CHAPTER 11

LIMITS AND CONTINUITY

ifferential calculus was developed without any explicit definition of either limits

or continuity, but with an intuitive assumption that both could in some sense
be taken for granted. Widespread use of the calculus during the eighteenth century
led to more careful consideration of such matters, but it was not until the early nine-
teenth century that Bolzano and Cauchy arrived at what are more or less the modern
definitions. In this chapter we trace the history of both ideas up to the early 1820s.

11.1 LIMITS

11.1.1 Wallis’s ‘less than any assignable’, 1656

The first writer to work with the concept of a limit in something like the modern
sense was Wallis, who in his Arithmetica infinitorum in 1656 repeatedly claimed that
two quantities whose difference could be made less than any assignable quantity could
ultimately be considered equal (see, for example, 3.2.3). In 1656 Wallis stated this as
a self-evident fact, but thirty years later, in his Treatise of algebra, he attempted to
justify it by appealing to Euclidean ratio theory. In the Elements Book V (Definition V)
Euclid had stated a special property of homogeneous magnitudes (that is, magnitudes
of the same kind): given any pair of such quantities, the smaller of them, however
tiny, can always be multiplied to exceed the greater. Wallis argued the converse, namely,
that if a quantity is (or becomes) so small that it cannot be made to exceed a larger
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quantity, no matter many times it is multiplied, it must be regarded as ‘no quantity’ or
nothing:!

And whatever is so little or nothing in any kind, as that it cannot by Multiplication, become so
great or greater than any proposed Quantity of that kind, is (as to that kind of Quantity,) None
atall.

Wallis then went on to claim something rather stronger: if a difference between two
quantities is less than any assignable quantity, then by definition it cannot be multiplied
to exceed some given quantity, and therefore by the previous argument it is nothing,
and the two original quantities are equal. Again, Wallis claimed Euclid as his authority-?

...he [Buclid] takes this for a Foundation of his Process in such Cases: That those Magnitudes
(or Quanities,) whose Difference may be proved to be Less than any Assignable are equal. For if
unequal, their Difference, how small soever, may be so Multiplied, as to become Greater than
either of them: And if not so, then it is nothing.

Though he attributed his arguments to Euclid, Wallis was stretching them consider-
ably further than Buclid or any other Greek author had ever done. The first proposition
of Book X of the Elements makes the following claim: if from a given quantity there is
repeatedly subtracted a half (or more), then what remains will eventually be less than
any preassigned quantity. This was crucial to the method of exhaustion; it enables one
to prove, for instance, that the space between a circle and an inscribed polygon can be
made as small as one pleases by repeatedly doubling the number of sides of the polygon.
Nowhere, however, did Euclid or any other Greek mathematician claim that this steadily
diminishing quantity could be considered non-existent, or zero. Instead, Proposition
X.1 was used in proofs by double contradiction to show, for example, that the space
inside a circle was neither greater nor less than some predetermined quantity (see 1.2.3).

Wallis’s insight may not have had the classical authority he claimed for it but, like
several of his ideas in the Arithmetica infinitorum, it was put to particularly good use by
Newton.

11.1.2 Newton’s first and last ratios, 1687

In the Principia in 1687 Newton gave Wallis’s idea of ‘ultimate equality’ the status ofa
proposition, indeed he made it the opening Lemma of Book I, Section I (see 5.1.2).

At the very end of Section I, Newton introduced the Latin word limes, in the everyday
sense of a boundary which may not be crossed, just as Barrow had done in 1660
(see 1.2.1). He used ‘limes’ in a similar sense again in the final sentence when he spoke
of quantities decreasing sine limite, that is, without end, or indefinitely. Newton also
observed that a quantity may approach such a boundary as closely as one pleases; by
Lemma I this was equivalent to ‘ultimate equality’

1. Wallis 1685, 281.

2. Wallis 1685, 282.
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Newton’s idea of a limit
from Newton, Principia mathematica, 1687, 1, 35-36

REEN

contenta. Premifi vero hac Lemmara uteffigeretir tkdidin dedd-
cendi perplexas demaaftrationds, ioreiveréram Geametrarum,
ad abfurdem. Contraltieres enim redduntur demonftrationes per
methodum indivifibiliam. Sed quoniam durior -eft ndivifibilium
Ev\monvwmm.u & propterea Methodus illa minus Geomstrica cen-
ferur, malui demonftrationes rerum fequentium ad uldimas quan-
titatum evanefcentium fummas & rationcs, primalg; nalcentium,
id eft, ad limites fummarum & rationun Ceducere, & propterea
limitum illorum demerfirationss qua potuibreuitate pramittefe.
His enim idem prafratar quod per merhodum indivifibiliim; &
principiis demonftratis jam rutius utetur. Proinde in fequenti-
bus, fiquando quantitates tanquam ex particulis.conftantes confi-
deravero, vel fi. pro rectis ufurpavero lineols curvas, nolim in-
diviibilia fed evanefcentia divifibilia, non fummas & rationes
partium determinatarum, fed fummarum & rationumclimives{em-
per intelligi, vimg; talium demonftrationum ad smethodum prz-
cedentium Lemmatum {emper revocari.

Objetio eft, quod quantitatum evanefcentium nulla fic.ultima
proportio; quippe qu, antequam EvVanuerunt, non.eftultima, u-
bi evanuerunt, nollaeft. Sed & codem argumento xque conten-
di poffet nullam effe corporis ad certum locum pergentis veloci-
tatem ultimam. Hanc enim, antequam corpus atfingit locum, non
effe ultimam, ubt attigit, nullam effe. Er refpontio facilis eft. Per
velocitatem ultimam intelligi eam, qua corpus movetur neq; ante-
quam attingit locum ultimum & motus ceffat, neq; poftea, fed
tunc cum attingir, id eft illam ipfam velocitatem quacum corpus
attingit locam wltimum & quacum motus ceffar. E {imiliter per
ultimam rationem quantitatum evanefcentium intelligendam cffe
rationem quantiratum non antequam cvancfcunt, non poftea,
fvd quacum evanefcunt. Pariter & ratio prima nafcentium eft
ratio quacomnafcuntur.  Et fumma prima & vliima eft quacum
sefle( vel rugeri & minui ) incipiunt & ceffar.r. Extar limes quem
velocitas in fine motus attingere poteft, non autem tranfgredi.

Fa Hac
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[36]
Hac eft velocitas ultima: Et par eft ratio limitis quantitatum &
proportiorum omnium incif ientium 8 ceffantivm. Cumg; hic li-
mes it certus & definirus, Problema eft vere Geometricum eun-
dem determinare,  Geometrica vero omniain aliis Geometricis
determinandis a¢ demonftrandis legitime ufurpantur.

Contendi etiam poteft, quod {i dentur ultimz quantitatum e-
vanefcentium rationes, dabuntur & ultimz magnitudines: & fic
quantiras omnis conflabit ex indivifibilibus, contra quam Exclides
de . incommenfurabilibus, inlibro décimo Elementorum, demon-
“ftravit. Verum hre Objeétio falf innititur hypothefi. Ultimz
rationes :ille” quibulcum quantitates evanelcunt, revera non [unt
rationes quantitatum ultimaram, fed Jimites ad quos quantitatum
fine limite decrefcentium rationes femper appropinquant, & quas
+propius aflequi. poffunt quam- pro data quavis differentia, nun-
-qukm vefo-tranfgredi; neq; prius attingere quam quantitates di-
-mipuuntur ininfinitam. Res clariusintelligetur in infinite magnis.
Si quantitates duz quarum data eft differentia augeantur in infi-
nitum, dabitur harum ultima ratio, nimirum ratio zqualitatis,
nec ramen ideo dabuntur quai titates ultime feu maxime quarum
ifta eft racio. Igitur in fequentibus, fiquando facili rerum ima-
ginationi confulens, dixero quantitates quam minimas, vel eva-
nefcentes vel ultimas, cave intelligas quantitates magnitudine de-
terminatas, fed cogita femper dimninuendas fine limite.

TRANSLATION

I have put forward these lemmas at the beginning, in order to avoid the tedium of
composing intricate demonstrations by contradiction in the manner of the ancient
geometers. For the demonstrations are rendered more concise by the method of indi-
visibles. But since the hypothesis of indivisibles is cruder, and that method therefore
judged less geometrical, I have preferred to deduce the demonstrations of what follows
by means of first or last sums and ratios of nascent or vanishing quantities, that is,
to limits of sums and ratios, and therefore to put forward demonstrations of those
limits as briefly as I could. For the same can be shown by these as by the method of
indivisibles, and the principles having been demonstrated, we may now more safely
use them. Consequently in what follows, whenever I have considered quantities as if
consisting of particles, or if I have used little curved lines for straight lines, I do not
mean indivisibles but vanishing divisibles, and there should always be understood not
sums and ratios of the known parts but the limits of sums and ratios, and the validity
of such demonstrations is always to be based on the method of the preceding lemmas.

The objection is that the ultimate ratio of vanishing quantities might not exist; since
before they vanish, it is not ultimate; and where they have vanished, it is non-existent.
But by the same argument it could equally be contended that the ultimate velocity
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of a body arriving at a certain place does not exist. For in this case, before the body
reaches the place, the velocity is not ultimate; where it reaches it, it does not exist. And
the answer is easy. By the ultimate velocity is to be understood that with which the
body moves, not before it reaches the final place and the motion ceases, nor after, but
as it reaches it; that is, that same velocity with which the body reaches the final place
and with which the motion ceases. And similarly by the ultimate ratio of vanishing
quantities there must be understood the ratio of quantities not before they vanish, nor
after, but with which they vanish. And equally the first ratio of nascent quantities is the
ratio with which they originate. And the first or ultimate sum is that with which they
begin or cease to be (according as they are increasing or decreasing). There exists a limit
which at the end of the motion the velocity may attain, but not exceed. [36] This is the
ultimate velocity. And likewise for the limiting ratio of all quantities and proportions
beginning or ceasing to be. And since this limit is fixed and definite, the problem is
to determine it correctly geometrically. Indeed anything geometric can legitimately be
used to determine or demonstrate other things geometrically.

It may also be contended that if ultimate ratios of vanishing quantities are given,
so are the ultimate magnitudes; and thus every quantity will consist of indivisibles,
contrary to what Euclid proved of incommensurables in the tenth book of the Elements.
But this objection is based on a false hypothesis. Those ultimate ratios with which
quantities vanish, are not actually ratios of ultimate quantities, but limits to which
the ratios of quantities decreasing without limit always approach, and which they may
attain more closely than by any given difference, but never exceed, nor attain before
the quantities are infinitely diminished. This may be more clearly understood for the
infinitely large. If two quantities, whose difference is given, are infinitely increased, their
ultimate ratio will be given, namely the ratio of equality, but nevertheless there will not
thereby be given the ultimate or greatest quantities of which this is the ratio. Therefore
whenever in what follows, to make things easier to imagine, I speak of quantities as the
smallest, or vanishing, or ultimate, avoid thinking of quantities of finite magnitude,
but always consider that they are to be decreased without limit.

11.1.3 Maclaurin’s definition of a limit, 1742

Maclaurin, writing some sixty years after Newton, continued to use the word ‘limit’
in much the same sense, as a bound that may be approached as closely as one wishes.
Stung by the criticisms of Berkeley and others (see 10.2.2) he took great pains to show
that limits were well defined, but his words ‘it is manifest ...” did nothing to avoid or
disguise the fundamental problem of neglecting o after dividing by it.

W
295 ” '
_
|




296

CHAPTER 11. LIMITS AND CONTINUITY

Maclaurin’s definition of a limit
from Maclaurin, A treatise of fluxions, 1742, 1, §502-§503

502. But however fafe and convenient this method may be,
fome will always fcruple to admit infinitely little quantities, and
infinite orders of infinitefimals, into a {cience that boafts of the
anoft evident and accurate principles as well.as of the moft rigid
demonftrations; and therefore we chofe to eftablith fo extenfive
and ufeful a doétrine in the preceeding chapters on more unex-
ceptidnable poffulata. In order to avoid fuch fuppofitions, Sir
Isaac Newton confiders the fimultaneous increments of the
flowing quantities as finite, and then inveftigates the ratio which
is the limit of the various proportions which thofe increments bear
2o each other, while he fuppofes them to decreafe together till
they vanifh; which ratio is the fame with the ratio of the fluxions
by what was thewn in art., 66, 67 and 68. In order to difcover
this limie, he firft determines the ratio of the increments in gene-
ral, and reduces it to the moft fimple terms fo as that (generally:
{peaking) a part at leaft of each term may be independent of the

value

Chap. XII. Of the limits of Ratios. 421

value of the increments themfelves ; then by fuppofing the in-
crements to decreafe till they vanifh, the limit readily appears.
503. For example, let # be an invariable quantity, » a flow-
ing quantity, and o any increment of ;. then the fimultaneous
increments of xx and #x will be 2x0 4~ 00 and a0, which are in
the fame ratio to each other as 2x 4 sisto 4. 'This ratio of
2x - o to 4 continually decreafes while o decreafes, and is al-
ways greater than the ratio of 2x to # while 0 is any real incre~
ment, but it is manifeft that it continually approaches to the ra~
tio of 2x to # as its limit; whence it follows that the fluxion.
of xx is.to the fluxion of 4x as 2xis 0o 4. If « be fuppofed to
flow uniformly, ax will likewife flow uniformly, but xx with 2
motion continually accelerated : The motion with which ax
flows may be meafured by a0, but the motion with which xx
flows is not to be meafured by its increment 2x0 4 0o, (by
ax. 1.) but by the part 2% only, which is generated in confe=
quence-of that motion ; and.the part o0 is to be rejected becaufe
icis generated in confequence. only of the accelération of the
motion with which the variable fquare flows, while o the in-
crement of its fide is generated : And the ratio of 2x0 to 4o is
that of 2x to 4, which was found to be the limit of the ratio
of the increments 2x0 ++ o0 and ao0.
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11.1.4 D’Alembert’s definition of a limit, 1765

When d’Alembert wrote and edited the mathematical sections of the great Encyclopédie
of Denis Diderot, published between 1751 and 1765, he provided new and useful def-
initions of many recent mathematical concepts. His definition of Jimit’ in Volume IX
was close to Newton’s idea of a limit as a bound that could be approached as closely
as one chose, and because d’Alembert, like Newton, worked with examples that were
primarily geometric, there was still no obvious need to consider quantities that might
oscillate from one side of a limit to the other.

D’Alembert’s definition of a limit
from Diderot and d’Alembert, Encyclopédie, 1751-65, IX, 542

TRANSLATION

LIMIT (Mathematics). One says that a magnitude is the limit of another magnitude,
when the second may approach the first more closely than by a given quantity, as small
as one wishes, moreover without the magnitude which approaches being allowed ever
to surpass the magnitude that it approaches; so that the difference between such a
quantity and its limit is absolutely unassignable.

For example, suppose we have two polygons, one inscribed in a circle and the other
circumscribed; it is clear that one may increase the number of sides as much as one
wishes, and in that case each polygon will approach ever more closely to the circumfer-
ence of the circle; the perimeter of the inscribed polygon will increase and that of the
circumscribed polygon will decrease, but the perimeter or edge of the first will never
surpass the length of the circumference, and that of the second will never be smaller
than that same circumnference; the circumference of the circle is therefore the limit of
the increase of the first polygon and of the decrease of the second.

1. If two magnitudes are the limit of the same quantity, the two magnitudes will be
equal to each other.

2. Suppose A x B is the product of two magnitudes A, B. Let us suppose that C
is the limit of the magnitude A, and D the limit of the quantity B; I say that C x D,
the product of the limits, will necessarily be the limit of A x B, the product of the
magnitudes A, B. .

These two propositions, which one will find demonstrated exactly in the Institutions
de Géométrie, serve as principles for demonstrating rigorously that one has the area of
a circle from multiplying its semicircumference by its radius. See the work cited, p. 331
and following in the second volume.

The theory of limits is the foundation of the true justification of the differential
calculus. See DIFFERENTIAL, FLUXION, EXHAUSTION, INFINITE. Strictly speaking, the
Iimit never coincides, or never becomes equal to the quantity of which it is the limit,
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but the latter approaches it ever more closely, and may differ from it as little as one
wishes. The circle, for example, is the limit of the inscribed and circumscribed polygons;
for strictly it never coincides with them, although they may approach it indefinitely.
This notion may serve to clarify several mathematical propositions. For example, one

says that the sum of a decreasing geometric progression in which the first term is a and
aa . . . L

W this value is never strictly the sum of the progression, it is the
a—
limit of that sum, that is to say, the quantity which it may approach as closely as one
wishes, without ever arriving at it exactly. For if e is the last term in the progression,
aa — be L aa
————, which is always less than

a—"b a—b

in a decreasing geometric progression, the last term e is never 0; but as this term

continually approaches zero, without ever arriving at it, it is clear that zero is its limit,

.. ,aa—be  aa

and that consequently the limit of P is p
a— a—

putting in place of e its limit. See SEQUENCE O SERIES, PROGRESSION, etc.

the second b, is

because even

the exact value of the sum is

, supposing e = 0, that is to say, on.

11.1.5 Cauchy’s definition of a limit, 1821

Cauchy’s definition of a limit, first given in his Cours d’analysein 1821, imitated that of
d’Alembert and combined the same basic ideas: the existence of a fixed value, and the
possibility of approaching it as closely as one wishes. The same definition was repeated,
with further examples, at the beginning of his Résumé des lecons in 1823.

Cauchy established the concept of a limit as the starting point of textbook expositions
of analysis but in most respects his definition was no clearer than Newton’s 150 years
earlier, for there was still no precise discussion of what it meant to approach a fixed value
‘indefinitely’ nor of whether a varijable quantity might actually attain or even at times
surpass its limit. Cauchy offered the well worn illustration of a circle and polygons, but
also produced a new and more interesting example, of an irrational number approached
by rationals; he did not yet suggest, however, that a limit could be approached from
both sides simultaneously.

11.1. LIMITS

Cauchy’s definition of a limit, 1821
from Cauchy, Cours d’analyse, 1821, 4-5

On nomme quantité variable celle que Ton con-
sidére comme devant recevoir successivement plu-
stears valeurs différentes les unes des autres. On
désigne une semblable quantité par une lettre prise
ordinairement parmi les derniéres de lalphabet.
On appelle au contraire quantité constante, et on
désigne ordinairement par une des premiéres lettres
de Talphabet toute quantité qui recoit une valeur
fixe et déterminée. Lorsque les valeurs successive-
ment attribuées 4 une méme variable s'approchent
indéfiniment d'une valeur fixe, de maniére a finir
par en différer aussi peu que Ton voudra, cette
derniére est appelée la &mite de toutes les autres.
Ainsi, par exemple, un nombre irrationnel est fa
limite des diverses fractions qui en fournissent des
valeurs de plus en plus approchées. En géométrie,
Ia surface du cercle est la limite vers laquelle con-
vergent les surfaces des polygones inscrits, tandis
que le nombre de leurs cotés croit de plus en plus;
&e. ...

Lorsque les valeurs numériques successives d une
méme variable décroissent indéfiniment, de maniére
a s'abaisser au-dessous de tout nombre donné, cette
variable devient ce qu'oh nomme un infiniment petit
ou une quantité znfiniment petite. Une variable de
cette-espéce a zéro pour limite.

Lorsque les valeurs numériques successives

2

9

9




300 CHAPTER 11. LIMITS AND CONTINUITY

PRELIMINAIRES. 5
d'une méme variable croissent de plus en plus, de
maniere a sélever au-dessus de tout nombre donné,
on dit que cette variable a pour limite [vnfini positif,
indiqué par le signe oo, sil sagit d'une variable
positive, et l'infini negatif, indiqué par la notation
— oo, sil sagit d'une variable négative. Les infinis
positif et négatif sont désignés- conjointement.sous
le nom de guantités infinies.

TRANSLATION

One calls a variable quantity one that is considered to take successively several values
different from each other. One denotes such a quantity by a letter usually taken from
amongst the last in the alphabet. On the other hand one calls a constant quantity every
quantity that takes a fixed and known value, and one usually denotes it by one of the
first letters of the alphabet. When the values successively attributed to the same variable
approach indefinitely to a fixed value, in such a way as to end by differing from it as
little as one wishes, this last is called the limit of all the others. Thus, for example,
an irrational number is the limit of various fractions that furnish values more and
more closely approaching it. In geometry, the area of a circle is the limit towards which
converge the areas of inscribed polygons, when the number of their sides increases
more and more; etc....

When the successive numerical values of the same variable decrease indefinitely, in
such a way as to fall below every given number, this variable becomes what one calls an
infinitesimal or an infinitely small quantity. A variable of this kind has zero for its limit.

When the successive numerical values {5] of the same variable increase more and
more, in such a way as to rise above every given number, one says that this variable has
for its limit positive infinity, indicated by the sign oo, if one is dealing with a positive
variable, and negative infinity, indicated by the notation —co, if one is dealing with a
negative variable. Positive and negative infinities are known jointly under the name of
infinite quantities.




