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CHAPTER 18

Simulation Modeling

Simulation is the next best thing to observing a real system. It allows us to collect perti-
nent information about the behavior of the system with the passage of time.
Simulation is not an optimization technique. Rather, it is used to estimate the measures
of performance of a modeled system.

Modern simulation typically deals with situations that can be described in the
context of a waiting line. This is not a limitation on the use of simulation because prac-
tically any operational situation can be viewed in some form as a waiting line. This is
the reason simulation has enjoyed tremendous applications in communication net-
works, manufacturing, inventory control, consumer behavior, economic forecasting,
biomedical systems, and war strategies and tactics.

A forerunner to present-day simulation is the Monte Carlo technique, a scheme
that is aimed at estimating stochastic or deterministic parameters based on random
sampling. The main difference between the two techniques is that in Monte Carlo the
time element is not a pertinent factor. Examples of Monte Carlo applications include
estimation of the area under a curve or, more generally, evaluation of multiple inte-
grals, estimation of the constant 7 (= 3.14159), and matrix inversion.

Simulation is a statistical experiment, and hence its output must be interpreted by
appropriate statistical tests. This important point is emphasized throughout the chapter.

MONTE CARLO SIMULATION

This section uses an example to demonstrate the Monte Carlo technique. The objective
of the example is to emphasize the statistical nature of the simulation experiment.

Example 18.1-1
We will use Monte Carlo sampling to estimate the area of a circle whose equation is
=17+ —-2¢=25

The radius of the circle is » = 5 cm, and its center is x, ) =(1,2).
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FIGURE 18.1

Monte Carlo estimation of the area of a circle (=4,-3) (6,-3)

The procedure for estimating the area requires enclosing the circle “snugly” in a
square whose side equals the diameter of the circle as shown in Figure 18.1. The corner
points are determined from the geometry of the square.

The estimation of the area of the circle is based on the assumption that all the
points in the square are equally likely to occur. Thus, if out of a random sample of n
points in the square, m points are within the circle, then

( Estimate of the > - m < Area of ) m

area of the circle / ~ 1 \ the square ) S, (10 X 10)

To ensure that all the points in the square are equally likely to occur, we represent
the coordinates x and y of a point in the square by the following uniform distributions:

Al =15 -4 =x=6

1
f2@)=ﬁ’_3sys7

A sampled point (x, y) based on the distribution fi(x) and fy(y) guarantees that all
points in the square are equally likely to be selected.

The procedure for determining a sample (x, y) starts with generating independent
0-1 random numbers and then mapping them on the (x, y)-axis. The 0-1 random num-
bers are determined using the following uniform distribution:

1, o0=z=1
flz) = {0, otherwise

Table 18.1 gives a small list of (0, 1) random numbers. These numbers are deter-
mined using special arithmetic operations that generate statistically independent val-
ues based on the uniform distribution f (z), as will be explained in Section 18.4.

Given a pair of 0-1 random numbers, R; and R,, a random point (x, y) in the square
is determined as

x=—4+[6 - (-9IR,
y=-3+[7-(-3)R,

To demonstrate the application of the procedure, consider R; = .0589 and R, = .6733.
Then

—5 4+ 16R,

x=—4 + 10R, = —4 + 10 X .0589 = —3.411
y=-3+10R, = =3 + 10 X .6733 = 3.733
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TABLE 18.1

.0589 3529 .5869 .3455 .7900 .6307
.6733 .3646 1281 4871 7698 2346
4799 7676 .2867 8111 2871 4220
.9486 .8931 8216 .8912 9534 .6991
.6139 .3919 .8261 4291 1394 9745
.5933 7876 .3866 .2302 9025 3428
9341 5199 7125 5954 .1605 .6037
1782 .6358 2108 5423 .3567 2569
3473 7472 3575 4208 .3070 0546
.5644 .8954 2926 .6975 5513 .0305

This point falls inside the circle because
(=3.411 — 1y + (3.733 — 2 = 22.46 < 25

Next, we investigate the effect of random sampling on the accuracy of estimating
the area of the circle. We can increase the reliability of the estimate by increasing the
sample size and/or using replications, the same procedures employed in ordinary sta-
tistical experiments.

Because the computations associated with each sample, though simple, are volumi-
nous and tedious, Excel template ch18Circle.xls (with VBA macros) is developed to
carry out these computations. The input data include the circle radius, 7, and its center,
(cx, cy), together with sample size, n, and the number of replications, N. The entry Steps
in cell E4 allow executing several sample sizes in the same run. Thus, if n = 30,000 and
Steps = 3, the template will automatically produce output for n = 30,000, 60,000,
90,000.

Figure 18.2 summarizes the results for Steps = 3and N = 5 replications. The exact
area is 78.54 cm? and the Monte Carlo results show that the mean estimated area for
the three sample sizes varies from A = 78.533 to A = 78.490 cm’. We note also that
the standard deviation decreases from s = 308 for n = 30,000 to s = .191 for
n = 90,000, an indication that accuracy of the results, generally, increases with the
increase in the sample size.

Note that each time you press the command button Press to Execute Monte
Carlo,new estimates are realized because Excel refreshes the random number genera-
tor to a different sequence.

Because of the random variation in the output of the experiment, it is necessary to
express the results as a confidence interval. Letting A and s be the mean and variance
of N replications, then, for a confidence level a, the confidence interval for the true
area A is

§ == N

==
VN VN M

The parameter . y_, is determined from the t-distribution tables given a confidence
level @ and N —'1 degrees of freedom (see the t-table in Appendix C). (Note that N
equals the number of replications, which is distinct from n, the sample size.) In terms
of the present experiment, we are interested in establishing the confidence interval
based on the largest sample size (ie., n = 90,000). Given N =5, A = 78.490 cm?,
and s = .191 cm?, ¢y, = 2.776, and the resulting 95% confidence interval is 78.25 <

|
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b, Replications, N =
| Sample size, n=
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FIGURE 18.2

Excel output of Monte Carlo
estimation of the area of a circle

7B

i 78.253
/s

78727

% lower conf. limit = |

. 76.263
5% upper conf, limit=_

78623

A = 78.73. (The Excel template automatically computes the 95% confidence interval.)
Note that, in general, the value of N should be at least 5 to realize reasonable accuracy in
the estimation of the confidence interval.

The discussion in Example 18.1-1 poses two questions regarding the simulation
experiment:

1. How large should the sample size, n, be?
2. How many replications, N, are needed?

There are some formulas in statistical theory for determining » and N, and both
depend on the nature of the simulation experiment as well as the desired confidence
level. However, as in any statistical experiment, the golden rule is that higher values of
n and N mean more reliable simulation results. In the end, the sample size will depend
on the cost associated with conducting the simulation experiment. Generally speaking.
however, a selected sample size is considered “adequate” if it produces a relatively
“small” standard deviation.

_ __,_.__A_
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PROBLEM SET 18.1A

1. In Example 18.2-1, estimate the area of the circle using the first two columns of the (0,1)
random numbers in Table 18.1. (For convenience, go down each column, selecting R, first
and then R,.) How does this estimate compare with the ones given in Figure 18.2?

2. Suppose that the equation of a circle is
=3P+ +2°=16
(a) Define the corresponding distributions f(x) and f(), and then show how a sample
point (x, y) is determined using the (0, 1) random pair Ry, R,).
(b) Use the Excel template to estimate the area given n = 100,000 and N = 10. Then
compute the associated 95% confidence interval,

3. Use Monte Carlo sampling to estimate the area of the lake shown in Figure 18.3. Base the
estimate on the first two columns of (0,1) random numbers in Table 18.1.

Miles

0 1 2 3 4 5 6 7  FIGURE 18.3
Miles Lake map for Problem 3, Set 18.1a

. 4. Consider the game in which two players, Jan and Jim, take turns in tossing a fair coin. If
F . the outcome is heads, Jim gets $10 from Jan. Otherwise, Jan gets $10 from Jim.

F © (a) How is the game simulated as a Monte Carlo experiment?

— (b) Run the experiment for 5 replications of 10 tosses each to determine Jan’s pay. Use
the first five columns of the (0,1) random numbers in Table 18.1, with each column
corresponding to one replication.

(¢c) Establish a 95% confidence interval on Jan’s winnings.
(d) Compare the confidence interval in (c) with Jan’s expected theoretical winnings.
5. Consider the following definite integral:

{ 1xza’x

| both (a) Develop the Monte Carlo experiment to estimate the integral.

Soncs (b) Use the first four columns in Table 18.1 to evaluate the integral based on 4 replica-
pes of tions of size 5 each. Compute a 95% confidence interval, and compare it with the
epend exact value of the integral.

aking 6. Simulate five wins or losses of the following game of craps: The player rolls two fair dice.
If the outcome sum is 7 or 11, the player wins $10. Otherwise, the player records the
resulting sum (called point) and keeps on rolling the dice until the outcome sum matches
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the recorded point, in which case the player wins $10.If a 7 is obtained, the player loses
$10.

7. The lead time for receiving an order can be 1 or 2 days, with equal probabilities. The
demand per day assumes the values 0, 1, and 2 with the respective probabilities of .2,.7,
and .1. Use the random numbers in Table 18.1 (starting with column 1) to estimate the
joint distribution of the demand and lead time. From the joint distribution, estimate the
pdf of demand during lead time. (Hint: The demand during lead time assumes discrete
values from 0 to 4.)

8. Consider the Buffon needle experiment. A horizontal plane is ruled with parallel lines
spaced D cm apart. A needle of length d cm (d < D)is dropped randomly on the plane.
The objective of the experiment is to determine the probability that either end of the
needle touches or crosses one of the lines. Define

h = Perpendicular distance from the needle center to a (parallel) line
§ = Inclination angle of the needle with a line

(a) Show that the needle will touch or cross a line only if
hsésine,OShSQ,OSGSw
2 2
(b) Design the Monte Carlo experiment, and provide an estimate of the desired proba-
bility.
(¢) Use Excel to obtain 4 replications of size 10 each of the desired probability.
Determine a 95% confidence interval for the estimate. Assume D = 20 cm and

d = 10cm.
(d) Prove that the theoretical probability is given by the formula
_2d
P=%D

(e) Use the result in (c) together with this formula in (d) to estimate .

TYPES OF SIMULATION

The execution of present-day simulation is based generally on the idea of sampling
used with the Monte Carlo method. It differs in that it is concerned with the study of
the behavior of real systems as a function of time. Two distinct types of simulation
models exist.

1. Continuous models deal with systems whose behavior changes continuously
with time. These models usually use difference-differential equations to describe the
interactions among the different elements of the system. A typical example deals with
the study of world population dynamics.

2. Discrete models deal primarily with the study of waiting lines, with the objec-
tive of determining such measures as the average waiting time and the length of the
queue. These measures change only when a customer enters or leaves the system. At all
other instants, nothing from the standpoint of collecting statistics occurs in the system.
The instants at which changes take place occur at discrete points in time, giving rise to
the name discrete event simulation.

18.

18.



18.3 Elements of Discrete Event Simulation 645

ses This chapter presents the basics of discrete event simulation, including a
description of the components of a simulation model, collection of simulation statis-
tics, and the statistical aspect of the simulation experiment. The chapter also empha-
sizes the role of the computer and simulation languages in the execution of simulation
models.

PROBLEM SET 18.2A

- 1. Categorize the following situations as either discrete or continuous (or a combination of

) both). In each case, specify the objective of developing the simulation model.

(@) Orders for an item arrive randomly at a warehouse. An order that cannot be filled
immediately from available stock must await the arrival of new shipments.

(b) World population is affected by the availability of natural resources, food production,
environmental conditions, educational level, health care, and capital investments.

(¢) Goods arrive on pallets at a receiving bay of an automated warehouse. The pallets
are loaded on a lower conveyor belt and lifted through an up-elevator to an upper
conveyor that moves the pallets to corridors. The corridors are served by cranes that
pick up the pallets from the conveyor and place them in storage bins.

. 2. Explain why you would agree or disagree with the following statement: “Most discrete

event simulation models can be viewed in some form or another as queuing systems con-

sisting of sources from which customers are generated, queues where customers may wait,
and facilities where customers are served.”

18.3  ELEMENTS OF DISCRETE EVENT SIMULATION

This section introduces the concept of events in simulation and shows how the statis-
tics of the simulated system are collected.

18.3.1 Generic Definition of Events

All discrete-event simulations describe, directly or indirectly, queuing situations in
mplung which customers arrive, wait in a queue if necessary, and then receive service before
udy of they depart the system. In general, any discrete-event model is composed of a network
plation of interrelated queues.

Given that a discrete-event model is in reality a composite of queues, collection
of simulation statistics (e.g., queue length and status of the service facility) need only
take place when a customer arrives or leaves the facility. This means that two principal
events control the simulation model: arrivals and departures. These are the only two
Is with instants in time at which we need to examine the system. At all other instants, no

changes affecting the statistics of the system take place.

. al Example 18.3-1

Metalco Jobshop receives two types of jobs: regular and rush. All jobs are processed on
two consecutive machines with ample buffer areas. Rush jobs always assume nonpre-
emptive priority over regular jobs. Identify the events of the situation.




646 Chapter 18 Simulation Modeling
FIGURE 18.4 STTTTSC. e T T T ~o = >
i N / L vad i X s
Example of the occurrence T f .
of simulation events on the T T T Time
time scale Event 1 Event2 Event3 Event 4 Event 5

This situation consists of two tandem queues corresponding to the two machines.
At first thought, one may be inclined to identify the events of the situation as follows:

All: A regular job arrives at machine 1.
A21: A rush job arrives at machine 1.
D11: A regular job departs machine 1.
D21: A rush job departs machine 1.

Al2: A regular job arrives at machine 2.
A22: A rush job arrives at machine 2.
D12: A regular job departs machine 2.
D22: A rush job departs machine 2.

In reality, we only have exactly two events: an arrival of a (new) job at the shop
and a departure of a (completed) job from a machine. First notice that events D11 and
A12 are actually one and the same. The same applies to D21 and A22. Next, in discrete
simulation we can use one event (arrival or departure) for both types of jobs and sim-
ply “tag” the event with an attribute that identifies the job type as either regular or
rush. (We can think of the attribute in this case as a personal identification number and,
indeed, it is.) Given this reasoning, the events of the model reduce to (1) an arrival A
(at the shop) and (2) a departure D (from a machine). The actions associated with the
departure event will depend on the machine at which they occur.

Having defined the basic events of a simulation model, we show how the model is
executed. Figure 18.4 gives a schematic representation of typical occurrences of events
on the simulation time scale. After all the actions associated with a current event have
been performed, the simulation advances by “jumping” to the next chronological
event. In essence, the execution of the simulation occurs at the instants at which the
events occur.

How does the simulation determine the occurrence time of the events? The arrival
events are separated by the interarrival time (the interval between successive arrivals),
and the departure events are a function of the service time in the facility. These times
may be deterministic (e.g., a train arriving at a station every 5 minutes) or probabilistic
(e.g., the random arrival of customers at a bank). If the time between events is deter-
ministic, the determination of their occurrence times is straightforward. If it is proba-
bilistic, we use a special procedure to sample from the corresponding probability
distribution. This point is discussed in the next section.

PROBLEM SET 18.3A

1. Identify the discrete events needed to simulate the following situation: Two types of jobs
arrive from two different sources. Both types are processed on a single machine, with pri-
ority given to jobs from the first source.

2. Jobs arrive at a constant rate at a carousel conveyor system. Three service stations are
spaced equally around the carousel. If the server is idle when a job arrives at the sta-

18.
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tion, the job is removed from the conveyor for processing. Otherwise, the job contin-
F— ues to rotate about the carousel until a server becomes available. A processed job is
e stored in an adjacent shipping area. Identify the discrete events needed to simulate
this situation.
3. Cars arrive at a two-lane, drive-in bank, where each lane can house a maximum of four
cars. If the two lanes are full, arriving cars seek service elsewhere. If at any time one lane
L. is at least two cars longer than the other, the last car in the longer lane will jockey to the
S last position in the shorter lane. The bank operates the drive-in facility from 8:00 A.M. to
it 3:00 PM. each workday. Define the discrete events for the situation.
4. The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all its
pupils. Students arrive at the dispensing window every 30 seconds. It takes 18 seconds to
receive the lunch tray. Map the arrival-departure events on the time scale for the first five

pupils.

18.3.2 Sampling from Probability Distributions

Randomness in simulation arises when the interval, 7, between successive events is
probabilistic. This section presents three methods for generating successive random
samples (t = t;, t,, ...) from a probability distribution 1.

1. Inverse method.
2. Convolution method.
3. Acceptance-rejection method.

The inverse method is particularly suited for analytically tractable probability density
functions, such as the exponential and the uniform. The remaining two methods deal
with more complex cases, such as the normal and the Poisson. All three methods are
rooted in the use of independent and identically distributed uniform (0, 1) random
numbers.

Inverse Method. Suppose that it is desired to obtain a random sample x from the
(continuous or discrete) probability density function f(x). The inverse method first
determines a closed form expression of the cumulative density function F(x) =
Py = x}, where 0 < F(x) < 1, for all defined values of y. Given R is a random value
obtained from a uniform (0, 1) distribution, and assuming that F~! is the inverse of E
the steps of the method are as follows:

Step1. Generate the (0, 1) random number, R.
Step 2. Compute the desired sample, x = F(R),

Figure 18.5 illustrates the procedures for both a continuous and a discrete ran-
fiobs dom distribution. The uniform (0, 1) random value R, is projected from the vertical
yith pri- F(x)-scale to yield the desired sample value X; on the horizontal scale.
The validity of the proposed procedure rests on showing that the random vari-
pns are able z = F (x)is uniformly distributed in the interval 0 < z = 1, as the following theo-
e sta- rem proves.
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Theorem 18.3-1. Given the cumulative density function F(x) of the random variable
X, —00 = x = 00, the random variable z = F(x), 0 = z = 1, has the following
uniform 0-1 density function:

gz)=1,0=z=1

Proof. The random variable is uniformly distributed if, and only if,
Pz=Z}y=2720=7Z=<1
This result applies to F(x) because
Plz=Zy=PlR)=<Z}=Px=F 2} = FIF (2] = Z

Additionally,0 = Z = 1because0 = P{z = Z} = 1.

Example 18.3-2 (Exponential Distribution)

The time, ¢, between customers arrivals at a facility is represented by an exponential
distribution with mean E{f} = ; time units—that is,

fO =re™1>0

Determine a random sample ¢ from f (%).
The cumulative density function is determined as

Fi) = {[)\e_“dx =1—-e™Mt>0

Setting R = K{), we can solve for ¢, which yields

- —(%)111(1 ~R)

Because 1 — R is the complement of R, we may replace In(1 — R) with In(R).

In terms of simulation, the result means that arrivals are spaced ¢ time units apart.
For example, given A = 4 customers per hour and R = .9, the time period until the
next arrival occurs is computed as

H= —<%>ln(1 —.9) = .577 hour = 34.5 minutes

The values of R used to obtain successive samples must be selected randomly from
a uniform (0, 1) distribution. We will show in Section 18.4 how these (0, 1) random val-
ues are generated during the course of the simulation.
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PROBLEM SET 18.3B

1. In Example 18.3-2, suppose that the first customer arrives at time 0. Use the first three
random numbers in column 1 of Table 18.1 to generate the arrival times of the next three
customers and graph the resulting events on the time scale.

2. Uniform Distribution. Suppose that the time needed to manufacture a part on a
machine is given by the following uniform distribution:

f(t)=bia,astsb

Determine an expression for the sample ¢ given the random number R.

3. Jobs are received randomly at a one-machine shop. The time between arrivals is €xpo-
nential with a mean of 2 hours. The time needed to manufacture a job is uniform
between 1.1 and 2 hours, Assuming that the first job arrives at time 0, determine the
arrival and departure time for the first five jobs using the (0, 1) random numbers in col-
umn 1 of Table 18.1.

4. The demand for an expensive spare part of a passenger jet is 0, 1,2, or 3 units per month
with probabilities .2, .3, .4, and -1, respectively. The airline maintenance shop starts opera-
tion with a stock of 5 units and will bring the stock level back to 5 units immediately after
it drops below 3 units.

(a) Devise the procedure for determining demand samples.

(b) How many months will elapse until the first replenishment occurs? Use successive
values of R from the first column in Table 18.1.
5. In asimulation situation, TV units are inspected for possible defects. There is an 80%
chance that a unit will pass Inspection, in which case it is sent to packaging. Otherwise, the
unit is repaired. We can represent the situation symbolically in one of two ways.

E. goto REPAIR/.2, PACKAGE/.S
S goto PACKAGE/.8, REPAIR/.2

These two representations appear equivalent. Yet, when a given sequence of (0,1) ran-
dom numbers is applied to the two representations, different decisions (REPAIR or
PACKAGE) may result. Explain why.

6. A player tosses a fair coin repeatedly until a head occurs. The associated payoff is 2",
where 7 is the number of tosses until a head comes up.

(a) Devise the sampling procedure of the game.
(b) Use the random numbers in column 1 of Table 18.1 to determine the cumulative pay-
off after two heads occur.

7. Triangular Distribution. In simulation, the lack of data may make it impossible to deter-
mine the probability distribution associated with a simulation activity. In most of these
situations, it may be easy to describe the desired variable by estimating its smallest, most
likely, and largest values. These three values are sufficient to define a triangular distribu-

the tion, which can then be used as a “rough cut” estimation of the real distribution.

(a) Develop the formula for sampling from the following triangular distribution whose

parameters are a, b, and ¢, where a < b < ¢:

2x — a)
al =17 e

- (¢ = b)c —ay

o
IA
=
IA
o
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(b) Generate three samples from a triangular distribution with parameters (1, 3,7) using
the first three random numbers in column 1 of Table 18.1.

8. Consider a probability distribution that consists of a rectangle flanked on the left and
right sides by two symmetrical right triangles. The respective ranges for the triangle on
the left, the rectangle, and the triangle on the right are [a, b], [b, c], and [c, d],

a < b < ¢ < d.Each triangle has the same height as the rectangle.

(a) Develop a sampling procedure

(b) Determine five samples with (a, b, ¢, d) = (1, 2, 4, 6) using the first five random
numbers in column 1 of Table 18.1.

9. Geometric Distribution. Show how a random sample can be obtained from the follow-
ing geometric distribution:

f@)=pl—-py,x=0,1,2, ...

The parameter x is the number of (Bernoulli) failures until a success occurs, and p is the
probability of a success,0 < p < 1. Generate five samples for p = .6 using the first 5 ran-
dom numbers in column 1 of Table 18.1.

10. Weibull Distribution. Show how a random sample can be obtained from the Weibull dis-
tribution whose pdf is defined as

f(x) — aB—axa—le—(x/B)“, x>0
where o > 0 is the shape parameter,and 8 > 0 is the scale parameter.

Convolution Method. The idea of the convolution method is to express the desired
sample as the statistical sum of other easy-to-sample random variables. Typical among
these distributions are the Erlang and the Poisson whose sample can be obtained from
the exponential distribution samples.

Example 18.3-3 (Erlang Distribution)

The m-Erlang random variable is defined as the statistical sum (convolutions) of m
independent and identically distributed exponential random variables. Let y represent
the m-Erlang random variable; then

y=y1+y2+ e +ym

where y;, i = 1, 2, ..., m, are independent and identically distributed exponential
random variables whose probability density function is defined as

fo)=re™,y,>0,i=1,2, ..., m
From Example 18.3-2, the ith exponential sample is

Thus, the m-Erlang sample is computed as
y= —(%){m(zel) +In(R) + ... + In(R,)}

_G)ln(Rle ...R,)
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To illustrate the use of the formula, suppose that m = 3,and N = 4 events per hour.
The first 3 random numbers in column 1 of Table 18.1 yield R,R,R; = (.0589)(.6733)
(:4799) = .0190, which yields

y = —=()In(.019) = .991 hour

Example 18.3-4 (Poisson Distribution)

Section 17.3.1 shows that if the distribution of the time between the occurrence of suc-
cessive events is exponential, then the distribution of the number of events per unit
time must be Poisson, and vice versa. We use this relationship to sample the Poisson
distribution.

Assume that the Poisson distribution has a mean value of \ events per unit time.
Then the time between events is exponential with mean % time units. This means that a
Poisson sample, n, will occur during ¢ time units if, and only if,

Period until event n occurs =< ¢t < Period until event n + 1 occurs
This condition translates to
ht+tht o, =st<ti+b6+ ..t,,,n>0
0=t<t,n=0
where 1, i =12, ..., n,is a sample from the exponential distribution with mean %

From the result in Example 18.3-3, we have

_<%>ln(R1R2...Rn) =< —<%>IH(R1R2--.R,1+1), n>0

0=r< —G\)ln(Rl), n=20
which reduces to
RR,..R,ze™>RR,..R,..,n>0
l=e™>R,n=0

To illustrate the implementation of the sampling process, suppose that \ = 4
events per hour and that we wish to obtain a sample for a period ¢ = .5 hour. This gives
e ™M= 1353, Using the random numbers in column 1 of Table 18.1, we note that
R, = .0589is less than ¢ ™ = .1353. Hence, the corresponding sample isn = 0.

Example 18.3-5 (Normal Distribution)

The Central Limit Theorem (see Section 12.4.4) states that the sum (convolution) of n
independent and identically distributed random variables becomes asymptotically nor-
mal as n becomes sufficiently large. We use this result to generate samples from normal
distribution with mean p and standard deviation o.

Define

x=R1+R2+... + R

n
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The random variable is asymptotically normal by the Central Limit Theorem. Given
that the uniform (0, 1) random number R has a mean of } and a variance of 75, it follows
that x has a mean of 5 and a variance of ;5. Thus, a random sample, y, from a normal dis-
tribution with mean . and standard deviation o, N(, o), can be computed from x as

A7)
y=pto
Vi

In practice, we take n = 12 for convenience, which reduces the formula to

y =i+ ofx — 6)

To illustrate the use of this method, suppose that we wish to generate a sample
from N(10, 2) (mean p = 10 and standard deviation o = 2). Taking the sum of the
first 12 random numbers in columns 1 and 2 of Table 18.1, we get x = 6.1094. Thus,
y = 10 + 2(6.1094 — 6) = 10.2188.

The disadvantage of this procedure is that it requires generating 12 random num-
bers for each normal sample, which is computationally inefficient. A more efficient
procedure calls for using the transformation

x =V =2In(R))cos(27R,)

Box and Muller (1958) prove that x is a standard N(0, 1). Thus, y = w + ox will pro-
duce a sample from N, o). The new procedure is efficient because Box and Muller
additionally prove that the preceding formula will produce another N(0, 1) sample
simply by replacing cos(2wR,) with sin(2wR;). This means that two random numbers, R,
and R,, will generate two N(0, 1) samples.

To illustrate the implementation of the Box-Muller procedure to the normal distri-
bution N(10, 2), the first two random numbers in column 1 of Table 18.1 yield the fol-
lowing N(0, 1) samples:

¥, = V=21n(.0589)cos(2m X .6733) ~ —1.103
X = V—=2In(.0589)sin 2w X .6733) ~ —2.109
Thus, the corresponding N(10,2) samples are
y; = 10 + 2(—1.103) = 7.794
y, = 10 + 2(—2.109) = 5.782

PROBLEM SET 18.3C"

1. In Example 18.3-3, compute an Erlang sample, given m = 4 and A = 5 events per hour.

2. In Example 18.3-4, generate a Poisson samples during a 1-hour period given that the
mean of the Poisson is 5 events per hour.

3. In Example 18.4-5, generate two samples from N(8, 1) by using both the convolution
method and the Box-Muller method.

4. Jobs arrive at Metalco jobshop according to a Poisson distribution, with a mean of six jobs
per day. Received jobs are assigned to the five machining centers of the shop on a strict

IFor all the problems of this set, use the random numbers in Table 18.1 starting with column 1.
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rotational basis. Determine one sample of the interval between the arrival of jobs at the
first machine center.

5. The ACT scores for the 1994 senior class at Springdale High are normal, with a mean of
27 points and a standard deviation of 3 points. Suppose that we draw a random sample of
six seniors from that class. Use the Box-Muller method to determine the mean and stan-
dard deviation of the sample.

6. Psychology professor Yataha is conducting a learning experiment in which mice are
trained to find their way around a restricted maze. The base of the maze is square. A
mouse enters the maze at one of the four corners and must find its way through the maze
to exit at the same point where it entered. The design of the maze is such that the mouse
must pass by each of the remaining three corner points exactly once before it exits. The
multipaths of the maze connect the four corners in a strict clockwise order. Professor
Yataha estimates that the time the mouse takes to reach one corner point from another is
uniformly distributed between 10 and 20 seconds, depending on the path it takes.
Develop a sampling procedure for the time a mouse spends in the maze.

7. In Problem 6, suppose that once a mouse makes an exit from the maze, another mouse
instantly enters. Develop a sampling procedure for the number of mice that exit the maze
in 5 minutes.

8. Negative Binomial. Show how a random sample can be determined from the negative
binomial whose distribution is given as

fo)=Cp = pyx=0,1,2, ...

where x is the number of failures until the rth success occurs in a sequence of inde-
pendent Bernoulli trials and p is the probability of success, 0 < p < 1. (Hint: The nega-
tive binomial is the convolution of independent geometric samples. See Problem 9,

Set 18.3b.)

Acceptance-Rejection Method. The acceptance-rejection method is designed for
complex pdfs that cannot be handled by the preceding methods. The general idea of
the method is to replace the complex pdf f(x) with a more analytically manageable
“proxy” pdf (x). Samples from h(x) can then be used to sample the original pdf f(x).

Define the majorizing function g(x) such that it dominates f(x) in its entire
range—that is,

80) = f(x), —00 < x < o0
Next, define the proxy pdf, h(x), by normalizing g(x) as
__ 8
S gty

The steps of the acceptance-rejection method are thus given as

h(x) —00 < x < 00

Step 1. Obtain a sample x = x,; from A(x) using the inverse or the convolution
method.

Step 2. Obtain a (0,1) random number R.

Step3. IfR =< ﬁ{% accept x; as a sample from f (x). Otherwise, discard X and return
to step 1.
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The validity of the method is based on the following equality:
P{x = a|x = x;is accepted, —00 < x; < oo} = [a f)dy, —o00 < a <

This probability statement states that the sample x = x; that satisfies the condition of
step 3 in reality is a sample from the original pdf f(x), as desired.

The efficiency of the proposed method is enhanced by the decrease in the rejec-
tion probability of step 3. This probability depends on the specific choice of the
majorizing function g(x) and should decrease with the selection of a g(x) that “major-
izes” f(x) more “snugly.”

Example 18.3-6 (Beta Distribution)

Apply the acceptance-rejection to the following beta distribution:
fx)y=6x(1—x),0=x=1

Figure 18.6 depicts f(x) and a majorizing function g(x).

1.5 / ______________ f(x)

1.0~
FIGURE 18.6
Majorizing function, g(x), for the beta
distribution, f(x) 0 1.0 Y

The height of the majorizing function g(x) equals the maximum of f(x), which
occurs at x = .5.Thus, the height of the rectangle is f(.5) = 1.5. This means that

g)=150=x=1
The proxy pdf A(x), also shown in Figure 18.6, is computed as
b
) = 8() _ 15
Areaunderg(x) 1 X 1.5

The following steps demonstrate the procedure using the (0, 1) random sequence
in Table 18.1.

=1,0=x=1

Step1. R = .0589 gives the sample x = .0589 from h(x).
Step2. R = .6733.

Step 3. Because ﬁ%% = 332 = 2217 is less than R = .6733, we accept the sample
X = .0589.

To obtain a second sample, we continue as follows:

Step1. Using R = .4799, we get x = .4799 from h(x).
Step 2. R = .9486.
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Step 3. Because L3755 = .9984 is larger than R = .9486, we reject x = .4799 as a
valid beta sample. This means that the steps must be repeated again with
“fresh” random numbers until the condition of step 3 is satisfied.

The efficiency of the acceptance-rejection method is enhanced by selecting a
majorizing function g(x) that “jackets” f(x) as tightly as possible while yielding an ana-
lytically tractable proxy A(x). For example, the method will be more efficient if the rec-
tangular majorizing function g(x) in Figure 18.5 is replaced with a step-pyramid
function (see Problem 2, Set 18.3d for an illustration). The larger the number of steps,
the more tightly g(x) will majorize f(x), and hence the higher the probability of accept-
ing a sample. However, a “tight” majorizing function generally entails additional com-
putations which, if excessive, may offset the savings resulting from increasing the
probability of acceptance.

PROBLEM SET 18.3D

1. In Example 18.3-6, continue the steps of the procedure until a valid sample is obtained.
Use the (0, 1) random numbers in Table 18.1 in the same order in which they are used in
the example.

2. Consider the beta pdf of Example 18.3-6. Determine a two-step pyramid majorizing func-
tion g(x) with two equal jumps each of height > = .75. Obtain one beta sample based on
the new majorizing function using the same (0,1) random sequence in Table 18.1 that was
employed in Example 18.3-6. The conclusion, in general, is that a tighter majorizing func-
tion will increase the probability of acceptance. Observe, however, that the amount of the
computations associated with the new function is larger.

3. Determine the functions g(x) and h(x) for applying the acceptance-rejection method to
the following function:

sin(x) + cos(x
(x)=\()2 <),0Sng.

Use the (0, 1) random numbers from column 1 in Table 18.1 to generate two samples
from f(x). [Hint: For convenience, use a rectangular g(x) over the defined range of fx).]
4. The interarrival time of customers at HairKare is described by the following distribution:
ki
fil) = ’E 12=¢r=20

The time to get a haircut is represented by the following distribution:
k;
£ = P B8=r=22

The constant &, and k, are determined such that fi(t) and £(z) are probability density func-
tions. Use the acceptance-rejection method (and the random numbers in Table 18.1) to
determine when the first customer will leave HairKare and when the next customer will
arrive. Assume that the first customer arrives at 7 = 0.
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GENERATION OF RANDOM NUMBERS

Uniform (0, 1) random numbers play a key role in sampling from distributions. True
(0,1) random numbers can only be generated by electronic devices. However, because
simulation models are executed on the computer, the use of electronic devices to gen-
erate random numbers is much too slow for that purpose. Additionally, electronic
devices are activated by laws of chance, and hence it will be impossible to duplicate the
same sequence of random numbers at will. This point is important because debugging,
verification, and validation of the simulation model often require duplicating the same
sequence of random numbers.

The only practical way for generating (0, 1) random numbers for use in simula-
tion is based on arithmetic operations. Such numbers are not truly random because
they can be generated in advance. It is thus more appropriate to refer to them as
pseudorandom numbers.

The most common arithmetic operation for generating (0, 1) random numbers is
the multiplicative congruential method. Given the parameters u,, b, ¢, and m, a
pseudorandom number R, can be generated from the formulas:

u, = (bu,  + cmod(m), n = 1,2, ...

ul‘l
R,=—yn=12, ..
m
The initial value u is usually referred to as the seed of the generator.
Variations of the multiplicative congruential method that improve the quality of
the generator can be found in Law and Kelton (2000).

Example 18.4-1

Generate three random numbers based on the multiplicative congruential method
using the following initial values:b = 9, ¢ = 5, yy = 11,and m = 12.

u, =09 x11 +5)m0d12=8,R1=%=.6667
u2=(9><8+5)m0d12=5,R2=15—2=.4167
u3=(9><5+5)m0d12=2,R3=%=.1667

For convenience, the Excel template chl8RandomNumberGenerator.xls is
designed to carry out the multiplicative congruential calculations. Figure 18.7 provides
the sequence associated with the parameters of this example. Observe carefully that
the cycle length is exactly 4, after which the sequence repeats itself. The conclusion
here is that the choice of ug, b, ¢, and m is critical in determining the (statistical) quality
of the generator and its cycle length. Thus, “casual” implementation of the congruential
formula is not advisable. Instead, one must use a reliable and tested generator.
Practically all commercial software are equipped with dependable random number
generators.
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ndorm numbers:

B 1 0 EEBGT

iz 2 0. A1EGT

13 3 _D.1BEE7

14 4 091667

Ef g 0 EEBE7

15 5 0. 41667

1z il 0. 18667 |

15 = 091667 FIGURE 18.7

12 = 0.66667 Eycel random numbers output for the data of
20 10 041667

Example 18.4-1

PROBLEM SET 18.4A

1. Use Excel template ch18RandomNumberGenerator.xls to observe the change in the
cycle length of the generator. Use the following sets of parameters and compare the
results with those in Example 18.4-1:

b=17,¢c=111,u,=7, m = 103

2. Find a random number generator for your computer, and use it to generate 1000 zero-one
random numbers. Histogram the resulting values (using Microsoft histogram tool, see
Section 12.5) and visually convince yourself that the obtained numbers reasonably follow
the (0, 1) uniform distribution. Actually, to test the sequence properly, you would need to
apply the following tests: chi-square goodness of fit (see Section 12.6), runs test for inde-
pendence, and correlation test (see Law and Kelton [2000] for details).

MECHANICS OF DISCRETE SIMULATION

This section details how typical statistics are collected in a simulation model. The vehi-
cle of explanation is a single queue model. Section 18.5.1 uses a numeric example to
detail the actions and computations that take place in a single-server queuing simula-
tion model. Because of the tedious computations that typify the execution of a simula-
tion model, Section 18.5.2 shows how the single-server model is modeled and executed
using Excel spreadsheet.

Manual Simulation of a Single-Server Model

The interarrival time of customers at HairKare Barbershop is exponential with a mean of
15 minutes. The shop is operated by one barber, and it takes between 10 and 15 minutes,
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uniformly distributed, to complete a haircut. Customers are served on a first-in, first-out
(FIFO) basis. The objective of the simulation is to compute the following measures of
performance:

1. The average utilization of the shop.
2. The average number of waiting customers.
3. The average time a customer waits in queue.

The logic of the simulation model can be described in terms of the actions associ-
ated with its arrival and departure events.

Arrival Event.

1. Generate and store chronologically the arrival time of the next customer
(= current simulation time + interarrival time).

2. If the facility (barber) is idle
(a) Start service and declare the facility busy. Update the facility utilization statistics.

(b) Generate and store chronologically the departure time of the customer
(= current simulation time + service time).

3. If the facility is busy, place the customer in the queue and update the queue statistics.

Departure Event.

1. If the queue is empty, declare the facility idle. Update the facility utilization
statistics.

2. If the queue is not empty
(a) Select a customer from the queue, and place it in the facility. Update the
queue and facility utilization statistics.

(b) Generate and store chronologically the departure time of the customer
(= current simulation time + service time).

From the data of the problem, the interarrival time is exponential with mean 15
minutes, and the service time is uniform between 10 and 15 minutes. Letting p and ¢
represent random samples of interarrival and service times, then, as explained in
Section 18.3.2, we get

p = —15In(R) minutes, 0 = R = 1
g =10 + SRminutes, 0 = R =1

For the purpose of this example, we use R from Table 18.1, starting with column
1. We also use the symbol T to represent the simulation clock time. We further assume
that the first customer arrives at 7 = 0 and that the facility starts empty.

Because the simulation computations are typically voluminous and tedious, the
simulation is limited to the first 5 arrivals only. The example is designed to cover all
possible situations that could arise in the course of the simulation. Later in the section
we introduce the Excel template ch18SingleServerSimulator.xls, which allows you to
experiment with the model without the need to carry out the computations manually.
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out Arrival of Customer 1at 7 = 0, Generate the arrival of customer 2 at
- T=0+p, =0+ [~15In(.0589)] = 42.48 minutes

Because the facility is idle at 7 = 0, customer 1 starts service immediately. The depar-
ture time is thus computed as

T=0+¢q =0+ (10 +5 X .6733) = 13.37 minutes

The chronological list of future events is thus given as:

Time, T Event
13.37 Departure of customer 1
42.48 Arrival of customer 2

Departure of Customer 1 at T = 13.37. Because the queue is empty, the facility is
declared idle. At the same time, we record that the facility has been busy between
- T = 0and T = 13.37 minutes. The updated list of future events becomes

Time, T Event

42.48 Arrival of customer 2

Jon Arrival of Customer 2 at T = 42.48. Customer 3 will arrive at
T = 42.48 + [~15In(4799)] = 53.49 minutes

- Because the facility is idle, customer 2 starts service and the facility is declared busy.
The departure time is

- T =4248 + (10 + 5 X .9486) = 57.22 minutes

The list of future events is updated as

! Time, T Event
n 53.49 Arrival of customer 3
57.22 Departure of customer 2

Arrival of Customer 3 at T = 53.49, Customer 4 will arrive at

- T = 53.49 + [~15In(.6139)] = 60.81 minutes

e Because the facility is currently busy (until 7 = 57.22), customer 3 is placed in queue
at T' = 53.49.The updated list of future events is

all Time, T Event
~ §7.22 Departure of customer 2
60.81 Arrival of customer 4
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Departure of Customer 2 at T = 57.22. Customer 3 is taken out of the queue to start
service. The waiting time is
W5 = 57.22 — 53.49 = 3.73 minutes
The departure time is
T = 5722 + (10 + 5 X .5933) = 70.19 minutes

The updated list of future events is

Time, T Event
60.81 Arrival of customer 4
70.19 Departure of customer 3

Arrival of Customer 4 at T = 60.81. Customer 5 will arrive at
T = 60.81 + [—15In(.9341)] = 61.83 minutes

Because the facility is busy until 7 = 70.19, customer 4 is placed in the queue. The
updated list of future events is

Q
Time, T Event
61.83 Arrival of customer 5
70.19 Departure of customer 3
Arrival of Customer 5 at T = 61.83. The simulation is limited to 5 arrivals only,
hence customer 6 arrival is not generated. The facility is still busy, hence the customer
is placed in the queue at T = 61.83. The updated list of events is
Faci
Time, T Event
70.19 Departure of customer 3

Departure of Customer 3 at T = 70.19. Customer 4 is taken out of the queue to start
service. The waiting time is

W, = 70.19 — 60.81 = 9.38 minutes
The departure time is
T =70.19 + [10 + 5 X .1782] = 81.08 minutes

The updated list of future events is

Time, T Event

81.08 Departure of customer 4
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Departure of Customer 4 at T = 81.08. Customer 5 is taken out of the queue to start
service. The waiting time is

Ws = 81.08 — 61.83 = 19.25 minutes
The departure time is

T = 81.08 + (10 + 5 X .3473) = 92.82 minutes

The updated list of future events is

Time, T Event

92.82 Departure of customer 5

Departure of Customer 5 at T = 92.82. There are no more customers in the system
(queue and facility), and the simulation ends.

Figure 18.8 summarizes the changes in the length of the queue and the utilization
of the facility as a function of the simulation time.

Queue length FIGURE 18.8

Changes in queue length and
facility utilization as a function
of simulation time, T

| | |
10 20 30

Facility utilization

— Gy —><— g3 —f< g4 < g5

A,=5034

80

20 30 40 50 60 70 90

The queue length and the facility utilization are known as time-based variables
because their variation is a function of time. As a result, their average values are com-
puted as

Average value of a _ Area under curve
time-based variable Simulated period

Implementing this formula for the data in Figure 18.8, we get

Average queue | _ A+ Ay 3236 _
( length ) T 0282 T 928 .349 customer
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= 686 barber

92.82 9282

Average facility ) _ As + A4 _ 6371
utilization

The average waiting time in the queue is an observation-based variable whose
value is computed as

Average value of an _ _ Sum of observations
observation-based variable Number of observations

Examination of Figure 18.8 reveals that the area under the queue-length curve actually
equals the sum of the waiting time for the three customers who joined the queue;
namely,

W, + W, + W+ W, + Ws=0+0+ 373 +9.38 + 19.25 = 32.36 minutes
The average waiting time in the queue for all customers is thus computed as

W, = ¥ = 6.47 minutes

PROBLEM SET 18.5A

1. Suppose that the barbershop of Section 18.5.1 is operated by two barbers, and customers
are served on a FCFS basis. Suppose further that the time to get a haircut is uniformly
distributed between 15 and 30 minutes. The interarrival time of customers is exponential,
with a mean of 10 minutes. Simulate the system manually for 75 time units. From the
results of the simulation, determine the average time a customer waits in queue, the aver-
age number of customers waiting, and the average utilization of the barbers. Use the ran-
dom numbers in Table 18.1. 18.5

2. Classify the following variables as either observation-based or time-based.
(a) Time to failure of an electronic component.
(b) Inventory level of an item.
(¢) Order quantity of an inventory item.
(d) Number of defective items in a lot.
(e) Time needed to grade test papers.
(f) Number of cars in the parking lot of a car-rental agency.

3. The following table represents the variation in the number of waiting customers in a
queue as a function of the simulation time.

Simulation time, T (hr) No. of waiting customers

0=T=3
3<T=4
4<T=6
6<T=17
7<T=10
100<T=12
12<T=18
18<T=20
20< T =25

N WNDO~NRFRO
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Compute the following measures of performance:
(a) The average length of the queue.
(b) The average waiting time in the queue for those who must wait.

4. Suppose that the barbershop of Example 18.5-1 is operated by three barbers. Assume
further that the utilization of the servers (barbers) is summarized as given in the follow-

ing table:
Simulation time, T (hr) No. of busy servers

0<T=10 0
10<T=20 1
20<T=30 2
30<T=35 1
35 < T =40 0
40 < T=60 1
60 <T=170 2
0<T=75 3
75<T=80 2
80 < T =90 1
90 < T =100 0

Determine the following measures of performance:
(a) The average utilization of the facility.
(b) The average idle time of the facility.

18.5.2 Spreadsheet-Based Simulation of the Single-Server Model

The presentation in Section 18.5.1 shows that simulation computations are typically
tedious and voluminous. Thus, the use of the computer to execute simulation models is a
must. This section develops a spreadsheet-based model for the single-server model. The
objective of the development is to reinforce the ideas introduced in Section 18.5.1. Of
course, a single-server model is a simple situation, and for this reason it can be modeled
readily in a spreadsheet environment. Other situations require more intensive modeling
effort, which is facilitated by available simulation packages (see Section 18.7).

The presentation in Section 18.5.1 shows that the simulation model of the single-
server facility requires two basic elements:

1. A chronological list of the model’s events.
2. A graph that keeps track of the changes in facility utilization and queue length.

These two elements remain essential in the development of the spreadsheet-based
(indeed, any computer-based) simulation model. The difference is that the implemen-
tation is effected in a manner that is compatible with the use of the computer. As in
Section 18.5.1, customers are served in order of arrival (FIFO).

Figure 18.9 provides the Excel template ch18SingleServerSimulator.xls. The
input data allow representing the interarrival and service time in one of four ways: con-
stant, exponential, uniform, and triangular. The triangular distribution is useful in that
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FIGURE 18.9

Excel output of a single server simulation model

it can be used as a rough initial estimate of any distribution, simply by providing three
estimates, a, b, and c, that represent the smallest, most likely, and the largest values of
the interarrival or service time. The only other information needed to drive the simula-
tion is the length of the simulation run, which, in this model, is specified by the number
of arrivals that can be generated in the model.

The spreadsheet calculations reserve one row for each arrival. The interarrival
and service times for each arrival are generated from the input data. The first arrival is
assumed to occur at 7 = 0. Because the facility starts idle, customer starts service
immediately. Thus,

Departure time |\ _ ( Arrival time Service time
of customer 1 of customer 1 of customer 1

=0+ 1435 =1435

Arrival time _ Arrival time Interarrival time
of customer 2 of customer 1 of customer 1

=0+ 1515 =15.15
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To determine the departure time of any customer i, we use the following formula
Departure time | _ Arrival time Departure time Service time
.| = max . s . *+ .
of customer i of customer i of customer i — 1 of customer i
The formula says that a customer cannot start service until the facility becomes avail-
able. To illustrate the use of this formula in Figure 18.9, we have

Departure time of customer 3 = max{18.89, 26.41} + 14.86 = 41.25

We now turn our attention to collecting the statistics of the model. First, note that
for customer i, the waiting time in queue, W, (i), and in the entire system, W, (i), are
computed as

. Departure time Arrival time Service time
W, () = )= )= .
7 of customer i of customer i of customer i

W, (i) = Departure time \ [ Arrival time
s of customer i of customer i

Next, it may appear that computing the remaining statistics of the model necessitate
tracking the changes in facility utilization and in queue length (as we did in Section
18.5.1). Fortunately, the calculations are simplified by two observations we made in
Section 18.5.1 and explained in Figure 18.8:

1. Area under facility utilization curve = Sum of service times of all arrivals
2. Areaunder queue length curve = Sum of waiting times of all arrivals

To explain this point, Excel output in Figure 18.9 computes three sums:
Sum of service times = 248.66
Sum of W, = 513.14
Sum of W, = Sum of W, + Sum of service times

= 761.81 (=~ 248.66 + 513.14)
Given that the last arrival (customer 20) departs at 7 = 252.64, it follows that

Average facility | _ 248.66 9842
utilization 25264
Average queue ) _ 513.14 — 203
length 252.64 ’

Percent idleness of the facility is computed as (1 — .9842) X 100 = 1.575%.
The remainder of the statistics are calculated in a straightforward manner: namely,

Average waiting | _ Sum of W, _ 51314 _ 25.66
time in queue Number of arrivals 20 '
Average system | _ Sum of W, _ 761.81 _ 38.00

time Number of arrivals 20 %
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The Excel template is designed for a maximum of 500 arrivals. Also, you can
obtain different simulation samples by pressing F9 or by changing any of the input
data cells.

Another spreadsheet was developed for simulating multiserver models (chl8
MultiServerSimulator.xls). The design of the template is based on the same ideas used
in the single-server case. However, the determination of the departure time is not as
straightforward and, hence, requires the use of VBA macros.

PROBLEM SET 18.5B

1. Using the input data in Section 18.5.1, run the Excel simulator for 10 arrivals and graph
the changes in facility utilization and queue length as a function of the simulation time.
Verify that the areas under the respective curves equal the sum of the service times and
the sum of the waiting times, respectively.

2. Simulate the M/M/1 model for 500 arrivals given the arrival rate X\ = 4 customers per
hour and the service rate . = 6 departures per hour. Run 5 replications (by refreshing
the spreadsheet—pressing F9) and determine a 95% confidence interval for all the mea-
sures of performance of the model. Compare the results with the steady-state theoretical
values of the M/M/1 model.

3. Television units arrive on a conveyor belt every 11.5 minutes for inspection at a single-
operator station. Detailed data for the inspection station are not available. However, the
operator estimates that it takes 9.5 minutes “on the average” to inspect a unit. Under
worst conditions, the inspection time does not exceed 15 minutes, and in certain units
inspection time may be as low as 9 minutes.

(a) Use the Excel simulator to simulate the inspection of 200 TV units.
(b) Based on 5 replications, estimate the average number of units awaiting inspection
and the average utilization of the inspection station.

METHODS FOR GATHERING STATISTICAL OBSERVATIONS

Simulation is a statistical experiment, and its output must be interpreted using
proper statistical inference tools (e.g., confidence intervals and hypothesis testing).
To accomplish this task, the observations of the simulation experiment must satisfy
three conditions:

1. Observations are drawn from stationary (identical) distributions.
2. Observations are sampled from a normal population.
3. Observations are independent.

It so happens that, in the strict sense, the simulation experiment does not satisfy
any of these conditions. Nevertheless, we can render these conditions statistically
viable by restricting the manner in which the simulation observations are gathered.

First, we consider the question of stationarity. Simulation output is a function of
the length of the simulated period. The initial period produces erratic behavior and is
usually referred to as the transient or warm-up period. When the output stabilizes, the

Measure of performance
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system operates under steady state. Unfortunately, there is no way to predict the start
point of steady state in advance. In general, a longer simulation run has better chance
of reaching steady state. This point is demonstrated in Example 18.1-1 where the accu-
racy of estimating the area of a circle by Monte Carlo increases with the sample size.
Thus, nonstationarity can be accounted for by using a sufficiently large sample size.

Next, we consider the requirement that simulation observations must be drawn
from a normal population. This requirement is realized by using the Central Limit
Theorem (see Section 12.4.4), which states that the distribution of the average of a
sample is asymptotically normal regardless of the parent population from which the
sample is drawn. The Central Limit Theorem is thus the main tool we use for satisfying
the normal distribution assumption.

The third condition deals with the independence of the observations. The nature
of the simulation experiment does not guarantee independence among successive sim-
ulation observations. However, by using sample average to represent a simulation
observation, we can alleviate the problem of lack of independence. This is particularly
true when we increase the time base used to compute the sample average.

Having discussed the peculiarities of the simulation experiment and ways to cir-
cumvent them, we present the three most common methods for collecting observations
in simulation:

1. Subinterval method
2. Replication method
3. Regenerative (or cycles) method

18.6.1 Subinterval Method

Figure 18.10 illustrates the idea of the subinterval method. Suppose that the simula-

tion is executed for T time units (e, runlength = T) and that it is desired to collect n

observations. The subinterval method first truncates the initial transient period and

then subdivides the remainder of the simulation run into n equal subintervals (or

batches). The average of the desired measure of performance (e.g., queue length or

§ waiting time in queue) within each subinterval is then used to represent a single
observation. The truncation of the initial transient period implies that no statistical
data are collected during the period.

5 Transient period Batch1 | Batch2 Batch n FIGURE 18.10
g Collecting simulation data using the
g subinterval method
L
=
Q
N
%x A...-——ﬁg_,\r.—._,\__.
2
=
3
(9]
=
7()* T

Simulation time
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The advantage of the subinterval method is that the effect of the transient (non-
stationary) conditions is mitigated, particularly for those observations that are col-
lected toward the end of the simulation run. The disadvantage of the method is that
successive batches with common boundary conditions are necessarily correlated. The
effect of correlation can be alleviated by increasing the time base for each batch.

Example 18.6-1

Figure 18.11 shows the change in queue length in a single queue model as a function of

the simulation time. The simulation run length is 7 = 35 hours, and the length of the 18.6
transient period is estimated to equal 5 hours. It is desired to collect 5 observations—

that is, n = 5. The corresponding time base for each batch thus equals @;—5> =6

hours.

Queue
length Q

Transient . Batch 1 Batch 2 Batch 3 . Batch 4 Batch 5
L perlOd T T T T T 1

— W
I

Simulation time

FIGURE 18.11

Change in queue length with simulation time in Example 18.6-1

Let Q, represent the average queue length in batch i. Because the queue length is a
time-based variable, we have
A
Qi=7,z=1,2, vy S
where A, is the area under the queue length curve associated with batch (observation)
i,and t is the time base per batch. In the present example, t = 6 hours.
The data in Figure 18.11 produce the following observations:

Observation i 1 2 3 4 5 18.6.
A, 14 10 11 6 15
0, 2.33 1.67 1.83 1.00 2.5
Sample mean = 1.87 Sample standard deviation = .59

The sample mean and variance can be used to compute a confidence interval, if desired.
The computation of the sample variance in Example 18.6-1 is based on the following
familiar formula:
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d 2
> — nx?
=

5= n—1

This formula is only an approximation of the true variance because it ignores the effect
of autocorrelation between the successive batches. The exact formula can be found in
Law and Kelton (2000, pp. 249-253).

Replication Method

In the replication method, each observation is represented by an independent simula-
tion run in which the transient period is truncated, as illustrated in Figure 18.12. The
computation of the observation averages for each batch is the same as in the subinter-
val method. The only difference is that the standard variance formula is applicable
because the batches are not correlated.

§ Batch 1 Batch 2 Batch n
]
g N —— S ——————

1\

£

[

o

3

)

=3

&

Q

=

T T T

FIGURE 18.12

Collecting simulation data using the replication method

The advantage of the replication method is that each simulation run is driven by
a distinct (0, 1) random number stream, which yields observations that are truly statis-
tically independent. The disadvantage is that each observation may be biased by the
initial effect of the transient conditions. Such a problem may be alleviated by making
the run length sufficiently large.

Regenerative (Cycle) Method

The regenerative method may be regarded as an extended case of the subinterval
method. The motivation behind the new method is that it attempts to reduce the effect
of autocorrelation that characterizes the subinterval method by requiring similar start-
ing conditions for each batch. For example, if the variable we are dealing with is the
queue length, each batch would start at an instant where the queue length is zero.
Unlike the subinterval method, the nature of the regenerative method may result in
unequal time bases for the different batches.
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Although the regenerative method may reduce autocorrelation, it has the disad-
vantage of yielding a smaller number of batches for a given run length. This follows
because we cannot predict when a new batch will start or how long a batch will last.
Under steady-state conditions, however, we should expect the starting points for the
successive batches to be more or less evenly spaced.

The computation of the average for batch i in the regenerative method is gener-
ally defined as the ratio of two random variables a; and b;,—that is, x; = 3. The defini-
tions of a; and b; depend on the variable being computed. Spemflcally, if the variable is
time based, then a; would represent the area under the curve and b; would equal the
associated time base. If the variable is observation based, then a; would be the total
sum of the observations within batch i and b; would be the associated number of
observations.

Because x; is the ratio of two random variables, an unbiased estimate of the sam-
ple average can be shown to be

|

n
where
n—1)(na—a
yi:@—g—),i=1,2, ..‘,n
b nb — b,
2“:‘
g = 2=
n
>bi
Ezizl
n

In this case, a confidence interval is based on the mean and standard deviation of y..

Example 18.6-2

Figure 18.13 represents the number of busy servers in a single facility with three paral-
lel servers. The length of the simulation run is 35 time units, and the length of the tran-

Busy
servers
Transient
perlod Batch 1 . Batch2 Batch 3 . Batch 4
T
3=
2
'C I_I_LI I_I_I_I
Slmulanon time
FIGURE 18.13

Changes in the number of busy servers as a function of time in Example 18.6-2
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sient period is 4 time units. It is desired to estimate the average utilization of the facil-
ity based on the regenerative method.

After truncating the transient period, Figure 18.13 yields four batches with the
common characteristic of starting with all three servers idle. The associated values of a
and b, are given in the following table:

Batch i a; b;

1 12 9

2 6 5

3 10 10

4 6 7

Averages a =850 b=175
Based on these data, we have

4 x85 (4—1)><(4><8.5—a,-)_439 102 — 3q;
Yi= 7975 4 X775 — b, - 31 - b,

These computations can be automated readily using Excel template chl8
Regenerative.xls. Figure 18.14 provides the associated output.

115632754 j=| T riuRe 1814

7 VErSAR Yl = 0731 Excel calculations of

DD Mg i Y L0GTS] Bt etaionor

] 7| DBBTO%677 Std Dev yi=|  02243]  ovservasons bused on e
L = | — regenerative method

PROBLEM SET 18.6A

1. In Example 18.6-1, use the subinterval method to compute the average waiting time in
the queue for those who must wait.

2. In asimulation model, the subinterval method is used to compute batch averages. The
transient period is estimated to be 100, and each batch has a time base of 100 time units
as well. Using the following data that provide the waiting times for customers as a func-
tion of the simulation time, estimate the 95% confidence interval for the mean waiting
time.
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18.7

Time interval Waiting times
0-100 10,20,13,14,8,15,6,8
100-200 12,30,10,14,16
200-300 15,17,20,22
300400 10,20, 30, 15,25,31
400-500 15,17,20,14,13
500-600 25,30,15

3. In Example 18.6-2, suppose that the start point for each observation is the point in time
where all the servers have just become idle. Thus, in Figure 18.13, these points correspond
to t = 10,17,24, and 33. Compute the 95% confidence interval for the utilization of the
servers based on the new definition of the regenerative points.

4. In asingle-server queuing situation, the system is simulated for 100 hours. The results of
the simulation show that the server was busy only during the following time intervals: (0,
10), (15,20), (25, 30), (35, 60), (70, 80), and (90, 95). The length of the transient period is
estimated to be 10 hours.

(a) Define the observation start point needed to implement the regenerative method.

(b) Compute the 95% confidence interval for the average utilization of the server based
on the regenerative method.

(¢) Apply the subinterval method to the same problem using a sample size n = 5.
Compute the corresponding 95% confidence interval, and compare it with the one
obtained from the regenerative method.

SIMULATION LANGUAGES

Execution of simulation models entails two distinct types of computations: (1) file
manipulations that deal with the chronological storage and processing of model
events, and (2) arithmetic and bookkeeping computations associated with generation
of random samples and collection of model statistics. The first type of computation
involves extensive logic development in list processing, and the second type entails
tedious and time-consuming calculations. The nature of these computations makes the
computer an essential tool for executing simulation models and, in turn, prompts the
development of special computer simulation languages for performing these computa-
tions conveniently and efficiently.
Available discrete simulation languages fall into two broad categories:

1. Event scheduling
2. Process oriented

In event scheduling languages, the user details the actions associated with the occurrence
of each event, in much the same way they are given in Example 18.5-1. The main role of
the language in this case is (1) automation of sampling from distributions, (2) storage and
retrieval of events in chronological order, and (3) collection of model statistics.
Process-oriented languages use blocks or nodes that can be linked together to
form a network that describes the movements of transactions or entities (i.e., cus-
tomers) in the system. For example, the three most prominent blocks/nodes in any
process simulation language are a source from which transactions are created, a queue
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where they can wait if necessary, and a facility where service is performed. Each of
these blocks/nodes is defined with all the information needed to drive the simulation
automatically. For example, once the interarrival time for the source is specified, a
process-oriented language automatically “knows” when arrival events will occur. In
effect, each block/node of the model has standing instructions that define how and
when transactions are moved in the simulation network.

Process-oriented languages are internally driven by the same actions used in
event-scheduling languages. The difference is that these actions are automated to
relieve the user of the tedious computational and logical details. In a way, we can
regard process-oriented languages as being based on the input-output concept of the
“black box™ approach. This essentially means that process-oriented languages trade
modeling flexibility for simplicity and ease of use.

Prominent event-scheduling languages include SIMSCRIPT, SLAM, and
SIMAN. Over the years, these languages have evolved to include process-oriented
capabilities. All three languages allow the user to write (a portion of) the model in
higher-level language, such as FORTRAN or C. This capability is necessary to allow

The oldest process-oriented language is GPSS. This language, which was first
developed in the early 1960s, has since evolved to accommodate new modeling needs
of complex systems. To use this language effectively, the user must master the “inner
works” of some 80 different blocks, Despite its long history, GPSS still possesses some
modeling peculiarities that are difficult to justify. An example of these peculiarities is

Several modern commercial packages currently dominate the simulation market,
including Arena, AweSim, and GPSS/H, to mention only a few. These packages use

Some users prefer to write simulation models 1n such general programming languages
as C, Basic, and FORTRAN,

PROBLEM SET 18.8A2

1. Patrons arrive randomly at a three-clerk post office. The interarrival time is exponential
with a mean of 5 minutes. The time a clerk spends with a patron is exponential with a
mean of 10 minutes. All arriving patrons form one queue and wait for the first available

-
*Work these problems using a simulation language of your choice, or use BASIC,FORTRAN, or C.
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free clerk. Run a simulation model of the system for 480 minutes to determine the
following:

(a) The average number of patrons waiting in the queue.
(b) The average utilization of the clerks.

(¢) Compare the simulation results with those of the M/M/c queuing model (Chapter 17)
and with the spreadsheet ch18MultiServerSimulator.xls.

2. Television units arrive for inspection on a conveyor belt at the constant rate of 5 units per
hour. The inspection time takes between 10 and 15 minutes, uniformly distributed. Past
experience shows that 20% of inspected units must be adjusted and then sent back for
reinspection. The adjustment time is also uniformly distributed between 6 and 8 minutes.
Run a simulation model for 480 minutes to compute the following:

(a) The average time a unit takes until it passes inspection.
(b) The average number of times a unit must be reinspected before it exits the system.

3. A mouse is trapped in a maze and desperately “wants out.” After trying between 1 and 3
minutes, uniformly distributed, there is a 30% chance that it will find the right path.
Otherwise, it will wander around aimlessly for between 2 and 3 minutes, uniformly dis-
tributed, and eventually end up where it started, only to try once again. The mouse can
“try freedom” as many times as it pleases, but there is a limit to everything. With so much
energy expended in trying and retrying, the mouse is certain to expire if it does not make
it within a period that is normally distributed, with a mean of 10 minutes and a standard
deviation of 2 minutes. Write a simulation model to estimate the probability that the
mouse will be free. For the purpose of estimating the probability, assume that 100 mice
(replications) will be processed by the model.

4. In the final stage of automobile manufacturing, a car moving on a transporter is situated
between two parallel workstations to allow work to be done on both the left and right
sides of the car simultanecously. The operation times for the left and right sides are uni-
form between 15 and 20 minutes and 18 and 22 minutes, respectively. The transporter
arrives at the stations area every 20 minutes. Simulate the process for 480 minutes to
determine the utilization of the left and right stations.

5. Cars arrive at a one-bay car wash facility where the interarrival time is exponential, with
a mean of 10 minutes. Arriving cars line up in a single lane that can accommodate at most
five waiting cars. If the lane is full, newly arriving cars will go elsewhere. It takes between
10 and 15 minutes, uniformly distributed, to wash a car. Simulate the system for 960 min-
utes, and estimate the time a car spends in the facility.
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CHAPTER 19

Markovian Decision Process

uch This chapter applies dynamic programming to the solution of a stochastic decision
process with a finite number of states. The transition probabilities between the states
are described by a Markov chain.! The reward structure of the process is described by a
matrix that represents the revenue (or cost) associated with movement from one state
to another. Both the transition and revenue matrices depend on the decision alterna-
tives available to the decision maker. The objective of the problem is to determine the

optimal policy that maximizes the expected revenue over a finite or infinite number of
stages.

19.1  SCOPE OF THE MARKOVIAN DECISION PROBLEM:
with THE GARDENER PROBLEM

We use an example to present the details of the Markovian decision process. The
example paraphrases several important applications in the areas of inventory, replace-
ment, cash flow management, and regulation of water reservoir capacity.

Every year, at the beginning of the gardening season (March through Septem-
ber), a gardener uses a chemical test to check the soil condition. Depending on the
outcomes of the tests, productivity for the new season falls into one of three states:
(1) good, (2) fair, and (3) poor.

Over the years, the gardener observed that prevailing weather conditions during
winter (October through February) play an important role in affecting the soil condi-
tion, leaving it the same or making it worse, but never improving it. In this regard, last
year’s soil condition is an important factor in current year’s productivity. Using the gar-
dener’s test data, the transition probabilities over a 1-year period from one productiv-
ity state to another is represented by the following Markov chain:

'A review of Markov chains is given in Section 19.5.
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State of the
system next
year

—N—

1 2 3

Stateof |1/{2 S5 3

P! = the systemy 2|0 .5 .5
thisyear |3\0 0 1

The transition probabilities in P! indicate that the productivity for a current year can
be no better than last year’s. For example, if this year’s soil condition is fair (state 2),
next year’s productivity may remain fair with probability .5 or become poor (state 3),
also with probability .5.

The gardener can alter the transition probabilities P! through other courses of
action. Typically, fertilizer is applied to boost the soil condition, which yields the fol-
lowing transition matrix:

1 2 3

1/30 .60 .10
P°=2|.10 .60 .30
3\.05 40 .55

To put the decision problem into perspective, the gardener associates a return
function (or a reward structure) with the transition from one state to another. The
return function expresses the gain or loss during a 1-year period, depending on the
states between which the transition is made. Because the gardener has the option of
using or not using fertilizer, gain and loss vary depending on the decision made. The
matrices R! and R? summarize the return functions in hundreds of dollars associated
with the matrices P! and P? respectively.

1 2 3

1(7 6 3

R =lrll=2[0 5 1
310 0 -1

1 2 3

16 5 -1
R=[2l=2(7 4 o
36 3 -2

The elements r;?}» of R? consider the cost of applying fertilizer. For example, if the soil
condition was fair last year (state 2) and becomes poor this year (state 3), its gain will
ber3, = 0 compared withrl; = 1 when no fertilizer is used. In this regard, R gives the
net reward after the cost of the fertilizer is factored in.

What kind of a decision problem does the gardener have? First, we must know
whether the gardening activity will continue for a limited number of years or indefi-
nitely. These situations are referred to as finite-stage and infinite-stage decision prob-
lems. In both cases, the gardener uses the outcome of the chemical tests (state of the
system) to determine the best course of action (fertilize or do not fertilize) that maxi-
mizes expected revenue.

19.2
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The gardener may also be interested in evaluating the expected revenue resulting
from a prespecified course of action for a given state of the system. For example, fertil-
izer may be applied whenever the soil condition is poor (state 3). The decision-making
process in this case is said to be represented by a stationary policy.

Each stationary policy will be associated with a different transition and return
matrices, which are constructed from the matrices P!, P>, R!, and R For example, for
the stationary policy calling for applying fertilizer only when the soil condition is poor
(state 3), the resulting transition and return matrices are given as

20 50 .30 7 6 3
P=100 50 S0 ,R=(0 5 1
05 40 .55 6 3 -2

These matrices differ from P! and R! in the third rows only, which are taken directly
from P? and R?, the matrices associated with applying fertilizer.

PROBLEM SET 19.1A

1. Inthe gardener model, identify the matrices P and R associated with the stationary policy
that calls for using fertilizer whenever the soil condition is fair or poor.

2. Identify all the stationary policies for the gardener model.

19.2  FINITE-STAGE DYNAMIC PROGRAMMING MODEL

Suppose that the gardener plans to “retire” from gardening in N years. We are inter-
ested in determining the optimal course of action for each year (to fertilize or not to
fertilize) that will return the highest expected revenue at the end of N years.

Let k£ = 1 and 2 represent the two courses of action (alternatives) available to
the gardener. The matrices P* and R* representing the transition probabilities and
reward function for alternative k were given in Section 19.1 and are summarized here
for convenience.

2 5 3 7 6 3
P1=Hr}jll= 0 5 5| R1=Hr}jll= 0 5 1
0 0 1 0 0 -1
30 .60 .10 6 5 -1
P =|pil={.10 .60 30 ,R=[r}=|7 4 o
05 40 55 6 3 -2

The gardener problem is expressed as a finite-stage dynamic programming (DP)
model as follows. For the sake of generalization, define

m = Number of states at each stage (year) (= 3 in the gardener problem)

J:i) = Optimal expected revenue of stagesn, n + 1, ..., N, giveniis the
state of the system (soil condition) at the beginning of year
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The backward recursive equation relating f, and £, is

70 = max{ Sptr + G} = 12 N

where fy.(j) = 0 for allj.

A justification for the equation is that the cumulative revenue, rf + f,.1(j),
resulting from reaching state j at stage n + 1 from state i at stage n occurs with proba-
bility pj. Let

m
k= ko k
vi = iy
j=1
The DP recursive equation can be written as

fuli) = max{vi}

1) = m}flx{vf‘ + pr}fnﬂ(j)}, n=12...,.N—-1
~

To illustrate the computation of v¥, consider the case in which no fertilizer is used
(k =1).

2XT+5X6+.3%X3=53
M=0X0+5%X5+5%X1=3
WM=0X0+0X0+1X%X-1=-1

vi

Thus, if the soil condition is good, a single transition yields 5.3 for that year; if it is fair,
the yield is 3; and if it is poor, the yield is —1.

Example 19.2-1

In this example, we solve the gardener problem using the data summarized in the
matrices P!, P, R!, and R? given a horizon of 3 years (N = 3).

Because the values of v¥ will be used repeatedly in the computations, they are sum-
marized here for convenience. Recall that k = 1 represents “do not fertilize” and
k = 2 represents “fertilize.”

i % %
1 53 4.7
2 3 31
3 -1 4
Stage 3.
Optimal
vk solution

i k=1 k=2 1) kK

1 58 4.7 5.3 1
3 31 31 2
3 —1 4 4 2
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Stage 2.
Optimal
vi + PRAW) + phAQR) + ph 1) solution
i k=1 k=2 L) K
1 53+ 2X53+5x31 47+ 3X53+ .6x31 8.19 2
e +.3 % 4 =803 +.1x.4=819
2 3+0X53+ .5x31 31+.1X53+.6x31 5.61 2
+.5X.4=475 +.3X 4=561
3 -1+0x53+0x31 4+ .05%x53+.4x3]1 2.13 2
+t1X4=-56 +.5X.4=213
Stage 1.
Optimal
Vi + PRAL) + phAR) + phAG) solution
sed i k=1 k=2 fi@) K
1 53+ .2x819+ .5x561 47+ 3 X 819 + 6 X 561 10.74 2
+ .3 X213 =10.38 +.1 X213 = 10.74
2 3+0X819+ .5x561 31+ .1 X819 + 6 x 5.61 7.92 2
+.5 X213 = 6.87 +.3X213=79
3 =14+ 0X819 +0 x 5.61 4+ .05%x819+ 4 x561 423 2
+1x213 =113 +.55 X213 =423

The optimal solution shows that for years 1 and 2, the gardener should apply fertil-

izer (k" = 2) regardless of the state of the system (soil condition, as revealed by the

T chemical tests). In year 3, fertilizer should be applied only if the system is in state 2 or 3
(fair or poor soil condition). The total expected revenues for the three years are

2 £i1) = 10.74 if the state of the system in year 1 is good, fi(2) = 7.92 if it is fair, and
fiB) = 423 if it is poor.

The finite-horizon problem can be generalized in two ways. First, the transition
probabilities and their return functions need not be the same for all years. Second, a
discounting factor can be applied to the expected revenue of the successive stages so
that () will equal the present value of the expected revenues of all the stages.

The first generalization requires the return values ri and transition probabilities
p,’j to be functions of the stage, n, as the following DP recursive equation shows

fli) = max{vi}

1) = mflx{nzf“” + j;pfj'”ﬁ7+](j)}, n=12 ..,N—-1

where

m

k.on __ k.nk.n
Vit = ok i
j=1
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In the second generalization, given a (< 1) is the discount factor per year such
that D dollars a year from now have a present value of oD dollars, the new recursive
equation becomes

() = max (v}

0 = mkax{vf-‘ + apr}an(j)}, n=12,.. N-1
=

PROBLEM SET 19.2A

1. A company reviews the state of one of its important products annually and decides
whether it is successful (state 1) or unsuccessful (state 2). The company must decide
whether or not to advertise the product to further promote sales. The following matrices,
P! and P?, provide the transition probabilities with and without advertisement during any
year. The associated returns are given by the matrices R' and R” Find the optimal deci-

sions over the next 3 years.
9 1 2 -1
1 1
(3 a)m=( 3

s (T 3\ g (4 1
P‘(.z s8R =1 4

2. A company can advertise through radio, TV, or newspaper. The weekly costs of advertise-
ment on the three media are estimated at $200, $900, and $300, respectively. The company
can classify its sales volume during each week as (1) fair, (2) good, or (3) excellent. A sum-
mary of the transition probabilities associated with each advertisement medium follows.

Radio vV Newspaper
1 2 3 1 2 3 1 2 3
1{4 S5 1\ 1({7 2 1\ 1[/2 5 3
2{1 7 2 2{3 6 1|2{0 7 3
3zv1 2 7/ 3\.1 7 2/ 3\0 2 8

The corresponding weekly returns (in thousands of dollars) are

Radio TV Newspaper

400 520 600 1000 1300 1600\ [400 530 710
300 400 700 800 1000 1700| {350 450 800
200 250 500 600 700 1100/ \250 400 650

Find the optimal advertisement policy over the next 3 weeks.

3. Inventory Problem. An appliance store can place orders for refrigerators at the begin-
ning of each month for immediate delivery. A fixed cost of $100 is incurred every time an
order is placed. The storage cost per refrigerator per month is $5. The penalty for running
out of stock is estimated at $150 per refrigerator per month. The monthly demand is given
by the following pdf:

Demand x 0 1 2

p(x) 2. S 3

e e —
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The store’s policy is that the maximum stock level should not exceed two refrigerators in
any single month. Determine the following;:

(a) The transition probabilities for the different decision alternatives of the problem.

(b) The expected inventory cost per month as a function of the state of the system and
the decision alternative.

(¢) The optimal ordering policy over the next 3 months.

4. Repeat Problem 3 assuming that the pdf of demand over the next quarter changes
according to the following table:

Month
Demand, x 1 2 3
0 1 3 2
1 .5 4
2 5 2 4

INFINITE-STAGE MODEL

There are two methods for solving the infinite-stage problem. The first method calls
for evaluating all possible stationary policies of the decision problem. This is equiva-
lent to an exhaustive enumeration process and can be used only if the number of sta-
tionary policies is reasonably small. The second method, called policy iteration, is
generally more efficient because it determines the optimum policy iteratively.

Exhaustive Enumeration Method

Suppose that the decision problem has S stationary policies, and assume that P* and R®
are the (one-step) transition and revenue matrices associated with the policy,
s =1,2, ..., 8. The steps of the enumeration method are as follows.

Step 1. Compute v}, the expected one-step (one-period) revenue of policy s given
statei, i = 1, 2, ..., m.

Step 2. Compute =, the long-run stationary probabilities of the transition matrix P’
associated with policy s. These probabilities, when they exist, are computed
from the equations

ﬂSPS = 1TS
mtmt e+ 10, =1
where @' = (m}, @, - -, ™)

Step 3. Determine E, the expected revenue of policy s per transition step (period),
by using the formula

m
s 2: S8
E = s
i=1
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Step 4. The optimal policy s~ is determined such that
E" = max{E'}

We illustrate the method by solving the gardener problem for an infinite-period
planning horizon.

Example 19.3-1

The gardener problem has a total of eight stationary policies, as the following table
shows:

Stationary policy, s Action

Do not fertilize at all.

Fertilize regardless of the state.
Fertilize if in state 1.

Fertilize if in state 2.

Fertilize if in state 3.

Fertilize if in state 1 or 2.
Fertilize if in state 1 or 3.
Fertilize if in state 2 or 3.

(o IEN e NV, RN

The matrices P* and R* for policies 3 through 8 are derived from those of policies 1
and 2 and are given as

2 5 3 7 6 3
PP=(0 5 5 R'=|0 5 1
0 0 1 0 0 -1
3 6 1 6 5 -1
PP=|1 6 3 R°=|7 4 0
05 4 55 6 3 -2
3 6 1 6 5 -1
P=(0 5 5 R°=|0 5 1
0 0 1 0 0 -1
2 5 3 7 6 3
PP=(1 6 3 R'=[7 4 0
0 0 1 0 0 -1
2 5 3 7 6 3
PP=(0 5 5 R=(0 5 1
05 4 55 6 3 -2




19.3 Infinite-Stage Model 683

3 6 1 6 5 -1
PP=(1 6 3 RC=(7 4 0
0 0 1 0 0 -1
3 6 1 6 5 -1
PP=(0 5 5 R'=[(0 5 1
05 4 55 6 3 -2
2 5 3 7 6 3
P=(1 6 3 RE=|7 4 0
05 4 55 6 3 -2

The values of v¢ can thus be computed as given in the following table.

s i=1 i=2 i=3
1 53 3.0 -1.0
2 4.7 31 0.4
3 4.7 3.0 -1.0
4 93 31 -1.0
5 5:3 3.0 0.4
6 4.7 31 -1.0
7 4.7 3.0 0.4
8 53 3.1 0.4

'The computations of the stationary probabilities are achieved by using the equations
P =
mtmt e+, =1
As an illustration, consider s = 2. The associated equations are
3m + dm, + 05w, = ™
om + .6m, + Amy = m,
dmy + 3, + 557, = 3
mt mt m=1

(Notice that one of the first three equations is redundant.) The solution yields
6 2 31 2 22

2. s —
Tl = 59, T3 = 5, M3 = 55
In this case, the expected yearly revenue is

E = awivi + mhv} + w2

=@ X 47+ )X 31+ @) x 4 = 2256
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The following table summarizes w* and E° for all the stationary policies. (Although this
will not affect the computations in any way, note that each of policies 1, 3,4, and 6 has
an absorbing state: state 3. This is the reason m; = m, = 0 and w; = 1 for all these poli-
cies.)

K o 5 ™3 E

1 0 0 1 =1

2 2 a4 Z 2.256
3 0 0 1 0.4

4 0 0 1 -1

5 5 2 2 1.724
6 0 0 1 -1

7 = & 2 1.734
8 L 2 2216

Policy 2 yields the largest expected yearly revenue. The optimum long-range policy
calls for applying fertilizer regardless of the state of the system.

PROBLEM SET 19.3A

1. Solve Problem 2, Set 19.2a for an infinite number of periods using the exhaustive enu-
meration method.

2. Solve Problem 2, Set 19.2a for an infinite planning horizon using the exhaustive enumera-
tion method.

3. Solve Problem 3, Set 19.2a by the exhaustive enumeration method assuming an infinite
horizon.

19.3.2 Policy Iteration Method Without Discounting

To appreciate the difficulty associated with the exhaustive enumeration method, let us
assume that the gardener had four courses of action (alternatives) instead of two: (1)
do not fertilize, (2) fertilize once during the season, (3) fertilize twice, and (4) fertilize
three times. In this case, the gardener would have a total of 4° = 256 stationary poli-
cies. By increasing the number of alternatives from 2 to 4, the number of stationary
policies “soars” exponentially from 8 to 256. Not only is it difficult to enumerate all the
policies explicitly, but the amount of computations may also be prohibitively large. This
is the reason we are interested in developing the policy iteration method.

In Section 19.2, we have shown that, for any specific policy, the expected total
return at stage n is expressed by the recursive equation

fl)) =vi+ 2pifan(ihi=1.2, ....m
i=1
This recursive equation is the basis for the development of the policy iteration method.
However, the present form must be modified slightly to allow us to study the asymp-
totic behavior of the process. We define n as the number of stages remaining for con-
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sideration. This is in contrast with 7 in the equation, which defines stage n. The recur-
s sive equation is thus written as

m

@) =v + Zp,»jfn_l(j), i=1,2,3 ...,m
=

Note that f, is the cumulative expected revenue given that m is the number of stages
remaining for consideration. With the new definition, the asymptotic behavior of the
process can be studied by letting ) — 0.

Given that

T = (TWis Wy veey Wyy)
is the steady-state probability vector of the transition matrix P = lIp;ll and
E=av +mv, + ... +m,v,

is the expected revenue per stage as computed in Section 19.3.1, it can be shown that
for very large ,

_ £ = nE + f(i)

where f (i) is a constant term representing the asymptotic intercept of f, (i) given state i.
Because f, (i) is the cumulative optimum return for M remaining stages given state
i, and E is the expected revenue per stage, we can see intuitively why f, (i) equals nE
plus a correction factor f(i) that accounts for the specific state i. This result assumes
that  — oo,
Now, using this information, the recursive equation is written as
m
NE ) =vit Zp{n-DE+ fG)i=1,2 .., m
j=1
Simplifying this equation, we get

m

. E + f(i) - ;pi/-f(j)=v,-,i=1, 2,....m

- Here, we have m equations in m + 1 unknowns, (1), f2),..., f(m),and E.

ki As in Section 19.3.1, our objective is to determine the optimum policy that yields

. the maximum value of E. Because there are m equations in m + 1 unknowns, the opti-

R mum value of E cannot be determined in one step. Instead, a two-step iterative

his approach is utilized which, starting with an arbitrary policy, will determine a new policy
that yields a better value of E. The iterative process ends when two successive policies

sal are identical.

1. Value Determination Step. Choose arbitrary policy s. Using its associated matri-
ces P* and R’ and arbitrarily assuming f*(m) = 0, solve the equations

m

E+ 0~ 2pif(l)=vii=12 ....m
=1

n- in the unknowns £°, f¥(1), ...,and f*(m — 1). Go to the policy improvement step.
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2. Policy Improvement Step. For each state i, determine the policy ¢ that corre-
sponds to

m]flx{vf-‘ + Epf;fs(j)}, i=1,2,....,m

j=1

The values of f%(j), j = 1, 2, ..., m, are those determined in the value determi-
nation step. The resulting optimum decisions for states 1,2, ..., and m constitute
the new policy ¢ If s and ¢ are identical, 7 is optimum. Otherwise, set s = ¢ and
return to the value determination step.

Example 19.3-2

We solve the gardener problem by the policy iteration method.
Let us start with the arbitrary policy that calls for not applying fertilizer. The asso-
ciated matrices are

2 5 3 7 6 3
P=(0 5 S5 ,R=(0 5 1
0 0 1 0 0 -1

The equations of the value iteration step are
E+ f) - 2f1) — 5f2) — 3f3) = 53
E+ f(2) - 5f2) - 5f3)= 3
E + f0) - @ =-1
If we arbitrarily let f(3) = 0, the equations yield the solution
E=-1,f1)=1288,f2)=8,f3) =0

Next, we apply the policy improvement step. The associated calculations are
shown in the following tableau.

Optimal
Vi + phf(1) + phf2) + pisf(3) solution
i k=1 k=2 f(l) kK 'I
1 53+.2x128+.5x%x38 47+ 3 %1288+ .6x8 1336 2
+3x0=11876 +.1x0=1336 _
2 3+0x1288+.5x%8 31+ .1 %1288 + .6 X8 9.19 2 19.3.:
+5%x0=7 +3%x0=919
3 —1+0x1288 +0x38 4+ .05x 1288 + .48 4.24 2
+1x0=-1 +.55 X0 =424

The new policy calls for applying fertilizer regardless of the state. Because the new
policy differs from the preceding one, the value determination step is entered again.
The matrices associated with the new policy are

3 6 1 6 5 -1
P=(1 6 3 | R=|7 4 0
05 4 55 6 3 -2
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These matrices yield the following equations:

E+f(1)— 3fQ1) - 6f2) — .1f(3) = 47
E+fQ) - 1fQ) - 6f2) — 3f3) = 3.1
E + f(3) — .05f(1) — 4f2) — 55f(3) = 4

Again, letting f(3) = 0, we get the solution
E =226, f(1) = 6.75, f(2) = 3.80, f(3) = 0

The computations of the policy improvement step are given in the following tableau.

Optimal
vi+ phf() + phFQ) + pEfG) solution
i k=1 k=2 @) kK
1 53+ 2X675+.5x%3.80 47+ 3 X675+ .6 X 3.80 9.01 2
+.3X0=2855 +.1X0=901
2 3+0X675+.5x%3.80 31+ .1X675+ .6 X380 6.06 2
+.5 X0 =490 +.3 X0 =6.06
3 -1+0X6.75+0x 380 4+ .05 X675 + .4 X 3.80 2.26 2
+1X0=-1 +.55X0=226

The new policy, which calls for applying fertilizer regardless of the state, is identi-
cal with the preceding one. Thus the last policy is optimal, and the iterative process
ends. This is the same conclusion obtained by the exhaustive enumeration method
(Section 19.3.1). Note, however, that the policy iteration method converges quickly to
the optimum policy, a typical characteristic of the new method.

re PROBLEM SET 19.3B

1. Assume in Problem 1, Set 19.2a that the planning horizon is infinite. Solve the problem by
the policy iteration method, and compare the results with those of Problem 1,Set 19.3a.

2. Solve Problem 2, Set 19.2a by the policy iteration method, assuming an infinite planning
horizon. Compare the results with those of Problem 2,Set 19.3a.

3. Solve Problem 3, Set 19.2a by the policy iteration method assuming an infinite planning
horizon, and compare the results with those of Problem 3,Set 19.3a.

‘ 19.3.3 Policy Iteration Method With Discounting

The policy iteration algorithm can be extended to include discounting. Given the dis-

count factor a (< 1), the finite-stage recursive equation can be written as (see Section
19.2)

e fi()) = mkax{ Vi + aépfﬁfn—l(f)}

(Note that m represents the number of stages f0 go.) It can be proved that as § — oo
(infinite stage model), £,(i) = f(i), where f(i) is the expected present-worth (discounted)
revenue given that the system is in state i and operating over an infinite horizon. Thus the
long-run behavior of f,(i) as m — oo is independent of the value of v. This is in contrast
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with the case of no discounting where f,(i) = nE + f(i). This result should be expected
because in discounting the effect of future revenues will asymptotically diminish to zero.
Indeed, the present worth f(i) should approach a constant value as 1 — 0.

Based on this information, the steps of the policy iterations are modified as follows.

1. Value Determination Step. For an arbitrary policy s with its matrices P° and R’,
solve the m equations

) - agpfjff(f) =v,i=1,2 ..,m
=

in the m unknowns f*(1), f°Q2), ..., f(m).
2. Policy Improvement Step. For each state i, determine the policy ¢ that corre-
sponds to

m}flx{vf‘ + aEpf‘,fS(j)}, i=12,..,m
=

f%(j) is obtained from the value determination step. If the resulting policy ¢ is the
same as s, stop; ¢ is optimum. Otherwise, set s = ¢ and return to the value deter-
mination step.

Example 19.3-3

We will solve Example 19.3-2 using the discounting factor o = .6.
Starting with the arbitrary policy, s = {1, 1, 1}. The associated matrices P and R
(P! and R! in Example 19.3-1) yield the equations

Ff) = .6[.2f(1) + .5f2) + 3f(3)] = 53
@ - ol Sf@) + 53] = 3.
fG3) — 6l el = -1
The solution of these equations yields
fi=66l,f, =321 f=-25

A summary of the policy improvement iteration is given in the following tableau:

Optimal
vE+ 6lphf(1) + phf@) + pifB)] solution
i k=1 k=2 f K
1 53 + 6[2 X661 +.5x%x321 47 + 6[.3 X 6.61 + .6 X 21 6.90 2
+ .3 X =25] =661 +.1 X —2.5] = 6.90
2 3+ .6[0 X 6.61 + .5 X 3.21 31+ .6[.1 X 661 +.6 X321 42 2
+.5%x —-25] =321 + 3 X -25] =42
3 -1+ .6[0 X 6.61 + 0 x 3.21 4+ .6[.05 X 661 + .4 X321 .54 2
+1 X =25]=-25 + .55 X =2.5] = .54




The value determination step using P? and R?

ing equations:

fA) = 6 3fQ) + 6f2) + .1£(3)]
f@) - 60 A1) + .6f2) + 3f(3)]
f3) = 6L.05£(1) + 4f(2) + .55f(3)]

The solution of these equations yields

19.3

4.7
3.1
4

I

f(1) = 8.89, f(2) = 6.62, f(3) = 3.37

The policy improvement step yields the following tableau:
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689

(Example 19.3-1) yields the follow-

Optimal
vE+ 6[phf(1) + phf @ + ph@3) solution
i k=1 k=2 iy K
1 53+ .6[.2 X889+ .5X% 662 47 + 6[.3 X 8.89 + .6 X 6.62 8.96 1
+ .3 X 3.37] = 8.96 +.1 X 3.37] = 8.89
2 3+ .6[0 X 8.89 + .5 X 6.62 31+ .6[.1 X 889 + .6 X 6.62 6.62 2
+.5 X 3.37] = 6.00 +.3 %337 = 662
3 -1+ .6[0 X 8.89 + 0 X 6.62 4+ .6[.05 X 8.89 + 4 X 6.62 3.37 2

+1 X337 = 1.02

+ .55 X 3.37] = 3.37

Because the new policy (1,2, 2) differs from the
nation step is entered again using P* and R?

lowing equations:

A) =6 2fQ1) + 5f2) + 3f3)]
f2) = o[ 1f(1) + .6/2) + 3f(3)]
f(3) = 6[.05£(1) + .4£(2) + .55f(3)]

The solution of these equations yields

5.3
31
4

I

Il

f(1) = 8.97, f(2) = 6.63, f(3) = 3.38

The policy improvement step yields the following tableau:

preceding one, the value determi-
(Example 19.3-1). This results in the fol-

Optimal
vi + B[P (1) + PLFQ) + phE) solution
i k=1 k=2 1) K
1 53+ .6[2 X 897 + .5 X 6.63 4.7 + 6[.3 X 897 + .6 X 6.63 8.98 1
+ .3 X 3.38] =897 +.1 X 3.38] = 8.90
2 3+ .6[0 X897 + .5 x 6.63 31+ .6[.1 X897 + .6 x 6.63 6.63 2
+.5 X 3.38] = 6.00 + .3 X 3.38] = 6.63
3 =1+ .6[0 X 8.97 + 0 X 6.63 4+ .6[.05 X 897 + 4 X 6.63 3.37 2

+1 X 338] = 1.03

+ .55 X 3.38] = 3.37
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Because the new policy (1, 2, 2) is identical with the preceding one, it is optimal.
Note that discounting has resulted in a different optimal policy that calls for not apply-
ing fertilizer if the state of the system is good (state 3).

PROBLEM SET 19.3C

1. Repeat the problems listed, assuming the discount factor a = .9.
(a) Problem 1, Set 19.3b
(b) Problem 2, Set 19.3b
(¢) Problem 3, Set 19.3b

19.4 LINEAR PROGRAMMING SOLUTION

The infinite-state Markovian decision problems, both with discounting and without, can
be formulated and solved as linear programs. We consider the no-discounting case first.

Section 19.3.1 shows that the infinite-state Markovian problem with no discount-
ing ultimately reduces to determining the optimal policy,s”, which corresponds to

masx{zwfvﬂ P =, wt+mt .+, =1L, m=0i=12, .., m}
s&. j=1

The set S is the collection of all possible policies of the problem. The constraints of the
problem ensure that @i, i = 1, 2, ..., m,represent the steady-state probabilities of the
Markov chain P*.

The problem is solved in Section 19.3.1 by exhaustive enumeration. Specifically,
each policy s is specified by a fixed set of actions (as illustrated by the gardener prob-
lem in Example 19.3-1). The same problem is the basis for the development of the LP
formulation. However, we need to modify the unknowns of the problem such that the
optimal solution automatically determines the optimal action (alternative) k when the
system is in state i. The collection of all the optimal actions will then define 5", the opti-
mal policy.

Let

g* = Conditional probability of choosing alternative k given that the
system is in state i

The problem may thus be expressed as
m K
Maximize E = Eﬂi( qfvf)
i=1 k=1
subject to
m
’ﬂ'] = E’Tl'ipil',j = 1, 2, ves g HE
i=1
mtmt e +m,=1
g+ + - +qf=1i=12,...,m

m =0, g¢ =0, foralliand k
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Note that p;; is a function of the policy selected and hence of the specific alternatives k
of the policy.

The problem can be converted into a linear program by making proper substitu-
tions involving gf. Observe that the formulation is equivalent to the original one in
Section 19.3.1 only if g¥ = 1 for exactly one k for each i, which will reduce the sum
Ef=1 givk to vE, where k” is the optimal alternative chosen. The linear program we
develop here does account for this condition automatically.

Define

wy = mq~, for all i and k

By definition w;, represents the joint probability of state i making decision k. From
probability theory

K
™= Ewik
k=1

Hence,
WA
k _ ik
9 = g
Zk=1Wik
Thus the restriction X~ ; = 1 can be written as
m K
Wiy = 1

Also, the restriction E,Ile gc=1is automatically implied by the way we defined g~ in
terms of wy,. (Verify!) Thus the problem can be written as

m K
Maximize E = ' > viw,
F= ey

subject to

K m K
’;Wik - EEP;WI'/( =0,j=1,2, ..., m

i=1k=1

Mz
M=

Wi = 1

I
—_
=

I

1

wy=0,i=1,2, ....om; k=1,2, ....K

i

The resulting model is a linear program in Wik Its optimal solution automatically
guarantees that g¥ = 1 for one k for each . First, note that the linear program has m
independent equations (one of the equations associated with 7 = 7P is redundant).
Hence, the problem must have m basic variables. It can be shown that w;, must be
strictly positive for at least one k for each i. From these two results, we conclude that

kK _ Wik
9 = —x
Ek=1wik

can assume a binary value (0 or 1) only. (As a matter of fact the preceding result also shows
that ; = E,[f=1w,»k = wy, where k" is the alternative corresponding to wy, > 0.)
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Example 19.4-1
The following is an LP formulation of the gardener problem without discounting:

Maximize E = 53wy, + 4.Twyy + 3wy + 31wy — way + 4wy,
subject to

Wi + wip — (2w + 3wy, + dwy, + 0.5w3) =0

Wy + Wy — (5w + 6wy, + Swy + 6wy, + 4wyp) =0

wy + wy — (3w + dw + Swy + 3wy + way + 55w;5) =0

Wi twp +wy T wy Howy Fwyp =1
wy = 0, foralliand k

The optimal solution is wy; = wy, = w3 = 0 and wy, = .1017, w,, = .5254, and
ws, = .3729. This result means that g7 = g3 = g3 = 1. Thus, the optimal policy selects
alternative k =2 for i = 1,2, and 3. The optimal value of E is 4.7(.1017) +
3.1(.5254) + .4(.3729) = 2.256. The positive values of w; exactly equal the values of m;
associated with the optimal policy in the exhaustive enumeration procedure of
Example 19.3-1, which demonstrates the direct relationship between the two methods.

We next consider the Markovian decision problem with discounting. In Section
19.3.2 the problem is expressed by the recursive equation

1) = m;(ax{vf-‘ + o Dph (j)}, i=12 ..,m
j=1
These equations are equivalent to
1) = agpf-}f(j) + vk, foralliand k
=

provided that f(i) achieves its minimum value for each i. Now consider the objective
function

m
Minimize b, f(i)
i=1
where b; (> 0 for all i) is an arbitrary constant. It can be shown that the optimization of
this function subject to the inequalities given will result in the minimum value of £(i).
Thus, the problem can be written as
m
Minimize ' b; £(0)
i=1
subject to

f) — a >, pkf(j) = v, foralliand k
=1

f(i) unrestricted in sign for all i

Now the dual of the problem is

19.5
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- m K
. . k
Maximize >, > viw,
i=1k=1
subject to
K m K
k — :
Ew,-k — 0‘2 Diwa =b,j=1,2, ....m
k=1 i=1k=1

wyg =0, fori=1,2, ....m; k=1,2, ..., K

Example 19.4-2

Consider the gardener problem given the discounting factor « = .6. If we let b, =
b, = by = 1, the dual LP problem may be written as

MaXimiZC 5.3W11 + 4.7W12 + 3W12 + 3.1W22 - W31 + 4W32

+ subject to

_: ‘_—.' Wi =+ Wiy — .6[.2W11 + .3W12 + .1W22 + 0.5W32] =1
DS, Wr1 + Wy — .6[.5W11 + .6W12 =+ .5W21 + .6W22 + .4W32] =1

Bon W3 + Wiy — .6[.3W11 + .1W12 + .5W21 =+ .3W22 + W31 + .55W32] = 1
wy =0, foralliandk

The optimal solution is w;, = w,; = wy; = 0 and w;; = 1.5678, wy, = 3.3528, and
w3z = 2.8145.The solution shows that that optimal policy is (1, 2, 2).

PROBLEM SET 19.4A

1. Formulate the following problems as linear programs.
e (a) Problem1,Set 19.3b
- (b) Problem 2, Set 19.3b
(¢) Problem 3, Set 19.3b

n of 19.5  APPENDIX: REVIEW OF MARKOV CHAINS

Consider the discrete points in time {t,} for k = 1, 2, ..., and let §, be the random
variable that characterizes the state of the system at 7,. The family of random variables
{€,} forms a stochastic process. The states at time t; actually represent the (exhaustive
and mutually exclusive) outcomes of the system at that time. The number of states may
thus be finite or infinite. For example, the Poisson distribution

e—)\t()\t)n

,n=201,2, ..

represents a stochastic process with an infinite number of states. The random variable 7
represents the number of occurrences between 0 and ¢ (assuming that the system starts
at time 0). The states of the system at any time ¢ are thus givenbyn =0,1, 2, ....
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Another example is the coin tossing game with k trials. Each trial may be viewed
as a point in time. The resulting sequence of trials forms a stochastic process. The state
of the system at any trial is either a head or a tail.

This section presents a summary of a class of stochastic systems that includes
Markov processes and Markov chains. A Markov chain is a special case of Markov pro-
cesses. It is used to study the short- and long-run behavior of certain stochastic systems.

Markov Processes

The occurrence of a future state in a Markov process depends on the immediately pre-
ceding state and only on it. If t, < #, < ... < t,(n = 0, 1, 2, ...) represents points in
time, the family of random variables{£, } is a Markov process if it possesses the follow-
ing Markovian property:

P{gt,, = xn|gtn,1 = Xp—15 000> gtg = xO} = P{gt,, = xn‘gt,l,l = xn—l}

for all possible values of &, &, ..., ;.

The probability p, . = P{§, = x,|§ _, = x,_1}is called the transition probability.
It represents the conditional probability of the system being in x,, at ¢, given it was in x,,_; at
t,_,. This probability is also referred to as the one-step transition because it describes the
system between ¢,_; and ¢,. An m-step transition probability is thus defined by

px,,, Xoicii = P{gt,,”,, = xn+m|§n = xn}

Markov Chains

Let E;, j=0,1,2, ..., represent the exhaustive and mutually exclusive outcomes
(states) of a system at any time. Initially, at time #,, the system may be in any of these
states. Let aSO), j=0,1,2, ...,be the absolute probability that the system is in state E;
at t,. Assume further that the system is Markovian.

Define

Py = P{gt,, =] ‘gtn,l = i}

as the one-step transition probability of moving from state i at ¢,_; to state j at ¢,, and
assume that these probabilities are stationary over time. The transition probabilities
from state E; to state E; can be more conveniently arranged in a matrix form as follows:

Poo Po1r Po2 Po3
Pio Pu P2 P13
P=|py Pn Pn Pxn
P;o P§1 P§2 P§3

The matrix P is called a homogeneous transition matrix because all the transition
probabilities p;; are fixed and independent of time. The probabilities p; must satisfy the
conditions

Epl] = 1, foralli
i

p; = 0, foralliandj
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The transition matrix P together with the initial probabilities {a!"} associated
with the states E; completely define a Markov chain. One usually thinks of a Markov
chain as describing the transitional behavior of a system over equal intervals.
Situations exist where the length of the interval depends on the characteristics of the

system and hence may not be equal. This case is referred to as an imbedded Markov
chain.

Absolute and Transition Probabilities. Given {a(f’)} and P of a Markov chain, the
absolute probabilities of the system after a specified number of transitions are deter-
mined as follows. Let {a"} be the absolute probabilities of the system after n

transitions—that is, at £,. The general expression of {a%} in terms of {a?} and P are
computed as

1 0 0 0 0
a](») = a(1)P1j + a(z)sz + ‘1(3)[73,' toees = Eag )pij
1
Also,

i

a]@ = Eagl)p,-j = 2(;05?)Pki>lhj = ;ﬁ”( Zpki pij) = ;ag)}’fj)

where p(,%j)- = E,»pk,»pl»j is the two-step or second-order transition probability—that is,
the probability of going from state k to state J in exactly two transitions.
It can be shown by induction that

4= S Solt 7y ) = Sapy

where pg‘) is the n-step or n-order transition probability given by the recursive formula
-1
Py = 2%y
K
In general,
pg?) = Epf»’,i_m%%?), 0 <m <n, foralliand;
3

These equations are known as Chapman-Kolomogorov equations.

The elements of a higher transition matrix pr]")ll can be obtained directly by
matrix multiplication. Thus,

IpPIl = lIp;lllIp,ll = P
(3) — (2) wll = 3
Il = lp@l lIp,ll = P
and, in general,
)| = pn-1 —
lpll = PP = pr
Hence, if the absolute probabilities are defined in vector form as
a" = (@, a?, a?, o)
then

a® = gOpn
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Example 19.5-1

Consider the following Markov chain with two states,

p- (3 %)

with a® = (7, .3). Determine a®, a, and a®.
(2 8\(2 8\_(52 48
6. 4/)\6 4 36 .64
52 443 557
4 _ p2p2 —
P= P (.36 )( ) (.418 .582>

52
36

Pt — PPt = 443 557\(.443 557\ _ (.4291 5709
418 582 4284 5716

418 582
Thus,
a® = (7 3)( (32 .68)
a® = (7 3)('2‘1% ;53;) = (436 .564)
a® = (7 ,3)('3331 g;‘fg) = (4289 .5711)

The rows of P tend to be identical. Also, a® tends to be identical with the rows of
P®. This is the result of the long-run properties of Markov chains, which implies that
the long-run absolute probabilities are independent of a”. In this case the resulting
probabilities are known as the steady-state probabilities.

Classification of States in Markov Chains. In Markov chains, we may be interested in
the behavior of the system over a short period of time. This is represented by the
absolute probabilities as shown in the preceding section. An important investigation
involves the long-run behavior of the system as the number of transitions tends to
infinity. In such a case we need a systematic procedure that will predict the long-run
behavior of the system.

Irreducible Markov Chain. A Markov chain is said to be irreducible if every state E;
can be reached from every other state E; after a finite number of transitions—that is,

PO>0,i#j,1=n<o0
In this case all the states of the chain communicate.

Closed Set and Absorbing States. In a Markov process, a set C of states is said to be
closed if the system, once in one of the states of C, will remain there indefinitely. A
special example of a closed set is a single state E; with transition probability p; = 1.In
this case, E; is called an absorbing state. All the states of an irreducible chain must form
a closed set and no subset can be closed. The closed set C must also satisfy all the
conditions of a Markov chain and hence may be studied independently.
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Example 19.5-2

Consider the following Markov chain:

01 2 3
RER:
_ 0

Pl 0 1t
310 0 0 1

This chain is illustrated graphically in Figure 19.1. The figure shows that the four states
do not constitute an irreducible chain, because states 0, 1, and 2 cannot be reached
from state 3. State 3, by itself, forms a closed set, and hence it is absorbing. One can also
say that state 3 forms an irreducible chain.

FIGURE 19.1
Example of the states of a Markov chain

First Return Times. An important definition in Markov chains theory is the first
L return time. Given that the system is initially in state E;, it may return to E; for the first
time at the nth step, n = 1. The number of steps before the system returns to E;is
. called the first return time.

Let fE.]’.‘) denote the probability that the first return to E; occurs at the nth step.
m Then given the transition matrix

P = [yl
fo an expression for f E]") can be determined as follows:
= f@

Pj f I

) = £C 1
Py =17+ fip;
1S or

2) e 22 1
i =) = £'p;

By induction

n—1
be " = ) _ (m) (n—m)
fi = pj m2=1f i Pii

- The probability of at least one return to state E; is then given by
he fi= 21 fgf)

_—A S _
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Thus, the system is certain to return to j if f; = 1. In this case, if p; defines the mean
return (recurrence) time,

[o0]
= Sff

If f; < 1,it is not certain that the system will return to E; and, consequently, p; = 0.
The states of a Markov chain can be classified based on the definition of the first
return times as follows:

1. A state is transient if f; < 1 — thatis, p; = ©0.
2. A state is recurrent (persistent) if f;; = 1.
3. Arecurrent state is null if p; = 00 and nonnull if p; < oo.

4. A state is periodic with period ¢ if a return is possible only in 7, 2, 3¢, ... steps.
This means that pg') = (0 whenever # is not divisible by .

5. A recurrent state is ergodic if it is nonnull and aperiodic (not periodic).

If all the states of a Markov chain are ergodic, then the chain is irreducible. In this
case, the absolute probabilities

a® = aOpn

always converge uniquely to a limiting distribution as n — oo, where the limiting distri-
bution is independent of the initial probabilities a®.
The following theorem is now in order:

Theorem 19.5-1. All the states in an irreducible infinite Markov chain may belong to
one, and only one, of three states: transient, recurrent null, and recurrent nonnull. In
every case all the states communicate, and they have the same period. For the special case
where the chain has a finite number of states, the chain cannot consist of transient states
only nor can it contain any null states.

Limiting Distribution of Irreducible Chains. Example 19.5-1 shows that as the
number of transitions increases, the absolute probability becomes independent of the
initial distribution. This is the long-run property of Markov chains. In this section
determination of the limiting (long-run) distribution of an irreducible chain is
presented. The discussion will be restricted to the aperiodic type, because it is the only
type needed in this text.

The existence of a limiting distribution in an irreducible aperiodic chain depends
on the class of its states. Thus, considering the three classes given in Theorem 19.5-1,
the following theorem can be stated:

Theorem 19.5-2. In an irreducible aperiodic Markov chain,

(a) If all the states are transient or null, then pg‘) — 0 as n— o0 forall i and j and no
limiting distribution exists.

(b) If all the states are ergodic, then

lima = m,j=0,1,2, ...

n—o0 Z
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where m; is the limiting (steady-state) distribution. The probabilities ; exist
uniquely and are independent of a(jo). In this case, w; can be determined from the
set of equations?

m = ET";‘P:‘]‘
1
1= >m
J
The mean recurrence time for state j is then given by

1

M 'rr]»

Example 19.5-3
To determine the steady-state probability distribution in Example 19.5-1, consider
m = 2w + .6m,
™, = .8m + 4m,
mt+m =1

The solution yields , = .4286 and m, = .5714. These results are very close to the row
values of a® in Example 19.5-1.
'The mean recurrence time for states 1 and 2 are

-1 _
M11—,‘Tl—2-3

1
b = 2= =175

Example 19.5-4
Consider the following Markov chain with three states:

01 2
L1 1
0/2 4 1
P=1i !}
2o 14

This is called a doubly stochastic matrix, because
2 2
Epij = EPU =1
i=0 j=0

In such cases, the steady-state probabilities are

— - =1
Ty = Ty = T =3

*One of the equations m, = 3 /mp;; is redundant.
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PROBLEM SET 19.5A

1. Classify the following Markov chains and find their stationary distributions.

r 1 1
i 3 2
@[; i 0
3 005
qg p 0 0 O
g 0 p 0 O
®b)f{g 0 0 p Of|,pt+tg=1
g 0 0 0 p
1 0 0 0 O

2. Find the mean recurrence time for each state of the following Markov chain:

Q= D= W=
NI A= W=
il B— W=

SELECTED REFERENCES

Derman, C., Finite State Markovian Decision Processes, Academic Press, New York, 1970.
Howard, R., Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.

20.




CHAPTER 20

Classical Optimization Theory

Classical optimization theory uses differential calculus to determine points of maxima
and minima (extrema) for unconstrained and constrained functions. The methods may
not be suitable for efficient numerical computations, but the underlying theory pro-
vides the basis for most nonlinear programming algorithms (see Chapter 21).

This chapter develops necessary and sufficient conditions for determining un-
constrained extrema, the Jacobian and Lagrangean methods for problems with equal-
ity constraints, and the Karush-Kuhn-Tucker conditions for problems with inequality
constraints.

20.1  UNCONSTRAINED PROBLEMS

An extreme point of a function f(X) defines either a maximum or a minimum of the

function. Mathematically, a point X, = (xJ, ..., X0, ..., x9)is a maximum if

fXo + h) = f(Xy)
forallh = (hy, ..., h

j, ..., h,) and |hy| is sufficiently small for all j. In other words, X
is a maximum if the value of f at every point in the neighborhood of X, does not
exceed f(X,). In a similar manner, X, is a minimum if

fXo + h) = f(X,)

Figure 20.1 illustrates the maxima and minima of a single-variable function f(x) over
the interval [a,b]. The points x;, x,, x5, x,, and x, are all extrema of f(x), with x;, x;,and
Xs as maxima and x, and x, as minima. Because

f(xé) = max{f(xl)’ f(X3), f(xé)}

f(xe) is a global or absolute maximum, and fx;) and f(x;) are local or relative maxima.
Similarly, f(x,) is a local minimum and f(x,)is a global minimum.

Although x, (in Figure 20.1) is a maximum point, it differs from remaining local
maxima in that the value of f corresponding to at least one point in the neighborhood

701
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FIGURE 20.1

Examples of extreme points
for a single-variable function

20.1.1

f(x)

of x; is equal to f(x;). In this respect, x; is a weak maximum, whereas x; and x4 are
strong maxima. In general, X is a weak maximum if (X, + h) = f(X,) and a strong
maximum if (X, + h) < f(X), where h is as defined earlier.

In Figure 20.1, the first derivative (slope) of f equals zero at all extrema. This
property is also satisfied at inflection and saddle points, such as x;. If a point with zero
slope (gradient) is not an extremum (maximum or minimum), then it must be an
inflection or a saddle point.

Necessary and Sufficient Conditions

This section develops the necessary and sufficient conditions for an n-variable function
f(X) to have extrema. It is assumed that the first and second partial derivatives of f(X)
are continuous at every X.

Theorem 20.1-1. A necessary condition for X, to be an extreme point of f(X) is that
VX = 0
Proof. By Taylor’s theorem, for 0 < 6 < 1,
fXo + ) = f(Xg) = VAXgh + ;h7Hh] g

where h is as defined earlier. For sufficiently small |4/, the remainder term hHh is of
the order A hence

fXo + h) — f(Xg) = Vf(Xoh + 0() ~ VAXoh
It can be shown by contradiction that Vf(X,) must vanish at a minimum point X,,.
Otherwise if it does not, then for a specific j the following condition will hold:

9fXo) 3f(Xo)

<
ax,- G or ax]

>0




20.1  Unconstrained Problems 703

By selecting /; with appropriate sign, it is always possible to have

3/(Xo)
ax, <0

h

Setting all other h; equal to zero, Taylor’s expansion yields

fXo + h) < f(X,)

This result contradicts the assumption that X, is a minimum point. Consequently,
Vf(X,) must equal zero. A similar proof can be established for the maximization case.

Because the necessary condition is also satisfied for inflection and saddle points
the points obtained from the solution of

ViXo) =0

are referred to as stationary points. The next theorem establishes the sufficiency condi-
tions for X, to be an extreme point.

>

Theorem 20.1-2. A sufficient condition for a stationary point X, to be an extremum is
that the Hessian matrix H evaluated at X satisfy the following conditions:

1. His positive definite if X, is a minimum point.
2. His negative definite if X, is a maximum point.

Proof. By Taylor’s theorem, for 0 < § < 1,
fXo + b) = fX;) = Vf(Xoh + h"Hh|, .,
Given X, is a stationary point, then Vf(Xo) = 0 (Theorem 20.2-1). Thus,
fXo + ) = fXg) = ;h"Hh], g

If X, is a minimum point, then

fXo + h) > f(X,), h #0
Thus, for X, to be a minimum point, it must be true that

sh"Hh|, g, > 0

Given that the second partial derivative is continuous, the expression %hTHh must have
the same sign at both X, and X, + 6h. Because hTHh|Xo defines a quadratic form (see
Section A.3), this expression (and hence h"Hh| x,+on) 18 positive if, and only if, Hj,, is
positive-definite. This means that a sufficient condition for the stationary point X, to
be a minimum is that the Hessian matrix, H, evaluated at the same point is positive-
definite. A similar proof for the maximization case shows that the corresponding
Hessian matrix must be negative-definite.

Example 20.1-1
Consider the function

— 2 2 2
flx, x,, X3) =X + 2x;3 + XpX3 — XI — X5 — X3
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The necessary condition

ViXo) =0
gives
gxil=1—2x1=0
g;=x3—2x2=0
;}—2—=2+x2—2x3=0

The solution of these simultaneous equations is given by
1 2 4
Xo=(253)

To establish sufficiency, consider

o*f % %
a_x% 0Xx10Xx, 0X10X;3
2 =2 0
m=| L I o (1)
0x,0x dx5 0Xx,0x3 0 1 -2
a’f d*f a’f
0Xx30X; 0X30x; 8_x§ X,

The principal minor determinants of H|, have the values —2, 4, and —6, respectively.
Thus, as shown in Section A.3, H|, is negative-definite and X, = (%, %, ;—‘) represents a
maximum point.

In general, if H|, is indefinite, X, must be a saddle point. For nonconclusive
cases, X, may or may not be an extremum and the sufficiency condition becomes
rather involved because higher-order terms in Taylor’s expansion must be considered.

The sufficiency condition established by Theorem 20.1-2 applies to single-
variable functions as follows. Given y, is a stationary point, then

1. y,is a maximum if f'(y,) < 0.
2. y,is aminimum if f'(y,) > 0.

If in the single-variable case f"(y,) = 0, higher-order derivatives must be investi-
gated as the following theorem requires.

Theorem 20.1-3. Given y,, a stationary point of f(y), if the first (n — 1) derivatives are
zero and f™(y,) # 0, then

1. y,is an inflection point if n is odd.
2. y,is a minimum if n is even and f"(yy) > 0.
3. yois a maximum if n is even and f®(y,) < 0.
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Example 20.1-2

Figure 20.2 graphs the following two functions:

fy) =y*
gy) =y
For f(y) = y*
f)=4’=0

which yields the stationary point y, = 0. Now
FO) = 1"0) = f90) = 0, f90) = 24 > 0

Hence, y, = 0 is a minimum point (see Figure 20.2).

o |y g /]y

FIGURE 20.2
0 y Extreme points of f(y) = y*and g(y) = 3

For g(y) = y*,
g =37=0
This yields y, = 0 as a stationary point. Also
g'0)=g"(0. 8%0) = 6 #0

— Thus, y, = 01is an inflection point.

34

7

PROBLEM SET 20.1A

1. Examine the following functions for extreme points.
@ fx)=x+x
(b) flx) =x*+ x?
© flry=4*-x*+5
@ f(x) = (3x - 2P(@x - 37
(e) flx) =6x —4x> + 10
2. Examine the following functions for extreme points.
@ fX)=xi+x - 3x1x,
) fX)=2x7+x3+ 53+ 60 +x, + x3) + 2x1%,%5
3. Verity that the function

Jls, X, x3) = 25106005 — doxyx;3 — 21, + X+ X3+ 2 — 4x, + 4x,

has the stationary points (0,3, 1), (0, 1, —1),(1,2,0),(2,1,1),and (2,3, —1). Use the suffi-
ciency condition to find the extreme points.
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4. Solve the following simultaneous equations by converting the system to a nonlinear
objective function with no constraints.

X —x2=0
Xy — X1 = 2
(Hint: min f2(x;, x,) occurs at f(x;, x,) = 0.)
5. Prove Theorem 20.1-3.

20.1.2 The Newton-Raphson Method

In general, the necessary condition equations, Vf(X) = 0, may be difficult to solve
numerically. The Newton-Raphson method is an iterative procedure for solving simul-
taneous nonlinear equations. Although the method is presented here in this context, it
is actually part of the gradient methods for optimizing unconstrained functions numer-
ically (see Section 21.1.2).

Consider the simultaneous equations

fX)=0, i=12, ....,m
Let X* be a given point. Then by Taylor’s expansion
X))~ (X + VEXHX - X5, i=1,2, ....m
Thus, the original equations, f;(X) = 0, i =1, 2, ..., m,may be approximated as
fXH+ VEXHIX - XH=0,i=1,2, ....m
These equations may be written in matrix notation as
A, +BX-XhH=0

If B, is nonsingular, then

X = X — B;'A,

The idea of the method is to start from an initial point X’. By using the foregoing
equation, a new point X**! is determined from X*. The procedure ends with X" as the
solution when X" ~ X1,

A geometric interpretation of the method is illustrated by a single-variable func-
tion in Figure 20.3. The relationship between x* and x**! for a single-variable function
f(x) reduces to

st _ T
£

or

k
e = %
X X

1

The figure shows that x**! is determined from the slope of f(x) at x*, where

tan 6 = f'(x%).
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)

Tangent to f(x)
at x*

o0y

Convergence point
(solution)

FIGURE 20.3

Illustration of the iterative
process in the Newton-
Raphson Method

One difficulty with the method is that convergence is not always guaranteed
unless the function fis well behaved. In Figure 20.3, if the initial point is a, the method
will diverge. There is no easy way for locating a “good” initial point.

Example 20.1-3
To demonstrate the use of the Newton-Raphson method, consider determining the sta-
tionary points of the function
f(x) = (3x — 2(2x — 3
The equation we need to solve to determine the stationary points is f'(x) = 0, which gives
72x% — 234x% + 241x — 78 = 0

Excel template ch20NewtonRaphson.xls can be used to solve any single-variable
equation. Figure 20.4 provides the iterations for solving f'(x) = 0. The template
requires entering the following ratio in cell C3, with the variable x replaced with A3:

72x° — 234x% + 241x — 78
216x* — 468x + 241
Note that the denominator is the first derivative of the numerator, as required by the
Newton-Raphson method. We set tolerance limit A = .001 and select initial starting

point xo = 10. The tolerance limit specifies the allowable difference between x* and
x**! that signals the termination of the iterations. The method converges to x = 1.5.
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3 5 2 AFI-234AT2+241"ALT8) (2167AF - 46T AT+241)

uhrlgwtoyﬁ-ahéon One-\lafiahle Methnd
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FIGURE 20.4 7 /|
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¥ = 0 by the Rewton- 1500432 1600001, 0.000431386

Raphson Method | s

Actually, f(x) has three stationary points at x = %, x = %, and x = % The remaining

two points can be found by selecting different values for initial x,. In fact, x, = .5 and
xo = 1 should yield the missing stationary points. You are encouraged to use different
initial x, to get a feel of how the method works.

In general, the Newton-Raphson method requires making several attempts before
“all” the solutions can be found. In the present example, we know beforehand that the
equation has three roots. This will not be the case with complex or multivariable func-
tions, however.

PROBLEM SET 20.1B

1. Use ch20NewtonRaphson.xls to solve Problem 1(c), Set 20.1a.
2. Solve Problem 2(b), Set 20.1a by the Newton-Raphson method.

CONSTRAINED PROBLEMS

This section deals with the optimization of constrained continuous functions. Section
20.2.1 introduces the case of equality constraints, and Section 20.2.2 deals with inequal-
ity constraints. The presentation in Section 20.2.1 is covered for the most part in
Beightler and associates (1979, pp. 45-55).

Equality Constraints

This section presents two methods: The Jacobian and the Lagrangean. The Lagrangean
method can be developed logically from the Jacobian method. This relationship pro-
vides an interesting economic interpretation of the Lagrangean method.
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Constrained Derivatives (Jacobian) Method. Consider the problem
Minimize z = f(X)
subject to
gX) =10
where
X = (%, X3 ..., x,)

g=(818 s &)

The functions f(X) and g,(X), i = 1, 2, ..., m, are twice continuously differentiable.

The idea of using constrained derivatives is to develop a closed-form expression
for the first partial derivatives of f(X) at all points that satisfy the constraints gX)=0.
The corresponding stationary points are identified as the points at which these partial
derivatives vanish. The sufficiency conditions introduced in Section 20.1 can then be
used to check the identity of stationary points.

To clarify the proposed concept, consider f(x1, x,) illustrated in Figure 20.5. This
function is to be minimized subject to the constraint

&, %) =x,—b =0

FIGURE 20.5

Demonstration of the idea of the
VG Jacobian Method

Fx1, %)

Constrained P ! of
curve

Constrained |
minimum

s *1
{ s
s
Constraint g (X) =x, — b =0
X2
&
Xy = b
Contour of constrained
optimum objective value




710

Chapter 20 Classical Optimization Theory

where b is a constant. From Figure 20.5, the curve designated by the three points A, B,
and C represents the values of f(x;, x,) for which the constraint is always satisfied. The
constrained derivatives method defines the gradient of f(x;, x,) at any point on the
curve ABC. Point B at which the constrained derivative vanishes is a stationary point
for the constrained problem.

The method is now developed mathematically. By Taylor’s theorem, for X + AX
in the feasible neighborhood of X, we have

fX + AX) — f(X) = VAX)AX + O(Ax))
and
g(X + AX) — g(X) = Vg(X)AX + O(Ax)
As Ax; — 0, the equations reduce to
0f(X) = Vf(X)aX
and
0g(X) = VgX)oX
For feasibility, we must have g(X) = 0, 0g(X) = 0, and it follows that
0fX) — VAX)oX =0
VgX)oX =0

This gives (m + 1) equations in (n + 1) unknowns, 3 f(X) and 0X. Note that 3f(X) is a
dependent variable and, hence, is determined once 8X is known. This means that we
have m equations in » unknowns.

If m > n, at least in — n) equations are redundant. Eliminating redundancy, the
system reduces to m < n. If m = n, the solution is X = 0, and X has no feasible
neighborhood, which means that the solution space consists of one point only. The
remaining case, where m < n, requires further elaboration.

Define

X =(Y, Z)
such that

Y = (yl’ Y2y oo ym)’ Z = (Zl, 225 wees Zn—m)

The vectors Y and Z are called the dependent and independent variables, respectively.
Rewriting the gradient vectors of fand g in terms of Y and Z, we get

VAY, Z) = (Vvf, Vzf)
Ve(Y, Z) = (Vyg, V.g)
Define

Vygi
Vng
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Vz &1
C=Vg-= :
Va8
Juxm 18 called the Jacobian matrix and C,xn-m the control matrix. The Jacobian J is
assumed nonsingular. This is always possible because the given m equations are inde-
pendent by definition. The components of the vector Y must thus be selected such that
the matrix J is nonsingular.

The original set of equations in 9 f(X) and 9 X may be written as

0f(Y, Z) = Vy foY + V,foZ
and
JoY = —-CoZ

Because J is nonsingular, its inverse J™! exists. Hence,
Y= -J'Coz
Substituting for 9Y in the equation for o f(X) gives af as a function of  Z—that is,
If(Y, Z) = (V.f — VyfI'C)oZ

From this equation, the constrained derivative with respect to the independent vector
Z is given by
.Y, Z
V=B v v
9.2

where V.f is the constrained gradient vector of f with respect to Z. Thus, V.A(Y, Z)
must be null at the stationary points.

The sufficiency conditions are similar to those developed in Section 20.1. The Hes-
sian matrix will correspond to the independent vector Z, and the elements of the Hessian
matrix must be the constrained second derivatives. To show how this is obtained, let

Vof = V,f — WC

It thus follows the ith row of the (constrained) Hessian matrix is o V.fldz; Notice that
W is a function of Y and Y is a function of Z. Thus, the partial derivative of V.f with
respect to z; is based on the following chain rule:

ow;  Iw; 9 Y

9z; dy; dz;

Example 20.2-1

Consider the following problem:
fX) = xi + 3x3 + 55,42
&aX)=xx; + 25, +x2 - 11 =0
eX)=xt+2xx+x2-14=0

Given the feasible point X° = (1, 2, 3), we wish to study the variation in f(= d.f)in
the feasible neighborhood of X,
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Let
Y =(x,x;) and Z =ux,
Thus,

a_xl, 6x3

Vyf = ( of a—f> = (2x; + 5x3, 10x;x5)

of
2f = E = 6bx,
981 98
J = dx; 0x3 _(*xs X
dg, 08 2x1 + 2x,  2x3
8x1 BX3
981
c= || (2x2 + 2)
98, 2x,
8x2

Suppose that we need to estimate 9 . f in the feasible neighborhood of the feasible point
X" = (1, 2, 3) given a small change dx, = .01 in the independent variable x,. We have

peo (3 1Y'(6)o( 1 Tm\(6) . ( 28
6 6 2 -&  2)\2 —2.50
Hence, the incremental value of constrained fis given as

d.f=(Vof — VfI'C)IZ = <6(2) — (47, 3O)<_§:§8>>8x2 = —46.019x,

By specifying the value of dx, for the independent variable x,, feasible values of dx;
and dx, are determined for the dependent variables x; and x; using the formula

oY = —J'CoZ

01\ _ .. _ (—0283
<6x3> = —FCEn ‘< 0250

We now compare the value of 4.f as computed above with the difference f(X° +
0X) — f(X°), given dx, = .01.

X° + 90X = (1 —.0283, 2 + .01, 3 + .025) = (.9717, 2.01, 3.025)
This yields

Thus, for ax, = .01,

A(XY) = 58, fX° + 0X) = 57.523
or
FXO + 9X) — AXO) = —.477

The amount —.477 compares favorably with 9 .f = —46.019x, = —.4601. The differ-

ence between the two values is the result of the linear approximation in computing 9. f
at X°.
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PROBLEM SET 20.2A

1. Consider Example 20.2-1.

(a) Compute 9. f by the two methods presented in the example, using dx, = .001 instead
of dx, = .01. Does the effect of linear approximation become more negligible with
the decrease in the value of 9x,?

(b) Specify a relationship among dx;, dx,, and x; at the feasible point X° = 1,2,3)
that will keep the point (x{ + ox;, x3 + 9x,, x§ + ox3) feasible.

() IfY = (x,, x3)and Z = x;, what is the value of 9, that will produce the same value
of 9, f given in the example?

Example 20.2-2
This example illustrates the use of constrained derivatives. Consider the problem
Minimize f(X) = x} + x3 + x3
subject to
gX)= x;+ x,+3x,—-2=0
&8X)=5x+2x,+ x3—5=0
To determine the constrained extreme points, let
Y = (x, x))and Z = x,

Thus,
_(9f of\ _ _of
VYf— <6—xl’ (")_x2> = (2x1, 2x2), sz— a; = 2x3
2 1
1 1 - -3 3 3
1=(s 2) = (3 e=()
5 2 % _% 1
Hence,

9. £
V.f= / = 2x3 — (2xy, 2X2)< ?
0.X3 .

= 10 B
=3 X 3X2+ZX3

The equations for determining the stationary points are thus given as

V.f=0
&aX)=0
8(X) =0

or
10 -28 6|[x 0
1 1 3 Xy | = 2
5 2 1/\x; 5
The solution is

X° ~ (81, .35, 28)
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The identity of X° is checked using the sufficiency condition. Given x; is the inde-
pendent variable, it follows from V. f that

dx]
f o dxi 2s( 4% 10 28 d_x3
dX3
From the Jacobian method,
dx1
dx, 1 3
Y <—%>
dx;

Substitution gives 32f/9,x3 = & > 0. Hence, X’ is the minimum point.

Sensitivity Analysis in the Jacobian Method. The Jacobian method can be used to
study the effect of small changes in the right-hand side of the constraints on the
optimal value of f Specifically, what is the effect of changing g;(X) = 0 to g,(X) = ag;
on the optimal value of f? This type of investigation is called sensitivity analysis and is
similar to that carried out in linear programming (see Chapter 4). However, sensitivity
analysis in nonlinear programming is valid only in the immediate neighborhood of the
extreme point. The development will be helpful in studying the Lagrangean method.
We have shown previously that

of (Y, Z) = VyfoY + V,foZ
dg=JoY + CoZ
Given dg # 0, then
Y =Jlog — J'CoZ
Substituting in the equation for df(Y, Z) gives
Af(Y, Z) = VyfIlog + V.foZ
where
Vof = Vof = VyfI'C

as defined previously. The expression for df(Y, Z) can be used to study variation in fin
the feasible neighborhood of a feasible point X’ resulting from making small changes
dgand dZ.

At the extreme (indeed, any stationary) point X; = (Y,, Z,) the constrained gra-
dient V.f must vanish. Thus

af (Yo, Zo) = Vy, fI 1 0g(Yy, Zo)
or

aof 7
@ - VYOfJ
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The effect of the small change dg on the optimum value of fcan be studied by evaluat-
ing the rate of change of f with respect to g. These rates are usually referred to as
sensitivity coefficients.

Example 20.2-3

Consider the same problem of Example 20.2-2. The optimum point is given by
X, = (x, x5, x3) = (81, .35, .28). Given Y, = (!, x2), then

= af af — 0 0\ —
Vy, f = < By 8x2> = (21}, 2x9) = (1.62, .70)
Consequently,
LAY s ()
o aer ) = Yy, ST = (162, 7 = (.0876, .3067
<381 38 WA= ) s ( )

This means that for dg, = 1, f will increase approximately by .0867. Similarly, for
dg1 = 1, fwill increase approximately by .3067.

Application of the Jacobian Method to an LP Problem. Consider the linear pro-
gramming problem

Maximize z = 2x; + 3x,
subject to
X1+ x, + x5 =5
X — X, +x,=3
X1, Xpy X3, X4 = 0

To account for the nonnegativity constraints x; = 0,substitute x; = wy. With this substi-
tution, the nonnegativity conditions become implicit and the original problem becomes

Maximize z = 2w? + 3u3
subject to
wi+wi+wi=35
wi — w} + wi=3
To apply the Jacobian method, let
Y = (Wi, wo), Z = (w3, wy)

(In the terminology of linear programming, Y and Z correspond to the basic and non-
basic variables, respectively.) Thus

1L
J= <2w1 2w2>’ J1 = (4;” 4w11>’ wiyand w, # 0

-2 A —1
2W1 2 4w, 4w,

2wy 0
C= ( 0 2w4>, Vif = (dwy, 6wy), V,f = (0, 0)
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so that

1 1
I dw \(2 0
Vof = (0, 0) — (4w, 6w2)<“L )( gs ) (=S w)

dw;  Tws 2wy

The solution of the equations comprised of V. f = 0 and the constraints of the problem
yield the stationary point (w; = 2, w, = 1, w3 = 0, w, = 0). The Hessian is given by

o oy
I w3 0cW3 O oWy (_5 0)
H = =

_0if 9Ef 0 1
O W3 D Wy ER

Because H, is indefinite, the stationary point does not yield a maximum.

The reason the preceding solution does not yield the optimum solution is that the
specific choices of Y and Z are not optimum. In fact, to find the optimum, we need to
keep on altering our choices of Y and Z until the sufficiency condition is satisfied. This
will be equivalent to locating the optimum extreme point of the linear programming
solution space. For example, consider Y = (w,, w,) and Z = (w;, w;). The correspond-
ing constrained gradient vector becomes

1
>~ 0
ch = (4W1, 0) - (6W2, 0)(?{_2. L)<2’WI 2‘3}3> = (_2W1, 6W3)

2
2wy 2wy W1

The corresponding stationary point is given by w; = 0, w, = \/g, ws =0, wy, = V3.

Because
(2 0
)

is negative-definite, the solution is a maximum point.

The result is verified graphically in Figure 20.6. The first solution (x, = 4, x, = 1)
is not optimal, and the second (x; = 0, x, = 5)is. You can verify that the remaining two
extreme points of the solution space are not optimal. In fact, the extreme point
(x; = 0, x, = 0) can be shown by the sufficiency condition to yield a minimum point.

The sensitivity coefficients Vy, fJ~' when applied to linear programming yield the
dual values. To illustrate this point for the given numerical example, let u4; and u, be

FIGURE 20.6 X

Extreme points of the solution
space of the linear program
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the corresponding dual variables. At the optimum point wi =0, w,= \/g, wsy =0,
wy = \/é), these dual variables are given by
§ 2 O
(uls l/lz) = VYOJ l= (6W2, O)<L2 L) = (3’ 0)

2wy 2wy
The corresponding dual objective value is 5u; + 3u, = 15, which equals the optimal
primal objective value. The given solution also satisfies the dual constraints and hence
is optimal and feasible. This shows that the sensitivity coefficients are indeed the LP
dual variables. In fact, both have the same interpretation.

We can draw some general conclusions from the application of the Jacobian
method to the linear programming problem. From the numerical example, the neces-
sary conditions require the independent variables to equal zero. Also, the sufficiency
conditions indicate that the Hessian is a diagonal matrix. Thus, all its diagonal elements
must be positive for a minimum and negative for a maximum. The observations
demonstrate that the necessary condition is equivalent to specifying that only basic
(feasible) solutions are needed to locate the optimum solution. In this case the inde-
pendent variables are equivalent to the nonbasic variables in the linear programming
problem. Also, the sufficiency condition demonstrates the strong relationship between
the diagonal elements of the Hessian matrix and the optimality indicator z; — ¢ (see
Section 7.2) in the simplex method.!

PROBLEM SET 20.2B

1. Suppose that Example 20.2-2 is solved in the following manner. First, solve the con-
straints expressing x; and x, in terms of x;; then use the resulting equations to express the
objective function in terms of x; only. By taking the derivative of the new objective func-
tion with respect to x3;, we can determine the points of maxima and minima.

(a) Would the derivative of the new objective function (expressed in terms of x3) be dif-
ferent from that obtained by the Jacobian method?
(b) How does the suggested procedure differ from the Jacobian method?
2. Apply the Jacobian method to Example 20.2-1 by selecting Y = (x,, x;)and Z = (x,).
3. Solve by the Jacobian method:

n

Minimize f(X) = > x?

subject to

where C'is a positive constant. Suppose that the right-hand side of the constraint is
changed to C + 8, where 3 is a small positive quantity. Find the corresponding change in
the optimal value of f;

IFor a formal proof of the validity of these results for the general linear programming problem, see H. Taha
and G. Curry, “Classical Derivation of the Necessary and Sufficient Conditions for Optimal Linear
Programs,” Operations Research, Vol. 19,1971, pp. 1045-1049. The paper shows that the key ideas of the sim-
plex method can be derived by the Jacobian method.
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4. Solve by the Jacobian method
Minimize f(X) = 5x7 + x3 + 2x.x,
subject to
gX)=xx,—10=0
(a) Find the change in the optimal value of f(X) if the constraint is replaced by
x1x; — 9.99 = 0.

(b) Find the change in value of f (X) in the neighborhood of the feasible point (2,5)
given that x;x, = 9.99 and 9x; = .01.

5. Consider the problem:
Maximize f(X) = x? + 2x% + 10x} + 5xyx,
subject to
aX)=x +x3+ 3%, -5=0
X=X +5xx+x3-7=0
Apply the Jacobian method to find 9f(X) in the feasible neighborhood of the feasible
point (1,1, 1). Assume that this feasible neighborhood is specified by
g, = —.01, g, = .02,and 9x; = .01
6. Consider the problem
Minimize f(X) = x3 + x} + x5 + x3
subject to
gX)=x + 2x, + 3x3 + 5x, —10 =0
&X)=x; + 2x, + 5x; + 6x, —15=10

(a) Show that by selecting x; and x4 as independent variables, the Jacobian method fails
to provide a solution and state the reason.

(b) Now solve the problem using x; and x; as independent variables and apply the suffi-
ciency condition to determine the type of the resulting stationary point.

(¢) Determine the sensitivity coefficients given the solution in (b).
7. Consider the linear programming problem.

Maximize f(X) = D ¢x;
=1

subject to

g(X) = Eaiix-—b,-=0 i=12, ....,m

j=1
=0 j=1,2,...,n

Neglecting the nonnegativity constraint, show that the constrained derivatives V. f(X) for
this problem yield the same expression for {z; — c;} defined by the optimality condition of
the linear programming problem (Section 7.2)—that is,

{z; — ¢} = {CzB'P; — ¢}, forallj

Can the constrained-derivative method be applied directly to the linear programming
problem? Why or why not?
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Lagrangean Method. In the Jacobian method, let the vector A represent the sensi-
tivity coefficients—that is

af
_ -1 _
A=V I = o8
Thus,

af —Nag=0

This equation satisfies the necessary conditions for stationary points because gé is com-

puted such that V,f = 0. A more convenient form for presenting these equations is to
take their partial derivatives with respect to all x;. This yields

9 .
E(f—)»g)—(), Jj=1,2 ...,n

The resulting equations together with the constraint equations g(X) = 0 yield the fea-
sible values of X and X that satisfy the necessary conditions for stationary points.

The given procedure defines the Lagrangean method for identifying the station-
ary points of optimization problems with equality constraints. The procedure can be
developed formally as follows. Let

LX, N) = f(X) — rg(X)

The function L is called the Lagrangean function and the parameters A the Lagrange
multipliers. By definition, these multipliers have the same interpretation as the sensi-
tivity coefficients of the Jacobian method.

The equations

give the necessary conditions for determining stationary points of f(X) subject to
g(X) = 0. The sufficiency conditions for the Lagrangean method will be stated without

proof. Define
HP — < 0 |P

PT Q>(m+n)><(m+n)

where
Vg1 (X) 92L(X, N)
P = : , = T , foralliandj
ng (X) mXn ! 4 wn

The matrix H? is the bordered Hessian matrix.
Given the stationary point (X, A) for the Lagrangean function L(X, A) and the
bordered Hessian matrix H? evaluated at (Xo, Ag), then X, is

1. A maximum point if, starting with the principal major determinant of order
(2m + 1), the last (n — m) principal minor determinants of H? form an alternat-
ing sign pattern starting with (—1)"*1,

2. A minimum point if, starting with the principal minor determinant of order
(2m + 1),the last(n — m) principal minor determinants of H® have the sign of (—1)".
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These conditions are sufficient, but not necessary, for identifying an extreme
point. This means that a stationary point may be an extreme point without satisfying
these conditions.

Other conditions exist that are both necessary and sufficient for identifying
extreme points. However, the procedure may be computationally intractable. Define
the following matrix at the stationary point (X, Ag):

(0| P
A_<PT Q—M)

where . is an unknown parameter. Consider the determinant |A |; then each of the real
(n — m)roots p. of the polynomial

Al =0

must be

1. Negative if X is a maximum point.
2. Positive if X, is a minimum point.

Example 20.2-4
Consider the problem of Example 20.2-2. The Lagrangean function is
L(X, h) = x% + x% + x% - )\l(xl + X5 + 3X3 - 2) - 7\2(5)61 + 2x2 + X3 — 5)

This yields the following necessary conditions:

gii=2x1—7\1—5)\2=0
g—i=2x2—)\1—2)\2=0
g—i=2x3—3)\1—)\2=0
g—i=—(x1+x2+3x3—2)=0
g—i=—(5xl+2x2+x3—5)=0

The solution to these simultaneous equations yields
X, = (x1, X, x3) = (8043, .3478, .2826)
A = (A, Ny) = (0870, .3043)

This solution combines the results of Examples 20.2-2 and 20.2-3. The values of the
Lagrange multipliers N equal the sensitivity coefficients obtained in Example 20.2-3
(allowing for the roundoff error). The result shows that these coefficients are indepen-
dent of the choice of the dependent vector Y in the Jacobian method.
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To show that the given point is a minimum, consider

0 0|1 1 3
0 015 2 1
Hf=(1 5[2 0 0
1 210 2 0
3110 0 2

Because n = 3and m = 2, n — m = 1, and we need to check the determinant of H?
only, which must have the sign of (—1)? for the stationary point X, to be a minimum.
Because det H? = 460 > 0, X’ is a minimum point.

Example 20.2-5
Consider the problem
Minimize z = x} + x3 + x3
subject to
dx;, + x5+ 2x; — 14 =0

The Lagrangean function is
LX, \) = x7 + x5 + x5 — Ndx, + 2% + 2x; — 14)

The associated necessary conditions are given as:
aL

ax1=2x1—4)\=0

oL _ _ _

axz = 2X2 2)\x2 =0

oL _ B _

a—x3—2)C3 2\ =0

L — —xy + X+ 26— 14) = 0

These equations yield infinity of solutions because ;”—fz = 0 is independent of x,. For
the sake of the example, we will consider the following three solutions:

(Xo, )\0)1 = (2, 2, 1, 1)
(Xo, )\0)2 = (2, _2, 1, 1)
(X0, No)s = (2.8, 0, 1.4, 1.4)

The sufficiency conditions yields

0 4 2, 2

s |4 2 0 0
H=le 0 222 0
2 0 0 2
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Because m = 1 and n = 3, for a stationary point to be a minimum, the sign of the last
(3 — 1) = 2 principal minor determinants must be that of (—1)" = —1. Thus, for
Xo, Nt = (2,2, 1, 1)

0 4 4 2200
4 2 0|=-32<0, = —64<0
- 4.0 0 0
2 0 0 2
For (Xg, No)2 = (2, =2, 1, 1),
0 4 + 3 00
4 2 0l=-32<0, = —64 <0
- ~4 0 0 0
2 0 0 2
Finally, for (Xo, Ag)s = (2.8, 0, 1.4, 1.4)
0 4 0 t 2 00
4 2 0| =128>0, =32>0
0 o0 —s8 0 0 -8 0
' 2 0 0 2

This shows that (Xg); and (X,), are minimum points. (Xy); does not satisfy the suffi-
ciency conditions of either a maximum or a minimum. This does not mean that it is not
an extreme point because the given conditions are sufficient only.

To illustrate the use of the other sufficiency condition that employs the roots of
polynomial, consider

0 4 2%, 2
A4 2w 0 0

2% 0 2-2x-p O

2 0 0 2 —

NOW, for (Xo, )\0)1 = (2, 2, 1, 1)
IA] = 9> — 260 + 16 =0

This gives . = 2 or 5. Because all p > 0, (X} = (2, 2, 1) is a minimum point. For
(Xos No)2 = (2, —

|A] = 92 — 26p + 16 = 0

which is the same as in the previous case. Hence (X;), = (2, —2, 1)is a minimum point.
Finally, for (Xo, \o); = (2.8, 0, 1.4, 1.4),

|A| =5p* — 6p—8=0

This gives p = 2 and —.8, which means that the identity of (X); = (2.8, 0 1.4) is not
known.

PROBLEM SET 20.2C

1. Solve the following linear programming problem by both the Jacobian and the
Lagrangean methods:

2(
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Maximize f(X) = 5x; + 3x,
subject to
gaX) = x; + 2x, + x; -6=0
&X)=3x + x, +x,-9=0
X1, Xy X3, X4 = 0
2. Find the optimal solution to the problem
Minimize f(X) = x} + 2x3 + 10x}
subject to
aX)=x;+x2+x-5=0
X)=x+5%+x-7=0

Suppose that g,(X) = .01 and g,(X) = .02. Find the corresponding change in the optimal
value of f(X).

3. Solve Problem 6, Set 20.2b by the Lagrangean method and verify that the values of the
Lagrange multipliers are the same as the sensitivity coefficients obtained in Problem 6,
Set 20.2b.

20.2.2 Inequality Constraints

This section extends the Lagrangean method to handle inequality constraints. The
main contribution of the section is the development of the general Karush-Kuhn-
Tucker (KKT) conditions, which provide the basic theory for nonlinear programming.

Extension of the Lagrangean Method. Consider
Maximize z = f(X)
subject to
gX)=<0, i=1,2, ....,m

The nonnegativity constraints X = 0, if any, are included in the m constraints.

If the unconstrained optimum of £(X) does not satisfy all constraints, the con-
strained optimum must occur at a boundary point of the solution space. This means
that at least one constraint must be satisfied in equation form. The procedure thus
involves the following steps.

Step 1.  Solve the unconstrained problem
Maximize z = f(X)
If the resulting optimum satisfies all the constraints, stop because all con-

straints are redundant. Otherwise, set k = 1 and go to step 2.

Step 2. Activate any k constraints (i.e., convert them into equalities) and optimize
f(X) subject to the k active constraints using the Lagrangean method. If the
resulting solution is feasible with respect to the remaining constraints, stop;
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it is a local optimum.2 Otherwise, activate another set of k constraints and
repeat the step. If all sets of active constraints taken k at a time are consid-
ered without encountering a feasible solution, go to step 3.

Step 3. If k = m,stop; no feasible solution exists. Otherwise, set k = k + 1 and go
to step 2.

An important point often neglected in presenting the procedure is that it does
not guarantee global optimality even when the problem is well behaved (possesses a
unique optimum). Another important point is the implicit misconception that, for
p < g, the optimum of f(X) subject to p equality constraints is always better than its
optimum subject to g equality constraints. This is true, in general, only if the g con-
straints form a subset of the p constraints. The following example is designed to illus-
trate these points.

Example 20.2-6
Maximize z = —(2x; — 5)* — 2x, — 1)°
subject to
x+2x, =2
X, X, =0

The graphical representation in Figure 20.7 should assist in understanding the analytic
procedure. Observe that the problem is well behaved (concave objective function sub-
ject to a convex solution space), which means that a reasonably well defined algorithm
should guarantee global optimality. Yet, as will be shown, the extended Lagrangean
method produces a local maximum only.

The unconstrained optimum is obtained by solving

9z

ax1 = —4(2x1 - 5) = 0
iz _ T
b = —4en -1 =0

This gives(x;, x,) = (, 3), which does not satisfy the constraint x, + 2x, < 2. Thus, the
constraints are activated one at a time. Consider x; = 0.The Lagrangean function is

L(xy, x5, N) = —(2x; — 5)2 - (2x, — 1)2 — Ax;

Thus,
oL _ s
o 42x, =5 —-\A=0
oL _ _ B
0%, 42x, — 1) =0

2A local optimum is defined from among all the optima resulting from optimizing f(X) subject to all combi-
nations of k equality constraints, k = 1, 2, ..., m.
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“ FIGURE 20.7
Solution space of Example 20.2-6

aL
o A=l

This gives the solution point (x,, x,) = (0, 3), which can be shown by the sufficiency
condition to be a maximum. Because this point satisfies all other constraints, the proce-
dure terminates with (x;, x,) = (0, 1) as a local optimal solution to the problem. The
objective value is z = —25. (The remaining constraints x, = 0 and x; = 2x, = 2, acti-
vated one at a time, yield infeasible solutions.)

In Figure 20.7, the feasible solution (x;, x,) = (2, 0), which is the point of intersec-
tion of the two constraints x, = 0 and x, + 2x, = 2,yields the objective value z = —2.
This value is better than the one obtained with one active constraint.

The procedure just described illustrates that the best to be hoped for in using the
extended Lagrangean method is a (possibly) good feasible solution. This is particularly
true if the objective function is not unimodal. If the functions of the problem are well
behaved (e.g., the problem possesses a unique constrained optimum as in Example
20.2-6), the procedure can be rectified to locate the global optimum. Specifically, con-
sider the unconstrained optimum and the constrained optima subject to all sets of one
active constraint, then two active constraints, and so on, until all m constraints are acti-
vated. The best of all the feasible optima is the global optimum.

If this procedure is followed by Example 20.2-6, it will be necessary to solve
seven problems before global optimality is verified. This indicates the limited use of
the method in solving problems of any practical size.

The Karush-Kuhn-Tucker (KKT) Conditions.3 This section develops the KKT nec-
essary conditions for identifying stationary points of a nonlinear constrained problem
subject to inequality constraints. The development is based on the Lagrangean
method. These conditions are also sufficient under certain rules that will be stated
later.

*Historically, W. Karush was the first to develop the KKT conditions in 1939 as part of his M.S. thesis at
the University of Chicago. The same conditions were developed independently in 1951 by W. Kuhn and
A.Tucker.
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Consider the problem
Maximize z = f(X)
subject to

gX)=10

The inequality constraints may be converted into equations by using nonnegative slack
variables. Let $? (= 0) be the slack quantity added to the ith constraint g;(X) < 0 and
define

S =(S, S5.» S, 8* = (5%, S5, ..., So)"

where m is the total number of inequality constraints. The Lagrangean function is thus
given by

L(X9 S5 )\) = f(X) - )\[g(X) + Sz]
Given the constraints
egX)=0

a necessary condition for optimality is that A be nonnegative (nonpositive) for maxi-
mization (minimization) problems. This result is justified as follows. The vector A mea-
sures the rate of variation of f with respect to g—that is,

_5f
= 9¢
In the maximization case, as the right-hand side of the constraint g(X) = 0 changes from 0
to dg(> 0), the solution space becomes less constrained and hence fcannot decrease. This
means that A = 0. Similarly for minimization, as the right-hand side of the constraints
increases, f cannot increase, which implies that A =< 0.If the constraints are equalities, that
is, g(X) = 0, then \ becomes unrestricted in sign (see Problem 2, Set 20.2d).

The restrictions on A are part of the KKT necessary conditions. The remaining
conditions will now be derived.

Taking the partial derivatives of L with respect to X, S, and A, we obtain

A

oL _ _

e % = VAX) — AVE(X) = 0

oL _ _ .

6S,~_ 208, =0,i=1,2, ..., m
aL _ .

= —gX) + §) =0

The second set of equations reveals the following results:

1. If \; # 0, then S? = 0, which means that the corresponding resource is scarce
and, hence, it is consumed completely (equality constraint).

2. If §? > 0, then \; = 0. This means resource i is not scarce and, consequently, it

has no effect on the value of f (i.e., \; = % = 0).
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From the second and third sets of equations, we obtain
)\,g,(X) = 0, i= 1, 2, e, m

This new condition essentially repeats the foregoing argument, because if \; > 0,
&(X) = 0or §7 = 0;and if gi(X) < 0, $? > 0,and \, = 0.
The KKT necessary conditions for the maximization problem can now be sum-
marized as follows:
A

V(X) — AVg(X)
\igi(X)
gX)=0

These conditions apply to the minimization case as well, except that X must be nonpos-
itive (verify!). In both maximization and minimization, the Lagrange multipliers corre-
sponding to equality constraints must be unrestricted in sign.

1%

0
0
0,

i=1,2, ....m

I

Sufficiency of the KKT Conditions. The Kuhn-Tucker necessary conditions are also
sufficient if the objective function and the solution space satisfy the conditions in
Table 20.1.

TABLE 20.1
Required conditions
Sense of
optimization Objective function Solution space
Maximization Concave Convex set
Minimization Convex Convex set

It is simpler to verify that a function is convex or concave than to prove that a
solution space is a convex set. For this reason, we provide a list of conditions that are
easier to apply in practice in the sense that the convexity of the solution space can be
established by checking the convexity or concavity of the constraint functions. To pro-
vide these conditions, we define the generalized nonlinear problems as

Maximize or minimize z = f(X)

subject to
gl(X)SO’ l=1’ 2, ey T
gX)=0, i=r+1,..,p
gX)=0, i=p+1, ....m
r P m
LX, S, N) = fiX) - Elx,-[gi(X) + 87 - El)\i[gi(x) ~ 5 - .leigi(x)
i= i=r+ i=p

where ), is the Lagrangean multiplier associated with constraint i. The conditions for
establishing the sufficiency of the KKT conditions are summarized in Table 20.2.
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TABLE 20.2
Required conditions
Sense of
optimization fX) X N
Convex =0 A=i=vr
Maximization Concave Concave =0 r+l=si=p)
Linear Unrestricted pt+tl=i=m
Convex =0 A=i=vr
Minimization Convex Concave =0 r+l=i=p)
Linear Unrestricted pt+tl=si=m

The conditions in Table 20.2 represent only a subset of the conditions in Table
20.1. The reason is that a solution space may be convex without satisfying the condi-
tions in Table 20.2.

Table 20.2 is valid because the given conditions yield a concave Lagrangean func-
tion L(X, S, A) in case of maximization and a convex L(X, S, A) in case of minimiza-
tion. This result is verified by noticing that if g;(x) is convex, then \;g;(x) is convex if
N\; = 0 and concave if \; = 0. Similar interpretations can be established for all the
remaining conditions. Observe that a linear function is both convex and concave. Also,
if a function fis concave, then (—f) is convex, and vice versa.

Example 20.2-7
Consider the following minimization problem:
Minimize f(X) = x7 + x3 + x3
subject to
gX)=2x,+x—-5=0
&X)= x+x-2=<0
sX)= 1-x =0
gX)= 2-x =0
&(X) = - X3 =0
This is a minimization problem; hence A = 0.The KKT conditions are thus given as
(s Aoy Ay Agy Ag) =< 0

2 1 0
1 0 1
(le, 2x2, 2X3) - ()\1, )\2, )\3, )\4, )\5) -1 0 0o[=0
0 -1 0
0 0 -1
Mg =M= =Ngs =0
gX)=0
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These conditions reduce to
Ay Ay A3, Ny, As =< 0
20 =2 =M+ N =0
26— M+ N=0
23— M+ A5 =0
M2x +x,-5)=0
N +x3—2)=0
AL —x) =0
M2 =x)=0
Asx; =0
264 +x =<5
2

0

The solution is x;, =1, x, = 2, =0, =N=N\=0,\ = -2, N = —4.
Because both f(X) and the solution space 8(X) = 0 are convex, L(X, S, A\) must be
convex and the resulting stationary point yields a global constrained minimum.
The example shows that the procedure is not suitable for numerical computations
- because it may be difficult to solve the resulting conditions explicitly. The KKT condi-

tions are central to the development of the nonlinear programming algorithms in
Chapter 21.

L o

=T

IA

xl+X3

N
I

xn=lx=2 x

P
(3]
vV

1"

PROBLEM SET 20.2D

1. Consider the problem:

Maximize f(X)
subject to
gX)=0
Show that the KKT conditions are the same as in Section 20.2.2, except that the Lagrange
multipliers A are nonpositive.
as 2. Consider the following problem:
Maximize f(X)
subject to
gX)=0

Show that the KK T conditions are
VAX) — AVgX) =0
gX)=10

A unrestricted in sign
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3. Write the KKT necessary conditions for the following problems.
(a) Maximize f(X) = X3 — x3 + x5
subject to
Xn+x3+x3=5
Sx2 —x3—x=0
X1, X3, X3 = 0
(b) Minimize f(X) = x{ + x3 + 5x1x,%3
subject to
¥-xB+x=10
X+ +axd =20
4. Consider the problem
Maximize f(X)
subject to
gX) =10

Given f (X) is concave and g;,(X) (i = 1, 2, ..., m)is a linear function, show that the KKT
necessary conditions are also sufficient. Is this result true if g;(X)is a convex nonlinear
function for all i? Why?

5. Consider the problem
Maximize f(X)
subject to

gaX) =0, 8X)=0,gX) =0

Develop the KKT conditions and give the stipulations under which the conditions are
sufficient.
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CHAPTER 21

Nonlinear Programming
Algorithms

The solution methods of nonlinear programming generally can be classified as either
direct or indirect algorithms. Examples of direct methods are the gradient algorithms,
where the maximum (minimum) of a problem is sought by following the fastest rate of
increase (decrease) of the objective function. In indirect methods, the original prob-
lem is replaced by another from which the optimum is determined. Examples of these
situations include quadratic programming, separable programming, and stochastic
programming.

UNCONSTRAINED ALGORITHMS

This section presents two algorithms for the unconstrained problem: the direct search
algorithm and the gradient algorithm.

Direct Search Method

Direct search methods apply primarily to strictly unimodal single-variable functions.
Although the case may appear trivial, Section 21.1.2 shows that optimization of single-
variable functions plays a key role in the development of the more general multivari-
able algorithms.

The idea of direct search methods is to identify the interval of uncertainty that
includes the optimum solution point. The procedure locates the optimum by iteratively
narrowing the interval of uncertainty to any desired level of accuracy.

Two closely related algorithms are presented in this section: Dichotomous and
golden section search methods. Both algorithms seek the maximization of a unimodal
function f(x) over the interval @ =< x < b, which is known to include the optimum point
x".The two methods start with Iy = (a, b) representing the initial interval of uncertainty.

731
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General Stepi. Let I,_; = (x;, xg) be the current interval of uncertainty (at iteration
0,x; = aand x;z = b). Next, define x; and x, such that

xp < xp < X, < X

The next interval of uncertainty, I, is determined in the following manner:

1 If f(x;) > f(x,), then x; < x" < x,. Set xg = x, and I, = (x;, x,) (see Figure
21.1]a)).

2. If f(x;) < f(x,),then x; < x" < xg. Setx; = x; and I, = (x;, xg) (see Figure
21.1[b)).

3. If f(x;) = f(x,), then x; < x* < x,. Setx; = x;, xg = Xy, and [; = (x;, xp).

The manner in which x; and x, are determined guarantees that [; < I;_, as will
be shown shortly. The algorithm terminates at iteration k if J, = A, where A is a user-
specified level of accuracy.

The difference between the dichotomous and golden section methods occurs in
the manner x; and x, are computed. The following table provides the formulas.

Dichotomous method Golden section method
n=d -8 x = (Y - )
X, = %(xR +x, + A) X, = x; + (\ﬁ[ 1)(xR - X7)

FIGURE 21.1

Illustration of the
general step of the
dichotomous/golden
section search
methods

; I i | Iy |
I 1 I 1
| L | L
f 1 e
| To | | To |
\ 1 I |
(a) (b)
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In the dichotomous method, the values x; and x, sit symmetrically around the
midpoint of the current interval of uncertainty. This means that
Ii = .5(11‘_1 + A)

Repeated application of the algorithm guarantees that the length of the interval of
uncertainty will approach the desired accuracy, A.

In the golden section method, the idea is more involved. We notice that each iter-
ation of the dichotomous method requires calculating the two values f(x;) and f(x,), but
ends up discarding one of them. What the golden section proposes is to save computa-
tions by reusing the discarded value in the immediately succeeding iteration.

Define for 0 < a < 1,

X; = Xg — afxg — xp)
X = x, + alxg — xp)

Then the interval of uncertainty /; at iteration i equals (x;, x,) or (x;, xz). Consider the
case I; = (x;, x,), which means that x, is included in . In iteration i + 1, we select X,
equal to x; in iteration 7, which leads to the following equation:

xy(iteration i + 1) = x,(iteration i)
Substitution yields
x;, + a[xfiteration i) — x;] = xz — alxg — x;)
or
xp tafx, +oolxg = xp) = x] = xp — alxg — x;)
which finally simplifies to

a2 +a-1=0

) . ) Y-
This equation yields a = =%

a =15 681,
The design of the golden section computations guarantees an a-reduction in suc-
cessive intervals of uncertainty; that is

Bipy = wl

. Because 0 = o = 1, we select the positive root

Compared to the dichotomous method, the golden section method converges more
quickly to the desired level of accuracy. In addition, each iteration in the golden section
method requires half the computations because the method always recycles one set of
computations from the immediately preceding iteration.

Example 21.1-1

3x, O0=x=2

Maximize f(x) = { —x+20), 2=x=<3
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The maximum value of f(x) occurs at x = 2. The following table demonstrates the
calculations for iterations 1 and 2 using the dichotomous and the golden section meth-
ods. We will assume A = .1.

Dichotomous method Golden section method

Iteration 1 Iteration 1
Iy = (0, 3) = (x, xp) I, = (0, 3) = (x, xg)

=53+0~-.1) =145, f(x) = 43 x; =3 — 6183 — 0) = 1.146, f(x;) = 3.438
x2 =53 +0+.1) =155, f(x,) = 4.6 x, =0+ 6183 — 0) = 1.854, f(x,) = 5.562
flx) > flx))=>x, = 145, I, = (1.45, ) fx) > flx))=>x, = 1.146, I, = (1.146, 3)
Iteration 2 Iteration 2

= (1.45, 3) = (x, xp) I, = (1.146, 3) = (x;, xp)

= .53 + 145 — .1) = 2.175, f(x;) = 5.942 X; = x,initeration 0 = 1.854, f(x;) = 5.562
x2 = 53 + 145 + .1) = 2.275, f(x,) = 5.908 x, = 1.146 + .618(3 — 1.146) = 2.292, f(x,) = 5.903
fix) > f(xy) = xg = 2.275, I, = (1.45, 2.275) flxy) > flx)=x, = 1.854, I, = (1.854, 3)

Continuing in the same manner, the interval of uncertainty will eventually narrow
down to the desired A-tolerance.

Excel template ch21DichotomousGoldenSection.xls is designed to handle either
method automatically. The input data include f(x), a, b, and A. The function f(x) is
entered in cell E3 as

=IF(C3<=2,3*C3, (—C3+20)/3)

Note that C3 plays the role of x in f(xx). Limits a and b are entered in cells B4 and D4 to
represent the admissible search range for f(x). Also, the tolerance limit, A, is entered in
cell B3. The search method is selected by entering x in either D5 (dichotomous) or F5
(golden section).

Figure 21.2 compares the two methods. Not only does the golden section method
requires 40% less iterations, it also involves less calculations per iteration as we
explained previously.

21.1.2
PROBLEM SET 21.1A

1. Use Excel template ch21DichotomousGoldenSection.xls to solve Example 21.1-1 assum-
ing that A = .01. Compare the amount of computations and the accuracy of the results
with those in Figure 21.2.

2. Find the maximum of each of the following functions by dichotomous search. Assume !

that A = .05. )
=— 2=x=4
(@ fix) o = 3| x
(b) f(x) = xcos x, 0O=x=m i
(¢) f(x) = xsin mx, 1.5=x=25
@ fx)=-@x—-37%, 2=x=4

O=x=2
(e) flx)= { - x, 2<=x=<4
3. Develop an expression for determining the maximum number of iterations needed to ter-
minate the dichotomous search method for a given value of A and an initial interval of
uncertainty Iy = b — a.
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-

f(%2)
0.000000; 3.000000 _1.450000 4.350000 4.550000
1.450000 3.000000 2.175000 5.941667 5908333
1.450000 2.275000:  1.812500 9125 5.437500: 5.737500
.. 1.812500 2275000 1.993750 2.093750 5.981250 5968750
1.812500 2093750 2.003125 5709375, 5.998958
1.903125 2093780 2.045438 5.845313; 5.983854
1.943438 2.093750 ¥ 2.071094 5.913281 5.976302
1.971094; 2.093750 i 2 2082422 5547266 5972526
1.982422; 2.093750 . g 5.970633
1.998086. 2083750 9 g 5.969594
1.988086 2090918 18502 2083502 5.970166
1989502 2090918, 2.090210 5970630 5969930
1.989502 2080210 1.989356 2.08 5.969568 5.970043
1.989856 2080210 1.950033 9 5.970093; 5969389
..1.989856; 2.090033! 1989944 2.083944 5969833
1.989944: 2.090033 1.9899689 2083959 5.969966
1.989989: 2.090033 1.990011 2030011 5.970033
1.989989¢ 2.090011 1.990000 2.090000
1.990000 2090011 1950005 2.090005 . '5.9Rd9ms
1.990000 2.080008 1.950003 2.090003 N 5.969994

0.000000 3.000000 . 1.145898

1.145898 3.000000 . lgg?;sé 2 i

: ggﬂggﬁ ;gggggg i ?1&451; 7 590273 FIGURE 21.2

! 252133 5;’;;;?5 ng;fg 5;3?;;5 : 5 Excel output of the dichotomous and
o .t T i T : golden section methods applied to

1.996894 2.060753 20212860 2036361 5.992905 i Example 21.1-1

Gradient Method

This section develops a method for optimizing functions that are twice continuously
differentiable. The idea is to generate successive points in the direction of the gradient
of the function.

The Newton-Raphson method presented in Section 20.1.2 is a gradient method
for solving simultaneous equations. This section presents another technique, called the
steepest ascent method.

Termination of the gradient method occurs at the point where the gradient vec-
tor becomes null. This is only a necessary condition for optimality. Optimality cannot
be verified unless it is known a priori that f(X) is concave or convex.

Suppose that f{X) is maximized. Let X° be the initial point from which the proce-
dure starts and define V£(X*) as the gradient of fat point X*. The idea is to determine a
particular path p along which 7’£ is maximized at a given point. This result is achieved if
successive points X* and X**! are selected such that

XA = XK+ AVAXY)

where r* is the optimal step size at X*.
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The step size 7* is determined such that the next point, X***, leads to the largest
improvement in f This is equivalent to determining r = 7* that maximizes the function

h(r) = fIX* + rVAX5]

Because A(r) is a single-variable function, the search method in Section 21.1.1 may be
used to find the optimum, provided that i(r) is strictly unimodal.

The proposed procedure terminates when two successive trial points X* and X*“*'
are approximately equal. This is equivalent to having

VXN ~ 0

Because r* # 0, the necessary condition VA(X¥) = 0 is satisfied at X*.

Example 21.1-2
Consider the following problem:
Maximize f(x;, x;) = 4x, + 6x, — 2x3 — 2x.x, — 2x5

The exact optimum occurs at (x,’, x,) = &, 3.
To solve the problem by the steepest ascent method, consider

Vf(X) = (4 - 4x1 - 2x2, 6 - le - 4.X2)

The quadratic nature of the function dictates that the gradients at any two successive
points are orthogonal (perpendicular to one another). Using the initial point
X" = (1, 1), Figure 21.3 shows the successive solution points.

FIGURE 21.3 X
Maximization of f(x, x,) = 4x, + _ o o2
6x, — 2x3 — 2x,x, — 2x3 by the steep- FX) = 4oy + 63, — 26y — 2xy%, — 205
est ascent method
21 ;
Optimum
3
2
1 X[)
X]
1
2
| l | l
1 1 3 2 X
2 2
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Iteration 1.
VAX') = (=2, 0)
The next point X' is obtained by considering
X=0L1O)+r-20=01-2r1
Thus,
hr)=f1 = 2r, 1) = =201 = 2rP +2(1 — 2) + 4
The optimal step size is obtained using the classical necessary conditions in Chapter 20
(you may also use the search a}gorilthm§ in Section 21.1.1 to de.termir.le the optim%lm).
The maximum value of A(r) is r' = 1, which yields the next solution pointas X' = (3, 1).
Iteration 2.
VAX') = (0, 1)
X=GD+r0,1)=¢1+n
hr)= =21+ +51+7+3
This gives 7 = ; and X2 = G, ).
Iteration 3.
VAX?) = (=3 0)
X=0G3)+r(50=(5%)
W)= M1 = F + 30— p+ P

3 1 3= 3
Hence,r’ = ;and X° = (g, 3).

Iteration 4.
VAX®) = (0, 3)
X=G3+r10,)=G¢>
h)= S5+ +25+n+2

4 _ 1 4 _ 321
Thus, 7 = zand X* = (3, 7o)

Iteration 5.

X =G0+ r50=05%1
h) = =3B =P + 506 — 1) + 3%

L 1 5 11 21
This gives ¥’ = ;and X° = (14, 2).

Iteration 6.
VAX) = (0, 1)
Because Vf(X®) ~ 0, the process can be terminated at this point. The approximate

maximum point is given by X® = (3438, 1.3125). The exact optimum is X' = (.3333,
1.3333),
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PROBLEM SET 21.1B

1. Show that, in general, the Newton-Raphson method (Section 20.1.2) when applied to a
strictly concave quadratic function will converge in exactly one step. Apply the method to
the maximization of

FX) = 4x; + 6x, — 2x3 — 2x%, — 243

2. Carry out at most five iterations for each of the following problems using the method of
steepest descent (ascent). Assume that X° = 0in each case.
(a) minf(X) = (x, — x})* + (1 — x))
(b) maxf(X) = ¢X + X’AX

where
c=(1,3,5)
5 -3 -1
A=|-3 -2 0
4 o -

(©) minfX)=x; — x, + x> — x%,

CONSTRAINED ALGORITHMS
The general constrained nonlinear programming problem is defined as
Maximize (or minimize) z = f(X)
subject to
gX)=0

The nonnegativity conditions, X = 0, form part of the constraints. Also, at least one
of the functions f(X) and g(X) is nonlinear, and all the functions are continuously
differentiable.

No general algorithm exists for handling nonlinear models, because of the erratic
behavior of the nonlinear functions. Perhaps the most general result applicable to the
problem is the KKT conditions (Section 20.2.2). Table 20.2 shows that unless f(X) and
g(X) are well-behaved (convexity and concavity conditions), the KKT conditions are
only necessary for realizing optimality.

This section presents a number of algorithms that may be classified generally as
indirect and direct methods. Indirect methods solve the nonlinear problem by dealing
with one or more /inear programs derived from the original program. Direct methods
deal with the problem in its original form.

The indirect methods presented in this section include separable, quadratic, geo-
metric, and stochastic programming. The direct methods include the method of linear
combinations and a brief discussion of the sequential unconstrained maximization
technique. Other important nonlinear techniques can be found in the Selected
References at the end of the chapter.

21.2.1
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21.2.1 Separable Programming

A function f(x, x,, ..., x,) is separable if it can be expressed as the sum of n single-
variable functions fi(x,), /(x), ..., f,(x,—that is,

fn xi.,x,) = fita) + Alx) + ...+ fi(x,)
For example, the linear function
h(xy, X5, ..o, %) = aixy + ax, + ... + ax,
is separable (the parametersa,, i = 1, 2, ..., n,are constants). Conversely, the function
h(xy, Xy, x3) = x1 + x; sin(x, + x3) + x,e™

is not separable.

Some nonlinear functions are not directly separable but can be made so by
appropriate substitutions. Consider, for example, the case of maximizing z = X1X5.
Letting y = x,x,,thenIny = Inx; + Inx, and the problem becomes

Maximize z = y
subject to
Iny = Inx, + Inx,

which is separable. The substitution assumes that x; and x, are positive variables; other-
wise, the logarithmic function is undefined.

The case where x, and x, assume zero values (i.e., x;, x, = 0) may be handled in
the following manner. Let 8; and 8, be positive constants and define

wy =x; + 9

W, =X, + 9,
The new variables w; and w, are strictly positive. Now

XX, = wiw, — dwy — dw, + §,9,
Letting y = w;w,, the problem is expressed as
Maximize z = y — &,w; — d;w, + §,5,
subject to
Iny = Inw, + Inw,
y=0,w =38,w, =3,

The new problem is separable.

Examples of other functions that can be made separable using substitution are
"™ and x}>. A variant of the procedure just presented can be applied to such cases to
effect separability.

Separable programming deals with nonlinear problems in which the objective
function and the constraints are separable. This section shows how an approximate
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solution can be obtained for any separable problem by linear approximation and the
simplex method of linear programming.

The single-variable function f(x) can be approximated by a piecewise linear func-
tion using mixed integer programming (Chapter 9). Suppose that f(x) is to be approxi-
mated over an interval [a, b]. Define a,, k = 1, 2, ..., K, as the kth breaking point on
the x-axis such that a; < a, < ... < ag.The points @, and ay coincide with end points
a and b of the interval under investigation. Thus, f(x) is approximated as follows:

flo) = ;f (aplty

K
X = Eaktk
k=1

where 7, is a nonnegative weight associated with the kth breaking point such that
K
Eatk =1
k=1

Mixed integer programming ensures the validity of the approximation. Specifically, the
piecewise linear approximation is valid if

1. At most two ?, are positive.
2. If#, is a positive, then only an adjacent ¢, or #,_; can assume a positive value.

To show how these conditions are satisfied, consider the separable problem
n
Maximize (or minimize) z = >, f(x))
i=1

subject to

n

Sgix)=b,j=12, ....,m

i=1
This problem can be approximated by a mixed integer program as follows. Let the
number of breaking points for the ith variable x; equal K; and let a} be its kth breaking
value. Let # be the weight associated with the kth breaking point of variable i.! Then
the equivalent mixed problem is

n K;
Maximize (or minimize) z = faht:
i=1k=1
subject to
n K;
g]l(a{()t{{ = b]’ ] = 17 27 e, m
i=1k=1
0=st=y,i=12,..,n
OStf(Sy{fwl"'Yf(, k=273’ ’K[—]‘

1Tt would be more accurate to replace the index k with k; to correspond uniquely to variable i. However, we
will not do so for the sake of simplifying the notation.
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yE = (0, k=12 ....,K,i=1,2, ....n

The variables for the approximating problem are # and y*.

This formulation shows how any separable problem can be solved, at least in
principle, by mixed integer programming. The difficulty is that the number of con-
straints increases rather rapidly with the number of breaking points. In particular, the
computational feasibility of the procedure is questionable because there are no reli-
able computer codes for solving large mixed integer programming problems.

Another method for solving the approximate model is the regular simplex
method (Chapter 3) using restricted basis. In this case the additional constraints
involving y¥ are not needed. The restricted basis specifies that no more than two

i< positive t* can appear in the basis. Moreover, two #f can be positive only if they are
adjacent. Thus, the strict optimality condition of the simplex method is used to select
the entering variable # only if it satisfies the foregoing conditions. Otherwise, the vari-
able 7 having the next best optimality indicator (z* — ¢¥)is considered for entering the
solution. The process is repeated until the optimality condition is satisfied or until it is
impossible to introduce new # without violating the restricted basis condition,
whichever occurs first. The last tableau gives the approximate optimal solution to the
problem.

The mixed integer programming method yields a global optimum to the approxi-
mate problem, but the restricted basis method can only guarantee a local optimum.
Additionally, in the two methods, the approximate solution may not be feasible for the
original problem. In fact, the approximate model may give rise to additional extreme
points that are not part of the solution space of the original problem.

Example 21.2-1
Consider the problem
Maximize z = x; + x}
subject to
3 + 22 =9
X, % =0

The exact optimum solution to this problem, obtained by inspection, is x; = 0,
X, = 212,and z* = 20.2.To show how the approximating method is used, consider the
separable functions

Hilx) = x4
flxy) = x‘z‘
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gilx) = 3x,
gf(xz) = Zx%

The functions fi(x,) and gi(x;) are left in their present form because they are
already linear. In this case, x, is treated as one of the variables. Considering f,(x,) and
gi(x,), we assume that there are four breaking points (K, = 4). Because the value of x,
cannot exceed 3, it follows that

ko fld)  gildd)

1 0 0 0

2 1 1 2

3 2 16 8

4 3 81 18
This yields

F) = @) + 1) + BAH@) + t3f{a3)
~ 0th + 113 + 1615 + 81t5 = 3 + 1613 + 8113

Similarly,

gl(x,) ~ 2t3 + 813 + 1813
The approximating problem thus becomes
Maximize z = x, + 3 + 16t + 81t3
subject to
3x, + 263+ 865 + 185 =9
+d++5=1
th=0k=1,223,4
x =0

The solution must satisfy the restricted basis condition.
The initial simplex tableau (with rearranged columns to give a starting solution) is
given by

Basic X 13 3 15 5 I Solution
z -1 -1 -16 —81 0 0 0
K3 3 2 8 18 1 0 9
2 0 1 1 1 0 1 1

The variable s,(= 0)is a slack. (This problem happened to have an obvious starting solu-
tion. In general, one may have to use the artificial variables techniques, Section 3.4.)
From the z-row coefficients, 7 is the entering variable. Because 73 is currently basic
at positive level, the restricted basis condition dictates that it must leave before ¢3 can
enter the solution. By the feasibility condition, s; must be the leaving variable. This
means that 75 cannot enter the solution. The next best entering variable, #3, requires 73
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to leave the basic solution, a condition that happens to be guaranteed by the feasibility
condition. The new tableau thus becomes

Basic X t3 3 15 5 t}  Solution
4 -1 15 0 —65 0 16 16
S 3 -6 0 10 1 -8 1
£ 0 11 1 0 1 1

Next, #3 is the entering variable, which is admissible because £} is positive. The sim-
plex method shows that s, will leave. Thus,

3

Basic X, 13 I ts 51 t} Solution
z 24 0 0 2 -3 223
4 3 1 _8 1
5 10 10 0 1 10 10 10
3 3 16 1 18 9
5 ~10 10 1 0 10 10 10

The tableau shows that ¢; and 3 are candidates for the entering variable. Because ) is
not adjacent to basic #3 or 73, it cannot enter. Similarly, 73 cannot enter because 4 can-
not leave. The process ends at this point, and the solution given is the best feasible solu-
tion for the approximate problem.

The optimum solution to the original problem is

x; =0
X R 23+ 35 = 25p) + 3E) = 2.1
z=0+21%=1945

The approximate optimum value of x,(= 2.1) approximately equals the true optimum
value (= 2.12).

Separable Convex Programming. A special case of separable programming occurs
when gl(x;) is convex for all / and j, thus ensuring a convex solution space. Additionally,
if fi(x,) is convex (minimization) or concave (maximization) for all ;, then the problem
has a global optimum (see Table 20.2, Section 20.2.2). Under such conditions, a
simplified approximation can be used.

Consider a minimization problem and let f(x,) be as shown in Figure 21.4. The
breaking points of the function f(x,) are x; = a,,, k = 0, 1, ..., K;. Let x;; define the
increment of the variable x; in the range (a,_, aw)h k=1,2, ..., K; and let p,; be
the corresponding slope of the line segment in the same range. Then

K;
fitx) = kglpkixki + fi(an)

K;
Xi = Exki
k=1

O=xy=ay—a 1, k=12, ..., K
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fix:)

FIGURE 21.4

Piecewise linear approximation of a
convex function

The fact that f(x,) is convex ensures that p;; < py < *** < pg,. Thus, in a minimiza-
tion problem, for p < g, the variable x,, is more attractive than x,;, which means that
x,; will always enter the solution before x;.

The convex constraint functions gi(x;) are approximated in essentially the same
way. Let p/, be the slope of the kth line segment corresponding to gl(x,). It follows that
the ith function is approximated as

qi>

K' . .
glx) ~ kEpjkixki + gl(an)
=1
The complete problem is thus given by
n K
Minimize z = 2( PriXii + f,-(a0,~)>
i=1 \k=1
subject to
n K; ) )
E( PhiXii T g?(“o:‘)) =b, j=1,2 «s,m
i=1 \k=1
0= Xii = dy; — -1 4 k= 1, 2, - Kl, i = 1, 2, weswy M
where

flaw) — f_i (@r-1,)

Pki =

Ag; — Q-1
i giar) — gl(a-1))
Pl A — A1,

The maximization problem is treated essentially the same way. In this case,
p1i > py >+ > pg,, which means that, for p < g, the variable x,; will always enter
the solution before x,; (see Problem 7, Set 21.2a for proof).

The new problem can be solved by the simplex method with upper bounded vari-
ables (Section 7.3). The restricted basis concept is not needed because the convexity
(concavity) of the functions guarantees correct selection of basic variables.

Example 21.2-2
Consider the problem

Maximize z = x; — X,
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subject to
3x{ + x, =243

X+ 2% =32
Xy =21
X, =35

The separable functions of this problem are
file) = x1, fily) = —x;
gilx1) = 3xi, &x) = x,
gilx1) = x,, 8x) = 25

These functions satisfy the convexity condition required for the minimization problem.

The ranges of the variables x; and x, (estimated from the constraints) are
O0=x;=3and0=x, =4 Let K, =3 and K, = 4 with ay = ay, = 0. The slopes
corresponding to the separable functions are determined as follows.

Fori =1,
k A Haw) = ay Pr1 gll(akl) = 3“21 pllcl g%(akl) = A p12<1 Xk1
0 0 0 — 0 — 0 — —
1 1 1 1 3 3 1 1 X
2 2 2 1 48 45 2 1 Xy
3 3 3 1 243 195 3 1 X31

Fori = 2,
k (%) flaw) = —ay, Pr2 g%(akz) = di Pi2 g%(akz) = 2a, P2 Xk1
0 0 0 — 0 — 0 — —
1 1 -1 -1 1 1 2 2 X
2 2 -2 -1 2 1 8 6 X
3 3 -3 -1 3 1 18 10 X3
4 4 -4 -1 4 1 32 14 Xp

The complete problem then becomes
Maximize z ~ x;; + X3 + X3 — X5 — Xy — X3, — X4
subject to
3x + 45x5; + 195x5 + X+ xp + oxp + Xy = 243
Xyt xy + X3+ 2x + 6xy + 10x5, + 14x, < 32
2.1
35

v

Yut o oxpt o xy
Yot Xpt xpt oxp =
O=xu=1 k=123
O0=xu,=1 k=1234
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TORA optimum solution is
Z = _.52, X1 = X = 13 X3 = 98, X1 = Xpp T X3 T 1, Xo4 = 5

The solution translates to (x;, x,) = (2.98, 3.5).

PROBLEM SET 21.2A
1. Approximate the following problem as a mixed integer program.
Maximize z = ¢ + x; + (x, + 1)°
subject to
X +x=3
X, X, =0

2. Repeat Problem 1 using the restricted basis method. Then find the optimal solution.
3. Consider the problem
Maximize z = x;x,X;3
subject to
Bt =4 21.2.2

X1, X2, X3 =0

Approximate the problem as a linear program for use with the restricted basis method.
4. Show how the following problem can be made separable.

Maximize z = xx, + X3 + xX1x;
subject to
XX, + x + xx3 = 10
X1,X%5,%3 = 0
5. Show how the following problem can be made separable.
Minimize z = ¢ + (x; — 2)
subject to
XL+ x,+tx3=6
X1, X9, X3 = 0
6. Show how the following problem can be made separable.
Maximize z = " + x3x; + X4
subject to
X, + xx3 +x3 =10
X1, X5 X3 = 0

x4 unrestricted in sign
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7. Show that in separable convex programming, it is never optimal to have x,; > 0 when
X1, is not at its upper bound.

8. Solve as a separable convex programming problem.
Minimize z = x{ + 2x, + x3
subject to
xI+x+xis<4
[x1 +x,] =0
X, X3 =0
X, unrestricted in sign
9. Solve the following as a separate convex programming problem.
Minimize z = (x; — 2)* + 4(x, — 6)2
subject to
6x; + 3(x, + 1) = 12

X% =0

21.2.2 Quadratic Programming

A quadratic programming model is defined as

Maximize z = CX + X’DX

subject to
AX =bh, X =0
where
X = (x}, x,, s X,)"
C = (Cb Cy, > cn)
b = (bl’ b2> 5 bm)T
a.H a.l,,
A= : :
a1 Ay
dll d.lll
D= : : :
dnl B dnn

The function X’DX defines a quadratic from (Section A.3). The matrix D is
assumed symmetric and negative-definite. This means that Z is strictly concave. The
constraints are linear, which guarantees a convex solution space.

The solution to this problem is based on the KKT necessary conditions. Because
z 1s strictly concave and the solution space is convex, these conditions (as shown in
Table 20.2, Section 20.2.2) are also sufficient for a global optimum.




748 Chapter 21 Nonlinear Programming Algorithms

The quadratic programming problem will be treated for the maximization case. It
is trivial to change the formulation to minimization. The problem may be written as

Maximize z = CX + X’DX

o~ (s~ (2)

A=, Ny s AT

subject to

Let

U = (“‘19 M5 vevs u‘n)T

be the Lagrange multipliers corresponding to the two sets of constraints AX — b = 0
and —X = 0, respectively. Application of the KKT conditions yields

A=0,U=0
Vz — (A, UHVGX) = 0

)\[(b,‘ - E(l”x]> = 0, i= 1, 2, e, m
j=1

wx; =0, j=1,2, ...,n
AX =b
-X=0
Now
Vz =C + 2X'D

o (3)

LetS = b — AX = 0 be the slack variables of the constraints. The conditions reduce to

-2X™D + N'A -U'=C

AX+S=b
pix; =0 =N\S; foralliandj
AUX S=0

Because D7 = D, the transpose of the first set of equations can be written as

-2DX + A’ -U=C"
Hence, the necessary conditions may be combined as

X

2D AT -1 0\ A|_[/CT
A 0 o0 IJIlUl \b
S
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pix; =0 =N\S, foralliandj
AU X S=0

Except for the conditions px; = 0 = \,S,, the remaining equations are linear functions
in X, N, U, and S. The problem is thus equivalent to solving a set of linear equations,
under the additional conditions wx; = 0 = \;S,. Because z is strictly concave and the
solution space is convex, the feasible solution satisfying all these conditions must be
unique and optimum.

The solution of the system is obtained by using phase I of the two-phase method
(Section 3.4.2). The only restriction is to satisfy the conditions NS = 0 = px;. This
means that \; and §; cannot be positive simultaneously. Similarly, p; and x; cannot be
positive simultaneously. This is the same idea of the restricted basis used in Section
21.2.1.

Phase I will render all the artificial variables equal to zero only if the problem has

a feasible space.

Example 21.2-3
Consider the problem
Maximize z = 4x; + 6x, — 2x] — 2x,x, — 2x2
subject to
X1+ 2%, <2
X1, X =0

This problem can be put in matrix form as follows:

Maximize z = (4, 6)(2) + (v, x2)<:% :;><2>

1, 2)@) <2

X, X =0

subject to

The Kuhn-Tucker conditions are given as

X1
421—100i2 4
2 4 2 0 -1 oll™M] =16
120 0o o 1M 2

M2

51
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The initial tableau for phase I is obtained by introducing the artificial variables R, and

R,. Thus
Basic X X, N W V5 R, R, 5 Solution
r 6 6 3 -1 -1 0 0 0 10
R, 4 2 1 —1 0 1 0 0 4
R, 2 4 0 ~q 0 1 0 6
1 1 2 0 0 0 0 0 1 2

Iteration 1. Because w; = 0, the most promising entering variable x; can be made
basic with R, as the leaving variable. This yields the following tableau:

Basic X1 X, N ™ 2 R, R, K Solution
r 0 3 3 3 -1 -3 0 0 4
x 1 ! : -1 0 : 0 0
R, 3 % 5 -1 -3 1 0 4
5 0 2 -1 : 0o - 0 1

Iteration 2. The most promising variable x, can be made basic because w, = 0. This

gives
Basic X X, N M o R, R, s Solution
r 0 0 2 0 -1 -1 0 -2 2
x 1 0 : -1 0 ! 0 -1 z
R, 0 0 2 0 -1 0 1 -2 2
S L L

Iteration 3. Because s; = 0, \; can be introduced into the solution. This yields

Basic X X, N [T o R, R, 5, Solution
r 0 0 0 0 0 -1 -1 0 0
x| r 0o 0 -3 § % 0 3
A 0 0 1 0 -3 0 3 -1 1
X U S T S ; 5

The last tableau gives the optimal solution for phase 1. Because
r = 0, the solution, x; = %, X, = %, is feasible. The optimal value of z is
computed from the original problem and is equal to 4.16.
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=4"B10+67C10-2"B10°2-2*B107C10-27C 1042

g’ -:h2 Qratic— inal

Objective KL ML {4 1FBRR7
Canstralnt 1 7 1

T

A% 1oL

il e z

Solution 0.333333 0.833333 4 1666R7

Solver Parameters

$EFL0$CEI0 =0

ot o drge = FIGURE 21.5

Excel solution of the qua-
dratic programming problem
of Example 21.2-3

Excel Solver can be used to solve the quadratic programming problem.
Figure 21.5 provides the solution for Example 21.2-3 (see file ch21SolverQuadratic
Programming.xls). The data are entered in a manner similar to the one used in linear
programming (see Section 2.4.2). The main difference is the way the nonlinear func-
tion is entered. Specifically, in Example 21.2-3, the nonlinear objective function

7 =4x; + 6x, — 2x] — 2xx, — 243

is entered in target cell D5 as
=4*B10+6*C10—2*B10"2—2*B10*C10—2%C10"2

Here, the changing cells B10 and C10 represent x; and x,. Notice that cells B5:C5 are not
used at all in the model. For readability, we entered the symbol NL to indicate that the
associated constraint is nonlinear. Also, you can specify the nonnegativity of the vari-
ables either in the Options dialogue box or by adding explicit nonnegativity constraints.

PROBLEM SET 21.2B

1. Consider the problem

Maximize z = 6x; + 3x, — 4xx, — 2x] — 3x}
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21.2.3

subject to
x+ xn=1

2X1 +- 3X2 = 4
x;, %, =0

Show that z is strictly concave and then solve the problem using the quadratic program-
ming algorithm.
2. Consider the problem:

Minimize z = 2x} + 2x3 + 3x3 + 2xx, + 2603 + x; — 3x, — 5x;
subject to
X+ xnt+tx=1
3%, + 2%, + x3 =6
X1, X3, X3 = 0

Show that z is strictly convex and then solve by the quadratic programming algorithm.

Geometric Programming

Geometric programming deals with problems in which the objective and the constraint
functions are of the following type:

z=fX)= DU

where

U=c¢[[x, j=12,....N
i=1

It is assumed that all ¢; > 0, and that N is finite. The exponents a; are unrestricted in
sign. The function f(X) takes the form of a polynomial except that the exponents a;
may be negative. For this reason, and because all ¢; > 0, f(X) s called a posynomial.

This section will present the unconstrained case of geometric programming. The
treatment of the constrained problem is beyond the scope of this chapter. Detailed
treatment of the subject is given in Beightler and associates (1979, Chap. 6).

Consider the minimization of the posynomial function f(X). This problem will be
referred to as the primal. The variables x; are assumed strictly positive so that the
region x; =< 0 is infeasible. It will be shown later that the requirement x; > 0 plays an
essential part in the derivation of the results.

The first partial derivative of z must vanish at a minimum point. Thus,

aiz_NaUA n

] _ -1 a
= = Yeaux)  [[x =0, k=12, ...,n

JPkj\ Nk i > s 4 P
axy S A itk

Because each x;, > 0 by assumption,

oz _ . _ 1
Bxk - 0 - xkzak/’U‘
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Let z* be the minimum value of z. It follows that z* > 0 because z is posynomial and
each x;, > 0. Define

S

Tz

Thus y; > 0 and 3y; = 1. The value of yjrepresents the relative contribution of U, to

the optimal value of the objective function z*. The necessary conditions can now be
written as

N
zakjyj =0, k=1,2, ....n
=1

=

yi=1 y;>0forallj
j=1
These are known as the orthogonality and normality conditions and will yield a unique
solution for y; if n + 1 = N and all the equations are independent. The problem
becomes more complex when N > 1 + 1 because the values of y; are no longer
unique. It is shown later that, even in this case, optimum y; is unique.
Given y;, the values of 7" and x; can be determined as follows:

Z* - (z*)E,ﬂy,‘

Because 7° = %’, it follows that

N

Cf Y L I a4y
1) g}
=1 \)Yj i=1

(%)
=T\

This step is justified because E_,{V_:lai,y/ = 0.The value of z" is known once all y; have
been determined. Now, given Vi and z, U; = 7z can be determined. Solution of
the following equations then yields x/.

{0 i)
|

U = cfH(xf)”'f, i=12, ...,N

The procedure shows that the solution to the original posynomial z can be transformed
into the solution of a set of linear equations in y;. These equations are the necessary
conditions for a minimum. It can be shown that these conditions are also sufficient. The
proof is given in Beightler and associates (1979, p. 333).
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The variables y; actually define the dual variables associated with the z-primal
problem. To see this relationship, consider the primal problem in the form

-5

Now define the dual function

Because E}Ly,- = land y; > 0, we have
w=z

This result is based on Cauchy’s arithmetic-geometric inequality, which states that
N N
2wz = [z
j=1 =1

N
w; > 0, ij= 1
=

An immediate consequence of the inequality w < z is the following relationship:

w'=maxw=min z = 7
Yi X

Example 21.2-4

In this example a problem is considered in which N = n + 1 so that the solution to the
orthogonality and normality conditions is unique. The next example illustrates the case
where N > n + 1.
Consider the problem
Minimize z = 7xx5" + 3x6,x37 + 5x7°x0x5 + X0X5

This function may be written as

Minimize z = 7xlx;'x + 320032 + Sxxlxd + xdxixd
Thus,
(Cl, Cz, C3, C4) = (7, 3, 5, 1)
ap;; Ay a3 4y 1 0 -3 1
Ay Gy Gy Gy | = |1 1 1 1
azy 4z dzz dig 0 -2 11

The orthogonality and normality conditions are thus given by

1 0 -3 1\[n 0
-1 1 1 1| 0
0 —2 1 1|y |0
1 1 1 1)\y, 1
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This yields the unique solution

O L S R |
M=V 6 Y3 =% Ysa=3

- (Y -
2 6 24 24

From the equation U; = y;z" it follows that
U, = }15.23) = 7615
36,032 = U, = ¥15.23) = 2,538
5x7°x,x; = Uy = 5(15.23) = 3.173
xx60 = Uy = §15.23) = 1.904
The solution of these equations is
x; = 1316, x =121, x; = 1.2

which is the optimal solution of the problem.

Thus,

-1
7x1%;
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Example 21.2-5
Consider the problem
Minimize z = 5x.x;" + 2x7'x, + 5x; + x5!
The orthogonality and normality conditions are given by
1 -1 1 o™

-1 1 0 -1]2]=

1 1 1 1|
Vs

|
oo

Because N > n + 1, these equations do not yield y; directly. Solving for y,, y,, and y,

in terms of y, we get

1 -1 1|y 0
-1 1 0|y, = Y4
I 1 1)y 1=y
or
yi =51 = 3y,
y2 = 5(1 = yy)
V3 = Y4

The associated dual problem is

Mg < 5 )-5(13.»'4)< ) )»5(1—%)( 5 >y4 < 1 ),w
aximize w = | —————— =TT — —
S(1 = 3y S =y Va4 Va4
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Maximization of w is equivalent to maximization of In w. The latter is easier to manip-
ulate, however. Thus,

Inw = .51 — 3y,{In10 — In(1 — 3y} + .5(1 — y{In4 — In(1 — y,)} + y,(In5 — 2Iny,)

The value of y, maximizing In w must be unique (because the primal problem has a
unique minimum). Hence,

dolnw
0Y4

= (=3In10 — in4 + In5) + An(1 — 3y,) + 3In(l — y,) — 2lny, = 0

This gives, after simplification,

_m<z x 103) . m(‘l ~ 3y - m%) 0

5 i

or

VL =3y - )
Vi

which yields y; ~ .16. Hence, y; = .16,y; = .42,and y| = .26.
The value of 7 is obtained from

2 =W = G 6" ~ 9661

= 12.6

Hence,

Us = 16(9.661) = 1.546
U, = 1600.661) = 1546 = x,!
The equations yield x;” = .309 and x,” = .647.

le

PROBLEM SET 21.2C
1. Solve the following problem by geometric programming.
Minimize z = 2x7'%3 + x3x;° + 4x?
X1, X, >0
2. Solve the following problem by geometric programming.
Minimize z = 5x,x5'%5 + x72x3" + 1003 + 2x7 x50
X1, Xp, X3 >0
3. Solve the following problem by geometric programming.
Minimize z = 2x3x5° + 8x7°x, + 3x%,
X, X, >0
4. Solve the following problem by geometric programming.
Minimize z = 2x3x5° + 4x7%x, + X1,

X1, X2 >0

21.2.4
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21.2.4 Stochastic Programming

Stochastic programming deals with situations where some or all parameters of the
problem are random variables. Such cases seem typical of real-life problems, where it
may be difficult to determine the values of the parameters with certainty.

The idea of stochastic programming is to convert the probabilistic problem into
an equivalent deterministic situation. This section deals with chance-constrained pro-
gramming, defined as

n
Maximize z = zgcjx,
o=
subject to

P{zai]'X'sbi}Zl_ai, l=1, 2, ...,m;ijO, forallj
j=1

7

The name “chance-constrained” follows from the fact that each constraint is realized
with a minimum probability of 1 — «;, 0 < o; < 1. It is assumed that all a; and b, are
random variables. Three cases are considered:

1. Only a;is random for all i and ;.
2. Only b, is random for all i.
3. Both a; and b; are random for all i and ;.

In all three cases, it is assumed that the parameters are normally distributed with
known means and variances.

Case 1. Each g; is normally distributed with mean E{a,}, variance var{a;}, and
cov{a;, a;;} of a; and a;.
Consider the ith constraint

P{Eaux] = b,} = 1 - o
j=1
and define
hi = Zai]'xl'

j=1

Then £, is normally distributed with
Elh} = EQE{C’U}X/
=

var{h;} = X'D X
where
X =(x, ..., x,)"

D; = ith covariance matrix
var{a;} ... cov{ay, a;,
cov{a;, a } ... var{a,,}
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Now

hi - E{hl} bi - E{hl}}
= =1- Qy
Vvar{hi} Vvar{hi}
b — E{h} . ) . )
where ea] S standard normal with mean zero and variance one. This means that
bi - E{hi}>
Vvar{h;}

where F represents the CDF of the standard normal distribution.
Let K, be the standard normal value such that

Ph; = b} = P{

Plh; = b} = F(

FK,)=1-q
Then the statement P{h; = b;} = 1 — «;is realized if and only if
b; — E{h,-} =K

\V var{h;} “

This yields the following nonlinear deterministic constraint:
> E{ax; + K, VX'DX =< b,
i=1

For the special case where the normal distributions are independent,
COV{a[/‘, a,-/_,-r} =0

and the last constraint reduces to

> Elagx; + Kai\/m < b,
j=1 j=1

This constraint can be put in the separable programming form (Section 21.2.1) by

using the substitution
n
yi =+ D var{a;}x;, foralli
=

Thus, the original constraint is equivalent to

E{azix; + K, y; = b,
1

]':

and

Il
o

n
S var{abx; — yi
=

Case 2. Only b, is normal with mean E{b;} and variance var{b;}. The analysis is similar
to that of case 1. Consider the stochastic constraint

P{b[ = gaijx]'} = Q;
j=

S — e ——
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Asin case 1,
a;x;, — E bi
plbi- sy AL
Vvar{b;} Vvar{b;}
This can hold only if

n
Eaijxj — E{b}
j=1
e — KOL,»
Vvar{b;}
Thus, the stochastic constraint is equivalent to the deterministic linear constraint

Eaijxj = E{b} + K, Vvar{b}
=1

Case 3. In this case all a; and b; are normal random variables. Consider the constraint
n
a5 = b,
j=1

This may be written

n

Ea,‘/‘X' - bi = O

j=1

Because all a;; and b; are normal, E}Llai,xj — b, is also normal. This shows that the
chance constraint reduces to the situation in case 1 and is treated in a similar manner.

Example 21.2-6
Consider the chance-constrained problem
Maximize z = 5x; + 6x, + 3x;
subject to
Playx; + apx; + apx; < 8 = 95
P{5x; + x; + 6x3 = b} = .10
X1, X5y X3 = 0

Assume that the a,s are independent normally distributed random variables with the
following means and variances:

E{an} = 1, Efay} = 3, Ea} =9
Var{an} = 25, Var{alz} = 16, Var{a13} =4

The parameter b, is normally distributed with mean 7 and variance 9.
From standard normal tables in Appendix D,

K, = Ko~ 1.645, K, = K, ~ 1285

e
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Igorithms

The two constraints are converted deterministically to
X, + 3%, + 9x; + 1.645V25x3 + 162 + 42 < 8

S5x; + xy + 6x3
If we let

<7 + 1.285@3) = 10.855

y? = 25x3 + 16x3 + 4x3

the problem becomes

Maximize z = 5x; + 6x, + 3x;

subject to

x; + 3x, + 9x; + 1.645y < 8
25x7 +16x3 + 43 — y* =0
le + Xy + 6X3 = 10855

X1, Xpy X3,y = 0

which can be solved by separable programming.
Excel optimum solution of this nonlinear problem is given in Figure 21.6 (file
ch21SolverStochasticProgramming.xls). Only the left-hand side of constraint 2 is non-

linear and is entered in cell F7 as

=25*B12"2+16

FIGURE 21.6

Excel solution of the
stochastic programming
problem of Example
21.2-6

*cl1272+4*D12"2—E12"2

¥
Tatals I Limits

‘ 3 1 466129
i 1 3 8 anes 10509%51«=] 8
NL {74E114=] 0
i L 8 | | B | R 0 yx=[M

={

855

x3

Solution

A W U .

i Solver Parameters

oy
0274184) 0 0 /1370968
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PROBLEM SET 21.2D

1. Convert the following stochastic problem into an equivalent deterministic model.
Maximize z = x; + 2x, + 5x;
subject to
Plax; + 3x, + asx; = 10} = 0.9
P{7x; + 5%, + x; = b} = 0.1
Xi, X9, X3 = 0

Assume that 4, and a; are independent and normally distributed random variables
with means E{a,} = 2 and E{a;} = 5 and variances var{a,} = 9 and var{a;} = 16. Assume
further that b, is normally distributed with mean 15 and variance 25,

2. Consider the following stochastic programming model:
Maximize z = x; + x7 + x;
subject to
P(x} + a3 + a3V = 10} = 0.9
X1, X3, X3 =0

The parameters a, and a; are independent and normally distributed random vari-
ables with means 5 and 2, and variance 16 and 25, respectively. Convert the problem into
the (deterministic) separable programming form.

21.2.5 Linear Combinations Method
This method deals with the following problem in which all constraints are linear:
Maximize z = f(X)
subject to
AX =b, X =0
The procedure is based on the steepest ascent (gradient) method (Section 21.1.2).
However, the direction specified by the gradient vector may not yield a feasible solu-
tion for the constrained problem. Also, the gradient vector will not necessarily be null
at the optimum (constrained) point. The steepest ascent method thus must be modified
to handle the constrained case.

Let X* be the feasible trial point at iteration k. The objective function f(X) can be
expanded in the neighborhood of X* using Taylor’s series. This gives

fX) = fXE) + VAXYX = X5 = (XY - VAXHXH) + VAXYX

The procedure calls for determining a feasible point X = X" such that £(X) is maximized
subject to the (linear) constraints of the problem. Because f(X*) — VAX“XX is a con-
stant, the problem for determining X" reduces to solving the following linear program:

Maximize w;(X) = VAXNX
subject to
AX =hbh, X =0




762 Chapter 21 Nonlinear Programming Algorithms

Given w, is constructed from the gradient of f(X) at X¥, an improved solution
point can be secured if and only if w(X") > w,(X¥). From Taylor’s expansion, the con-
dition does not guarantee that f(X") > f(X") unless X" is in the neighborhood of X*.
However, given wy(X") > w(X¥), there must exist a point X**! on the line segment

(X, X")such that f(X**1) > f(X¥). The objective is to determine X**!. Define
XFl=(1-PX+/ X' =X+rX' =X 0<r=1

This means that X**! is a linear combination of X* and X". Because X* and X" are two
feasible points in a convex solution space, X**! is also feasible. By comparison with the
steepest ascent method (Section 21.1.2), the parameter r represents the step size.

The point X**! is determined such that f(X) is maximized. Because X**! is a
function of r only, X**! is determined by maximizing

h(r) = fX* + r(X* — XY)

The procedure is repeated until, at the kth iteration, w(X") = w,(X"). At this
point, no further improvements are possible, and the process terminates with X as the
best solution point.

The linear programming problems generated at the successive iterations differ
only in the coefficients of the objective function. Sensitivity analysis procedures pre-
sented in Section 4.5 thus may be used to carry out calculations efficiently.

Example 21.2-7
Consider the quadratic programming of Example 21.2-3.
Maximize f(X) = 4x, + 6x, — 2x] — 2x,x, — 2x3

subject to
X +2x, =2
X, X, =0
Let the initial trial point be X° = (3, 1), which is feasible. Now 21.2.6

VAX) = (4 — 4x; — 2x,, 6 — 2x; — 4x,)

Iteration 1.
VX = (1, 3)

The associated linear program maximizes w; = x; + 3x;, subject to the constraints of
the original problem. This gives the optimal solution X* = (0, 1). The values of w; at X°
and X" equal 2 and 3, respectively. Hence, a new trial point is determined as

X'=(39+r10, ) -GN =055
The maximization of

hr) = f(5,5)
yields 7' = 1.Thus X' = (0, 1) with f(X") = 4.
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Iteration 2.
VAXY) = (2, 2)

The objective function of the new linear programmlng problem is w, = 2x; + 2x,. The
optimum solution to this problem yields X™ = (2, 0). Because the values of w, at X' and
X" are 2 and 4, a new trial point must be determined. Thus

X=0,1)+7r20-01]=2r1-0n
The maximization of
hr) = fC2r,1 —r)
yields 7 = £. Thus X? = (3, 2) with £(X?) ~ 4.16.

Iteration 3.

VAX?) = (1, 2)

The corresponding objective function is wy = x; + 2x,. The optimum solution of this
problem yields the alternative solutions X" = (0, 1)and X" = (2, 0). The value of w; for
both points equals its value at X°. Consequently, no further improvements are possible.

The approximate optimum solution is X> = (3, 2) with f(X?) ~ 4.16. This happens to be
the exact optimum.

PROBLEM SET 21.2E

1. Solve the following problem by the linear combinations method.

Minimize f(X) = x} + x3 — 3x.x,

subject to
3+ x, =3
Sxp =3, =5
X, X =0
SUMT Algorithm

In this section, a more general gradient method is presented. It is assumed that the
objective function f(X) is concave and each constraint function g,(X) is convex.
Moreover, the solution space must have an interior. This rules out both implicit and
explicit use of equality constraints.

The SUMT (Sequential Unconstrained Maximization Technique) algorithm is
based on transforming the constrained problem into an equivalent unconstrained
problem. The procedure is more or less similar to the use of the Lagrange multipliers
method. The transformed problem can then be solved using the steepest ascent
method (Section 21.1.2).

To clarify the concept, consider the new function

o0 = %)+ o 3t - 31

=18
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where ¢ is a nonnegative parameter. The second summation sign accounts for the non-
negativity constraints, which must be put in the form —x; = 0 to be consistent with the
original constraints. Because g;(X) is convex, ﬁ is concave. This means that p(X, ) is
concave in X. Consequently, p(X, 7) possesses a unique maximum. Optimization of the
original constrained problem is equivalent to optimization of p(X, f).

The algorithm is initiated by arbitrarily selecting an initial nonnegative value for
t. An initial point X, is selected as the first trial solution. This point must be an interior
point—that is, it must not lie on the boundaries of the solution space. Given the value
of ¢, the steepest ascent method is used to determine the corresponding optimal solu-
tion (maximum) of p(X, 7).

The new solution point will always be an interior point because if the solution
point is close to the boundaries, at least one of the functions ﬁ or —x% will acquire a
very large negative value. Because the objective is to maximize p(X, ), such solution
points are automatically excluded. The main result is that successive solution points
will always be interior points. Consequently, the problem can always be treated as an
unconstrained case.

Once the optimum solution corresponding to a given value of ¢ is obtained, a
new value of ¢ is generated and the optimization process (using the steepest ascent
method) is repeated. If ¢’ is the current value of ¢, the next value, ", must be selected
such that 0 < ¢" < t'.

The SUMT algorithm ends when, for two successive values of ¢, the correspond-
ing optimum values of X obtained by maximizing p(X, ¢) are approximately the same.
At this point further trials will produce little improvement.

Actual implementation of SUMT involves more details than have been pre-
sented here. Specifically, the selection of an initial value of ¢ is an important factor that
can affect the speed of convergence. Further, the determination of an initial interior
point may require special techniques. These details can be found in Fiacco and
McCormick (1968).
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A.1.2

APPENDIX A

Review of Vectors
and Matrices

VECTORS

Definition of a Vector

Let py, p2, ..., p, be any n real numbers and P an ordered set of these real numbers—
that is,

P = (pl’ Do, '“’pn)

Then P is an n-vector (or simply a vector). The ith component of P is p;. For example,
P = (2, 4)is a two-dimensional vector with p, = 2 and P, =4

Addition (Subtraction) of Vectors

Consider the n-vectors

P = (ph P2 -y pn)
Q = (QI,* 9o v, Qr1>
R=(l’1, ¥y, ...,rn)

ForR = P + Q,component i is computed as r; = p: * q;
In general, given the vectors P, Q, and S,

P+Q=Q+P (Commutative law)
P+Q+S=P+(Q+S) (Associative law)
P+(-P)=0 (Zero or null vector)

765
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A.1.3 Multiplication of Vectors by Scalars
Given a vector P and a scalar (constant) quantity 6, the new vector
Q = 0P = (les Gp2, swey epn)

is the scalar product of P and 6. In general, given the vectors P and S and the scalars 6
and v,

6P + S) = 6P + 6S
6(yP) = (6v)P
A.1.4 Linearly Independent Vectors

The vectors Py, P,, ..., P, are linearly independent if, and only if
SoP =0=6=0=12 ...n A.2.3
i=1

If, for some 6; # 0,

then the vectors are linearly dependent. For example, the vectors
Pl = (1, 2), P2 = (2, 4)
are linearly dependent because for 6, = 2and 6, = —1,

61P1 + 62P2 =90

A.2 MATRICES
A.2.1 Definition of a Matrix

A matrix is a rectangular array of elements. The element a; of the matrix A occupies
the ith row and jth column of the array. A matrix with m rows and » columns is said to
be of size (or order) m X n.For example, the following matrix is of size (4 X 3).

an iz di3
a a a

A=%D 92 93] gl
a4z 4z U

Ay Qg Q43

A.2.2 Types of Matrices

1. A square matrix has m = n.

2. An identity matrix is a square matrix in which the main diagonal elements are 1
and the off-diagonal elements are zero. For example, a (3 X 3)identity matrix is
given by

o

(5]

Il
OO =
O = O
= O O
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3. A row vector is a matrix with one row and » columns.

&

A column vector is a matrix with 7 rows and one column.
5. The matrix A’ is the transpose of A if the element a; in A equals the element a;
in A" for all i and j. For example,

1 4

A<z s|eare (1 23)
3.6

6. A matrix B = 0is a zero matrix if every element of B is zero.

7. Two matrices A = ||a;[land B = [|b;l are equal if, and only if, they have the same
size and a; = b, for all i and j.

A.2.3 Matrix Arithmetic Operations

In matrices only addition (subtraction) and multiplication are defined. The division,
though not defined, is replaced by inversion (see Section A.2.6).

Addition (Subtraction) of Matrices. Two matrices A = lla;ll and B = bl can be
added if they are of the same size (m X n).The sum D = A + B is obtained by adding
the corresponding elements. Thus,

il = lNlag + Byl
If the matrices A, B, and C have the same size, then
A+B=B+A
A+tB+C=A+B+C
(A+B)=A"+B”
Product of Matrices. The product D = AB of two matrices, A = la;lland B = 16,
is defined if, and only if, the number of columns of A equals the number of rows of B. If

Ais of size (im X r)and B is of size (r X n), then D must be of size m X n,where m and
n are arbitrary positive integer values. In this case, the elements of D are computed as

d; = ;aikbk/, for all i and j

(1 3 (5 7 9
A= <2 4>’B - (6 8 0>
we have

(L 3)(5 7 9)_[(UXS+3X6)(AXT+3X8) (1X9+3x0)
D‘(zzo& 8(J_<QX5+4X®QX7+4X&QX9+4X®>

_ (23 31 9
34 46 18

In general, AB # BA even if BA is defined.

For example, given
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The following general properties apply to matrix multiplication:
I,A = AL, = A, I, and I, are identity matrices
(AB)C = A(BC)
CA +B)=CA +CB
(A + B)C = AC + BC
a(AB) = (¢A)B = A(aB), « is a scalar

Multiplication of Partitioned Matrices. Let A be an (m X r)-matrix and B an (r X n)-
matrix. Assume that A and B are partitioned as follows:

B B
A A A 11 12
A= (Au A12 Ai)’ B=|B, | By
21 22 2 BS] B32

The partitioning assumes that the number of columns of A; is equal to the number of
rows of B; for all i and j. Then

AXB = (AllBll + ApBy + AsBy | ABy, + ApBy, + A13B32>
A, B, + ApB, + AyBy | AyBp, + ApBy + AyBy,
For example,
1
112 3\/4 M@ + (2 3)<8> 4+2+24 30
110 5|1 = = |44
215 6/\8

B¢ 30

A.2.4 Determinant of a Square Matrix

6+ (&)

Consider the n-square matrix

ay ap ... iy
A — a‘zl agz . : . a.2”
an a, Apn
Next, define the product
Pf]fz---l = alfla2fz e a"jn

such that each column and each row of A is represented exactly once among the sub-
scripts of jj, J,, ...,and j,. Next, define

c _ )1, Jjij>...], even permutation
il 0, Jij2..-j, odd permutation

Let p represent the summation over all n! permutations; then the determinant of
A,det A or |A],is computed as

> € iiva P,
P
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As an illustration, consider

Then
A = ay(ay az; — a3 ) — ap(ay as; — as ar) + ayy(ay ay — ax ay)

The properties of a determinant are:

1. The value of a determinant is zero if every element of a row or a column is zero.

2. |A| = |AT).

3. If B is obtained from A by interchanging any two rows or any two columns, then
Bl = —|A].

4. If two rows (or two columns) of A are multiples of one another, then |A| = 0.

5. The value of |A| remains the same if scalar « times a column (row) vector is
added to another column (row) vector.

6. If every element of a column or a row of a determinant is multiplied by a scalar
a, the value of the determinant is multiplied by a.

7. If A and B are two n-square matrices, then

|AB| = |A[|B]

Definition of the Minor of a Determinant. The minor M;; of the element a; in the
determinant |A| is obtained from the matrix A by striking out the ith row and jth
column of A. For example, for

aip 4 ap
A =|ay dy  ay
a3 azp a4z

dyp a4y a;; Qg3

Mll =
dz;  ds3

s My, =

dsz; ds3

Definition of the Adjoint Matrix. Let Aj = (=1)"M; be defined as the cofactor of
the element a; of the square matrix A. Then, the adjoint matrix of A is the transpose of
l4;l and is defined as:

All AZl LE Anl
ad] A = I|A1/H7 — 14:12 A:22 A:rz2
Aln AZn ine Arm
For example, if
1 2 3
A=|2 3 2
3 3 4
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then, A;; = (-13 X4 —-2X3)=6, A, =(-1)2 X4 -3X2)=-2, ...,0r

6 1 -5
adjA=|-2 -5 4
-3 3 .-1

Nonsingular Matrix

A matrix is of a rank r if the largest square array in the matrix having a nonzero deter-
minant is of size r. A square matrix with a nonzero determinant is called a full-rank or
nonsingular matrix. For example, consider

A:

W N =
W N
~N B~ W

A is a singular matrix because

Al =1X(21 -20)—-2X (14 -12)+3 X (10-9) =0
But A has arank » = 2 because

12\
(3 3)--1#0

Inverse of a Nonsingular Matrix

If B and C are two n-square matrices such that BC = CB = I, then B is called the
inverse of C and C the inverse of B. The common notation for the inverse is B~! and
Cc

Theorem IfBC = Iand B is nonsingular, then C = B!, which means that the inverse
is unique.
Proof. By assumption,

BC =1
then
B'BC =Bl
or
IC =B
or
C=B"

Two important results can be proved for nonsingular matrices.

1. If A and B are nonsingular n-square matrices, then (AB) ' = B'A™
2. If A is nonsingular, then AB = AC implies that B = C.

A.2.
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Matrix inversion is used to solve 7 linearly independent equations. Consider

aq app . Ay, | X bl
ay ar e o ay, X — bz
a1 (%) 1 Ayn | \ Xn brz

where x; represents the unknowns and a; and b; are constants. These n equations can
be written in matrix form as

[ OF AX =b
Because the equations are independent, A must be nonsingular. Thus
A7'AX = Ab
or
X=A"D

A.2.7 Methods of Computing the Inverse of Matrix"

Adjoint Matrix Method. Given A, a nonsingular matrix of size n,

All .Azl v Anl
-1 _ L . — L AIZ A22 Anz
ATTardA=g e T
Ay, Ay .. A,
he For example, for
- 1 2 3
A=(2 3 2
3 3 4
6 1 -5
adjA =|-2 -5 4] |A]=-7
-3 3 -1
Hence
6 1 5
1 6 1 -5 7T T
Al=—-2 -5 4|=| 3 3§ -
=3 3 -1 303 1
7 7 7

Row Operations (Gauss-Jordan) Method. Consider the partitioned matrix (A|I),
where A is nonsingular. Premultiplying by A}, we obtain

(ATAJATT) = AT

'TORA’s inverse module is based on LU decomposition method. See Press and associates (1986).
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Thus, applying a specific sequence of row transformations, A is changed to I and I is
changed to A", To illustrate the procedure, consider the system of equations:

1 2 3\[x) [3
2 3 2 Xy | = 4
3 3 4)\x 5

The solution of X and the inverse of basis matrix can be obtained directly by
considering

A(A[Ib) = (I|A"'|A'b)

The following iterations detail the transformation operation:

Iteration 0

1 2 3|1 0 03
2 3 2|0 1 0|4
3 3 4|0 0 115

Iteration 1

o
|
—
|
N
|
[\S)
—_
o
|
[\

Iteration 2

O =

o o

|

A D

|

N W
|

—_ N

o O

|

N =

~J
W
|
w
—_
[\]

Iteration 3

o
O RO
_ o O
W N AN
N Nl Q=
|
Q= R ;

|

NN QAN AW

This gives x, = 3, x, = 9, and x; = 2 The inverse of A is given by the right-hand-side
matrix, which is the same as obtained by the method of adjoint matrix.

Product Form of the Inverse. Suppose that two nonsingular matrices, B and B,
differ exactly in one column. Further, assume that B! is given. Then the inverse B,
can be computed using the formula

B .. = EB"
The matrix E is computed in the following manner. If the column vector P; in B

is replaced with the column vector P, to produce B, then E is constructed as an
m-identity matrix with its 7th column replaced by
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: (B'P), # 0

N (B_lpj)r +1 «rth place’
_(B_IPj)m

If B™'P)), = 0, then B, does not exist.
To prove the validity of the formula B..,,, define F as an m-identity matrix whose
rth column is replaced by B™'P,—that is,

F=(e,e_,B'P,e., ..., e,)
Because B,,, differs from B only in that its rth column is replaced with P, then
B... = BF
Thus,
B, = (BF ' =F B!

The formula follows by setting E = F!

The product form can be used to invert any nonsingular matrix, B. Start with
B, = I = B;'. Next, construct B, as an identity matrix with its first column replaced
with the first column in B. Then

B/'=EB;'=EI=E,

In general, if we construct B; as an identity matrix with its first i columns replaced with
the first i columns of B, then

B;l = ElBl—_ll = El‘Ei_IB;_lz = dew — EiEi—l sy El
This means that for the original matrix B,
B'=E,E,_,.. .E,

The following example illustrates the application of the product form of the
inverse. Consider

2 1 0
B=(0 2 0
4 0 1
Iteration 0
1 0 0
B,=B;'={0 1 0
0 0 1
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Iteration 1

2 00
B,=|0 1 0
4 0 1
2 —r=1
BalPl = Pl = 0
4
- 0
E.=|-5 1 0
_‘% 1
Lo oo
Bi'=| 0 1 0
-2 0 1
Iteration 2
2 1 0
B,=|0 2 0|=B
4 0 1
20 0\(1 :
BIlpz = 0 1 O 2| = 2 —r=2
-2 0 1/\0 -2
1 =(3)2\o 1 -5 0
E,=[{0 +12]0 =|0 1 0
0 —(-2)2] 1 0 1 1
1 =5 0\/ 5 0 0
B'=B'=EB'=|0 1 0|l 0 1 0]=
0 1 1/\-2 0 1

Partitioned Matrix Method. Suppose that the two n-nonsingular matrices A and B

are partitioned as follows:

All ‘ AlZ
A = (: X p) Ef ') , Ay, nonsingular
21 22
@XM‘WXW/
B]1 ‘ BlZ
g=|2xp|(pxq
B21 B22

(@xp) | xq),
If B is the inverse of A, then from AB = 1, we have

ns

(e R ST

[l ST NI

_ o O

A3
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A.3 Quadratic Forms

A;B; +ALB, =1,

ABp + ApBy =0
Also, from BA = I, we get

By A+ BprAy =0

ByAp + BrAy, =1,

Because A, is nonsingular, A7} exists. Solving for B;, B,,, B,,, and B,,, we get

B, = Al + (AT/A)D(AyA)
B, = —(Aj/Ap)D™

B, = -D(AyA})

B, =D!

where
D = Ay — Ay(AT1A))

To illustrate the use of these formulas, partition the matrix

such that

2 3 2
Ay = (1), A = (2, 3), Ay = <3>, Ay = <3 4>

In this case, A} = 1 and

Thus,

which directly give B = A™!

QUADRATIC FORMS
Given

X = (‘xb X2y eeny xrl)T
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and
ay  ap o a4y
A=
A [40%) e App
the function A4

Q(X) = XTAX = 2 al‘j.x,'x/*
1

i=1j=

is called a quadratic form. The matrix A can always be assumed symmetric because

each element of every pair of coefficients a; and a;(i # j) can be replaced by (a’;—”f)
without changing Q(X).
As an illustration, the quadratic form
1 0 1\/x
OX) = (x1, X, x3)[ 2 7 6| x;
30 2/\x;
with unsymmetric A is the same as
L1 2)x SEL
OX) = (x, X, x3){ 1 7 3| x,
2 3 2/\x

with symmetric A. We will assume henceforth that A is always symmetric.
The quadratic form is said to be

1. Positive-definite if O(X) > Oforall X # 0.

2. Positive-semidefinite if Q(X) = 0 for all X, and there exists X # 0 such that PRC
OX) = 0.

3. Negative-definite if —Q(X)is positive-definite.

4. Negative-semidefinite if —Q(X) is positive-semidefinite.

5. Indefinite in all other cases.

It can be proved that the necessary and sufficient conditions for the realization of
the preceding cases are

1. Q(X) is positive-definite (semidefinite) if the values of the principal minor deter-

minants of A are positive (nonnegative).? In this case, A is said to be positive-
definite (semidefinite).

2The kth principal minor determinant of A,,,, is defined by

Ay ap ot 4y

a a .oa

n # k=12 ..,n
A1 A s
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2. Q(X) is negative-definite if the value of kth principal minor determinants of A
has the sign of (1), k = 1, 2, ..., n.In this case, A is called negative-definite.

3. O(X) is a negative-semidefinite if the kth principal minor determinant of A is
either zero or has the sign of (-1}, k = 1, 2, ..., n.

A4 CONVEX AND CONCAVE FUNCTIONS
A function f(X) is said to be strictly convex if, for any two distinct points X, and X,,
Xy + (1= NX) < M X)) + (1= MfX,)

where 0 < A < 1. Conversely, a function f(X) is strictly concave if —f(X) is strictly
convex.

A special case of the convex (concave) function is the quadratic form (see
Section A.3)

f(X) = CX + X"AX

where C is a constant vector and A is a symmetric matrix. It can be proved that f(X) is
strictly convex if A is positive-definite and £(X) is strictly concave if A is ne gative-definite.

SELECTED REFERENCES

Hadley, G., Matrix Algebra, Addison-Wesley, Reading, MA, 1961.
Hohn, F,, Elementary Matrix Algebra,2nd ed., Macmillan, New York, 1964.

Press, W., B. Flannery, A. Teukolsky, and W. Vetterling, Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, Cambridge, England, 1986.

PROBLEMS

A-1. Show that the following vectors are linearly dependent.

e

2 4
=3\ —6
(h) 4 8
5/\ 10
A-2. Given
1 4 9 7 -1 2
A=12 5 -8|,B=19 4 8
3 7 2 3 6 10
find
(a) A+7B
(b) 2A — 3B

(c) (A + 7B)
A-3. InProblem A-2, show that AB # BA




778 Appendix A Review of Vectors and Matrices

A-4. Consider the partitioned matrices

B 2 3]-4 5

A= B=|1 2| 6 7
| T a 311 09
4l 9 1

Find AB using partitioned matrix manipulation.
A-5. InProblem A-2,find A™' and B™" using the following:
(a) Adjoint matrix method
(b) Row operations method
(¢) Product form of the inverse
(d) Partitioned matrix method

A-6. Consider

S S 3

2 1L 2 i T8 78
B=|0 2 1|,B'=| 5 | —
4 0 5 —q 1 1

2 2

Suppose that the third vector P; is replaced with the V; = P, + 2P,. This means that the
resulting matrix is singular. Show how the product form of the inverse discovers the singu-
larity of the matrix.

A-7. Use the product form of the inverse to verify whether each of the following equations has
a unique solution, no solution, or infinity of solutions.

@ x +2x,=3

X, +4dx, =2
b)) x; +2x,=5
—x; — 2x, = =5
© x + x3=95

4x; + x, + 3x3 =8

x; + 3x, — 2x3 =3
A-8. Verify the formulas given in Section A.2.7 for obtaining the inverse of a partitioned matrix.
A-9. Find the inverse of

(1 G .
A= <H B)’ B nonsingular

A-10. Show that the following quadratic form is negative-definite.
Q(x17 X2) = 6xl + 3x2 - 4X1x2 = 2x% — 3)&%

A-11. Show that the following quadratic form is positive-definite.
Oxy, Xy, X3) = 2x3 + 223 + 3%3 + 2x10, + 25x5

A-12. Show that the function f(x) = ¢ is strictly convex over all real values of x.
A-13. Show that the quadratic function

Flx1, X0, X3) = S5x% + 5% + 4xF + dxyx, + 2015

is strictly convex.
A-14. In Problem A-13,show that —f(x,, x,, x3)is strictly concave.

B.1
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APPENDIX B

TORA Primer

The TORA Optimization System is a Windows®-based software designed for use with
many of the techniques presented in this book. An important feature of the system is
that it can be used to solve problems in a tutorial or automated mode. The tutorial
mode is particularly useful because it allows concentrating on the main concepts of the
algorithms while relieving you of the burden of the tedious computations that gener-
ally characterize OR algorithms.

TORA is totally self-contained, in the sense that all the instructions needed to
drive the software are represented by menus, command buttons, check boxes, and the
like. It requires no user manual. Nevertheless, a summary of the basic features of the
system will be given in this Appendix.

TORA is automated for screen display settings of 800 X 600 and 1024 X 768
pixels. The second setting is recommended because it produces a more proportionate
layout of the screen.

MAIN MENU

Figure B.1 shows the Main Menu screen. A selection from this menu will lead to a new
screen for selecting the input mode of the problem.

=t FIGUREB.1
Linesr Eaustions *
Lo Prooe s
frdnmnortation model

Main menu screen

Srteger peoarainming
etanrt mostaiy *
Bratect Plasning *
Sueusing snabice
ZewerSn GEres

£217 ToRa
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B.2 INPUT MODE AND FORMAT

The input mode screen (Figure B.2) does two things:

1. It allows you to enter a new set of data for the problem (default) or read the data
from an existing file that was originally created by TORA.

2. It allows you to select the format (decimal or scientific) as well as control the
desired level of accuracy in inputting the data.

The decimal format (default) is represented by the code NNNNN.DD, whereas the sci-
entific format is represented as NNNNNeDD. The default values for the number of
N’s and the number of D’s are 5 and 2, respectively. These values can be changed to
any desired (reasonable) values.

FIGURE B.2

Input mode screen

B.4

B.3 INPUT DATA SCREEN

Inputting the appropriate size of the problem (top left of the input screen) automati-
cally exposes the input data grid (Figure B.3). The grid entries are designed to match
the data of the selected model (e.g., linear programming or transportation model).
Regardless of the module used, the input grid is edited very much like a spreadsheet.

e

frTe
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B.4 Solve/Modify Menu 781

. FIGUREB.3
ARG wan Input data screen

The design of the grid allows inserting or deleting a column or a row as well as
copying and pasting the contents of a row or a column. To achieve this, first click the
heading of the target column or row; then use EditGrid Menu to effect the desired
result. The menu uses the suggestive key combinations CTRL+I, CTRL+D, CTRL+C,
and CTRL+P for insert, delete, copy, and paste. Any of these operations may be
undone using CTRL+U.

Once all data have been entered, press solve Menu and follow instructions to
save the data in a file, if desired.

SOLVE/MODIFY MENU

The Solve/Modify menu (Figure B.4) provides options for solving the selected prob-
lem. An important feature of TORA is that it allows solving the problem either auto-
matically or in a tutorial (user-guided) mode. All these options are generated in a
logical manner using submenus.

The Modify entry allows you to go back to the Input Data screen to make
changes in the original data of the problem.

FIGURE B.4

Solve/modify screen

Tt
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B.5

B.6

Appendix B TORA Primer

OUTPUT FORMAT

The Output Format screen (Figure B.5) controls the accuracy of the output results. The
details for the output format are the same as in the input format (Section B.2).

FIGURE B.5

i s ¢ .
Output formatscreen & Sdoct - irossft Word[ 5. Tora :

bTorags Werosn. .

OUTPUT RESULTS

The output screen provides the results either in text format or graphically depending
on the type of problem being solved (Figures B.6 and B.7). Both text and graphical
results can be printed using a command button write to Printer.
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FIGURE B.6

Text output screen

FIGURE B.7

Graphical output screen




APPENDIX

Statistical Tables

C

TABLE C.1 Normal Distribution Function
1 iy
Fo) = =/ e
27
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
04 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 TABLE C::

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

|

a =

31 09990 09991 09991 09991 09992 09992 09992 09992 09993 09993 1 00
32 09993 09993 09994 09994 09994 09994 09994 09995 09995 09995 2 0
33 09995 09995 09995 09996 09996 09996  0.999%6 09996 0999 09997 3 00
34 09997 09997 09997  0.9997 09997 09997 09997 09997 09997 09998 4 02
35 09998 5 04
40 099997 6 06
50  0.9999997 708
6.0  0.999999999 g L3
e
Source: MILLER, ., and J. FREUND, Probability and Statistics for Engineers, Prentice Hall, Upper Saddle River, NJ, 1985. 10 2.1
1 25
12 30
13 3
14 40
15 45
TABLE C.2 ¢, (student t) values* 16 5.1
v a=010 «=005 «=0025 «a=001 «=0005 v i; o
1 3.078 6314 12.706 31.821 63.657 1 19 68
2 1.886 2.920 4303 6.965 9.925 2 20 74
3 1.638 2353 3.182 4541 5.841 3 21 8l
4 1.533 2132 2776 3.747 4.604 4 2 86
5 1.476 2.015 2571 3.365 4.032 5 23 92
6 1.440 1.943 2.447 3143 3.707 6 24 98
7 1415 1.895 2365 2.998 3.499 7 25 103
8 1.397 1.860 2.306 2.896 3.355 8 261
9 1.383 1.833 2262 2.821 3250 9 27 LIS
10 1372 1812 2228 2.764 3.169 10 28 124
1 1.363 1.796 2.201 2718 3.106 1 2 1
12 1.356 1782 2.179 2.681 3.055 12 3013
13 1.350 1771 2.160 2.650 3.012 13 “This table
14 1.345 1.761 2.145 2.624 2.977 14 o
15 1.341 1753 2131 2.602 2.947 15
16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2552 2.878 18
19 1.328 1.729 2.093 2539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20
21 1.323 1721 2.080 2.518 2.831 21
2 1.321 1717 2074 2508 2.819 2
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1711 2.064 2.492 2797 24
25 1.316 1.708 2.060 2.485 2.787 25
26 1315 1.706 2.056 2479 2.779 26
27 1314 1.703 2.052 2473 2.771 27
28 1313 1.701 2.048 2.467 2.763 28
29 1311 1.699 2.045 2.462 2.756 29
Inf. 1282 1.645 1.960 2326 2576 inf.

*Abridged by permission of Macmillan Publishing Co., Inc., from Statistical Methods for Research
Workers, 14th ed., by R. A. Fisher. Copyright © 1970 University of Adelaide.
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TABLE C.3 X2, (chi-square) values*

v o = 0.995 =09 a=0975 «a=095 oa=005 «o=0025 o=001 o=0.005

<

1 0.0000393 0.000157 0.000982 0.00393 3.841 5.024 6.635 7.879 1

2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597 2

3 0.0717 0.115 0.216 0.352 7.815 9.348 11.345 12.838 3

4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 4

5 0.412 0.554 0.831 1.145 11.070 12.832 15.056 16.750 ]

6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 6

7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7

8 1.344 1.646 2.180 2733 15.507 17.535 20.090 21.955 8

9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9
10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10
11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.091 35172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558 24
25 10520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28
29 13121 14.256 16.047 17.708 42.557 45.772 49.588 52.336 29
30 13787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

"This table is based on Table 8 of Biometrika Tables for Statisticians, Vol. 1, by permission of the Biometrika trustees.




APPENDIX D

Partial Answers to Selected
Problems

CHAPTER 1

Set 1.1a

4. (c) 17 minutes
5. (a) Jim’s alternatives: Throw curve or fast ball.
Joe’s alternatives: Prepare for curve or fast ball.
(b) Joe wants to increase his batting average.
Jim wants to reduce Joe’s batting average.

CHAPTER 2

Set 2.1a

1. () —x; +x,=1
() xy —x,=0
(e) 5x; — 55, =0

3. (a) 4 tons/day

Set 2.2a

1. (aand e) See Figure D.1.
2. (aand d) See Figure D.2.
5. Let

x; = play hours per day

X, = work hours per day

789
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(a)

x Z\@ % Z
6 3
(®)
d
- @ L
2 - 1
| |
/—2 0 2 4 X /‘1 0
FIGURE D.1 FIGURE D.2

Maximize z = 2x; + x, subject to
x+x=10,x, —x =0
X =4x,x%=0

Optimum: (x,, x,) = (4, 6), z = 14

Set 2.2b
2. Optimum solution: x; = 4501b, x, = 3501b, z = $450
S. Let
x; = thousand bbl/day from Iran
x, = thousand bbl/day from Dubai

Minimize z = x; + x, subject to
—.6x; + 4x, =0, 2x; + 1x, = 14
25x; + .6x, = 30, .1x; + 15x, = 10
A5x + 1x, = 8, x, x, =0
Optimum: x; = 55, x, = 30, z = 85
Set 2.3a

L (M +=g= 2 ¢; # 0.See Figure D.3
3. Let

x; = sold Al cans per day
x, = sold B&K cans per day
Maximize z = 5x; + 7x, subject to
X + x, =500, 2x; — x, = 0, x; = 100

X1, Xp =0

(a) x, = 100, x, = 400, z = $33

ool

N
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400 oY} o/-——— =0

300 — Optimum:
x; =100, x, = 400

200 —

W

100 |~

3 X FIGURED.S3 0 100 200 300 400 SO X,  [GURED4

(b) View x; = 100 as lim(x, — 8x,) = 100. Hence, %ii%%a =2=<1or-00 =
& = 1.See Figure D.4.
7. Let
x; = cases of juice per day
X, = cases of paste per day
Maximize z = 18x, + 9x, subject to
24x, + 8x, = 60000
x; = 2000, x, = 6000
X, % =0

(a) x; = 500, x, = 6000, z = $63000
(b) 0 = & = 3, ¢, # 0,see Figure D.5.

X FIGURE D.5

Optimum:
x; =500, x, = 6000

0 4000 x,
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Set 2.3b

1.

Let

x; = number of type 1 hats per day

x, = number of type 2 hats per day
Maximize z = 8x; + 5x, subject to
2x; + x, = 400
x; = 150, x, = 200
X, x =0
(a) See Figure D.6. x; = 100, x, = 200, z = $1800 at point B
(b) $4 per type 2 hat in the range (200,500)

(c) $0 worth per unit in the range (100, o), hence change to 120 has no effect
(d) $1 worth per unit in the range (100, 400)

X2

400

(0, 200)
(100, 200) optimum
(

200 150, 200)

L T | I

RICECEQN- IS

200 ¢

100 |

FIGURED.6 U 100 E 200 x

Let
x; = radio minutes

TV minutes

X2
Maximize z = x; + 25x, subject to
15x, + 300x, = 10,000
—X + 2.X'2 = O, Xq = 400
X1, X2 =0
(a) x; = 60.61, x, = 30.3, z = 818.18

(b) 0 per minute in the range (60.61, 00)
(c) .082 worth per budget $ in the range (0, 66000)
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8. Let
X1 = units of solution A

units of solution B

X2
Maximize z = 8x; + 10x, subject to
Sxp + .5x, = 150, .6x; + .4x, = 145
30 = x; =150, 40 = x, = 200
X, X, =0
(a) x; = 100, x, = 200, z = $2800

(b) Worth per unit of raw material I = $16 in the range (115, 154.17)
Worth per unit of raw material Il = $0 in the range (140, o)

Set 2.4a

1. (a) One additional Ib of feedstuff costs 55 cents.
(b) Total cost = $495 per day.
(c) Current solution remains optimal.

3. (b) LINGO model:

MODEL:
TITLE Diet model;
SETS:
Constr: Rhs;
Var: C, X;
ConsVar (Constr,Var) : Aij;
ENDSETS
MIN=@SUMVar (j) :C(3j)*X(3) ); lobj function;
@FOR ( lconstraints;

Constr (i) :@SUM( Var(j): Aij(i,3)*X(j) )>=Rhs(i)
).

DATA:
Constr=MinDemand Protein Fiber;
Rhs=800 0 0;
Var=X1l X2;
G = z3 29y lobj func
Aij = 1. 1. !constr 1
-1 +30 lconstr 2
+03=.01s lconstr 3
ENDDATA
END

Set 2.5a

1. (a) Write the first two constraints as x; + x, + x; + (¥, + x5) = 12 and
(x4 + x5) = 4.8.
(b) New z = .936 million dollars.
4. (a) 1150L ft
(b) (3,0,0),(1,1,0), and (1,0,1) with respective 0, 3, and 1 trim loss per foot.
(c) Number of standard 20’'-rolls decreased by 30.
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6. (a) Let
x; = tons of brown sugar per week
x, = tons of white sugar per week
x; = tons of powdered sugar per week

x, = tons of molasses per week
Maximize z = 150x; + 200x, + 230x; + 35x, subject to
76x; + .95x, + x3 = 912
X, =25, x, =25, x3 = 25,0 = x, =400

Optimum solution: x; = 25, x, = 25, x; = 869.25, x, = 400, z = $222,677.50.

(b) Worth per unit of syrup = $55.94 valid in the range (187.15,00)
9. (a) Let

x; = dollars invested in projecti, i = 1, 2, 3, 4
y; = dollars invested in bank in year j, j = 1, 2, 3, 4
Maximize z = ys subject to
x; + x, + x4 +y; = 10,000

Sxy + .6xy, — x5 + 4x, + 1.065y; —y, =0

3x; + 2x, + .8x; + .6x, + 1.065y, — y; =0
1.8x; + 1.5x, + 1.9x; + 1.8x, + 1.065y; — y, =0
1.2x, + 1.3x, + .8x3 + .95x, + 1.065y, — ys =0

X1, X2, X3, X45 Y15 V2, Y35 V4 =0

Optimum solution: x; = 0, x, = $10,000, x; = $6000, x, = 0, y; = 0, y, =

0, y; = $6800, y, = $33,642, z = $53,628.73 at the start of year 5.
(b) 5.36%
(c) Total return reduced by 1000 X .373 = $3730
12. (a) Let
x; = number of units of model j, j = 1, 2, 3

Maximize z = 30x; + 20x, + 50x; subject to
2x; + 3x, + Sx; = 4000
4x, + 2x, + Tx; = 6000
x; + 5%, + .33x; = 1500
2x; — 3x, =0
Sxy — 2x3; =0
x; = 200, x, = 200, x; = 150
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Xy, Xp, X3 = 0

Optimum solution: x; = 324.32, x, = 216.22, x5 = 540.54, z = $41,081.08.
(b) Not advisable because dual price = $10.27 per Ib

(c) Not advisable because dual price = $0 per Ib
15. (a) Let

X4 = amount invested in year ; using plan A, i = 1, 2, 3
X;p = amount invested in year i using plan B, i = 1, 2, 3
Maximize z = 3x,5 + 1.7x3, subject to
X4 + x5 = 100
—17x14 + x4 T X5 =0
=3x13 — 1.7x%4 + x5, =0
X4, Xig=0,i=1,2,3

Optimum solution: Invest $100,000 in plan A in year 1 and $170,000 in plan B
in year 2. Accumulation = $510,000.

(b) Yes, each additional dollar of investment is worth $5.10 at the end of 3 years.

CHAPTER 3
Set 3.1a

1. 2 tons/day and 1 ton/day for raw materials M1 and M2.
4. Let x; = units of product i produced on machine j,i = 1,2;j =1, 2
MaXimiZG < = 10()(11 + xlz) =+ 15(}(21 + sz) Subject to

Xt Xy —Xp —xpts =5

—X11 ~ Xy FXptxpts, =5
X1+ xy + 53 =200
Xip t Xy + 54 =250

x; =0, foralliandj,s;, = 0,i=1,2,3,4
Set 3.1b
2. Letx; = units of product j, j = 1, 2, 3.
Maximize z = 2x; + 5x, + 3x; — 15x; — 10x;5 subject to
26+ x, + 23+ x7 —x; =80
X+ x + 20+ xf — x5 =65
X1, Xa, X3, X1, X7, X3, x5 = 0

Optimum solution: x; = 0 units, x, = 65 units, all others = 0, z = $325.
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Set 3.2a

2. (¢) x1=§,x2=172,z=47—8.

(e) (x; =0, x, = 3)and (x; = 6, x, = 0).
4. Infeasible basic solutions are:
(x1, X2) (%, _2)7 (1, x3) = (8, —2)
(x1, x4) = (6, —4), (xa, x3) = (16, —26)
(X2, x4) = (3, —13), (x5, x4) = (6, ~16)

Set 3.3a

3. (a) All pairs but (A, B) because associated corner points are not adjacent.
(b) (i) Legitimate. (ii) Not legitimate (C and I not adjacent). (iii) Not legitimate
(A is revisited).
5. (a) x;entersatvaluel,z = 3.

Set 3.3b
3.
Basic variable X1 X, X3 Xy
Value 1.5 1 0 .8
Leaving variable X7 X7 Xg X5

6. (b) x,, xs5,and x4 can increase value of z. If x, enters, Az = +20. If x5 enters,
Az = 0.1If x¢ enters, Az = o0.
9. Next best value of z = 20.

Set 3.4a
3. (a) Minimize z = 8M — 4)x; + (6M — 1)x, — Ms, — Ms; = 10M
(b) Minimize z = 3M — 4)x; + (M — 1)x, = 3M
6. The starting tableau is

Basic X X, X3 Xy Solution
4 -1 =12 0 0 -8
X3 1 1 1 4
X4 1 4 0 1 8

Set 3.4b

1. Always minimize the sum of artificials because it represents the amount of infea-
sibility in the problem.
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7. Any nonbasic variable having nonzero objective coefficients at end of Phase I
cannot become positive in Phase II because it will mean that the optimal objective
value in Phase I will be positive—that is, it leads to an infeasible Phase I solution.

Set 3.5a
1. (3 A>B—>C—D.
(b) 1atA,1atB, C3 =3atC,and1at D.
Set 3.5b
1. Alternative basic optima: (0,0, %), (1, 0, 3), (0, 5, 0). Nonbasic alternative optima:
(0 o3, Foy +30), 0y + oy o3 =1,0 =<, =1,i=1,2, 3.
Set 3.5¢

2. (a) Solution space is unbounded in the direction of x..
(b) Objective value is unbounded because a unit increase in x, increases z by 10.

Set 3.5d

1. The most that can be produced is 275 units.

CHAPTER 4

Set 4.1a

2. Lety,, y,,and y, be the dual variables.
Maximize w = 3y, + 5y, + 4y; subject to

yi+ 2y, +3y; =152y, — 4y, + y; < 12
y1 =0, y, =0, y; unrestricted

4. (c) Lety, and y, be the dual variables.
Minimize z = 5y, + 6y, subject to
2y +3y =Ly —yn=1
V1, ¥» unrestricted
S. Dual constraint associated with the artificial variables is Y» = —M, which is the

same as y, being unrestricted.

Set 4.2a

1. (a) AV, is undefined.
(e) V,A = (=14 -32)




798 Appendix D Partial Answers to Selected Problems

Set 4.2b

Wi WA W=

2. (a) Inverse =

oS = O
_ O O

Set 4.2¢

2. Let y, and y, be the dual variables.
Minimize w = 30y; + 40y, subject to

yi+ Yy, =55y — 5y, 22,2y, — 6y, =3
nw=-My,=0

Solution: y; = 5, y, = 0, w = 150.
4. (a) Lety; and y, be the dual variables.
Minimize w = 3y, + 4y, subject to

yit+t2, =12 -y, =5y =3
y, unrestricted

(b) Solution:y; =3, y, = -1, w=5
Set 4.2d

2. (a) Feasibility: (x,, x4) = (3, 15)= feasible
Optimality: Objective coefficients of (x;, x;) = (0, 2)= optimal
7. (a) by = 30, b, = 40.
(b)a=23,b=5c=-10,d=5,e=0

Set 4.2e

2. (a) Both primal and dual are infeasible.
(b) Solutions are feasible but not optimal.

Set 4.3a

2. (a) Let(xy, x,, x3, x;) = daily units of SC320, SC325, SC340, and SC370
Maximize z = 9.4x; + 10.8x, + 8.75x; + 7.8x, subject to

10.5x, + 9.3x, + 11.6x; + 8.2x, = 4800
20.4x, + 24.6x, + 17.7x; + 26.5x, = 9600
32x, + 2.5x, + 3.6x; + 5.5x, = 4700
5%+ 5%+ Sxz+ S5xy = 4500
x; = 100, x, = 100, x; = 100, x, = 100
Optimum solution: x; = 100, x, = 100, x; = 138.42, x, = 100, z = 4011.16.
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(b) Only soldering capacity can be increased because it has a positive dual price
(=.4944).
(c) Dual prices are negative or zero. Hence, lower bounds represent disadvantages.

Set 4.3b

2. New fire truck toy is profitable because its reduced cost = y1+3y; —4=-2

Set 4.4a

1. (a) No,because point E is feasible and the dual simplex must stay infeasible until
the last iteration where it becomes feasible.

4. (c) Add the artificial constraint x; = M. Problem has no feasible solution.

Set 4.5a

4. Let Q be the weekly feed. Optimum solution: Limestone = .028Q, corn = .649Q,
and soybean meal = .323Q. Cost = .81221Q.

Set 4.5b

1. (a) —20 = D, = 400, D; = —20.
5. (a) Scarce: resistor and capacitor resource, abundant: chips resource.
(b) Worth per unit of resistor, capacitor, and chips is $1.25, $.25, and $0.
(8) Increase in profit = $250. Additional cost = $200. Net profit = $50.
8. (b) Solutionx; = x, =2 + %is feasible forall A > 0.For0 < A < 3, r, +
ry = 3 < 1=>feasibility confirmed. For 3 = A = 6, ot =
2=21= feasibility not confirmed. For A > 6, the change falls outside the
ranges for D, and D,.

Set 4.5¢

1. (a) Additional constraint, 4x, + x, + 2x; < 570, is redundant.

Set 4.5d

2. (a) Current solution remains optimal.
(c) Newsolution:x; =2, x, =2, x; = 4, 7 = 14.

Set 4.5e

2. (b) Optimum remains the same.

(d) Optimum changes: x; = 10, x, = 102.5, x;3 =215, 7 = 665.
6. (b) Smallest unit profit for product 1 = $6.

(c) New solution:x; = 0, x, = 165, x; = 10, z = 4105.
9. (a) 1.25 = 25d, + .5d, = 0, .25 + .75d, — Sd, = 0.
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Set 4.5f

1. 42.86%.
3. (a) Fire engines are not profitable.

CHAPTER 5

Set 5.1a

4. Assign a very high cost, M, to the route from Detroit to dummy destination.
6. (aandb) Use M = 10,000. Solution is shown in bold. Total cost = $49,710.

1 2 3 Supply
600 700 400
Plant 1
25 25
320 300 350
Plant 2
23 17 40
500 480 450
Plant 3
25 5 30
Excess 1000 1000 M
Plant 4
13 13
Demand 36 42 30

(¢) City 1 excess cost = $13,000.

9. Solution (in million gallons) is shown in bold. Area 2 will be 2 million gallons
short. Total cost = $304,000.

Al A2 A3 Supply
12 18 M
Refinery 1
4 2 6
30 10 8
Refinery 2
4 1 5
20 25 12
Refinery 3
6 6
M 50 50
Dummy
2
Demand 4 8 7
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Set 5.2a
2. Total cost = $804.

Sharpening service

Day New Overnight 2-day 3-day Disposal
Monday 24 0 6 18 0
Tuesday 12 12 0 0 0
Wednesday 2 14 0 0 0
Thursday 0 0 20 0 0
Friday 0 14 0 0 4
Saturday 0 2 0 0 12
Sunday 0 0 0 0 22

5. Total cost = $190,040. Problem has alternative optima.

Period Capacity Produced amount Delivery
1 500 500 400 for (period) 1 and 100 for 2
2 600 600 200 for 2,220 for 3, and 180 for 4
3 200 200 200 for 3
4 300 200 200 for 4

Set 5.3a

1. (a) Northwest: cost = $42. Least-cost: cost = $37. Vogel: cost = $37.

Set 5.3b

5. (a) Cost = $1475.
() co=3,c3=8,¢3 =13, ¢, = 7.

Set 5.4a

5. Use the code (city, date) to define the rows and columns of the assignment prob-
lem. Example: The assignment (D, 3)-(A,7) means leaving Dallas on June 3 and
returning from Atlanta June 7 at a cost of $400. Solution is shown in bold.
Cost = $1180. Problem has alternative optima.

(A7) (A12)  (A21)  (A.28)

(D,3) 400 300 300 280
(D, 10) 300 400 300 300
(D,17) 300 300 400 300
(D, 25) 300 300 300 400

6. Optimum assignment: I-d, I1-c, I1I-a, IV-b.
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Set 5.5a

4. Total cost = $1550. Optimum solution summarized below. Problem has alterna-
tive optima.

Store 1 Store 2 Store 3

Factory 1 50 0 0
Factory 2 50 200 50

CHAPTER 6

Set 6.1a

1. (i)(a) 1-3-4-2.(b) 1-5-4-3-1.(c) 1-3-4-5-1. (d) See Figure D.7. (¢) See Figure D.7.
4. 1 and 8 must appear in center. Problem has more than one solution. See Figure
Da8.

oo 90 7111]8/2

FIGURE D.7 Tree Spanning tree FIGURE D.8

Set 6.2a

2. (a) 1-2-5-6-4-3 or 3-1-2-5-6-4. Total length = 14 miles.

5. High pressure: 1-2-3-4-6. Low pressure: 1-5-7 and 5-9-8. Total length = 53 miles
Set 6.3a

1. Buy new car in 2001 and 2004. Total cost = $8900. See Figure D.9.

5. Forarc(i, v;)-(i + 1, v;1,),define p(q) = value (units of item i). Solution: Select
items 1 and 2. Total value = $80. See Figure D.10.

FIGURE D.9 4100
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FIGURE D.10

Set 6.3b

1. (c) Delete all nodes but 4, 5, 6, 7, and 8. Shortest distance = 8 associated with
routes 4-5-6-8 and 4-6-8.

Set 6.3c

1. (a) 5-4-2-1,distance = 12.

5. See formulation in Figure D.11. Each arc has unit length. Arrows show one-way
routes. Example solution: Bob to Joe: Bob-Kay-Rae-Kim-Joe. Largest number of
contacts = 4.

FIGURE D.11

Set 6.3d

1. (a) Formulation 1: Right-hand side of nodes 1 and 5 equations are —1 and 1; all
others = 0. Formulation 2: Objective function is minimize y; — y,. Optimum
solution: 1-3-4-5, distance = 90.
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Set 6.4a
1. Cut1:1-2,1-4,3-4,3-5, capacity = 60.

Set 6.4b

1. (a) Surplus capacities: arc (2-3) = 40, arc(2-5) = 10, arc(4-3) = 5.
(b) Node 2:20 units, node 3: 30 units, node 4: 20 units.
(c) No,because there is no surplus capacity out of node 1.

7. Maximum number of chores is 4. Rif-3, Mai-1, Ben-2, Kim-5. Ken has no chore.

Set 6.5a
1. See Figure D.12.

$24

2 (D))
FIGURED.12  [430] (~100] [—110] [-95] [—125]

Set 6.5b

1. Case 1: Lower bound is not substituted out.

X12 X13 Xo4 X3 X34
Minimize z 1 5 3 4 6
Node 1 1 1 =50
Node 2 -1 1 -1 = —-40
Node 3 -1 1 1 =20
Node 4 -1 -1 = -30
Lower bound 0 30 10 10 0
Upper bound 00 40 00 00 00

Case 2: Lower bound is substituted out.

X12 Xi3 X4 X32 X34
Minimize z 1 5 3 4 6
Node 1 1 1 =20
Node 2 -1 1 -1 = -40
Node 3 =1 1 1 =40
Node 4 -1 -1 = -20

Upper bound 00 10 00 00 00
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Set 6.5¢

1. Optimum cost = $9895. Produce 210 units in period 1 and 220 units in period 3.
5. Optimal solution: Total student miles = 24,300. Problem has alternative optima.

Number of students

School 1 School 2

Minority area 1 0 500
Minority area 2 450 0
Minority area 3 0 300
Nonminority area 1 1000 0
Nonminority area 2 0 1000

Set 6.6a
3. See Figure D.13.

FIGURE D.13

Set 6.6b

1. Critical path: 1-3-4-5-6-7. Project duration = 19.
3. Project duration = 38 days.

Set 6.6¢

3. (a) Maximum delay = 10.

5. (a) Critical path: 1-3-6, duration = 45 days.
(b) Red-flagged activities: A, D, and E.
(c) Start of C,D,and G will be delayed by 5 days. E will not be affected.
(d) Minimum equipment = 2 units.

CHAPTER 7

Set 7.1a

2. Points (1,0) and (0, 2) are in Q, but A(1,0) + (1 — \)(0, 2) = (N, 2 — 2\) does not
liein Qfor0 < A < 1.
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Set 7.1b

2. (b) Unique solution, see Figure D.14.
(d) Infinity of solutions.
(f) No solution.
3. (a) Basis because det B = —4.
(d) Not a basis because a basis must include exactly three independent vectors.

Py ST AN
/// \
- \
-7 2 \\ n>1,0<x<1
\
\)
1 oy
Py
| | | | |
-2 -1 1 2 3
FIGURE D.14

Set 7.1c

1L X; = (x3, x,)T = (2, 1.5)7, which is feasible.
4. Optimal z = 34.
Maximize z = 2x; + 5x, subject to

x1S4,x256,x1+x2S8,x1,x220

Set 7.2a

1. (a) P, must leave.
(b) B = (P,, P,)is a feasible basis.
2. For the basic vector X, we have

For XB’ {Z] - Cj} = CBB_lB - CB = CBI - CB = CB - CB =0

7. Number of adjacent extreme points is # — m assuming nondegeneracy.

10. In case of degeneracy, number of extreme points is less than the number of basic
solutions, else they must be equal.

11. (a) newx; = Lold X;
(b) new x; = Bold X;

Set 7.2b
2' (b) (xb xZ! x3) = (151 23 0)’ = 5
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Set 7.3a
2. (x1, X3, X3, X4, X5, x6) = (0, 1, 75,1, 0, 1), z = 22

Set 7.4a
1. (c) Add the artificial constraint x, = M.Then
(%1, x2) = (0, 0) + (10, 0) + 520, 10) + (20, M) + 50, M)
o toytotoytas=1L0=0,j=12 ..,5

2. Subproblem 1:(x;, x,) = a;(0, 0) + az(ls—z, 0) + a0, 12)
Subproblem 2: (x3, x;) = B4(5, 0) + B4(50, 0) + B30, 10) + B4(0, 5)
Optimal solution:o; = o, = 0, a3 = 1=>x;, = 0, x, = 12
Bl = 4889, Bz = 5111, [33 — B4 = 0:)(4 = 28, X5 = 0

6. Because the original problem is minimization, we must maximize each subprob-
lem. Optimal solution: (x;, x,, x5, x4) = (%, 13—0, 0, 20), z = —%

Set 7.5a
2. Maximize w = Yb subjectto YA = C, Y = 0

Set 7.5b
5. Method 1: Given Xy = (2, 6, 2)’, then (b;, b, b;) = (4, 6, 8)= dual objective
value = 34
Method 2: Given Y = (0, 3, 2)’, then (c;, ¢,) = (2, 5)= primal objective
value = 34

7. Minimize w = Yb subject to YA = C, Y unrestricted

Set 7.6a
L. 2=r=1
2. (a)
Basic solution Applicable range of ¢
(x2. x3, x¢) = (5, 30, 10) 0=¢=1
(e, x5, 10) = (5, %, 5) s
(60 x4 ) = G, 15, 20) S=s1=o0

+%). Basis remains optimal for

[STEN

S. {ZJ_C]}]:145=(4"§2I—37[2,1_fz,z_
0=¢r=1

Set 7.6b

1. (a) tl = 10, Bl = (Pz, P3, P4)
2. Att =0, (x;, x5, x¢) = (4, 1.8, 1). It remains basic for 0 < ¢ = 1.5. No feasible
solution for r > 1.5.
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CHAPTER 8

Set 8.1a

1. Gs:Minimize s5, 55x, + 3.5x; + 5.5x; — .0675x, + 55 — 55 =0
3. Let x; = No. of in-state freshmen, x, = No. of out-of-state freshmen, x; = No.
of international freshmen
G; Minimize s/, i = 1, 2, ..., 5, subject tox; + x, + x3 + s77 — 57 = 1200,
26+ x — 2%+ 55 —s5; =0, —1x; —.Ix; + 9x; + 55 — 55 =0,
125x; — .05x, — .556x; + 55 — 53 =0, —2x; + 8x, — 2x3 + 53 —s55=0
All variables are nonnegative
5. Let x; = No. of production runs in shiftj, j = 1, 2, 3.
Minimize z = si + s7, subjectto — 100x; + 40x, — 80x; + si — s7 = 0,

4=x=510=x,=20,3=x=5

Set 8.2a

1. Objective function: Minimize z = s; + 55 + 53 + 55 + 55
Solution: x, = .0201, x; = .0457, x, = .0582, x, = 2 cents, s5 = 1.45
Gasoline tax is $1.45 million short of goal.

4. x; = Ib of limestone/day, x, = 1b of corn/day, x; = Ib of soybean meal/day.
Objective function: Minimize z = s7 + s; + s3 + 55 + 55
Solution: x; = 166.08 1b, x, = 2778.56 1b, x; = 3055.36 1b, z = 0.
All goals are satisfied.

7. x; = No. of units of product j,j = 1, 2.
Assign a relatively high weight to the quota constraints.
Objective function: Minimize z = 100s;” + 100s; + s3 + 55
Solution: x; = 80, x, = 60, s5 = 100 minutes, s, = 120 minutes.
Production quota can be met with 100 minutes of overtime for machine 1 and 120
minutes of overtime for machine 2.

Set 8.2b
2. G, solution: x, = .0204, x; = .0457, x, = .0582, x, = 2.s5 = 1.45,all others = 0.
Goals G;, G,, G;,and G, are satisfied. G5 is not.
G problem: Same as Gy plussy = 0,55 = 0,57 =0, s; = 0.
Solution: Same as G, with s5 = 1.45.This means that G5 cannot be satisfied.
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CHAPTER 9

Set 9.1a

3. x; = No. of bottles of type i assigned to individual j, where i
full), 3(empty).
Constraints:

1(full), 2(half

Xyt Xp X3 =T, 00 tXxp+x3=T, x5 + x5 +x35=7
X1t 5% = 3.5, x5 + Sxpn = 3.5, x5 + 5xp3 =35
Xppt Xy T x =T, X0t X t X =T, X3+ X3+ x55=7
x; = Oand integer for all i and j

Solution: Use a dummy objective function.

No. bottles assigned to individual

Status 1 2 3
Full 1 3 3
Half full S 1 1
Empty 1 3 3

6. y = Original sum of money. x; = Amount taken on night j,j = 1,2, 3.
X4 = Amount given to each mariner by first officer.
Minimize z = y subjectto3x; — y =2, x; +3x, — y = 2, x; + x, + 3x; —
y =2,y = x —x, — x3 — 3x; = 1. All variables are nonnegative integers.
Solution:y = 79 + 81n,n =0, 1, 2, ...

8. Side 1:5, 6, and 8 (27 minutes). Side 2: 1,2, 3, 4, and 7 (28 minutes). Problem has
alternative optima.

Set 9.1b

1. Let x; = No. widgets produced on machine j, j = 1, 2, 3. y; = 1 if machine j is
used and 0 otherwise. Minimize z = 2x; + 10x, + 5x; + 300y; + 100y, + 200y,
subject to

X1 + X> + X3 = 2000. X — 600_\/1 = 0 Xy — 800): = 0 X3 — 1200}; = 0,
X1, X3, X3 = 500 and integer, y,, y,, y; = (0, 1).

Solution: x; = 600, x, = 500, x; = 900, z = $11,300.

2. Solution: Site 1 is assigned to targets 1 and 2, and site 2 is assigned to targets 3
and4.z = 18.
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Set 9.1c

1. Letx; = lifroutejis selected and 0 otherwise,j = 1, 2, ..., 6.
Minimize z = 80x; + 50x, + 70x; + 52x, + 60xs + 44x4 subject to
Xq +x3+x5+x621,x1 +X3+X4+XS21,xl+x2+X4+x621,
xptxtxs=1x+tx+x+x=1x=(0,1), forallj

Solution: x5 = x4 = 1. Select routes (1,4,2) and (1, 3,5),z = 104. Customer 1
should be skipped in one of the two routes.
2. Solution: Committee is formed of individuals a, d, and f. Problem has alternative
optima.
Set 9.1d

1. (a) Letx; = Integer amount assigned to square (i, ).

Constraints:
3

3 3
]_;xij =15i=1,23, ;x,, =15j=1,23
X11 + X2 + Xag = 15, X31 + X2 + X3 = 15,

(xl] = X12 +1 Or X1 = X1 — 1), (xH = X13 +1 Oor Xy = X3 — 1

(x12 = x13 + 1 Orxlz = x13 - 1), (xn = X21 o 1 Ol‘xU = Xy — ].),
(rp = X3 + Lorxy = x3 — 1), (0 = x5 + 1 0orxy = x5 — 1),
x;=1,2,...,9for all i and j

Solution: Problem has more than two alternative solutions.

9 1 5 6 4
1 5 or 4 5
5 9 1 5 6

3. Solution: Produce 26 units of product 1, 3 of product 2, and none of product 3,
and use location 2.

Set 9.2a’
2. (a) z=23,x,=3,x, = 2.
(e) z=37,x,=6,x, =1.
3. (a) Z = 725, X = 175, X, = 1.
(e) z =37, (x; = 4.6, x, = 2)or (x; = 6, x, = 1)
Set 9.2b

1. (a) 9 subproblems.
(b) 25,739 subproblems.

Use TORA integer programming module to generate the B&B tree.
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3. Equivalent 0-1 ILP:
Maximize z = 18y;; + 36y, + 14y, + 28y, + 8ys; + 16y5, + 32y5;
subject to 15y;; + 30y, + 12y, + 24y, + Tys; + 14ys, + 28y, =< 43
All variables are binary.

Solution: z = 50, y;, = 1, y;; = 1, all others = 0. Equivalently,x; = 2, x, = 1.

Set 9.2c

1. (a) Legitimate cut because it passes through an integer point and does not elimi-
nate any feasible integer point. You can verify this result by plotting the cut
on the LP solution space.

6. (b) Optimum integer solution: (x;, x,, x3) = (5, 2, 2), z = 23.
Rounded solution: (x;, x,, x3) = (5, 3, 3), which is infeasible.

Set 9.3a

1. The table below gives the number of distinct employees who enter/leave the
manager’s office when we switch from project i to project j. The objective is to
find a “tour” through all projects that will minimize the total traffic.

Project j
1 2 3 4

wn
[o)}

Project i

(o) R S S R
(e e R N |
[OS e A N N N
~Noo s | OB
[ e R R )
WD | N O O
| L QW W

CHAPTER 10

Set 10.1a

1. Solution: Shortest distance = 21 miles. Route: 1-3-5-7.

Set 10.2a

3. Solution: Shortest distance = 17. Route: 1-2-3-5-7.

Set 10.3a

2. (a) Solution: Value = 120. (m,, m,, mz) = (0, 0, 3)or (0,2,2) or (0,4,1) or (0,6,0).
5. Solution: Total points = 250. Select 2 courses from I, 3 from II, 4 from II1, and 1
from I'V.
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7. Letx; = 1if application j is accepted, and 0 otherwise. Equivalent knapsack
model is

Maximize z = 78x; + 64x, + 68x; + 62x, + 85x5 subject to
Tx; + 4x, + 6x3 + 5x4 + 8x5 =23, x,=(0,1),j=1,2, ..., 5.
Solution: Accept all but the first application. Value = 279.

Set 10.3b

1. (a) Solution: Hire 6 in week 1, fire 1 in week 2, fire 2 in week 3, hire 3 in week 4,
and hire 2 for week 5.

3. Solution: Rent 7 cars in week 1, return 3 in week 2, rent 4 in week 3, and no action
for week 4.

Set 10.3c

2. Decisions for next 4 years: Keep, Keep, Replace, Keep. Total cost = $458.

Set 10.3d

3. (a) Let x; and y, be no. sheep kept and sold at the end of period i and define
=Xty

filza) = max{p,y,}
ﬁ(zl) = max{piyi + fi+1(2zi - 2yl)}3 l = 1, 25 B (2 1
=z

CHAPTER 11

Set 11.2a

2. (a) Total cost per week = $51.50
(b) Order 239.05 1b whenever inventory level is zero. Total cost per

week = $50.20
4. (a) Choose policy 1 because its cost per day is $2.17 as opposed to $2.50 for pol-
icy 2.

(b) Optimal policy: Order 100 units whenever the level drops to 10 units. Cost
per day = $2.00.

Set 11.2b

2. Optimal policy: Order 500 units whenever level drops to 130 units. Cost per
day = $258.50.

3. Optimal policy: Order 150 units whenever level drops to 0. Cost per
day = $479.17.




Chapter 12 813

Set 11.2c
1. Excel solution: (y;, y,, y3, y4, ys) = (4.41, 6.87, 4.12, 7.2, 5.8).
4. L(ylv Y25 Y35 Ya» )\) = E_— + T - )\< S 150>
=1 Vi = Vi
Formula: y;, = \| ——————

h.

L

Excel solution: (yy, y,, y3, y4, N) = (155.3, 118.82, 74.36, 90.10, —.0564).

Set 11.3a
1. (a) 500 units required at the start of periods 1,4, 7, and 10.

Set 11.3b

3. Produce 173 units in period 1,180 in period 2,240 in period 3,110 in period 4, and
203 in period 5.

Set 11.3c

1. (a) No,because inventory should not be held needlessly at end of horizon.
b)) D0=z,=51=2=50=z=4x=41=x,=60=<x,<4
2. (a) 2;=7,2,=10, z; = 6, z, = 0. Total cost = $33.

Set 11.3d

1. Use initial inventory to satisfy demand for period 1 and 4 units in period 2, thus
reducing demand for the four periods to 0,22, 90, and 67, respectively.

Optimal solution: Order 112 units in period 2 and 67 units in period 4. Total
cost = $632.

Set 11.3e

1. Solution: Produce 210 units in period 1, 255 in period 4, 210 in period 7, and 165
in period 10. Total cost = $1930.

CHAPTER 12

Set 12.1a

1. (a) .15 and .25, respectively.
(b) 571
(c) .821.

2. n = 23.

3. n > 253
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Set 12.1b

4. Let p = probability Liz will win. Then, probability John will win is 3p, which
equals the probability Jim will win. Probability Ann will win is 6p. Thus,
p+3p+3p+3p+6p=1

Set 12.1c

3 () 3.

3
(b) 3.
7. .9545.

Set 12.2a

2. K =120.

3. P{Demand = 1100} = .3.
Set 12.3a

3. (a) Plx = 50} = 2.

(b) Expected no. unsold copies = 2.67.

Set 12.3b
1. Mean = 3.667, variance = 1.556.

Set 12.3c
1. (a) P{x;, =1,2,3} = P{x, =1, 2,3} = (4, .2, 4).
(b) No.
Set 12.4a
L (.
3. .0547.
Set 12.4b
1. .8646.
3. (a) Py, = 0.
(b) P=3 = 1.
Set 12.4c
1. \ = 12 arrivals/min. P(r = 5 Sec) = .63.

Set 12.4d
2. .0014.
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CHAPTER 14

Set 14.1a
1. Weights for A, B,and C = (44214, 25184, .30602).

Set 14.1b

2. (ws, wy, wy) = (331, .292, .377). Select Maisa.
4. (wp, wy) = (.502, .498). Select P.

Set 14.2a

2. (a) See Figure D.15.

(b) EV(corn) = — $8250, EV(soybean) = $250. Select soybean.
6. (a) See Figure D.16.

(b) EV(game) = — §$.025. Do not play the game.

FIGURE D.15 FIGURE D.16
$30,000 _A25HHH) $3.5
125(HHT
Corn $0 | ABHET) $1.1
125(HTH)
—$35,000 ka0
JA25(HTT) —$1
$10,000 PIL‘C
2 125(THH) $1.1
Soybeans $0 )
125(THT) —$1
—$5000 q:J LSTTH)
125(TTT) _$3
Do not play 50
Set 14.2b

2. Let z be the event of having one defective item in a sample of size 5.
Answer: P{A|z} = .6097, P{B|z} = .3903.
4. (a) Expected revenue if you publish = $196,000.
Expected revenue if you use publisher = $163,000.
(b) If survey predicts success, publish it yourself, else use publisher.
7. Ship lot to B if both items are bad; else, ship lot to A.
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Set 14.2c
1. (a) Expected value = $5,hence there is no advantage.
(b) For 0 = x < 10, Ulx) = 0,and for x = 10, U(x) = 100.
(c) Play the game.
2. Lottery: Ux) = 100 — 100p.
Set 14.3a
1. (a) All methods: Study all night (action a;).
(b) All methods: Select actions a, or a;.
Set 14.4a
1. (a) Saddle-point solution at (2,3). Value of game = 4.
3. (a) 2<v <4
Set 14.4b

1. Each player should mix strategies 50-50. Value of game = 0.
2. Robin’s payoff matrix:

100%A 50%A-50%B 100%B
A —100 =50 0
B 0 =30 —100

Strategy for Police: Mix 100%A and 100% B with probability .5 each. Strategy
for Robin: Mix A and B 50-50. Value of game = $50 (expected fine paid by

Robin).

Set 14.4c

1. (a) Payoff matrix for the searching team:

AB
AC
AD
BC
BD
CD -

_ O O oo
SO = OO~ O
—_ o O O o

Optimal strategy for both teams: Mix AB and CD 50-50. Value of the game = 0.
3. (a) Payoff matrix for Colonel Blotto:
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3-0 2-1 1-2 0-3

2-0 -1 -1 0 0
1-1 0 -1 -1 0
0-2 0 0 -1 -1

Optimal strategy for Blotto: Blotto mixes (2-0) and (0-2) 50-50, and the enemy
mixes (2-1) and (0-3) 50-50. Value of the game = —.5, and Blotto loses.

CHAPTER 15

Set 15.1a

2. Solution: Day 1: Accept if offer is high. Day 2: Accept if offer is medium or high.
Day 3: Accept any offer.

Set 15.2a

1. Solution: Year 1: Invest $10,000. Year 2: Invest all. Year 3: Do not invest. Year 4:
Invest all. Expected accumulation = $35,520.

4. Allocate 2 bikes to center 1, 3 to center 2, and 3 to center 3.

Set 15.3a

3. Solution: First game: Bet §1. Second game: Bet $1. Third game: Bet $1 or none.
Maximum probability = .109375.
CHAPTER 16

Set 16.1a

1. (a) Order 1000 units whenever inventory level drops to 537 units.

Set 16.1b

2. Solution: y" = 317.82 gallons, R* = 46.82 gallons.

3. Solution: y = 316.85 gallons, R* = 58.73 gallons. In Example 16.1-2, y" = 319.44
gallons, R* = 93.61 gallons. Order quantity remains about the same as in
Example 16.1-2,but R is smaller because the demand pdf has a smaller variance.

Set 16.2a

3. 19 =p =357
6. 39 coats.
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Set 16.2b
1. Order 8 — xif x < 3.528, else do not order.

Set 16.3a
2. Order 4.61 — x if x < 4.61, else do not order.

CHAPTER 17

Set 17.1a

1. (a) Efficiency = 71%.
(b) The two requirements cannot be satisfied simultaneously.

Set 17.2a
1.
Situation Customer Server
a Plane Runway
b Passenger Taxi
Set 17.3a

1. (b) (i) A = 6 arrivals per hour, average interarrival time = L hour.
(¢) (i) p = 5 services per hour, average service time = .2 hour.

3. (a) f(t) = 207, t > 0.
(b) P{t > &} = .00674.

7. Jim’s payoff is 2 cents with probability P{t = 1} = .4866 and —2 cents with prob-
ability P{r = 1} = .5134.In 8 hours, Jim pays Ann = 17.15 cents.

10. (a) P{t = 4 minutes} = .4866.

(b) Expected discount percentage = 6.208.

Set 17.4a

1. P,-s(1 hour) = .55951.
4. (a) Pt = 7) = 24167.
6. (a) Combined \ = 15 + 1, Pyt = 5) = .219.

Set 17.4b

2. (a) wt =9, py(t = 3) = .00532.
(C) p,t = 3, anl7(t = 1) = 9502
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5. wt =4, p4) = .37116.
8. (a) Average order size = 25 — 7.11 = 17.89 items.
(b) wt =12, pyt = 4) = .00069.

Set 17.5a

3. (a) p,-; = .4445.
(b) p,—, = .5555.

6. (a) p;=2,j=0,1,2 3, 4.
(b) Expected number in shop = 2 customers.
(©) ps= 2.

Set 17.6a

1. (a) L, = 1ps + 2p, + 3pg = .1917 car.
(¢) Niost = .1263 car per hour.

8 8
(d) No. of empty spaces = ¢ — (L, — L)) = c — > np, + > (n— cp,.

n= n=c+1
Set 17.6b

2. (a) po= 2.
(b) Average monthly income = $50 X pt = $375.
(c) Expected payment = $40 X L, = $128.
5. (a) py = .4
(b) L, = 9car.
(d) poey; = .0036.
6. (d) No.of spaces is at least 13.

Set 17.6¢

1. P{r > 1} = .659.
5. $37.95 per 12-hour day.

Set 17.6d

1. (a) py = .3654.
(b) W, = 207 hour.
(c) Expected number of empty spaces = 4 — L,=3212.
(e) p = 10 will reduce W, to about 9.6 minutes.
4. (a) pg = .6.
(c) Probability of finding an empty space cannot exceed .4 regardless of belt capa-
city. This means that the best utilization of the assembly department is 60%.
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7. (a) 1 — ps = .962.
(b) Nt = A\ps = .19 customer per hour.

Set 17.6e

2. Forc = 2, W, = 3.446 hour and for ¢ = 4, W, = 1.681 hour, an improvement of
over 50%.

5. Let K be the number of waiting room spaces. Using TORA,
Do+ p1+ o+ preo = 999 yields K = 10.

7. (2) pn=4 = .65772.
(e) Average number of idle computers = .667 computer.

Set 17.6f

2. (c) Utilization = 81.8%.
(d) )2 + P3 + Pas = 545.
4. (a) py = .00014.
(b) P3o + P31 + e + P39 = 02453
(d) Expected number of occupied spaces = L, — L, = 20.

(f) Probability of not finding a parking space = 1 — p, =,y = .02467. Number of
students who cannot park in an 8-hour period is approximately 4.

Set 17.69g

2. (a) Approximately 7 seats.
(b) Dn=s = 2911,

Set 17.6h

1. (b) Average number of idle repair persons = 4 — (L; — L,) = 2.01.
(d) P{2or3idleservers} = p, + p; = .34492.

4. (a) L, = 1.25 machines.
(b) py = 33341.
(¢) W, = 25hour.

6. N = 2 calls per hour per baby, p. = .5 baby per hour,R = 5, K = 5.
(a) Number of awake babies = 5 — L, = 1 baby.
(b) Ps = .32768.
(¢) pu=r = .05782.

Set 17.7a

2. (a) E{r} = 14 minutes and var{f} = 12 minutes’. L, = 7.867 cars.
4. \ = .0625 prescriptions per minute, E{f} = 15 minutes, var{f} = 9.33 minutes”.
(a) py = .0625.
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(b) L, = 7.3 prescriptions.
(c) W, = 132.17 minutes.

Set 17.9a

2. Use (M/M/1):(GD/10/10). Cost per hour is $431.50 for repair person 1 and
$386.50 for repair person 2.

\
4 (b) p =N+ =
¢

(c) Optimum production rate = 2725 pieces per hour.

Set 17.9b

2. (a) Hourly cost per hour is $86.4 for two repair persons and $94.80 for three.

(b) Schedule loss per breakdown = $30 X W, = $121.11 for two repair per-
sons and $94.65 for three.

4. N\ = 36125 per machine per hour, p = 10 per hour. Model (M/M/3):(GDJ/20/20)
yields W, = .10118 hour. Lost revenue per machine per hour = 25 X AW, X
$2 = $1.83 or $36.55 for all 20 machines. Cost of 3 repair persons is $60.

Set 17.9¢

1. (a) Number of repair persons = 5.
(b) Number of repair persons = 4.

CHAPTER 18

Set 18.1a

4. (a) P{H} = P{T} = 5.1f 0 = R < .5, Jim gets $10.00. If .5 < R =< 1, Jan gets

$10.00.

7. Lead time sampling: If 0= R< 5 L=1day If 5<R=<1,1 =2 days.
Demand per day sampling: If 0 =< R =< 2, demand = O unit. If 2 < R < 9,
demand = 1 unit. If .9 < R = 1, demand = 2 units. Use one R to sample L. If
L = 1, use another R to sample demand for one day, else if L = 2, use one R to
generate demand for day 1 and then another R to generate demand for day 2.

Set 18.2a

1. (a) Discrete.

Set 18.3a
4. See Figure D.17.
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A, A, A, A, As

I I P P
T

FIGURE D.17 D, D, Ds D, Ds
Set 18.3b
1. ¢t = —%ln(l — R), A = 4 customers per hour.
Customer R t Arrival time

1 — — 0
2 .0589 .015 .015
3 6733 280 295
4 4799 163 458

2.t=a+ (b — aR.
4. (A) 0=R<2d=0,2=R<5:d=1,5=R<9d=2,9=R=1
d=3.
9. If0 = R = p,then x = 0,else x = (largest integer = W).
Set 18.3c

1 y= —%1n(.0589 X 6733 X .4799 X .9486) = .803 hour.
6. t =x, +x, +x3 +x,wherex; =10 + 10R,, i = 1, 2, 3, 4.

Set 18.5a

2. (a) Observation-based.
(b) Time-based.
4. (a) 1.1 barbers.

Set 18.6a
2. Confidence interval: 15.07 = p = 23.27.

CHAPTER 19

Set 19.1a

2. Do not fertilize, fertilize when in state 1, fertilize when in state 2, fertilize when in
state 3, fertilize when in state 1 or 2, fertilize when in state 1 or 3, fertilize when in
state 2 or 3, or fertilize regardless of state.
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Set 19.2a

1. Years1 and 2: Don’t advertise if product is successful; otherwise, advertise. Year 3:
Don’t advertise.

3. If stock level at the start of month is zero, order 2 refrigerators; otherwise, do not
order.
Set 19.3a

1. Advertise whenever in state 1.

CHAPTER 20

Set 20.1a

1. (a) No stationary points.
(b) Minimum at x = 0.
(¢) Inflection point at x = 0, minimum at x = .63, and maximum at x = —.63.
4. (x1, ;) = (=1, 1) or (2,4).
Set 20.2a
1- (b) (axl, (:)XZ) = (283, —ZS)BX2

Set 20.2b

3. Necessary conditions: 2(v, — %)= 0,i=1,2, ... n — 1. Solution is x; = \/C,
i=1,2, ... nof =25C".
6. (b) Solution: z = 37%, (1, X2, X3x) = (—%, —%, %, %), which is a minimum point.

Set 20.2¢

2. Minima points: (X1, X2, X3, Ny, \;) = (—14.4, 4.56, —1.44, 38.5, —67.3) and (4.4,
44,.44,102, —1.4).

CHAPTER 21
Set 21.1a
2. (¢) x =25.
(e) x =2.

3. Number of iterations ~ 1.441n(27%)
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Set 21.1b

1. By Taylor’s expansion, V£(X) = V(X" + H(X — X"). The Hessian H is indepen-
dent of X because f(X) is quadratic. Also, the given expansion is exact because
higher-order derivatives are zero. Thus, V£(X) = 0 yields X = X° — H'Vf(X").
Because X satisfies Vf(X) = 0, X must be optimum regardless of the choice of
initial X°.

Set 21.2a

2. Optimal solution: x; = 0, x, = 3, z = 16.
4- Let WI = Xj + 1,] = ]., 2, 3, Vi = WiWy, V) = W1W3.Thel’1,

Maximize z = v; + v, — 2w; — w, + 1 subject to
V1 + vV, — 2W1 %) = 9, lnvl - lnwl - IHWQ = 0
Inv, — Inw; — Inw; = 0, all variables are nonnegative.

Set 21.2b

1. Solution:x; = 1,x, =0, z = 4.

2. Solution:x; = 0, x, = 4, x3 =.7.
Set 21.2¢

3. Solution: x; = 1.39, x, = 1.13

Set 21.2d
2. Maximize z = x; + x5 + x; subject to
2+ 53+ 2Vxs + 128y < 10

16x3 + 25x; — y* = 0, all variables are nonnegative

100% feas:
100% optir
6-sigma lim

A
Additive 2l

Applicatior
dynamic
integer r
goal pro
linear pr

Art of mod

Artificial ¢

Artificial v:

Aspiration

Attribute &z

Assignmen

B
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100% feasibility rule in LP, 152
100% optimality rule in LP, 159
6-sigma limits, 479

A

Additive algorithm, 375

Algorithm, definition of, 4

Alternative optima in LP, 106

AMPL LP example, 41

AMPL data file. See also Inside front cover
ch2AmplReddyMikks.mod, 41

Analytic Hierarchy Process (AHP), 503-511
comparison matrix, 506
consistency, 507-508
normalized matrix, 506

Applications in OR,
dynamic programming, 406424, 571-583
integer programming, 361-372
goal programming, 347-352
linear programming, 47-60

Art of modeling, 5

Artificial constraints in dual simplex method, 142

Artificial variables, 94

Aspiration level criterion in queues, 632
Attribute in simulation, 646
Assignment model, 196-203

B

Balking, 581

Balance equation in queues, 594

Basic solution, 75, 78,291-292

Basic variable, 78

Basis, 292. See also Inverse
vector representation of, 293
restricted, 741, 749

Bayes’ probabilities, 466, 519-522

Binomial distribution, 474
Poisson approximation of, 476

Box-Muller sampling method for normal distribution, 688

Bounded variables: definitions, 305
primal simplex algorithm, 306-310
dual simplex algorithm, 312

Branch-and-bound algorithm,
ILP,373-378
traveling sales person, 393-396

C

Capacitated network model, 252-264
conversion to uncapacitated, 259
Excel spreadsheet solution, 265
LP equivalence, 254
simplex algorithm of, 259-260

Capital budgeting, 361

Cargo-loading model, 407

Cauchy’s arithmetic-geometric inequality, 754

Central limit theorem, 479
Chance-constrained programming, 757
Chapman-Kolomogrov equations, 735

Chebyshev model for regression analysis, 352

Chi-square statistical table, 787
Chi-square test. See Goodness-of-fit test
Classical optimization:
constrained, 708-730
unconstrained, 701-708
CPM, see Critical Path Method
Column-dropping rule, 355, 357
Concave function, 777
Conditional probability, 465
Connected network, 214
Constrained gradient, 711
Continuous distribution, 467
Continuous review in inventory, 430
Convex combination, 290
Convex function, 777
Convex set in LP, 289
Correlation coefficient, 498
Covariance, 472
Critical activity in CPM,
definition, 272
determination of, 273
Critical path method calculations, 272273
backward pass, 273
forward pass, 272
Critical path method (CPM), 266
Cumulative density function, (CDF), 467
Curse of dimensionality in DP, 425
Cuts in,
integer programming, 384
networks, 240
traveling salesperson problem, 396
Cutting plane algorithm, 384
Cycles. See loops
Cycling in LP, 104

D

Decision-making, types of:

certainty, 503-510

risk, 513-526

uncertainty, 527-532
Decision tree, 514
Decomposition algorithm, 312-322
Degeneracy, 103. See also Cycling
Destination in transportation model, 165
Determinant of a square matrix, 768

Deviational variable in goal programming, 348

Dichotomous search, 731
Diet problem, 18
Dijkstra’s algorithm, 225-227
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Direct search method, 731
Discrete distribution, 467
Discrete-event simulation, 644
mechanics of, 657
statistical observations, gathering of 666
regenerative method, 669
replication method, 669
subinterval method, 667
Doubly stochastic matrix, 699
Dual price, 35,133
algebraic determination of, 122, 323
graphical determination of, 28
Dual problem in LP:
economic interpretation
dual constraints, 135-136
dual variables, 132-134. See also Dual price
definition of, 115-118,120
matrix definition, 322-326
optimal solution, 122, 323
Dual simplex method, 137. See also Generalized simplex
algorithm
artificial constraints in, 142
feasibility condition, 137
optimality condition, 138
revised matrix form, 305
Dual variables, relationship to dual prices, 133
Optimal values, determination of, 123
Dynamic programming:
backward recursion, 404
deterministic, 401-427
dimensionality problem, 425
forward recursion, 401, 404
inventory applications,
deterministic, 448455
probabilistic, 573-575
Markovian decision process, 675-693
probabilistic, 559-575

E

Economic order quantity. See EOQ.
Edge in LP solution space, 81
Efficient solution in goal programming, 347,353
Either-or constraint, 369
Elevator problem, 6
Empirical distribution, 480
EOQ,
dynamic,
no setup model, 444
setup model, 448455
static, 430442
classic, 430435
price-breaks, 435439
storage limitation, 439442
probabilistic, 559-575
Equation form of LP, 71
matrix form of, 291-292
Employment scheduling model, 256
expressed as a network, 257
Equipment maintenance model, 173
Equipment replacement model, 220,418
Event in
probability, 463
simulation, 645
Excel templates. See also Inside front cover
ch10Knapsack.xls, 410
ch10SetupKnapsack.xls, 413
ch11EOQ.xls, 431,438
ch11ConstrainedEOQ.xls, 441

ch11Dynamic Inventory.xls, 451
ch11WagnerWhitin.xls, 455
ch11SilverMealHeuristic.xls, 459
ch12SampleMean Var xls, 482
ch14AHPxls, 509
ch14BayesPosterior.xls, 522
ch14UncertaintyDecisions.xls, 530
ch16ContinuousReviewModel.xls, 564
ch17PKFormula.xls, 625
ch17PoissonQueues.xls, 589
ch18Circle.xls, 641
ch18MultiServerSimulator.xls, 666
ch18RandomNumberGenerator.xls, 656
ch18Regenerative.xls, 671
ch18SingleServerSimulator.xls, 663
ch20NewtonRaphson.xls, 707
ch21DichotomousGoldenSection.xls, 734

Experiment, statistical, 463

Exponential distribution, 477, 610-613
forgetfulness property, 583

Exponential smoothing, 495

Extreme point in LP,
definition of, 289
relationship to basic solution, 290-293

F

Fathoming solutions in B&B algorithm, 375, 378
Fixed-charge problem, 364
Floats in CPM,

free, 277

total, 277
Floyd’s shortest route algorithm, 228-230
Fly-away kit model, 407
Forecasting models, 491-500
Forgetfulness of the exponential, 583
Fractional cut, 386
Full-rank matrix. See nonsingular matrix

G

Game theory, 532-543
ZEro-sum game,
graphical solution, 536-538
linear programming solution, 539-541
mixed strategies, 536
saddle point, 533
value, 533
Gauss-Jordan method, 85, 771
Geometric programming, 752
Generalized simplex algorithm, 143
Goal programming, 347-359
algorithms,
preemptive method, 354
weighting method, 352
column-dropping rule, 355-358
efficient solution, 347, 353
Golden-section serach method, 731
Goodness-of-fit test, 483
Gradient method, 735
Graphical solution:
games, 536-538
maximization linear programs, 15
minimization linear programs, 18

H

Heuristic, definition of, 4
Histograms, 481

Hungariar
relatiorn
Hurwicz ¢

I

Imputed c
Index of o
Inequaliti
Infeasible
Insufficier
Integer pr
Interior p
Interval o
Inventory

determ:

mult
Inventory
Inverse of
locatior

Investmer
Iteration.

Kendall n
Knapsack
Karush-K
Kolmogre




Hungarian method, see Assignment model
relationship to simplex method, 202203
Hurwicz criterion, 528

I

Imputed cost, 135
Index of optimism, 528
Inequalities, conversion to equations, 71-72
Infeasible solution in LP, 111
Insufficient reason, principle of, 527
Integer programming algorithms, 373-388
Interior point algorithm, 332-344
Interval of uncertainty, 731
Inventory models:
deterministic
EOQ
static, 430442
dynamic, 444-455
heuristic, 457
probabilistic, 559-575
single-period, 567-573
multiple-period, 573-575
Inventory policy, 429
Inverse of a matrix, 770-775,
location in the simplex tableau, 122
methods of computing,
adjoint, 771
product form, 772
row operations, 771
Investment model, 421, 575
Iteration, definition of, 4

J

Jacobian method, 709
application to LP, 715

Jockeying, 581

Joint probability distribution, 471

K

Kendall notation, 599

Knapsack problem, 407
Karush-Khun-Tucker (KKT) conditions, 725
Kolmogrov-Smirnov test, 485

L

Lack of memory for exponential, 583
Lagrangean method, 719
Lagrangean multipliers, 719
inventory model application, 439
Laplace criterion, 527
Lead time in inventory models, 431
Least-cost method, 179-180
Linear combinations method, 761
Linear independence of vectors, 292
Linear programming model:
additivity property, 13
applications, 47-60
computer solution
with AMPL, 41
with TORA, 20,33-36
with Solver, 36-38
with LINGO, 39
construction of two-variable problems, 12-19
graphical solution, 14
optimum feasible solution, 13
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proportionality property, 13
sensitivity analysis in LP
algebraic,
additional constraint, 153-154
additional variable, 160-161
feasibility, 145-153
optimality, 155-160
graphical,
feasibility, 27-30
optimality, 24-27
LINGO example of LP, 39
LINGO data files. See also Inside front cover
ch2LingoDiet.xls, 46
ch2LingoReddyMikks.lg4, 39
ch2LingoReddyMikksExternalData.lgd, 42
ch2LingoF1DataReddyMikks.Ing, 43
ch2LingoF2DataReddyMikks.Ing, 43
ch5LingoTrans.1g4, 192
Little’s queuing formula, 599
Loops, in networks, 214
Lottery, 525

M

M-method, 94. See also Two-phase method
Machine servicing model, 621
Majorizing function, 653
Marginal probability distribution, 471
Markov chains, 693-700
limiting distribution, 696, 698
states classifications, 696
Markovian decision process, 675-693
exhaustive enumeration solution, 681
linear programming solution, 690
policy iteration method, 684-690
Materials requirement planning. See MRP
Mathematical model, definition of, 3
Matrices,
simple arithmetic operations, 120
Maximal flow model, 239
algorithm, 241-242
cuts in, 240
Excel solution of, 250
LP formulation, 250
with positive lower bounds, 249
Maximization, conversion to minimization, 88
Maximin criterion, 528
Mean value, 471-472
Minimal spanning tree, 215
Mixed cut, 388
Mixed integer problem, 361
Model, structure of, 3
Modeling, levels of abstraction, 5
Monte Carlo simulation, 639
Moving average technique, 491
MRP, 443
Multipliers, method of, 183. See also Transportation algorithm
Multiplicative congruential method, 656

N

Network definitions, 214
Networks, representation as LP,
capacitated network, 254
critical path method, 281
maximum flow, 250
shortest route, 234
Newton-Raphson method, 706
Nonbasic variable, 78




828 Index

Nonlinear programming algorithms, 731-764
Nonnegativity restriction, 13
Non-Poisson queues, 624, 626
Nonsingular matrix, 292, 770
Normal distribution, 478
statistical tables, 785
Northwest-corner method, 178

(]

Observation-based variable in simulation, 662
Optimal solution, 3

OR study, phases of, 8

OR techniques, 4

P

Parametric linear programming, 326-332. See also Sensitivity
analysis
Path in networks, 214
pdf:
definition of, 467
joint, 471
marginal, 471
Penalty method in LP. See M-method
Periodic review in inventory, 430
Poisson distribution, 476, 586-588
approximation of binomial, 476
truncated, 590
Poisson queueing model, generalized, 593
Pollaczek-Khintchine queueing formula, 624
Posterior probabilities. See Bayes’ probabilities
Posynomial function, 752
Prediction interval, 498
Price breaks in inventory, 435
Primal-dual relationships in LP, 120
objective values, 130
Primal simplex algorithm, see Simplex algorithm
Principle of optimality, 404
Prior probabilities, 519. See also Bayes’ probabilities
Product form of inverse, 772
in revised simplex mehtod, 300
Production-inventory control, 172,224
Probability density function. See pdf
Probability laws:
addition, 464
conditional, 465
Probability review, 465-489
Pseudo-random numbers, 656
Pure birth model, 586
Pure death model, 590
Pure integer problem, 361

Q

Quadratic forms, 775
Quadratic programming, 747
Queue discipline, 581
Queueing models, 585-625
decision models, 627-634
aspiration level, 632
cost, 627
measures of performance, 599
multiple-server models, 611-624
single-server models, 602-610, 624
non-Poisson models, 624, 626

R

Random variable:
definition of, 467
expected value, 469
Random number generator, 656
Reddy-Mikks model, 12
Reduced cost, 35,135
Regression analysis, 351-353,497-501
Regret (Savage) criterion, 528
Reneging i queues, 581
Reorder point in inventory, 430,431
Residue network, 241
Resource, types of:
scarce, 88
abundant, 88
Restricted basis, 741
Revised simplex method,
dual, 305
primal, 297-303
Risk, types of,
averse, 524
neutral, 524
seeker, 524
Roundoff error in simplex method, 51,98

S

s-S policy, 571
Saddle point, 533
Sample space in probability, 463
Sampling in simulation, methods of:
acceptance-rejection, 653
convolution, 650
inverse, 647
Sampling from distributions:
beta, 654
discrete, 648
Erlang (gamma), 650
exponential, 648
geometric, 650
normal, 651-652
Poisson, 651
triangular, 649
uniform, 649
Weibull, 650
Savage criterion. See Regret criterion
Secondary constraints, 154
Seed of a random number generator, 656
Self-service queuing model, 619
Sensitivity analysis in:
dynamic programming, 409
Jacobian method, 714
linear programming. See also parametric
programming
algebraic, 144-161
computer output, 34
graphical, 23-30
Separable programming, 739
convex, 743
Set covering problem, 366
Shadow cost, 35,133, 324. See also dual price
Shortest route problem,
DP solution, 403-408
Excel spreadsheet solution of, 237
LP solution of, 234-235
transshipment solution of, 206

Shortest-
Dijkst
Floyd:s

Silver-M

Simplex
enteril
feasib:
Gauss
leavin,
ratios,
optim.
steps ¢

Simplex
dual. 1
gener:
revise
tablea

Simplex

Simplex
layout
matris
matris

Simultan

Simulat

Simulat

Simulati

Slack vas

Solver E
ch2So
ch3S
ch5So
ch6So
ch6So
ch6Sc




Shortest-route algorithms,
Dijkstra’s, 225-227
Floyds’s, 228-230
Silver-Meal heuristic, 457
Simplex algorithm. See also generalized simplex algorithm
entering variable, 82
feasibility condition, 89,298
Gauss-Jordan row operations, 85
leaving variable, 82
ratios, 84
optimality condition, 89,298
steps of, 89,300
Simplex method, types of,
dual, 137
generalized, 143
revised, 300-303
tableau, 83
Simplex multiplier, 195, 324. See also dual price
Simplex tableau, 83
layout of, 122
matrix computation of, 126-128
matrix form of, 294
Simultaneous linear equations, types of solutions, 291-294
Simulation languages, 672
Simulation modeling, 5
Simulation, types of, 644
Slack variable, 72
Solver Excel templates. See Inside front cover
ch2SolverReddyMikks.xls, 36
ch5SolverTransportation.xls, 187
chSSolverNetworkBasedTransportation.xls, 189
ché6SolverShortestRoute.xls, 237
ch6SolverMaxFow.xls, 250
ch6SolverMinCostCapacitatedNetwork xls, 265
ch21SolverQuadraticProgrammingxls, 751
ch21SolverStocasticProgramming.xls, 760
Spanning tree, definition of, 214
basic solution in networks, 259
Statistical tables, 785-787
chi-square, 787
normal, 785
student t, 786
Steepest ascent method. See Gradient method
Stage in DP, definition of, 402, 406
State in DP, definition of, 403, 406
Stochastic programming, 807
Stock-slitting problem. See Trim-loss problem
Strategies in games, mixed and pure, 536
Student t tables, 786
Suboptimal solution, 3
SUMT algorithm, 763
Surplus variable, 72

T

Time-based variable in simulation, 661

TORA primer, 779-783

TORA input data files, See also Inside front cover
ch2ToraReddyMikks.txt, 21, 34
ch2ToraDiet.txt, 45
ch2ToraThriftem.txt, 47
ch2ToraLandUse.txt, 50
ch2ToraBus.txt, 53
ch2ToraTrimLoss.txt, 56
ch3ToraReddyMikks.txt, 92
ch3ToraMmethodEx3-4-1.txt, 96
ch3Tora2PhaseMethodEx3-4-2.txt, 99
ch4ToraTOYCOEx4-3-2.txt, 135

Index

ch4ToraDualSimplexEx4-4-1.txt, 138
ch5ToraMGAutoEx5-1-1.txt, 165
chSToraEquipMaintEx5-2-2.txt, 173
ch5ToraSunrayTransportEx5-3-1.txt, 177, 187
chSToraTransshipEx3-5-1.txt, 203
ch6ToraMinSpanEx6-2-1.txt, 216
ch6ToraDijkstraEx6-3-4.txt, 225
ch6ToraFloydEx6 0

ch9ToraCapitalBudgetEx9-1-1.txt, 361
ch9ToraFixedChargeEx9-1-2.txt, 364
ch9ToraSetCoverEx9-1-3.txt. 366
ch9ToraEitherOrEx9-1- 69
ch9ToraB&BEx9-2-1.t
ch9ToraTravelingSalespersonEx9-3-3.txt, 396
chl4ToraGamesEx14-4-3.txt, 536
ch14ToraGamesEx14-4-4.txt, 540
ch17ToraQueuesEx17-4-1.txt, 589
ch17ToraQueuesEx17-4-2.txt, 591
ch17ToraQueuesEx17-6-2.txt, 603
ch17ToraQueuesEx17-6
ch17ToraQueuesEx17-6-
ch17ToraQueuesEx17-6-6.1xt, 619
ch17ToraQueuesEx17-6-7.txt, 620
ch17ToraQueuesEx17-6-8.txt, 622
TOYCO model, 135
Transient period in simulation, 666
Transition-rate diagram in queues 593
Transportation algorithm, 177-187
feasibility condition, 182
optimality condition, 182
relationship to simplex method, 183-185, 195
starting solution methods, 178-182
Transportation model:
applications
inventory, 444-447
nontraditional 172-175
balancing of, 167-168
definition, 165
LP equivalence, 166
Transportation tableau, 179
Transpose of a matrix, 767
Transshipment model, 203-205
Traveling sales person problem, 390-397
algorithm,
B&B, 393
cutting plane, 396
subtour, 390
tour, 390
Tree, definition of, 214
Trim loss problem, 56
Triple operation, 229
Two-person zero-sum game 532
Two-phase method, 98. See also M-method

U

Unbounded solution in LP, 109

Unit worth of a resource. See Dual prices
Uniform distribution, 468

Unrestricted variable, 73
Upper-bounded variables, 305

Utility functions, 524
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A4 w
Value of game, 533 Waiting-line models. See Queuing models
Variables, types of: Waiting time distribution, 606
artificial, 94 Warm-up period, see Transient period
basic, 78 Weak duality theory, 323
binary, 373 Wilson’s economic lot size. See EOQ.
deviational, 348 Workforce size model using DP, 415
integer, 361
nonbasic, 78 7
slack, 72
surplus, 72 Zero-one integer problem, conversion to, 373
unbounded, 109 Zero-sum game, 532
unrestricted, 75

Variance of a random variable, 470471
Vectors, 765

linear independence, 292, 766
Vogel approximation method, 180-182
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