine Setup cost Production cost/unit Capacity (units)
1 300 2 600
2 100 10 800
3 200 5 1200

Formulate the problem as an ILP, and find the optimum solution using TORA.

2. Oilco is considering two potential drilling sites for reaching four targets (possible oil
wells). The following table provides the preparation costs at each of the two sites and the
cost of drilling from site i to targetj(i = 1, 2; j = 1, 2, 3, 4).

Drilling cost (million $) to target

Site 1 2 3 4 Preparation cost (million $)
1 2 1 8 5 5
2 4 6 3 1 6

Formulate the problem as an ILP, and find the optimum solution using TORA.

3. Three industrial sites are considered for locating manufacturing plants. The plants
send their supplies to three customers. The supply at the plants and the demand at the
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customers, together with the unit transportation cost from the plants to the customers, are
given in the following table.

1 2 3 Supply

1 $10 $15 $12 1800
2 $17 $14 $20 1400
3 $15 $10 $11 1300

Demand 1200 1700 1600

In addition to the transportation costs, fixed costs also are incurred at the rate of
$12,000, $11,000, and $12,000 for plants 1,2, and 3, respectively. Formulate the problem as
an ILP and find the optimum solution using TORA.

4. Repeat Problem 3 assuming that the demands at each of customers 2 and 3 are changed
to 800.

Example 9.1-3 (Set Covering Problem)

To promote on-campus safety, the U of A Security Department is in the process of
installing emergency telephones at selected locations. The department wants to install
the minimum number of telephones provided that each of the campus main streets is
served by at least one telephone. Figure 9.1 maps the principal streets (A to K) on
campus.

It is logical to place the telephones at the intersections of streets so that each tele-
phone will serve at least two streets. Figure 9.1 shows that the layout of the streets
requires a maximum of eight telephone locations.

Define
‘= 1, atelephone is installed in location j
4 0, otherwise
FIGURE 9.1
1 Street A @ Street B 3
Street map of the U of A campus
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The constraints of the problem require installing at least one telephone on each of the
11 streets (A to K). Thus, the model becomes

Minimize z = x; + X, + x5 + x4 + x5 + x5 + X, + xg

subject to

x +x =1 (Street A)
X + x3 =1 (Street B)

X4 + X5 =1 (StreetC)
X7 +x3=1 (Street D)

Xe + x5 =1 (StreetE)

X, + X6 =1 (StreetF)

X, + x4 =1 (StreetG)
X4 + x5 =1 (Street H)

X, + x4 =1 (Streetl)

X5 +x3=1 (StreetlJ)

X3 + X5 =1 (StreetK)

x=0,1,j=12 ...,8

The optimum solution of the problem (obtained by TORA, file Ch9ToraSetCover
Ex9-1-3.txt) requires installing four telephones at intersections 1, 2, 5, and 7. The prob-
lem has alternative optima.

The preceding model is typical of what is generically known as the set covering
problem. In this model, all the variables are binary. For each constraint, all the left-
hand-side coefficients are 0 or 1, and the right-hand side is of the form (=1). The objec-
tive function always minimizes c;x; + ¢,x, + ... + Xy Where ¢; > 0 for all j =1,
2, ..., n.In the present example, ¢; = 1 for all j. However, if ¢; represents the installa-
tion cost in location j, then these coefficients may assume values other than 1.

PROBLEM SET 9.1C

1. ABCis an LTL trucking company that delivers loads on a daily basis to five customers.
The following table provides the customers associated with each route:

Route Customers
1 1,2,3,4
2 4,3,5
3 1,2,5
4 2,3,5
5 1,4,2
6 1,3,5
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The segments of each route are dictated by the capacity of the truck delivering the
loads. For example, on route 1, the capacity of the truck is sufficient to deliver the loads to
customers 1,2,3, and 4 only. The following table lists distances (in miles) among the truck
terminal (ABC) and the five customers.

ABC 1 2 3 4 5

ABC 0 10 12 16 9 8
1 10 0 32 8 17 10
2 12 32 0 14 21 20
3 16 8 14 0 15 18
4 9 17 21 15 0 11
5 8 10 20 18 11 0

The objective is to determine the least distance needed to make the daily deliveries
to all five customers. Though the solution may result in a customer being served by more
than one route, the implementation phase will use only one such route. Formulate the
problem as an ILP and solve using TORA.

The U of A is in the process of forming a committee to handle the students’ grievances.
The directive received from the administration is to include at least one female, one male,
one student, one administrator, and one faculty member. Ten individuals (identified, for
simplicity, by the letters a to j) have been nominated. The mix of these individuals in the
different categories is given as follows:

Category Individuals
Females a,bcde
Males fghij
Students ab,cj
Administrators ef
Faculty dghi

The U of A wants to form the smallest committee with representation from each of
the five categories. Formulate the problem as an ILP, and find the optimum solution using
TORA.

Washington County includes six towns that need emergency ambulance service. Because
of the proximity of some of the towns, a single station may serve more than one commu-

nity. The stipulation is that the station must be within 15 minutes of driving time from the
towns it serves. The table below gives the driving times in minutes among the six towns.

1 2 3 4 5 6

0 23 14 18 10 32
23 0 24 13 22 11
14 24 0 60 19 20
18 13 60 0 55 17
10 22 19 55 0 12
32 11 20 17 12 0

(o N R N

Formulate an ILP whose solution will produce the smallest number of stations and
their locations. Find the solution using TORA.




9.1 lllustrative Applications 369

L

-
7 ]
FIGURE 9.2
L T T Museum layout for Problem 4, Set 9.1¢

4. The treasures of King Tut are on display in a museum in New Orleans. The layout of the
museum is shown in Figure 9.2, with the different rooms joined by open doors. A guard
standing at a door can watch two adjoining rooms. The museum wants to ensure guard
presence in every room, using the minimum number possible. Formulate the problem as
an ILP, and find the optimum solution with TORA.

Example 9.1-4 (Either-or Constraints)

Jobco uses a single machine to process three jobs. Both the processing time and the
due date (in days) for each job are given in the following table. The due dates are mea-
sured from the zero datum, the assumed start time of the first job.

Job Processing time (days) Due date (days) Late penalty $/day
1 5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the minimum late-penalty sequence for
processing the three jobs.
Define

x; = Start date in days for job j (measured from the zero datum)

The problem has two types of constraints: The noninterference constraints (guarantee-
ing that jobs are not processed concurrently) and the due date constraints, Consider
the noninterference constraints first.

Two jobs i and j with processing time p, and p; will not be processed concurrently
if either x; = Xj T p;orx; = x; + p; depending on whether job j precedes job i, or vice
versa. Because all mathematical programs deal with simultaneous constraints only,
we transform the either-or constraints by introducing the following auxiliary binary

variable:
1 b
yij = 0,

For M sufficiently large, the either-or constraint is converted to the following simulta-
neous constraints

My; + (x; —

if i precedes j
if j precedes i

xj) = p;and M(1 — yij) + (xj - x) = p;
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The conversion guarantees that only one of the two constraints can be active at
any one time. If y; = 0, the first constraint is active, and the second is redundant
(because its left-hand side will include M, which is much larger than p;). If y; = 1, the
first constraint is redundant, and the second is active.

Next, the due date constraint is considered. Given d; is the due date for job j, let s;
be an unrestricted variable. Then, the associated constraint is

X+ p;+ s =d

If 5, = 0, the due date is met, and if 5; < 0, a late penalty is incurred. Using the
substitution
= ot — o« o

s;=5 — 5,885 =0

the constraint becomes
t = —

Xpt+sp—s=d—p

The late penalty cost is proportional to s; .
The model for the given problem is

Minimize z = 19s7 + 125, + 34s3

subject to
X — X, + My, = 20
—x; + X, - My, =5-M
X1 - X3 + Myqs =15
X + x;3 - Myy; =5-M
X, — X3 + My =15
- X+ x3 — My, =20—-M
X, + 57— 57 =25-5
X, + 55— 5 =22-20
X +s55—s53=35-15

T
X1, X2, X3, 81, 81, §2, §2, 53, S320

Y125 Y13, Y23 = (0» 1)

The integer variables— yi,, y;3, and y,; —are introduced to convert the either-or
constraints into simultaneous constraints. The resulting model is a mixed ILP.

To solve the model, we choose M = 1000, a value that is larger than the sum of the
processing times for all three activities.

The optimal solution (obtained by TORA, file Ch9ToraEitherOrEx9-1-4.txt3) is
x; = 20, x,, = 0,and x; = 25.This means that job 2 starts at time 0, job 1 starts at time
20, and job 3 starts at time 25, thus yielding the optimal processing sequence 2 — 1 — 3.
The solution calls for completing job 2 at time 0 + 20 = 20, job 1 at time =
20 + 5 = 25,and job3 at25 + 15 = 40 days.Job 3 is delayed by 40 — 35 = 5 days past
its due date at a cost of 5 X $34 = $170.

3Because TORA does not accept a negative right-hand side, the variable (RHS-), whose value is always 1,
assumes the role of the right-hand side of the constraints.
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PROBLEM SET 9.1D

1. A game board consists of nine equal squares. You are required to fill each square with a
number between 1 and 9 such that the sum of the numbers in each row, each column, and
each diagonal equals 15. Use ILP to determine the number in each square such that no
two adjacent numbers in any row, column, or diagonal are equal. Solve with TORA.

2. A machine is used to produce two interchangeable products. The daily capacity of the
machine can produce at most 20 units of product 1 and 10 units of product 2.
Alternatively, the machine can be adjusted to produce at most 12 units of product 1 and
22 units of product 2 daily. Market analysis shows that the maximum daily demand for the
two products combined is 35 units. Given that the unit profits for the two respective prod-
ucts are $10 and $12, which of the two machine settings should be selected? Formulate
the problem as an ILP, and find the optimum using TORA. (Note: This two-dimensional
problem can be solved by inspecting the graphical solution space. This is not the case for
the n-dimensional problem.)

3. Gapco manufactures three products, whose daily labor and raw material requirements
are given in the following table.

Required daily labor Required daily raw material
Product (hr/unit) (Ib/unit)
1 3 4
4 3
3 5 6

The profits per unit of the three products are $25, $30, and $22, respectively. Gapco
has two options for locating its plant. The two locations differ primarily in the availability
of labor and raw material as shown in the following table:

Location Auvailable daily labor (hr) Available daily raw material (Ib)

1 100 100
2 90 120

Formulate the problem as a mixed ILP, and use TORA to determine the optimum
location of the plant.

Consider the job-shop scheduling problem that produces two end products using a single
machine. The precedence relationships among the eight operations are summarized in
Figure 9.3. Let p; be the processing time for operations j (=1, 2, ..., n). The due dates,
measured from the zero datum, for products 1 and 2, are d 1 and d,, respectively. An oper-

ation, once started, must be completed before another starts. Formulate the problem as a
mixed ILP.

&

FIGURE 9.3

Precedence relationships for the job-shop

(&

e 0 Product 1 situation of Problem 4, Set 9.1d
e Product 2

(®
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5. Jaco owns a plant in which three products are manufactured. The labor and raw material
requirements for the three products are given in the following table.

Required daily labor Required daily raw material
Product (hr/unit) (Ib/unit)
1 3 4
2 4 3
3 5 6
Daily availability 100 100

The profits per unit for the three products are $25, $30, and $45, respectively. If prod-
uct 3 is to be manufactured at all, then its production level must be at least 5 units daily.
Formulate the problem as a mixed ILP, and find the optimal mix using TORA.

6. Show how the nonconvex shaded solution spaces in Figure 9.4 can be represented by a set
of simultaneous constraints. Then use TORA to find the optimum solution that maxi- 9.2.1
mizes z = 2x; + 3x, subject to the solution space given in (a). -

7. Suppose that it is required that any k out of the following 7 constraints must be active:
8i (X], X35 oees xn) = bia i = 17 27 e, m

Show how this condition may be represented.

8. In the following constraint, the right-hand side may assume one of the values, by, b, ...,
and b,,,.

g(xh X2, "-7)('.}1)S b17 b25 Ly Orbm

Show how this condition is represented.

FIGURE 9.4

Solution spaces for Problem 6,
Set 9.1d

9.2 INTEGER PROGRAMMING ALGORITHMS

The ILP algorithms are based on exploiting the tremendous computational success of
LP. The strategy of these algorithms involves three steps.

Step 1. Relax the solution space of the ILP by deleting the integer restriction on all
integer variables and replacing any binary variable y with the continuous
range 0 = y =< 1.The result of the relaxation is a regular LP.

Step 2.  Solve the LP, and identify its continuous optimum.
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Step 3. Starting from the continuous optimum point, add special constraints that
iteratively modify the LP solution space in a manner that will eventually ren-
der an optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints
in step 3.

1. Branch-and-bound (B&B) method
2. Cutting plane method

Although neither method is consistently effective computationally, experience shows
that the B&B method is far more successful than the cutting plane method. This point
is discussed further in this chapter.

Branch-and-Bound (B&B) Algorithm

The first B&B algorithm was developed in 1960 by A. Land and G. Doig for the gen-
eral mixed and pure ILP problem. Later, in 1965, E. Balas developed the additive algo-
rithm for solving ILP problems with pure binary (zero or one) variables. The additive
algorithm computations were so simple (mainly addition and subtraction) that it was
hailed as a possible breakthrough in the solution of general ILP# Unfortunately, the
algorithm failed to produce the desired computational advantages. Moreover, the algo-
rithm, which initially appeared unrelated to the B&B technique, was shown to be but a
special case of the general Land and Doig algorithm.

This section will present the general Land-Doig B&B algorithm only. A numeric
example is used to explain the details.

Example 9.2-1
Maximize z = 5x; + 4x,
subject to
X t+tx =35
10x; + 6x, = 45
X;, X, nonnegative integer

The lattice points (dots) in Figure 9.5 define ILP solution space. The associated LP
problem, LPO, is defined by removing the integer restrictions. Its optimum solution is
x, =375, x, = 1.25,and z = 23.75.

Because the optimum LPO solution does not satisfy the integer requirements, the
B&B algorithm modifies the solution space in a manner that eventually identifies the

*A general ILP can be expressed in terms of binary (0-1) variables as follows. Given an integer variable x
with a finite upper bound u (i.e.,0 = x < u ), then

x = 2%, + 2y + 2%, + L+ 2%y,

The variables yy, y,, ... ,and y, are binary, and the index k is the smallest integer satisfying 2¢*! — 1 = x.
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Feasible integer points

4 ¢—

3 6 Optimum(continuous):
x,=3.75,x, =125
z=23.75

2

1 e

FIGURE 9.5 A\ -
ILP solution space of Example 9.2-1 0 1 2 3 4 5 6

ILP optimum. First, we select one of the integer variables whose optimum value at LPO
is not integer. Selecting x, (=3.75) arbitrarily, the region 3 < x; < 4 of the LPO solu-
tion space contains no integer values of x; and can be eliminated as nonpromising. This
is equivalent to replacing the original LPO with two new LPs, LP1 and LP2, defined as

LP1 space = LPO space + (x; = 3)
LP2 space = LPO space + (x; = 4)

Figure 9.6 depicts the LP1 and LP2 spaces. The two spaces contain the same feasi-
ble integer points of the original ILP, which means that, from the standpoint of the inte-
ger solution, dealing with LP1 and LP2 is the same as dealing with the original LPO.

If we intelligently continue to remove the regions that do not include integer solu-
tions by imposing the appropriate constraints (e.g.,3 < x; < 4 at LP0), we will eventu-
ally produce LPs whose optimum extreme points satisfy the integer restrictions. In
effect, we will be solving the ILP by dealing with a succession of (continuous) LPs.

The new restrictions, x; = 3 and x; = 4, are mutually exclusive, so that LP1 and LP2
must be dealt with as separate LPs as Figure 9.7 shows. This dichotomization gives rise to
the concept of branching in the B&B algorithm with x; being the branching variable.

The optimum ILP lies in either LP1 or LP2. Hence, both subproblems must be
examined. We arbitrarily examine LP1 (associated with x; = 3) first.

Maximize z = 5x; + 4x,
subject to
X+ x =5
10x, + 6x, =< 45
X =3

X1, X2 =0
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LP1

FIGURE 9.6

Solution spaces of LP1 and LP2
for Example 9.2-1

at LP0

0 solu- LPO
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PO LP1 LP2 FIGURE 9.7

T solu- Lgxl)v:r %O’;an (Zégt:niin) =4 %= 83,2=2333 Using branching variable x, to cre-
sventu- ate LP1 and LP2 for Example 9.2-1
DS I;_

Ps.

nd L P2 The solution of LP1 (which can be solved efficiently by the upper-bounded algorithm
1S 10 of Section 7.3) yields the optimum solution

e

t be x1=3,x,=2,andz = 23

The LP1 solution satisfies the integer requirements for x; and x,. Hence, LP1 is said to
be fathomed. This means that LP1 need not be investigated any further because it can-
not yield any better ILP solution.

We cannot at this point say that the integer solution obtained from LP1 is opti-
mum for the original problem because LP2 may yield a better integer solution (with a
higher value of z). All we can say is that z = 23 is a lower bound on the optimum (max-
imum) objective value of the original ILP. This means that any unexamined subprob-
lem that cannot yield a better objective value than the lower bound must be discarded
as nonpromising. If an unexamined subproblem produces a better integer solution,
then the lower bound must be updated accordingly.

-=___“,-—*—wm~
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Given the lower bound z = 23, we examine LP2 (the only remaining unexamined
subproblem). Because optimum z = 23.75 at LP0 and all the coefficients of the objec-
tive function happen to be integers, it is impossible that LP2 (which is more restrictive
than LPO0) will produce a better integer solution. As a result, we discard LP2 and con-
clude that it has been fathomed.

The B&B algorithm is now complete because both LP1 and LP2 have been exam-
ined and fathomed (the first for producing an integer solution and the second for
showing that it cannot produce a better integer solution). We thus conclude that the
optimum ILP solution is the one associated with the lower bound—namely, x; = 3,
x, = 2,and z = 23.

Two questions remain unanswered regarding the procedure:

1. At LPO, could we have selected x, as the branching variable in place of x,?

2. When selecting the next subproblem to be examined, could we have solved LP2
first instead of LP1?

The answer to both questions is “yes.” However, ensuing computations could differ
dramatically. Figure 9.8, in which LP2 is examined first, illustrates this point. The opti-
mum LP2 solution is x; = 4, x, = .83,and z = 23.33 (verify using TORA LP module).
Because x, (=.83) is noninteger, LP2 is investigated further by creating subproblems
LP3 and LP4 using the branches x, = 0 and x, = 1, respectively. This means that

LP3 space = LP2 space + (x, = 0)
= LPO space + (x; = 4) + (x, = 0)
LP4 space = LP2 space + (x, = 1)

= LPOspace + (x; = 4) + (x, = 1)

We have three “dangling” subproblems that must be examined: LP1, LP3, and
LP4. Suppose that we arbitrarily examine LP4 first. LP4 has no solution, and hence it is
fathomed. Next, let us examine LP3. The optimum solution is x; = 4.5, x, = 0, and
z = 22.5. The noninteger value of x; (=4.5) leads to the two branches x; = 4 and
x, = 5,and the creation of subproblems LP5 and LP6 from LP3.

LP5 space = LPOspace + (x; = 4) + (x, = 0) + (x; = 4) = LPOspace + (x; = 4H+(x, =0)
LP6 space = LP0 space + (x; = 4) + (x, = 0) + (x; = 5) = LPOspace + (x; = 5+ x =0

Now, subproblems LP1, LP5, and LP6 remain unexamined. LP6 is fathomed
because it has no feasible solution. Next, LP5 has the integer solution (x; = 4, x, =
0, z = 20) and, hence, yields a lower bound (z = 20) on the optimum ILP solution. We
are left with subproblem LP1, whose solution yields a better integer (x; = 3, x, = 2,
z = 23).Thus, the lower bound is updated to z = 23. Because all the subproblems have
been fathomed, the optimum solution is associated with the most up-to-date lower
bound—namely,x; = 3, x, = 2,and z = 23.

The solution sequence in Figure 9.8 (LPO — LP2 — LP4 —LP3 — LP6 — LP5 —
LP1) is a worst-case scenario that, nevertheless, may occur in practice. The example
points to a principal weakness of the B&B algorithm: How do we select the next sub-
problem to be examined, and how do we choose its branching variable?

In Figure 9.7, we were lucky to “stumble” upon a good lower bound at the very
first subproblem, LP1, thus allowing us to fathom LP2 without further computations
and to terminate the B&B search. In essence, we completed the procedure by solving
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one subproblem only. In Figure 9.8, we had to examine seven subproblems before the
x, = 0) B&B algorithm could be terminated. Although there are heuristics for enhancing the
. < 0) ability of B&B to “guess” which branch can lead to an improved ILP solution (see
| H d Taha, 1975, pp. 154-171), there is no solid theory that will always yield consistent
zthome

results, and herein lies the difficulty that plagues computations in ILP. Indeed in
. Section 9.2.2, Problem 1, Set 9.2b, demonstrates with the help of TORA the bizarre
ation. We behavior of the B&B algorithm, even for a small 16-variable 1-constraint problem,
X =2, where the optimum is found in 9 iterations (subproblems) but requires over 25,000
15 hav iterations to verify optimality. It is no wonder that to this day, and after four decades of
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zte lower research, available computer codes (commercial and academic alike) lack consistency
e (a la simplex method) in solving ILPs.
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_ixir{lpée We now summarize the B&B algorithm. Assuming a maximization problem, set

i an initial lower bound z = —0o0 on the optimum objective value of ILP. Seti = 0.

- the very

putations Step 1.  (Fathoming/bounding). Select LP;, the next subproblem to be examined.

v solving Solve LPi, and attempt to fathom it using one of three conditions.
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(a) The optimal z-value of LPi cannot yield a better objective value than
the current lower bound.

(b) LPi yields a better feasible integer solution than the current lower
bound.

(¢) LPi has no feasible solution.

Two cases will arise.

(a) If LPiis fathomed and a better solution is found, update the lower
bound. If all subproblems have been fathomed, stop; the optimum ILP
is associated with the current lower bound, if any. Otherwise, set
i =i+ 1,and repeat step 1.

(b) If LPiis not fathomed, go to step 2 for branching.

Step 2. (Branching). Select one of the integer variables x;, whose optimum value x;
in the LPi solution is not integer. Eliminate the region
(] < 5 <[] + 1

(where [v] defines the largest integer =< v) by creating two LP subproblems

that correspond to

x; = [x]andx; = [x]] + 1

Seti = i + 1,and go to step 1.

The given steps apply to maximization problems. For minimization, we replace
the lower bound with an upper bound (whose initial value is z = +00).

The B&B algorithm can be extended directly to mixed problems (in which only
some of the variables are integer). If a variable is continuous, we simply never select it
as a branching variable. A feasible subproblem provides a new bound on the objective
value if the values of the discrete variables are integer and the objective value is im-
proved relative to the current bound.

PROBLEM SET 9.2A

1. Solve the ILP of Example 9.2-1 by the B&B algorithm starting with x, as the branching
variable. Solve the subproblems with TORA using the MODIFY option for the upper
and lower bounds. Start the procedure by solving the subproblem associated with
X = [x).

2. Develop the B&B tree for each of the following problems. For convenience, always select
x; as the branching variable at node 0.

(a) Maximize z = 3x; + 2x,
subject to
2% + 5%, =9

4, + 2%, =9
X, X, = 0 and integer

(b) Maximize z = 2x; + 3x,

9.2.
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subject to
S5x; + Tx, = 35

4x; + 9x, = 36
Xy, X; = 0 and integer

(¢) Maximize z = x; + x,
subject to
2x; + 5x, = 16

6x, + 5x, = 27
Xy, X, = 0 and integer

(d) Minimize z = 5x; + 4x,
subject to
3 +2x, =5

le + 3x2 = 7
Xy, X; = 0 and integer

(e) Maximize z = 5x; + 7x,
subject to
2%+ x, =13

Sx + 9x, = 41
X1, X, = 0 and integer

3. Repeat Problem 2, assuming that x, is continuous.

4. Show graphically that the following ILP has no feasible solution, and then verify the
result using B&B.

Maximize z = 2x; + x,

subject to
10x; + 10x, = 9

10x, + 5x, =1
Xy, X = 0 and integer
5. Solve the following problems by B&B.
Maximize z = 18x; + 14x, + 8x; + 4x,

subject to
15x; + 12x; + Txz + dxy + x5 = 37

X15 X2y X35 Xy, X5 = (0, 1)

TORA-Generated B&B Tree

TORA integer programming module is equipped with a facility for generating the
B&B tree interactively. To use this facility, select ser-guided 858 in the output screen
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Starting solution of the B&B tree in Example 9.2-1 Selecti

of the integer programming module. The resulting screen provides all the information
needed to create the B&B tree. Figure 9.9 shows the layout of the screen representing
the root of the search tree, N10, which corresponds to LPO in Figure 9.6 (file ch9ToraB
&BEx9-2-1.txt). Each node is identified by two digits, prefixed with the letter N. The
left digit identifies the grid row in which the node resides, and the right digit gives a
unique numeric value within the same row. Thus, N10 in Figure 9.9 shows that node 0 is
situated in row 1 (which is the only node in this row). TORA limits the number of sub-
problems per row to 10. The reasoning is that once this limit is reached, the tutorial
nature of the interactive procedure becomes unwieldy. A message indicating that the
algorithm is reverting to automatic mode is given whenever the number of subprob-
lems per row exceeds 10. Keep in mind that in the automated mode, no limit is set in
any way on the number of generated subproblems.

The screen is now set for the selection of the branching variable by clicking any
node tagged with “x?” Such nodes are highlighted in green. If you click anywhere in
the entries of the node, the associated solution is exposed in the area on top of the
B&B tree, as shown in Figure 9.10 where the solution of N10 shows that x; = 3.75 and
x, = 1.25.1t also points out which variables are restricted to integer values. Clicking on
either variable automatically creates two subproblems that correspond to the selected
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FIGURE 9.10

Selection of the branching variable from the starting solution of Example 9.2-1

mation branching variable. Figure 9.11 shows the result of selecting x; as the branching vari-
nting able at N10. Node N20 (corresponding to x; < 3) and N21 (corresponding to x, = 4)
are added to the tree. Node N20 yields an integer solution, and hence it is fathomed. A
fathomed node is highlighted in red or magenta. The magenta color is used if the fath-
omed node provides the current best lower bound, as is the case with node N20. Node
N21 has not yet been fathomed, and clicking it will create further nodes in row 3 of the
tree. The process continues until all nodes have been fathomed (highlighted in red or
magenta).

The top right box in the output screen automatically keeps track of the upper and
lower bounds for the problem. The default calls for activating the bounds to fathom
the nodes. TORA will automatically discard subproblems whose objective value vio-
lates the current bounds. However, you can deactivate the bounds (i.e., remove check
in box) to create the entire search tree. In this case, a node is fathomed only if it yields
an integer solution or if it is infeasible.

It is important to note that in the search, TORA’s automated B&B mode is coded
to generate and scan subproblems on a strict LIFO basis. For this reason, most likely
the user-guided search may lead to a more efficient search tree, mainly because the
user invokes good judgment in selecting the next node to be investigated.
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- Objective Yalue Bounds

FIGURE 9.11
Creation of the first two subproblems in the B&B tree of Example 9.2-1

PROBLEM SET 9.2B

1. The following problem is designed to demonstrate the bizarre behavior of the B&B algo-
rithm even for small problems. In particular, note how many subproblems are examined
before the optimum is found and how many are needed to verify optimality.

Minimize y
subject to
200+ x, + 0 + x5 +y=15
All variables are (0, 1)
Use the automated option of TORA to answer the following:

(a) How many subproblems are solved before the optimal solution is found?
(b) How many subproblems are solved before the optimality of the solution found in (a)
is verified?
2. Consider the following ILP:
Maximize z = 18x; + 14x, + 8x3
subject to

15x;, + 12x, + 7x; = 43

X1, X3, X3 nonnegative integers
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Use TORA’s B&B user-guided option to generate the search tree with and without acti-
vating the objective value bound. What is the impact of activating the objective value
bound on the number of generated subproblems? For consistency, always select the
branching variable as the one with the lowest index and investigate all the subproblems in
a current row from left to right before moving to the next row.

3. Reconsider Problem 2 above. Convert the problem into an equivalent 0-1 ILP, and then
solve it with TORA’s automated option. Compare the size of the search trees in the two
problems.

4. In the following 0-1 ILP use TORA’s user-guided option to generate the associated
search tree. In each case, show how z-bound is used to fathom subproblems.

Maximize z = 3x; + 2x, — 5x; — 2x, + 3x5
subject to
x+ xn+ x3+2x+ x5=4
7x, + 3x; —4x, + 3x5 = 8
11x; — 6x, +3x, —3x;=3
X1, Xa, X3, X4, X5 = (0, 1)

5. Show by using TORA’s user-guided option that the following problem has no feasible
solution.

Maximize z = 2x; + x,

subject to
10x; + 10x, = 9
10x; + 5x, =1
X, X, = (0, 1)

6. Use TORA's user-guided option to generate the B&B tree associated with the following
mixed ILP problem and give the optimum solution.

Maximize z = x; + 2x, — 3x;
subject to
3x; +4x, — x3; =10
2x; — 3%, + 4x; = 20
Xy, X, nonnegative integers
X3 =0

7. Use TORA to generate the B&B tree for the following problem assuming that only one
(4 of the two constraints holds.

=}
-

Maximize z = x; + 2x, — 3x;
subject to
20x; + 15x, — x3 =10
12, + 3x, + 4x; =13

X1, Xy, X3 =0
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8. Convert the following problem into a mixed ILP, and then use TORA to generate its
B&B tree. What is the optimal solution?
Maximize z = x; + 2x, + 5x3

subject to

v

15
10

|—x; + 10x, — 3x;]

IA

2%+ x t x;

X1, X2, X3 = 0

Cutting Plane Algorithm

As in the B&B algorithm, the cutting plane algorithm also starts at the continuous
optimum LP solution. Special constraints (called cuts) are added to the solution space
in a manner that renders an optimum integer extreme point. In Example 9.2-2, we first
demonstrate graphically how cuts are used to produce an integer solution and then
implement the idea algebraically.

Example 9.2-2
Consider the following ILP.
Maximize z = 7x; + 10x,
subject to
-x; +3x, = 6
Tx, + x, =35
X1, X, = 0 and integer

The cutting plane algorithm modifies the solution space by adding cuts that pro-
duce an optimum integer extreme point. Figure 9.12 gives an example of two such cuts.
Initially, we start with the continuous LP optimum z = 66%, X, = 4%, X, = 3% . Next,
we add cut I, which produces the (continuous) LP optimum solution z = 62, x; = 42,
x, = 3.Then, we add cut IT, which, together with cut I and the original constraints, pro-

x, Optimum: (4]5 ,3 % ) x; Optimum: (4% ,3)

FIGURE 9.12

Illustration of the use of cuts in ILP
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duces the LP optimum z = 58, x; = 4, x, = 3. The last solution is all integer, as
desired.

The added cuts do not eliminate any of the original feasible integer points, but
must pass through at least one feasible or infeasible integer point. These are basic
requirements of any cut.

It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the
optimum integer solution. In general, the number of cuts, though finite, is independent
of the size of the problem, in the sense that a problem with a small number of variables
and constraints may require more cuts than a larger problem.

Next, we use the same example to show how the cuts are constructed and imple-
mented algebraically.

Given the slacks x; and x, for constraints 1 and 2, the optimum LP tableau is given as

Basic b X, X3 X4 Solution
63 31 1
< 0 0 22 2 665
7 1 1
X, 0 1 2 7 35
1 0 - 3 4
X1 2 b7 2

The optimum continuous solution is z = 665, x; = 43, %, =34 x,=0,x,=0.
The cut is developed under the assumption that all the variables (including the slacks
x; and x, ) are integer. Note also that because all the original objective coefficients are
integer in this example, the value of z is integer as well.

The information in the optimum tableau can be written explicitly as

2 + $x3 + 3x, = 665 (z-equation)

7 1 1 .

Xy t 5% + 5x4 = 33 (x,-equation)
1 3 1 .

X; — »X3 + 3%y = 43 (x;-equation)

A constraint equation can be used as a source row for generating a cut provided its
right-hand side is fractional. We also note that the z-equation can be used as a source
row because z happens to be integer in this example. We will demonstrate how a cut is
generated from each of these source rows, starting with the z-equation.

First, we factor out all the noninteger coefficients of the equation into an integer
value and a fractional component, provided that the resulting fractional component is
strictly positive. For example,

=@+

-3+
The factoring of the z-equation yields
2R+ R+ 1+ )x, = (66 + 1)

Moving all the integer components to the left-hand side and all the fractional compo-
nents to the right-hand side, we get

Wi N

Z+ 2+ Leg — 66 = —2x; — 2x, + 4 (1)
Because x; and x, are nonnegative and all fractions are originally strictly positive, the
right-hand side must satisfy the following inequality:

19 9 1 1
X3 Tk, T3 =3 )
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Next, because the left-hand side in Equation (1), z + 2x; + 1x, — 66, is an integer
value by construction, the right-hand side, —Bxy — 2x, + 3, must also be integer. It
then follows that (2) can be replaced with the inequality:

% — g tg =0

This is the desired cut, and it represents a necessary condition for obtaining an inte-
ger solution. It is also referred to as the fractional cut because all its coefficients are
fractions.

Because x; = x, = 0in the continuous LP tableau given above, the current contin-
uous optimum violates the cut (because it yields % =< 0). Thus, if we add this cut to the
optimum tableau, the resulting optimum extreme point moves the solution toward sat-
isfying the integer requirements.

Before showing how a cut is implemented in the optimal tableau, we will demon-
strate how cuts can also be constructed from the constraint equations. Consider the
X|-TOW:

3 1

Xy = stk = 4

Factoring the equation yields
A ELF DG+ 0+ p)x =G+

The associated cut is

—%xz—;—zx4+%s0
Similarly, the x,-equation

X, + %}@ + 2—12x4 = 3%
is factored as

HFO0+ D +0+H)x=3+3

Hence, the associated cut is given as

—%x3—21—2x4+%S0

Any of the three cuts given above can be used in the first iteration of the cutting plane
algorithm. As such, it is not necessary to generate all three cuts before selecting one.

Arbitrarily selecting the cut generated from the x,-row, we can write it in equation
form as

‘572‘)% - §x4 + 5 = —%, 51 =0 (Cut)

This constraint is added as a secondary constraint to the LP optimum tableau as follows:

Basic X X, X3 X4 S Solution
z 0 0 g - 665
7 1 ~ 1
Xy 0 1 2 2 0 35
1 3 1
X 1 0 1 b7 0 45
5t 6 0 5 - -

o

The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4)
to recover feasibility, which yields
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Basic X X, X3 Xy K Solution
z 0 0 0 1 9 62
X, 0 1 0 0 1 3
X, 10 i 4
X3 0 0 1 i -z 3

The last solution is still noninteger in x; and x;. Let us arbitrarily select x, as the
next source row—that is,

X+ 0+ )+ (-1 +Ys =4+ 4
The associated cut is

—1x, - 1+ 5 = 3,5 =0 (Cut II)

Basic X X, X3 Xy 5 S5 Solution

b4 0 0 0 1 9 62

The dual simplex method yields the following tableau:

Basic X X, X3 Xy 51 S5 Solution
b4 0 0 0 0 3 7 58
X, 0 1 0 0 1 0 3
Xy 1 0 0 0 =i 1 4
X3 0 0 1 0 -4 1 1
X4 0 0 0 1 6 =7 4

The optimum solution (x; = 4, x, = 3, 7 = 58) is all integer. It is not accidental
that all the coefficients of the last tableau are integers. This is a typical property of the
implementation of the fractional cut.

It is important to point out that the fractional cut assumes that all the variables,
including slack and surplus, are integer. This means that the cut deals with pure integer
problems only. The importance of this assumption is illustrated by an example.

Consider the constraint

1 13
Xt =73

X1, X, = 0 and integer

From the standpoint of solving the associated ILP, the constraint is treated as an equa-
tion by using the nonnegative slack s, —that is,

1 13
x1+§X2+51=7
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The application of the fractional cut assumes that the constraint has a feasible
integer solution in all x;, x, and s,. However, the equation above will have a feasible
integer solution in x; and x, only if s, is noninteger. This means that cutting-plane algo-
rithm will show that the problem has no feasible integer solution, even though the vari-
ables of concern, x; and x,, can assume integer feasible values.

There are two ways to remedy this situation.

1. Multiply the entire constraint by a proper constant to remove all the fractions.
For example, multiplying the constraint above by 6, we get

6x, + 2%, = 39

Any integer solution of x; and x, automatically yields integer slack. However, this
type of conversion is appropriate for only simple constraints because the magnitudes
of the integer coefficients may become excessively large in some cases.

2. Use a special cut, called the mixed cut, which allows only a subset of variables
to assume integer values, with all the other variables (including slack and surplus)
remaining continuous. The details of this cut will not be presented in this chapter (see
Taha, 1975, pp. 198-202).

PROBLEM SET 9.2C

1. In Example 9.2-2, show graphically whether or not each of the following constraints can
form a legitimate cut:

(@ x +2x =10
(b) 2x +x, =10
(¢) 3x,=10
d 3x +x,=15
2. In Example 9.2-2, show graphically how the following two (legitimate) cuts can lead to
the optimum integer solution:

x + 2x, =10 (Cutl)
3+ x, =15 (CutII)
3. Express cuts I and IT of Example 9.2-2 in terms of x; and x,, and show that they are the

same ones used graphically in Figure 9.12.

4. In Example 9.2-2, derive cut II from the x;-row of the tableau resulting from the applica-
tion of cut I. Use the new cut to complete the solution of the example.

5. Show that, even though the following problem has a feasible integer solution in x; and x,,
the fractional cut would not yield a feasible solution unless all the fractions in the con-
straint have been eliminated.

Maximize 7 = x; + 2x,
subject to
13

1 :
Xt 3% =7

Xy, X, = 0 and integer

9.2
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6. Solve the following problems by the fractional cut, and compare the true optimum inte-
ger solution with the solution obtained by rounding the continuous optimum.

(a) Maximize z = 4x; + 6x, + 2x3
subject to

4x; — 4x, =5

—x; + 6x, =5

Xt xtx=<S5
X1, X3, X3 = 0 and integer

(b) Maximize z = 3x; + x, + 3x;
subject to

X+ 2%+ x;=4
4X2_3X352
X —3x +2x; <3

X1,X2,%3 = 0 and integer

Computational Considerations in ILP

To date, and despite over 40 years of research, there does not exist a computer code
that can solve ILP consistently. N evertheless, of the two solution algorithms presented
in this chapter, B&B is more reliable. Indeed, practically all commercial ILP codes
are B&B-based. Cutting plane methods are generally difficult and uncertain, and the
roundoff error presents a serious problem. Though attempts have been made to
improve the cutting plane computational efficacy, the end results are not encouraging.
In most cases, the cutting plane method is used in a secondary capacity to improve
B&B performance at each subproblem.

The most important factor affecting computations in integer programming is the
number of integer variables and the feasible range in which they apply. Because avail-
able algorithms are not consistent in producing a numeric ILP solution, it may be
advantageous computationally to reduce the number of integer variables in the ILP
model as much as possible. The following suggestions may prove helpful:

1. Approximate integer variables by continuous ones wherever possible.
2. For the integer variables, restrict their feasible ranges as much as possible.
3. Avoid the use of nonlinearity in the model.

The importance of the integer problem in practice is not yet matched by reliable
solution algorithms. It is unlikely that a new theoretical breakthrough will be achieved
in the area of integer programming. Instead, new technological advances in computers
(such as parallel processing) may offer the best hope for improving the efficiency of
ILP codes.
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SOLUTION OF THE TRAVELING SALESPERSON PROBLEM

In the obvious sense, the traveling salesperson problem deals with finding the shortest
(closed) tour in an n-city situation where each city is visited exactly once. The problem,
in essence, is an assignment model with additional restrictions that guarantee the
exclusion of subtours in the optimum solution. Specifically, in an n-city situation, define
_ |1, if cityjis reached from city i
xl] - .
0, otherwise

Given d; is the distance from city i to city j, the traveling salesperson model is given as
n n
Minimize z = 2 Ed,v,xij, d; =00 fori=j
=1=

subject to

x; = (0, 1) ?3)
Solution forms a tour o)

Constraints (1), (2), and (3) define a regular assignment model (Section 5.4). In gen-
eral, the assignment problem will produce subtour solutions rather than a complete
tour that encompasses all 7 cities. Figure 9.13 demonstrates a 5-city problem. The arcs
represent two-way routes. The figure also illustrates a tour and a subtour solution of
the associated assignment model. If the assignments form a tour solution, then it is
optimum. Otherwise, additional restrictions are added to the assignment model to
remove the subtours. The use of these restrictions is given later in this section.

S-city problem Tour solution Subtour solution
(2= Xps = X5y = X3 = x31 = 1) (x5 = X3 = X5 = X5 = %41 = 1)

FIGURE 9.13

A 5-city traveling salesperson example with tour and subtour solutions of the associated assignment model
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Available solution methods for the traveling salesperson problem are rooted in
the ideas of the general B&B or cutting plane algorithms presented in Section 9.2.
Before presenting these algorithms, we give an example that demonstrates the versatil-

ity of the traveling salesperson model in representing other practical situations (see
also Problem Set 9.3a).

Example 9.3-1

The daily production schedule at the Rainbow Company includes batches of white
(W), yellow (Y), red (R), and black (B) paints. Because Rainbow uses the same facili-
ties for all four types of paint, proper cleaning between batches is necessary. The fol-
lowing table summarizes the cleanup time in minutes where the row-designated color
is followed by the column-designated color. For example, when white is followed by
yellow, the cleanup time is 10 minutes. Because a color cannot follow itself, the corre-
sponding entries are assigned infinite setup time. Determine the optimal sequencing
for the daily production of the four colors that will minimize the associated total
cleanup time.

Cleanup min given next paint is

Current paint White Yellow Black Red

White 00 10 17 15
Yellow 20 00 19 18
Black 50 44 00 25

Red 45 40 20 00

Each paint is thought of as a “city” where the “distances” represent the cleanup time
needed to switch from one paint batch to the next. The situation thus reduces to deter-
mining the shortest loop that starts with one paint batch and passes through each of the
remaining three paint batches exactly once before returning back to the starting paint.

We can solve this problem by exhaustively enumerating the six [(4 — 1)! = 3! = 6]
possible loops of the network. The following table shows that W—>Y —->R—>B - W
is the optimum loop.

Production loop Total cleanup time

W—-Y—>B—>R->W 10+ 19 +25+45=99
W—-Y—>R—->B->W 10 + 18 + 20 + 50 = 98
W—-B—>Y—>R->W 17 + 44 + 18 + 45 = 124
W—->B—>R->Y->W 17 + 25 + 40 + 20 = 102
W—>R—->B->Y->W 15+ 20 + 44 + 20 = 99
W—>R—->Y—>B->W 15 +40 + 19 + 50 = 124

Exhaustive enumeration of the loops is not practical in general. Even a modest-
sized 11-city problem will require enumerating 10! = 3,628,800 tours, a demanding
task indeed. For this reason, the problem must be formulated and solved in a different
manner, as we will show later in this section.

To develop the assignment-based formulation for the paint problem, define

x; = 11if paint j follows paint i and zero otherwise
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Letting M be a sufficiently large positive value, we can formulate the Rainbow prob-
lem as
Minimize z = Mxyyw + 10xyy + 17xyp + 15xyg + 20xyyw + Mxyy + 19xyp + 18xyg
+50x gy + d4xgy + Mxgg + 25xpg + 45xgw + 40xgy + 20xgz + Mxgg
subject to
Xyw T Xwy T Xwp + xyr = 1
Xyw T Xyy + Xyg t xyg =1
Xgw T Xpy T Xpp + Xpg =1
Xpw + Xgy T Xgp + Xgg = 1
Xyw + Xyw + Xpgw + Xgw = 1
Xwy + Xyy + Xgy + xgy = 1
Xwp + Xyg + Xpp + Xgp = 1
Xwr T Xyg + Xpg + Xgg = 1
x; =(0,1) foralliandj
Solution is a tour (loop)

The use of M in the objective function guarantees that a paint job cannot follow itself.

PROBLEM SET 9.3A

1. A manager has a total of 10 employees working on six projects. There are overlaps among
the assignments as the following table shows:

Project
1 2 3 4 5 6
1 X X X
2 X X X
3 X X X X
4 X X X
Employee 5 | x X X
6 X X X X X
7 X X X X
8 X X X
9 X X
10 X X X X X

The manager must meet all 10 employees once a week to discuss their progress.
Currently, the meeting with each employee lasts about 20 minutes—that is, a total of
3 hours and 20 minutes for all 10 employees. A suggestion is made to reduce the total
time by holding group meetings, depending on the projects the employees share. The

0
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orob- manager wants to schedule the projects in a way that will reduce the traffic (number of
employees) in and out of the meeting room. How should the projects be scheduled?

2. A book salesperson who lives in Basin must call once a month on four customers located

18xy
K in Wald, Bon, Mena, and Kiln. The following table gives the distances in miles among the
different cities.
Basin Wald Bon Mena Kiln
Basin 0 120 220 150 210
Wald 120 0 80 110 130
Bon 220 110 0 160 185
Mena 150 110 160 0 190
Kiln 210 130 185 190 0
The objective is to minimize the total distance traveled by the salesperson.

Formulate the problem as an assignment-based ILP.

3. Circuit boards (such as those used with PCs) are fitted with holes to allow mounting dif-
ferent electronic components. The holes are drilled with a movable drill. The following
table provides the distances (in centimeters) between pairs of 10 holes of a specific cir-
cuit board. The objective is to determine the optimum sequence for drilling all the holes.

— 12 5 26 41 32

rself 12 — 34 46 29 52
- lafl=| 3 34 — 35 46 62
4 26 46 35 — 38 9

41 29 46 38 — 19

32 52 62 9 19 —

Formulate the problem as an assignment-based ILP,

9.3.1 B&B Solution Algorithm

The idea of the B&B algorithm is to start with the solution of the associated assign-
ment problem. If the solution is a tour, then there is nothing more to be done and the
process ends. Otherwise, we need to introduce restrictions that remove the subtours.
This can be achieved by creating as many branches as the number of x;-variables asso-
ciated with one of the subtours. Each branch will then correspond to setting one of the
variables of the subtour to zero (recall that all the variables associated with a subtour
equal 1). The solution of the resulting assignment problem may or may not produce a
tour. If it does, we use its objective value as an upper bound on the true minimum
tour length. If it does not, further branching will be necessary, again creating as
many branches as the number of variables in one of the subtours. The process contin-
ues until all unexplored subproblems have been fathomed, either by producing a bet-
ter (smaller) upper bound or because there is evidence that the subproblem cannot
| produce a better solution. The optimum tour is the one associated with the best upper
’ bound.
al The following example provides the details of the traveling salesperson B&B
= algorithm.
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B&B solution of the traveling salesperson
problem of Example 9.3-2
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Example 9.3-2
The matrix below summarizes the distances in a 5-city traveling salesperson problem.

0 10 3 6 9
5 00 5 4 2
Hdij” = 4 9 o0 7 8
7 1 3 o0 4
3 2 6 5 0

We start by solving the associated assignment (using TORA), which yields the fol-
lowing solution:

7 =15, (x;3 = x5y = 1), (x25 = x54 = x4p = 1), all others = 0

This solution yields two subtours: (1-3-1) and (2-5-4-2) as shown at node 1 in Figure
9.14. The associated total distance is z = 15, which provides a lower bound on the opti-
mal length of the 5-city tour.

A straightforward way to determine an upper bound is to select any tour and then
sum its respective distances to obtain an upper bound estimate. For example, the tour 1-
2-3-4-5-1 (selected totally arbitrarily) has a total length of 10 + 5 + 7 + 4 + 3 = 29.
(You may be able to find a better upper bound by inspection. Remember that the
smaller the upper bound, the more efficient the B&B search.)

The calculation of the lower and upper bounds now tells us that the optimum
length of the tour must lie in range (15, 29). A solution that yields a tour length larger
than 29 is discarded as nonpromising.

To eliminate the subtours at node 1, we need to “disrupt” its loop by forcing its

member variables, x;, to zero level. Subtour 1-3-1 is broken if we impose x;; = 0

or xy; = 0 (i.e., one at a time) on the assignment problem at node 1. Similarly, subtour

FIGURE 9.14
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2-5-4-2 is eliminated by imposing one of the restrictions x,5 = 0, xs4 = 0,0r x4, = 0.1n
terms of the B&B tree, each of these restrictions gives rise to a branch and hence a new
subproblem. It is important to notice that branching both subtours at node 0 is not nec-
essary. Instead, only one subtour needs to be disrupted at any one node. The idea is that
a breakup of one subtour automatically alters the member variables of the other sub-
tour and hence produces conditions that are favorable to creating a tour. Under this
argument, from the computational standpoint, preference is given to the shortest sub-
tour because it creates the smallest number of branches.

Targeting the shorter subtour (1-3-1), two branches x;; = 0 and x5, = 0 are created
atnode 1. The associated assignment problems are constructed by removing the row and
column associated with the zero variable, which will make the assignment problem
smaller. Another way of achieving the same result is to leave the size of the assignment
problem unchanged and simply assign an infinite distance to the branching variable. For
example, the assignment problem associated with x;; = 0 requires substituting d;; = oo
in the assignment model at node 0. Similarly, for x;; = 0, we substitute dy = o0,

In Figure 9.14, we arbitrarily solve the subproblem associated with x;; = 0. Node 2
gives the solution z = 17 but continues to produce the subtours (2-5-2) and (1-4-3-1).
Repeating the procedure we made at node 1 gives rise to two branches: x,s = 0 and
x5 = 0.

We now have three unexplored subproblems, one from node 1 and two from node 2,
and we are free to investigate any of them at this point. Arbitrarily exploring the
subproblem associated with x,; = 0 from node 2, we set d;; = 0 and dys = o0 in the
original assignment problem, which yields the solution z = 21 and the tour solution 1-4-
5-2-3-1 at node 3. Node 3 need not be investigated any further and hence is fathomed.

The solution at node 3 provides an improved upper bound, z = 21, on the optimal
length of the tour. This means that any unexplored subproblem that can be shown to
yield a tour length larger than (or equal to) 21 must be discarded as nonpromising.

We now have two unexplored subproblems. Selecting subproblem 4 for explo-
ration, we set d;3 = 00 and ds, = o0 in the original assignment, which yields the tour
solution 1-4-2-5-3-1 with z = 19. The new tour solution provides the better upper
bound z = 19.

Only subproblem 5 remains unexplored. Substituting ds;, = 00 in the original
assignment problem at node 1, we get the tour solution 1-3-4-2-5-1 with z = 16, at
node 5. Once again, this is a better solution than the one associated with node 3 and
thus requires updating the upper bound to z = 16.

There are no remaining unfathomed nodes, which completes the search tree. The
optimal tour is the one associated with the current upper bound: 1-3-4-2-5-1 with
length 16 miles.

One remark is in order: The search sequence 1 —2 — 3 — 4 — 5 for exploring the
nodes demonstrates once again one of the difficulties associated with the B&B algo-
rithm. We have no way of predicting in advance which sequence we should follow to
explore subproblems in the B&B tree. For example, had we started with node 5, we
would have obtained the tight upper bound z = 16, which will automatically fathom
subproblem 2 and hence eliminate the need to create subproblems 4 and 5.

Of course, there are heuristics that can be of help in “foreseeing” which sequence
could lead to a more efficient tree. For example, after specifying all the branches from a
given node, we can start with the branch associated with the largest d; among all the cre-
ated branches. This heuristic calls for exploring branch x;, = 0 at node 0. Had this been
done, the upper bound z = 16 would have been encountered at the first subproblem.
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PROBLEM SET 9.3B

1. Solve Example 9.3-2 using subtour 2-5-4-2 to start the branching process at node 0 and
the following sequences for exploring the nodes.

(a) Explore all the subproblems horizontally from left to right in each tier before pro-
ceeding to the next tier.

(b) Follow each path vertically from node 0 until it ends with a fathomed node.
2. Solve Problem 1, Set 9.3a using B&B.
3. Solve Problem 2, Set 9.3a using B&B.
4. Solve Problem 3, Set 9.3a using B&B.

Cutting Plane Algorithm

The idea of the cutting plane algorithm is to add a set of constraints, which when added
to the assignment problem are guaranteed to prevent the formation of a subtour. The
additional constraints are defined as follows. In an n-city, associate a continuous vari-
able u;(=0) with cities 2, 3, ... , and n. Next, define the required set of additional con-
straints as

w—ut+tn=n—-1i=23 ...,m j=2,3, ...,n i#]

These constraints, when added to the assignment model, will automatically remove all
subtour solutions but will not eliminate any tour solution.

Example 9.3-3
Consider the following distance matrix of a 4-city traveling salesperson problem.

oo 13 21 26
10 oo 29 20
30 20 oo 5

12 30 7 o0

The associated LP consists of the assignment model constraints plus the following
additional constraints that prevent the formation of subtour solutions. All x; = (0, 1)
and all #; = 0.The problem is solved as a mixed integer linear program.

”din =

X111 X X130 Xyg Xo1 Xppo X3 Xpg X3 Xy X3z Xzg Xy Xy Xuz Xy Up Uz Uy

4 1( -1 =3
4 1 -1 | =3

4 -1 1 =3

4 1| -1 =3

4 -1 1] =3

4 -1 1| =3

The optimum solution, obtained by TORA’s ILP module (file Ch9ToraTraveling
SalespersonEx9-3-3.txt), is given as

u, = 0, Uz = 1, u, = 2, X2 = Xp3 = X3y = X414 = 1, tour lel’lgth = 59




Comprehensive Problems 397

This corresponds to the tour solution 1-2-3-4-1. The solution satisfies all the additional
constraints in u; (verify!).

pad To show that subtour solutions do not satisfy the additional constraints, consider
the subtour solution (1-2-1, 3-4-3). This solution corresponds to xj, = xy; = 1, x5, =
DTO- X453 = 1. Now, consider constraints 4 and 6 in the tableau above—namely,
4X34+u3_U4S3
4X43~u3+u4s3
Substituting x34 = x43 = 1 and summing the two inequalities yields 8 < 6, which is
impossible, thus disallowing the formation of the subtour.

The main disadvantage of the cutting plane model is that its size grows exponen-
tially with the number of cities. For this reason, the B&B algorithm offers a more effi-
cient way for solving the problem.

added
ir. The
s vari-
al con- PROBLEM SET 9.3C
1. Solve the following traveling salesperson problem by the cutting plane algorithm.
o 43 21 20
ove all =10 %~ 9 22
c @ lal=|0 o 2 =
42 50 27 oo
— (b) Problem 2, Set 9.3a.
(¢) Problem 3, Set 9.3a.
X
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-1 =3 COMPREHENSIVE PROBLEMS
=3
—1| =3 9.1 A development company owns 90 acres of land in a growing metropolitan area, where it
j14 =3 intends to construct office buildings and a shopping center. The developed property is
12 ] = rented for 7 years and then sold. The sales price for each building is estimated at 10 times
its operating net income in the last year of rental. The company estimates that the project
aveline will include a 4.5-million-square-foot shopping center. The master plan calls for construct-

ing three high-rise and four garden office buildings.
The company is faced with a scheduling problem. If a building is completed too
early, it may stay vacant; if it is completed too late, potential tenants may be lost to other




398 Chapter 9 Integer Linear Programming

projects. The demand for office space over the next 7 years based on appropriate market
studies is

Demand (thousands of ft?)

Year High-rise space Garden space

1 200 100
2 220 110
3 242 121
4 266 133
5 293 146
6 322 161
7 354 177

The following table lists the proposed capacities of the seven buildings:

Garden building Capacity (ft?) High-rise building Capacity (ft?)

1 60,000 1 350,000
2 60,000 2 450,000
3 75,000 3 350,000
4 75,000 — —

The gross rental income is estimated at $25 per square foot. The operating expenses
are $5.75 and $9.75 per square foot for the garden and high-rise buildings, respectively.
The associated construction costs are $70 and $105 per square foot, respectively. Both the
construction cost and the rental income are estimated to increase at roughly the inflation
rate of 4%.

How should the company schedule the construction of the seven buildings?

9.25 In a National Collegiate Athletic Association women’s gymnastics meet, competition
includes four events: vault, uneven bars, balance beam, and floor exercises. Each team may
enter the competition with six gymnasts per event. A gymnast is evaluated on a scale of 1
to 10. Past statistics for the U of A team produce the following scores:

U of A Scores for Gymnast

Event 1 2 3 4 5 6
Vault 6 9 8 8 4 10
Bars 7 9 7 8 9 5
Beam 9 8 10 9 9 8
Floor 6 6 5 9 10 9

The total score for a team is determined by summarizing the top five individual
scores for each event. An entrant may participate as a specialist in one event or an “all-
rounder” in all four events, but not both. A specialist is allowed to compete in at most

SBased on P. Ellis and R. Corn, “Using Bivalent Integer Programming to Select Teams of Intercollegiate
Women’s Gymnastic Competition,” Interfaces, Vol. 14, No. 3, pp. 41-46, 1984.
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narket three events, and at least four of the team participants must be all-rounders. Set up an ILP
model that can be used to select the competing team, and find the optimum solution using
TORA.

9.36 In 1990, approximately 180,000 telemarketing centers employing 2 million individuals
were in operation in the United States. In the year 2000, more than 700,000 companies
employed approximately 8 million people in telemarketing their products. The questions
of how many telemarketing centers to employ and where to locate them are of paramount
importance.

The ABC company is in the process of deciding on the number of telemarketing cen-
ters to employ and their locations. A center may be located in one of several candidate
areas selected by the company and may serve (partially or completely) one or more geo-
graphical areas. A geographical area is usually identified by one or more (telephone) area
codes. ABC’s telemarketing concentrates on eight area codes: 501, 918, 316, 417, 314, 816,
502, and 606. The following table provides the candidate locations, their served areas, and
the cost of establishing the center.

Center location Served area codes Cost ($)
Dallas, TX 501,918,316,417 500,000
Atlanta, GA 314,816,502, 606 800,000
Louisville, K'Y 918,316,417,314, 816 400,000
Denver, CO 501,502, 606 900,000
Little Rock, AR 417,314,816, 502 300,000
Memphis, TN 606, 501,316,417 450,000
St. Louis, MO 816,502,606, 314 550,000

Customers in all area codes can access any of the centers 24 hours a day.
The communication costs per hour between the centers and the area codes are given
in the following table.

From area code

To 501 918 316 417 314 816 502 606
Dallas, TX $14 $35 $29 $32 $25 $13 $14 $20
Atlanta, GA $18 $18 $22 $18 $26 $23 $12 $15
" Louisville, KY $22 $25 $12 $19 $30 $17 $26 $25
Denver, CO $24 $30 $19 $14 $12 $16 $18 $30
Little Rock, AR $19 $20 $23 $16 $23 $11 $28 $12
i Memphis, TN $23 $21 $17 $21 $20 $23 $20 $10
St. Louis, MO $17 $18 $12 $10 $19 $22 516 $22

i ABC would like to select between three and four centers. Where should they be
located?

ate ®Based on T. Spencer, A. Brigandi, D. Dargon, and M. Sheehan, “AT&T’s Telemarketing Site Selection
System Offers Customer Support,” Interfaces, Vol. 20, No. 1, pp. 83-96, 1990.
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9.4 An electric utility company serving a wide rural area wants to decide on the number and
location of Customer-Service Linemen (CSL) centers that will provide responsive service
regarding repairs and connections. The company groups its customer base in five clusters
according to the following data:

Cluster 1 2 3 4 5

Number of customers 400 500 300 600 700

The company has selected five potential locations for its CSL centers. The following table
summarizes the average travel distance in miles from the CSLs to the different clusters.
The average speed of the service truck is approximately 45 miles per hour.

CSL center

Cluster 1 2 3 4 5

40 100 20 50 30
120 90 80 30 70
40 50 90 80 40
80 70 110 60 120
90 100 40 110 90

[ U S

The company would like to keep the response time to a customer request to around
90 minutes. How many CSL centers should be in operation?

"Based on E. Erkut, T. Myrdon, and K. Strangway, “Transatlanta Redesigns Its Service Delivery Network,”
Interfaces, Vol. 30, No. 2, pp. 54-69, 2000.




