

Aphasia in children and adolescents

8.11.201

Brno/Brünn

Masaryk University

Dipl.-Log. Markus Heinzl Mania

FACULTY OF HUMAN SCIENCES - INSTITUTE FOR SPECIAL EDUCATION - III – ACADEMIC SPEECHTHERAPY/LOGOPEDICS

Traumatic brain injury and childhood aphasia

80 % accidental traumatic brain injury

- ➡ road accidents
 - crashes during play and sports
 - physical violence

Dysphasia vs. Aphasia

central language disorder before or during childbirth

normal language
development from the beginning

📕 dysphasia

Arterial ischemic stroke: Incidence rate

ISCHEMIC AND HEMORRHAGIC STROKE

- acute focal arterial circulatory disorder => Arterial ischemic stroke => lasting damage
- incidence of about 3-5: 100.000 children / year
- Boys 2: 1

Abb.: https://www.chronobiology.com/de/

Atiology Pediatric stroke

- at any age
- accumulation in preschool age => parainfectious / infectious risk factors
- adolescent age => systemic diseases and oncological conditions
- significant event for the victim and his family
- 70% remaining damage
- problems of further social integration
- major cost burden for the welfare system

Incidence rate acquired childhood aphasia

- 3.000 children and adolescents/year => aphasia
- much higher number of affected persons => child's aphasia is an unrecognized or neglected phenomenon.

Time is brain

Pediatric emergency situation

 Despite of a primary manifestation of hemiparesis in > 40% of cases

=> 2/3 of children are diagnosed too late for interventional medical therapy

Abb.: Fotolia/freshidea

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Diagnosis Children with a stroke

- stroke is only diagnosed in 1/3 of the affected children within the 6 h limit (Steinlin M., Pfister I.; Pavlovic J. et al (2005)
- 53% of the cases: delay in the diagnosis is due to inadequate assessment of the situation by the parents or the physicians primarily consulted
 - => 42% of children with stroke: diagnosis was not primarily suspected
 - => 11% misjudged

(Brown KP, Chaplain LJ, Kirkham FJ, Veber G de, 2006)

Imaging diagnostics: CT and MRI

- Computed tomography (CT) is organizationally feasible in most hospitals
- The gold standard today is magnetic resonance imaging (MRI)

Causes and risk factors ischemic stroke

Pediatric stroke is a "multiple risk" problem

- > 50 % of the children 2 and more risk factors (Ganesan V., Prengler M., McShane MA et al., 2003), (Steinlin M., Pfister I., Pavlovic J. et al., 2005)
- Recognizing them is helpful in estimating the likelihood of a stroke in the acute situation
- the knowledge of the risk factors: prognostic statements, risk of recurrence.

Causes and risk factors ischemic stroke

Infections

- most common risk factor for childhood arterial ischemic stroke
- 31% of children with stroke (control group 9%) suffered from a varicella infection in the previous year.
- other infections: Borrelia, mycoplasma, enteroviruses and parvoviruses
- 34% of the children (control group 9%) had a viral infection the month before the stroke.

Riikonen R., Santavuori P. (1994)

Causes and risk factors ischemic stroke

Vasculopathy

 42-79% of children had abnormalities in their vessels during imaging (Fullerton HJ, Qu YW, Sidney S et al., 2007)

Cardiac causes

Second most common underlying risk factor.

Hereditary coagulopathies

are usually not the main cause of a childhood stroke.

Metabolic diseases

Rarely, however, important for pediatrics are metabolic strokes.

Repetitive risk

- 15-20% The recurrence risk of a childhood stroke
- 5-20% with TIA

(Fullerton HJ, Qu YW, Sidney S et al., 2007)

Mortality

- 16% on average
- increases to 40% in children with pre-existing severe illnesses
- decreases to 3% in previously healthy children

(Amlie-Lefond C., Sebire G., Fullerton HJ., 2008)

Effects of a stroke

- Hemiplegia
- Aphasia
- Epilepsy
- Swallowing disorder (Dysphagia)
- Cognitive development:

(low) normal IQ score (85-95)

Pronounced mood swings

long-term problems and impaired quality of life for adolescents causes depression, agressivity and mood swings

Accompanying symptoms Frontal brain damage

Performance disorders

- Visuospatial functions
- Concentration
- Attention
- Memory disorders
- Behavioral abnormalities
- Agression
- Hyperactivity

Normal language aquisition

- 8. year: language development is completed
- reading and writing are still relatively fresh and are often not well controlled
- additional language skills, such as Idioms etc.: up to the age of 12-14 years

Abb.: http://logopaediewiki.de/wiki/Sprachbaum

Aphasia: Loss of language ability

- loss of an already acquired language ability
- The term is also applied to children who have not yet completed speech development
- in this context that aphasia must be a reduction or loss of existing language functions
- shows a significant difference to language developmental disorders
- infantile aphasias occur after or during an initially normal language acquisition and are the result of a clearly circumscribed event

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Impairment of language

- in the least case means a temporal impairment of language development
- in the worst case:, language skills and abilities are spilled
- Language can only be learned with difficulty and not in the quality of the native language
- remains permanently impaired in its development
- in particular, the field of written language is often and persistently affected
- Often, the ability to write and read is much more impaired than the spoken language.

Input/Output linguistic impairments

- Word finding
- Speech understanding
- Writing
- Reading

There is no mental retardation!

Mutism and hypospontaneity of speech

- Mutism: is one of the main symptoms of childhood aphasia
- "hypospontaneity of speech,,: a reduction of the spontaneous language, follows the mutistic phase.
- the lack of initiation of speech

Psychosocial effects

- the aphasia has great effects for the child and the relatives
- friends withdraw, the child becomes aggressive or depressed
- parents and relatives are helpless

Schooling

- Schooling: obstacles for aphasic children and adolescents
- Aphasia in children and adolescents has not been anchored in any school concept.

Abb.: https://commons.wikimedia.org/wiki/File:Grundschule_Haus_St_Marien_Neumarkt_-_Klassenzimmer_13.JPG

Prognosis

- > 50 % of the surviving children recover completely or show minimal neurological deficits
- Prognostically unfavorable factors are young age in stroke, male sex, bilateral or large-volume infarctions (Boardman JP, Ganesan V, Rutherford MA et al.,2005); Steinlin M, Pfister I, Pavlovic J et al., 2005)
- 42% of children show severe to moderate residual hemiplegia (Askalan R, Laughlin S, Mayank S et al., 2001)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Prognosis

- Regarding the recovery and linguistic abilities of aphasia in children, the prognosis and course vary widely in individual cases
- The main factors that are most commonly referred to in the context of recovery are
- \Rightarrow age of the child at the onset of the impairment
- \Rightarrow type of injury
- \Rightarrow long-term development of childhood aphasia is rather unclear.

Prognosis

- traditional view: better than adult aphasia
- Today: no longer as good as adult aphasia
- Factors such as age and gender are not as important as the type of causation
- even in long-standing or chronic aphasia especially in children recovery successes are still possible

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Logopedic diagnostics

- complete a picture as possible of the linguistic abilities
- Aim: to build on it therapeutically
- This includes: detection of the linguistic level before the brain damage.
- differentiate between language development disorder and child aphasia

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Logopedic diagnostic

- the aphasic impairment of children and adolescents is probably the most striking phenomenon
- But: it is not the only one
- the entire child's personality experiences impairments
- Aim: capture the child in all its personality.
- affected children: not only have impaired abilities and achievements

Logopedic diagnostic

Szenario-Kids

 A Participation-based Test for 8to 15-year-old Children with Aphasia

L. Plum, R. Nobis-Bosch, F. Krzok, M. van de Sandt-Koenderman, K. Willmes, S. Abel (2015)

Logopedic therapy

Essential therapy tasks are

- the restoration of those language abilities that the child had before the damage
- learning of new (linguistic) skills, e.g. literacy skills
- The special feature of the rehabilitation of aphasic children is therefore the linking of working methods that serve the restoration and acquisition of language skills under individually complicated learning.

Logopedic therapy

Child's language acquisition capacity is not affected by the child's aphasia

- Therefore, it is not enough if once existing skills are re-learned
- the stimulation of the ability to re-learn is at the center of rehabilitation

Neurological rehabilitation

- neurological rehabilitation facilities offer specialized therapy programs specifically for aphasia in childhood and adolescence
- the therapy units can be carried out either in individual or in group sessions
- usually performed stationary over several weeks.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Outpatient Therapy

- If the inpatient rehabilitation is completed and the outpatient therapy is carried out by speech therapists
- speech therapy are carried out at the place of residence
- therapists should have at least experience in both the treatment of childhood language developmental disorders and adult aphasia therapy

Elemtary schools and special education

- there is no aphasia-specialized schools and the normal school is usually overwhelmed
- special education areas: aphasia can only be classified insufficiently
- Aphasia is neither physical disability, learning disability nor behavioral problems

Abb.: https://www.gettingsmart.com/2016/07/bridging-the-knowledge-gap-of-special-education-students/

Abb.: https://de.depositphotos.com/62067009/stock-

photo-person-with-megaphone-in-hand.html

Děkujeme vám za pozornost!

Thank you very much for your attention!

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Log. Markus Heinzl Mania <u>FACULTY OF HUMAN SCIENCES</u> - <u>INSTITUTE FOR SPECIAL</u> <u>EDUCATION</u> - <u>III –</u> ACADEMIC SPEECHTHERAPY/LOGOPEDICS

1. Amlie-Lefond C, Sebire G, Fullerton HJ (2008) Recent development in childhood arterial ischemic stroke. Lancet Neurol 7: 425-435

2. Askalan R, Laughlin S, Mayank S et al (2001) Chickenpox and stroke in childhood: a study of frequency and causation. Stroke 32: 1257-1262

4. Boardman JP, Ganesan V, Rutherford MA et al (2005) Magnetic image correlates of hemiparesis after neonatal and childhood middle cerebral artery stroke. Pediatrics 115: 321-326

5. Brown KP, Chaplain LJ, Kirkham FJ, Veber G de (2006) Diagnostic pitfalls in pediatric ischemic stroke. Dev Med Child Neurol 48: 985-990

7. Everts R, Pavlovic J, Kaufmann F et al (2008) Cognitive functioning, behavior and quality of life after stroke in childhood. Child Neuropsychol 14: 323-338

8. Forum CNS: aids for children with aphasia. CNS - Hannelore Kohl Foundation. Forum CNS, issue 2/2007, p.1f.

9. Fullerton HJ, Qu YW, Sidney S et al (2007) Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics 119: 495-501

10. Ganesan V, Prengler M, McShane MA et al (2003) Investigation of risk factors in children with arterial ischemic stroke. Ann Neurol 53: 167-173

11. Kubandt M. (2009) Aphasie bei Kindern und Jugendlichen. Pediatrics 115: 321-326

12. Loew, M./Böhringer, K .: Childhood aphasia. Contributions to the neurological rehabilitation of children, adolescents and young adults. Series of publications Jugendwerk. Gailingen 2002

13. Mhplusdu. The info magazine of your health insurance: Speechless. Helps for children with aphasia. 4/2007, p.16-18

14. Neuronal- the journal for the neurological patient: Model project "Education of aphasic children". Issue 3/2007, p.24-25

15. Rother, A .: Childish aphasia. In: LOGOS Interdisciplinary 2/2005, p. 90-92

16. Riikonen R, Santavuori P (1994) Hereditary and acquired risk factors for childhood stroke. Neuropediatrics 25: 227-233

17. Spencer, P.G .: Childhood Aphasia - Backgrounds and Practice. NOT 3/2006, p.24-26

18. Steinlin M, Pfister I, Pavlovic J et al (2005) The first three years of the Swiss Neuropaediatric Stroke Registry (SNPSR): a population-based study of incidence, symptoms and risk factors. Neuropediatrics 36: 90-97

19. Steinlin M. (2008)Kindlicher Schlaganfall:Wann daran denken? Was unternehmen? Monatsschrift Kinderheilkunde 1223: 1232