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Simulation Modeling

Simulation is the next best thing to observing a real system.It allows us to collect perti_nent information about the behavior of the ,yri"- with the passage of time.Simulation is not an oPtimizationtechnique. Rathei, it is used to estimate the measures
of performance of a modeled system

Modern simulation typically deals with situations that can be described in thecontext of a waiting line. This is not a limitation on the use of simulation because prac_ticallY anY oPerational situation can be viewed in some form as a waiting line. This isthe reason simulation has enjoyed tremendous applications in communication net_works, manufacturing, inventory control, consumer behavior, economic forecasting,
biomedical systems, and war strategies and tactics.

A forerunner to Present-day simulation is the Monte Carlo technique, a schemethat is aimed at estimating stochastic or deterministic parameters based on random
samPling, The main difference between the two techniques is that in Monte Carlo thetime element is not a Pertinent factor. Examples of Monte Carlo applications includeestimation of the area under a curve or, mor.e generally, evaluation of multiple inte-grals, estimation of the constant Ť (= 3.1,41,59),irrd mat.Í* inversion.

Simulation is a statistical exPeriment, and hence its output must be interpreted byaPProPriate statistical tests. This important point is emphasized throughout the chapter.

í8.1 MoNTE cARLo slMULATloN
This section uses an example to demonstrate the Monte Carlo technique. The objectiveof the examPle is to emPhasize the statistical nature of the simulation experiment.

Example 18.1-'|

We will use Monte Carlo sampling to estimate the area of a circle whose equation is
(*-I)'+()/-2)':25

The radius of the circle is r : 5 cm, and its center is (x, y) : (I, 2).
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640 Chapter 18 Simulation Modeling

F|GURE 18.1

Monte carlo estimation of the area of a circle

(-4,7,) (6,7)

(6, -3)(-4, -3)

The procedure for estimating the area requires enclosing the circle "snugly" in a
square whose side equals the diameter of the circle as shown in Figure 18.1. The corner
points are determined from the geometry of the square.- 

The estimation of the area of the circle is based on the assumption that all the
points in the square are equally likely to occur. Thus, if out of a random sample of n
points in the square, ru points are within the circle, then

To ensure that all the points in the square are equally likely to occur, we represent
the coordinates x and y of. apoint in the square by the following uniform distributions:

/ Ertir,rute of the \ ^( or.1_:r_ ) : +(10 x 10)(ň;i the circle ) = ;\the square/ n \- -

ír(*) :

ír(y) :

<x<6

=y,7

rt, -+

1,-
10l -r

A sampled point (r, y) based on the distribution fi(x) and f20) guarantees that all
points in the square are equally likely to be selected.

The procedure for determining a sample (r, y) starts with generating independent
0-]. random numbers and then mapping them on the (x, y)-axis. The 0-]. random num-
bers are determined using the following uniform distribution:

ík\:{:, 0<z<!'l [0, otherwise

Table 1_8.1 gives a small list of (0, 1) random numbers. These numbers are deter-
mined using special arithmetic operations that generate statistically independent val-
ues based on the uniform distributionf (z),as will be explained in Section 18.4.

Given a pair of 0-1 random numbers, R1 and Rr, u random point (*, y) in the square
is determined as

x : -4 + [6 - (-a)]R, - -4 + 10R1

| : -3 + U -(-3)]R, : -3 + 10R2

To demonstrate the application of the procedure, considef Rr : .0589 and R2 : .6733.
Then

x: -4 + 10R1 - -4 + 10 X .0589 : -3.41,t

! : -3 + 10R2 - -3 + 10 x .6733 : 3.733
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TABLE 18.1

.0589 .3529
,6733 ,3646
.4799 .7676
.9486 .8931
.6139 .3919
.5933 .7876
.934I .5799
,1782 .6358
.3473 .7472
.5644 .8954

.5869 .3455

.128I .487I

.2867 .8111

.8216 .8912

.8261 .4291

.3866 ,2302

.7125 .5954

.2108 .5423

.3575 ,4208

.2926 .6975

.7900 .6307

.7698 .2346

.2871 .4220

.9534 .699I
,1394 .9745
.9025 .3428
.1605 .6037
.3567 .2569
.3070 .0546
.5513 .0305

This point falls inside the circle because

(-3.411 - D' + Q.733 - 2Y : 22.46 < 25
Next, we investigate the effect of random sampling on the accuracy of estimatingthe area of the circle. We can increase the reliabitity o tn. .rtiÁáte by increasing thesamPle size and/or using replications, the same procedur., 

"Áproyed 
in ordinarf sta_tistical experiments.

Because the comPutations associated with each sample, though simple, are volumi-nous and tedious, Excel template chl8Circle.xls (witn ÝnÁ r1á?ios) i's j.rJ"p"á t"cartY out these comPutations. The input data inclu'de the circle .uáiur, r, andits center,(cx, cY),together with sample size, n,^andthe number of replications, 
^[ 

The entry Stepsin cell E4 allow executing ieveral sample sizes in the ,u-" ,,r.r. Thus, if n :30,000 andStePs : 3, the templatď will automaiically produce outp"i ro r-, :30,000, 60,000,90,000.
Figure 18.2 summ arizes the results for Steps : 3 and 1/ : 5 replications. The exactarea is 78,54 cm2 and the Monte Carlo results show that the mean estimated area forthe three_sample sizes varies from A : 78.533 to a : ls.igó;;. W.;;;;uirJir,u,the standard deviation decreases from s : .308 for n: so,ooo to s : .191 forn : 90,000, an indication that accuracy of the results, g"neiali , lrr.r.uses with theincrease in the sample size.
Note that each time you press the

cdf;,,i+, new estimates are realizeďbecause
tor to a different sequence.

Because of the random variation in the output o!.th. experiment, it is necessary toexPreSS the results aS a confidence interval. Letiing A ands be the mean and varianceof i/ replications, then, for a confidence level a, t-he confidencó interval for the truearea A is

command button press to trxecute MonLe
Excel refreshes the random number genera-

.,
--------:

Ýrv
A _-+

VN
t;.N-I=A=A+ ti,N_t

The parameter t;,y-} is determined from the /-distribution tables given a confidencelevel a and N -'1 degrees of freedom (see the /-table in eppe"ái* c;. (Note that Nequals the number of replications, which is distinct from ,, in" sample size.) In termsof the Present exPeriment, we are interested in establishíng the 
-confidence 

intervalbased on the largest .u-pl::ize (i.e., n : 90,000). Given-N : s, A : 78.490 cm2,and s : ,191, Cm2, t.g25,4 : Ž.776, and' the resulting 95"Á confidence interval is 78.25 <

hat altr

;ndent
l num-
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FlGURE 18.2

Excel output of Monte Carlo
estimation of the area of a circle
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A = 78.73. (The Excel template automatically computes the 95o/o confidence interval.)
Note that, in general, the value of i/ should be at least 5 to realize reasonable accuracy in
the estimation of the confidence interval.

The discussion in Example 18.1-1 poses two questions regarding the simulation
experiment:

1. How large should the sample size, n,be?
2. How many replications, N, are needed?

There are some formulas in statistical theory for determining n and N, and both
depend on the nature of the simulation experiment as well as the desired confidence
level. However, as in any statistical experiment, the golden rule is that higher values of
n and N mean more reliable simulation results. In the end, the sample size will depend
on the cost associated with conducting the simulation experiment. Generally speaking.
however, a selected sample size is considered "adequate" if it produces a relativelv
"small" standard deviation.

.&

plltat!ry.!
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PRoBLEM sET 18.1A

1' In ExamPIe l8,2-1,estimate the area of the circle using the first two columns of the (0, 1)random numbers in Table 18,1. (For convenierrce, go down each column, selecting R1 firstand then R2,) How does this estimate 
"o-pur",ith the ones given in Figure I8.2?2. Suppose that the equation of a circle is

(*-3Y+(y+2)2:16
(a) Define the corresPonding distribrrtions"f(x) and f(lt),and then show how a samplepoint (x, y) is determined using the (0, r)'rándom pair (R1, R2).(b) Use the Excel temPlate to estima^te_ the area given n : 100,000 and N : 10. Thencompute the associated 95% confidence inteival.

3' Use Monte Carlo samPling to estimate the area of the lake shown in Figure 18.3. Base theestimate on the first two columns of (0, 1) random numbers in Table 18.1.

FlGURE 18.3

Lake map for Problem 3, Set 18.1a

4' Consider the game in which two players, Jan and Jim, take turns in tossing aíaircoin.Ifthe outcome is heads, Jim gets $10 fiom Jan. otherwise, Jan gets $10 from Jim.(a) How is the game simulated as a Monte Carlo experiment?
(b) Run the exPeriment for 5 replications of 10 tosses each to determine Jan,s pay. Usethe first five columns of the (o, t; ranao- nu-b"rs in Table 18.1, with each columncorresponding to one replication.
(c) Establish a95o/o confidence interval on Jan's winnings.
(d) ComPare the confidence interval in (c) with Jan's expected theoretical winnings.5. Consider the following definite integral:

d'*ra*
(a) Develop the Monte carlo experiment to estimate the integral.(b) Use the first four columns in Table 18.1 to evaluate the integral based on 4 replica_tions of size 5 each, ComPute a95% confidence interval, 

""e;;;;"re it with theexact value of the integral.
6' Simulate five wins or losses of the following game of craps: The player rolls two fair dice.If the outcome .lT : 7 ot 1,l,the player wi"ns"$lO. Oiherwise, the player records theresulting sum (calle d Point) and kóeps on rolling the dice until the out.o*" sum matches

3456
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644 Chapter 18 Simulation Modeling

the record ed point,in which case the player wins $10. If a7 is obtained, the player loses

$to.
The lead time for receiving an order can be 1, or 2 days, with equal probabilities. The

demand per day assumes the values 0, 1, and 2 with the respective probabilities of .2, .'7 ,

and .1. Use the random numbers in Table 18.1 (starting with column 1) to estimate the

joint distribution of the demand and lead time. From the joint distribution, estimate the

pdf of demand during lead time. (Hint:The demand during lead time assumes discrete

values from 0 to 4.)

Consider the Buffon needle experiment.A horizontal plane is ruled with parallel lines

spaced D cmapart. A needle of length d cm(d < D) is dropped randomly on the plane.

The objective of the experiment is to determine the probability that either end of the

needle touches or crosses one of the lines. Define

h : Perpendicular distance from the needle center to a (parallel)line

0 : Inclination angle of the needle with a line

(a) Show that the needle will touch or cross a line only if

h< 0<h <0<n,

(b) Design the Monte Carlo experiment, and provide an estimate of the desired proba-

bility.

Use Excel to obtain 4 replications of size ]_0 each of the desired probability.

Determine a95"/" confidence interval for the estimate.Assume D : 20 cm and

d : 1,0 cm.

Prove that the theoretical probability is given by the formula

18.2

2dP: nD

(e) Use the result in (c) together with this formula in (d) to estimate t.

TYPES oF slMULATloN

The execution of present-day simulation is based generally on the idea of sampling

used with the Monte Carlo method. It differs in that it is concerned with the study of
the behavior of real systems 4, a function oí time. Two distinct types of simulation
models exist.

1. Continuous models deal with systems whose behavior changes continuously
with time. These models usually use difference-differential equations to describe the

interactions among the different elements of the system. A typical example deals with

the study of world population dynamics.

2. Discrete models deal primarily with the study of waiting lines, with the objec-

tive of determining such measures as the average waiting time and the length of the

queue. These measures change only when a customer enters or leaves the system. At all

other instants, nothing from the standpoint of collecting statistics occurs in the system.

The instants at which changes take place occur at discrete points in time, giving rise to

the name discrete event simulation.

7.

8.

d
7 Stn U, = Z,o

(c)

(d)
18,

18.
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18.3 Elements of Discrete Event Simulation 645

This chaPter Presents the basics of discrete event simulation, including a
descriPtion of the components of a simulation model, collection of simulation statis_
tics, and the statistical aspect of the simulation experiment. The chapter also empha_
sizes the role of the computer and simulation languages in the execution of simulation
models.

PRoBLEM sET 18.2A

1. Categorize the following situations as either discrete or continuous (or a combination of
both).In each case, specify the objective of developing the simulation model.
(a) Orders for an item arrive randomly at a warehouse. An order that cannot be filled

immediatelY from available stock must await the arrival of new shipments.
(b) World PoPulation is affected by the availability of natural resources, food production,

environmental conditions, educational level, health care, and capital investments.
(c) Goods arrive on pallets at a receiving bay of an automated warehouse. The pallets

are loaded on a lower conveyor beltándjifted through an up-elevator to an upper
conveYor that moves the pallets to corridors. The corridors are served by cranes that
pick up the pallets from the conveyor and place them in storage bins.

2. ExPlain whY You would agree or disagree with the following statement:"Most discrete
event simulation models can be viewed in some form or anóther as queuing systems con_
sisting of sources from which customers are generated , queues where customórs may wait,
and facilities where customers are served.''

18.3 ELEMtsNTs oF DlscRETE EVENT slMULATloN
This section introduces the concept of events in simulation and shows how the statis_
tics of the simulated system are collected.

18.3,1 Generic Definition of Events

All discrete-event simulations describe, directly or indirectly, queuing situations in
which customers arrive, wait in a queue if necessary, and then receive service before
theY dePart the sYstem. In general, any discrete-event model is composed of a network
of interrelated queues.

Given that a discrete-event model is in reality a composite of queues, collection
of simulation statistics (e.g., queue length and status of the service fácility) need only
take Place when a customer arrives or leaves the facility. This means that two principál
events control the simulation model: arrivals and departures. These are the ónly two
instants in time at which we need to examine the iystem. At all other instants, no
changes affecting the statistics of the system take placó.

Example 18.3-1

Metalco JobshoP receives two,types of job,s: regular and rush. All jobs are processed on
two consecutive machines with ample buffer áreas. Rush jobs always assume nonpre_
emPtive Priority over regular jobs. Identify the events of tňe situation.

,'



646 Chapter 18 Simulation Modeling

FlGURE 18.4

Example of the occurrence
of simulation events on the
time scale Event 1, EventZ Event 3 Event4 Event5

This situation consists of two tandem queues corresponding to the two machines.
At first thought, one may be inclined to identify the events of the situation as follows:

AL1-: A regular job arrives aL machine 1.
A2L: A rush job arrives aL machíne 1.
D1-I: A regular job departs machine 1.
D2I: A rush job departs machine 1.
AL2: A regular job arrives at machine 2.
A22: A rush job arrives at machíne 2.
DI2; A reqular job deparLs machine 2.
D22: A rush job departs machine 2.

In reality, we only have exactly two events: an arrival of_a (new) job at the shop
and a departure of a (completed) job from a machine. First notice that events D1]. and
AI2 are actually one and the same.The same applies to DZI and Azz.Next, in discrete
simulation we can use one event (arrival or departure) for both types of jobs and sim-
ply "tag" the event with an attribute that identifies the job type as either regular or
rush. (We can think of the attribute in this case as a personal identification number and,
indeed, it is.) Given this reasoning, the events of the model reduce to (1) an arriyal A
(at the strqp) and (2) a departure D (from a machine). The actions associated with the
departure Ňent will depend on the machine at which they occur.

Having defined the basic events of a simulation model, we show how the model is
executed. Figure 1_8.4 gives a schematic representation of typical occurrences of events
on the simulation time scale. After all the actions associated with a current event have
been performed, the simulation advances by "jumping" to the next chronological
event. In essence, the execution of the simulation occurs at the instants at which the
events occur.

How does the simulation determine the occurrence time of the events? The arrival
events are separated by the interarrival time (the interval between successive arrivals),
and the departure events are a function of the service time in the facility. These times
may be deterministic (e.g., a train arriving at a station every 5 minutes) or probabilistic
(".g., the random arrival of customers at a bank). If the time between events is deter-
ministic, the determination of their occurrence times is straightforward. If it is proba-
bilistic, we use a special procedure to sample from the corresponding probability
distribution. This point is discussed in the next section.

PRoBLEM sET ,l8.3A

1. Identify the discrete events needed to simulate the following situation:Two types of jobs
arrive from two different sources. Both types are processed on a single machine, with pri-
ority given to jobs from the first source.

2. Jobs arrive at a constant rate at a carousel conveyor system. Three service stations are
spaced equally around the carousel. If the server is idle when a job arrives at the sta-

18.
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tion, the job is removed from the conveyor for processing. Otherwise, the job contin-
ues to rotate about the carousel until a server becomes available. A processed job is
stored in an adjacent shiPping area. Identify the discrete events needed to simulate
this situation.
Cars arrive at a two-lane, drive-in bank, where each lane can house a maximum of four
cars,If the two lanes are full, arriving cars seek service elsewhere.If at any time one lane
is at least two cars longer than the other, the last car in the longer lane wiit jockey to the
last Position in the shorter lane. The bank operates the drive-iňfacility from 8:00 A.M. to
3:00 p.ttl. each workday. Define the discrete events for the situation.
The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all its
PuPils. Students arrive at the dispensing window every 30 seconds.It takes 18 seconds to
receive the lunch traY. Map the arrival-departure events on the time scale for the first five
pupils.

1_. Inverse method.
2. Cq_n\/olution method.
3. Acceptance-rejection method.

The inverse method is particularly suited for analytically tractable probability density
functions, Such as the exponential and the uniform. The remaining two methods deal
with more complex cases, such as the normal and the poisson. All three methods are
rooted in the use of independent and identically distributed uniform (0, 1) random
numbers.

rnverse Method. Suppose that it is desired to obtain a random sample x from the(continuous or discrete) probability density function f(x).The inverse method first
determines a closed form expression of the cumulative density function F@) :P{l ' x}, where O = F(x) = 1, for all defined values of y. Given R is a random value
obtained from a uniform (0, 1) distribution, and assuming that F-1 i, tt. inu.r." 

"r cthe steps of the method are as follows:

Step 1. Generate the (0, 1) random number, R.
Step 2. Compute the desired sample, x : F-l(R).

Figure 18.5 illustrates the procedures for both a continuous and a discrete ran_dom distribution.,The uniform (0, 1) random value R1 is projected from the vertical
F(x)-scale to Yield the desired sample value.r1 on the horizóntál scale.

The validitY of the proposed procedure rests on showing that the random vari-
able z : F (x) is uniformly distributed in the interval0 < z =i,as the following theo_
rem proves.
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18.3.2 Sampling from Probability Distributions

Randomness in simulation arises when the interval, t, between successive events is
Probabilistic. This section presents three methods for generating successive random
samples (t : t1, t2,, ... ) from a probability distributionfi).

--=: !!!!!!
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FlGURE 18.5

Sampling from a probability
distribution by the inverse
method

x1 x
(u) x Continuous

X1

(b) x Discrete

of the random variable
1-, has the following

function F(x)
F(*),0 = z =

Theorem 18.3-1. Given the cumulative density
x) -@ < _tr < oo, the random variable z :
uniform 0-1 density function:

g(z):1,0= z<1,
Proof. The random variable is uniformly distributed il and only if,

P{z=Z}:Z,O,Z<1,
This result applies to F(x) because

P{z = Z} : P{F(*), z| : p{x 
= r,(4) : FLF*I(z)f : z

Additional|y,0'=-Z < ]. because 0 < P{z - Z} = 1.

Example 18.3-2 (Exponential Distribution)

The time, d between customers arrivals at a facility is represented by an exponential
distribution with mean E{t} : { time units-that is,

í(t): Ne-^', t>0
Determine a random sample / from í (t).

The cumulative density function is determined as

4t) : !'}rr-*d,* - 1 - e-\', t > O

Setting R : f(r), \4/e can solve for t, which yields

| - -.í1\,.,,3 -(x/t"lt - R)

Because 1 - R is the complement of R, we may replace ln(1 - R) with ln(R).
In terms of simulation, the result means that arrivals are spaced / time units apart.

For example, given }, : 4 customers per hour and R : .9, the time period until the
next arrival occurs is computed as

t., : -(1),r', - .9) : .577 hour : 34.5 minutes

The values of ^R used to obtain successive samples must be selecte d randomly from
a uniform (0, 1) distribution. We will show in Section 18.4 how these (0, 1) random val-
ues are generated during the course of the simulation.
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PRoBLEM sET 18.3B

In ExamPle 1'8,3-2,suPPose that the first customer arrives at time 0. Use the first threerandom numbers in column 1 of Table 18.1 to generate the arrival times of the next threecustomers and graph the resulting events on the time scale.
Uniform Distribution, SuPPose that the time needed to manufacture a part on amachine is given by the following uniform distribution:

í(l:rJ-, a<t<bD-a
Determine an expression for the sample r given the random number R.3' Jobs are received randomly at a one-machine shop. The time between arrivals is expo_nential with a mean of 2 hours. The time needed to manufacture a job is uniformbetween 1,1 and 2 hours. Assuming_.that the ri^i;"u arrives at time 0, determine thearrival and deParture time for theŤirst five ioo. 

"ri"g;^h;iÓ, 
ii;;;d;m numbers in col_umn 1 of Table 18.1.

4' The demand for an exPensive spare part of a pas enger jet is 0,I,2,or 3 units per monthwith Probabitities ,z,,3,,4,and .1, respectively.The aiiline mainterrance shop starts opera_tion with a stock of 5 units and will uiing the stock level back to 5 units immediately afterit drops below 3 units.
(a) Devise the procedure for determining demand samples.
(b) How manY months will elaPse until the first replenishment occurs? [Jse successive-r{u"rof R from the first .álu-r, in Table 18.1]

5' In a simulation situation, TV units are inspected for possible defects. There is an 807ochance that a unit will Pass inspection, in wtricrr case it is sent to packaging. Otherwise, theunit is rePaired.We can represent the situation symbolically in one oii*o ways.
goto REPAIR/ .2, PACKAGE/. B
goto PACKAGE/ .B, REPAIR/.2

These two rePresentations aPpear equivalent. Yet, when a given sequence of (0, 1) ran_dom numbers is applied to tňá t*o representations, different decisiáns (REPAIR orPACKAGE) may result. Explain why.
6' A PlaYer tosses a fair coin repeatedly until a head occurs. The associated payoft is 2,,where n is the number of tosies untii a head comes up.

(a) Devise the sampling procedure of the game.
(b) 

"T:l|"",if"'ffiJn:r:in 
column 1 of Table 18.1 to determine the cumulative pay_

7' Triangular Distribution, In simulation, the lack of data may make it impossible to deter_mine the ProbabilitY distribution associated with a simulation activity.In most of thesesituations, it maY be easY to describe the desired variable by estimating its smallest, mostlikelY, and largest values, These three values are sufficient to define a tiiangular distribu_tion, which can then be used as a "rough cut" estimation of the real distribution.(a) DeveloP the formula for sampling from the following triangular distribution whoseparameters aíe a, b, and g where a 1 b 1 c:

( 2(x-a)

f(x):l"!T, ašx<b

, bšxšc
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(b) Generate three samples from a triangular distribution with parameters (1,3,7) using
the first three random numbers in column 1 of Táble 18.1.

8. Consider a probability distribution that consists of a rectangle flanked on the left and
right sides by two symmetrical right triangles. The respective ranges for the triangle on
the left, the rectangle, and the triangle on the right are ío, b),Ib, ,f , and |c, d],

a 1 b { c { d.Each triangle has the same height as the rectangle.
(a) Develop a sampling procedure

(b) Determine five samples with (a, b, c, ó : (I, 2, 4,6) using the first five random
numbers in column ]_ of Thble ]_8.1.

9. Geometric Distribution. Show how a random sample can be obtained from the follow-
ing geometric distribution:

í(*): p(I - pY, x: 0, 1, 2, ...

The parameter x is the number of (Bernoulli) failures until a success occurs, andp is the
probabilityofasuccess,O<p{l.Generatefivesamplesíorp:.6usingthefirst5ran-
dom numbers in column 1 of Table 1,8.1.

10. Weibull Distribution. Show how a random sample can be obtained from the Weibull dis-
tribution whose pdf is defined as

__-/ Í(*): c,F ox" t,'(xl9)", x ) 0

where a ) 0 is the shape parameter, and B > 0 is the scale parameter.

Convolution Method. The idea of the convolution method is to express the desired
sample as the statistical sum of other easy-to-sample random variables. Typical among
these distributions are the Erlang and the Poisson whose sample can be obtained from
the exponential distribution samples.

Example 18.3-3 (Erlang Distribution)

The m-Erlang random variable is defined as the statistical sum (convolutions) of m
independent and identically distributed exponential random variables.Let y represent
the m-Erlang random variable;then

|:lt*yz-| l!-
where yi,i:1-,2,...,,ffi, are independent and identically distributed exponential
random variables whose probability density function is defined as

í(y) : },e-\}', .}; ) 0, i : L, 2, ... ,, ffi

From Example 1,8.3-2,the ith exponential sample is

li : -(i)r,^ ;), i : 1,2, ..., ffi

Thus, the m-Erlang sample is computed as

y - -(*)o",^l

: -(i),n(Rl^2 ... R-)

650



18,3 Elements of Discrete Event Simulation 651

To illustrate the use of the formula, suppose
The first 3 random numbers in column i of
(.4799) : .0].90, which yields

that m : 3, and }' : 4 events per hour.
Táble 18.1 yield R'R2R3 : (.0589X.6733)

: .991, houry : -e\n(.019)

Example 18.3-4 (Poisson Distribution)
Section 17.3.1, shows that if the distribution of the time between the occurrence of suc_
cessive events is.exPonential, then the distribution of the number of events perunit
time must be Poisson, and vice versa. We use this relationship to sample the'poisson
distribution.

Assume that the Poisson distribution has a mean value of \ events per unit time.
Then the time between events is exponential with mean I time units. This means that aPoisson sample, n, w1ll occur during r time units if, and oriiy if,

Period until eyent /? occurs = t < Period until event n i I occurs
This condition translates to

h+t2+...t,=tlh+t2+ ...tn+l,, n > 0

t 1 tr, n:00<
where ti, i : I,2, ... , ft, is a sample from the exponential distribution with mean
From the result in Example 18.3-3, we have

R,)=t< n}0

n:0
which reduces to

RrRr... Rn =_ e-\' ) RrRz ...Rn+I, n ) 0

1,>e-\')Rr,n:0

Rt : .0589 is less than e-\t : .1353. Frence, the corresponding sample is zz : 0.

Example 18.3-5 (Normal Distribution)
The Central LimitF.9.9F (see Section12.4.4) states that the sum (convolution) of nindePendent and identically distributed random variables becomes asymptotically nor_mal as n becomes sufficiently large. We use this result to generate sampt.i fro,o ,ró.matdistribution with mean p and standard deviation o.

Define

x:Rt+R2+ lR,

-(*),r* tRz...R,+t),

0<r.-(*)h(R),

-(*),"* tRz. .

To illustrate the. imPlementation of the sampling process, suppose that }, : 4events Per hour and that we wish to obtain a samplé foň peri od,'t : '.š 
hou.. This gives

e-\' : .1,353. Using the random numbers in .oju*r, t ór raule 18.1, we note that

---4č-

Il

J
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The random variable is asymptotically normal by the Central Limit Theorem. Given
that the uniform (0, 1) ,urrdo- numbei R has a měan of } and a varianc e of.[,it follows
that x has a mean of} and a variance of ft.Thus, a random sample,y, from a normal dis-
tribution with mean p and standard deviation o, l(p, o), can be computed from x as

/x-*\
y:lL+o| ,- |\ \/ťi )

In practice, we take n : 12 for convenience, which reduces the formula to

y:p+a(x-6)
To illustrate the use of this method, suppose that we wish to generate a sample

from N(].0, 2) (mean p : 10 and standard deviation o - 2). Táking the sum of the
first12 randomnumbers in columns ]. and 2of Table ]_8.]",we get x:6.1094.Thus,
! : I0 + 2(6.1094 - 6) : 1ďZtSa

The disadvantage of this procedure is that it requires generating12 random num-
bers for each normal sample, which is computationally inefficient. A more efficient
procedure calls for using the transformation

,: \/-zln(R)cos(2nR)
Box and Muller (1958) prove that x is a standard N(0, 1). Thus, y : w l ox will pro-
duce a sample from 1(p, o).The new procedure is efficient because Box and Muller
additionally prove that the preceding formula will produce another N(0, 1) sample
simply by replacing cos(2nRr) with sin(2nR2). This means that two random numbers, R,
and R2, will generate two N(0,1_) samples.

To illustrate the implementation of the Box-Muller procedure to the normal distri-
bution N(10,2),the first two random numbers in column ]. of Table 1_8.1 yield the fol-
lowing l/(0, 1) samples:

", 
: V-2lr(.0589cos(2n x .6733)= -]..103

*r: Ý-zln1.05891sin(2n x .6733) = -2.109
Thus, the corresponding l/(].0,2) samples are

lt : 10 + 2(-I.I03) : 7 .794

lz: 10 + Z(-Z.I09) : 5.782

PRoBLEM sET 18.3c1

L In Example ].8.3-3, compute an Erlang sample, given m : 4 and \ : 5 events per hour.

2. In Example l8.3-4,generate a Poisson samples during a l-hour period given that the
mean of the Poisson is 5 events per hour.

3. In Example 18.4-5, generate two samples from N(8,1) by using both the convolution
method and the Box-Muller method.

4. Jobs arrive at Metalco jobshop according to a Poisson distribution, with a mean of six jobs
per day. Received jobs are assigned to the five machining centers of the shop on a strict

1For all the problems of this set, use the random numbers in Táble 18.1 starting with column 1.
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rotational basis, Determine one sample of the interval between the arrival of jobs at thefirst machine center.

High are normal, with a mean of
that we draw a random sample of
to determine the mean and stan-

PsYchologY Professor Yataha is conducting a learning experiment in which mice aretrained to find their way around a restrictód maze.Tňe base of the mazeis square. Amouse enters the maze at one of the four corners and must find its way through the mazeto exit at the same Point where it entered. The design of the mazeis such that the mousemust Pass bY each of the remaining three corner points exactly once before it exits. Themultipaths of the maze connect the four corners in a strict clockwise order. professor
Yataha estimates that the time the mouse takes to reach one corner point from another isuniformlY distributed between 10 and 20 seconds, depending on the patrr iitakes.DeveloP a sampling procedure for the time a *ou." .p"rra, in the maze.
In Problem 6, suPPose that once a mouse makes an exit from the maze,another mouseinstantlY enters. Develop a sampling procedure for the number of mice that exit the mazein 5 minutes.

8' Negative Binomial, Show how a random sample can be determined from the negativebinomial whose distribution is given as

The ACT scores for the 1994 senior class at Springdale
27 points and a standard deviation of 3 points. Suipose
six seniors from that class. use the Box-Mutter meitrod
dard deviation of the sample.

7.

where x is the number of failures
pendent Bernoulli trials andp is
tive binomial is the convolution
Set 18.3b.)

until the rth success occurs in a sequence of inde-
the probability of success, 0 < p < I. (Hint: The nega-
of independent geometric samples. See Problem 9,

AccePtance-Rejection Method. The acceptance-rejection method is designed forcomPlex Pdfs that cannot be handled by the preceding methods. The general idea ofthe method is to rePlace the complex Óat rrb with a more analytically manageable"ProxY" Pdt h(x), SamPles from h(x) cantne" Íe used to sample the origin al pdt f(x).Define the majorizing funcúion g(x) such that it dominate s í(x) in its entirerange-that is,

sk)> í(*),-oo <x( oo

Next, define the proxy pdf,h(x),by normalizingg(x) as

h(x):--é(")_,_Ň(x{oo
l_*sU)dU)

The steps of the acceptance-rejection method are thus given as

Súep 1. Obtain a sample x
method.

: x1 from ft(x) using the inverse or the convolution

Step 2. Obtain a (0, 1) random number R.
SÍeP 3' If R < ffi, u".Pt x1 as a sample from/(x). Otherwise, discard x1 and returnto step 1.
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The validity of the method is based on the following equality:

p{x 
= alx:x1 isaccepted, -oo ( xt1*}: !_*rrllar,, -Ň 1al Ň

This probability statement states that the sample x : xl,that satisfies the condition of

step 3 in reality is a sample from the originalpdf f(x), as desired.

The efficiency of the proposed method is enhanced by the decrease in the rejec-

tion probability oi step t. rrris probability depends on the specific choice of the

ma;oiiring funótion g(x) and should decrease with the selection of a g(x) that "major-

izes" /(x) more "snugly."

Example

Apply the

18,3-6 (Beta Distribution)

acceptance_rejeótion to the following beta distribution:

f('):6x(L- /),0, x=I
Figure 18.6 depicts/(x) and a majorizing function s(x),

FlGURE,l8.6

Majorizing function, g(x), for the beta

distribution,/(x)

1.5

1.0

0

: .2217 is less than R : .6733, we accept the sample

The height of the majorizing function g(x) eqla!: tt9 maximum of /(x), which

occurs at x 1_ .5. Thus, the ireight Óf the rectangle is /(.5) : ]..5. This means that

S@):]",5,0<x<t
The proxy pdf h(r),,also shown in Figure 1_8.6, is computed as

s(x) 1.5
h(*): Ár*r-ía;6: fr: 1, 0 < x š 1

The following steps demonstrate the procedure using the (0, 1,) random Sequence

in Table ].8.]_.

Step 1. R : .0589 gives the sample x : .0589 from h(*),

Step2. R:.6733.
Step 3. Because Řffi :

xr : ,0589,

To obtain a second sample, we continue as follows:

Step 1. Using R :
Step2. R:.9486.

we get x : .4799 from h(*).

.3326
1^5

ll
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Step 3. Because ffi - .g28! is larger than R : .9486, we reject x :
valid beta sample. This means that the steps must be repeated
"fresh" random numbers until the condition of step 3 is satisfied.

The efficie.ncY of the acceptance-rejection method is enhanced by selecting amajorizing function g(x) that"jackets" f(x) as tightly as possible while yieioing ur, urru-
lYticallY tractable Proxy h(*).For example, ttle method *itt u. more efficient if the rec_tangular majorizinS rullio: 9 in Figure 18.5 is replaced with a step-pyramid
function (see Problem 2, Set 18.3d for an illustration). Th| larger the numb;, ;f steps,
the more tightlY g(r) will majorize í(*),and hence the higher tňe probability of accept-
ing a samPle. However, a"tight" majorizing functio., g.rr..ully entails additional com-
Putations which, if excessive, may offset the savings resulting from increasing theprobability of acceptance.

.4799 as a
again with

PRoBLEM sET 18.3D

1. In Example 18.3-6, continue the steps of the
Use the (0,1) random numbers in Table 18.1
the example.

procedure until a valid sample is obtained.
in the same order in which they are used in

2, Consider the beta Pdf of Example 18.3-6. Determine a two-step pyramid majorizingfunc-
tion g(x) with two equal jumps each of height Ť : .lS.Obtairrone beta sample based on
the new majorizing function using the samó (0f1) random sequence in Table 18.1 that was
emPloYed in ExamPle 18.3-6. The conclusion, in general, is that a tighter majorizing func-
tion will increase the Probability of acceptanc". Ób."ru", however,ihut trr" amount of the
computations associated with the new function is larger.

3, Determine the functions g(x) and, h(x) for applying the acceptance-rejection method to
the following function:

í(,):-ej==9.0< *=;.
Use the (0,1) random numbers from column 1 in Table 18.1 to generate two samples
from/(x). [Hint:For convenience, use a rectangular s@) over th"e defined range of /(x).]4, The interarrival time of customers at HairKare is described by the following distribution:

í,(t):?,rr<t=20
The time to get a haircut is represented by the following distribution:

ír(l:2,rr<t<22í,
The constant k, and k2 are determined such that fr(t) and fr(t)are probability density func-
tions. Use the acceptance-rejection method (and tiió random numbers in Table 18.1) to
determine when the first customer will leave Hairkare and when the next customer will
arrive. Assume that the first customer arrives at T : 0.

Il

"l
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18.4 GENERATIoN oF RANDoM NUMBERS

Uniform (0, 1) random numbers play a key role in sampling from distributions. True
(0, 1) random numbers can only be generated by electronic devices. However, because
simulation models are executed on the computer, the use of electronic devices to gen-
erate random numbers is much too slow for that purpose. Additionally, electronic
devices are activated by laws of chance, and hence it will be impossible to duplicate the
same sequence of random numbrprs at will. This point is important because debugging,
verification, and validation of the simulation model often require duplicating the same
sequence of random numbers.

The only practical way for generating (0, 1) random numbers for use in simula-
tion is based on arithmetic operations. Such numbers are not truly random because
they can be generated in advance. It is thus more appropriate to refer to them as

pseudorandom numbers.
The most common arithmetic operation for generating (0, 1) random numbers is

the multipticative congruential method. Given the parameteís u.g, b, c, and ffi, z
pseudorandom number Rncanbe generated from the formulas:

un : (bu,_, * c) mod (*), , : I,2,

u,^Rr::,n:I,2,

The initial value z6 is usually referred to as the seed of the generator.
Variations of the multiplicative congruential method that improve the quality of

the generator can be found in Law and Kelton (2000).

Example 18.4-1

Generate three random numbers based on the multiplicative congruential method
using the following initial values: b : 9, c : 5, ug : l"1,,andm : 12.

ut: (9 x 11 + 5)mod 12:8, : .6667

uz : (9x 8 + 5)mod 12 : 5, Rz : + : .41,67

uz: (9 X 5 + 5)mod 12:2, Rl: i: .1667

For convenience, the Excel template chl8RandomNumberGenerator.xls is
designed to carry out the multiplicative congruential calculations. Figure 1_8.7 provides
the sequence associated with the parameters of this example. Observe carefully that
the cycle length is exactly 4, after which the sequence repeats itself. The conclusion
here is that the choice of ug,b, c, and m is crítícal in determining the (statistical) quality
of the generator and its cycle length.Thus, "casual" implementation of the congruential
formula is not advisable. Instead, one must use a reliable and tested generator.
Practically all commercial software are equipped with dependable random number
generators.

ar: i
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FlGURE ,l8.7

Excel random numbers output for the data of
Example I8.4-I

PRoBLEM sET í8.4A
1, Use Excel temPlate chl8RandomNumberGenerator.xls to observe the change in the

; |!,."*i,T.i:'3iiffii tY;lhe 
following sets of parameters and comp-are the

b : 17, c : I1I, uo:7, m :1,03

2, Find a random number generator for your computer, and use it to generate 1000 zero-onerandom numbers. Histogram the resulting valuós (using Microsoft Ái.togru- tool, seeSection l2,5) and visuallY convince yourself that tňe ob--tained numbers ieasonably followthe (0, 1) uniform distribution. Actually, to test the sequence properly, you would need toaPPll the following tests: chi-square goodness of fit (see Secti,on tz.Ql,iuns test for inde-
Pendence, and correlation test (see Law and Kelton izooo1 for detailsj.

18.5 MECHANlcs oF DlscRETE slMULATloN
This section details how typical statistics are collected in a simulation model. The vehi_cle of exPlanation iS a single queue model. Section 18.5.1 uses a numeric example todetail the actions and comPutations that take place in a single-server queuing simula_tion model, Because of the tedious computations that typify the execution of a simula_tion model, Section I8.5.2 shows how the single-server model is modeled and executedusing Excel spreadsheet.

18.5,í Manual Simulation of a Single-Server Model
The interarrival time of customers at HairKare Barbershop is exponential with a mean of15 minutes. The shoP is operated by one barber, and it takes between 10 and 15 minutes,
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uniformly distributed, to complete a haircut. Customers are served on a first-in, first-out
(FIFO) basis. The objective of the simulation is to compute the following measures of
performance:

1. The average utílization of the shop.

2. The average number of waiting customers.

3. The average time a customer waits in queue.

The logic of the simulation model can be described in terms of the actions associ-
ated with its arrival and departure events.

Arrival Event.

1. Generate and store chronologically the arrival time of the next customer
(: current simulation time * interarrival time).

2. If the facility (barber) is idle
(a) Start service and declare the facility busy. Update the facility utilization statistics.

(b) Generate and store chronologically the departure time of the customer
(: current simulation time * service time).

3. If the facility is busy, place the customer in the queue and update the queue statistics.

Departure Event.

1. If the queue is empty, declare the facility idle. Update the facility utilization
statistics.

2. If the queue is not empty
(a) Select a customer from the queue, and place it in

queue and facility utilization statistics.

(b) Generate and store chronologically the departure
(: current simulation time t service time).

From the data of the problem, the interarrival time is exponential with mean ]-5

minutes, and the service time is uniform between 10 and 15 minutes. Letting p and q
represent random samples of interarrival and service times, then, as explained in
Section 18.3.Z,we get

p: -I5ln(R)minutes,0 < R < ]_

q: I0 + sRminutes, 0 < R < 1

For the purpose of this example, we use R from Thbte 18.1, starting with column
].. We also use the symbol T to represent the simulation clock time. We further assume
that the first customer arrives at T : 0 and that the facility starts empty.

Because the simulation computations are typically voluminous and tedious, the
simulation is limited to the first 5 arrivals only. The example is designed to cover all
possible situations that could arise in the course of the simulation. Later in the section
we introduce the Excel template chl8SingleServerSimulator.xls, which allows you to
experiment with the model without the need to carry out the computations manually.

the facility. Update the

time of the customer



Arrival of Customer 1at T :
T:O*p1

Because the facility is idte'tí
ture time is thus computed as

T:O*qr:
The chronological list of future

18.5 Mechanics of Discrete Simulation 659

Generate the arrival of customer 2 at

+ [-15ln(.0589)] : 42.48 minutes

0, customer 1 starts service immediately. The depar-

0 + (10 + 5 X .6733) : 13.37 minutes

events is thus given as:

0.

-0
T-

Time, T Event

13.37

42.48
Departure of customer 1,

Arrival of customer 2

DeParture of Customer 1, at T : L3.37. Because the queue is empty, the facility isdeclared idle. At the same time, we record that the facility has been busy betweenT : 0 and T : 13.37 minutes. The updated list of future events becomes

Time, Z Event

42.48 Arrival of customer 2

Arrival of Customer 2 at T : 42.48. Customer 3 will arrive at

T : 42.48 + [-15In(.a799)] : 53.49 minutes
Because the facilitY is idle, customer 2 starts service and the facility is declared busy.The departure time is

T : 42.48 + (10 + 5 X .9486) : 57.22 minutes
The list of future events is updated as

Time, Z Event

53.49

57.2z
Arrival of customer 3
Departure of customer 2

Arrival of Customer 3 at T : 53.49. Customer 4 wlllarrive at

T : 53.49 + [-15ln(.6139)] : 60.81 minutes
Because the facility is currently busy (until T : 57.22), customer 3
at T : 53.49.The updated list of future events is

is placed in queue

Time, T Event

57.22
60.81

Departure of customer 2
Arrival of customer 4

-.-Č-
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Departure of Customer 2atT : 57.22.

service. The waiting time is

Wz : 57,22 -
The departure time is

Customer 3 is taken out of the queue to start

53.49 : 3.73 minutes

T : 57.22 + (10 + 5 X .5933) : 70.19 minutes

The updated list of future events is

Time, T Event

60.81 Arrival of customer 4
70.19 Departure of customer 3

Arrival of Customer 4 at 7 : 60.81_. Customer 5 will arrive at

T: 60.8]. + [-151n(.93a1)] : 61.83 minutes

Because the facility is busy until T : ]0.I9, customer 4 is placed
updated list of future events is

in the queue. The

Time,7 Event

61,83 Arrival of customer 5

70.19 Departure of customer 3

Arrival of Cusíomer 5 at T : 61_.83. The simulation is limited to 5 arrivals only,
hence customer 6 arrival is not generated. The facility is still busy, hence the customer
is placed in the queue atT : 6]".83. The updated list of events is

Time,7 Event

70.19 Departure of customer 3

Departure of Customer 3 at T : 70.L9. Customer 4 is taken out of the queue to start
service. The waiting time is

Wl: 70.1,9 - 60.81 : 9.38 minutes

The departure time is

T : 70.19 + [10 + 5 X .1782] : 81.08 minutes

The updated list of future events is

Time,7 Event

81.08 Departure of customer 4

Faci.
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DeParture of Customer 4 at T : 81.08. Customer 5 is taken out of the queue to start
service. The waiting time is

Ws : 81.08 - 61.83 : 19.25 minutes

The departure time is

7 : 8]_.08 + (10 + 5 x .3473) : 92.82 minutes
The updated list of future events is

Time,7 Event

92.82 Departure of customer 5

DeParture of Customer 5 at T : 92.82. There are no more customers in the system
(queue and facility), and the simulation ends.

Figure ]-8.8 summarizes the changes in the length of the queue and the utilization
of the facility as a function of the simulation time.

Queue length

Facility utilization

F|GURE 18.8

Changes in queue length and
facility utilization as a function
of simulation time, 7

The queue length and the facility utilization are known as time-based variables
because their variation is a function of time. As a result, their average values are com_
puted as

( Arerage value of a \ _ Area under curve
\time-based variabl" ) - @

Implementing this formula for the data in Figure 18.8, we get

( Arerage queue\ _ Á, t Az 32.36( l.fi;ri -- ): ffi: ffi,: .349 customer

*- qz--*-a:-* qq**- qs1

60 70
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The average waiting time
value is computed as

o'==*=!o :9+: .686 barber92.82 92.82
(Arerage facility
\ utilization ):

in t,he queue is an observation-based variable whose

sum of observations
Number of observations

Examination of Figure ]_8.8 reveals that the area under the queue-length curve actually
equals the sum of the waiting time for the three customers who joined the queue;
namely,

Wt* Wz* Wzt Wqt Ws:0 + 0 + 3.73 + 9.38 + 19.25:32.36 minutes

The average waiting time in the queue for all customers is thus computed as

W, :'13 : 6,47 minutes

PRoBLEM sET 18,5A

Suppose that the barbershop of Section ].8.5.1- is operated by two barbers, and customers
are served on a FCFS basis. Suppose further that the time to get a haircut is uniformly
distributed between ].5 and 30 minutes.The interarrival time of customers is exponential,
with a mean of 10 minutes. Simulate the system manually íor 75 time units. From the
results of the simulation, determine the average time a customer waits in queue, the aver-
age number of customers waiting, and the average utilization of the barbers. Use the ran-
dom numbers in Table 18.1.

Ctassify the following variables as either observation-based or time-based:

(a) Time to failure of an electronic component.

(b) Inventory level of an item.
(c) Order quantity of an inventory item.
(d) Number of defective items in a lot.
(e) Time needed to grade test papers.

(f) Number of cars in the parking lot of a car-rental agency.

The following table represents the variation in the number of waiting customers in a
queue as a function of the simulation time,

Simulation time, T (hr) No. of waiting customefs

0=T<3
3<T<4
4<T=6
6<T=7
7<T<t0
I0<T<Iz
12<T<18
1,8<T<20
20<T<25

( Average value of an \ :
\ observation-based variable /

18,5

3.

0

1

2

1

0

2
aJ

z
1,



18.5 Mechanics of Discrete Simulation 663

Compute the following measures of performance:
(a) The average length of the queue.
(b) The average waiting time in the queue for those who must wait.
SuPPose that the barbershop of Example 18.5-1 is operated by three barbers. Assume
further that the utilization of the .eru"r. (barbers) ii summarized as given in the fol1ow_
ing table:

Simulation time, T(hr) No. of busy servers

0<
10<
20<
30<
35<
40<
60<
70<
75<
80<
90<

T<I0
T<20
7<30
T=35
T<40
T<60
T<70
T<75
r<80
T<90
r< 100

0

1,

z
I
0

1

2

J

2

1,

0

Determine the following measures of performance:
(a) The average utilization of the facility.
(b) The average idle time of the facility.

18.5.2 Spreadsheet-Based Simutation of the 5ingle-Server Model
The Presentation in Section 18.5.1 shows that simulation computations are typicallytedious and voluminous. Thus, the use of the computer to execute simulation models is amust, This section develoPs a spreadsheet-based model for the single-server model. Theobjective of the development is to reinforce the ideas introduced in section 18.5.1. ofcourse, a single-server model is a simple situation, and for this reason it can be modeledreadilY in a sPreadsheet environment. Other situations require more intensive modelingeffort, which is facilitated by available simulation packagá (see Sectio, rs.z;.

The Presentation in Section 18.5.1 shows that the simulation model oítn. single_server facility requires two basic elements:

4.

1. A chronological list of the model's events.
2, AgraPh that keePs track of the changes in facility utilization and queue length.

These two elements remain essential in the development of the spreadsheet_based(indeed, anY comPuter-based) simulation model. The difference is that the implemen_tation is effected in a manner that is compatible with the use of the computer. As inSection 18.5.1, customers are served in order of arrival (FIFO).
Figure ffi,9 Provides the Excel template chl8SingleŠerverSimulator.xls. TheinPut data allow rePresenting the interarrivai and service time in one of four ways: con_stant, exPonential, uniform, and triangular. The triangular distribution is useful in that

=---
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FlGURE 18.9

Excel output of a single server simulation model

it can be used as a rough initial estimate of any distribution, simply by providing three
estimates, a, b, and c, that represent the smallest, most likely, and the largest values of
the interarrival or service time. The only other information needed to drive the simula-
tion is the length of the simulation run, which, in this model, is specified by the number
of arrivals that can be generated in the model.

The spreadsheet calculations reserve one row for each arrival. The interarrival
and service times for each arrival are generated from the input data.The first arrival is
assumed to occur at T : 0. Because the facility starts idle, customer starts service
immediately. Thus,
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ii*:: i! it

irltrtrli t

lt,rr:inti;iilt rll

l ]i 15, 141| [ I l4:5 l0l 1] Ti
1, !T,i. ,1,11l: 15 ]5, lE41, [[!: 11Ž6i; Jl{ llru l 

,;''* ,, .r; ' n l;i- -;;,i l', ., , ,. - ,,. 
"'l_: l|J l + l+,U+ lU,L:, { tJ l ,Jl, rr, jll|,,:.,,,,,,,,,,,- , : ,,,,,,,,,],,:,,,,,,,,,, ::,-,,, ,: -- "-:,,,,,,, ,,;-_];:,r,

d 1]l] ]]l! ?9E4 54l5i ]]E2: l4!1i

í / fi5l 14 11 l ]] l]l' E,! !b: lt [2. 38 lti

[ 11jl, ]455 36/8 B3B0 ][4! /5[2l

, ']E/ l?Et illú illl, ij/l: 4: lli
i 4 ][l 12 t!. E1 IEi 1 ]] i9] 34 E4. 4I !4i

]5, !16i 135li 1E24/ 1!]IE; 177] 31 lri

i! 5!5!i 11]E, 1!tf!] 2J8!] 35!/ 4i]2i



18.5 Mechanics of Discrete Simulation 665

To determine the departure time of any customet i, we use the following formula

('",';1,n:,f;") : max 
{ 
(*:t*j}i), ("", .ru:H.; íT", ) } 

- ( j,ru:#:)
The formula says that a customer cannot start service until the facility becomes avail_
able. To illustrate the use of this formula in Figure 18.9, we have

Departure time of customer 3 : max{18.89,26.4I| + 14.86 : 4I.25

We now turn our attention to collecting the statistics of the model. First, note that
for customer i, the waiting time in queue,Wr(i), and in the entire system, W,(i),are
computed as

Wr(i) : (Oeyarture *.) _( Arrival time.)_( Service time \
' - \ ofcustomer i /-\or customer i/-\or customer i /

w,(i) - (oeparture ilT,) _( 1rrwal 
time.)- \ of customer i /-\.r customer l/

Next, it may appeaí that computing the remaining statistics of the model necessitate
tracking the changes in facility utilization and in queue length (as we did in Section
18.5.1). Fortunately, the calculations are simplified by two observations we made in
Section 18.5.1 and explained in Figure 18.8:

1. Area under facility utilization curve : Sum of service times of all arrivals
2. Area under queue length curve : Sum of waiting times of all arrivals

To explain this point, Excel output in F'igure 18.9 computes three sums:

Sum of service times : 248.66

Sum of W, : 513.í4

Sum of W, : Sum of W, * Sum of service times

: 76I.81, (= 248.66 + 5L3.t4)

Given that the last arrival (customer 20) departs at T : 252.64,it follows that

(Average facility\ _
\ utilization )
( Average queue\ _
\ length ) -

248.66
252.64

5I3.I4
252s4

: .9842

: 2.03

Percent idleness of the facility is computed as (1 - .9842) X 100 : I.575'/o.
The remainder of the statistics are calculated in a straightforward manner;namely,

( Average waiting\ _ Sum of l4zo 51,3.14

\ time in queue" ) 
: 

ffi : -Ť : 25,66

( Areragesystem\ _ Sum of I4z, _ 761.8I _(' t"i-"' -):Numberofarrivals- 
n -38,09
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The Excel template is designed for a maximum of 500 arrivals. Also, you can
obtain different simulation samples by pressing F9 or by changing any of the input
data cells.

Another spreadsheet was developed for simulating multiserver models (ch18
MultiServerSimulator.xls). The design of the template is based on the same ideas used
in the single-server case. However, the determination of the departure time is not as
straightforward and, hence, requires the use of VBA macros.

PRoBLEM sET 18.5B

1. Using the input data in Section 18.5.1, run the Excel simulator for ].0 arrivals and graph
the changes in facility utilization and queue length as a function of the simulation time.
Verify that the areas under the respective curves equal the sum of the service times and
the sum of the waiting times, respectively.

2. Simulate the MlMl1, model for 500 arrivals given the arrival rate }, : 4 customers per
hour and the service rate p : 6 departures per hour. Run 5 replications (by refreshing
the spreadsheet-pressing F9) and determine a95'/" confidence interval for all the mea-
sures of performance of the model. Compare the results with the steady-state theoretical
values of the MlMl1, model.

3. Television units arrive on a conveyor belt every ].]..5 minutes for inspection at a single-
operator station. Detailed data for the inspection station are not available. However, the
operator estimates that it takes 9.5 minutes "on the average" to inspect a unit. Under
worst conditions, the inspection time does not exceed ].5 minutes, and in certain units
inspection time may be as low as 9 minutes.

(a) Use the Excel simulator to simulate the inspection of 200 TV units.

(b) Based on 5 replications, estimate the average number of units awaiting inspection
and the average utilization of the inspection station.

18.6 METHoDs FoR GATHER!NG STATIsTlcAL oB5ERVATIoNs

Simulation is a statistical experiment, and its output must be interpreted using
proper statistical inference tools (".g., confidence intervals and hypothesis testing).
To accomplish this task, the observations of the simulation experiment must satisfy
three conditions:

1. Observations are drawn from stationary (identical) distributions.
2. Observations are sampled from a normal population.

3. Observations are independent.

It so happens that, in the strict sense, the simulation experiment does not satisfy
any of these conditions. Nevertheless, we can render these conditions statistically
viable by restricting the manner in which the simulation observations are gathered.

First, we consider the question of stationarity. Simulation output is a function of
the length of the simulated period. The initial period produces erratic behavior and is
usually referred to as the transient or warm-up period. When the output stabilizes, the
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sYstem oPerates under steady state. Unfortunately, there is no way to predict the start
Point of steadY state in advance. In gene ral, alonger simulation run has better chanceof reaching steadY state. This point iŠ demonstrated in Example 18.1_1 where the accu_racY of estimating the area of a circle by Monte Carlo increases with the sample size.Thus, nonstationaritY can be accounted for by using a sufficiently large sample size.Next, we consider the requirement that simrilation observations must be drawnfrom a normal population. This requirement is realized, by using the centrat LimitTheorem (see Section 12.4.4), whicň states that the distributior, ót the average of asamPle is asYmPtoticallY normal regardless of the parent population from which thesamPle is drawn, The Central Limit Th.o.".n is thus th. -ui., iool we use for satisfyingthe normal distribution assumption.

The third condition deals with the independence of the observations. The natureof the simulation exPeriment does not guarantee independence among successive sim_ulation observations. Howeveí, by using sample uuÓ.ug. to represent a simulationobservation, We can alleviate the problem of lack of indJpendence. This is particularlytrue when we increase the time base used to compute the sample average. 
'

Having discussed the peculiarities of the simulation experiment and ways to cir_cumvent them, we Present the three most common methods fbr collecting observationsin simulation:

1. Subinterval method
2. Replication method
3. Regenerative (or cycles) method

18.6.1 5ubinterval Method

Figure 18,10 illustrates the idea of the subinterval method. Suppose that the simula_tion is executed for Ttime units (i.e., run length - T) and that it is desired to collect nobservations, The subinterval method first truncates the initial transient period andthen subdivides the remainder of the simulation run into n equal subintervals (orbatches), The average of the desired measure of performance (e.g., queue length orwaiting time in queue) within each subinterval is then used to represent a singleobservation, The truncation of the initial transient period implies that no statisticaldata are collected during the period.

F|GURE 18,10

Collecting simulation data using the
subinterval method
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The advantage of the subinterval method is that the effect of the transient (non-
stationary) conditions is mitigated, particularly for those observations that are col-
lected toward the end of the simulation run. The disadvantage of the method is that
successive batches with common boundary conditions are necessarily correlated. The
effect of correlation can be alleviated by increasing the time base for each batch.

Example 18.6-1

Figure 18.11 shows the change in queue length in a single queue model as a function of
the simulation time. The simulation run length is T : 35 hours, and the length of the
transient period is estimated to equal 5 hours. It is desired to collect 5 observatigns-
that is, n : 5. The corresponding ti*" base for each batch thus equals E;-9 : 6

hours.

Queue
length B

5101520253035
simulation time

FlGURE ,l8.11

Change in queue length with simulation time in Example 18.6-1

LetQirepresent the average queue length in batch i. Because the queue length is a
time-based variable, we have

I,2,...,5

where Á, is the area under the queue length curve associated with batch (observation)
i, and / is the time base per batch. In the present example, t : 6 hours.

The data in Figure 18.11 produce the following observations:

observation j

4
J
z
1

18.6

18.6.

11

1.83

Sample mean : 1.87 Sample standard deviation : .59

The sample mean and variance can be used to compute a confidence interval, if desired.
The computation of the sample variance in Example 18.6-]_ is based on the following
familiar formula:

Ai

Q,

1,4

Z.JJ

10

I.67

615
1.00 2..5

Al:70|1.:11
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This formula is onlY an aPProximation of the true variance because it ignores the effectof autocorrelation between the successive batches. The exact formula can be found inLaw and Kelton (2000,pp.2492,53).

18.6.2 Replication Method

In the rePlication method, each observation is represented by an independent simula_
tion run in which the transient period is truncated, as illustrated in Figure 18.12.T1,e
comPutation of the observation averages for each batch is the same as in the subinter_
val method. The onlY difference is that the standard variance formula is applicable
because the batches are not correlated.

FIGURE 18.12

collecting simulation data using the replication method

The advantage of the replication method is that each simulation run is driven by
a distinct (0, 1) random number stream, which yields observations that are truly statis_ticallY indePendent. The disadvantage is that Óach observation may be biased by theinitial effect of the transient conditions. Such a problem may be ailLviated by makingthe run length sufficiently large.

18.6.3 Regenerative (Cycle) Method

The regenerative method may be regarded as an extended case of the subinterval
method, The motivation behind the new method is that it attempts to reduce the effectof autocorrelation that char acterizes the subinterval method byiequiring similar start_ing conditions for each batch. For example, if the variable we are dealing with is thequeue length, each batch would start at an instant where the queue le gth is zero.Unlike the subinterval method, the nature of the regenerative method máy result inunequal time bases for the different batches.
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Although the regenerative method may reduce autocorrelation, it has the disad-
vantage of yielding a smaller number of batches for a given run length. This follows
because we cannot predict when a new batch will start or how long a batch will last.
Under steady-state conditions, however, we should expect the starting points for the
successive batches to be more or less evenly spaced.

The computation of the average for batch i in the regenerative method is gener-
ally defined as the ratio of two random variables ai anď b,-that is, .tr; : ?,.Th" defini-
tions of ai and b; depend on the variable being computed. Specifically, if the variable is
time based,then a; would represent the area under the curve and bi would equal the
associated time base. If the variable is observation based,, then a; would be the total
sum of the observations within batch l and b; would be the associated number of
observations.

Because x; is the ratio of two random variables, an unbiased estimate of the sam-
ple average can be shown to be

ž,,
--1-1

where

(n-I)(nU-o,)
,i:Ir2r...)nn6-b,

a-

b:

In this case, a confidence interval is based on the mean and standard deviation of y;.

Example 18.6-2

Figure 18.1_3 represents the number of busy servers in a single facility with three paral-
lel servers. The length of the simulation run is 35 time units, and the length of the tran-

,3.1l',,

Transient
period

510152025
simulation time

FlGURE 18.13

Changes in the number of busy servers as a function of time in Example t8.6-2
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sient Period is 4 time units. It is desired to estimate the avera ge utílization of the facil_ity based on the regenerative method.
After truncating the transient period, Figure 18.13 yields four batches with thecommon characteristic of starting with all threé servers idie. The associated values of a,

and bi are given in the following iable:

Batch l biai

1

2

J

4

Averages

Iz
6

10

6

á : s.so

9

5

10

7

b : 7.75

Based on these data. we have

li : 4 x 8.5 _ (4 - 1) x (4 x 8.5 - a) : 4.397.75 4x7.75-bi
These computations can be automated readily using
Regenerative.xls. Figure 18.14 provides the associateá outpui.

_ 1,02 - 3ai

31, - bi

Excel template ch18

FlGURE ,l8.14

Excel calculations of
Example 18.6-2 simulation
observations based on the
regenerative method

PRoBLEM sET 18.6A

1, In ExamPle 18.6-1, use the subinterval method to compute the average waiting time in
the queue for those who must wait.

2, In a simulation model, the subinterval method is used to compute batch averages. The
transient period is estimated to be 100, and each batch has a time base of 100 time units
as well, Using the following data that provide the waiting times for customers as a func-
tion of the simulation time, estimate the 95o/o confidence interval for the mean waiting
time.
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Time interval Waiting times

0_100
100_200
200-300
300-400
400-500
500_600

l0, 20, 13, 14,8, ].5, 6, 8

12,30,I0,1,4,1,6
1,5,17,20,22
1,0,20,30,15,25,3I
15,I7,20,1,4,13
25,30,1,5

In Example l8.6-2,suppo e that the start point for each observation is the point in time
where all the servers have just become idle. Thus, in Figure ].8.].3, these points correspond
to t : I0,I7,24,atd 33. Compute the 95%" confídence interval for the utilization of the

servers based on the new definition of the regenerative points.

In a single-server queuing situation, the system is simulated for 100 hours. The results of
the simulation show that the server was busy only during the following time intervals: (0,

10), (]"5,20),(25,30), (35,60), (70,80), and (90,95).The length of the transient period is

estimated to be ]-0 hours.

(a) Define the observation start point needed to implement the regenerative method.

(b) Compute the 95% confidence interval for the average utilization of the server based
on the regenerative method.

(c) Apply the subinterval method to the same problem using a sample size n : 5.

Compute the corresponding 95% confidence interval, and compare it with the one
obtained from the regenerative method.

18.7 stMULATloN LANGUAGES

Execution of simulation models entails two distinct types of computations: (1) file
manipulations that deal with the chronological storage and processing of model
events, and (2) arithmetic and bookkeeping computations associated with generation
of random samples and collection of model statistics. The first type of computation
involves extensive logic development in list processing, and the second type entails
tedious and time-consuming calculations. The nature of these computations makes the
computer an essential tool for executing simulation models and, in turn, prompts the
development of special computer simulation languages for performing these computa-
tions conveniently and efficiently.

Available discrete simulation languages fall into two broad categories:

1. Event scheduling
2. Process oriented

In event scheduling languages, the user details the actions associated with the occurrence
of each event, in much the same way they are given in Example 18.5-]-. The main role of
the language in this case is (1) automation of sampling from distributions, (2) storage and
retrieval of events in chronological order, and (3) collection of model statistics.

Process-oriented languages use blocks or nodes that can be linked together to
form a network that describes the movements of transactions or entities (i.e., cus-
tomers) in the system. For example, the three most prominent blocks/nodes in any
process simulation language are a source from which transactions are created, a queue
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where theY can wait if necessary, and a facility where service is performed. Each ofthese blocks/nodes is defined wiih alt ttre intormation needed to drive the simulationautomaticallY, For examPle, once the interarrival time for ih. ,our.e is specified, aprocess-oriented language automatically "knows" when arrival events will occur. Ineffect' each block/nod" Ór th. model hás standing instructions that defin e how and,when transactions are moved in the simulation network.process-oriented languages are internally driven by the same actions used inevent-scheduling languages, rt . differenc" i, tt ut these actions are automated torelieve the user of tňe Ědiou, computational and logical details. In a way, we canregard Process-oriented languager., b"i.rg based on tňe i.rfut-output concept of the"black box" aPProach, This essentially ,ná.r, that proc"rr-'ori.nted languages trademodeling flexibility for simplicity and Óu.. oi ur".Prominent event-scheduling turrguug., include SIMSCRIPT SLAM, andSIMAN, Over the Years, these tu-rrg.rug"", riur" evolved to include process_orientedcaPabilities, All three languages atlów ih. ur". to write (a portion of) the model inhigher-level language, such u, r'oRrRAN o, Č. This capabiiity is necessary to allowthe user to model comPlex logic that otherwise cannot be achieved directly by the reg_ular facilities of theselanguiges. a major reason for this limitation is the restrictive

i:$ 6:Xť,i:T:lffi í fr:ffi ::n ;5*t J"' hn gu ug", ;;;; trans acti on s (or enti _

The oldest Process-oriented.language is GpSS. This language, which was firstdeveloPed in the earlY 1960s, has since er.Ólved to accommodaě new modeling needsof comPlex sYstems. To use this language 
"mectively, 

the user must master the ,,innerWorks" of some 80 different blocks. Ď.$it. il. i;rg history, GPSS still possesses somemodeling Peculiarities that are difficrll i. i*riiY a" example of these peculiarities isthe need to aPProximate continuous distrĎutions by piecewise linear ones. It is truethat some recent versions of the lunguug" h;;;-;;"vided direct capabilities for some ofthe continuous distributions (e.g., exponential and normal). Hoo u.., with the presenttremendous caPabilitY of the computer, it is difficult to urrá"r.turrd why such an obsta_cle has persisted for so long.
several modern 

'onr-""ial packages currently dominate the simulation market,including Arena, AweSim, and GĚSS/H; ro Á"rr,ion only . r.*. rnese packages useextensive user interface to simplify the proce.r-or..r"utňg,;i;ulation model. Th"yalso Provide animation caPabiliiies where changes in the system can be observed visu_allY' However, to the exPerienced user, these-interfaces may appear to reduce thedeveloPment of a simulaiion mode I to a "slow motion" pu.".'tt il not surprising that
;:T"ď ffiff,b'i. 'i'f "mulation 

models in such g".,"ruip.ogru--ing languages

PRoBLEM sET 18.8A2

1' Patrons arriverandomlY at a three-clerk post office. The interarrival time is exponentialwith a mean of 5 minutós, The time a .r"ri. .p"rrJs with a patron is exponential with amean of 10 minutes, All arriving Patrons form one queu" and ;";; ; the first available

2Work these problems using a simulation language of your choice, or use BASIC, FoRTRAN, or C.
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free clerk. Run a simulation model of the system for 480 minutes to determine the
following:
(a) The average number of patrons waiting in the queue.

(b) The average utilization of the clerks.

(c) Compare the simulation results with those of the l|l4lMlc queuing model (Chapter 17)

and with the spreadsheet chl8MultiServerSimulator.xls.
2. Television units arrive for inspection on a conveyor belt at the constant rate of 5 units per

hour.The inspection time takes between 10 and 15 minutes, uniformly distributed. Past
experience shows that}}o/" of inspected units must be adjusted and then sent back for
reinspection.The adjustment time is also uniformly distributed between 6 and 8 minutes.
Run a simulation model for 480 minutes to compute the following:

(a) The average time a unit takes until it passes inspection.

(b) The average number of times a unit must be reinspected before it exits the system.

3. A mouse is trapped in amaze and desperately "wants out." After trying between 1 and 3

minutes, uniformly distributed, there is a 30% chance that it will find the right path.
Otherwise, it will wander around aimlessly for between2 and 3 minutes, uniformly dis-
tributed, and eventually end up where it started, only to try once again. The mouse can

;lT,ff :liH;nTT],,ffi ili:li,li,fi :i:*:i::i:::,iíí,Tff 'iJH1'.T"Xi::ffi 3
it within a period that is normally distributed, with a mean of ].0 minutes and a standard
deviation of 2 minutes. Write a simulation model to estimate the probability that the
mouse will be free. For the purpose of estimating the probability, assume that 100 mice
(replications) will be processed by the model.

4. In the final stage of automobile manufacturing, a car moving on a transporter is situated
between two parallel workstations to allow work to be done on both the left and right
sides of the car simultaneously. The operation times for the left and right sides are uni-
form between ].5 and20 minutes and 18 and22 minutes, respectively.The transporter
arrives at the stations area every 20 minutes. Simulate the process for 480 minutes to
determine the utilization of the left and right stations.

5. Cars arrive at a one-bay car wash facility where the interarrival time is exponential, with
a mean of ].0 minutes. Arriving cars line up in a single lane that can accommodate at most
five waiting cars.If the lane is full, newly arriving cars will go elsewhere.It takes between
].0 and ].5 minutes, uniformly distributed, to wash a caí. Simulate the system for 960 min-
utes, and estimate the time a car spends in the facility.
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Markovian Decision process

This chapter applies dynamic programming to the solution of a stochastic decision
ProceSS with a finite number of states. The iransition probabilities between the statesare described bY a Markov chain.l The reward structuró of the process is described by amatrix that rePresents the revenue (or cost) associated with *bu"-"nir.áň"""-ri;,"
to another. Both the transition and revenue matrices depend on the decision alterna_tives available to the decision maker. The objective of the problem is to determine theoPtimal PolicY that maximizes the expected ievenue over a finite or infiniite number ofstages.

1,{ review of Markov chains is given in Section 19.5.

675

19.1 scoPE oF THE MARKOV|AN DEclsloN PROBLEM:
THE GARDENER PROBLEM

We use an examPle to Present the details of the Markovian decision process. TheexamPle ParaPhrases Several important applications in the areas of inventory, replace-ment, cash flow management, and regulatión of water reservoir capacity.
EverY Year, at the beginning of the gardening season (tvtarctr trrrough Septem-ber), a gardener uses a chemicallest to cÍeck the soil condition. Depending on theoutcomes of the tests, Productivity for the new season falls into one of three states:(1) good, (2) fair,and (3) poor.
Over the Years, the gardener observed that prevailing weather conditions duringwinter (October through February). play an impoitant role in affecting the soil condi-tion,leaving it the same or making if wórse, but never improving it. In this regard,last

Year's soil condition is an imPortant factor in current year;s productivity. Usin the'gar_dener's test data, the transition probabilities over u i-y"u, period from one productiv_
ity state to another is represented by the following Markov chain:

\_,,

l..
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state of the
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The transition probabilities in P1 indicate that the productivity for a current year can
be no better than last year's. For example, if this year's soil condition is fair (state 2),

next year's productivity may remain fair with probability .5 or become poor (state 3),

also with probability .5.

The gardener can alter the transition probabilities P1 through other courses of
action. Typically, f"ertIlizer is applied to boost the soil condition, which yields the fol-
lowing transition matrix:

To put the decision problem into perspective, the gardener associates a return
function (or a reward structure) with the transition from one state to another. The
return function expresses the gain or loss during a l,-year period, depending on the
states between which the transition is made. Because the gardener has the option of
using or not using f.ertllizer, gain and loss vary depending on the decision made. The
matrices R1 and R2 summarize the return functions in hundreds of dollars associated
with the matrices Pl and P2, respectively.

Rl : ||r}7ll :

R2 : lv?jll:

The elements r!1 of R2 consider the cost of applying fertilizer. For example, if the soil
condition was fair last year (state 2) and becomes poor this year (state 3), its gain will
ber27: 0 compared with rlzz : 1 when no fertilizer is used.In this rcgard,R gives the

net reward after the cost of the fertilizer is factored in.
What kind of a decision problem does the gardener have? First, we must know

whether the gardening activity will continue for a limited number of years or indefi-
nitely. These situations are referred to as íinite-stage and iníinite-stage decision prob-
lems. In both cases, the gardener uses the outcome of the chemical tests (state of the
system) to determine the best course of action (fertilize or do not fertilize) that maxi-
mizes expected revenue.

1,23
t l .Eo .60 .10\

p2:zl:re .60 .30 l

s \.os .40 .55l

19.2

1,23

:ft2 i\
s\o 0 -IJ

1,z3
tla 5 -1\

i\z : -,)
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The gardener maY also be interested in evaluating the expected revenue resultingfrom a PresPecified course of action for a given state of the system. For example, fertil_izer maY be aPPlied whenever the soil condition is poor (staá 3). The decision_makingprocess in this case is said to be represented by a statioru.y po[óy-
E,ach stationary policy will be associatá with a difŤerent iransition and returnmatrices, which are constructed from the matrices p1, pr,-Ři, ;j ňiH;;;;ň;;.,the stationarY PolicY calling for applying fertili zer only when the soi1 condition is poor(state 3), the resulting tranšition ánd return matrices are given as

|.zo .50 .30\ ll 6 3\p:|.00 .50 .50 l,R:lo 5 1l
\.os .40 .55 l \o 3 -2l

l.z .5 .3\ ll 6pl :ll.}ll :{o .s .Šl, Rl :ll.],ll :ÍÓ 5
\o 0 Il '|lJ| 

\Ó 0

| .r, .60 .10\ l o 5 -1\: 
iá! X3 3!i, 

R2 : 11,;ll : 
|Z : _N

19.2

These matrices differ from P1 and R1 in the third rows only, which are taken directlyfrom P2 and R2, the matrices associated with upptyi.rg fertllizer.

PRoBLEM sET í9.1A
1' In the gardener model, identify the matrices P and R associated with the stationary policythat calls for using fertilizer *h"rr"u", the soil condition is fair or poor.
2. Identify all the stationary policies for the gardener model.

FIN|TE-STAGE DYNAMlc PRoGRAMM|NG MoDEL
SuPPose that the gardener plans to "retire" from gardening in N years. We are inter_ested in determining the optimal course of actionŤo. .u.tr"year (to fertilizeor not totertilize) that will return the highest expected revenue at the end of N years.Let k: 1 and 2 rePresent the two courses of action (alternatives) available tothe gardener, The matrices Pk and Rk representing the transition probabilities andreward function for alternative k were givón in Section 19.1 and are summ aňzed,herefor convenience.

i)

P' : llp?ill

The gardener Problem is expressed as a finite-stage dynamic programming (Dp)model as follows. For the sake of generalization,define

rn : Number of states at each stage (year) (: 3 in the gardener problem)
í,(i) : Optimal expected revenue of stages n, n * !, ... , N, given i is the

state of the system (soil condition) at the beginning o,f y"u, ,
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The backward recursive equation relating f, and ín+lis

í,(i) : *f-{ Žp.l f, * f,*,gn}, n : 1,,2,..., .^y'

where í**rU): 0 for alli.
A justification for the equation is that the cumulative revenue, ,k + í,*rU),

resulting from reaching state i at stage n -l 1, from state i at stage ,? occurs with proba-
bility pk.Let

,f : 1pfirkj:I

The DP recursive equation can be written as

í*(i) : m1x{vf)

(m')

f,(i) : -,i^ 
t 
,f + Zp!if,-fi)}, ft : I, z... ,l/ - 1

To illustrate the computation of vf, consider the case in which no fertilizer is used
(k : 1).

v!,: .2X7 +.5 X 6 + .3 x 3 : 5.3

vlz:Ox0+.5X5+.5X1,:3
vl :0x0+0x0+1x_1 :-].

Thus, if the soil condition is good, a single transition yields 5.3 for that year;if it is fair,
the yield is 3; and if it is poor, the yield is -1.

Example 19.2-1

In this example, we solve the gardener problem using the data summarized in the
matrices P', P', R1, and R2, given a horizon of 3 years (t/ : 3).

Because the values of vf will be used repeatedly in the computations, they are sum-
marized here for convenience. Recall that k : 1, represents "do not fertilíze" and
k : Zrepresents "fertilize."

v|

t
2

J

5.3 4,7

3 3.t

-1, .4

Stage 3.

k:I

Optimal
solution

ír(i) kr

vf

5.3

J

-1

4,7 5.3 I
3.I 3.1 7

.4.42

1

2

J
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Stage 2.

Stage 1.

v! + pfr..1t) + pfrfrQ) + pfrír1)
Optimal
solution

k:I k:2 í,(Ď k*

5.3 + .2 X 5.3 +.5 X 3.1
+.3X,4:8.03

3+0X5.3+.5X3,1
+.5x,4:4.75

-1 +0X5.3+0X3.1
+1X.4:-.6

4.7 + .3 X 5.3 + .6 X 3.1 8,19
+.1 X.4=8.19

3.1 + .1 X 5.3 + .6 X 3.1 5.61
+ .3 X .-l : 5.61

.4 + ,05 X 5.3 + .4 x 3.1 2.13
+ ,55 X .4 :2.13

v! + p!,|rlt) + phÍrQ) + pfrfrQ)
Optimal
solution

k:7 k:2 f,(ů
5.3 + ,2 X 8.19 +,5

+.3X2.13,
3+0X8.19+.5

+ .5 X 2.13

-1 +0X8,19+0
+1x2.I3

4.7+.3X8.19+,6X
+.1 X2.13=

3,1 +.1 X8.19+.6X
+.3X2.I3:

.4+.05X8.19+,4X
+ .55 x 2.I3 :

X 5.61
: 10.38

X 5,61
: 6.87

X 5.61
: 1,13

5.6I
I0.74

5.61

7.92

5.61

+.ZJ

n.74

7.92

4.23

The oPtimal solution Shows that fo_r years 1 and ?,t!"gardener should apply fertil_izer (k" - 2) regardless of the siate, of 1!: ,yrtĚÁ (r;ii;gňti"r, .. revealed by thechemical tests),In Year 3,fertilizer s|our,d Ú" 
"pňii"a 

only if the system is in state 2 or 3(fair or Poor soil condition). The total .*p"ŽiJ ;.*i;;'f#ih. three years are

'it='r?;l1,r\lffi:T" 
or Íne system in yóar i l. g;;, ftj"! j.grit it iJfaň ana

,ffir,::'::}:i:l:i:_:*':- can be generalized in two ways. First, the transition
í;".:x?li:T,,;í:JT:;:,:::,*i..,l".r_':..o;;{.r';";""'": ,ňi i,li'i;; ŠlTi:i:;ffi#;'i,i".',i:.1i3 ;',ii!l*3that f,0\ will eorlal thc nnoo))r,,^t,.^ ^c.1^ ^ _

'n"'{19Jil*1Y j::::,:*:*"í:y";;;;;; j;;;ffi ;;ffi i,ffi ffiI;
f,to be functiJns of the stage, ,,' ur rh"following DpT"".lí;fi] ilH*:lfi1|

The first generalization requires the return values rf ";Jil;;;ttion probabiliti1eSP?i

where

fÁ,)

í,(ů

: m3x{uf,N}

:-"{rr,*žp!;"n,g)}, n : 'J,,2, ..., i/ - 1

vf,' : )rfi,rf,,
j=1

!! *,

l
k
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In the second generalization, given ct (< 1) is the discount factor per year such
that D dollars a yeaí from now have a present value of aD dollars, the new recursive
equation becomes

f*(i) : m1x{v!}

f,(i):-r-{ v! + u Žr!,í,-,(j)\,,

Radio TV
l +oo 52o 600\ /tooo 1300
í soo 400 700 l l soo 1000

\zoo 250 500/ \ ooo 700

: I,2, ...,l/ - 1

PRoBLEM sET 19.2A

1. A company reviews the state of one of its important products annually and decides
whether it is successful (state 1_) or unsuccessful (state Z).The company must decide
whether or not to advertise the product to further promote sales, The following matrices,
P1 and P2, provide the transition probabilities with and without advertisement during any
year.The associated returns are given by the matrices R1 and R2. Find the optimal deci-
sions over the next 3 years.

*,: (?

,, : (.l
2. A company can advertise through radio, TV, or newspaper. The weekly costs of advertise-

ment on the three media are estimated at $200, $900, and $300, respectively. The company
can classify its sales volume during each week as (1) fair, (2) good, or (3) excellent. A sum-
mary of the transition probabilities associated with each advertisement medium follows.

The corresponding weekly returns (in thousands of dollars) are

1), "' 
: (? _1)

3), ", 
: (: _i)

Radio TV Newspaper
1,231,231,23

tl.+ .5 .1\ t1.1 .2 .i\ tl.z .5 .3\
zl .t .l .2|zI .z .6.1 l zIo .7 .3 l

l\.r .2 ,) g\.r .7 .2) :\o .2.8)

Newspaper

1600\ l +oo 530 710\
1700 l l sso 450 800 l

1100/ \zso 400 650)

Find the optimal advertisement policy over the next 3 weeks.

3. Inventory Problem. An appliance store can place orders for refrigerators at the begin-
ning of each month for immediate delivery. A fixed cost of $100 is incurred every time an
order is placed. The storage cost per refrigerator per month is $5. The penalty for running
out of stock is estimated at $150 per refrigerator per month. The monthly demand is given
by the following pdf:

Demand x

p(r) .J.5.z



4.
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The store's PolicY is that the maximum stock level should not exceed two refrigerators inany single month. Determine the following:
(a) The transition Probabilities for the different decision alternatives of the problem.
(b) The exPected inventorY cost per month as a function of the state of the system and

the decision alternative.
(c) The optimal ordering policy over the next 3 months.
RePeat Problem 3 assuming that the pdf of demand over the next quarter changes
according to the following table:

Month

Demand, x

.J

.5

.2

0

I
2

.1

.4

.5

.2

.4

.4

19.3 lNFlNlTE_sTAGE MoDEL

There are two methods for solving the infinite-stage problem. The first method callsfor evaluating a// possible stationary policies of the dócision problem. This is equiva_lent to an exhaustive enumeration p.oi"r, and can be used onty it the number of sta_tionarY Policies is reasonably smáil. The second method, calied policy iteration, isgenerallY more efficient because it determines the optimum policy iteratively.

19.3.í Exhaustive Enumeration Method
SuPPose that the decision problem has ^ stationary policies, and assume that p, and R,are the (one-steP) transition and revenue matrices associated with the policy,s : I, 2, ... , , . The steps of the enumeration method are as follows.

SÚeP 1, ComPute v|, the expected one-step (one-period) revenue of policy s given
state i, i : I, 2, ... ) m.

SÚeP 2, ComPute tj, the long-run stationary probabilities of the transition matrix p,
associated with PolicY s. These probabilities, when they exist, are computed
from the equations

Ťí'P' : íT'

Tri+Ťž+ -|n'^:1
where Ť' : (ri, nž, ... , Ťr-).

teP 3, Determin e E',the expected revenue of policy s per transition step (period),
by using the formula

m

E - Žriri
i:1,

.,,- 
*a 

-,-

, *.-lr

pn-
Ean
rning
gir en
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Step 4. The optimal policy s* is determined such that

E* : ryx{ď}
We illustrate the method by solving the gardener problem for an infinite-period

planning horizon.

Example 19.3-1

The gardener problem has a total of eight stationary policies, as the following table
shows:

Stationary policy, s Action

Do not fertilize at all.
Fertilize regardless of the state.
Fertilize if in state 1.

Fertilize if in state 2.

Fertilize if in state 3.

Fertilize if in state 1, or 2.

Fertilize if in state 1 or 3.

Fertilize if in state 2 or 3.

The matrices P' and R'for policies 3 through 8 are derived from those of policies 1

andZ and are given as

P1 : R1 :

P2: R2:

P3: R3:

P4: R4:

P5: R5:

ll 6 3\

[: ;-N
le 5 -1\

[z : -,)
la 5 -1\

[l; -N

Ei 3)

\o 0 -Il
ll 6 3\

[:; -'

l .z .5 .3\('l;iJ
l.z .6 .1,

í.r .6 .3

\.o, .4 .55

l.g .6 .r\lo .5 .sl
\o 0 tl
l .z .5 .g\

ll 3N
l.z .5 .3

lo .5 .5

\.o, .4 .55



l.s
: 

|á
l.E:ío
\.o,

l.z: l.t
\o,

s be co.The values of ui can thu

I
2
J

4
5

6

7

8
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.6

.6

0

.6

.5

.4

.5

.6

.4

mpute

i:']- i:2 i:3
3.0 -1.0
3.1 0.4
3.0 -1.0
3.1 -1.0
3.0 0.4
3.I -1.0
3,0 0.4
3.I 0.4

The computations of the stationary probabilities are achieved by using the equations
ŤT'P' : ŤT'

Ťtl-r.z* lt_:1
As an illustration, consider,, : 2.The associated equations are

.3m1 i .It2 -| .05n3 : Ť1

.6r.1 *.6112* .4rry:rt2

.Irr1 -| .3t2 l .55n3 : Tt3

Ťt * Ťzl Ťz:l
(Notice that one of the first three equations is redundant.) The solution yields

tl : #, n3: ,a, ,r, : 3
In this case, the expected yearly revenue is

E2:nlvl+fiv|+fivl
: 

GÁn) x 4.7 + (#) x 3.1 + G) x .4 : 2.256

pO

pl

pS

.1\ le 5 -1\3| Ru:í; ; ól1l \o 0 -i)
j ) *, :ft; -1)

55l \; á -;)

:) *,:E'^ S).55l \o 3 -;l
d as given in the following table.

5.3

4.7

4.7
5.3

5.3

4.7
4,7
5.3
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The following table summarizes Ťr' and E'for all the stationary policies. (Although this
will not affect the computations in any way, note that each of policies 1, 3, 4, and 6 has
an absorbing state: state 3. This is the reason Ť1 : Ť2 : 0 and Ť3 : 1 for all these poli-
cies.)

1 -1
* 2.256

I 0.4

1 -1
.r@ 1.724

1 -1
# 1,.734

* 2,21,6

Policy 2 yields the largest expected yearly revenue. The optimum long-range policy
calls for applying fertilizer regardless of the state of the system.

PRoBLEM sET 19.3A

1. 
ioj;l;fi:ilí:", 

19.2afor an infinite number of periods using the exhaustive enu-

2. Solve Problem 2, Set 19.Zafor an infinite planning horizon using the exhaustive enumera-
tion method.

3. Solve Problem 3, Set 19.Zaby the exhaustive enumeration method assuming an infinite
horizon.

19.3.2 Policy lteration Method Without Discounting

To appreciate the difficulty associated with the exhaustive enumeration method,let us
assume that the gardener had four courses of action (alternatives) instead of two: (1)

do not íertilize, (2) fertilize once during the season, (3) fertllize twice, and (4) fertllize
three times. In this case, the gardener would have a total of. 43 : 256 stationary poli-
cies. By increasing the number of alternatives from 2 to 4, the number of stationary
policies "soars" exponentially from 8 to 256. Not only is it difficult to enumerate all the
policies explicitly, but the amount of computations may also be prohibitively large.This
is the reason we are interested in developing the policy iteration method.

In Section 19.2, we have shown that, for any specific policy, the expected total
return at stage n is expressed by the recursive equation

í,(i) : ,, + ir4í,*r(i), i : 1", 2, ... ) m
j:1

This recursive equation is the basis for the development of the policy iteration method.
However, the present form must be modified slightly to allow us to study the asymp-
totic behavior of the process. We define Ť| as the number of stages remaining for con-

-s'l | 
.-]

rrinj

100
)6.]1, 5L) 59

300
400
<569J 15,t 154

600
í562l 137 Lr7-

o1269o l 15 1.3.5
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sideration. This is in contrast with n in the equation, which defines stage n. Therecur_
sive equation is thus written as

ír(i): ,, + Žp,ifru(j), i: I,2,3,, ..., ffi
j:1

Note.that ln is the cumulative expected revenue given that 1 is the number of stages
remaining for consideration. With the new definiiion, the asymptotic behavior of the
process can be studied by letting T + oo.

Given that

r : (rry 12, ... , Ť^)

is the steady-state probability vector of the transition matrix p : ||pa||and

E:tlv1 *rr2v2* lŤ-v*
is the exPected revenue per stage as computed in Section lg.3.1_,it can be shown that
for very large r;,

ír(i):\E+í(i)
where / (l) is a constant term representing the asymptotic intercept of fi(i) given state l.

Because lr(i) is the cumulative optimum return for 1 remaining stagei given state
i, and E is the exPected revenue per stage, we can see intuitively *rrv ňr;lŽquals 1E
Plus a correction factor f(i) that accounts for the specific state J. rni. result assumes
that 1 + oo.

Now, using this information, the recursive equation is written as

.ílE + í(i) : ,, + Žpu{6-1)E + í(j)}, i : I,2, ..., ffi

Simplifying this equation, *" *.'' 
'

E + í(i) - Žp,,í0) : vi, i : 1, 2,...) m
j:1

Frere, we have m equaíions in m * I unknowns,.f(1), í(2), ... , í(*), and, E.
As in Section 19.3.I,our objective is to deteráine ihe optimum policy that yields

the maximum value of E. Because there ate m equations in m + 1 unkno*rr., the opti_
mum value of E cannot be determined in one step. Instead, a two-step iterative
aPProach is utilized which, starting with an arbitrary póti.y, will determine u n.* policy
that Yields a better value of E. The iterative process ends when two successive policies
are identical.

L Value Determination Step. Choose arbitrary policy s. Using its associated matri-
ces P'and R'and arbitrarily assuming í'(*): 0, solve the equations

ď + í'(i) - Žp}í'ff) : v'i, i : l, 2, ... ) mj_I

in the unknowns ď, /'(1), ...)and f'(m - 1). Go to the policyimprovement step.
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2. Policy Improvement Step. For each state i determine the policy t that corre-
sponds to

Ir 2, ..., ffi

The values of /'f), j : I, 2, ... , ffi,are those determined in the value determi-
nation step.The resulting optimum decisions for states I,2,..., and lrz constitute
the new policy /. If s and t are identi cal, t is optimum. Otherwise, set s : t and
return to the value determination step.

Example 19.3-2

We solve the gardener problem by the policy iteration method.
Let us start with the arbitrary policy that calls for not applying fertllizer.The asso-

ciated matrices are

calculations are

vf + pf,lt1 + p|,f(z) + phfQ)
Optimal
solution

k:1 1- _ aK-L f(i)

," -{ ,r * 
\of,í'tĎ\, ':

l.z .5 .3\ ll 6 3\p:lo .5 .sl,n:|o 5 1l

\o 0 1l \o 0 -lJ
The equations of the value iteration step are

E + f(I) - .2í(I) - .5f(2) - .3í(3) : 5.3

E + í(2) - .5f (2) - .5í(3) : 3

E+f(3) í(3):-I
If we arbitrarily let /(3) : 0, the equations yield the solution

E : -I, í(1) : 12.88, í(2) : 8, /(3) : 0

Next, we apply the policy improvement step. The associated
shown in the following tableau.

k"

19.3.!

5.3 + .2 X 12.88 +

*.3X0:
3+0X12.88+

+.5X
-1 +0X12.88+

+1X0

4.7 +.3xI2,88 +.6 X 8 13.36
+.1 X0:].3.36

3.1 +.1 x12.88+,6X8 9.19
+.3X0:9.19

.4 +,05 X 12.88 + .4 X 8 4.z4
+.55x0:4,24

.5X8
II.876
.5X8
0:7
0X8
- -1,

ess of the state. Because the new
rmination step is entered again.

5

4
J _!)

The new policy calls for applying f.ertiltzet regardl
policy differs from the preceding one, the value dete
The matrices associated with the new policy are

l.s .6 .1, \ /op:l.t .6 .3 l,n:lz
\ o, .4 .55l \o

2

2

z

I

z

J



These matrices yield the following equations:

E + íG) - .3í(I) - .6ía -
E + íQ) - 1í(L) - .6í@ -
E + í(3) - .05/(1) - .4í@ -

Again,letting íQ) : 0, we get the solution

E : 2.26, í(1) : 6.75, fQ) :3.80, /(3) : 0

The comPutations of the policy improvement step are given in the following tableau.

19.3 lnfinite-Stage Model 687

.Ií(3) : 4.7

3ía: 3.]

.55/(3) : .4

v!+pf,1()+phí@+phf7)
Optima1
solution

k:I k:2 k*í(,
5.3+.2x6.75+.5X3.80

+.3X0:8.55
3+0x6.75+.5X3.80

+.5X0:4.90
-1 +0x6.75+0X3,80

+1X0:-1

4.7+.3x6.75+.6X3.80
+.1 X0:9.01

3.1 +.1 x6,75 +.6 X 3.80
+.3X0:6.06

.4+.05x6.75+.4X3.80
+.55X0:2.26

9.01

6.06

2.26

_ Th9 new PolicY, which calls for applying f.ertilizer regardless of the state, is identi-
cal.with the Preceding one. Thus thé iait ň9|cy is optiňal, and the iteratiu" p.o""r.
ends. This is the same conclusion obtained Uy ttre exhaustive enumeration method
(Section 19.3.1). Note, however, that the pol,|v iteration method converges quickly to
the optimum policy, a typical characteristic of ih" ,r"* method.

PRoBLEM sET 19.3B

Assume in Problem 1, Set 1,9.2athat the planning horizon is infinite. Solve the problem by
the PolicY iteration method, and compare the rezults with those of problem 1, Set 19.3a.
Solve Problem 2, Set L9.2aby the policy iteration method, assuming an infinite planning
horizon. Compare the results with those of Problem 2, Set 19.3a.
Solve Problem 3, Set l9.Zaby the policy iteration method assuming an infinite planning
horizon, and compare the results with those of Problem 3. Set 19.3a.

19.3.3 Policy lteration Method With Discounting
The PolicY iteration algorithm can be extended to include discounting. Given the dis_
count factor ct (< 1-), the finite-stage recursive equation can be writteň as (see Section
19.2)

ír(i) : ^r"{,r *,žp*Á_,0)}

(N9te that 1 rePresents the number of stages to go.) It can be proved that as T -+ oo
(infinite stage model), Ír(i) : /(l), where /(il is the-expected presónt-worth (discounted)
revenue given that the sYstem is in state i and,operating ou", ár, infinite horizon.Thus the
long-run behavior of Á(i) as T -+ oo is independent oi th" value of 1. This is in contrast

2

2

1,

2
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with the case of no discounting where ír(i) : rE + /(r). This result should be expected
because in discounting the effect of future revenues will asymptotically diminish to zeto.
Indeed, the present worth/(l) should approach a constant value as Ť| -+ oo.

Based on this information, the steps of the policy iterations are modified as follows.

1,. Value Determination Step. For an arbitrary policy s with its matrices P' and R',
solve the m equations

f'(i) - *1p',ií'(j) : ,i, i : !, 2, ... ) m
j:1,

in the rz unknowns /'(1), í'Q), ... ,, í'(*).
2. Policy Improvement Step. For each state l, determine the policy t that corre-

sponds to

i:l,r2,,...)m

/'0) i, obtained from the value determination step.If the resulting policy / is the
same as s, stop;/ is optimum. Otherwise, set s : / and return to the value deter-
mination step.

Example 19.3-3

We will solve Example 19.3-2 using the discounting factor a : .6.

Starting with the arbitrary policy,, : {1, 1, 1}.The associated matrices P and R
(P1 and R1 in Example I9.3-I) yield the equations

f(I) - .6I.2f(1) + .5íQ) + .3/(3)] : 5.3

í(2) - .6I .5í(2) + .5/(3)] : 3.

í(3) - .6l /(3)] : -1.
The solution of these equations yields

fi: 6.6I, íz: 3.Zl, íz : -2.5
A summary of the policy improvement iteration is given in the following tableau:

vf + .epf,Í() + pf,íQ) + pf,í(z))
Optimal
solution

k:L k:2

*p"{,f * *žpkf,o\,

k*í(i)

5.3 + .6í.2 X 6.61 +.5
+ .3 x -25)

3+.6[0X6.61 +.5
+ .5 x -2.5]

-1 +.6[0X6.61 +0
+ I x -25]

4.7 +.6í.3 x 6.61 +.6x.21,
+ .1 X -25l: 6.99

3.1 +.6[.1 x 6.61 + .6x3.21,
+ .3 X -2.5]: 4.2

.4 +.6[.05 x 6.61 + .4x3.21,
+ .55 X -2.5f : .54

x 3.21,
: 6.61,

x 3.2-1,

:3.2l
x 3.2l
_ _,)<

6.90

4.2

688

2

J
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The value determination step using P2 andR2 (Example 19.3-1) yields the follow_ing equations:

í(I) _ .6[ .3f(I) + .6fQ) + .Ií(3)] : 4.7

ía _ .6| .1í() + .6íQ) + .3íf,): 3.1

í(3) -.6[.05/(1) + .4íQ) + .55/(3)] : .4

The solution of these equations yields

í(I) :8.89, íQ) : 6.62, íQ) : 3.37

The policy improvement step yields the following tableau:

R

v! + .ap!,70) + phíQ) + p!r1)]
Optimal
solution

k:L k:2 í(t) k*

5,3 + .6[.2 X 8.89 + .5 x 6.62
+ .3 X 3.37]: g.96

3+.6[0X8.89+.5x6.62
+ .5 X 3.37] : 6.66

-1 +.6[0X8,89+0x6.62
+1X3.37):1.g2

4.7 + .6í.3 x 8.89 + .6 x 6.62 8.96 1
+ .1 X 3.37] : 3.39

3.1 + .6[.1 x 8.89 + .6 x 6.62 6.62 2
+ .3 X 3.37]: 6.62

.4 + .6[.05 x 8.89 + .4 x 6.62 3.37 2
+ ,55 X 3.37) : 3.37

R

Because the newPolicY (I,2,2) differs flom the preceding one, the value determi-nation steP is entereď again using ÍÉ and R3 (Ex;mpt" tl.s-i";. rt i, results in the fol_lowing equations:

f(L) - .6| .2í(I) + .5fQ) + .3íQ)]: 5.3

íQ) _ .6| .Ií0 + .6fQ) + .3íQ)]: 3.]"

í@ - .6[.05/(1) + .4íQ) + .55/(3)] : .4

The solution of these equations yields

í(I) : 8.97, fQ) : 6.63, /(3) : 3.3S

The policy improvement step yields the following tableau:

vf + .ap!,11) + phíQ) + p!,íQ)]
Optimal
solution

k:L k:2 íO k*

5,3+.6í.2x8.97 +.5 X6.63 4.7 +.6I.3x8.g7 +,6 X6.63
+ .3 X 3.38] : 3.97 + .1 x 3.38] : 3.99

3+,6[0x8.97 +.5X6.63 3.1 +.6[.1 x8.97 +.6X6.63
+ .5 X 3.38] : 6.69 + .3 x 3.38] : 6.63

-1 +.6[0 x8.97 +0X 6.63 .4 +.6[.05 x8.97 +.4x6,63

8.98 1

6.63

J.J l+1X3.38]:1.63 + .55 X 3.38] : 3.37

L

2

J

1

2

J
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Because the new policy (I,2,2) is identical with the preceding one, it is optimal.
Note that discounting has resulted in a different optimal policy that calls for not apply-
ing fertilizet ifthe state of the system is good (state 3).

PRoBLEM sET 19.3c

1. Repeat the problems listed, assuming the discount factor ct : .9.

(a) Problem 1, Set 19.3b

(b) Problem 2, Set 19.3b

(c) Problem 3, Set 19.3b

19.4 LlNEAR PRoGRAMMlNG soLUTloN

The infinite_state Markovian decision problems, both with discounting and without, can
be formulated and solved as linear programs.We consider the no-discounting case first.

Section 19.3.í shows that the infinite-state Markovian problem with no discount-
ing ultimately reduces to determining the optimal poticy, s*, which corresponds to

The set ,S is the collection of all possible policies of the problem. The constraints of the
problem ensure that rr|, i : 1_, 2, ... , ffi,represent the steady-state probabilities of the
Markov chain P'.

The problem is solved in Section 19.3.1, by exhaustive enumeration. Specifically,
each policy s is specified by a fixed set of actions (as illustrated by the gardener prob-
lem in Example t9.3-I).The same problem is the basis for the development of the LP
formulation. However, we need to modify the unknowns of the problem such that the
optimal solution automatically determines the optimal action (alternative) k when the
system is in state l. The collection of all the optimal actions will then define s*, the opti-
mal policy.

Let
qf : conditional probability of choosing alternative k given that the

system is in state l

The problem may thus be expressed as

l|iÁaximize E :

subject to

ni : ŽŤipii, j : I, 2, ... ) m
i:1,

íTtiŤzl *lt*:1,

q! + q? + + qf : I,i : !,2, ...,m
Ťiž 0, qf > 0, forall iandk

*q*{ Ét,:ts8J \ l:t

á",( Žnr,r)
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N:1" that.Pilis a function of the policy selected and hence of the specific alternatives fr
of the policy.

The Problem can be converted into a linear program by making proper substitu-
tions involving 4f. Observe that the formulationls equivalónt to the original one in
Section 19.3.1, onlY if q! : ]. for exactly one k for each l, which will reduce the sum
Zf=rqfvf to v!-,wherá k- is the optimal alternative chosen.The linear program we
develop here does account for this condition automatically. - --- r-

Define

wik : niQ!, for all i and k
BY definition wi1, rePresents the joint probability of state i making decision fr. From
probability theory

K
ni: žwit

k=I

Hence,

qf :#_
Zt:tWit

Thus the restriction 27tn,: 1 can be written as
mK

i=l k:I

mK
ž)',o
i:I k=I

Also, the restriction )f:, q! : ]- is_ automatically implied by the way we defined qr in
terms of wi1,. (Verify!) Thus the problem can be written as

subject to

mK
MaximizeE: >Zrfr,o

i=l k:I

mK

k:I i=I k:L

-1
wit ž 0, i : 1,,2, ..., ffii k : I,2, ..., K

The resulting model is a linear program in w,1,.Its optimal solution automatically
guarantees that qf : 1 for one k toieactr l. First, note that the linear program has mindePendent equations (one of the equations associated with n : mp is redundant).
Hence, the Problem must have m basic variables. It can be shown íhat wil,must be
strictly positive for at least one k for each i. From these two results, we conclude that

q!:+_
žt:ů|it

can assume a binary value (0 or 1) only. (As a matter of fact the preceding result also shows
that,oi : 2f;= ik : wik-,where'k* irit 

" 
at"Áuil"" colTesponding to wit, > 0)
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Example 19.4-1

The following is an LP formulation of the gardener problem without discounting:

Maximize E:5.3wrr* 4.7wp* 3w21 * 3.1,w22- wl* .4w32

subject to

wl*wtz-(.Zwrr1.3wp 1.1,w22 *0.5w32) :0
wzt * wzz - (.5rr, * .6w9 * .5w21 -l .6w22 + .4w32) : 0

wst l wy - (.3rr1 1 .Lwp * .5w21 * .3w22 l wr, * .55w32) : 0

Wn * Wn l Wzt l Wzz * Wst * Wzz : I

. w*ž0, foralliandk
The optimal solution is w11 : wI2 : \V3t : 0 and wI2 : .L0I7, w22 : .5254, and

w32 : 37ž9.This result means that q] : qz : q2z : 1. Thus, the optimal policy selects
alternative k : 2 for i : 1,2, and 3. The optimal value of. E is 4.7(.1017) +
3.t(.5254) + .4(.3729) : 2.256 The positive values of wi1, exactly equal the values of 

'm;

associated with the optimal policy in the exhaustive enumeration procedure of
Example l9.3-1,,which demonstrates the direct relationship between the two methods.

We next consider the Markovian decision problem with discounting. In Section
19.3.2 the problem is expressed by the recursive equation

(m)

í(i) : m9x{ vf + u)p!,rril|, i : 1,,2, ..., ffik t J:' )

These equations are equivalent to
m

í(i) > "2pkí0 * ,f , for all i and k
i:1,

provided that f(i) achieves its minimum value for each l. Now consider the objective
function

Minimize Žu,r(r)
i=I

where b,(> 0 for alll) is an arbitrary constant.It can be shown that the optimization of
this function subject to the inequalities given will result in the minimum value of /(l).
Thus, the problem can be written as

Minimize Žr,r(r)
i:I

subject to

í(i) - > vf , for all i andk

/(i) unrestricted in sign for all l

Now the dual of the problem is

19.5

m

">Prjí(j)i=1,

_ ^ ..-



and
Rcts

)-
fa
)of
qds

]ion

subject to

19.5 Appendix: Review of Markov Chains

mK

i:7 k:1,

bpj:I,2,,...)m

mi k:I,2,...,K

K

žr,o
k=1,

Wrt ž 0,

mK
- ..) ZPk',o:

i:1, k:I

for i : 1,,2,

Example 19.4-2

Consirler the 8ardele_r problem given the discounting factor ct : .6. If we let b, :
bz : bs: 1, the dual LP problem may be written as

Maximize 5.3w11 t 4.7w9 l 3w9 * 3.Lw22 - wl l 4w32

subject to

wl * wp - .6|.2w1 * .3wp * .Iw22 -| O.Swrrf : 1

wzt*rilzz-.6|5w1 *.6wp*.5w21 1.6w22 + .4w32f :I
wl * wn - .6|.3w1 * .Iwp t .5w21 l .3w22 -| wst t .55w32! : 1,

wit = 0, for all i and k
The optlmal solution is wp : w2t : w3I: 0 and wu, : t.5678, w22 : 3.3528, and,

wr, : 2.8145.The solution shows that that optimal policy is (1, 2, 2).

PRoBLEM sET í9.4A

1. Formulate the following problems as linear programs.
(a) Problem 1", Set I9.3b
(b) Problem 2, Set 19.3b
(c) Problem 3, Set 19.3b

APPENDIX: REV|EW OF MARKOV CHA|NS

Consider the discrete points in time {ra} for k : 1,, 2, ... , and let |,obe the random
variable that characterizes the state of the system at t1,.Thefamily of rbndom variables
{ ,-} forms a sÚochastic process. The states at time to actually repiesent the (exhaustive
and mutually exclusive) outcomes of the system at that timé. Thi number of states may
thus be finite or infinite. For example, the Poisson distribution

,-tttlslnPr(t): n:0, 1,,2,

rePresents a stochastic process with an infinite number of states.The random variable ru
rePresents the number of occurrences between 0 and í (assuming that the system starts
at time 0). The states of the system at any time / are thus given by n : 0, I, 2,

19.5
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Another example is the coin tossing game with k trials. Each trial may be viewed
as a point in time. The resulting sequence of trials forms a stochastic process. The state
of the system at any trial is either a head or a tail.

This section presents a summary of a class of stochastic systems that includes
Markov proce se and Markov chains. A Markov chain is a special case of Markov pro-
cesse .It is used to study the short- and long-run behavior of certain stochastic systems.

19.5.1 Markov Processes

The occurrence of a future state in a Markov process depends on the immediately pre-
cedingstate andonlyonit. If to < t, < 1t,(n:0, 1,,2, ...)representspointsin
time, the family of random variables{{,,} is a Markov process if it possesses the follow-
ing Markovian property:

P{E,, : xrlÉ,,_, : xn_I, ... ,, E^: xo} : P{E,, : xrlÉ,, , : xr_t)

for all possible values of Éro, ,,, ... , ,,.

The probabihty p*,_,, *, : P{t, : x,lt,,_, : xn_t}is called the transition probability.
It represents the conditional probability of the system being in x, at t, givenit was in xn-l at
/,_1. This probability is also referred to as the one-step transition because it describes the
system between t,4díLdtn. Anm-step transition probability is thus defined by

Prn, *,*- : P{Er,*- : Xn+mlÉ, : Xr)

19.5.2 Markov Chains

Let Ep j : 0, 1,,2,, ... , represent the exhaustive and mutually exclusive outcomes
(states) of a system at any time. Initially, at time /6, the system may be in any of these
states. Leta!o), j : 0, !,, 2, ... , be the absolute probability that the system is in state E7

at /6. Assume further that the system is Markovian.
Define

Pti : P{É,,: ilE,,_, : i}

as the one-step transition probability of moving from state i at tn_l to state j at t,, and
assume that these probabilities are stationary over time. The transition probabilities
from state Eito state Elcanbe more conveniently arranged in a matrix form as follows:

P-

The matrix P is called a homogeneou transition matrix because all the transition
probabilities pilare fixed and independent of time.The probabilities pry must satisfy the
conditions

2P,,: 1, for all l
i

Pi1 > 0, for all i and j

l4oo Pot Poz Pol ' ' ' \
l Prn Ptt Ptz Pts " ' l

I 
rro Pzt Pzz Pzs 

l

\oi, 
o:, ':, o?., 

l
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The transition matrix P together with the initial probabilities {of)} associatedwith the states { completely define a Markov chain. orr" uruutt ,t irrt, of a Markovchain as describing the transitional behavior of a system ou., equal intervals.Situations exist where the length of the interval depends on the characteristics of thesYstem and hence may not be equal. This case is referred to as an imbedded Markovchain.

AbsoluÚe and Transition Probabilities. Given {o?) and p of a Markov chain, theabsolute Probabilities,of the system after a specified number of transitions are deter_mined as follows. Let {r?} be the absoluJe probabilities of the syste m after ntransitions-that is, at tn.The general expressioi of {at!} in terms ot ior}a{|} and P arecomputed as

Also,

lf::Í;_;,t?ťrť?_':"1|. tlTrt:! or second-order transition probability-that is,the probability of going from state k to statei in exactry t*""'.*riiiitions.

g,(r) - 
'(o)pn

o:D : a?pti + ag)pzi + af)4 + . . . : 
?oíorr,

E : ?o!"o,: ) (?,Urr,)r,:;,rr( Zpo,o,,): |,?r3}

It can be shown by induction that

a?) : 
?,Ir( 2p9,-,)p,u) : 

?,,!,pÝ,
where rP isthe n-step or n-order transition probability given by the recursive formula

p? : Zpft-Dpo,
k

rn general,

pÝ) : I r?o-^lp!r, O 1 m 1 n, for all i and,j
k

These equations are known as chapman-kolomogorov equations.
The elements of a higher transition matrii llpqi1l il ;" ;btained directly bymatrix multiplication. Thus,

llpe..ll : |lr,jlllr,Jl : l'
llpf..ll : |lp?)Illr,jl : t'

and, in general,

llr |l - p"-.p : p,
Hence, if the absolute probabilities are defined in vector form as

a(,):@f),o),o),...)
then



696 Chapter 19 Markovian Decision Process

Classiíication of States in Markov Chains. In Markov chains, we may be interested in
the behavior of the system over a short period of time. This is represented by the
absolute probabilities as shown in the preceding section. An important investigation
involves the long-run behavior of the system as the number of transitions tends to
infinity. In such a case we need a systematic procedure that will predict the long-run
behavior of the system.

Irreducible Markov Chain. A Markov chain is said to be irreducible if. every state Ei
can be reached from every other state E, after a finite number of transitions-that is,

P9) >O,i+j,1,<nlq
In this case all the states of the chain communicate.

Closed Set and Absorbing States. In a Markov process, a set C of states is said to be
closed if the system, once in one of the states of C, will remain there indefinitely.A
special example of a closed set is a single state E,with transition probability pii : ]..In
this case, { is called an absorbing state.All the states of an irreducible chain must form
a closed set and no subset can be closed. The closed set C must also satisfy all the
conditions of a Markov chain and hence may be studied independently.

Example 'l9.5-1

Consider the following Markov chain with two states,

*:(2:i)
with a(0) _ (7,.3). Determine x(1), n(a), and a(8).

,,: (? :iX:? :i) : (:i? íi)
P4 : P2P2 : ( 1? 2x)(1? 2x) 

: (llz fi])\.Jo

P8: P4P4: (1i:á fi]) Qn ZZ7,): (lizl Zli.)
Thuso

a(1) : (.7 .r(? .X) 
: rr, .68)

a@ : (.7 ,)(1i3 fi]) : (.436 .564)

a(8) : (.7 ,(13Z:r .Z!iZ): (.4289 .57LI)

The rows of P8 tend to be identical. Also, a(8) tends to be identical with the rows of
P(8). This is the result of the long-run properties of Markov chains, which implies that
the long-run absolute probabiliiies aie independent of a(0). In this case the resulting
probabilities are known as the steady-state probabilities.
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Example 19,5-2

Consider the following Markov chain:

0 t23
Ol+ii0\

P:1l ! 3 i !l
3\o 0 0 Il

This chain is illustrated graphically in Figure 19.1. The figure shows that the four states
do not constitute an irreducible chain, because states Ó, 1, and 2 cannoí be reached
from state 3. State 3, by itself,forms a closed set, and hence it is absorbing. One can also
say that state 3 forms an irreducible chain.

F|GURE 19,1

Example of the states of a Markov chain

of
at
ng

in
he
m
to
[n

First Return Times. An important definition in Markov chains theory is the íirst
return time. Given that the system is initially in state E j,itmay return to Elfor the first
time atthe nth step, n > 1,. The number of steps before the system returns to { is
called the first return time.

L?' Í';) denote the probability that the first return to {. occurs at the ruth step.
Then given the transition matrix

p : llpall

an expression for í?| "anbe 
determined as follows:

Pii : íÍ)
p?: rf) * í#'p,,

or

í?: pQ - íPrii
By induction

n-l
ív): p(:) - 

?__íy'p?-*l
The probability of at least one return to state {.is then given by

íii :2í)
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Thus, the system is certain to return to 7 if íii : l.In this case, if F,7 defines the mean
return (recurrence) time,

tf íii < ]., it is not certain that the system will returnto \ and, consequently, Fť : Ň.
The states of a Markov chain can be classified based on the definition of the first

return times as follows:

1. A state is úransientif. f11 < ]_ - that is, F,ť : N.
2. A state is recurrent (persistent) if. f11 

: 1,.

3. A recurrent state is null if [t/ : oo and nonnull if pr, { oo.

4. A state is periodic with period / if a return is possible only in t,2t,3t, ...steps.
This means that p@) : 0 whenever n is not divisible by r.

5. A recurrent state is ergodic if it is nonnull and aperiodic (not periodic).

If all the states of a Markov chain are ergodic, then the chain is irreducible.Inthis
case, the absolute probabilities

a@) _ x(o)pn

always converge uniquely to a limiting distribution as n + oo, where the limiting distri-
bution is independent of the initial probabilities a(0).

The following theorem is now in order:

Theorem 19.5-1. All the states in an irreducible infinite Markov chain may belong to

one, and only one, of three states: transient, recurrent null, and recurrent nonnull. In
every case all the states communicate, and they have the same period. For the special case

where the chain has a finite number of states, the chain cannot consist of transient states
only nor can it contain any null states.

Limiting Distribution of lrreducible Chains. Example I9.5-I shows that as the
number of transitions increases, the absolute probability becomes independent of the
initial distribution. This is the long-run property of Markov chains. In this section
determination of the limiting (long-run) distribution of an irreducible chain is
presented. The discussion will be restricted to the aperiodic type, because it is the only
type needed in this text.

The existence of a limiting distribution in an irreducible aperiodic chain depends
on the class of its states. Thus, considering the three classes given in Theorem ].9.5-1,

the following theorem can be stated:

Theorem 19.5-2. In an irreducible aperiodic Markov chain,

(a) If all the states are transient or null, then p? - 0 as n -> oo for all i and j and no
Iimitin g distribution exists.

(b) If all the states are ergodic, then

lLii : 2"í9)
n:1,
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where rrlis the limiting (steady-state) distribution. The probabilities n, exist
uniquelY and are indePendent of a\q.In this case, Ťlcan be determine"d from the
set of equations2

n, : n,o"

1:žr;
]

The mean recurrence time for state j is then given by

I
ILjj : 

\

Example 19.5-3

To determine the steady-state probability distribution in Example ].9.5_1_, consider
Ť1 :.2t1 *.6n2
Ť2: .8r1 l .4rr2

ŤtlŤz:I
The solutiorr Yields Ť1, : .4286 and, 12 : .571"4.These results are very close to the rowvalues of a(8)in Example 19.5-1.

The mean recurrence time for states 1 and 2 are

1 ^^lltt : 
-: 

Z.3
Tl1

1

lJ..o. :-:l.,/5
íll

- ] -,,-l

', 
Ii:

_ -;_iť

__:
; __:

]: _,:rn

-.-i!

;: js

Example 19.5-4

consider the following Markov chain with three states:

0,],2
11 1 1r0l1 4 4\r:r|} i il

'\ó + +l
This is called a doubly stochastic matrix, because

)a

Žr,, :ZPii :I
i:0 l:0

In such cases, the steady-state probabilities are

Ť0: Ť1,: Ť2:

2One of the equations íTj : Zirripiiis redundant.

= ,--
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Classical Optim ization Theo ry

Classical oPtimization theory uses differential calculus to determine points of maxima
and minima (extrema) for unconstrained and constrained functiorr.. Th" methods may
not be suitable for efficient numerical computations, but the underlying theory pro_
vides the basis for most nonlinear programming algorithms (see Chapi 

"r-zt1.This chaPter develops necessary and sufficient conditions foi determining un-
constrained extrema, the Jacobian and Lagrangean methods for problems with equal_
itY constraints, and the Karush-Kuhn-Tucker conditions for probl.*, with inequutity
constraints.

20.1 UNcoNsTRAlNED PRoBLEMs

An extreme point of a function /(X) defines either a maximum or a minimum of the
function. Mathematically, a point Xo : (r?, ..., *|, ..., x})is a maximum if

/(}h+h)=/(x0)
for all h . (hu 

..:.1hj, ..., h,) and |h| is sufficiently small for all7. In other words, X9
is a maximum if the value of f at every point in ihe neighbortrood of X9 does noi
exceed /(X.). In a similar manner, X6 is a minimum if

/(Xo+h)>/(xo)
Figure 20.]" illustrates the maxima and minima of a single-variable function /(x) over
the interval|a,b].The Points x1, x2, x3, x4,zfld, x6elía ail Óxtrem a of f(x),with x1, x3,áíLd
J6 ás maxima and x2and xaas minima. Because

í(xu) : max{f(x1), í@r), í@u)l

/(-16) is a global or absolute maximum, and f(x1) and f(4) arelocal or relative maxima.
Similarly, f@o)is a local minimum and f(x)is a global minimum.

Although 11 (in Figure 20.I) is a maximum point, it differs from remaining local
maxima in that the value of /corresponding to at least one point in the neighborhood

701
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í(*)

FlGURE 20.,|

Examples of extreme points
for a single-variable function

of x1 is equal to í@r).In this respect, x1 is a weak maximum, whereas 4 and x6 zía
strong maxima. In general, X6 is a weak maximum if /Qfu + h) = /(&) and a strong
maximum if /(X0 + h) < /(Xo), where h is as defined earlier.

In Figure Z01, the first derivative (slope) of /equals zero at al| extrema. This
property is also satisfied at inflection and saddle points, such ás J5.If a point with zero
slope (gradient) is not an extremum (maximum or minimr*), then it must be an
inflection or a saddle point.

20.1.1 Necessary and Sufficient Conditions

This section develops the necessary and sufficient conditions for an n-variable function
/(X) to have extrema.It is assumed that the first and second partial derivatives of /(X)
are continuous at every X.

Theorem 20.L-L A necessary condition forXgto be an extreme point oí í(X) is that

V/(Xg) : 0

Proof, ByTaylor's theorem,for 0 < e < ].,

/(xo + h) - /(&) : V/(xo)h + jhTHh|**ol,

where h is as defined earlier. For sufficiently small |h|,theremainder term }trZHtr is of
the order lfi hence

/(xo + h) - /(xo) : V/(xŇ + O(l,h = V/(x6)h

It can be shown by contradiction that V/(X6)must vanish at a minimum point X6.
Otherwise if it does not, then for a specifici the following condition will hold:

Ť(Oor{f ,o
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By selecting hlwith appropriate sign, it is always possible to have

t,P. o
' dXj

setting all other hlequalto zero,,Taylor's expansion yields

/(Xo+h)</0(r)

703

This result contradicts the assumption that X9 is a minimum point. Consequently,
V/(X6)must equal Zeto.A similar proof can be .Štublirh.d for the maxim izationcase.

Because the necessary condition is also satisfied for inflection and saddle points,
the points obtained from the solution of

V/(Xo) : 6

are referred to as stationary points. The next theorem establishes the sufficiency condi_tions for \ to be an extreme point.

Theorem 20,I'2. A sufficient condition for a stationary pointXgto be an extremum isthat the Hessian matrixH evaluated atXg satisíy the foioirng conditions:

1. H is positive definite iíXo is a minimum point.
2. H is negative definite if Xg is a maximum point.

Proof, By Taylor's theorem, for 0 < 0 < 1_,

/(xo + h) -/(xo) : V/(xo)h + }hTlh1*,*rn
Given X6 is a stationary point, then V/(Xo) : 0 (Theorem 20.2-I).Thus,

/(Xo + h) -/(xo) - }hTrhJ*.*rn
If & is a minimum point, then

/(Xo+h)>/(xo),h+0
Thus, for )fu to be a minimum point, it must be true that

jh'Hh1*.*er, ) 0

Given that the second Partial derivative is continuous, the expression irrrirrr must havethe same sign at both X6 and Xo * 0h. Because hTIh|-. o"ti'rr". a quadratic form (seeSection A,3), this expression (and hen;.e hrHh|*o+il iJpositive if, and only if, H|", is
Positive-definite. This means that a sufficient coňdition ior the stationary point Xg tobe a minimum is that the Hessian matrix, H, evalu ated atthe same point is positive_
definite, A similar proof for the maximization case shows that the corresponding
Hessian matrix must be negative-definite.

Example 20.1-1

consider the function

í(*r, *r, xl): h * 24 * xzxs - x! - x) - x!

\
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The necessary condition

Ia":L-2x,:g
I
a,i: x3 - 2x2: 0

af
'a*r:2*x2-2x,:g

The solution of these simultaneous equations is given by

Xo : (L,?, t)

To establish sufficiency, consider

V/(Xg) : 0

a'í a'í a'í
a*? 0xlTx2 0xllx3

a'í a'í a'í
0 x20 x1 a *?, E x2d x3

a'f a'f a'f
04Ex1 04Ex2 ax3 x0

"-:(

|-z:|3 0

-z
1-

The principal minor determinants of H|*. have the values -2,4, and -6, respectively.
Thus, as shown in Section A.3, H|*o is negative-definite and X6 : (;,!, !1 reptesents a

maximum point.

In general, if H|,. is indefinite, X6 must be a saddle point. For nonconclusive
cases, Xg may or may not be an extremum and the sufficiency condition becomes
rather involved because higher-order terms in Taylor's expansion must be considered.

The sufficiency condition established by Theorem 20.1-2 applies to single-
variable functions as follows. Given y6 is a stationary point, then

L yois a maximum if "f'(yo) 
< 0.

2. yois a minimum if "f'(yo) 
> 0.

If in the single-variable case f"(yo) : 0, higher-order derivatives must be investi-
gated as the following theorem requires.

Theorem 20.L-3. Given yg, a stationary point oí í(y), ií the first (n - I) derivatives are
zero and í@)Uo) * 0,then

L. yo is an inflection point if n is odd.

2. yois a minimum if n is even and 7(")110) > 0.

3. yo is a maximum if n is even and f@)1ro) a 0.
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Example 20.1-2

Figure 20.2 graphs the following two functions:

í(y): y^

For f(y) _ y+ 
g(Y) : y'

í'(y): 4y3 : 0

which yields the stationary point |o :0. Now

í,(0) : í,,(0) - /(3)(0) _ 9, ;(+)(0) : 24 > 0
Hence, lo : 0 is a minimum point (see Figure20.2).

yo

FlGURE 20.2

Extreme points ot í(y) - ya and s(ň : y'

For g(y) : !3,

S'0):3y2:0
This yields./o : 0 as a stationary point. Also

8'(0) : 8"(0), 8(3)(0) : 6 * 0
Thus, lo : 0 is an inflection point.

PRoBLEM sET 20.1A

1. Examine the following functions for extreme points.
(a) í(x): x3 + x
(b) í(x): xa + x2

(c) í(*): 4xa _ x2 + 5
(d) í(*): Qx - zYQ* - 3)'
(e) f(*): 6x5 _ 4x3 + 10

2. Examine the following functions for extreme points.
(a) ,f(X) : x3, + x) - 3xp2
(b) /(x) :2x? + x) + x! + 6(x, * x2 l xs) t 2xp2x3

3. Verify that the function

í(xr, xr, xs): 2xp2x3 - 4xp3 - 2x24 + x| + x| + x] - 2xt

has the stationary points (0,3, 1), (0,1, -1), (I,2,0),(2,I,I),and, (2,3,
ciency condition to find the extreme points. 

'

- 4x, -f 4x3

-1). Use the suffi-
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4. Solve the following simultaneou equations by converting the system to a nonlinear
objective function with no constraints.

x2-x]:g
X2 - X1:2

(Hint: r^n f'(*r, x2) occurs at f (x1, xz) : 0.)

5. Prove Theorem 20.1,-3.

20.1.2 The Newton-Raphson Method

In general, the necessary condition equations, V/(X) : 0, may be difficult to solve
numerically. The Newton-Raphson method is an iterative procedure for solving simul-
taneous nonlinear equations. Although the method is presented here in this context, it
is actually part of the gradient methods for optimizing unconstrained functions numer-
ically (see Secti on 21.1,.2).

Consider the simultaneous equations

,f(E:0, i:I,2,...)m
Let Xt be a given point. Then by Taylor's expansion

,flx) = í,(Xo) + Ví(x9(x - xo), i : 1,, 2, ... ) m

Thus, the original equations, f (X) : 0, i -- 1-, 2, ... , ffi,may be approximated as

f,(xo) + Ví(xo)(x - Xo) : 0, i : 1,, 2, ... , ffi

These equations may be written in matrix notation as

AttBo(X-Xo):0
If Bk is nonsingular, then

X: Xk - Bo'Ao

The idea of the method is to start from an initial point Xo.By using the foregoing
equation, a new point;lt+1 is determined from Xe. The procedure ends with X- as the
solution when X" x Yn-t.

A geometric interpretation of the method is illustrated by a single-variable func-
tion in Figure 20.3.The relationship between xk and xk*I fot a single-variable function
/(x) reduces to

_.k+I _ _.k í(-1I -* -7@
or

<

í,(ro) : ,Í(,\. ,
xk _ xk+1,

xk+I is determined from the slope of /(x) at xk, whereThe figure shows that
tan 0 : í'(*o).
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í(x)

í(rk)

Tangent to f(x)
at xk

Convergence point
(solution)

FlGURE 20.3

Illustration of the iterative
process in the Newton-
Raphson Method

One difficulty with the method is that convergence is not always guaranteed
unless the function /is well behaved. In Figure z}.3,,ifltre initial point is'a, Íhemethod
will diverge. There is no easy way for locating a 'ogood'' initial poirrt.

Example 20.1-3

To demonstrate the use of the Newton-Raphson method, consider determining the sta_
tionary points of the function

í(*):(3*-ZYQv-3Y
The equation we need to solve to determine the stationary points is /'(x) : 0, which gives

72x3 - 234x2 + 24Ix - 78 : 0

Excel template ch2ONewtonRaphson.xls can be used to solve
equation. Figure 20.4 provides the iterations for solving f'(x)requires entering the following ratio in cell C3, with the varňble i

72x3-234x2+24Ix-78
21,6x2-468x+241,

Note that the denominator is the first derivative of the numerator, as required by the
Newton-RaPhson method. We set tolerance limit A : .001 and select initiat staiting
P9jlt .X0 

:.10. The tolerance limit specifies the allowable difference u"t*."" i; i"aX"-' that signals the termination of the iterations. The method converges to x : ]..5.

any single-variable: 0. The template
replaced with ,A.3:
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FlGURE 20.4

Excel solution oí72x3 - 234xz +
24tx - 78 : 0 by the Newton-
Raphson Method

Actually, /(x) has three stationary points at x :'1, x : fi, and x :'r. The remaining
two points can be found by selecting different values for initial x6. In fact, xg : .5 and
x0 : ]. should yield the missing stationary points. you are encouraged to use different
initial .16 to get a feel of how the method works.

In general, the Newton-Raphson method requires making several attempts before
"all" the solution can be found. In the present example, we know beforehand that the
equation has three roots. This will not be the case with complex or multivariable func-
tions, however.

PRoBLEM sET 20.1B

1. [Jse ch20NewtonRaphson.xls to solve Problem 1_(c), Set 20.7a.

2. Solve Problem 2(b), Set Z0.Iaby the Newton-Raphson method.

2o,2 coNsTRAlNED PRoBLEMS

This section deals with the optimization of constrained continuous functions. Section
20.2.1, introduces the case of equality constraints, and Section ZO.Z.2 deals with inequal-
ity constraints. The presentation in Section 20.2.1 is covered for the most part in
Beightler and associates (l979,pp. a5-55).

20.2.1 Equality Constraints

This section presents two methods:The Jacobian and the Lagrangean.The Lagrangean
method can be developed logically from the Jacobian method. This relationship pro-
vides an interesting economic interpretation of the Lagrangean method.

j,igo4lÉr t,ozsts+l,"",_,o,illiltg89i''_""_"_""",,,,.
1 9?5154i 1 E94452i 0 230i02l6Ei,,;,,,- ,,,,,,,,,,,,,,,,:,,,,,, - t- "- ,

1,694452, 15E5453; 012B9995/Bi

l.JiU lU+; l,UJ++U4| U.iJUl Ul, lUU!,,;,,,- ,,,,,,,,,,,,,,,,:,,,,,, - t- "- ,

1,694452: 15E5453; 9]2B9995/Bi
1 5E5453i 1 511296] 0 054156405i

1 5'129Ei 1.500432i 0 !108E4068i
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Constrained Derivaúives (Jacobian) Method. Consider the problem

Minimize z : Í(X)
subject to

g(X) : 0

where

X : (xy x2, ... , xr)

g : (8u 8z, ... , 8-)'
The functions/(X) and g(X),, i : I, 2, ... , ffi,are twice continuously differentiable.

The idea of using constrained derivatives is to develop a closeá-form expressionfor the first Partial derivatives of /(X) at all points that satisty tt 
" 

constraints g(X) : g.
The corresPonding stationary points are identified as the points at which these partialderivatives vanish. The sufficiency conditions introducedln Section 20.1, canthen beused to check the identity of stationary points.

clarifY the ProPosed concept, consid er f (x1, x2) illustrated in Figure 20.5. Thisfunction is to be minimized subject to the constraint

7t@t,*r):x2-b:0

í(\, xz) FlGURE 20.5

Demonstration of the idea of the
Jacobian Methodí@t, *z)

constrained
curve

constrained
minimum

Constraints (X) : x2 - b : 0

contour of constrained
optimum objective value
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where b is a constant. From Figure 20.5,the curve designated by the three points A, B,
and C represents the values of. f(x1, x2)fot which the constraint is always satisfied. The
constrained derivatives method defines the gradient of í@r, xr) at any point on the
curve ABC. Point B at which the constrained derivative vanishes is a stationary point
for the constrained problem.

The method is now developed mathematically. ByTaylor's theorem, for X + AX
in the feasible neighborhood of X, we have

/(x + Ax) - /(E : V/(EAX + o(^ )

and

g(X + AX) - g(E : Vg(X)AX + O(^4)

As Ax, J 0, the equations reduce to

ó/(E : V/(Eóx

and

as(E : Vg(X)aX

For feasibility, we must have g(D : 0, óg(E : 0, and it follows that

ó/(D - V/(x)óX:0
Vs(Eax : 0

This gives(m + 1) equations in (n + l) unknowns, ó.f(X) and óX. Note that ó/(X) is a
dependent variable and, hence, is determined once óX is known. This means that we
have m equatíons in n unknowns.

If. m > n, at\east (m - rr) equations are redundant. Eliminating redundancy, the
system reduces to m < n.If.ffi: ft, the solution is óX:0, and X has no feasible
neighborhood, which means that the solution space consists of one point only. The
remaining case, where m < n,requites further elaboration.

Define

such that

X:(Y,Z)

Y : (yr, yr, ... , !-), Z : (Zr, Zz, ... , Zr-^)

The vectors Y and Z are called the dependent and independent variables, respectively.
Rewriting the gradient vectors of /and g in terms of Y andZ,we get

V/(Y, Z) : (Y"f, Yrfl
Vg(Y, Z) : (Vvg, Vzg)

Define

f:Vv8:
ffi)



l
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l, \
/%s, \C-V,g:| : l

\v,r^l
I-x- is called the Jacobian matrix and C*x,_mthe control matrix. The Jacobian J isassumed nonsingular. This is always possiUte Uecause the given m equations are inde_pendent by definition. The components of the vector y muit thus be selected such thatthe matrix J is nonsingular.

The original set of equations in ó/(E and ó x may be written as

aí(Y, Z) : Vy/óY + Y,f aZ
and

JóY : -C 0Z
Because J is nonsingular, its inverse J-1 exists. Hence,

óY: - I-LCaZ
Substituting for ÓY in the equation for ó/(E gives ó/ as a function of óZ-that is,

a í(Y, Z) : (v,í - YYíI-IC)aZ
From this equation, the constrained derivative with respect to the independent vectorZ is given by

Y,í:U#:Y,í- vyru-lc

where %/ is the constrained gradient vector of /with respect to Z.Thus, y,í(y, Z)must be null at the stationary points.
The sufficiencY conditions are similar to those developed in Section Z1.L.TheHes_sian matrix will correspond to the independent vector z,and,the elements of the Hessianmatrix must be the constrained second-derivatives. To show how this is obtained,let

Y,í: Y,í - WC
It thus follows the ith row of the (constrained) Hessian matrix is 0y,flOe;. Notice thatW is a function of Y and Y is a function of Z,.Thus,the partial derivative of V./ withrespect to e, is based on the following chain rule:

U', :|wi |yi
6zi 0y1 Ezi

Example 20.2-1

Consider the following problem:

/(E: x?+3x2r+5x,,x!

8l(X) : xlx3 t 2x2 + *3 - ].]. : 0

sz(X) - x? + 2xp2 + *r, - 14 : 0
Given the feasible point X0 : (I, 2,3), we wish to study the variation in f (: a ,f ) inthe feasible neighborhood of Xd.
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Y:(4,4) and Z:xz

+ 5x|, I0xp3)y,f :(#,#):Qxt

Yrí: #: u*,

J-
l as, ó81\la *, l _(*,
l as, ag, | 

- 
\Zx1\a ,"l

/as,\

Iu|:?;:,,)
\r"l

X1 \
+ 2x2 Zh)

C:

Suppose that we need to estimate d , í in the feasible neighborhood of the feasible point
ť : (I, 2,3)given a small change dxz : .01 in the independent variable x2.We have

J- (s 
",(i) :(_Ž 

Ž)()= (_1!3)'": (u e )
Hence, the incremental value of constrained/is given as

6,í: (y,í- v".fJ-,c)az: (urr, - (47,rrl(_3:!3))r" - -.46.01,óxz

By specifying the value of 6x2 for the independent vaiable x2, feasible values of óx1
and óx2are determined for the dependent variables.r1 snd x3 using the formula

óY : -I-ICaZ
Thus, for 0x2: .01,

/ar,\ _ r_lrr l__ _ /-.ozss\
(;;]/ : -J-lCr", : ( .Ó;ZÓ)

We now compare the value of. a,f as computed above with the difference /(X0 +
óX) - /(X), given 0x2 : .01,.

X0 + óX: (1 - .0283,2 +.01_,3 + .025) : (.97L7,z.01,,3.025)

This yields

/(x) : 58, /(xo + óx) : 57.523

or

/(xo+óx) -/ď):-.477
The amount -.477 compares favorably with 0,í: -46.0t|xz: -.460L. The differ-
ence between the two values is the result of the linear approximation in computíng 0,f
at ť.
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PRoBLEM sET 20.2A

1. Consider Example 20.2-1,.

(a) ComPute 6,Í by the two methods presented in the example, using 6xz :.00]. instead
of 0x2: .0].. Does the effect of linear approximation become more negligible with
the decrease in the value of 0x2?

(b)

(c)

Specify a relationship among 6x1, dx2,and dxr at the feasible point X0 : (!,2, 3,)
that will keep the point ("? + 6x1, x| * dx2, x! + a4)feasible.
If Y : (*r,, *r) and Z : x1, what is the value of lxlthat will produce the same value
of 0, f given in the example?

a^f /_?Y,í: ,*:Zxs - Q*r, '"r( ;
10 28:Ťrr -'žxrt2x3

Example 20.2-2

This example illustrates the use of constrained derivatives. Consider the problem

Minimize,f(E : x? + x| + x!
subject to

gl(X) : h* x2*34-2:0
sz(E:5xt+2x2+ x3-5:0

To determine the constrained extreme points,let

Y : (*r, x2) and Z : ,,
Thus,

Vv,f :

J-

Hence,

aí
óx^

aí
)xz

,(

: Qxt,2x2), Y7f :

tZ 1r-':(-i 
_i ),.:\ 3 3/

: Zxs

i)

( af ó/\
\*" ;.-.,)

(l L),,

(,i 
-,iil(il:(i)

il(ll
The equations for determining the stationary points are thus given as

Y,í:0
gl(X) : 0

g2(X) : 0

or

The solution is

X0 = (.81, .35, .28)
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The identity of X0 is checked using the sufficiency condition. Given x3 is the inde-
pendent variable, it follows from Y,f that

a?f
0,Xi

*2:+W)-T(k)
la*,\

rŤ, -Ťl| ';:l - ,

\r"l

:(j)
From the Jacobian method,

: -J-lC

Substitution gives a2,7ta,x! : 0. Hence, ť is the minimum point.

Sensiúivity Analysis in the Jacobian Method. The Jacobian method can be used to
study the effect of small changes in the right-hand side of the constraints on the
optimal value of / Specifically, what is the effect of changing 8;(X) : 0 to s;(E : 08,
on the optimal value ot f? This type of investigation is called sensitivity analysis and is
similar to that carried out in linear programming (see Chapter 4). However, sensitivity
analysis in nonlinear programming is valid only in the immediate neighborhood of the
extreme point. The development will be helpful in studying the Lagrangean method.

We have shown previously that

aí(Y,Z) : Vy/óY + Vzf aZ

óg:JóY+CaZ
Given 0E+ 0,then

óy:J-'ag-I-tCaZ
Substituting in the equation for af(Y, Z)gives

aí(y, Z) : y"íí'óg + y,í aZ

where

Y,í:Yrí-Vyru-lc
as defined previously.The expression for ó/(Y, Z) canbe used to study variation in /in
the feasible neighborhood of a feasible point X0 resulting from making small changes
0g and EZ.

At the extreme (indeed, any stationary) point Xo : (Yo, Z the constrained gra-
dient V./ must vanish.Thus

ó,f(Yo, Zo) : V",.fJ-'óg(Yg, Z9)

or

Yr,íJ-'

(-)

T,

aí_
óg

--.--*



Consider the same _problem of Exampte 20.2-2r.ft" optimum point is given by
Xo : (r?, *2, x2) : (.81, .35, .28). Giver, Ýo : (r?, *|),th".r---------

V",.f : (#,#) : Q*?,,2x|1 : G,62, .70)

Consequently,

(at óf\ 7_? 1r

(rr,, *) : Vvo,fJ-| : (I.62, D( ; _i) : (0876, .3067)

This means that for 692:I,Í will incr_e?|9approximately by.0867. Similarly, for
d8, : l,/will increase approximately by .3067.

20.2 Constrained Problems 715

The effect of thesmall change óg on the optimumvalue of f canbe studied by evaluat_
ing the rate of change of / with respect to g. These rates are usually refeired to as
sensitivity coeíIicients.

Example 20.2-3

APPlication of the Jacobian Method to an LP Problem. Consider the linear pro_
gramming problem

Maximizez:2xr*3x2
subject to

xllx2*x3
Xt- Xz l X4:

5

aJ

XI, X2, X3, X4 > 0
To account for the nonnegativity constraints xr. > 0, substitute x1 : l, .witnthis substi-
tution, the nonnegativity conditions become implicit and the original problem becomes

Maximizez:2w?+3w}
subject to

wi: 5

wzq: 3

To apply the Jacobian method,let

Y : (rr, rr),Z : (wz, wq)

(In the terminology of linear programming, Y and Z correspond to the basic and non_
basic variables, respectively.) Thus

w?+w3+

w|-w|+

J-

C-

(1:;, _?;:),,-,: (*

('U' ,|,,),y,í : (4,,,

11
o:r, 

\, wl and,w2 * 0
4w"/

6wz),Yď: (0,0)
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so that

7I 1rz^
y,í: (0, 0) - (4,,, uň|T* 

#)|"K'

Y,í : (4,,,0) - (6w2,r(T 
DG:,: 'U,) - (2w1,6w3)

The solution of the equations comprised of V./ : 0 and the constraints of the problem
yield the stationary point (r, : 2, wz : 1-, w3 : 0, w4 - 0). The Hessian is given by

I a?f alr \l u,r', ó"wjó,w4 | _ ( -5 0\H.:t=r- ,I-1:(ó í)
\ó"w3 

d.wa 6,wi l
Because H. is indefinite, the stationary point does not yield a maximum.

The reason the preceding solution does not yield the optimum solution is that the
specific choices of Y and Z are not optimum. In fact, to find the optimum, we need to
keep on altering our choices of Y and Z until the sufficiency condition is satisfied. This
will be equivalent to locating the optimum extreme point of the linear programming
solution space. For example, consider Y : (wr, wa) and Z : (rr, w3). The correspond-
ing constrained gradient vector becomes

The corresponding stationary point is given by w,,: 0, w2: Ý5, w3 : 0, w+: \6.
Because

m.: (-? 9), \ U -6/
is negative-definite, the solution is a maximum point.

The result is verified graphically in Figure 20.6.The first solution @t : 4, x2 : l)
is not optimal, and the second @t : 0, xz: 5) is.You can verify that the remaining two
extreme points of the solution space are not optimal. In fact, the extreme point
(*, : 0, x2 : 0) can be shown by the sufficiency condition to yield a minimum point.

The sensitivity coefficients Vv,fl-l when applied to linear programming yield the
dual values. To illustrate this point for the given numerical example,let u1 and u2be

FlGURE 20,6

Extreme points of the solution
space of the linear program
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the corresoonding dual variables. At the optimum point (rr: 0, wz: Ý5, w3 : 0,
w4 : V8), these dual variables are given by

(ur, ur): VvoJ-l : (6w2, 0)

The corresponding dual objective value is 5u1 * 3u2: 15, which equals the optimal
Primal objective value. The given solution also satisfies the dual constraints and hence
is optimal and feasible. This shows that the sensitivity coefficients are indeed the Lp
dual variables.In fact, both have the same interpretation.

We can draw ome general conclusions from the application of the Jacobian
method to the linear programming problem. From the numerical example, the neces-
sary conditions require the independent variables to equal zero.Also, the sufficiency
conditions indicate that the Hessian is a diagonal matrix.Thus, all its diagonal elements
must be positive for a minimum and negative for a maximum. The observations
demonstrate that the necessary condition is equivalent to specifying that only basic
(feasible) solutions are needed to locate the optimum solution. In this case the inde-
Pendent variables are equivalent to the nonbasic variables in the linear programming
Problem. Also, the sufficiency condition demonstrates the strong relationship between
the diagonal elements of the Hessian matrix and the optimality indicato, ii - c7 (see
Section 7.2) inthe simplex method.1

PRoBLEM sET 20.28

1. SuPpose that Example20.2-2 is solved in the following manner. First, solve the con-
straints expressing x1 and x2 in terms of 4;then use the resulting equations to express the
objective function in terms of x3 only. By taking the derivative of the new objective func-
tion with respect to x3,we can determine the points of maxima and minima.
(a) Would the derivative of the new objective function (expressed in terms of x3) be dif-

ferent from that obtained by the Jacobian method?
(b) How does the suggested procedure differ from the Jacobian method?

2. APPly the Jacobian method to Exampl e 20.2-I by selecting Y : (xr,, *r) and Z : (xr).
3. Solve by the Jacobian method:

Minimize í(X): Ž*?
subject to

fr.,: '
where C is a positive constant. Suppose *"' 

'n" 
right-hand side of the constraint is

changed to C * 6, where 6 is a small positive quantity. Find the corresponding change in
the optimal value of /

1Fo| 
1foryal proof of the validity of these results for the general linear programming problem, see H. Taha

! d G. CurrY, "Classical Derivation of _t!re Necessary and Sufficient CinditionŠ ^for opíimal Linear
Ptograms," Operations Research, Vol. 19, L97t,pp.1045-1049. The paper shows that the key id|as of the sim_
plex method can be derived by the Jacobian méthod.

1 n\
'i, :):(3,0)
2wo Zwo/
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4. Solve by the Jacobian method

Minimize /(X) : 5x! + x} + 2xrx,

subject to

S6) : xtxz- ]-0:0
(a) Find the change in the optimal value of /(X) if the constraint is replaced by

XrXz-9.99:0.
(b) Find the change in value of /(X) in the neighborhood of the feasible point (2,5)

given that xlx2 : 9.99 and óx1 : .0]..

5. Consider the problem:

Maximize /(X) : x! + zx) + LOx] l 5xp2

subject to

sr(8 : xl l x) + 3xrx, - 5 : 0

gz(X):x?+5xp2+x3-7:0
Apply the Jacobian method to find a/(E in the feasible neighborhood of the feasible
point (1_,1,1).Assume that this feasible neighborhood is specified by
68t : -.01, 68z: .0Z,andóx, : .61.

6. Consider the problem

Minimize /(X) : x] + x| + x] + x?o

subject to

sr(X) : xI * 2x2 * 34 * Sxq - ]-0 : 0

sz(D : xl * Zxz t 5x, t 6xl - ]-5 : 0

(a) Show that by selecting x3 and xa as independent variables, the Jacobian method fails
to provide a solution and state the reason.

(b) Now solve the problem using x1 and x3 as independent variables and apply the suffi-
ciency condition to determine the type of the resulting stationary point.

(c) Determine the sensitivity coefficients given the solution in (b).

7. Consider the linear programming problem.

Maximize.f(E : Žr,*,
j=I

subject to
n

8;(8 : 2o,i*i - br : 0 i : I,2, ..., ffi
j:1

xjž0, j:1,2, ",,fl
Neglecting the nonnegativity constraint, show that the constrained derivatives V./(X) for
this problem yield the same expression for {z1- cr.} defined by the optimality condition of
the linear píogramming problem (Section 7.2)-thatis,

{zi - ,}: {CBB-lPi - c}, for alli

Can the constrained-derivative method be applied directly to the linear programming
problem? Why or why not?
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the Jacobian method, let the vector )r represent the sensi-

I : VvJ-1

Thus,

aÍ-)\óg-9
This equation satisfies the necessary conditions for stationary points because 

"_ť 
is com_

Puted such that Y,Í : 0. A more convenient form for prese"ti"g these .quutib^ is to
take their partial derivatives with respect to all xi. This yi.to,

6 ,, _

axjT- )\g) : 0, j : I,2, ...) n

The resulting equations together with the constraint equations g(x) - 0 yield the fea_
sible values of X and )t that satisfy the necessary conditions for siationaryioints.

The given Procedure defines the Lagran7ean methodfor identifyňg the station-
arY Points of oPtimization problems with eqiality constraints. The procedure can be
developed formally as follows. Let

L(X,I):/(E-Is(E
The function L is called the Lagrangean function and the parameters )\ the Lagrange
multiPliers. BY definition, these mtlltipliers have the sameinterpretation as the sensi_
tivity coefficients of the Jacobian method.

The equations

0L _ n aL
ax:O,ux:0

give the necessarY conditions for determining stationary points of /(x) subject to
ďX) : 0. The sufficiency conditions for the La rangean method will be stated without
proof. Define

řť: (frt) 
(m+n)x(m+n)

where 
l_ .__.\

p : Í 
V'l,(x) 

), ., : lló2r(x, r)||

\or. (x)l_,, 
a : ll ,;ďll,-; forall iand, j

The matrix HB is the bordered Hessian matrix.
Given the statiorlry point 0b, Io) for the Lagrangean function Z(X, )r) and the

bordered Hessian matrix HB evalu ated at(Xo, Io), tňen o is

1-, A maximum Point if, starting with the principal major determinant of order
Qm + 1), the last (n - m) principal minoi determinanis of H'form u" ur,.".rur_
ing sign pattern starting with (-1)-+1.

2, A minimum Point i{ starting with the principal minor determinant of order
Qm + 1), the last (n - m)principal minor diterminants of HB have the sign ot(_1)-.

:aí
óg
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These condition are sufficient, but not necessary, for identifying an extreme
point. This means that a stationary point may be an extreme point without satisfying
these conditions.

Other conditions exist that are both necessary and sufficient for identifying
extreme points. However, the procedure may be computationally intractable. Define
the following matrix at the stationary point (X6, )r9):

where p is an unknown parameter. Consider the determinant I 
A |;then each of the real

(n - *) roots p of the polynomial

lA| :0
must be

1. Negative if )h is a maximum point.

2. Positive if X6 is a minimum point.

Example 20.2-4

Consider the problem of Example }}.Z-Z.The Lagrangean function is

L(X,I) : x? + x?, + x? - }ríxt l xz * 34 - 2) - },2(5x1 * 2x2 + x3 - 5)

This yields the following necessary conditions:

aL .

tr:2x,-N1-5\,:6
aL :
6xz

aL :
0xz

aL :
óNr

aL :
óNz

The solution to these simultaneous equations yields

Xo : @r, xr, xs) : (.8043, .3478,, .2826)

tr : (}',, \r) : (.0870, .3043)

This solution combines the results of Examples 20.2-2 and 20.2-3. The values of the
Lagrange multipliers )t equal the sensitivity coefficients obtained in Example 20.2-3
(allowing for the roundoff error). The result shows that these coefficients are indepen-
dent of the choice of the dependent vector Y in the Jacobian method.

2xz-N1-2N2:Q

Zxr-3Nr-Nz:0

-(*r+x2*34-2):0

-(5", t2x2 lxs- 5) :0
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, check the determinant of HB
ry point Xo to be a minimum.

iaI

:(

|-
(-1
am

:
-1,

:

x

(

a

Lt is

íB=

,m
of(
isa

int

[IlHB

pom

H

,n-
sign
). x0

tven 1

:)
the s
>0,

glVTo show that the

Because n:3 andm
only, which must have
Because det HB : 460

Example 20,2-5

Consider the problem

subject to

The Lagrangean function is

Minimizez:x?I+x}+x!

4x1 tx22+Zxr-14:0

L(X,, N) : ,? + x?, + x! - x(+x, + x3. * 24 - 14)

The associated necessary conditions are given as:

+ :2x,, - 4}, : 0
dXt

aL 
^;-- : Zxz - Z}txr: g

dX"

i :2x, -2}, : 0
dXz

aL
ffi : -(4r, + x?, + 2x, - 14) : g

These, equations yield infinity of solutions becaur. # : 0 is independent of x2. For
the sake of the example, we will consider the followingihree solutions:

(Xo, Xo), : (2,2, 1,, I)

(Xo, No), : (2, -2, I, t)
(Xo, No), : (2.8,, 0, I.4, I.4)

The sufficiency conditions yields

l0 4 2x, 2\

rur:I_4 ? 0 0lll -|r*r 0 2- 2}\ 0l
\2 0 0 2l
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Because m : 1, and n : 3, for a stationary point to be a minimum, the sign of the last
(3 - 1) : 2 principal minor determinants must be that of (-1)^ : -1-. Thus, for
(Xo, No), : Q, Z, t, 1)

-3z < 0, -64<0

For (X6, No)z : Q, -2, 1, I),

l l ; -ál :
|J0 ó|

lo442l
l+200l
l+000l
|z 0 0 z|

lo 44l
Á 2 0l :
|l 0 o|

Io 4 -414 2 0
-32<0, 1_; 0 0

Iz 0 0

:

zl

sl
z|

:-64 10

Finally, for (X6, },6)3

lo
I

|4
|0

: (2.8,0, 1,.4, 1,.4)

lo 4 0 zl
:I2.8=o, lá 3 _3 3l 

:32>0

|z 0 0 z|

This shows that (X6) and (Xo), are minimum points.(Xo). does not satisfy the suffi-
ciency conditions of either a maximum or a minimum.This does not mean that it is not
an extreme point because the given conditions are sufficient only.

To illustrate the use of the other sufficiency condition that employs the roots of
polynomial, consider

:9p'-26p*16:0
all p > 0, (Xo)t : Q,2, 1) is a minimum point. For

lAl : 9p' - 26p" + ]_6 : 0

which is the same as in the previous case. Hence (Xo), : (2,, -2, I)is a minimum point.
Finally, for (Xg, No): : Q.8, 0, 1,.4, 1,.4),

IAI : 5p' - 6p_8 : 0

This gives p : 2 and -.8, which means that the identity of (Xg), : (2.8,0 1.4) is not
known.

PRoBLEM sET 20.2c

1. Solve the following linear programming problem by both the Jacobian and the
Lagrangean methods:

40l
2 0l
0 -.8|

2(

4 2x, 2 \2-p, 0 0 
l0 2-2}t-1l" 0 l

0 0 Z-pl

l0
o:(:"

\z'
Now, for (\, tr'o)r : Q,2, 1,,, l)

lAl
This gives p : 2 or f;. Because
(Xo, No), : (2, -2, 1,,, L),
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Maximize"f(X) : 5x1 * 3x2

subject to

gl(X): x1 *2x2*4 -6:0
sz(X):3x1 * x2 *xa-9:0

Xb X2, X3, X4 > 0
Find the optimal solution to the problem

Minimize /(X) : x| + zxl + LOx!

subject to

sr(X): x1, l +,, - 5:0
sz(X) :xt*5x2*4-7:0

Suppose that gl(X) : .0]- and g2(X) : .}2.Find the corresponding change in the optimal
value of/(X).

3, Solve Problem 6, Set 20.2b by the Lagrangean method and verify that the values of the
Lagrange multiPliers are the ame as the sensitivity coefficients obtained in problem 6,
Set20.2b.

20.2.2 lnequality Constraints

This section extends the Lagrangean method to handle inequality constraints. The
main contribution of the section is the development of the geneial Karush_Kuhn_
Tucker (KKT) conditions, which provide the basii theory for nonlinear programming.

Extension of the Lagrangean Method. Consider

Maximize z : í(X)
subject to

&(E=0, i:1,,2,...,Fn
The nonnegativity constraints X > 0, if any, are included in the mconstraints.

If the unconstrained optimum of /(X) does not satisfy all constraints, the con_
strained oPtimum must occur at a boundary point of the sólution space. This means
that at least one constraint must be satisfiělin equation form. Thó procedure thus
involves the following steps.

S ep 1. Solve the unconstrained problem

Maximize z : í(X)
If the resulting optimum satisfies all the constraints, stop because all con-
straints are redundant. otherwise, set k : 1 and go to siep 2.

SteP 2. Activate anY k constraints (i.e., convert them into equalities) and optimize
/(X) subject to the k active constraints using the Lagrangean method.If the
resulting solution is feasible with respect toihe,.-áirrirr-g constraints, stop;



724 Chapter 20 Classical Optimization Theory

it is a local optimum.2 Otherwise, activate another set of k constraints and
repeat the step. If" all sets of active constraints taken k at a time are consid-
ered without encountering a feasible solution, go to step 3.

Step 3. If. k : m,stop;no feasible solution exists. Otherwise, set k : k * 1 and go
to step 2.

An important point often neglected in presenting the procedure is that it does
not glarantee global optimality even when the problem is well behaved (possesses a

unique optimum). Another important point is the implicit misconception that, for
p 1 Q,, the optimum of /(X) subject to p equality constraints is always better than its
optimum subject to q equality constraints. This is true, in general, only if the q con-
straints form a subset of the p constraints. The following example is designed to illus-
trate these points.

Example 20.2-6

subject to

Maximize z : *Q.x, - 5)' - Q*, - I)'

\*2x2=2
Xy X2> 0

The graphical representation in Figure 20.7 should assist in understanding the analytic
procedure. Observe that the problem is well behaved (concave objective function sub-
ject to a convex solution space), which means that a reasonably well defined algorithm
should guarantee global optimality. Yet, as will be shown, the extended Lagrangean
method produces a local maximum only.

The unconstrained optimum is obtained by solving

#: -4(2x1- 5) : 0

0' - -4(2x1- 1) : 0óxz -\-,-z _)

This give s@t,, xz) : (Z, };, *t icrr does not satisfy the constraint x1 * 2x2 < 2. Thus, the
constraints are activated one at a time. Consider x! : 0. The Lagrangean function is

L(*r, xz, }r) : -(2x1 - 5)' - (2*, - I)' - },.r1

Thus,

#:-4Q*r-5)-tr:0
aL
Exz

:-4Qxz-I) -0

2A local optimum is defined from among all the optima resulting from optimizing f(X) subject to all combi-
nations of. k equality constraints, k : I, 2, ... , ffi.
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- _ 
-,r<1- LJ

z : -1,0

1

Q,b

1\
ol

,a 
FlGURE 20.7

Solution space of Example 20.2-6

aL_-. : -.Tr - 0dA

H:E*'_:h*"^'^"}T:ry"I9r: *r).:. (0, | *ti9q.can_be shown by the sufficiency

dure terminates with @tllz)_,: (0; ij H;'b*ňiffii[ilŤ,:1"TTí:'tuuli lvr'.llll'l,LgĎ wllll \ň1,, x2) : (U, ž) a: ? tocal opttmal solution to the problem. Theobjective value is z : r?i (Th ; ráaining constia ints x2 = 0 ;J xl, : 2x, = 2, acti-vated one at a time, yield infeasible sotutioňs.)
2x, = 2, acti-

ln"Tqu:. 20.7, the.feasible solution @r, !r) : (2,0), which is the point of intersec_

This value is better than thebne obtainóo *itÉ 
""" 

;ti;; *"rr.ái.,.

The Procedure just described illustrates that the best to be hoped for in using the
extended Lagrangean method is a (possibly) good feasible solution. This is particularly
true if the objective function is not unimodal. If the functions of the problem are wellrr slv vv

*i"XiJ: i:^'^h^., T"9'"T po..:::"1 
1 

u.nilue constrained optimum as in Example
vgrrJ, v\

sider the unconstrained optimum and the constraineá optimá subject to allsets of onef ----- - ---J,active constraint, then two active constraints, and so on, until all mconstraints are actil_
vated. The best of- all the feasible optimais the gtobal optimum.

If this Procedure is followed by Exampie 20.2-a, it will be necessary to solve
Seven Problems before global optimality is vérified. This indicates the limited use ofthe method in solving problems of any piactical size.

The Karush,Kuhn,Tucker (KKT) Conditions.3 This section develops the KKT nec_
eSSarY conditions for identifying stationary points of a nonlinear constrai, rul lLl'Iltrryrng S.aTlonary pomts ot a nonlinear constrained problem
subject to inequality constraints. The development is based on the LagranseanLagrangean
method, These conditions are also sufficient ,r.rd", certain rules that will be stated
later.

3Historically, W, Karush was the first to develop the KKT conditions in 1939 as part of his M.S. thesis at

fhit'J;'sitY 
of Chicago. The same conditions *"r" a"u"táped indepe;;l;;try in 1951 by W iuňr,-ana
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Consider the problem

Maximize z : í )
subject to

g(X) š 0
The inequality constraints may be converted into equations by using nonnegative slack
variables.Let 57 (> 0)be the slack quantity added to the ith constraint g;(X) < 0 and
define

S: (Sr, Sr,..,,S^)', s': (S?, 8,,...,S'^)'

where rn is the total number of inequality constraints. The Lagrangean function is thus
given by

L(X, s, I) : /(E - )\[ďx) + s']

Given the constraints

g(E<0
a necessary condition for optimality is that }, be nonnegative (nonpositive) for maxi-
mization (minimization) problems. This result is justified as follows. The vector )r mea-
sures the rate of variation of /with respect to g-that is,

afr:É
In the maximization case, as the right-hand side of the constraint g(E < 0 changes from 0

to óg(> 0), the solution space becomes less constrained and hence/cannot decrease.This
means that )\ > 0. Similarly for minimization, as the right-hand side of the constraints
increases,/cannot increase, which implies that )t < 0. If the constraints are equalities, that
is, g(X) : 0, then }, becomes unrestricted in sign (see Problem 2, Set Z0.2d).

The restrictions on )t are part of the KKT necessary conditions. The remaining
conditions will now be derived.

Taking the partial derivatives of Z with respect to X, S, and )t, we obtain

aL:=-:V/(E_NVg(X):6
óx!

aL
ffi 

: -2},", : 0, i : 1,2, ",, m

aL
ffi:-(g(x) fs2):6

The second set of equations reveals the following results:

1. If },, + 0, then S? :0, which means that the corresponding resource is scarce
and, hence, it is consumed completely (equality constraint).

2. If S? > 0, then N; : 0. This means resource j is not scarce and, consequently, it
has no effect on the value of /(i.e., N, : # 

* 0).



I

,l

,:

:,

20.2 Constrained Problems 727

From the second and third sets of equations, we obtain

},;g;(X) : 0, i : l,, 2, ... , ffi
This new condition essentially repeats the foregoing argument, because if },, > 0,
&(E: Oor S?:0;andif&(E < 0,,S? ) 0,andN;:0.

The KKT necessary conditions for the maximization problem can now be sum-
marized as follows:

)\>0
V/(E-IVg(X) :6

}';g;(X) : 0, i : I, 2, ... ) m
g(X) š 0

These conditions apply to the minimization case as well, except that )t must be nonpos_
itive (verifY!).In both maximization and minimization, theLágrange multipliers.or."_
sponding to equality constraints must be unrestricted in sign.

SuÍficiencY of the KKT Conditions. The Kuhn-Tucker necessary conditions are also
sufficient if the objective function and the solution space satiďy the conditions in
Thble 20.1,.

TABLE 20.1

Sense of
optimization

Required conditions

Objective function Solution space

Maximization
Minimization

Concave
Convex

convex set
convex set

It is simPler to verify that a function is convex or concave than to prove íhat a
solution SPace is a convex set. For this reason, we provide a list of conditirons that are
easier to aPPlY in Practice in the sense that the convexity of the solution space can be
established bY checking the convexity or concavity of the constraint functi,ons. To pro_
vide these conditions, we define the gener alizednonlinear problems as

subject to

Maximize or minimize z : f(X)

g;(X) < 0, i : 1-, 2, ... ) r

8;(X) >0, i:r*I,...,p
g,(X) :0, i:p*!,...)m

where },, is the Lagrangean multiplier associated with constraint l. The conditions for
establishing the sufficiency of the KKT conditions are summarized in Table 2O.z.

i:I i:r+1
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TABLE 20.2

Required conditions
Sense of

optimization /(x) S;(E }',

Concave

Convex

í Corru",.
{ Co.r"uu"

II-in"u.
í Corru"*
{ Corr"uu"

Irirr"u,

>0
<0

unrestricted

<0
>0

unrestricted

(l=i<r)
(r+1"-i=p)
(p+L=i=m)
(1,<i<r)
(r+l<i-p)
(p+l=i=*)

The conditions in Table 20.2 reptesent only a subset of the conditions in Table
20.1.The reason is that a solution space may be convex without satisfying the condi-
tions in Table Z0.2.

Table ZD.Zisvalid because the given conditions yield a concave Lagrangean func-
tion L(X, S, I) in case of maximízation and a convex ,L(X, S, N) in case of minimiza-
tion.This result is verified by noticing that if 8t@) is convex, then N;&(x) is convex if
N; > 0 and concave if N, < 0. Similar interpretations can be established for all the
remaining conditions. Observe that a linear function is both convex and concave. Also,
if a function/is concave, then (-/)is convex, and vice versa.

Example 20.2-7

Consider the following minimization problem:

Minimize /(E : x! + x] + x!

subject to

sr(X) : Zxt

g2(X) : Xl

g3(X) : l
ga(X) : 2

gs(X) :

*xz-5š0
*xs-2=0
-X1

-X2

<0
<0

-X3 <0

This is a minimization problem; hence )\ š O.The KKT conditions are thus given as

(Nr, \r, N:, N+, },5) š 0

(2x1,,2x2, Zxs) - (\r, Nr, },3, },4, X,5)

Nt$t: )yz!z: : Ns$s:0
g(X) š 0

210\
1 0 1\

-1 0 ol:o
0 -1, 0l
00-Il



},5x3 : 0

Zxltxz=5
hlxsš2

The solution, i, 
,11 

: ,,,ir.::,':r':;:r'j^: : \5 : 0, N: : _2,N+ : -4.Because both/(X) and the solution.puÓ" 8(X) 
= 

0 áre.orrrr"*, i(x,s,ó'rirust beconvex and the resulting stationary poini yiótO, a global constrained minimum.The examPle shows^that the p.oc"drrň is nót suitablě for numeri.ur .ó,,'puiuiiorr.
because it maY be difficult to sólve the resulting conditions ."píi.iily. The KKT condi_tions are central to the development of the ňonhnea, p. ;il*1rg urgóritt ,,', i.,Chapter 21,.

These conditions reduce to
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}'t, \z, Na, },+, Xs = 0
2xr-2)tr-\z*\::0

2xr-Nr*N+:0
Zxr-Nzl-Ns:0

}rrQxrlxz-5) :0
\2(x1 *x3-2):0

\l(1 -xJ:0
}roQ-xr):0

Maximize /(X)

g(x) = o

Show that the KKT conditions are the same as in Secti on20.2.2,except that the Lagrangemultipliers )\ are nonpositive.
2. Consider the following problem:

Maximize /(X)

g(x) : 0

V/(x)-IV(X):6
8(X) : 0

)\ unrestricted in sign

PRoBLEM sET 20.2D

1. Consider the problem:

subject to

subject to

show that the kkT conditions are
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3. Write the KKT necessary conditions for the following problems.

(a) Maximize /(X) : x', - x?z + xp!
subject to

x1 *x)*xr:5
5*?-x?2-4>0

XI, X2, X3 ž 0

(b) Minimize /(X) : x! + x! l 5xp2x3

subject to

4, Consider the problem

Maximize /(X)

subject to

g(X) : 0

Given/(X) is concave ands,(X) (' : L,2, ..., m)ísalinear function,show that the KKT
necessary conditions are also sufficient. Is this result true if g;(E is a convex nonlinear
function for all i? Why?

5. Consider the problem

Maximize /(X)

subject to

sr(X) > 0, g2(X) : 0, g3(X) = 0

Develop the KKT conditions and give the stipulations under which the conditions are
sufficient.
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Nonlinear Programming
Al9orithms

The solution methods of nonlinear programming generally can be classified as either
direct or indirecr algorithms. Examples of direct methods are the gradient algorithms,
where the maximum (minimum) of a problem is sought by followiňg the fasteit rate of
increase (decrease) of the objective function. In indirect methodr, trr" original prob_
lem is rePlaced by another from which the optimum is determined. ExampÉs of ihese
situations include quadratic programming, separable programming, an-d stochastic
programming.

UNcoNsTRAlNED ALGoR|TH M 5

This section Presents two algorithms for the unconstrained problem: the direct search
algorithm and the gradient algorithm.

Direct Search Method

Direct search methods apply primarily to strictly unimodal single-variable functions.
Although the case may appear trivial, Section 2t.I.2 shows that Óptimizationof single_
variable functions plays a key role in the development of the 111or. general multivári_
able algorithms.

The idea of direct search methods is to identify the interval of uncertainty that
includes the oPtimum solution point.The procedure lócates the optimum by iteraiively
narrowing the interval of uncertainty to any desired level of accuiacy.

Two closely related algorithms are presented in this section: Dichotomous and
golden section search methods. Both algorithms seek the maximizationof a unimodal
function/(x) over the interva| a < x < b,which is known to include the optimum point
x*. The two methods start with 16 : (a, Ď) representing the initial interval of uncertáinty.

731



732 Chapter 21 Nonlinear Programming Algorithms

General Step i. Let I,_1 : @r, xa) be the current intervaI of uncertainty (at iteration
0, xL : a and xR : b). Next, define x1 and x2 such that

xtlxtlX2lxp

The next interval of uncertainty, d, is determined in the following manner:

1. It í@r) > f@r), then x7 1 x*

ZI.I|a|).
2, It f(x) < í@r),,then h 1 x* <

21.1[b]).

3. Iíí@r): í@r.),then xtlx* < x2. Set xL: xt,xR: xz,andd:(xt,xz).

The manner in which x7 and x2 áío determined guarantees that I, 1 I,_t, as will
be shown shortly. The algorithm terminates at iteration k if" Ik < A, where A is a user-
specified level of accuracy.

The difference between the dichotomous and golden section methods occurs in
the mannoí.T1 &íId x2día computed.The following table provides the formulas.

Dichotomous method Golden section method

-r,Q 1_

xl : xR - ('=X-n - xr)
^ 

/<x2:xL+(' Xxa-xt)
xt: L(xa + x1 - A)

xz:i(xa+x.+A)

1 xz. Set xa : x2 and Ii : (xr, x2) (see Figure

xp. Set xL :.r1 and Ii : @y xp) (see Figure

aXLXlX2Xp

, Ii-II r-l _|

, Ii

F|GURE 21.1

Illustration of the
general step of the
dichotomous/golden
section search
methods

, Ii- 7| ,-r _l

,, I' 
,|

,10

(b)(u)

í@t)

,. /o 
,]



21.1 Unconstrained Algorithms

In the dichotomous method, the values x1 and x, sit symmetrically around the
midpoint of the current interval of uncertainty. This means that

Ii:.5(Ii_, + A)

Repeated application of the algorithm guarantees that the length of the interval of
uncertainty will approach the desired accuracy, A.

In the golden section method, the idea is more involved. We notice that each iter-
ation of the dichotomous method requires calculating the two values /(xJ and f(x2),but
ends up discarding one of them. What the golden section proposes is to save computa-
tions by reusing the discarded value in the immediately succeeding iteration.

Definefor0 ( ct ( 1,

x1,:xR-a(xn-*r)
x2: xL * ct(.ra - *r)

Then the interval of uncertainty Ii at iteration i equals @L, xz) or (x1, x6). Consider the
case d : @r, r2), which means that xl is included in d. In iteration j * 1, we select x2
equal to x1 in iteration i, which leads to the following equation:

xr(iteratíoni i 1) : xl(iterationl)

Substitution yields

xr l a|xr(iteration l) - xLl : xR - c(xn - ,r)
or

xr * a|x1 -| a(;n - ,r) - xLf : xp - a(xp - x7)

which finally simplifies to

a2 + a-].:0
This equation yields o : !ž . Because 0 = ct š 1, we select the positive root

-1 
r \/<

ct : -Ť ^, .681.
The design of the golden section computations guarantees an ct-reduction in suc-

cessive intervals of uncertainty;that is

Ii,r1 : UIi

Compared to the dichotomous method, the golden section method converges more
quicklY to the desired level of accuracy.In addition, each iteration in the golden section
method requires half the computations because the method always recycles one set of
computations from the immediately preceding iteration.

Example 21.1-1

Maximize í(*) : Í3*,
lit-" + 2o),

0<x<2
2=x=3
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The maximum value ot f(x) occurs at x : Z.The following table demonstrates the
calculations for iterations 1 and 2 using the dichotomous and the golden section meth-
ods.We will assume A : .]..

Dichotomous method Golden section method

Iteration 1

1o : (0, 3) = (x7, xp)

x1 : .5(3 + 0 _ .I) : !,45, f(x1) : 4.35
x2 : .5(3 + 0 + .1) : 1.55, f(x2) : 4.65

í@r) > í(*r)+ x7: I.45, 11 : (L45,3)

Iteration 2
11: (1.45,3) = (xt, xp)
x1 : .5(3 + I.45 - .1) : 2.175, Í(x1): 5.942
x2: .5(3 + t.45 + .1) : 2.275, f(x) : 5.908

í@r) > í@r)+ xp: 2.275, 12: (L45,2.275)

Iteration 1

1o : (0, 3) = (x7, xp)

xt : 3 - .618(3 - 0) : 1,.146, f(x1) : 3.438
xz : 0 +,61E3 - 0) : I.854, f(x2) : 5.562

í@r) > í(rr)+ x1 : 1-.1-46, 11 : (,J,46,3)

Iteration 2
11 : (I.L46,3) = (x2, xp)

xl : xzin iteration 0 : ]..854, f(x1) : 5.562
xz: I.146 + .618(3 - 1,.1,46) : 2.292, f(x2) : 5.903

í@r) > í(x)+x7: 1.854, { : (1,854, 3)

Continuing in the same manner, the interval of uncertainty will eventually narrow
down to the desired A-tolerance.

Excel template ch2]_DichotomousGoldenSection.xls is designed to handle either
method automatically. The input data include í(*), o, b, and A. The function /(.r) is
entered in cell E3 as

=IF (C3<=2, 3 *C3 , (-C3+2 0 ) /3 )

Note that C3 plays the role of x in f(x). Limits a and b are entered in cells 84 and D4 to
represent the admissible search range for/(x). Also, the tolerance limit, A, is entered in
cell 83. The search method is selected by entering x in either D5 (dichotomous) or F5
(golden section).

Figure 2'l,.2 compares the two methods. Not only does the golden section method
requires 40% less iterations, it also involves less calculations per iteration as we
explained previously.

PRoBLEM sET 21.1A

1. Use Excel template ch2].DichotomousGoldenSection.xls to solve Example 21,.1,-1, assum-
ing that A : .01. Compare the amount of computations and the accuracy of the results
with those h Figttr e 21,.2.

2. Find the maximum of each of the following functions by dichotomous search. Assume
that A : .05.

(a) í(x):r-]^., 2=x=4
l(x - Jrl

(b) f(*):xcos.tr, 0<x<rr
(c) Í(x) : xsin tx, ]-.5 < x = 2.5

(d) /(x) :-(x-3Y, 2<x<4
(4r, 0<x=2(e) í(*): 114-*, 2<x<4

3. Develop an expression for determining the maximum number of iterations needed to ter-
minate the dichotomous search method for a given value of A and an initial interval of
uncertaintyIo:b-a.

21.1.z

734
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FlGURE 21.2

Excel output of the dichotomous and
golden section methods applied to
Example 2I.1-I
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.2 Gradient Method

This section develops a method for optimizingfunctions that are twice continuously
differentiable. The idea is to generate successivi points in the direction of the gradient
of the function.

The Newton-RaPhson method presented in Section 20.I.2 is a gradient method
for solving simultaneous equations. This section presents another technique, called the
steepest ascent method.

Termination of the gradient method occurs at the point where the gradient vec-
tor becomes null. This is only a necessary condition for tptimality. optimality cannot
be verified unless it is known a priori that/(x) is concave or convex.

SuPPose that f(X) is maximized.Let X0 be the initial point from which the proce-
dure starts and define V/(X) as the gradient of f atpoint xt. rhe idea is to determine a
Particular Path P along which ff is maximizedat a given point. This result is achieved if
successive points )ť and ak+1 are selected such that

;1t+1 :Xk+rkVí(X\
where rk is the optimal step size atXk.

d h5flnnl I

|1
1,ů541ů2

. ?,:9tl_]E,
. ?:5E23ú6;
2.291 7sE ;

. _|,12!.Él,t, .
?.tr2l?BÉ,,
) ijooisj:
2.ú}l2Bť,:
í,rra:O1 

,

i e5arOii
i ,Ě!.l1 nr,
1 ,E541|]2 ]

t as.{lnzi
t ,ilSZl;'n;
1 ,95742B;
i,esoes+,



736 Chapter 21 Nonlinear Programming Algorithms

The step size rk is determined such that the next poinLxk*I,leads to the largest
improvement in/ This is equivalent to determining r : thatmaximizes the function

h(r):ílxo+rvl(Xr)]
Because h(r) is a single-variable function, the search method in Section 21,.1,.1, may be
used to find the optimum, provided that h(r) is strictly unimodal.

The proposed procedure terminates when two successive trial points Xk and Xk*1
are approximately equal.This is equivalent to having

rkv1lx\ = g

Because rk + O,the necessary condition V/(Xo) : 0 is satisfied atXk.

Example 21.1-2

Consider the following problem:

Maximize í@r, x) - 4x, -l 6x2 - 2*? - 2xg2 - Z*tr

The exact optimum occurs zt@r*, x;) : (i, i).
To solve the problem by the steepest ascent method, consider

V/(E : (4 - 4x, - 2x2, 6 - Zxt - 4x2)

The quadratic nature of the function dictates that the gradients at any two successive
points aíe orthogonal (perpendicular to one another). Using the initial point
X0 : (1, 1),Figure 2]_.3 shows the successive solution points.

FlGURE 21.3

Maximizationof /(x1, x2): 4x1 -|

6x2 - 2x! - 2xp7 - Zxlby the steep-
est ascent method

,f(x) : 4x1* 6x2 - z*? - 2xp2 - Zx!

12x,
2
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V/(x) : (-2,0)
The next point Xl is obtained by considering

X : (1, I) + r(-2, 0) : (1 - 2r, I)
Thus,

h(r) : í(I - 2r, I) : -2(1 - 2r)' + 2(I - 2r) + 4
The oPtimal steP size is obtained using the classical necessary conditions in Chapter 20
(Iou may also use thej91."!r algorithins in Section21,.t.l,tďdetermine the optimum).
The maximum value of h(r) is r1-: }, which yields the next solution pornt u. ir":'r+, t).

Iteration 2.

This gives : } and X2 :
Iteration 3.

V/(x) : (0, 1)

X:(1, 1)+r(0, 1_):é, I+r)
h(r) : -2(1 + rf + 5(1 +,) + r,

G, b.

Yí(Xr): (-;, 0)

X:(1,il*r?i,0):
h(r): -io - r)2 +3o1t

Hence, f : iand X3 : (3, ;).

I eration 4.

Iteration 1.

Thus, ,^ : iand Xo : (3,

rteraúion 5.

V/(X') : (0,

x:(3,i)+
h(r) : -$1s

'il.

V/(xo) : (-á,

x:(3,'á*

il
,(0, 1) : (3,

-| ,)' + +(5

0)

,(-á.0) : (?.*a)

(ť,i)
-4+Ť

+"." 
4')

+r)+§

h(r) : -#rs - r)'+ #(3 - r) + ffi
This gives 15 : } and X5 : é,'*).
Iteration 6.

V/(x) : (0, iu)
Because V/(X) 1 0, the process can be terminated at this point. T]ne approximate

11!mum Point is given by X' : (.3438, I.3I25). The exact optimum i, ÍÍ :'(sasz,
I.3333).
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PRoBLEM sET 21.1B

1. Show that, in general, the Newton-Raphson method (Section 20.1,.2) when applied to a
strictly concave quadratic function will converge in exactly one step. Apply the method to
the maximization of

/(X) : 4x1 t 6xz - 2*? - 2xp2 - 2x)

2. Carry out at most five iterations for each of the following problems using the method of
steepest descent (ascent). Assume that X0 : 0 in each case.

(a) min/(X) : @, - *1)' + (1 - ",)(b) max/(X) : cX + xrAx
where

(c) min/(X) - x1 - x2 * x| - xtxz

CON STRA| N ED ALGORITH M S

The general constrained nonlinear programming problem is defined as

Maximize (or minimize) z : /(X)

subject to

The nonnegativity conditions, X
of the functions /(X) and g(X)
differentiable.

No generaI algorithm exists for handling nonlinear models, because of the erratic
behavior of the nonlinear functions. Perhaps the most general result applicable to the
problem is the KKT conditions (Section 20.2.2). Thble 20.2 shows that unless /(X) and
g(X) are well-behaved (convexity and concavity conditions), the KKT conditions are
only necessary f,or realizing optimality.

This section presents a number of algorithms that may be classified generally as
indirect and direcr methods. Indirect methods solve the nonlinear problem by dealing
with one or more linear programs derived from the original program. Direct methods
deal with the problem in its original form.

The indirect methods presented in this section include separable, quadratic, geo-
metric, and stochastic programming. The direct methods include the method of linear
combinations and a brief discussion of the sequential unconstrained maximization
technique. Other important nonlinear techniques can be found in the Selected
References at the end of the chapter.

21.2.1

c:(1,3,5)

":(_i : j)

21.2

g(X) = 0

ž 0, form part of the constraints. Also, at least one
is nonlinear, and all the functions are continuously
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21.2.1 Separable Programming

A function Í@y xr, . . . , x,) is separable if it can be expressed as the sum of n single-
variable functions ír@r), ír(*r),, ... , í,(x,Ythat is,

í@t, xt...,xn): ít(xt) + ír@r) + + í,(x,)
For example, the linear function

h(xy x2, ... , xn) : alxl * a2x2 * * arx,

is seParable (the parameters ai, i : I, 2, ... , ft,are constants). Conversely, the function

h@r, *r, x:) : x! + x, sin(r2 + x) -| x2e*3

is not separable,
Some nonlinear functions are not directly separable but can be made so by

aPProPriate substitutions. Consider, for example, the case of maximizing z : xlx2.
Letting | : xlxz,then lny : lnx, * lnx2andthe problem becomes

Maximize z : y

subject to

lny:|nx1 *lnx2
which is seParable. The substitution assumes that x, and x2 ate positive variables; other_
wise, the logarithmic function is undefined.

The case where x1 and 12 ítssufiIo zero vahles (i.e., xI, x2 > 0) may be handled in
the following manner.Let 61 and 62 be positive constants and define

WI: x1 * 61

W2: X2 * 62

The new variables wl and w2 zta strictly positive. Now

xIxz : lvtwz - 6zwt - 6twz + 6162

Letting | : wtwz, the problem is expressed as

Maximize z : y - 6zwt - 6twz + 6162

subject to

lny:Inw1 lInw2

Y > 0, wtž6ywz = 6z

The new problem is separable.
ExamPles of other functions that can be made separable using substitution are

gll+xz and fi'.A variant of the procedure just presented Can be applied to such cases to
effect separability.

Separable programming deals with nonlinear problems in which the objective
function and the constraints are separable. This section shows how an approximate
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solution can be obtained for any separable problem by linear approximation and the
simplex method of linear programming.

The single-variable function/(x) can be approximated by a piecewise linear func-
tion using mixed integer programming (Chapter 9). Suppose that f(x) is to be approxi-
mated over an interval Io, b]. Define ar, k : I, 2, ... , K, as the kth breaking point on
the r-axis such that at 1 az 1 1 ax.The points a1 and a6 coincide with end points
a and b of the interval under investigation. Thus,/(*) is approximated as follows:

í(*) = 5í(oo),o
k:7

' 
: 

,Ooto
k:I

where tpís anonnegative weight associated with the kth breaking point such that

ž'o:,
k:I

Mixed integer programming ensures the validity of the approximation. Specifically, the
piecewise linear approximation is valid if

1_. At most two tp are positive.

2. If r* is a positive, then only an adjacent tpal oí tpl ca;TL assume a positive value.

To show how these conditions are satisfied, consider the separable problem

Maximize (or minim ize) z : Žf,@,)
i:I

subject to
n

)s1(") ' bj, i : I,2, ..., ffi
i:I

This problem can be approximated by a mixed integer program as follows. Let the
number of breaking points for the ith variable x; equal K, and let af be its kth breaking
value. Let { be the weight associated with the kth breaking point of variable 1.1 Then
the equivalent mixed problem is

nKi

i:| k:I

subject to
nKi

Z2sj,@bt =i:I k:1,

0<t=y!,
0=t=yf-'+y!,

1It would be more accurate to replace the index k with k, to correspond uniquely to variable l. However, we
will not do so for the sake of simplifying the notation.

bi, j:I,2,...)m

i:I,2,...)n
k : 2,3, ..., K, - 1
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0 = f, = yf,-r, i : !,2, ..., n
Ki-I

2y,":t
k:7
Kí

2t:t
k:1,

yf : (0, 1), k:1,,2,...,Kr,i:1,,2,...)n
The variables for the approximating problem are { and y!.

This formulation shows how any separable problem can be solved, at least in
Principle, by mixed integer programming. The difficulty is that the number of con-
straints increases rather rapidly with the number of breaking points. In particular, the
comPutational feasibility of the procedure is questionable because there are no reli-
able computer codes for solving large mixed integer programming problems.

Another method for solving the approximate model is the regular simplex
method (Chapter 3) using restricted basis. In this case the additionál constráints
involving 

. y! are not needed. The restricted basis specifies that no more than two
Positive f can appear in the basis. Moreover, two { canbe positive only if they are
adjacent. Thus, the strict optimality condition of the simplex method is used to select
the entering variable ( only r/it satisfies the foregoing conditions. otherwise, the vari_
ab\e ( having the next best optimality indic ator (Žr --c)is considered for entering the
solution. The process is repeated until the optimality condition is satisfied or until it is
imPossible to introduce new { without violating the restricted basis condition,
whichever occurs first. The last tableau gives the approximate optimal solution to the
problem.

The mixed integer programming method yields a global optimum to the approxi-
mate Problem, but the restricted basis method can only guarantee a local opli-,r-.
AdditionallY, in the two methods, the approximate solution may not be feasibló for the
original Problem. In fact, the approximate model may give rise to additional extreme
points that are not part of the solution space of the original problem.

Example 21.2-1

Consider the problem

subject to

Maximize z:x1 *x)

3x7 -| 2x) - 9

X7,X2>0

ír(*r) : *,

fr@r) : *1

The 
^exact 

oPtimum solution to this problem, obtained by inspection, is x1, : 0,
X2 : 2.I2,and z* : 20.2.To show how thďapproximating meth"od is used, consid|r the
separable functions
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81(xI) :3x.t

s?(x): Lxl

The functions ír@r) and g|(x1) are left in their present form because they are
already linear. In this case, x1 is treated as one of the variables. Considering f2@2) and

s?@r),we assume that there are four breaking points (Kz: 4). Because the value of x2

cannot exceed 3, it follows that

ír(ob s',@5)

This yields

ír(*r)ž 12í2@1)+ ír(a7)+ f,ír(a))+ t)ír(ar)

= 0l2 + tt| + I6t) + 8tt}: t1 + L6f2 + llt1'

Similarly,

s1@)N2t?+a32+Lst|
The approximating problem thus becomes

subject to

Maximize Z : X1, + P2 + 1,6t) + 81t)

3x1 t2t)+8t)+1,8t)=l
t)+t)+t)+t):1,
tr>O,k:I,2,3,,4

ír>0
The solution must satisfy the restricted basis condition.

The initial simplex tableau (with rearranged columns to give a starting solution) is
given by

Basic X1 t) Solution

.l1

tl,

The variable s1(> 0)is a slack. (This problem happened to have an obvious starting solu-
tion.In general, one may have to use the artificial variables techniques, Section 3.4.)

From the z-row coefficients, rj is the entering variable. Because r] is currently basic
at positive level, the restricted basis condition dictates that it must leave before t} can
enter the solution. By the feasibility condition, ,1 íIlust be the leaving variable. This
means that t)cannot enter the solution. The next best entering variable, t),requires t)

L
až

1000
21,1,2
32168
438118

-81-16-t-I

ť2.1t1ttr

109
011

3z818
0111
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to leave the basic solution, a condition that happens to be guaranteed by the feasibility
condition. The new tableau thus becomes

Basic X1 tI t) .1 t) Solution

_6515-1

.1t!t)t',X1

1,616

J1 3-6010 1

t)011I0

1 l _8 l

'l0l0r0
o _l l8 9
" l0 l0 l0

tl *a -]0-q- 0

t) -.l ]á 1

-8
1

, Next, t)isthe entering variable, which is admissible because /; is positive.The sim-
plex method shows that s1 will leave. Thus,

t) Solution

_24 -36 a-r7
LL,

The tableau ShoWS that t) and ttr are candidates for the entering variable. Because rj is
not adjacent to basic t) or t),it cannot enter. Similarly, t| cannót enter u..uur. t) can_
not leave- The process ends at this point, and the solutiorr given is the best feasiblďsolu_
tion for the approximate problem.

The optimum solution to the original problem is

Xt:0
Xz = 2t) + 3t} - z(h) + 3G+) : 2.1

z:0+2.I4:L9.45
The aPproximate optimum value of. x2(: 2.I) approximately equals the true optimum
value (: 2.12).

SeParable Convex Programming. A special case of separable programming occurs
Ih_." Sj,@,) is convex for all l and7, thus énsuring a convex solution space. Additionally,
if Í,@) is convex (minimization) or concave (maximization) for all t, tnenthe problem
has a global optimum (see Table 20.2, Section 20.2.2). Under such conditions, a
simplified approximation can be used.

Consider a minimization problem and let í,@) b" as shown in Figure Zt4.The
breakingpointsof thefunction fi@)arexi: aki,k:0, I, ...,Ki.Letxpidefinethe
increment of the variable x; in the range (oo-r,,, at), k: I,2, ..., Kiiund l.t ptibe
the corresponding slope of the line segment in the same range. Then

Ki

í,@) = )ptixti + í,(ao)
k:7

Ki

xi : 2xti
k:I

0 = Xo, - aki - at_l, i,, k : l, 2, ... , K,
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fi@i)

FlGURE 21.4

Piecewise linear approximation of a
convex function

The fact that fi(x) is convex ensures that p1, 1 pzi 1 < pr,i.Thus, in a minimiza-
tion problem, for p 1 q, the variab\e xri is more attractive than /q;, which means that
xpiwill always enter the solution before xn;.

The convex constraint functions ť,@) are approximated in essentially the same
way. Let pjt ibe the slope of the kth line segment corresponding to ť,@).It follows that
the lth function is approximated as

Ki

k:I

The complete problem is thus given by

Minimize e : á(Žr- ixtil í,(,,))

subject to

'/K,
; (ž PjtiXti

0šxtišatt

\
+ 8',@o)] = bi, j : I,2, ",)m

/

- at_t,i, k : Ir2, ..., Ki, i : lr2, ...) n

where

Pkt :

i
P'ki :

í,(oo) - í,(oo-r)
am - at-t,t

Tj,@o,) - Ti,(oo-r,)
au - at-yt

The maximization problem is treated essentially the same way. In this case,

pi; ) pzt ) > pK,i,which means that, for p 1 q,the variable xpiwíll always enter
the solution before xn; (see Problem 7, Set 21,.2a for proof).

The new problem can be solved by the simplex method with upper bounded vari-
ables (Section 7.3). The restricted basis concept is not needed because the convexity
(concavity) of the functions guarantees correct selection of basic variables.

Example 21.2-2

Consider the problem

MaximizeZ:xt-x2



subject to
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x2 = 243

2x?, = 32

>)1_ 
-.L

x2 > 3.5

The separable functions of this problem are

fr(*r) : x1, ír(xr) - -x2

sl(x) : 3*t, 8L@) : xz

s?(xr) : xI,, (*r) : 2x3

These functions satisfy the convexity condition required for the minimization problem.
^ The ranges of the variables _x1 and x2 (estimated from the constraints) are
0 = *, < 3 and 0 - xr< 4.Leí Kt.:3 and kr:4 with a,I: a02:0.The.Íop..
corresponding to the separable functions are determined as foiiows.Fori:I,

am ír(oor) : a^ Ptl sl@tJ: 3a|,,, ďr(oor) : oo, Pzt l

3x! +

h*
X1

XuPItt

Xn
Xzt

Xg,

1

1

I

0

1,

2

J

J

45

195

0

J

48
243

1,

1

I

0

1,

2

J

00
11))
33

Fori:2,

atz ír(aor) : -ak2 ll@td: at, Pltz s7@,,) :Za'kz
Pzrz.

Xlt
Xzl

Xst

X,Q

2

6

10

1,4

0

2

8

18

32

0

1,

2

J

4

00
11
22
33
44

0

-1
-2
-J

-4

-1
-1
-1
-1

The complete problem then becomes

Maximize Z = xu l xzt l xl - xn - xzz - xzz - xn
subject to

3x1 l 45x21 -| 19541 -| xn
xl* xzll ryrl2x9
xll xzt* xzt

+

+

+

+

0

0

Xnl
šxnšL,
šxna1,

xzz l Xzz

6x2, * 1042

xzz l xzz l
k : I,2,3

k : I,2,3,4

xa2 = 243

I4xa2 < 32

> 2.1,

xa2 > 3.5

i
1

1

1
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TORA optimum solution is

Z : -.52, XII: XIz: 1, XI3: .98, X21 : Xzz: X23: I, X24: .5

The solution translates to (*r, ,r): (2.98, 3.5).

PRoBLEM sET 21.2A

1. Approximate the following problem as a mixed integer program.

Maximize z : e''' l x1 * @, + I)'

subject to

x]+ x2<3

Xy X2> 0

2. Repeat Problem 1 using the restricted basis method. Then find the optimal solution.

3. Consider the problem

Maximize Z : xlx2x3

subject to

x!+xr-l 4š4
XI, X2, X: = 0

Approximate the problem as a linear program for use with the restricted basis method.

4. Show how the following problem can be made separable.

subject to

Maximize Z : xlx2 * x, * xp3

x 2-| x,* xp3 < ].0

XlrX2rX3 2 0

5. Show how the following problem can be made separable.

Minimize z - ebt+ + @, - 2)'

subject to

x1 lx2-1 436
X!, X2, Xa > 0

6. Show how the following problem can be made separable.

Maximizez-ď"'tx}4*xa
subject to

x1 * x2x3 -l x3 < 10

X7, X2, X3 ž 0

xa unrestricted in sign

21.2.2

746
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Show that in seParable convex programming, it is never optimal to have xt i } 0 when
xp_1,; is not at its upper bound.
Solve as a separable convex programming problem.

subject to

Minimize z : x1 -| 2x2 * x!

xzr+xr+x!=4

|x1 *x2|<0
xl,x3>0

x, unrestricted in sign

9- solve the following as a separate convex programming problem.

Minimize z : (xt - 2)' + 4(x2 - 6)'
subject to

6x1*3(x2+I)2=12

xyx2 > 0

Quadratic Programming

A quadratic programming model is defined as

Maximizez : CX + XZDX

Ax<b,x>0
subject to

where

X : @y ,r, ... ,, xr)'

C : (q, c2, ... , cr)
b : (by b2, ... , b-)'

o:(':, ,;, '],)1l 

\o-, 
.. o^,)

|O,, d,,\
o : 

|r', o',,)

The function XZDX defines a quadratic from (Section A.3).The matrix D isLLLgv^ LlL Uassumed symmetric and negative-definite. This means that e is strictly concave. The
UJrrrrrrvlllv (lttLt rrgěcrtrv('-uglullle. rnls means tnat e ts strict

constraints are linear, which guarantees a convex solution space.
The solution to this Problem is based on the KKT necessary conditions. Becausez is strictly concave and the solution space is convex, tt 

"r.-.oíaiti
ltlon space ls convex, these conditions (as shown inTable z}.z,Section 20.2.2) are also suffióient for a global optimum.
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The quadraticprogramming problem will be treated for the maximization case.It
is trivial to change the formulation to minimization.The problem may be written as

Maximizee: CX + XIDX
subject to

G(X) :

)! : (}'r, },r, ... , N-)'

U : (!rr, l"r, ... , Wr)r

be the Lagrange multipliers corresponding to the two sets of constraints AX - b = 0
and -X < 0, respectively. Application of the KKT conditions yields

I>0,U>0
Yz - ()t'r, UlVG(x) : 0

n,(r, - 
Žo,,*,) 

: O, i : 1,, 2, ... , ffi

FlX1 :0, j:I,2,...)n
Ax<b
x<0

(i)- - (B) =,

ns reduce to

Yz,:C+zXrD

vc(x) : (i)
Let S - b - AX > 0 be the slack variables of the constraints. The conditio

-zXrD+)\?"A-Ur:C
AX+S:b

ILixj : 0 : \;,S; for all i and j
tr,U,x,s>0

Because D7 : D, the transpose of the first set of equations can be written

-Z,DX + Ar)\, - [J: C7

Hence, the necessary conditions may be combined as

/x\
( -zn 4r -I o\l l l /c'\( A 0 0 t)lul :(o/

\r/
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Fjíl:0:\;S;,
N, [J, x,

ExcePt for the conditions Fixl : 0 : }";,S,, the remaining equations are linear functions
in X, I, (J, and S. The Problem is thus equivalent to solving a set of linear equations,
under the additional conditions Fixi : 0 : X,, ,. Beca.rr. el, strictly concave and the
solution SPace is convex, the feasibte sotution satisfying all these conditions must be
unique and optimum.

The solution of the system is obtained by using phase I of the two-phase method
(Section 3.4.Z). The only restriction is to satisfy the conditions NiS, : b : p;x7. This
means that }"; and ,S; cannot be positive simultaneously. Similarly, l| and x7 caháot be
Positive simultaneously. This is the same idea of the restricted 

-bas'is 
u."ď in Section

2I.2.I.
Phase I will render all the artificial variables equal to zero only if the problem has

a feasible space.

Example 21.2-3

Consider the problem

Maximize z : 4x, * 6x2 - 2*1 - 2xp2 - 2r3
subject to

x1l2x2<2
xyX2>0

This problem can be put in matrix form as follows:

for all i and j

s>0

_L)(t)

o, zl(") = z

ilffi:É)
l+ 2 I
lz 4 2

\r 2 0

Maximize Z : (, q(::) t (*,,,r(_i
subject to

Xy X2> 0

The Kuhn-Tucker conditions are given as

-I 0
0-1
00
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The initial tableau for phase I is obtained by introducing the artificial variables R1 and
R2. Thus

Basic X1 },1 ,1 Solution

-1 0

0-1
00

Iteration1_. Because F1 : 0, the most promising entering variabla x1 ea;íI be made
basic with R, as the leaving variable. This yields the following tableau:

,91 Solution

3
-1

X1

R2

.l1

0

-1
0

Iteration 2. The most promising variable x2 ca;TL be made basic because lL2 : 0. This
gives

Basic X1 S1 Solution

R1 421,
R2242
,1 1, 2 0

R2R1X2

10-I-1

R2R1Nr

1004
0106
001,2

R2R1FtN1X2X1

-1

joo1
-:104
-i011

l!1_11244
03'r+
Oi-ii

-z-1-1

X1

R1

X2

lo-++jJ

01-22
-á03'.

101-i
0020
01-áá

100-+ái-L0
0010-:0:-1
010*_+_ž+:

0

-1
0

Iteration 3. Because 1 : 0, \1 can be introduced into the solution. This yields

Basic X1 S1 Solution

X1

}'1

X2

R2R1N1X2

-1-1

The last tableau gives the optimal solution for phase I. Because
f : O,the solution,.T1 : j, xz : o', is feasible. The optimal value of e is
computed from the original problem and is equal to 4.1,6.

3

1
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F|GURE 21.5

Excel solution of the qua-
dratic programming problem
of Example 2I.Z-3

Excel Solver can be used to solve the quadratic programming problem.
Figure 21,.5 provides the solution for Example 2I.2-3 (see file ch2lSolverQuadratic
Programming.xls). The data are entered in a manner similar to the one used in linear
Programming (see Section 2.4.2).The main difference is the way the nonlinear func-
tion is entered. Specifically, in Example 2l.2-3,the nonlinear objective function

z : 4x1 l 6x2 - 2r1 - 2xp2 - 2*3

is entered in target cell D5 as

=4 *81 0+ 6 * Cla-2 *B1 0 ^2 - 2 *81 0 *C La -2* CIO^2

Here, the changing cells B10 and C10 represent x1 and x2.Notice that cells B5:C5 are not
used at aII in the model. For readability, we entered the symbol NL to indicate that the
associated constraint is nonlinear. Also, you can specify the nonnegativity of the vari_
ables either in the Options dialogue box or by adding explicit nonnegativity constraints.

PRoBLEM sET 21.28

1. Consider the problem

Maximize z : 6x, * 3x2 - 4xp2 - 2*? - 3*3

made
lu:
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subject to

\* x2š1
2x1*3x2=4

Xy X2> 0

Show that z is strictly concave and then solve the problem using the quadratic program-
ming algorithm.

2. Consider the problem:

Minimize z : 2x1 + 2x| + 3x! l 2xp2 * 2x24 l xt - 3x2 - 5x3

subject to

\* x2*4>1,
3xr*2xr*4š6

XI, X2, X3 ž 0

Show that z is strictly convex and then solve by the quadratic programming algorithm.

21.2.3 Geometric Programming

Geometric programming deals with problems in which the objective and the constraint
functions are of the following type:

z : í(X)

where 
n

(J1 : clffx|',, j : 1,2, ..., N
i:I

It is assumed that all c1 } 0, and that i/ is finite. The exponents ai1 zía unrestricted in
sign. The function /(X) takes the form of a polynomial except that the exponents 4ť

may be negative. For this reason, and because all c1 ž 0, /(D i. called a posynomial.
This section will present the unconstrained case of geometric programming. The

treatment of the constrained problem is beyond the scope of this chapter. Detailed
treatment of the subject is given in Beightler and associates (1979,Chap. 6).

Consider the minimization of the posynomial function/(X).This problem will be
referred to as the primal. The variables xi día assumed strictly positive so that the
region í; < 0 is infeasible. It will be shown later that the requiremení xi > 0 plays an
essential part in the derivation of the results.

The first partial derivative of z must vanish at a minimum point. Thus,

N:2Ui
j:I

!)ouP1. t
nk i:I

Ez - Š#: icja,@o)oo,-'Tl*?":0, k:1"2,óxt i-:1 dxp í= " T+t

Because each xt ) 0 by assumption,

!' :0 :
dXt

:Ir2r,,.)n



21.2

Let z* be the minimum value of z.Itfollows that z- }
each xt ) 0. Define

Constrained Algorithms 753

0 because e is posynomial and

is known once aII y,have
determined. solution of

q
V;: ---

7

Thus li > 0 and)iy. :
the optimal value of the
written as

1.T. value of y; represents the relative contribution of (Jlío
objective function z*. The necessary conditions can now be

2ooiyi :0, k:L,2,...)n
j:1

2y, : I, |i > 0 for alli
j:I

These are known as the orthogonatity and normality condi ions and will yield a unique
i:'^1':1 Y '^llf 

n ]- 1 : N and aIl the equations are independent. The problem
Decomes more comPlex when IÝ ) n * 1 because the valuós of ! jur. .rá longerunique.It is shown later that, even in,this case, optimum yi is unique.

Given 11,the values of e* and x! canbe determined as follows:
_,- s\ -\Z,=1 y,z:lz) "

Because z* : #,it follows that

(fl"(#),,(#)"

{g(#)'}{ů(go,")'}

This step is justified because )|:pďi: 0. The value of z* -

been deiermined. Now, gir"" ;,; and z*. ď : yi z- can be
the following equations then yiel'ds xj. J r J

{tT(#)''}{nnr",",1

ů(#),

j : I,2, ..., Nď : r,fr6;1,,,,
i:1

The Procedure shows that the solution to the original posynom ial z canbe transformedinto the solution of a set of linear equations in".!i.T-hesó equations are the necessaryconditions for a minimum. It can be sňown that tňóse conditións are also sufficient. Theproof is given in Beightler and associate s (1,979,p. 333).



Chapter 2'l Nonlinear Programming Algorithms

The variables y7 actually define the dual variables associated with the z-primal
problem.To see this relationship, consider the primal problem in the form

N /Ut\
': ?,,,ltl

Now define the dual function

Because )[r/i : ]. and !1 ) O,we have

wšz
This result is based on Cauchy's arithmetic-geometric inequality, which states that

NN

Zr,zi = n zi'
j_I

N

wj ž 0, >wj :Ii:í
An immediate consequence of the inequality w = z is the following relationship:

w*:maxw:minz:z*
li Xi

Example 21.2-4

In this example a problem is considered in which N : n * 1 so that the solution to the
orthogonality and normality conditions is unique. The next example illustrates the case
whereN>n*1,.

Consider the problem

Minimize z : 7 xp21 + 3x2xj2 + 5xl3xzxz * xlx2x3

This function may be written as

Minimize z : 7 x|x2'"3 + 3x|x)42 + 5x13 x)x! + x|xlrx!

Thus,

*:fi(+),

(r,

1it)

1,

1,

0
1

:

tS

cq)

.\,l'
,o)

.ion

-3
1

1

l

,.)
24)

*)
tio

C3, 
'

au
azq

azq

diti,

C2, C3

:I3 a
:23 a
|33 a

condi

0
1

-2
1

ty

1)

0-3 1\
I I 1l2IIJ
;iven by

/o\

Ii]

1

us gi

il:

1

I
0

th,

Io, ap

\::: :1:

The orthogonality ."O ""r7:

l

\

an
azz

aa.q.
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This yields the unique solution

yi : i,y): ž,yi : *, yi : á

Thus,

, : 
G)'(í),(;),(;)- 

: 15 23

From the equation L( : y;z- it follows that

7xp2l : (Jt : !1ts.zz) : 7.61,5

3x2xj2 : (Jz: [1ts.zs) : 2.538

5xl3x24 : (Js : }1ts.zs) : 3.173

xlx2x3 : (J+ : l1ts.zs) : 1.90+

The solution of these equations is

xI : I.316, *Ž : L2I, xi : 1.2

which is the optimal solution of the problem.

-| xr'

y. Solving for y1,, y2, and y3

em

M
and n

]_, thtlI,
get

5

:ob

ity

lf
eg

2-5

pr(

rali

,n
We

;on

!+

the

goí

>
fYo

l21
r the

ogo

N)
ofy

rle

er

:hc

luse
rmS

inimize z : 5xpj1 + zxllx, * 5x1

rormality conditions are given by

(i ii il(lil 
:(l)

:se equations do not yield 1directl

(i il)gl :(,il

Examp

Consid

The ort

Becau
in te

lt:.5(1 -3y)
lz: .5(1 - yo)

The associated dual problem is 
ls : ll

Maximize, : (.rG Á) 
o'-"'1*;) -'-'(*),(i),

or
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Maximization of w is equivalent to maximization of ln w. The latter is easier to manip-
ulate, however. Thus,

lnw:.5(1 - 3ya[ln10 - ln(1 -3y4)} +.5(1 - ya){In4 - ln(1 - y4)} + yo(1n5 -Z|nya)

The value of yo maximizing ln w must be unique (because the primal problem has a
unique minimum). Hence,

Ólnr'Y -?}tn10 - !tn++ 1n5) + jrnlr -3yq)+}m(r - !l)- Zlnyo:g
Ey+ -l

This gives, after simplification,

21.2,4

-,"(' :'o') - "(o
I-y)l3-

,(

7
- 3yq)

):oY4

:'12.6

whichyields yi = la.Hence, y\: .16,|): .4Z,andyi : .26.
The value of z* is obtained from

z* : w* : (*)'u (ay+z (7:a x 9.66I

Hence,

Ul : .16(9.66I) : 1,.546 : 5xt

(Jq: .16(9.66I) : .1546 _ x;I

The equations yield xI* : .309 and x} : .647.

ytr

PRoBLEM sET 21.2c

1. Solve the following problem by geometric programming.

Minimize z : 2xíIx3 + xlxjz + 4x!

x1, x2} 0

2. Solve the following problem by geometric programming.

Minimize z : 5x ilx! + x72x11 + 10x) + 2xrlx243

XI, X2, X3 ) 0

3. Solve the following problem by geometric programming.

Minimize z : 2x?xí3 + 8xr3x, + 3xp2

Xl,X2ž0
4. Solve the following problem by geometric programming.

Minimize z : Zxlxi3 + 4xl2x2 * xp2

xl,x2}0
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.4 Stochastic Programming

Stochastic programming deals with situations where some or all parameters of the
Problem are random variables. Such cases seem typical of real-life problems, where it
may be difficult to determine the values of the parameters with certainty.

The idea of stochastic programming is to convert the probabilistic problem into
an equivalent deterministic situation. This section deals with chance-constrained pro-
gramming, defined as

Maximize , : f,r,*,
j:1,

subject to

2,...,ffiixj ž0, foralli

The name "chance-constrained" follows from the fact that each constraint is realized
with a minimum probability of I - or 0 { o, < 1. It is assumed that all a,, and, bi arc
random variables. Three cases are considered:

1. Only au is random for all l andi.
2. Only Ď, is random for all i.

3. Both ailand biare random for all i and j.

In all three cases, it is assumed that the parameters are normally distributed with
known means and variances.

Case 1. Each aii || normally distributed with mean E{ou}, variance var{ar}, and
cov{a,,, a1,,} of ailand a11,.

consider the lth constraint

=1-o,
and define

Then /r; is normally distributed with

E{h,}: i E{a}x1
j:1

var{h}: XrD;X

X : ("r, ... , xr)'

D;:
cov{ai1, air}

,aria,,}

"{á 
aijxj šr,} = I - ou i: !,

r{),,,-, = r,}

h,: io,1r1
i:1,

where

lth covariance matrix

| ,or{o,r} ...l,:
\cov{a;,, a;1}
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Now
( h, - E{h} b, - E{h,))

P{h, =b,}:P) ' '" --}=1-ai
I \Á-flr,} \/;^4h} J - -

. h, - E{h,) ,where' - is standard normal with meanzeto and variance one.This means that
1/var.{/t1}

/ b, - E{/,,.}\
P{h, = b,}: r( _l,-----:--|l l) 

\ Ývar{h} /

where F represents the CDF of the standard normal distribution.
Let K, be the standard normal value such that

F(K"): 1 - ct;

Then the statement P{h, ' b,) > 1 - ct; is realizedlf. and only if

b-EW=K*
Ý"^4W

This yields the following nonlinear deterministic constraint:

ialory*, + K*ÝťD1=b,
j:I

For the special case where the normal distributions are independent,

cov{a,1, ori,} : 0

and the last constraint reduces to

frp,,yr, *o*r ffi=u,
1:l ' /:l

This constraint can be put in the separable programming form (Section 21.2.I) by
using the substitution

for all l

Thus, the original constraint is equivalent to
n

:E{r,,.}", l Ko,y,=b,
í=t

and

{)var{a} -!?:0
j:1,

Case 2. Only Ď; is normal with mean E{b,} and variance var{b,}.ft" analysis is similar
to that of case ].. consider the stochastic constraint

,{r,= 
2o,r,} = *,

l, : ll )var{a;}x|,Y i:1
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As in case 1,

This can hold only if
}=-,

Žo,,*, - E{b}
j:l

Ý""rW

Žo,,*, - E{b}
j:I

--17

Ýr^r{b} 
-- "o'

Thus, the stochastic constraint is equivalent to the deterministic linear constraint

Žo,,*, =E{b}+K,Ýrupb}j:1,

Case 3, In this case all ailandbiarenormal random variables. Consider the constraint

,a,lX1 = b,
j:I

This may be written
n

Zo,i*i -bi=0
j=t

Because all ailand biare norm a1,2i: iixi - bris also normal. This shows that the
chance constraint reduces to the situation in'cáse 1 and is treated in a similar manner.

Examp|e 21.2-6

Consider the chance-constrained problem

Maximize z : 5x, -| 6x2 t 3x3

subject to

P{alx1 l a9x2 l a3x3 = 8} > .95

P{5x1 i-x2*6xr=b2}>.10
Xl, X2, X: ž 0

Assume that the aris are. independent normally distributed random variables with thefollowing means and varianceŠ:

E{a,1,} : 1,, E{alr} : 3, E{a3} : 9

var{a1} : 25, var{ap} : 16, var{a13} - 4
The parameter Ď, is normally distributed with mean7 and,variance 9.

From standard normal tables in Appendix D,
Ko,: K.os = 1,.645, Ko, : Kn = I.Z85
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The two constraints are converted deterministically to

x, * 3x2 t 94 + 1.645ffi, g

5q-|x2 l64<7 + 1.285(3):].0.855

If we let

!2:25x?r+l6x?2+4x?3
the problem becomes

Maximize z : 5x1 t 6x2 -l 3x3

subject to

x1 *3x2t94+I.645y<8
25x]+1,6x|+a*?-!2:0

5x1 -| x2 l 64 < 10.855

X1,, X2, Xz, Y ž 0
which can be solved by separable programming.

Excel optimum solution of this nonlinear problem is given in Figure 21.6 (file
ch2]_SolverStochasticProgramming.xls). Only the left-hand side of constraint2 is non-
linear and is entered in cell F7 as

=25 * B1-2 ^ 2 +16 * cL2 ^ 2 + 4* D1-2 ^ 2 -E12 ^ 2

FlGURE 21.6

Excel solution of the
stochastic programming
problem of Example
21,,2-6

21.2,
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PRoBLEM sET 21.2D

1. Convert the following stochastic problem into an equivalent deterministic model.

MaximizeZ:xI*2x2*5x3
subject to

P{ap1 l 3x2 * a3x3< 10} > 0.9

P{7*, -l 5x2 * xs - b2} > 0.I

XI, X2, X3 ž 0

Assume that al and a3 are independent and normally distributed random variables
with means E{a} : 2 and E{or}: 5 and variances var{a1}: 9 and var{a3} : !6.Assume
further that bris normally distributed with mean 15 and variance25.

2. consider the following stochastic programming model:

MaximizeZ:xI+x}+x,
subject to

P{x! + arx) + or n = 10} > 0.9

XI, X2, rr: > 0

The Parameterc a2and a3are independent and normally distributed random vari-
ables with means 5 and 2,andvariance 16 and 25,respectively. Convert the problem into
the (deterministic) separable programming form.

21.2.5 Linear Combinations Method

This method deals with the following problem in which all constraints are linear:

subject to

Maximize z : í(ě)

Ax<b,x>0
The Procedure is based on the steepest ascent (gradient) method (Section 2I.t.2).
However, the direction specified by the gradient vector may not yield a feasible solu_
tion for the constrained problem. Also, the gradient vector will not necessarily be null
at the oPtimum (constrained) point.The steepest ascent method thus must be modified
to handle the constrained case.

Let Xk be the feasibte trial point atiteration k. The objective function/(X) can be
expanded in the neighborhood of xk using Taylor's series. This gives

/(x) =/(x*) + V/(xkxx - xl : ff(xo) - V/(xoX) + vflxr)x
The Procedure calls for determining a feasible point X : X* such that/(X) is maximized
subject to the (linear) constraints of, the problem. Because /(Xk) - Ýirxxr is a con_
stant, the Problem for determining X- reduces to solving the ioilowing lirreai program:

Maximize wÁX): V/(xoX
subject to

Ax<b,x>0
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Given wl,is constructed from the gradient of /(X) atXk, an improved solution
point can be secured if and only if vylX-) > ,o(Xo). From Táylor's expansion, the con-
dition does not guarantee that /(X-) > /(X*) unless X- is in the neighborhood of Xr.
However, given }ť/.(X-) > w,,(Xo), there must exist a point 51k+1 on the line segment
(Xo, X-)such that /(Xo*') > /(Xn).The objective is to determine Xk*1. Define

;1k+1 :(1 - rfio + rX*:Xk+ r(X- -Xk), 01r<1
This means that;lk+1 is a linear combination of X and X*. Because Xk and X* are two
feasible points in a convex solution space,1k+1 is also feasible. By comparison with the
steepest ascent method (Section 21,.1,.2),the parameter r represents the step size.

The poin1 Yft+1 is determined such that/(X) is maximized. Because Xk*1 is a
function of r only,;1k+1 is determined by maximizing

h(r): /(Xo + r(X- - Xft)

The procedure is repeated until, at the kth iteration, wr(X-) < ,o(Xo). At this
point, no further improvements are possible, and the process terminates with Xr as the
best solution point.

The linear programming problems generated at the successive iterations differ
only in the coefficients of the objective function. Sensitivity analysis procedures pre-
sented in Section 4.5 thus may be used to carry out calculations efficiently.

Example 21,2-7

Consider the quadratic programming of Example 21,.2-3.

Maximize /(X) : 4x1 t 6x, - 2r', - 2x,,x2 - 2*3

subject to

x1l2x2<2
XyX2>0

Let the initial trial point beX0 : (+, };, *trictr is feasible. Now

V/(X) : (4 - 4x, - 2x2, 6 - Zxt - 4xz)

Iteration 1.

V/(x) : (1, 3)

The associated linear program maximizes }ť1 : x1 l 3x2 subject to the constraints of
the original problem. This gives the optimal solution X* : (0, 1).The values of w1 at X0
and X* equal 2 and 3, respectively. F{ence, a new trial point is determined as

x1 : (l,L) + r[(0, 1) - G,)] : (=,Lť)
The maximization of

h(r) : f ,Lť)
yields r1 : 1,.Thus X1 : (0, 1)with /(X1) : 4.

21.2,6
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Iteraúion 2.

V/(X') : Q,2)
The objective function of the new linear programming problem is w2 : 2x1 l Zx2.The
oPtimum solution to this problem yields X* : Q, 0).Because the value s of wrat Xl and
X* are 2 and 4, a new triai point must be determined. Thus

X2 : (0, 1) + ,lQ,O) - (0, 1)] : (2r, 1 - r)

The maximization of

h(r):f(Zr, I-r)
yields : Ž.Thus X2 : (i, ) with /(X2) = +le .

Iteration 3.

Yí(X') : (I, 2)

The corresponding objective function is w3 : x1, * 2x2.The optimum solution of this
problem yields the alternative solutions X* : (0, 1) and X* : (2,0). The value of w, for
Fth points equals its value atX2.Consequently, no further improvements are porribl..
Tlae approximate optimum solution is X2 : (j, ;)with /(X2) = 4.1,6.This happéns to be
the exact optimum.

PRoBLEM sET 21.2E

1-. Solve the following problem by the linear combinations method.

Minimize /(X) : x] + x) _ 3xp2

subject to

3x1 *

5x, -
Xl,

.2.6 SUMT Algorithm

In this section, a more general gradient method is presented. It is assumed that the
objective function /(X) is concave and each constraint function 8;(X) is convex.
Moreover, the solution space must have an interior. This rules out both implicit and
explicit use of equality constraints.

The SUMT (Sequential Unconstrained Maximization Technique) algorithm is
based on transforming the constrained problem into an equivalent unconstrained
Problem. The procedure is more or less similar to the use of the Lagrange multipliers
method. The transformed problem can then be solved using the steepest ascent
method (Section 2I.1.2).

To clarify the concept, consider the new function

'X2

3xz

xzž

<?

<<

0

p(X,t):/(x) *,(á# - ái)

\
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where / is a nonnegative parameter. The second summation sign accounts for the non-
negativity constraints, which must be put in the form -x. < 0 to be consistent with the
original constraints. Because g;(X) is convex,rfo i, concave. This means that p(X, r) is

concave in X. Consequently,p(X, /) possesses a unique maximum. Optimization of the
original constrained problem is equivalent to optimization of p(X, r).

The algorithm is initiated by arbitrarily selecting an initial nonnegative va|ue for
/. An initial point X6 is selected as the first trial solution. This point must be an interior
point-that is, it must not lie on the boundaries of the solution space. Given the value
of r, the steepest ascent method is used to determine the corresponding optimal solu-
tion (maximum) of p(X,t).

The new solution point will always be an interior point because if the solution
point is close to the boundaries, at least one of the functions fr o, -i will acquire a

very large negative value. Because the objective is to maximize p(X, r), such solution
points are automatically excluded. The main result is that successive solution points
will always be interior points. Consequently, the problem can always be treated as an
unconstrained case.

Once the optimum solution corresponding to a given value of r is obtained, a
new value of t is generated and the optimizatíon process (using the steepest ascent
method) is repeated.Ií t' is the current value of r, the next value, /", must be selected
suchthat0<t" <t'.

The SUMT algorithm ends when, for two successive values of í, the correspond-
ing optimum valles of X obtained by maximizing p(X, t) are approximately the same.
At this point further trials will produce little improvement.

Actual implementation of SUMT involves more details than have been pre-
sented here. Specifically, the selection of an initial value of r is an important factor that
can affect the speed of convergence. Further, the determination of an initial interior
point may require special techniques. These details can be found in Fiacco and
McCormick (1968).
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Review of vectors
and Matrices

A.1 VEcToRs

A.1.1 Definition

Let py p2,
that is,

of a vector

p,be any n real numbers and P an ordered set of these real numbers-

P : (Pr, Pr, ..., P,)
Then P is an n-vector (or simply a vector). The ith component of P is pvRor example,
P : (2,4)is a two-dimensional vector with p, : 2 and pz : 4.

A.1.2 Addition (5ubtraction) of Vectors

consider the n-vectors

P : (Pr, Pr, ..., P,)

Q : (qr, qr, ... , Qn)

R : (ry, 12, ... , rr)
ForR: P i Q,componenti iscomputedas lr: pit qi.

In general, given the vectors P, Q, and S,

P+Q:q+P (Commutative law)

(Associative law)

(Zero or null vector)

(P+Q)+S:P+(Q+ )

P+(-P):
:

0

765
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A.1,3 MultipIication of Vectors by Scalars

Given a vector P and a scalar (constant) quantity 0, the new vector

Q : 0P : (\py \pz, ... , 0p,)

is the scalar product of P and 0. In general, given the vectors P and S and the scalars 0

and ^y,

0(P+S) :0p+Os
o(ryP) : (ory)P

A.1.4 LinearIy lndependent Vectors

The vectors P1, P2, ... , P, arc linearly independent 1f., and only if

>rrr, : 0+0i : 0, j : I,2, ...) n
j:I

It for some gj + 0,

Urn, : O

i:l
then the vectors are linearly dependent.For example, the vectors

Pt : (1, 2), Pz : Q, 4)

are linearly dependent because for 0t : 2 and 02 - -1,,

01P1 + 02P2: 0

A.2

A.2.1

: lla,illo*

A.2.2 Types of Matrices

1. A square matrix has m : n.

2. An identity matrix is a square matrix in which the main diagonal elements are 1,

and the off-diagonal elements are zeto.For example, a (3 X 3) identity matrix is
given by

A.2.3

element ai1 of the matrix A occupies
withm rows andn columns is said to
owing matrix is of size (4 X 3).

MATR!cE5

Definition of a Matrix

A matrix is a rectangular aríay of elements. The
the ith row andith column of the array.A matrix
be of size (or order) m X n. For example, the foll

Io,, atz or.\

; : ]'r, azz orr|

l 
o1 asz o3l

\oo, ou oor l

I:: (,;i)
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3. A row vector is a matrix with one row and, n columns.
4. A column vector is a matrix with m rows and one column.
5. The matrix AZ is the transpose of A if the element a,lin A equals the element ali

in A7 for all i and7. For example,

lt 4\

^:I; ;l- a,,:(I 2 3\

\; ál \4 5 6)

6. A matrix B : 0 is a zero matrix if every element of B is zero.
7. Two matrices A : llo,illand B : |lb,illare equal if, and only if, they have the same

size and ai : bijfor all i and j.

A.2.3 MatrixArithmeticOperations

In matrices only addition (subtraction) and multiplication are defined. The division,
though not defined, is replaced by inversion (see Sóction A.2.6).

Addition (Subtracúion) of Matrices. Two matrices A
added if they are of the same síze (m X ,).The sum D :
the corresponding elements. Thus,

lId,JI-*, : llo,i * b,ill-,,
If the matrices A, B, and C have the same size, then

A+B:B*A
A+(B+C) :(A+B)+C
(A*B)':AT+Bz

Product of Matrices. The product D : AB of two matrices, l : |laull and B : llb,ill,
is defined if, and ontY if, the number of columns of A equals the number of rows of B. IfAisof size(m X r)andBisof size(r X r),thenDmustbeof sizem X n,wheremand,
n are arbitrarY Positive integer values. In this case, the elements of D are computed as

4,i : Žo,obo,, for all i and, j
k:1

For example, given

": (] 1),u: (; ,r 3)

: llo,ill and B : |lb,|l can be
A + B is obtained by adding

(Ix7+3X8)(1 x9+3X0)\
(2 x 7 + 4 x 8) (2 x 9 + 4 x 0))

we have

": (; ;X; ',

: (tr:^ '^L ,3)
In general, AB + BA

3)
(í x 5 + 3 x 6):l\/

\(z*5+4x6)

even if BA is defined.



768 Appendix A Review of Vectors and Matrices

The following general properties apply to matrix multiplication:

I,,A : AIn : L,I. and I, are identity matrices

(AB)C : A(BC)

C(A+B) :CA+CB
(A+B)C:AC+BC
ct(AB) : (ctA)B : A(ctB), ct is a scalar

Muttiplication of Partitioned Matrices. Let A be an (m x r)-matrix and B an(r X n)-

matrix. Assume that A and B are partitioned as follows:

(í) -

A,2,4

The partitioning assumes that the number of columns of A;i is equal to the number of
rows of Ba for all l and i. Then

A x B: (ŤrrPrr * 4rzBzr + Ar:B:r i ArrBrz + A,zBr, + A,rB.r)-\ l
For example,

)(Í)

J
5
6

lar(

ma

Determinant of a Squ

Consider the n-square r

4)

4)

rix

,,I)(4

\

,)(

atri

(1

/|t;
\Z,

Ma

ix

k
re l\

atríl

+ (z ,,(l) z4

,9

+

(

4+2

- (! ;Xá)

,,,:)

(".,^

(il)
):

A-
al,z

azz

:

an2

Next, define the product

Pirjr.,.i, : aljrazjr", anj,

such that each column and each row of A is represented exactly once among the sub-
scripts oí jt, jz, ... , and 7,. I'{ext, define

_ | t, jrjz... j, evenpermutation
e ji, j, - \o, jtiz... j,oddpermutation

Let p represent the summation over all n! permutations;then the determinant of
A, det A or IA | , is computed as

? = j,jz...j,, 
Pj,j,,,.i,

):
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As an illustration, consider

Then

lAl : an(azz azz - azs azz) - an(azt ar - ast azl) * a13(a21 azz - azz ast)

The properties of a determinant are:

1. The value of a determinant is zero if every element of a row or a column is zero.
2. lAl : lA'l.
3, If B is obtained from A by interchanging any two rows or any two columns, then

IBl : -lAl.
4. If two roWS (or two columns) of A are multiples of one another, then |Al : 0.
5, The value of IAI remains the same if scalar ct times a column (row) vector is

added to another column (row) vector.
6, If everY element of a column or a row of a determinant is multiplied by a scalar

ct, the value of the determinant is multiplied by ct.
7. If A and B are two n-square matrices, then

o : (::,, i,,: :,:\
\o, ozz o,l

lABl : lAllBl

Definition of the Minor of a Determinant. The mino, Mii
determinant |A| is obtained from the matrix A by striking
column of A. For example, for

M.. : |o,, o,r|Lz lau azsl'

of the element a,, in the
out the ith row and ith

Definition of the Adjoint Matrix. Let Ai1 : (I)t+ix4,,be defined as the cofactor of
the,element a,,of the square matrix A. Theň, the adjoinimatrix of A is the transpose of
llár||anO is deiined as:

adjA :||l,,||r:

For example, if

A-

t atz orr\
t azz arr l

t asz orr l

Io,A:Io,
\o,

,,, : 
!:,,: ::I,

?)

Io, A^
IA,, Az,
l;:
\o,,, Az,

(:1;)
\s 3 4l
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then, Au,: 4-3X2):_2,...,of

A.2.5 Nonsingular Matrix

A matrix is of a rank r if the largest square affay in the matrix having a nonzero deter-
minant is of size r. A square matrix with a nonzero determinant is called a full-rank or
nonsingular matrix. For example, consider

lt 2 3\n:Iz 3 4l
\s 5 7l

A is a singular matrix because

lAl : I x (2l - 20) - 2 x (I4 - Iz) + 3 x (10 - 9) : 0

But A has a rank r : Zbecause

/t 2\(' 1):-I+0

A.2.6 lnverse of a Nonsingular Matrix

If B and C are two n-square matrices such that BC : CB : I, then B is called the
inverse of c and c the inverse of B. The common notation for the inverse is B-1 and
g-t.

Theorem If BC : l and B is nonsingular, then C : B-1, which means that the inverse
is unique.

Proof, By assumption,

BC:I

B-IBC : B-1I

IC : B-1

C:B-1
Two important results can be proved for nonsingular matrices.

1. If A and B are nonsingular n-square matrices, then (ABr' : 3-14-t
2. If A is nonsingular, then AB : AC implies that B : C.

Review of vectors and Matrices

(-1r(3 x 4 - 2 x 3) : 6, An: (-1)3(2 x

la 1-5\
adj A:|-z -5 4|

\-3 3 -Ll

A.2.,

then

or

or
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Matrix inversion is used to solve nlinear|y independent equations. Consider

|o,, an o,,\l*,\ /a \

l'r, azz ... ,:rll^
l,
\,., o|., : ,,..)\':,):|'r')

where -ri rePresents the unknowns and aii and b; are constants. These zz equations can
be written in matrix form as

AX:b
Because the equations are independent, A must be nonsingular. Thus

A-lAx : A-lb

rixt

ular

1

2

n

A-lb

latrir

nguli

Al
An

Á.-

=A-

Matl

Lsingl

lo,
Il,

'lo,

x-.
ofM
nonsi

,I
Hill

nverse

:nA,a

rdi A:

v

the

Gi,

I
Ň

Methods of Computing

Adjoinú Matrix Method.

or

lnl

en

adj

":(1 i il
:(.i 

1 _í) lAl : -z

A.2.7

r matrix of size n

Ar, Á,,\
A, A,r l::,lAr, A,,l

_i\

i)
partitioned

4-1 _ a

For example, for

adj A

Hence

l . 1 F, l-g _-t

4__ +( _i -1 -;\ : /-i 
-!

-,\_; ; -il -\]_!
\i -i

Row operations (Gauss-Jordan) Method. Consider the
where A is nonsingular. Premultiplying by A-r, we obtain

(A-lAlA-'I) : (IlA-,)

matrix (A lI),

tTORA's inverse module is based on LU decomposition method. See press and associates (1986).
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Thus, applying a specific sequence of row transformations, A is changed to I and I is
changed to A-1. To illustrate the procedure, consider the system of equations:

(i i i)(i):(i)
The solution of X and the inverse of basis matrix can be obtained directly by

considering

a-'(AlIlb) : (IlA-' lA-'b)

The following iterations detail the transformation operation:

Iteration 0

Iteration 1
aJ

-4
-5

Iteration 2

-5
4
7

Iteration 3

This gives 11 : ], *, : |, and xs : ?.The inverse of A is given by the right-hand-side
matrix, which is the same as obtained by the method of adjoint matrix.

Product Form of the Inverse. Suppose that two nonsingular matrices, B and Bn"*,,

differ exactly in one column. Further, assume that B-1 is given. Then the inverse B*-1*,

can be computed using the formula

B*1-, : EB-1

The matrix E is computed in the following manner. If the column vector P7 in B
is replaced with the column vector P, to produce Bn.*,, then E is constructed as an
m-identity matrix with its rth column replaced by

23
32
34

lt
lz
\:

lt 2
lo -1
\o -3

00
10
01

lt 0

[lá

(,

i)
100
010
00I

100
-2 10
-3 01

-3 2 0
2-1,0
3 -3 I

61,5-1-jj
Ztr_!,777
1_1 17,7,7

|-i)

Ii)

|1)
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-1,
= (B-'P), , ) (B-lPl). + 0

+rth place

ffť)
If (B-lP) : 0, then B;j-, does not exist.

To prove the validity of the formula B[1,.,, define F as an m-identity matrix whose
rth column is replaced by B-lPr-that is,

F : ("r, er-1, B-lP7l ar+Il ... , e-)

Because Bo"*t differs from B only in that its rth column is replaced with P7, then

Brr"*, : BF
Thus,

B,J-,:(BF)-':p-13-t
The formula follows by setting E : F-1

The product form can be used to invert any nonsingular matrix,
Bo : I : Bo1. Next, construct 81 as an identity matrix with its first col
with the first column in B. Then

Bi':ErBo':ElI:Et
In general, if we construct B, as an identity matrix with its first i columns
the first i columns of B, then

B, ' : E,Bi-', : E;E;_1B i}z : : E;E;_l ... E1

This means that for the original matrix B,

B-1 : E-E-- l... E1

with
1aced

lwith

f the

1aced

tart
reDp

:d

o

B. St
mnl

eplar

B.
um

re1

IfcThe following example illustrates the application of the prod
inverse. consider

lz 1 0\n:lo 2 0l
\+ 0 1l

orm

Iteration 0

Bo : Bo1 :(i 00\
1 0l
0 Il
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Iteration 1

Review of vectors and Matrices

lteration2

Bllp, :

Ez:

B-1 - Bi': ErBi'

Partitioned Matrix Method.
are partitioned as follows:

If B is the inverse of A, th

Br:

Bo'P,

Ei:

Bi' :

Suppose that the two n-nonsingular matrices A and B

L,
(px

nonsingularL,

B,
(px

lz 0 0\
lo 1 0l
\+ 0 Il

l 2\ *,:,
: pr : 

(,l,J

l+ 0 0\

I-2 1 0l
\jOtl
l' 0 0\
l o 1 0l
\-z 0 tJ

:(-i)-,:,

ft -:0\
(: i:]

1i)( iii) :(i li)

'),o,,di

d\

,,)
we have

ro\z ol:n
0 tl

Ui i)(á)

-t)lz\ o

* tnl o :
--1-4,rJ 1

lz
B,: l0

\+

(l

:(i

A.3

X

Ir,

'A1
(pr
,(n

B11

@
B^
(q'.

L frten

A

B p)

p)
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Also, from BA : I,, we get

ArrBr, * ApB27:I,
ArrBrz * A9ft22:0

BrrA1 i-B22A21 :0
BuA, lB22A22:I,

Because A11 is nonsingular, A-j exists. Solving for B11, Bn, Bzt,,andBrr,,we get

Btt : Ali + (AiÍAlrD-'(A21A-,i)

Bn: -(AillA12)D-1

Bzt: -n-l(arrAlr)
Bzz : D-I

where

such that

Att : (1), A2
^)In this case, A-ri : 1 and

D-

Thus,

)

)
which directly give B : A-1

QUADRATIC FORMS

Given

X : @r, *r, ... , xr)'

a,i
titic

J

,r(l

art

Lz,

,P&

l2
l,ls

aS,

(|

D:A,
To illustrate the use of these formu

(; '^)-(1),D(2.3): (_1 -1)
-, : -+(-; -i) : (j i)

BIl :(-9),B,r:(-+

/?\ / l
Btz:(]),B,r:( !\t/ \-7

"Arr)on the matrix

\

I

l
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Appendix A

and

Review of vectors and Matrices

the function

0o<):X'AX: 

'io,,*,r,
i:I i:I

is called a quadratic form. The matrix A can always be assumed symmetric because
each element of every pair of coefficients ai1 ana ál,Q + ) can be rlplaced by 

g+"r
without changing O(X).

As an illustration, the quadratic form

with unsymmetric A is the same as

lt 1 z\/x,\
O(x) : (xt, xr, xr)l I 7 3 lÍ ,; l

\z 3 zl\*,l
with symmetric A.We will assume henceforth that A is always symmetric.

The quadratic form is said to be

L Positive-definite if o(x) ) 0 for all X + 0.

2. Positive-semidefinite it Q(X) > 0 for all X, and there exists X + 0 such that
o(D : 0.

3. Negative-definite if -0(J() is positive-definite.

4. Negative-semidefinite if - O(X) is positive-semidefinite.

5. Indefinite in all other cases.

It can be proved that the necessary and sufficient conditions for the realization of
the preceding cases are

1_. Q(J{) is positive-definite (semidefinite) if the values of the principal minor deter-
minants of A are positive (nonnegative).2 In this case, A is said to be positive-
definite (semidefinite).

",.)

Ir,, an

a,:Io?, o?,
l:,.

\o" an2

'*):@,,,,-,('; 

')E)

A.4
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2The kth principal minor determinant of A,", is defined by

|o,, atz o,ol

|'i 
o|, '?r|. k : |.2.
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Q(ě) is negative-definite if the value of frth principal minor determinants of A
has the sign of (-1)o, k : 1-, 2, ... , n.In thiJca.", A is called negative-definite.
Q(ě) is a negative-semidefinite if the kth principal minor determinant of A is
either zero oí has the sign of (-1Y, k : l, 2, . . . ) n.

A.4 CONVEX AND CONCAVE FUNCTIONS

A function/(X) is said to be strictly convex if, for any two distinct points X1 and X2,

where0<}"<
convex.

A special
Section A.3)

/(X):Cx+xrAx
where C is a constant vector and A is a symmetric matrix. It can be proved that /(X) is
strictlY convex if A is positive-definite and/(X) is strictly concave if A i; negative-definite.

SELECTED REFERENCES

Hadley, G., Matrix Algebra,Addison-Wesley, Reading, MA, 1961,.

Hohn, F., Elementary Matrix Algebra,Znd ed.,Macmillan, New York, 1964.
Press, W., B.Flannery, A. Teukolsky, and W. Vetterling, Numerical Recipes: The Art of Scientific

Computing, Cambridge University Press, Cambridge, England ,1986.

PRoBLEMs

A-1. ng vectors are linearly dependent.

A-2.

A-

find
(a) A+7B
(b) 2A - 3B
(c) (A + 7B)r

A-3. In Problem A-2, show that AB + BA

/(\X, + (1 - ).)X' < },/(X,) + (1 - N)/(X'
1. Conversely, a function /(X) is strictly concave if -/(X) is strictly

case of the convex (concave) function is the quadratic form (see

Show that the followi_

(a) ()(:)(_i)

b (ilft)
Given

|t 4 9\ ll -1 2\
Iz 5 -8 l.r:lq i sl
\:7 2l \l 6Iól
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Appendix A Revíew of Vectors and Matrices

A-4. Consider the partitioned matrices

1

2
5

-6

il-:(
Find AB using partitioned matrix manipulation.

A-5. In Problem A-2, find A-1 and B-1 using the following:
(a) Adjoint matrix method
(b) Row operations method
(c) Product form of the inverse
(d) Partitioned matrix method

A-6. Consider

Suppose that the third vector P3 is replaced with the V: : PI + zP2.This means that the
resulting matrix is singular. Show how the product form of the inverse discovers the singu-
larity of the matrix.

^-7. 
Use the product form of the inverse to verify whether each of the following equations has
a unique solution, no solution, or infinity of solutions.
(a) xr*2x2:3

x1 l 4x2:2
(b) xr*2x2:5

-X1 -Zxr: _5

(c) x1 + xl: 5

4x1 -| x2 l 34: 8

x1 l 3x2 - Zxr: 3

A-8. Verify the formulas given in Section A.2.7 for obtaining the inverse of a partitioned matrix.

A-9. Find the inverse of

" 
: (i ), 

u nonsingular

A-10. Show that the following quadratic form is negative-definite.

Q@t, x): 6xl -l 3x2 - 4xp2 - 2*? - 3*3

A-11. Show that the following quadratic form is positive-definite.

Q(xr, xz, xs) :2x! + 2x| + 3x! + 2xp2 l 2x2x3

A-I2. Show that the function f (*) : ď is strictly convex over all real values of x.

A-13. Show that the quadratic function

f@r, *r, xs): 5x| + 5x} + 4x] + 4xg2 l 2x2x3

is strictly convex.

A-14. In Problem A-I3,show that -f(xy x2, h) is strictly concave.

":(í ži),-,:(i 1-1)
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TORA Primer

The TORA Optimization System is a Windows@-based software designed for use with
many of the techniques presented in this book. An important feature of the system is
that it can be used to solve problems in a tutorial or automated mode. The tutorial
mode is particularly useful because it allows concentrating on the main concepts of the
algorithms while relieving you of the burden of the tedious computations that gener-
ally characterize OR algorithms.

TORA is totally self-contained, in the sense that all the instructions needed to
drive the software are represented by menus, command buttons, check boxes, and the
like. It requires no user manual. Ir{evertheless, a summary of the basic features of the
system will be given in this Appendix.

TORA is automated for screen display settings of 800 x 600 and 1024 x 768
Pixels. The second setting is recommended because it produces a more proportionate
layout of the screen.

MAIN MENU

Figure B.1 shows the Main Menu screen. A selection from this menu will lead to a new
screen for selecting the input mode of the problem.

FlGURE B.1

Main menu screen
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Appendix B TORA Primer

|NPUT MODE AND FORMAT

The input mode screen (Figure B.2) does two things:

1. It allows you to enter a new set of data for the problem (default) or read the data
from an existing file that was originally created by TORA.

2. It allows you to select the format (decimal or scientific) as well as control the
desired level of accuracy in inputting the data.

The decimal format (default) is represented by the code NNNNN.DD, whereas the sci-
entific format is represented as .NNNNNeDD. The default values for the number of
N's and the number of D's are 5 and 2, respectively. These values can be changed to
any desired (reasonable) values.

FlGURE B.2

Input mode screen

INPUT DATA SCREEN

Inputting the appropriate size of the problem (top left of the input screen) automati-
cally exposes the input data grid (Figure B.3).The grid entries are designed to match
the data of the selected model (..g., linear programming or transportation model).
Regardless of the module used, the input grid is edited very much like a spreadsheet.
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B.4 Solve/Modify Menu

FlGURE B.3

Input data screen

The design of the grid allows inserting or deleting a column or a row as well as
copying and pasting the contents of a row or a column. To achieve this, first click the
heading of the target column or row; then use EditGrid Menu to effect the desired
result. The menu uses the suggestive key combinations CTRL+I, CTRL+D, CTRL+C,
and CTRL+P for insert, delete, copy, and paste.Any of these operations may be
undone using CTRL+U.

Once all data have been entered, press oív ..lte u and follow instructions to
save the data in a file, if desired.

soLVE/MoDlFY MENU

The Solve/Modify menu (Figure B.4) provides options for solving the selected prob_
lem. An imPortant feature of TORA is that it allows solving the problem either iuto_
maticallY or in a tutorial (user-guided) mode. All these options are generated in a
logical manner using submenus.

The Modify entry allows you to go back to the Input Data screen to make
changes in the original data of the problem.

FlGURE B.4

Solve/modify screen
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Appendix B TORA Primer

OUTPUT FORMAT

The Output Format screen (Figure B.5) controls the accuracy of the output results. The
details for the output format are the same as in the input format (Section B.2).

FlGURE B.5

Output format scíeen

OUTPUT RESULTS

The output screen provides the results either in text format or graphically depending
on the type of problem being solved (Figures 8.6 and B.7).Both text and graphical
results can be printed using a command button $tí_ť.ě-...Ě. .

B.6
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B,6 Output Results

{lrti i*,e ;* #., ,t}r+tryr vj j htrl+:+,,.ry j El*rgtgJg$lifr* 
--* . . ,,,'-li *b'*,ii*ir:

ffit*lxffi1 $rťiil!s $ffiffit$.*i$l*1Ě.l1,1-..}.-,t,__*.* _,.l+

FlGURE 8.6

Text output screen

FlGURE B.7

Graphical output screen
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statistical Tables

TABLE C.1 Normal Distribution Function

0.090.070.060.020.01

4z):

0.03

e-é)"o,

0.05

7r,
t-J _,

Y2rr -^

0.04

0.0
0.1

0.2

0.3

0.4
0.5

0.6
0.7

0.8
0.9

1,0

LI
1,.2

1.3

I.4
1.5

I.6
1,.7

1.8

L9
2.0
2,I
z.2
2.3

2.4

z.5
2.6

z.7
z.B

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.B159
0.8413
0.8643
0.8849
0.9032
0.9I9z
0.9332
0.9452
0.9554
0.964I
0.9713
0.977z
0.982I
0.9861
0.9893
0.9918
0.9938
0.9953
0,9965
0.9974

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.729I
0.761I
0.79I0
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0,9345
0.9463
0.9564
0.9649
0,9719
0.9778
0,9826
0.9864
0.9896
0.9920
0.9940
0,9955
0.9966
0.9975

0.5080 05120
0.5478 0.5517
0.5871 0.5910
0.6255 0.6293
0.6628 0,6664
0.6985 0.7019
0.7324 0.7357
0.7642 0.7673
0.7939 0.7967
0.8212 0.8238
0.8461 0.8485
0.8686 0.8708
0.8888 0.8907
0.9066 0.9082
0.9222 0.9236
0.9357 0.9370
0.9474 0.9484
0.9573 0.9582
0.9656 0.9664
0.9726 0.9732
0.9783 0,9788
0.9830 0.9834
0.9868 0,987I
0.9898 0.9901
0.9922 0.9925
0.9941 0.9943
0.9956 0.9957
0,9967 0.9968
0.9976 0.9977

0.5160 0.5199
0.5557 0.5596
0.5948 0.5987
0.6331 0.6368
0.6700 0.6736
0.7054 0.7088
0,7389 0.7422
0.7704 0.7734
0.7995 0.8023
0,8264 0.8289
0.8508 0.8531
0.8729 0.8749
0.8925 0.8944
0.9099 0,9115
0.9251 0.9265
0.9382 0.9394
0.9495 0.9505
0,9591 0.9599
0.9671 0.9678
0.9738 0.9744
0.9793 0.9798
0.9838 0.9842
0,9875 0.9878
0.9904 0.9906
0.9927 0.9929
0,9945 0.9946
0.9959 0.9960
0.9969 0.9970
0.9977 0.9978

0.5239 0.5279
0.5636 0.5675
0.6026 0.6064
0.6406 0.6443
0.6772 0.6808
0.7123 0.7157
0.7454 0.7486
0.7764 0.7794
0.8051 0.8078
0.8315 0,8340
0.8554 0.8571
0.8770 0.8790
0.8962 0.8980
0.9131 0.9147
0.9279 0.9292
0.9406 0.9.118

0,9515 0.952,5

0.9608 0,9616
0.9686 0.9693
0.9]50 0.9756
0.9803 0,9808
0.98"16 0.9850
0.9881 0.9884
0.9909 0.9911
0.9931 0.9932
0,9948 0.9949
0.9961 0.9962
0.9971 0.9972
0,9979 0.9979

0.5319 0.5359
0.5714 0.5753
0.6103 0.614I
0.6480 0.6517
0.6844 0.6879
0.7190 0.7224
0.7517 0,7549
0.7823 0.7852
0.8106 0.8133
0.8365 0.8389
0.8599 0.s627
0.8810 0.8830
0.8997 0.9015
0.9762 0.9177
0.9306 0.9319
0.9129 0.9441
0.9535 0.9545
0.9625 0.9633
0.9699 0.9706
0.916L 0.9767
0.9812 0.9817
0.9854 0.9857
0.9887 0.9890
0.9913 0.9916
0.9934 0.9936
0,9951 0,9952
0.9963 0.9964
0.9973 0.9974
0.9980 0.9981
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Appendix C Statistical Tables

0.050.040.030.010.00 0.06 0.07 TABLE C.:

2.9 0.9981 0.9982
3.0 0.9987 0.9987
3.1 0.9990 0,999I
3.2 0.9993 0.9993
3.3 0.9995 0.9995
3.4 0.9997 0.9997

3.5 0.9998
4.0 0,99997
5.0 0,9999997
6.0 0.999999999

0.9983 0.9984
0.9988 0.9988
0.9991 0.9992
0.9994 0.9994
0,9996 0.9996
0.9997 0,9997

0.9984 0.9985
0.9989 0.9989
0.9992 0.9992
0.9994 0.9994
0.9996 0.9996
0.9997 0.9997

0.9985 0,9986 0.9986
0.9989 0.9990 0.9990
0.9992 0.9993 0.9993

0.9995 0.9995 09995
0.9996 0.9996 0.9997
0.9997 0.9997 0.9998

0.9982
0.9987
0,9991,

0.9994
0.9995
0.9997

Source: MILLER, I., and J. FRpuNo, Probability and Statistics for Engineers, Prentice Hall, Upper Saddle River, Nl 1985.

TABLE C.2 í*., (student t) values*

ct : 0.10 cr : 0.05 cr : 0.025 cr : 0.0]" ct : 0.005

1,

2

J

4

5

6

7

8

9

10

1I
t2
13

1,4

15

16

17

18

19

z0
21,

22
23

24
25

26
27
28
29
Inf.

3.078
1.886
1,638
1.533

I.476
1.440
1,.4t5

1,.397

1.383

1,.372

L,363
1,.356

1.350
1,.345

1,34t
I.337
t.333
1.330
1,.328

L3z5
1.3z3
1,.321,

L.3l9
1.318
t.3t6
1.315

1,.31,4

1,.3t3
L3l1,
1,,z82

6.31,4

2.920
2.353
2.B2
z.01,5

I.943
1.895

1.860
1,833

1,.8I2
1,.796

1,.782

I.77t
L.76I
1.753

t.746
L740
1,.734

1,.729

1,.725

1.72L
I.717
L71,4
1,.71,1,

1.708
1,.706

1,.703

1,.70,1,

L.699
1,.645

12.706
4.303
3,I82
2.776
2.571,

z.447
2.365
2.306
z,262
2.2z8
z.201,

2.179
2.160
z.1,45

z.131,

2.I20
2.It}
2,101,

2,093
z.086
2.080
2.074
z.069
2.064
2.060
2.056
z.052
2,048
2.045
1.960

31,.821,

6.965
4.541,

3.747
3.365
3.1,43

2.998
2.896
z.821,

2.764
2.71,8

z.681,

2.650
2.624
2.602
2.583
2.567
z.552
2.539
2.5z8
2.5I8
2.508
2.500
2.492
2.485
2.479
2.473
2,467
2.462
2.326

63,657 1,

9.925 2
5.841 3

4.604 4

4.032 5

3.707 6

3.499 7

3.355 8

3,250 9

3J,69 10

3.106 11

3.055 12
3.012 13

2.977 1,4

2,947 15

2.921, 16

2.898 17

2.878 18

2,86I 19

2.845 20
2.831, 2I
2.8t9 22
2.807 23
2.797 24
2.787 25

2.779 26
2.771, 27
2.763 28
2.756 29
2.576 inf.

"Abridged by permission of Macmillan Publishing Co.,Inc., from Statistical Methods for Research

Workers,l4th ed., by R. A. Fisher. Copyright @ 1970 University of Adelaide.

1 0.0

2 0.0

3 0.0

4 0.?
5 0._t

6 0.6

7 0.9

8 1.3

9 I.1-

10 2.I
11 2.6

12 3.0

13 3.5

1,4 .í.0

15 1.6
16 5.1

I7 5.6

18 6.)
1,9 6.8

20 7.1

21, 8.0

22 8.6

23 9.2

24 9.8

25 10.-

26 11.1

27 11.8

28 Iz.1
29 13.1

30 13.T

"'This t.-.-

0,02 0.08 0.09

yd



Appendix C Statistical Tables 787

TABLE C.3 1],, (chi-square) values*

a : 0.995 cr : 0.99 a : 0,975 ct : 0.95 a:0.05 a:0.025 a:0.01 a:0.005

1 0.0000393
2 0.0100
3 0.0717
4 0.207
5 0.412
6 0.676
7 0.989
8 I.344
9 L735

10 2.156
1J 2.603
12 3.074
1,3 3.565
14 4.075
15 4,601
1,6 5.142
17 5.697
18 6.265
1,9 6.844
20 7.434
2I 8.034
22 8.643
23 9.260
24 9.886
25 10520
26 11.160
27 11.808
28 12.46I
29 I3.I2t
30 13.787

0.000157
0.0201
0.115
0.297
0,554
0.872
I.239
1.646
2,088
z.558
3.053
3.57I
4.I07
4.660
5.229
5.8L2
6.408
7.0I5
7.633
8.260
8.897
954z

I0.196
10.856
II.524
12.I98
12.879
1.3.565

14.256
14.953

6.635 7.879
9.210 10597
II.345 12.838
13.277 14.860
15.056 16.750
16,812 18.548
18.475 20.278
20.090 2L955
21,.666 23.589
23.209 25.188
24.725 26.757
26.217 28.300
27,688 29,819
z9.14I 31.319
30.578 3z,80r
32.000 34.267
33.409 35.718
34.805 37.156
36,191 38.582
37.566 39.997
38.932 4t.40I
40.289 42.796
4I.638 44.1,81

42.980 45.558
44.314 46.928
45,642 48.290
46.963 49.645
48.278 50.993
49.588 52.336
50.892 53.672

0.000982 0.00393
0.0506 0.103
0.21,6 0.352
0.484 0.711,

0.831 I.I45
I.237 I.635
1.690 2.167
2.180 2.733
2,700 3.325
3.247 3,940
3.816 4.575
4.404 5.226
5.009 5.892
5.629 6,571,
6.262 7,261,
6.908 7.962
7.564 8.672
8.z3I 9,390
8,907 r0,I17
9,591 10.851
I0.z83 1I.591
10.982 12.338
11.689 13.091

12.401 13.484
I3.I20 1,4.611,

13.844 1,5.379

14.573 16.151,

15.308 1,6.928

16.047 17.708
16.79I 18.493

3.84I
5.991
7.81,5

9.488
n.a70
Iz.59z
14.067

15.507

1,6.91,9

18.307
19.675
21.026
22362
23,685
24.996
26,296
27.587
28.869
30J,44
3I.4t0
32,67I
33.924
35.I72
36.4I5
37.652
38.885
40.II3
4I.337
42.557
43.773

5.024
,7.378

9348
11.I43
12.832
14.449
16.013

I7.535
19.023
20.483
21,.920

23.337
24.736
26.1,I9

27.488
28.845
30.191

3I.526
32.85z
34.I70
35.479
36.781
38,076
39.364
40.646

4ts23
43,I94
44,461,

45.772

46.979

1,

2
aJ

4

5

6

7

8

9

10

1,1.

12

13

I4
15

I6
17

18

19

z0
21,

22
23
24
25

26
27
28
29
30

-This 
table is based on Table 8 of Biometrika Tables for Statisticians,Vol. 1, by permission of the Biometrika trustees.



&ffiffiffiruffi K ffi

partiaI Answers to selected
Problems

CHAPTER 1

Set 1.1a

4. (.)
5. (u)

(b)

CHAPTER 2

Set 2.1a

1. (u) -hlxzžl,
(.) 

", -xz<O
(") .5x, - .5x2 > 0

3. @) a tonsiday

Set 2.2a

1. (a and e) See Figure D.1.
2. (a and d) See Figure D.2.
5. Let

17 minutes
Jim's alternatives: Throw curve or fast ball.
Joe's alternatives: Prepare for curve or fast ball.
Joe wants to increase his batting average.
Jim wants to reduce Joe's batting average.

x' : play hours per day

x2 : woík hours per day
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Appendix D partial Answers to selected problems

F|GURE D.1 FlGURE D,2

Maximize z : Zxt -l x, subject to

xllx2=10,xl-x2š0
xtš4,,XI,Xz>0

Optimum:(x1, x2): (4,6), z : 1,4

Set 2.2b

2. Optimumsolution: x1 : 450Ib, x2: 350 Ib, z : $450

5. Let

xl : thousand bbl/day from Iran

12 : thousand bbl/day from Dubai

Minimize z : x1, * x2 subject to

-.6x, t .4x2 < 0, .2x1 t .Ix2 > 1,4

.25x1 l .6x2 = 30, .1,x1 * .I5x2 > ]"0

.1,5x1 l .Ix2 ž 8, xb xz ž 0
Optimum:.xl": 55, x2: 30, z : 85

Set 2.3a

1. (b) + = ? = ?, ,,, + 0. See Figure D.3

3. Let

x1 : sold A1 cans per day

.r2 : sold B&K cans per day

Maximize z : 5x, -l 7x2subject to

x1 l x2< 500, 2xt - xz š 0, x1 > 100

Xy, X2> 0

(u) ,, : 100, x2: 400, z : $::

X2

J

2

1



Chapter 2 791

X2 Cz:0

aJ

z

1,

X2

500

400

300

200

100

' --- Ct:0

Optimum:
x1 : 1_00, xz: 400

Optimum:
6

^1- -.^)--) 9
5

FlGURE D.3 100 200 300 400 FlGURE D.4

(b)

7. Let

View xt ž 100 as ls(x,
? = LSee FigureD.4.

- 6.T2) > 100. Hence, lrs* = "' = 1, or, -oo <

.{1 : CáSes of juice per day

X2: CilSaS ofpaste per day

Maximize z : I8x, -| 9x2subject to

24x1 -| 8xr, 60000

xt š 2000, xz š 6000

xyx2>0

(u) *r: 500, xz : 6000,, z : $63000
(b) 0 = 'é = 3, c2 * 0, see Figure D.5.

x1 : 500, xz : 6000

FlGURE D.5

Optimum:

4000 x1



792 Appendix D

Set 2.3b

1. Let

partial Answers to selected problems

.í1 : ílulllber of type 1 hats per day

x2 : íluílber of type2 hats per day

Maximize z:8x1 * 5x2subjectto

Zxllxr=400
xt š 1,50,, x2 < Z00

XyX2ž0

(a) See Figure D.6. x1: 100, xz : 200, z : $1800 at point B
(b) $+ per type Zhatin the range (200,500)

(.) $0 worth per unit in the range (].00, oo), hence change to t20 has no effect

(d) $1 worth per unit in the range (100,400)

A: (0,200)
6 : (100,200) optimum
6: (150,200)
D : (150,100)
E: (150,0)
p: (0,400)

FlGURE D.6

4. Let

-T1 : radio minutes

x2 : TY minutes

Maximize z : xI -l Z5x2subject to

1"5x1 * 300x2 < ]_0,000

-hlZxz<O,x1<400
xl,x2ž0

(u) *r: 60.6t, xz: 30.3, z : 818.18

(b) 0 per minute in the range (60.61, oo)

(.) .082 worth per budget in the range (0,66000)

X2
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8. Let
,r1 : units of solution A
x2 : units of solution B

Maximize z : 8x, -l llx2subject to

.5x1 * .5xr - 1,50, .6x1 l .4x2 < I45

30<xtš150,40,xz<200
X7,X2žQ

(u) *r: 100, xz : 200, z : $2800
(b) Worth per unit of raw material I : $16 in the range (115, I54.I7)

Worth per unit of raw material II : $0 in the range (140, oo)

Set 2.4a

1. (a) One additional lb of feedstuff costs 55 cents.
(b) Total cost : $495 per day.

(.) Current solution remains optimal.
3. (b) LINGO model:

MODEL:
TfTLE Diet modeL;

SETS:
Constr: Rhs;
Var: C, X;
ConsVar (Constr,Var) : Aíj;

ENDSETS
MIN=@SUMvar(j ) :C(j ) *X(j ) );
@FoR (

Constr(i) :@SUM( Var(j ) :

\-
lt

DATA:
Constr=MinDemand Protein Fiber,.
Rhs=800 0 0;
var=Xl x2;

C - .3 .9; lobi func
Ai j - 1. 1-. lconstr 1

- .2I .30 l constr 2

.03-.01; lconstr 3

ENDDATA
END

Set 2.5a

1. (a) Write the first two constraints as xl * x2 * 4 -| @q + x) < 12 and
@q+x5)>4.8.

(b) New z : .936 million dollars.
4. (a) 1,1,50L ftz

(b) (3,0,0), (]-,].,0), and (1,0,].) with respective 0,3, and 1 trim loss per foot.
(.) Number of standard20'-rolls decreased by 30.

! obj function;
! constraints;

Aij (i, j )*X(j ) )>=Rhs (í)
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6. (a) Let
.r1 : tons of brown sugar per week

.r2 : tons of white sugar per week

x3 : tons of powdered sugar per week

x4 : tons of molasses per week

Maximize z : 1,50x, * 200x2 1- 2304 -l 35xa subject to

.76x1 -l .95x2* 4<9I2
xt ž 25, x2> 25,, 4 = 25, 0 = x+< 400

Optimum solution: x1 : 25,, x2 : 25, 4 : 869.25, xa : 400, z : §222,677.50.

(b) Worth per unit of syrup : $55.94 valid in the range (187.15,oo)

9. (a) Let

.r; : dollars invested in project i, i : 1",2,3, 4

/i : dollars invested in bank in year j, j : 1,, 2,3, 4

Maximize z : ls subject to

x1 * x2 l xal ll,< ]_0,000

.5x1 -| .6x, - 4 l .4xa + I.065y1 - lz: 0

.3x1 -| .2x2 l .8x3 * .6xa t 1,.065y2 - }r : 0

1.8x1 t I.5x2 * 194 * I.8xa + 1.065y3 - lq : 0

I.2x1 * L3x2 i .8x3 -l .95xa + I.065ya - }s : 0

Xl, X2, X3, X4, !t, !z, |z,, lq > 0

Optimum solution: xt : 0, x2: $]-0,000, x3 : $6000, x4 : 0, lt : 0, lz :
0, lz : $6800, ll : $33,642, z : S53,628.73 at the start of year 5.

(b) 5.36%
(.) Total return reduced by 1000 X .373 : $3730

L2. (a) Let
.t7 : íluítrber of units of model j, j : 1,,2,3

Maximize 1 : 30x1 * 20x2 * 5013 subject to

2x1 * 3x2 -| 5x, - 4000

4xr*2x2*7xr-6000
x1 1.5x2*.334 < ].500

2x, - 3x2: 0

5*r.-Zxr:g
xl ž 200, x2 > 200, x3 > 150
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X1,, X2, í: > 0

Optimum solution: \ : 324.32, x2 : 2í6.22, xz : 540.54, z : $41,081.08.
(b) Not advisable because dual price : $10.27 per lb
(c) Not advisable because dual price : $0 per lb

15. (a) Let

xiA : amount invested in year l using plan A, i : 1,

xiB : amount invested in year l using plan B, i : 1,

Maximize z : 3xru -l I.74a subject to

xte*xg=I00

-I.7xglxzl*xry<0
-3xrr-I.7x2nl4n<0
XiA,XiB>O,i:1,,2,3

Optimum solution:Invest $100,000 in plan Ainyear 1 and $170,000 in plan B
in year 2. Accumulation : $510,000.

(b) Yes, each additional dollar of investment is worth $S.tO at the end of 3 years.

CHAPTER 3

Set 3.1a

1. Ztonslday and 1 ton/day for raw materials MI, and M2.
4. Let xi1 : units of product i produced on machine j,i : 1, 2; j : L, 2

Maximize z : I}(xr, 1- xn) + Is(x,T -l xzz) subject to

Xl*xzt-Xp-xzz* t:5
-Xn-XztlXnlXzzl z:5

xllxztl::200
xn l xzz * sa: 250

xij ž 0, for all i and j, si ž 0, i : 1,,2,3, 4

Set 3.1b

2. Let x1 : units of product j, j : 1, Z, 3.

Maximize z : 2x, * 5x2 * 34 - 1,5xa - Ilxj subject to

Zxr*x2*24+xi -x4:80
xl*x2*24+*i -x5:65
xb x2, xs, xt, xi, x{,, ; > 0

Optimum solution: ír : 0 units, x2 : 65 units, all others : 0, z : $SZS.

)?

ZrJ
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Set 3.2a

2. (.),r:|,*r:+,z:+.
(") (", : 0, x2: 3) and (", : 6, x2 : 0).

4. Infeasible basic solutions are:

Set 3.3a

3. (u)

(b)

5. (u)

Set 3.3b

3.

@r, x) : (i, -t), (*r, xl) : (8, -2)
(*r, *o): (6, -4), (*r, xz) : G6, -26)

@z, xq): (3, -I3), @s, xq) : (6, -16)

A1l pairs but (Á, B) because associated corner points are not adjacent.

(i) Legitimate. (ii) Not legitimate (C and 1not adjacent). (iii) Not legitimate
(Á is revisited).
,r3 enters at value 1,, z : 3.

Basic variable x1 x2 x3 x4

Value
Leaving variable

1.5 1

X1 X7

0

J3

.8

X5

6.

9.

(b) *r, x5, zfld x6 czfl increase value oí z.Ií.r2 enters, Lz : +20.Ií x5 oiltors,
A,z : 0.If x6 enters, AZ : oo.

Next best value of z : 20.

Set 3.4a

3. (a) Minimize z : (8M - 4)x1

(b) Minimize z : (3M - 4)x1

6. The starting tableau is

+ (6M - 1)*, - Ms, - Mss : I)M
+ (M - I)*r: 3M

Basic X1 X4 Solution

Set 3.4b

1. Always minimize the sum of artificials because it represents the amount of infea-
sibility in the problem.

X3Xl

-8-Iz-1

Xj
x^

1104
4018

796
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7. AnY nonbasic variable having nonzero objective coefficients at end of phase I
cannot become positive in Phase II because it will mean that the optimal objective
value in Phase I will be positive-that is, it leads to an infeasible phase I solution.

Set 3.5a

1. (a) A-+B+C->D.
(b) 1 at A,I at B, C) : 3 at C,and 1 at D.

Set 3.5b

1-. Alternative basic optima: (0,0, T), (t,0,3), (0,5,0). Nonbasic alternative optima:
(u2,5u3, To, * 3u2),u1 l az * a:: 1,0 š ct; = L,i: I,Z,3.

Set 3.5c

2. (a) Solution space is unbounded in the direction of x2.

(b) Objective value is unbounded because a unit increase in x2 increases z by 10.

Set 3.5d

1_. The most that can be produced is 275 units.

CHAPTER 4

Set 4.1a

Let yy !2, zí7d y: be the dual variables.
Maximize w :3yt * 5y, t 4yrsubjectto

yt -f 2!z * 3yz = 15, 2y, - 4y, + |s = 12

lt > 0, Yz = 0, y3 unrestricted

(.) Let yl and y2be the dual variables.
Minimize z:5yt + íyrsubjectto

2_Y, + 3_},, : 1. ],, - J,: : 1

_Vt. _}': Unrestricted

5. Dual constraint associated with the artificial variabies is t,. >_ -M. which is the
same as y, being unrestricted.

Set 4,2a

1. (a) AV, is undefined.
(e) VrA : (-14 -32)

2.

4.
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Set 4.2b

2. (a) Inverse :

Set 4.2c

Z. Let yl and y2be the dual variables.

Minimize w :30y1 + 4}y2subjectto

lt -| lz = 5, 5yr - 5y, > 2,Zyt - 6y, > 3

lt> -M,Yz>0
Solution: lt -- 5, lz: 0, w : 150.

4. (a) Let y1 and yzbe the dual variables.

Minimize w : 3yt t 4yrsubject to

yt t Lyz > I, Zyt - lz > 5, yt > 3

y2 unrestricted

(b) Solution: y1 : 3, lz - -1,, w : 5

Set 4.2d

2. (a) Feasibility: (*r, ,o) : (3, 15)+ feasible

Optimatity: Objective coefficients of (x1, *r) : (0, 2) + optimal

7. (a) br: 30, bz : 40.

(b) a : 23, b : 5, c : -I0, d : 5, e : 0

Set 4.2e

2. (a) Both primal and dual are infeasible.
(b) Solutions are feasible but not optimal.

Set 4.3a

2. (a) Let (*r, xr, xz, xq) : daily units of SC320, SC325, SC340, and SC370

Maximize z : 9.4x, * I0.8x2 -f 8.754 * 7.&xa subject to

10.5x, * 9.3x2 -l 11,.64 * 8.2xa < 4800

20.4x1 * 24.6x2 -l I7.74 -f 26.5xa < 9600

3.2x1 -| 2.5x2 * 3.64 -| 5.5xa < 4700

5x1 i 5x2-ť 54 -| 5xo'4500

xt ž I00, x2 > ]_00, xs ž l00, xa > 100

Optimum solution: xr : 100, x2 : 1_00, x3 : 138.42, í+ : 100, Z : 40lI.1,6.

Ll :|)
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(b) OnlY soldering capacity can be increased because it has a positive dual price
(:.4944).

(.) Dual Prices arc negative or zero.Hence,lower bounds represent disadvantages.

Set 4.3b

2. New fire truck toy is profitable because its reduced cost : lt l 3y, _ 4 : _2.

Set 4.4a

1-. (a) No, because point E is feasible and the dual simplex must stay infeasible until
the last iteration where it becomes feasible.

4. (.) Add the artificial constraint x1 < M.Problem has no feasible solution.

Set 4.5a

4. Let Q be the weekly feed. optimum solution: Limestone : .028Q, corn : .649Q,
and soybean meal : .323Q. Cost : .8I221,Q.

Set 4.5b

1. (u) -20 < Dz = 400, D3 > -20.
5. (a) Scarce: resistor and capacitor resource, abundant: chips resource.

(b) Worth per unit of resistor, capacitor, and chips is $1.25, $.25, and $0.
(g) Increase in profit : $250. Additional cost : $200. Net profit : $so.

8. (b) Solutionx1 : x2:2+ +isfeasibleforallA > 0.F'or0 < A < 3,11 l,. _A,?: ,'< 1+feasibilityconfirmed.For3 < A = 6,rtl 12:
Ť > 1 + feasibility not confirmed. For A > 6, the change falls outside the
ranges for Dl and D2.

Set 4.5c

1_. (a) Additionalconstraint,4x1 l x2 * 2x, = 570,isredundant.

Set 4.5d

2. (u) Current solution remains optimal.
(.) New solution: xI : 2, x2 : 2, x3 : 4, z : 1,4.

Set 4.5e

2. (b)

(d)

6. (b)

(.)
9. (a)

Optimum remains the same.
Optimum changes: x' : I0, x2 : !02.5, 4 : 2!5, z : 665.
Smallest unit profit for product 1 : $O.
New solution: x1, : 0, x2 : 165, x3 : I0, z : 4105.
1.25 - .25 + .5d2 > 0, .25 + .75 - .5d2 > 0.
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Set 4.5f

1. 42.86%.

3. (a) Fire engines are not profitable.

CHAPTER 5

Set 5.'la

4. Assign a very high cost, M,to the route from Detroit to dummy destination.

6. (a and b) |]se M : ].0,000. Solution is shown in bold.Total cost : $49,710.

Plant 1

Plant2

Plant 3

Excess
Plant 4

Demand

Supply

25

40

30

13

3042

9.

(") City 1 excess cost : $13,000.

Solution (in million gallons) is shown in bold. Area 2 will be 2 million gallons
short. Total cost : $304,000.

A2A1 Supply

6

5

6

2

Refinery 1"

Refinery 2

Refinery 3

Dummy

Demand

600 700 400

)<

3z0

23

300

17

350

500 480

25

450

5

1000

13

1000 M

I2

4

18

)

M

30 10

4

8

I
20 25 Iz

6

M 50

,,

50

8
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Set 5,2a

2. Total cost : $SO+.

Doy

Sharpening service

Overnight 2-day 3-day Disposal

Monday 24
Tuesday 12
Wednesday Z

Thursday 0
Friday 0
Saturday 0

Sunday 0

0618
1200
1400
0200

1400
z00
000

0

0

0

0

4

12

22

5. Total cost : $190,040. Problem has alternative optima.

Period Capacity produced amount Delivery

400 for (period) 1 and ].00 for 2
200 for 2,220 for 3, and 180 for 4
200 for 3

200 for 4

Set 5.3a

1_. (a) Northwest: cost : $42. Least-cost: cost : $37. Vogel: cost : $sz.

Set 5.3b

5. (a) Cost : $1,475.

(b) ,r, > 3, cr >_ 8, czs = 13, cl ž 7.

Set 5.4a

5. Use the code (city, date) to define the rows and columns of the assignment prob-
lem. Example:The assignment (D, 3)-(A,7) means leaving Dallas on June 3 and
returning from Atlanta June 7 at a cost of $+OO. Solution is shown in bold.
Cost : $1180. Problem has alternative optima.

(A,7) (A.12) (A,2I) (A,28)

(D,3)
(D,10)
(D,17)
(D,25)

6. Optimum assignme nt I-d, II-c, III-a, IV-b .

500
600
z00
200

500
600
z00
300

1

2

J

4

400 300 300 280
300 400 300 300
300 300 400 300
300 300 300 400
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Set 5,5a

partial Answers to selected problems

4. Total cost : $1550. Optimum solution summarized below. Problem has alterna-
tive optima.

Store ]. Store 2 Store 3

Factory 1_

Factoty 2

CHAPTER 6

Set 6,1a

1. (iXa) 1,-3-4-2. (b) 1-5-4-3-1. (c) 1,-3-4-5-1. (d) See Figure D.7. (e) See FigureD.7.
4. 1 and 8 must appear in center. Problem has more than one solution. See Figure

D.8.

FlGURE D.8

Set 6.2a

2. (u) I-2-5-6-4-3 or 3-t-2-5-6-4.Total length : 1,4 miles.

5. High pressure: 1,-2-3-4-6. Low pressure: 1,-5-7 and 5-9-8. Total length : 53 miles

Set 6.3a

1. Buy new car in 200L and}}}4.Total cost : $8900. See Figure D.9.

5. For arc(i, v,) - (i l I, vi*1), define p(q) : value (units of item i). Solution: Select
items 1 and Z.Totalvalue : $80. See Figure D.10.

FlGURE D.9

5000
50 200 50

FlGURE D.7

o--o \*@
\\

č}-ó\-./ \--./

Spanning tree
M

Tree

4100
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FIGURE D.10

Set 6.3b

1. (.) Delete all nodes but4,5,6,7,and 8. Shortest distance : 8 associated with
routes 4-5-6-8 and 4-6-8.

Set 6.3c

1. (a) 5-a-2-1, distance : 12.

5. See formulation in Figure D.11. Each arc has unit length. Arrows show one-way
routes. Example solution: Bob to Joe: Bob-Kay-Rae-Kim-Joe. Largest number of
contacts : 4.

FlGURE D.11

Set 6.3d

1-. (u) - 1 and 1: all
r,1. Optimum

Formulation 1: Right-hand side of nodes 1 and 5 equations are
others : 0. Formulation 2:Objective function is minimize Js -
solution: 1,-3-4-5,distance : 90.

0(1) 0(0
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Set 6.4a

1. Cut 1:1,-2,1,-4,3-4,3-5,capacity : 60.

Set 6.4b

1. (a) Surplus capacities: arc (2-3) : 40,arc(2-5): 10, arc(4-3) : 5.

(b) Node 2:20 units, node 3: 30 units, node 4: 20 units.

(.) No, because there is no surplus capacity out of node ]_.

7. Maximum number of chores is 4. Rif-3, Mai-]_, Ben-Z,Kim-S. Ken has no chore.

Set 6.5a

1_. See FigureD.IZ.

FlGuRE D.12 [430] [-100] [-110]

Set 6.5b

1. Case 1: Lower bound is not substituted out.

Minimize z

[-95] |-125l

Xz+XnXl,XnXn

Node ].

Node 2
Node 3
Node 4
Lower bound
Upper bound

I1,
-1

-I

030
oo 40

:50
: -40

1 :20
-I : -30

0
oo

1 -1
1

-1
10 10
oo oo

Case Z;Lower bound is substituted out.

Xl,x5zx)qxtz

Minimize z

Node ].

Node 2
Node 3
Node 4
Upper bound

1

-1

oo

-1
1

oo

1,

-1,
oo

:20
: -40:40
: -20

I
1

-1,
-1

10 oo

804
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Set 6,5c

1. Optimum cost : $9895. Produce 210 units in period 1 and 220 unitsin period 3.
5. OPtimal solution: Total student miles : 24,300.Problem has alternative optima.

Number of students

School ] School2

Minority areal
Minority areaZ
Minority area3
Nonminority areaI
Nonminority areaZ

0

450
0

1000
0

500
0

300
0

1000

Set 6.6a

3. See Figure D.13.

F|GURE D.13

Set 6.6b

1. Critical path: I-3-4-5-6-7.Projecíduration : 19.
3. Project duration : 38 days.

Set 6.6c

3. (a) Maximum delay : ].0.

5. (u) Critical path: I-3-6,duration : 45 days.
(b) Red-flagged activities: A, D, and E.
(c) Start of C, D, and G will be delayed by 5 days. E will not be affected.
(d) Minimum equipment : 2 units.

CHAPTER 7

Set 7.1a

2. Points (1,0) and (0, 2) are in Q, but },(1,0) + (1 - \X0, 2) : (N, 2 - Z)\)does not
lieinQfor0 < }, < 1.
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Set 7.1b

2. (b)

(d)

(0
3. (u)

(d)

partial Answers to 5elected problems

Unique solution, see FigureD.1,4.
Infinity of solutions.
No solution.
Basis because det B - -4.
Not a basis because a basis must include exactly three independent vectors.

F|GURE D.14

Set 7.1c

1. Xa : (*r, *o)' : (2,1.5)', which is feasible.

4.Optimal z:34.
Maximize z : 2x, -l 5x2 subject to

xt š 4, Xz < 6, xl l xz š 8, x1, xz> 0

Set 7.2a

1. (a) P, must leave.

(b) B : (Pz, Pa) is a feasible basis.

2. For the basic vector X3, we have

ForX6, {zi -r,}: CBB-IB -CB:CaI -CB:Ca _Cr:0
7. Number of adjacent extreme points is n - ru assuming nondegeneracy.

10. In case of degeneracy,number of extreme points is less than the number of basic
solutions, else they must be equal.

11-. (a) new xi : *old x7

(b) new xi : t old xi

Set 7.2b

2. (b) (rr, x2, h): (1.5, 2,0), z : 5

b

1,0 < x21I
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Set 7.3a

2. (*r, x2, x3, x4, x5, *u) : (0, 1, .75,1,,0, 1), z : 22

Set 7.4a

1. (.) Add the artificialconstraint x2 < M.Then

(*r, *r.) : ol(0, 0) + crl10, 0) + q(20,10) + aa(20, X4) + us(O, MI)

at * crz* ag * cr,q* ct5: I,ai ž 0, j: I,2,...,5
2. Subproblem 1: (*,,, *r): 0t(0, 0) + aff, 0) + a3(0, 12)

Subproblem2:(*r, ,o): 9r(5, 0) + P2(50, 0) + B3(0, 10) + P4(0, 5)

Optimal solution: ctl : dz : 0, a: : 1 =+ x, : 0, xz : !2

9l : .4889, 9z: .5I1I,9: : 9+ : O+xo: 28,Is : 0

6. Because the original problem is minimization,we must maximize each subprob-
lem. Optimal solution: (xr, xz, x3, *o) : , +, O, 20), z : -2+

Set 7.5a

2. Maximize w : Yb subject to YA = C, Y > 0

Set 7.5b

5. Method ].: Given Xr : (2, 6, 2)r, then (br, br, br) : (4, 6,8) + dual objective
value : 34

Method 2: Given Y : (0, 3, 2)T,then (c1, cz) : Q, 5)+ primal objective
value :34

7. Minimize w : Yb subject to YA : C, Y unrestricted

Set 7.5a

1, -1=t<I
2. (u)

Basic solution Applicable range of /

0š/=j
!<r<]j-,-1]

'r'=/=-

5. {zi - ',}i:r, +, s : (4

0<r=1.
- +. I - ť,2 - ; + ;). Basis remains optimal for

Set 7.6b

1. (u) tr: 10, Bt : (p2, p3, p4)

2. Att:0,(xr,xz,xa): (.4, ]..8, 1_). It remains basic for 0 = t 
< ]..5. No feasible

solutionforr > 1.5.

(xr, xr, xo) : (5, 30, 10)

@r, *r,,,) : (Ť, T, 5)

(xr,, xo, ,r) : (), 15, z0)

_3t
2
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CHAPTER 8

Set 8.1a

1. G5:Minimizes!,55xu -| 3.5x7 -l 5.5x, - .0675xr * ss* - sí:0
3. Let xl : No. of in-state freshmen , x2 : No. of out-of-state freshmlfl, x3 : No.

of international freshmen

G;:Minimizes!,,i: l,,2, ...,5, subjecttox1 -| x2* x3 -| st* - si: 1200,

2x1 -| x2- 24 + si - sí:0, -.1,x1 - .Ixr* .94 + si - si:0,
.I25x1 -.05x2-.5564 + si - +:0, -.Zxt-|.8x2-.2x, -1-ss* -sí:0

All variables are nonnegative

5. Let x1 : No. of production runs in shift j, j : 1,, 2, 3.

Minimize z: s{ t si, subjectto - 100x1 -l 40x2 - 80x3 * sr* - i:0,
4 < h< 5, 10 3 xz= 20,3 < x, < 5

Set 8.2a

1. Objective function: Minimize z : s{ + si + sr+ + sa + s!
Solution: xp : .0201,, x7 : .0457, x, : .0582, xs : 2 cents, si : 1.45

Gasoline tax is $1.+S million short of goal.

4. x, : lb of limestone lday, xz : Ib of corn/ddy, xs : lb of soybean meal/day.

Objectivefunction:Minimize z: s{ + sí + sj- + s/ + s;
Solution: x1 : 1,66.08 lb, x2 : 2778.56 lb, x: : 3055.36lb, z : 0.

A1l goals are satisfied.
7. *j : No. of units of product j, j : I, 2.

Assign a relatively high weight to the quota constraints.

Objectivefunction:Minimizez : 100sr+ + 100sj + s, + s|

Solution: _T1 : 80, x2 : 60, sl : 100 minutes, si : I20 minutes.

Production quota can be met with ]_00 minutes of overtime for machine ]. and ].20

minutes of overtime for machine 2.

Set 8.2b

2. G1 solutiol7; xp : .0204,, x7 : .0457 , x, : .0582, xs : 2.si : 1,.45, aII others : 0.

Goals Gt, Gz, G3,and Gaarc satisfied. G5 is not.

G5 problem:Same as G1 plus s1+ : 0, si : 0, si : 0, sa : 0.

Solution: Same as G1 with sl : I.45.This means that G5 cannot be satisfied.
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CHAPTER 9

Set 9.1a

'. 
xii : No. of bottles of type l assigned to individual j, where
full),3(empty).
constraints:

l : ].(full),Z(half

Xn l Xn l Xt3:7, Xzl * xzz l xzs:7, X3I * xzz l x.,.:7
xn * .5xzt : 3.5, xp -| .5x22: 3.5, xn * 5x7 : 3.5

Xl l Xzt * x31 :7, Xn l Xzz l xsz:7, XB l xzs * x3:7
*,, = Oand integer for all i and j

Solution: Use a dummy objective function.

No. bottles assigned to individual

Status

Full
Half full
Empty

J

1

J

6. y: Originalsumof money.xi: Amounttakenonnight j, j: I,2,3.
x4 : AlTtount given to each mariner by first officer.
Minimize z : y subject to3x1 - y - 2, x1 l 3xr. - ! :2, x1 l x2 t 34 -
! : 2, ! - h - X2 - 4 - 3xa : ].. A11 variables are nonnegative integers.
Solution: ! : 79 l 8In, n : 0, !, 2,

8. Side 1:5,6, and 8 (27 minutes). Side 2: 1,,2,3,4,and7 (Z8 minutes). Problem has
alternative optima.

Set 9.1b

1. Let x1 :_ 
ryo. widgets produced on machine j, j : I,2,3. li : 1 if machine i is

usedandOotherwise.Minimizez:2x1 * 1,0x2t 54 * 30Óy, + 100y2+ 20Oy3
subject to

x1 l x2 l xs = 2000, x1 - 600yt š 0, x2 - 800yz š 0, 4 - 7200y, = 0,

x., x2, xl ž 500 and integer, !t, !z, _}: : (0, 1).

Solution: x1 : 600, x2 : 500, x3 : 900, z - $11,300.
2- Solution: Site 1 is assigned to targets 1 and 2, and site 2 is assigned to targets 3

and4.z : 18.

13
51
I3
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Set 9.1c

1. Letx1 : ].if routei isselectedandOotherwise, j :1,,2, ...,6.
Minimize z : 80x1 t 50x2 * 704 * 52xa * 60x5 * 44x6subject to

x1 * x3 -l x5 * xe ž l, x1 * xz* x4* x5> I, Xt l x2* xa* x6ž I,
x' * x2* xs= 1,,x2* x3* xal xe žt,xi : (0, 1), foralli.

Solution: x5 : x6: ]_. Select routes (I,4,2) and (I,3,5), z : ]"04. Customer ]_

should be skipped in one of the two routes.

2. Solution: Committee is formed of individua\s a, d, and f. Problem has alternative
optima.

Set 9.1d

1. (a) Let aii : Integer amount assigned to square (l,i).

constraints:

xi1 : I, 2, ... , 9 for all i and j

solution: problem has more than two alternative solutions.

|-, 1--Tl i-6--]--Tl
|l;l|or|l;l|

3. Solution: Produce 26 units of product I,3 of product 2, and none of product 3,

and use locationZ.

Set 9.2a1

2. (u) z : 23, x7 : 3, xz: 2.

(") z:37,x1,:6,xz:í.
3. (u) z : 7.25, h : 1.75, x2 : L.

(") e : 37, (*, : 4.6, x2 : Z)or@t : 6, x2 : L)

Set 9.2b

1. (u) 9 subproblems.
(b) 25,739 subproblems.

lUse TORA integer programming module to generate the B&B tree.

Ž*,,: 15, i : I, Z, S, }r*i1 : 15, j : I, 2, 3

Xl * Xzz l X33 : 1-5, 41 l Xzz l xn: 15,

("r, > xn* 1, orx1 - x12 - 1-), ("r, > xr* I orx1 < xB - 1-),

(*rr= Xn * I otxp'XI3 - 1), ("r, > Xu,* 1orx11 = x21, - ]_),

(rr, > xzt* I orx1 š xzt - ]_), (*rr= xsti-1, otx21 'x3t - 1_),
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3. Equivalent 0-1 ILP:

Maximize z : í8yr, * 36yp t I4y21 + 28y22 * 8y., +- 1,6y2 i 32y3

subject to 15y11 * 30yp -l I2y1 * 24y22 * 7yr, -l l4y2 * 28y3 < 43

A11 variables are binary.
Solution: z:50,ln: l,lzt:1, allothers :0.Equivalently, xI:2,xz: I.

Set 9.2c

1. (a) Legitimate cut because it
nate any feasible integer
on the LP solution space.

6. (b) Optimum integer solution:(x1, x2, xz) : (5,2, 2), z : 23.
Rounded solution: @r, *r, xz) : (5, 3, 3), which is infeasible.

Set 9.3a

1. The table below gives the number of distinct employees who enter/leave the
manager's office when we switch from project l to project i. The objective is to
find a "tolí" through all projects that will minimize the total traffic.

Projecti
34

1

z
J

Project l 4

5

6

CHAPTER 10

Set 10.1a

1. Solution:Shortest distance : 21, miles. Route: 1-3-5-7.

Set 10.2a

3. Solution: Shortest distance : 17.Route: 1,-2-3-5-7.

Set 10.3a

2. (a) Solution: Value : I20. (*r,, *r,, ms) : (0, 0, 3) or (0, 2,2) or (0,4, ].) or (0,6,0).
5. Solution:Total points : 250. Select 2 courses from I, 3 from II,4 from III, and 1

from IV.

passes through an integer point and does not elimi-
point. You can verify this result by plotting the cut

4

6

4

8

7

6

4

4

6

5

4

6

4

6

J

6

6

8

6

5

5

J

7

5

5

4
4

6

6

5
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7. Let x1 : ]. if applicationi is accepted, and 0 otherwise. Equivalent knapsack
model is

Maximize 7 : 78x1 -l 64x2 * 684 -l 62xa * 85x5 subject to

7x1 * 4x2* 64-| 5xa* 8x, < 23,x1 : (0, I), j:1,2,...,5.
Solution: Accept all but the first application. Value : 279.

Set 10.3b

1. (a) Solution: Hire 6 in week 1_, fire ]_ in week Z,fire 2 in week 3, hire 3 in week 4,

and hire Zfor week 5.

3. Solution: Rent 7 carsin week 1, return 3 in week Z,rent4 in week 3, and no action
for week 4.

Set 10.3c

2. Decisions for next 4 years: Keep, Keep, Replace, Keep. Total cost : $458.

Set 10.3d

3. (a) Let xi and yi
Zi: Xi -| Yi,

f,(z,) :

í,(z,) :

be no. sheep kept and sold at the end of period l and define

max{p,y,}
!r:Z,

max{psl; + f,*{Zz; - 2y)}, i : 1-, 2, ...,, fr - I
!i=Zi

CHAPTER 11

Set 11.2a

2. (a) Total cost per week : $51.50

(b) Order 239.05 lb whenever inventory level is zero. Total cost per
week : $50.20

4. (a) Choose policy 1 because its cost per day is $2.]_7 as opposed to $2.50 for pol-
icy 2.

(b) Optimal policy: Order ].00 units whenever the level drops to ]-0 units. Cost
per day : $2.00.

11.2b

Optimal policy: Order 500 units whenever level drops to ],30 units. Cost
day : $258.50.

Optimal policy: Order 150 units whenever level drops to 0. Cost
day : $479.17.

Set

2,

3.

per

per



Chapter 12 813

Set 1'1.2c

1. Excel solution: (yr, yr, ll !q, ys) : (4.4I,6.87,, 4.I2,

4. L(y,,!z,!s,.}+,N) :ž+-+-^( 2T
7.2, 5.8).

- ''0)

Formula: y; :
Excel solution: (yr, yr, !s, Iq, N) : (155 .3, IL8.82,, 74.36,90.10, -.0564).

Set 11.3a

1_. (a) 500 units required at the start of periods I,4,7,and 10.

Set 11.3b

3. Produce 173 units in period 1,180 in period 2,240 in period 3,1]_0 in period 4,and,
203 in period 5.

5et

1_.

)

Set

1.

11.3c

(a) No, because inventory should not be held needlessly at end of horizon.
(b) (i)0<.4=5, 1=zz=5,0 =zzš4:xt:4, I-xzš 6,0= xs=4
(a) a : 7, Z2 : 0, Z3 : 6, Z4: 0. Total cost : $rg.

11.3d

Use initial inventory to satisfy demand for period 1 and 4 units in period 2, thus
reducing demand for the four periods to 0,22,,90, and 67, respectively.
Optimal solution: Order 112 units in period 2 and 67 units in period 4. Total
cost : $eZZ.

Set 11.3e

1. Solution: Produce 210 units in period I,255 in period 4,210 in period 7, and 165
in period 10. Total cost : $1930.

CHAPTER 12

Set 12.1a

1. (u) .15 and .25,respectively.
(b) .571

(.) .82I.
2. n >_ 23.

3. n > 253.
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Set 1z,'lb

4. Let p: probabi\ity Liz will win. Then, probability John will win is 3p, which
equals the probability Jim will win. Probability Ann will win is 6p. Thus,
p+3p+3p+3pt6p:1,.

Set 12.1c

3. (u) 1
8,

(o)?

7. .9545.

Set 12,2a

2. K:20.
3. P{Demand > 1100} - .3.

Set'l2.3a

3. (a) P{x = 50} : ?.
(b) Expected no. unsold copies : 2.67.

Set 12.3b

1. Mean : 3.66'l, variance : 1.556.

Set 12.3c

1. (a) P{x1 : I,2,3} : p{x2: l, z,,3} : (.4, .2, .4),

(b) No.

Set 12,4a

1. (r1)'o.

3. .0547.

Set 12.4b

1. .8646.

3. (a) ro = 6.

(b) P,=r -, t.

Set 12.4c

1. \ : l}arrivals/min. P(r < 5 Sec) : .63.

Set 12.4d

2. .0014.



CHAPTER 14

Set 14,1a

1. Weights for A, B, and C : (.4421,4, .25184, .30602).

Set 14.1b

2. (rr, wJ, wM) : (.331, .292, .377). Select Maisa.
4. (r r, , u) : (.502, .498). Select P.

Set 14.2a

2. (a) See Figure D.15.
(b) Ev(corn) : - $8250, EV(soybean) : $250. Select soybean.

6. (a) See Figure D.16.
(b) Ev(game) : - $.025. Do not play the game.

$30,000 FlGURE D..l 5

$o

-$35,000

$10,000

$o

-$5000

Set 14.2b

2. Let z be the event of having one defective item in a sample of size 5.
Answer: P{Alz} : .6097, P{Blz} : .3903.

4. (a) Expected revenue if you publish : $1_96,000.
Expected revenue if you use publisher : $163,000.

(b) If Survey predicts success, publish it yourself, else use publisher.
7. Ship lot to B if both items are bad;else, ship lot to á.

Chapter 14 815

F|GURE D,16
$3,5

$1.1

$.qo

-$t

$1.1

-$t

-$t

-$:

$o

.125(TTH)
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Set 14.2c

1. (a) Expected value : $5, hence there is no advantage.

(b) ForO < x < 10, U(r):O,and for x: 10, U(x) : 1gg.

(.) Play the game.

2. Lottery: U(*): 100 - 1,00p.

Set 14.3a

1. (a) A1l methods: Study all night (action a1).

(b) Al1 methods: Select actions a2 oí a3.

Set 14.4a

1. (a) Saddle-point solution aí (2,3).Value of game : 4.

3. (")21v14.

Set 14,4b

1. Each player should mix strategies 50-50.Value of game : 0.

2. Robin's payoff matrix:

1.00%A 50%"A-50%"B 1,00Y.B

-100 -50 0

0 -30 -100

Strategy for Police: Mix I00%A and ]_00%B with
for Robin: Mix A and B 50-50. Value of game :
Robin).

Set 14.4c

1. (a) Payoff matrix for the searching team:

A
B

probability .5 each. Strategy
$50 (expected fine paid by

AB AC AD BC BD

Optimal strategy for both teams: Mix AB and CD 50-50. Value of the game : 0.

3. (a) Payoff matrix for Colonel Blotto:

AB
AC
AD
BC
BD
CD

10000-1
0100-1 0

001-1 00
00-1 100
0-1 0010

-1 00001,
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0_31,-22-I

2-0
LI
0-z

-1-i00
0-1-10
00_1-1

Optimal strategy for Blotto: Blotto mixes (2-0) and (0-2) 50-50, and the enemy
mixes (Z-D and (0-3) 50-50. Value of the game : -.5, and Blotto loses.

CHAPTER 15

Set 15,1a

2. Solution: Day 1: Accept if offer is high. Day Z:Accept if offer is medium or high.
Day 3: Accept any offer.

Set 15.2a

1. Solution: Year 1: Invest $10,000. Year 2: Invest all. Year 3: Do not invest.Year 4:
Invest all. Expected accumulation : $35,520.

4. Allocate 2 bikes to center 1,3 to center 2,and 3 to center 3.

Set 15.3a

3. Solution: First game: Bet $1. Second game: Bet $1. Third game: Bet $1 or none.
Maximum probability : .109375.

CHAPTER 16

Set 16.1a

1. (a) Order 1000 units whenever inventory level drops to 537 units.

Set 16.1b

2. Solution: y- : 317.82 gallons, R* : 46.82 gallons.
3. Solution: y- :31,6.85 gallons,R* : 58.73 gallons.InExample16.1-2,,y" : 319.44

gallons, R* : 93.61, gallons. Order quantity remains about the same as in
Example l6.1-2,but R* is smaller because the demand pdf has a smaller variance.

Set 16.2a

3. 19 < p < 35.7

6. 39 coats.
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Set 16.2b

1. Order 8 - r if x < 3.528, else do not order.

Set 16.3a

2. Order 4.6l - x if. x < 4.61,,else do not order.

CHAPTER 17

Set 17.1a

1-. (a) Efficiency :71,o/o.

(b) The two requirements cannot be satisfied simultaneously.

Set 17.2a

1.
situation customer server

Plane Runway
Passenger Thxi

Set 17.3a

1. (b) (i) }, : 6 arrivals per hour, average interarrival time : I hour.

(.) (i) p : 5 services per hour, average service time : .2 hour.

3. (a) í(t) : 20e-20,, / > 0.

(b) P{/ = uotr} 
: .00674.

7. Jim's payoff is 2 cents with probability P{t = 1} : .4866 and -2 cents with prob-
ability P{t > 1} : .5].34. In 8 hours, Jim pays Ann : t7 .1,5 cents.

1,0. (a) P{t < 4 minutes} : .4866.

(b) Expected discount percentage : 6.208.

Set 17.4a

1_. P,-_5(1, hour) : .5595]..

4. (a) Pr(t - 7) : .241,67.

6. (a) Combined X : ro! * 1
7) Pz(t:5):.2I9.

Set 17.4b

2. (u) wt : 9, po(t : 3) : .00532.

(") ll,t : 3, p,=n(t - 1) : .9502.

a

b



Chapter 17 819

5. pt : 4, p0(4): .37116.

8. (a) Average order size : 25 - 7.1,1 : 17.89 items.
(b) rrr : 12, po(t :4) : .00069.

Set 17.5a

3. (u) p,=, : .4445.
(b) p,=r: .5555.

6. (u) pi : .2, / : 0, 1,2,3, 4.

(b) Expected number in shop : 2 customers.
(c) pq: .2.

Set 17.5a

1_. (u) L, : Ipe t 2p, t 3pr: .I9I7 car.
(.) \lo.t : .1263 car per hour.

88
(d)No.of emptyspaces - c - (L,- Ln):'- Z"o,* ,>_*r('- 

r)P,.

Set 17.6b

2. (u) po - .2.

(b) Average monthly income : $5O x pt : $375.
(.) Expected payment : $4O x L, : $rZS.

5. (u) po - .4.

(b) Ln : .9 car.
(d) p,=r, : .0036.

6. (d) No. of spaces is at least 13.

Set 17.6c

1. P{" > 1} : .659.

5. $37.95 per lZ-hour day.

Set 'l7.6d

1. (u) po: .3654.
(b) W, : .207 hour.
(.) Expected number of empty spaces - 4 - L, : 3.212.
(.) p : 10 will reduceW,to about 9.6 minutes.

4. (u) pr: .6.

(.) Probability of tinding an empty space cannot exceed .4 regardless of belt capa-
city. This means that the best utilization of the assembly department is 60%_
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p5: .962.
: \ps : .I9 customer per hour.

7.(a)1-
(b) N,",,

Set 17.6e

2. For c : 2, Wq : 3.446 hour and for c : 4, W, : 1.681 hour, an improvement of
over 507o.

5. Let K be the number of waiting room spaces. Using TORA,
pot ptt * pr*z> .999yieldsK> ].0.

7. (u) p,=o: .65772.

(e) Average number of idle computers : .667 computer.

Set 17.6f

(.) Utilization : 8]..87o.

(d) p, ,| pz -| pa: .545.

(u) poo: .000].4.

(b) pro t plt * pzg:.02453.
(d) Expected number of occupied spaces : L, - Lq = 20.

(0 Probability of not finding a parking space - 1, - pn=29 : .02467.Number of
students who cannot park in an 8-hour period is approximately 4.

Set 17.69

2. (a) Approximately 7 seats.

(b) p"=r: .291,L

Set 17.6h

(b) Average number of idle repair persons - 4 - (L, - Lr) : 2.0L.

(d) P{2 or 3 idle servers} : po * pl : .34492.

(a) L, : 1,.25 machines.

(b) po : .33341,.

(.) W, : .25 hour.
}x : 2 calls per hour per baby, F : .5 baby per hour, R : 5, K : 5.

(a) Number of awake babies - 5 - L, : 1 baby.

(b) P, : .32768.

(.) pn=z: .05782.

Set 17 .7 a

2. (a) E{t} : 1,4 minutes and var{r} : 12 minutes2. L, : 7.867 cars.

4. \: .0625 prescriptionsperminute, E{t}: ].5 minutes, var{r} :9.33 minutes2

(u) po: ,0625,

)

4.

1.

4.

6.
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L, : 7.3 prescriptions.
W, : 132.I] minutes.

Set 17.9a

2. Use (M/M/1):(GD ll}lrc). Cost per hour is $431.50 for repair person ]. and
$386.50 for repair person 2.

4. (b) r": X + ^E-'|!C1

(.) Optimum production rate : 2725 pieces per hour.

Set 17,9b

2. (a) Hourly cost per hour is $86.4 for two repair persons and $94.80 for three.
(b) Schedule loss per breakdown : $30 X W, : §I27.1J for two repair per-

sons and $94.65 for three.
4. }l, : .36125 per machine per hour, p : 10 per hour. Model (MlMl3):(GDl20l20)

Yields W, : .10118 hour. Lost revenue per machine per hour : 25 X XI4/ X
$2 : $1.83 or $36.55 for all 20 machínes. Cost of 3 repáir persons is $60.

Set 17.9c

1. (a) Number of repair persons : 5.

(b) Number of repair persons : 4.

CHAPTER 18

Set 18.1a

4. (a) P{ll}: P{T}:.5. If 0 < R =.5,Jimgets $10.00. If .5 < R = 1,Jangets
$10.00.

7. Lead time sampling: If 0 < R = .5, L : ! day. If .5 < R < I, L : 2 d,ays.
Demand per day sampling: If 0 <R < .2,d,emand: Ounit. If .2<R-.9,
demand: lunit. If .9 < R < 1, demand:2units.UseoneRtosample L.IfL : I, use another R to sample demand for one day, else if L :2, use Óne R to
generate demand for day 1 and then another R to generate demand for day 2.

Set 18.2a

1. (a) Discrete.

Set 18.3a

4. See FigureD.I7.

(b)

(.)
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F|GURE D.17

partial Answers to selected problems

AI A2 A3 A4 A5

D5D4D3D2D1

Set 18.3b

1_. , : -|tn(l - R), }, : 4 customers per hour.

Customer t Arrival time

1

2

J

4

.0589

.6733

,4799

0

.015 .015

.z80 .z95

.163 .458

2.t:A+(b-a)R.
4. (u) 0 < R < .2; d : 0,.Z =R < .5: d : I,.5 < R

d:3.
9. If 0 < R = p,thenr : O,else x: (Iargestinteger š

Set 18.3c

( .9: d:2,.9 < R < 1":

ln(1 - R)1
lnq )'

I. y : -|tn1.ossg x .6733 x .4799 x .9486) : .803 hour.

6. t : x1 * x2 * x3 l x4,where xi : 10 + 10R,, i : 1,Z,3, 4.

Set 18.5a

2. (a) Observation-based.
(b) Time-based.

4. (a) 1.1 barbers.

Set'l8.5a

2. Confidence interval: 15.07 š p < 23.27.

CHAPTER 19

Set 19.1a

2. Do not feríllize,fertilize when in state 1,,,f,ertilize when in state Z,fefiilize when in
state 3,fertilize when in state 1, or 2,f,ertilize when in state 1_ or 3, f.ertilize when in
state 2 or 3,or fertilize regardless of state.
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Set í9.2a

1' Years 1 and Z:Don't advertise if product is successful; otherwise, advertise. year 3:Don't advertise.
3' If stock level at the start of month is zero, order 2 refrigerators; otherwise, do notorder.

Set 19.3a

1. Advertise whenever in state 1.

CHAPTER 20

Set 20.1a

1. (a) No stationary points.
(b) Minimum at x : 0.
(e) Inflection point at x : 0, minimum at x

4. @r, *r) : (-1, 1) or (2,4).

Set 20.2a

1_. (b) (ax,, a*r) : Q.83, -2.5)ir2

Set 20.2b

: .63,andmaximum atx: -.63.

3. Necessary conditi ons: 2(xi - *) :
i = I,2, ... ) n. 0í : 26C+.

6. (b) Solution: z - T, (rr, *r, xsxq)

Set 20,2c

2, Minima points: @r, *r, 3, N1, \r) : (-1,4.4, 4.56, -I.44,38.5, -67.3) and (4.4,.44,.44,I0.2, -1.4).

CHAPTER 21

Set 21.1a

2. (c) *:2.5.
(e) x:2.

3. Number of iterations = t.+4tn(ťi).

0, i : I, 2, ... ,) n - 1. Solution is *, = ÝČ,

: (-+, -#, #, fr;, whict is a minimum point.
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Set 21,1b

1. By Taylor's expansion, V/(X) : V/(X) + H(X - Xo).The Hessian H is indepen-
dent of X because /(X) is quadratic. Also, the given expansion is exact because
higher-order derivatives aíe zero. Thus, V/(X) : 0 yields X : X0 - H-lV/(11).
Because X satisfies V/(E : 0, X must be optimum regardless of the choice of
initial X0.

Set 21.2a

2. Optimal solution: 11 : 0, x2 : 3, z : !6.

4. Letw1 : Xj * I, j : 1,, Z,3, V1 : WlWz, V2: WtWs.Then,

Maximize Z : vl l vz - Zwt - wz * 1 subject to

vllv2-
|nv2 - lnw1

Set 2'1,2b

1. Solution: x1, : I, x2:
2. Solution: x1, : 0, x2:

Set 2'1.2c

3. Solution: x1 : 1,.39, x2

Set 21.2d

Zwt - wz š 9, lnv1 - 1nw7 - lnw2: 0

- 1nw3 : 0, all variables are nonnegative.

0,z:4.
.4, xs - .7.

: I.I3

100% feasil
100% optil
6-sigma lim

A
Additive al
Algorithm_
Alternative
AMPLLP
AMPL datl

cMAmp
Analytic H

compari
consister
normaliz

Applicatior
dynamic
integer p
goal prot
linear pr

Art of mod
Artificia] ct
Artificial vi
Aspiration
Attribute iI
Assignmen

B
Balking.58
Balance eq:
Basic soluti
Basic varial
Basir 29f.l

vector re
restrictel

Bayes'prol
Binomia] d

Poisson i
Box-Mullcr
Bounded ri

primal
dual sim;

Branch-anc
ILP. _j-_1-

trareling

C
Capacitatei

conversir
Excel spr
LP equir
simples l

Capital buJ

2. Maximize z : x1 + x) + x3 subject to

x! + sxz, + 2Ýi + I.28y < ]-0

1,6x) + 254 - y2 : 0, all variables are nonnegative
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100% feasibility rule inLP,1,52
100% optimality rule in LP,159
6-sigma timits,479

A
Additive algorithm, 375
Algorithm, definition o{ 4
Alternative optima in LP, 106
AMPL LP example.41
AMPL data file. See also Inside front cover

ch2AmplReddyMikks.mod, 41
Analytic Hierarchy Process (AHP), 503-511

comparison matrix,506
consistency,507-508
normalized matrix,506

Applications in OR,
dynamic programming, 4064U,571-583
integer programming, 36I-37 2
goal program ming, 3 47 -3 52
linear programming, 47-60

Art of modeling,5
Artificial constraints in dual simplex method,,I42
Artificial variables, 94
Aspiration level criterion in queues,632
Attribute in simulation, 646
Assignment model, 196-203

B
Balking,581
Balance equation in queues,594
Basic solutio n, 7 5, 7 8, Z9I-292
Basic variable,78
Basís,292. See also Inverse

vector representation of, 293
restricted,74I,7 49

Bayes' probabilities, 466, 519-522
Binomial distribution, 474

Poisson approximatio n of, 47 6
Box-Muller sampling method for normal distribution,688
Bounded variables: definitions, 305

primal simplex algorithm, 306-310
dual simplex algorithm, 312

Branch-and-bound algorithm,
ILP,373-378
traveling sales person, 393-396

C
Capacitated network model, 252-264

conversion to uncapacita ted, 259
Excel spreadsheet solution, 265
LP equivalence,254
simplex algorithm of,259-260

Capital budgeting,361

Cargo-1oading model, 407
Cauchy's arithmetic-geometric inequality. 754
Central limit theorem, 479
Chance-constrained programmin_e, 757
Chapman-Kolomogrov equations. 735
Chebyshev model for regression analysis.352
Chi-square statistical table, 7 87
Chi-square test. See Goodness-of-fit test
Classical optimization:

constrained, 708J30
unconstraine d, 7 0I-7 08

CPM, see Critical Path Method
Column-dropping rule, 355. 357
LoncaVe Iunctlon,'/'/'/
Conditional probability, 465
Connected network,214
Constrained gradient, 71 1

Continuous distribution. 467
Continuous review in inventory. 430
Convex combination, 290
L onvex lunctron. / /'i
Convex set in LP,289
Correlation coefficient, 498
Covariance,4'/2
Critical activity in CPM,

definition.272
determination ot,273

Critical path method calculations, 2'72-273
backward pass,273
forward pass,272

Critical path method (CPM),266
Cumulative density function, (CDF), 467
Curse of dimensionality inDP,425
Cuts in,

integer programming, 384
networks,240
traveling salesperson problem, 396

Cutting plane algorithm, 384
Cycles, See loops
Cycling in LP,104

D
Decision-making. tl,pes of:

certaintv.503-510
risk,513-526
uncertainty, 527-532

Decision tree,514
D ecomposition algorithm, 3I2-j22
Degeneracy, I03. See also Cycling
Destination in transportation model, 165
Determinant of a square matrix,768
Deviational variable in goal programming,348
Dichotomous search, 731
Diet problem, 18
Dijkstra's algorithm, 225227

825
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Direct search method, 73I
Discrete distribution, 467
Discrete-event simulation, 644

mechanics of,657
statistical observations, gathering of 666

regenerative method, 669
replication method, 669
subinterval method, 667

Doubly stochastic matrix, 699
Dual price,35, 133

algebraic determinatio rt of , I22, 323
graphical determination ol 28

Dual problem in LP:
economic interpretation

dual constraints, 135-136
dual variables,I32-134. See also Dual price

definition ol 115-118, 120
m atrix definition, 322-326
optimal solution, 122, 323

Dual simplex method, I37. See also Genetalized simplex
algorithm

artificial constraints tn, 14Z
feasibility condition, 137
optimality condition, ].38
revised matrix form, 305

Dual variables, relationship to dual prices, 133
Optimal values, determination of, I23

Dynamic programming:
backward recursion, 404
deterministic,401427
dimensionality pr oblem, 425
forward recursion, 401, 404
inventory applications,

deterministic,448455
probabilistic, 57 3-57 5

Markovian decision process, 61 5-693
probabilistic, 559-57 5

E
Economic order quantity. See EOQ.
Edge in LP solution space,81
Efficient solution in goal programming, 347, 353
Either-or constraint, 369
Elevator problem,6
Empirical distribution, 480
EoQ,

dynamic,
no setup mode|,444
setup model, 448455

static,430442
classic,430-435
price-breaks, 435439
stora ge limitation, 439 4 42

probabilistic, 559-5'7 5
Equation form of LP.71

matrix íorm of,29l-292
Employment scheduling model, 256

expressed as a network,257
Equipment maintenance model, 173
Equipment replacement model, 220, 4I8
Event in

probability,463
simulation,645

Excel templates., ee a/so Inside front cover
chlOKnapsack.xls, 41,0

chlOSetupKnapsack.xls, 413
chllEOQ,xls,431,,438
ch1 1 ConstrainedEOQ.xls. 441

ch1 1Dynamic Inventory.xls, 451
chllWagnerWhitin.xls, 455
ch1 1SilverMealHeuristic.xls, 459
chl2S ampleMeanVar.xls, 482
chl4AHP.xls,509
chl48ayesPosterior.xls, 522
chl4UncertaintyD ecisions.xls, 530
ch].6ContinuousReviewModel.xls, 564
chl7PKFormula.xls, 625
chl7PoissonQueues.xls, 589
chl8Circle.xls, 641
ch1SMultiServerSimulator.xls, 666
ch], 8RandomNumberGenerator.xls, 65 6

chlSRegenerative.xls, 67],
chl8SingleServerSimulator.xls, 663
ch20NewtonRaphson.xls, 707
ch2lDichotomousGoldenSection.xls, 734

Experiment, statistical, 463
Exponential distribution, 477, 61,0-613

forgetfulness property, 583
Exponential smoothing, 495
Extreme point in LP,

definition of,289
relationship to basic solution, 290-293

F
Fathoming solutions in B&B algorithm, 3'7 5, 3'7 8

Fixed-charge problem, 364
Floats in CPM,

free,277
total,2'77

Floyd's shortest route algorithm, 228-230
Fly-away kit model,407
Forecasting models, 49].-500
Forgetfulness of the exponential, 583
Fractional cut,386
Full-rank matrix, See nonsingular matrix

G
Game theory, 532-543

Zefo-sum game,
graphical solution, 536-538
linear programming solution, 539-541,
mixed strategies,536
saddle point,533
value,533

Gauss-Jordan method, 85,'7 7 1,

Geometric programming, 752
Generalized simplex algorithm, 143

Goal programming, 341 -359
algorithms,

preemptive method,354
weighting method,352

column-dropping rule, 355-358
efficient solution, 347, 353

Golden-section serach method, 731
Goodness-of-fit test, 483
Gradient method,735
Graphical solution:

games,536-538
maximization linear programs, 15

minimization linear programs, 18

H
Heuristic, definition of, 4
Histograms,481

Hungariar
relation

Hurwicz c

I
Imputed c
Index of o
Inequalitit
Infeasible
Insufficier
Integer pr
Interior px

Interval ol
Inventon-

determi
EoQ

Sta
d}-,

hel
probabi

singlt
multi

Inventory
Inverse of

1ocatior
method

adjoi
prodt
ro -(

Investmer
Iteration_,

J
Jacobian r

applical
Jockeying
Joint prob

K
Kendall n,
Knapsack
Karush-K
Kolmogro

L
Lack ofm
Lagrangei
Lagrange:

invento
Laplace o
Lead time
LeaSt-cí"b-l
Linear coI
Linear inc
Linear prt

additiri
applica:
compuI

rrith -

u-ith'
nith
rrith

constru
graphic
optimu



Hungarian method, see Assignment model
relationship to simplex method, 202-203

Hurwicz criterion,528

I
Imputed cost, 135
Index of optimism,528
Inequalities, conversion to equations, 7 1,-7 2
Infeasible solution in LP, 111
Insufficient reason, principle of, 527
Integer programming algorithms, 373-388
Interior point algorithm, 332-344
Interval of uncertainty, 731
Inventory models:

deterministic
Eoo

static,430442
dynamic,444455
heuristic,457

probabilistic, 559-57 5
single-period, 567 -57 3
multiple-peri od, 57 3-57 5

Inventory policy,429
Inverse of a matrix,7'70-:7'15,

location in the simplex tab),eau, I22
methods of computing,

adjoint,77I
product form,772
row operations,7]I

Investment model, 42I, 57 5
Iteration, definition of, 4

J
Jacobian method,709

application toL\7I5
Jockeying,581
Joint probability distributi on, 47 1,

K
Kendall notation,599
Knapsack problem,407
Karush-Khun-Tlrcker (KKT) conditions, 725
Kolmogrov-Smirnov test, 485

L
Lack of memory for exponential,583
Lagrangean method,719
Lagrangean multipliers, 719

inventory model applic ation, 439
Laplace criteriory527
Lead time in inventory models,431
Least-cost method, I7 9-180
Linear combinations method, 761
Linear independenc e of v ectors, 292
Linear programming model:

additivity property, 13
applications,47-60
computer solution

withAMPL,41
with TORA, 20,33-36
with Solver,36-38
with LINGO,39

construction of two-variable problems, 12-19
graphical solution,14
optimum feasible solution, 13

lndex 827

proportionality property, 1 3
sensitivity analysis in LP

algebraic,
additional constraint, 153-154
additiona1 variable, 160-161
feasibility, 145-153
optimality. 155-160

graphical,
feasibility, 27-30
optimality,24-27

LINGO example of LP 39
LINGO data files. See also Inside front cover

ch2LingoDiet.xls. 46
ch2lingoReddyMikks.l94, 39
ch2lingoReddyMikksExte rnalD ata.lg4, 42
ch2LingoFlD ataReddyMikks.lng, 43
ch2lingoF2D ataRe ddyMikks.lng, 43
ch5lingoTians.lg4. 192

Little's queuing formula. 599
Loops, in networks.214
Lottery,525

M
M-method, 94. See a/so Two-phase method
Machine servicing model. 621
Majorizing function, 653
Marginal probability distribution, 471
Markov chains, 693-700

limiting distribution, 696, 698
states classifications. 696

Markovian decision process, 67 5*693
exhaustive enumeration solution, 681
linear programming solution, 690
policy iteration method, 684-690

Materials requirement planning. See MRP
Mathematical model, definition ol 3
Matrices,

simple arithmetic operations, 120
Maximal flow model,239

algoííhm,24I_242
cuts in,240
Excel solution ol 250
LP formulation,250
with positive lower bounds,249

Maximization, conversion to minimization, 88
Maximin criterion,528
Mean value,471472
Minimal spanning tree,21,5
Mixed cut,388
Mixed integer problem, 361
Model, structure of.3
Modeling, ]eveIs of abstraction,5
Monte Cario simulation. 639
Moving average technique, 491
MRP,443
Multipliers, method oi 183. See also Transportation algorithm
Multiplicative congruential method, 656

N
Network definitions, 214
Networks, representation as LP,

capacitated network, 254
critical path method, 281
maximum flow.250
shortest route,234

Newton-Raphson method, 706
Nonbasic variable,78
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Nonlinear programming algorithms, 7 31J 64
Nonnegativity restriction, 13

Non-Poisson queues, 624, 626
Nonsingular matrix, 292, 7'7 0
Normal distribution, 478

statistical tables, 785
Northwest-corner method, 178

o
Observation-based variable in simulation, 662
Optimal solution,3
OR study, phases of,8
OR techniques,4

P
Parametric linear progra mming, 326-332. S e e a/so Sensitivity

analysis
Path in networks.214
pdf:

definition of,467
joilt,471,
margínal,471,

Penalty method in LP. See M-method
Periodic review in inventory,430
Poisson distribution, 476, 586-588

approximation of binomial, 476
truncated,590

Poisson queueing model, gener alized, 593
Pollaczek-Khintchine queueing formula, 624
Posterior probabilities. See Bayes' probabilities
Posynomial function, 752
Prediction interval, 498
Price breaks in inventory,435
Primal-dual relationships in LR 120

objective values, ].30
Primal simplex algorithm, see Simplex algorithm
Principle of optimality, 404
Prior probabilities, 519. See also Bayes' probabilities
Product form of inverse,j1L

in revised simplex mehtod,300
Production-inventory control, I7 2, 224
Probability density function. See pdf
Probability laws:

addition,464
conditional,465

Probability revieq 465-489
Pseudo-random numbers, 656
Pure birth model,586
Pure death model,590
Pure integer problem, 361

o
Quadratic forms,775
Quadratic pr o gr amming, 7 47
Queue discipline,581
Queueing models, 585425

decision models, 62'7 -634
aspiration |evel,632
cost,62'7

mea ures of performance,599
multiple-server models, 6I'1,-624
single-server models, 602-610, 624
non-Poisson models, 624, 626

R
Random variable;

definition of,467
expected value,469

Random number generator, 656
Reddy-Mikks model,12
Reduced cost,35,135
Regression analysis, 351153, 497 -50I
Regret (Savage) criterion, 528
Reneging i queues,581,
Reorder point in inventory, 430, 431
Residue network,241
Resource, types of:

scarce,88
abundant,88

Restricted basis,741
Revised simplex method,

dual,305
prima1,297-303

Risk, types of,
averse,524
neuíraL,524
seeker,524

Roundoff error in simplex method,5],,98

s
s-S policy,571,
Saddle point,533
Sample space in probability,463
Sampling in simulation, methods of:

acceptance-rejection, 653
convolution,650
inverse,647

Sampling from distributions:
beta,654
discrete,648
Erlang (gamma),650
exponential,648
geometric,650
normal,65I-652
Poisson,651
triangular,649
uniform,649
Weibull,650

Savage criterion. See Regret criterion
Secondary constraints, 154
Seed of a random number generator,656
Self-service queuing model, 61,9

Sensitivity analysis in:
dynamic programming, 409
Jacobian method,714
linear programming. See also parametric

programming
algebraic, 1,44-1,61,

computer output,34
graphícat,23-30

Separable programming, 739
convex,'743

Set covering problem, 366
Shadow cost,35, 133,324. See also dual price
Shortest route problem,

DP solution,403-408
Excel spreadsheet solution of,237
LP solution of,234J35
transshipment solution of, 206

Shortest-
Dijkst_
Floyds

Silver-Mt
Simplex i

enterir
feasibi
Gauss
leavin1
ratios-
optimi
steps (

Simplex l

dual, 1

generz
reviser
tablea

Simplex:
Simplex

1ayout
matril
matril

Simultan
simulatir
simulatir
simulatir
Slack var
Solver E

cMSo
ch5So
ch5So
ch6So
ch6So
ch6So
cMlS
cMlS,

Spannint
basic r

statisticz
chi-sq
nonní
studel

Steepest
Stage in
State in ]

Stochast
Stock-sli
Strategit
Student
Suboptir
SLMT a

Surplus,

T
Time-ť-,a
TOR\ 1

TORA.i
ch2Tc
ch2Tc
cMTc
cMTc
cMTc
cMTc
ch3Tc
ch3Tc
ch3Tc
ch4Tc
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Shortest-route algorithms,
Dijkstra's, 225-227
Floyds's,228-230

Silver-Meal heuristic, 457
Simplex algorithm. See als o gener alized,simplex algorithm

entering variable,82
feasibility condition, 89, 298
Gauss-Jordan row operations, 85
leaving variable,82
ratios,84
optimality condition, 89, 298
steps of,89,300

Simplex method, types of,
dual,137
generalized,I43
revised,300-303
tableau,83

Simplex multiplier, I95,324. See also dual price
Simplex tableau,83

layout of,I22
matrix computation o| 126-128
matrix fotm of,294

Simultaneous linear equations, types of solutions,29l-294
Simulation languages, 67 2
Simulation modeling,5
Simulation, types of, 644
Slack variable,72
Solver Excel templates.,See Inside front cover

ch2SolverReddyMikks.xls, 36
ch5SolverTiansportation.xls, 187
ch5SolverNetworkBasedTransportation.xls, 1 89
ch6SolverShortestRoute.xls, 237
ch6SolverMaxFow.xls, 250
ch6SolverMinCostCapacitatedNetwork,x]s, 265
ch21 SolverQuadraticProgramming.xls, 751
ch2lSolverStocasticProgramming,xls, 760

Spanning tree, definition of, 2'1,4

basic solution in networks,259
Statistical tables, 785-787

chi-square,787
normal,785
student t,786

Steepest ascent method. See Gradient method
Stage in DP, definition of,402,406
State in DP, definition of,403,406
Stochastic programming, 807
Stock-slitting problem. , ee T im-loss problem
Strategies in games, mixed and pure,536
Student t tables,786
Suboptimal solution,3
SUMT algorithm,763
Surplus vatiable,12

T
Time-based variable in simulation, 661
TORA primer,779-783
TORA input data files,. ee a/so Inside front cover

ch2ToraReddyMikks.txt, 21, 34
ch2ToraDiet.txt,45
ch2ToraThrift em.txt, 47
ch2ToralandUse.txt, 50
ch2ToraBus.txt, 53
ch2ToraTrimloss.txt, 56
ch3ToraReddyMikks.txt, 92
ch3ToraMmethodEx3-4-1.txt, 96
ch3Tora2PhaseMetho dEx 3 -4-2:xt, 9 9
ch4ToraTOY COEx4-3 -2.txt. 1 3_5

ch4ToraDualSimplexEx4-4- 1.txt. 138
ch5ToraMGAutoEx_5- 1 - 1.txt. 1 6_5

ch5ToraE quipMaintEx5 -2 -2.txt, I7 3
ch5Tora SunravTiansportEx_5-3- 1. txt, 7'7 7, 187
ch5ToraTransshipE15-5- 1.txt. 203
ch6Tora},íinSpanEx6-2- i.txt. 2 1 6
ch6ToraDij kstraEr6-3 --1. trt. 22_5

ch6ToraF]ovdEr6 --1 -5. trt. ]_1 0
ch6ToraLp ShoIt e siE\6 -.1 - 6, t\t. 235
ch6Tora\íarFlolvE r6 --1-]. trt. ]-13
ch6ToraCP\IEx6-6-],trt. ]-3
ch6ToraPERTE16-6-ó,trt. ]Si
ch]ToraBounded\ arEr--3-i.txt. _107

ch9Tora CapitalBud setEr9- 1 - 1 , trt. _161

ch9ToraFisedCharse Er9 - 1 -]. txt. _16-{

ch9ToraSetCor erEs9- i -_1,trt. _166

ch9ToraEitherOrEx9- 1 -],tst. -l69
ch9TtlraB & B E19-]- 1. trl. _1-_1

ch9ToraTlavelin*S ale sp ers,:nEr9-_] -_1.trt. 396
ch i JTtlra Game sErt -l-J-3, trt. _._16

ch1-{TclraGamesE 1-+-j-j,t\t 5+(,)

ch 1 
-T"lraQueug-sEs1 ---1- 

1 ,trt. _lS9
ch1 -ToraQueuesEr1 ---1-].trt. 59 1

ch1 lToraQr.ieuL.sE\1 --6-:,t\t. 
6|_|3

ch1 =ToraQueuesEx1 --o-].trt. 6l,19

chl-ToraQueuesEr1 --6-5.tst. 61]
ch1 -TtlraQueuesEs1 --ó-6,trt. 61 9
ch1 -ToraQueuesEr1 --6--,trt. 6]t]
ch1 TToraQucuesEr1 ;_6-S,trt. 6]]

TOYCO modcl. 1_1_.

Transient period in simulation. 666
Transition-rate diagram in queues 59_3

Transportation alsorithm. 177-1 87
feasibi]itt condition. 182
optimalitv conditlon. 182
relationship to simplex method. 183-185, 195
starting solution methods, 17 8-182

Transportation mode1:
applications

inventory,444447
nontraditional 17 2-17 5

balancing of,167-168
definition, 165
LP equivalence,L66

Transportation tableau, 1 79
Transpose oí a maírix,767
Tiansshipment model, 203-205
Traveling sales person problem, 390-39'7

algorithm,
B&B,393
cutting plane.396

subtour.390
tour.390

Tree. definition of. 214
Trim loss problem. _56

Triple operatíon.229
Trvo-person zero-sum same 532
T\r,o-phase method.98. See a/so M-method

U
Unbounded solution in LP 109
Unit worth of a resource. See Dual prices
Uniform distribution. 468
Unrestricted variable, 73
Upper-bounded variables. 305
Utilitv functions.524
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v
Value of game,533
Variables, types of:

artificial,94
basic,78
blnary,373
deviational,348
integer,361
nonbasic,78
slack,72
surplus,72
unbounded,109
unrestricted,75

Variance of a random variab]'e,4'70471,
Vectors,765

Iinear indepe ndelce, 292, 7 66
Vogel approximation method, 180-182

W
WaitingJine models. See Queuing models
Waiting time distribution, 606
Warm-up period, see Transient period
Weak duality theory, 323
Wilson's economic lot size. See EOQ.
Workforce size model using DP,415

Z
Zero-one integer problem, conversion ío,373
Zero-sum game,532

I
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