Collection of exercises from ELEMENTARY GEOMETRY for the study of teaching at primary school

Leni Lvovská
October 2019

Geometry has two treasures: a pythagorean theorem and a golden section. The first one is worth gold, the second one is more precious stone.

Johannes Kepler (1571-1630) 10

Introduction

This collection of elementary geometry problems was developed as a supporting material to the geometry textbooks for the future elementary school teachers. These texts namely contain only a limited number of exercises and no solved tasks. This booklet offers the students a number of solved tasks as well as another set of exercises. At the same time, it follows the current trend of inter-subject connections and in the provided tasks and examples shows how geometry is related to the other subjects as well as to the world around us.

Many tasks work with the magnetic kit Geomag. If you do not have it, these tasks can be demonstrated using skewers and balls of modeling. For the creation of illustrations, the GeoGebra software was used. It is therefore easy to use the GeoGebra tutorial software directly in the classroom or on a standalone task. There are direct references to selected dynamic applets and stepped constructions for specific constructions.

This text was developed with the support of the project MUNI / FR / $1193 / 2018$, Innovation of four subjects Geometry for Teachers of the 1st level of the elementary school with Geomag kit and Geogebra educational software at the Faculty of Education, Masaryk University in Brno.

Many thanks to Helena Durnová for the preparation of the English version of this text and Pavel Kříz for the support of the typesetting in the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ system.

1 Historical development of geometry

Exercises 1.1. Attachment at the end of the text contains a set of pictures. Sort these images into three groups by assigning them to one of the three basic geometric figures: circle, square, equilateral triangle.

Discuss the pictures in the groups. Why did you assign these pictures to the groups belonging to a circle, square or equilateral triangle. Are there images that could be assigned to two or even to all three groups?

An example of such a discussion:
This picture can be seen as a regular hexagon, so it can be assigned to an equilateral triangle, since a regular hexagon consists of six equal equilateral triangles. A regular hexagon is a regular polygon, ie it can be copied and inscribed a circle, so we can assign it to a circle. This image can also be seen as a wireframe cube. If appropriate, explain this view to classmates who can not see it.

A regular hexagon or cube?
Exercises 1.2. How did geometry begin to form in the distant past? (Formulate the answer in several sentences.)

Exercises 1.3. What do you know about the books we call Euclid's Elements?

Exercises 1.4. Correctly associate branches of geometry with the names of important mathematicians, who worked in them:

- René Descartes (1596-1650),
- Johann Carl Friedrich Gauss (1777-1855),
- Georg Friedrich Bernhard Riemann (1826-1866),
- David Hilbert (1862-1943).
a) German mathematician and physicist. He was interested in geometry, mathematical analysis, number theory, astronomy, electrostatics, geodesy and optics. He strongly influenced most of these fields of knowledge. He stood at the birth of non-Euclidean geometry.
b) His work La Géométrie is often considered the beginning of analytic geometry as a science.
c) German mathematician, who in his work Foundations of Geometry constructed discipline currently called Euclidean geometry, he created the system of axioms of Euclidean geometry.
d) German mathematician, who contributed significantly to the development of mathematical analysis and differential geometry. Algebraic geometry and complex surface theory were also developed on the basic of his ideas, which became the core of differential geometry on manifolds and topology.

Solution: René Descartes (b), Johann Carl Friedrich Gauss (a), Georg Friedrich Bernhard Riemann (d), David Hilbert (c).

Exercises 1.5. Explain the difference between an axiom and a mathematical theorem. Give an example of an axiom and a mathematical theorem.

2 Basic geometric formations and their properties

Example 2.1. Which geometric formations can arise as the intersection of two half-lines that are lie on the same line? Show and describe.

Solution: Point, line segment, line, half line.
Example 2.2. Investigate all possible relative positions of three different lines lying in one plane. Show and describe.

Řešení: Let's denote the lines a, b, c. Then the following situations can occur:
a) all lines are mutually parallel, ie. $a \cap b=\emptyset \wedge b \cap c=\emptyset$,
b) two lines are parallel and the third line is parallel to them, e.g.

$$
a \cap b=\emptyset \wedge a \cap c=X \wedge B \cap C=Y
$$

c) all lines are mutually parallel and pass through a single common point, $a \cap b \cap C=P$,
d) all lines are mutually parallel and intersect at different points.

Exercises 2.3. Draw a line $A B$. On the line $A B$ mark:
a) C, so that A is between C and B,
b) D, so that B is between A and D,
c) a point P that does not lie on the $A B$ line but lies on the $A D$ line.

Exercises 2.4. Draw line $K L$. Select D between $K L$, and mark:
a) R, so that K is between R and L,
b) S, so that L is between K and S,
c) T, so that S is between L, T.

Decide which statement is true:

1) $S \in \mapsto K L$,
2) $\mapsto R S \cap \mapsto K L=K L$,
3) $\mapsto R D \cap S T=\emptyset$,
4) $R \in \leftrightarrow K L$,

Exercises 2.5. There is a line p and a point A that does not lie on it. Draw:
a) a point M that belongs to the $\mapsto p A$,
b) a point P that lies in both halves defined by p,
c) a point N that lies in the half-plane opposite to $\mapsto p A$.

Exercises 2.6. Three different points A, B, C are given.
a) How many line segments, half-lines, and lines are determined by these points? How do these numbers depend on the position of the points given?
b) Which point sets can be the intersection of two of these line segments (half-lines, lines)?

Show and discuss.
Exercises 2.7. Let point R lies between P, Q. From half-lines $P R, P Q$, $R P, R Q, Q R, Q P$ choose pairs of half-lines that: a) coincide, b) are opposite, c) one is part of the other, d) their intersection is a line segment.

Exercises 2.8. Determine what shapes may arise as an intersection of:
a) a line segment and a half-plane,
b) a half-line and a half-plane,
c) a line and a half-plane.

For all cases, consider the situation in a single plane. Show and describe.
Exercises 2.9. There are n straight lines in the plane, of which no two intersect and no three meet at the same point. How many significant intersections of these lines are there?

Example 2.10. How many different lines are determined by n points that lie in one plane and no three lying on one straight line?

Solution: For a single point, the task is meaningless. Let's outline the situation for some finite number of points: for two points there will be one straight line, for three points just three lines, four points will determine six lines, five points will be ten lines, etc. Now we can do the following: from each point we lead a line to $(n-1)$ points, but in this way I count them each line twice. The result is:

$$
\frac{n(n-1)}{2}
$$

Exercises 2.11. In the plane there are n lines, two of which intersect and no three of them meet the same point. How many intersections there are?

Exercises 2.12. Determine what shapes may arise as an intersection of two half-planes. Consider the situation in a single plane.

Exercises 2.13. Select points A, B inside one half-plane, which is determined by the line p. Inside the opposite half-plane, select C, D so that the lines $A B$ and $C D$ are parallel to the line p. On line $A B$ select M, on line $C D$ select N. How must the points M, N be choosen so that the line segment $M N$ contains a point of line p lying between M and N ?

Example 2.14. Construct a cuboid of $A B C D E F G H$ (using GeoMag or using skewers and plasticine).
A) Determine all incident lines with cuboid edges that are with $B C$:

- parallel,
- intersecting,
- skew.
B) Using the points of the cuboid, you list three planes that form a bundle of planes and write down the intersection of these three planes.

Řešeni:

- parallel: $\leftrightarrow A D, \leftrightarrow E F, \leftrightarrow H G$
- intersecting: $\leftrightarrow A B, \leftrightarrow E B, \leftrightarrow D C, \leftrightarrow C F$
- skew: $\leftrightarrow E H, \leftrightarrow F G, \leftrightarrow A H, \leftrightarrow D G$

A bundle of planes consists of planes $\leftrightarrow A B C, \leftrightarrow A B E$ a $\leftrightarrow A F$:

$$
\leftrightarrow A B C \cap \leftrightarrow A B E \cap \leftrightarrow A B F=\leftrightarrow A B .
$$

Example 2.15. Construct a regular tetrahedral pyramid $A B C D V$ (using GeoMag kit or skewers and plasticine).
A) Determine all straight lines specified by A, B, C, D, V that are:

- parallel to $B C$,
- intersecting to $B C$,
- skew to $B C$.
B) Using the pyramid points A, B, C, D, V, give an example of the three planes that make up the bunch of planes and write the intersection of the three planes.
Solution:

- parallel: $\leftrightarrow A D$,
- intersecting: $\leftrightarrow A B, \leftrightarrow B V, \leftrightarrow C V, \leftrightarrow C D$,
- skew $\leftrightarrow A V, \leftrightarrow D V$.

A bunch of planes is made up of planes $\leftrightarrow A B C, \leftrightarrow A B V$ a $\leftrightarrow B C V$:

$$
\leftrightarrow A B C \cap \leftrightarrow A B V \cap \leftrightarrow B C V=\leftrightarrow\{B\} .
$$

3 Convex and non-convex set, convex and non-convex angle

Exercises 3.1. How can we find out whether a geometrical figure is convex or non-convex? Sort geometric shapes into convex and non-convex: a line segment, line, circle, triangle, quadrilateral, pentagon, circle with hole.

Exercises 3.2. Look around and try to see the angles determined by the edges of the board or the edges of the bench, parts of the window frame, but also the angles formed, for example, the legs of the chair and the floor. Mark such angles in the illustration.

Exercises 3.3. Draw the lines $\mapsto S C$ and $\mapsto S D$. Mark with a red arc the convex angle $\varangle C S D$ and with a blue one non-convex angle $\propto C S D$. Mark the point E of angle $\varangle C S D$ and the point F of angle $\propto C S D$. Can you determine point H, which is the point of the angle $\varangle C S D$ as well as of the angle $๔ C S D$?

Exercises 3.4. Draw the angle $\varangle A D B$. Mark point H in it. Draw the angle $\varangle A D H$. Write down all convex angles.

Exercises 3.5. Draw three lines with a common S origin. Mark one of the points A, B, C on each of the lines. Mark the curves in these angles and write them down.

Exercises 3.6. Sketch two convex planar formations such that their
a) union is a convex set,
b) union is a non-convex set,
c) intersection is a convex set,
d) intersection is a non-convex set.

Exercises 3.7. Sketch two non-convex planar formations such that their
a) union is a convex set,
b) union is a non-convex set,
c) intersection is a convex set,
d) intersection is a non-convex set.

Exercises 3.8. Sketch the following and determine whether it is a convex or non-convex set:
a) a triangle $A B C$ without its vertices,
b) triangle $K L M$ without one inner point of one side,
c) union of the inside of any triangle and two different points of its perimeter,
d) difference of a convex angle $A V B$ and its arm $V A$,
e) difference of square $A B C D$ and the union of its two sides,
f) union of the inside of square $A B C D$ and its two sides,
g) circle.

Example 3.9. Investigate all geometric shapes that may arise as an intersection of two triangles. Show and describe.

Solution: The intersection f two triangles may be:
A) a point, e. g. $\triangle A B C \cap \triangle E F D=\{D\}$,
B) a line segment, e.g. $\triangle A B C \cap \triangle E F D=D C$,
C) a triangle, e. g. $\triangle A B C \cap \triangle E F D=\triangle D M N$,
D) a quadrilateral, e.g. $\triangle A B C \cap \triangle E F D=$ quadrilateral $O P Q R$,
E) a pentagon, e.g. $\triangle A B C \cap \triangle E F D=$ pentagon $F S T U V$,
F) hexagon, eg. $\triangle A B C \cap \triangle E F D=$ hexagon $K L M N O P$.

Exercises 3.10. Choose pairs of convex angles (neither full nor zero ones). Investigate which geometrical shapes can arise as the intersections of these angles. Draw and describe all cases.

Exercises 3.11. Select different non-parallel lines p, q and mark their intersection V. Select P on the line p, Q on the line, q. Define each pair of vertical and adjacent angles determined by the intersecting lines p and q using the half-planes $p Q, q P$ and the half-planes opposite to them. Use symbolic notation.

Exercises 3.12. Model from the Geomeg kit and then draw: a) isosceles triangle, b) equilateral triangle, (c) a square; (d) a regular pentagon; (d) a regular hexagon.

Example 3.13. Model the Geomag kit with the following specifications, and then practice your imagination to solve them:
A) Move 3 equal lines (yellow bars) to form 2 large and one small triangle. The task has two solutions.

B) Remove 3 equal lines (yellow sticks) to form 3 squares.

C)Remove one line (yellow bar) to get 2 squares. The task has two solutions.

D) Move 4 identical lines (yellow bars) to create four squares again, but not all of the same size.

Solution: See at the end of the text.

Exercises 3.14. Draw a regular hexagon $A B C D E F$ with the center S and mark the pairs of angles in the picture:
a) adjacent (not supplementary),
b) supplementary,
c) vertical,
d) corresponding,
e) alternate exterior angels,
f) alternate interior angels.

Example 3.15. Model a regular tetrahedron $A B C D$ and then display it. Determine its intersection with the $E F G H$ halfspace if A is between E and C, B is between F and C, and G between D and C.

4 Circle, round, triangle, quadrilateral, regular polygon

Exercises 4.1. Tangram is the oldest known puzzle in the world, it comes from ancient China. It is a square divided in a thoughtful way into seven parts, from which various geometric figures, objects, animals and human figures can be assembled. Make your tangram from a square of paper according to the attached pictures:

Then build using all seven parts:
a) triangle,
b) parallelogram,
c) trapezoid.

Čínští matematici, kteří se tangramem zabývali, zjistili, že ze sedmi částí tangramu lze sestavit celou sérii konvexních mnohoúhelníků:
a) 1 triangle,
b) 6 quadrilaterals,
c) 2 pentagons,
d) 4 hexagons.

So if you have mastered the geometric shapes a) - d), you can try this somewhat more difficult task.

Example 4.2. The picture shows a few well-known road signs. Answer the following questions:

1) Jaké geometrické útvary se nacházejí na obrázcích? (jednobodovou množinu neuvažujeme)
2) Construct with a ruler and compass all geometric shapes from task 1).
3) Use the ruler and compass to construct the centers of both circles on the first mark? What is the relationship between the two circles?
4) What is the content of the triangle that forms the second tag if its side is 900 mm ? Try to solve the problem in several ways (repeat Heron's formula).
5) The first tag has a diameter of 700 mm . The side of the triangle on the second mark is 900 mm . Which of these brands do we need more sheet metal for?
6) Take a picture of the tags you meet on your way to school and formulate similar questions.

Solution: 1) Line, circle, round, equilateral triangle, square, rectangle, regular octagon. 3) These are concentric circles that have a common center. This center can be found, for example, using two arbitrary different chords, taking advantage of the fact that the axis of each line that is a chord of a circle is a line passing through the center of the circle.

Example 4.3. Construct a square if its side is $A B$. Select claims that are false:
a) All angles are equal in a square.
b) Right angle is exactly one square.
c) Two sides in a square must be horizontal.
d) In, adjacent pages must be perpendicular to each other.
e) The angle between the diagonal and the adjacent side of the square is $45^{\text {circ }}$.
f) Diagonals in a square form an angle of $60{ }^{\text {circ }}$.

Solution:

D	q			C					
d				2. kružnice $k(B, r=\|A B\|)$ 3. $\operatorname{bod} C \in k \cap p$ 4. přímka $q \\| p ; A \in q$ 5. přímka $h \\| A B ; C \in h$ 6. bod $\mathrm{D} \in h \cap q$					
		144 44 13/13							

False statements are statements b), c), f).
Exercises 4.4. If in an isosceles triangle $A B C$ the angle at base $A B$ equals three times the angle at the vertex C and if the angle $\varangle B A C$ at the base is divided into three equal angles (so that M, N are those points of $B C$ for which $\varangle N A B \cong \varangle M A N \operatorname{cong} \varangle C A M)$, then $A B \cong A N \cong B M, A M \cong C M$. Prove.

Exercises 4.5. A point A lying outside the circle $k(S, r)$ leads the secant $C D$ so that $A C<A D$ and $|A C|=r$. Prove that

$$
\varangle A S C=\frac{1}{3} \varangle B S D,
$$

where the point B is the point of intersection of the line $A S$ with the circle k such that S lies between the points A, B.

Exercises 4.6. Inside the $A B C$ triangle, select S. Prove that the sum of the lines $S A, S B, S C$ is greater than half the sides of the triangle, ie

$$
\begin{equation*}
S A+S B+S C>\frac{1}{2}(A B+B C+C A) \tag{1}
\end{equation*}
$$

Solution: Point S is the inner point of the triangle $A B C$, so there are three other triangles for which the triangular inequality holds:
for triangle $A B S: A S+B S>A B$,
for triangle $A C S: A S+C S>A C$,
for triangle $B C S: B S+C S>B C$.
Adding the right and left sides of the inequalities we get:

$$
\begin{equation*}
2 \cdot A S+2 \cdot B S+2 \cdot C S>A B+B C+A C \tag{2}
\end{equation*}
$$

thus proving inequality (1).
Example 4.7. Prove that for the sum of the centroids t_{a}, t_{b}, t_{c} of triangle $A B C$, the relation is:

$$
\begin{equation*}
\frac{1}{2}(a+b+c)<t_{a}+t_{b}+t_{c}<a+b+c . \tag{3}
\end{equation*}
$$

Řešeni: First we prove inequality

$$
\begin{equation*}
\frac{1}{2}(a+b+c)<t_{a}+t_{b}+t_{c} . \tag{4}
\end{equation*}
$$

Let's denote A_{1} center of $B C, B_{1}$ center of $A C$ and C_{1} center of $A B$ triangle $A B C$. The triangular inequality follows
for triangle $A B A_{1}: t_{a}+\frac{a}{2}>c$,
for triangle $A C C_{1}: t_{c}+\frac{c}{2}>b$,
for triangle $B C B_{1}: t_{b}+\frac{b}{2}>a$.
Adding the right and left sides of the inequalities we get:

$$
\begin{equation*}
t_{a}+t_{b}+t_{c}+\frac{1}{2}(a+b+c)>a+b+c \tag{5}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
t_{a}+t_{b}+t_{c}>\frac{1}{2}(a+b+c) . \tag{6}
\end{equation*}
$$

Let us prove inequality

$$
\begin{equation*}
t_{a}+t_{b}+t_{c}<a+b+c . \tag{7}
\end{equation*}
$$

Let the points A_{1}, B_{1}, C_{1} be again the centers of the sides $B C, A C$ and $A B$ of the triangle. Let's construct A^{\prime} so that A_{1} is the center line of $A A^{\prime}$. The quadrilateral $A B A^{\prime} C$ is a parallelogram, its diagonals are halved. So $A C \cong B A^{\prime}$ holds. The triangular inequality for triangle $A B A^{\prime}$ implies:

$$
\begin{equation*}
2 t_{a}<b+c \tag{8}
\end{equation*}
$$

Similarly, constructing B^{\prime} and C^{\prime} so that B_{1} is the center of the $B B^{\prime}$ line and C_{1} is the center of the $C C^{\prime}$ line:

$$
\begin{equation*}
2 t_{b}<a+c \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
2 t_{c}<a+b \tag{10}
\end{equation*}
$$

Adding the right and left sides of the three inequalities we get:

$$
\begin{equation*}
2 t_{a}+2 t_{b}+2 t_{c}<2 a+2 b+2 c, \tag{11}
\end{equation*}
$$

that is, we proved inequality (7).
Example 4.8. Prove that the sum of the lines that connect the inner point P of the triangle to the endpoints of one side is less than the sum of the remaining two sides of the triangle.

Proof: For example, according to the task assignment,

$$
\begin{equation*}
A P+B P<A C+B C \tag{12}
\end{equation*}
$$

We can now prove the argument (12). Since the P point belongs to the inside of the $A B C$ triangle, there must be a X point on the side of $B C$ and on the $A P$ half-line after P. For triangles $A C X$ and $B P X$ we express a triangular inequality
for triangle $A C X: A X<A C+C X$,
for triangle $B P X: B P<X B+P X$.
After adding both inequalities we get:

$$
\begin{equation*}
A X+B P<A C+C X+B X+P X \tag{13}
\end{equation*}
$$

Expressing the line $A X$ as the sum of the lines $A P+P X$ and considering that $C X+B X=B C$:

$$
\begin{gathered}
(A P+B P)+P X<A C+(C X+X B)+P X, \\
(A P+B P)+P X<(A C+B C)+P X
\end{gathered}
$$

and thus the inequality (12) is proven.

Exercises 4.9. The o line is the axis of the $A B$ line. The X point is any inner half-point $o A$. Prove that: $A X<B X$.

Exercises 4.10. Point U is the inner point of the triangle $A B C$.
Prove that the following applies: $\varangle A U B>\varangle A C B, \varangle B U C>\varangle B A C$ and $\varangle A U C>\varangle A B C$.

Exercises 4.11. If the point X lies on the axis of the given convex angle $A V B$, then it has the same distances from its arms. Prove.

Exercises 4.12. If the center of gravity of the triangle coincides with its height, the triangle is isosceles. Prove.

Exercises 4.13. In the $A B C$ triangle is $\varangle B A C=\alpha=50^{\circ}, \varangle A B C=\beta=$ $60^{\circ}, \varangle A B C$ crosses $A C$ v point D. Sort lines $A B, B C, C D, A D, A C, B D$ by size.

Exercises 4.14. Determine the magnitude of the inner angles of the triangle $A_{1} B_{1} C_{1}$, whose vertices are the intersections of the axes of the outer angles of the triangle $A B C$.

Exercises 4.15. It is given by an isosceles triangle $A B C$ and a point D which is the center of its base $A B$. Point D leads perpendicular to the arms $A C, B C$ triangle $A B C$. Their heels are labeled M, N. Prove that $\triangle D M C \cong \triangle D N C$.

Exercises 4.16. Construct a triangle $A B C$ if three independent data are given:
a) c, b, t_{c}
b) α, c, t_{c}
c) a, v_{a}, b
d) a, α, v_{b}
e) b, c, v_{a}
f) α, v_{b}, r_{v}
g) $\quad b, \gamma, v_{c}$
h) γ, v_{a}, v_{b}
i) c, v_{a}, v_{b}
j) a, v_{a}, v_{b}
k) γ, v_{a}, v_{c}
l) r_{o}, v_{c}, t_{c}
m) a, b, t_{c}
n) α, β, r_{v}
o) α, β, r_{o}
p) $\quad b, \beta, v_{b}$
q) a, β, r_{v}
r) c, t_{a}, t_{b}
s) $\quad b, \beta, t_{a}$
t) a, t_{a}, t_{b}
u) a, v_{a}, t_{b}
v) t_{a}, t_{b}, t_{c}
w) t_{a}, t_{b}, γ
z) t_{a}, v_{a}, v_{b}
where r_{o} is the circle radius described and r_{v} is the circle radius inscribed with the triangle $A B C$. Some of these tasks can be found in the following examples.

Example 4.17. Construct a triangle $A B C$ if given: a, α, v_{b}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/raxdkacg
Example 4.18. Construct a triangle $A B C$ if given: b, c, v_{a}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/ny5an7tf

Example 4.19. Construct a triangle $A B C$ if given: α, v_{b}, r_{v}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/smnfqkqf
Example 4.20. Construct a triangle $A B C$ if given: c, v_{a}, v_{b}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/yzcd6acd

Example 4.21. Construct a triangle $A B C$ if given: a, v_{a}, v_{b}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/rkdepcxf
Example 4.22. Construct a triangle $A B C$ if given: b, c, t_{c}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/gnr4vvnn

Example 4.23. Construct a triangle $A B C$ if given:: b, γ, v_{c}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/rssprtnv

Example 4.24. Construct a triangle $A B C$ if given: γ, v_{a}, v_{b}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/sn3wvaed

Example 4.25. Construct a triangle $A B C$ if given: a, v_{a}, b.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/ntwfvxns

Example 4.26. Construct a triangle $A B C$ if given: α, c, t_{c}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/trhbazkf

Example 4.27. Construct a triangle $A B C$ if given: γ, v_{a}, v_{c}.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/njnjbvh9

Example 4.28. Construct a triangle $A B C$ if given: α, β, r_{v}, kde r_{v} je poloměr kružnice trojúhelníku vepsané.

The construction step by step:
https://www.geogebra.org/m/u7e5f3qn\#material/w547a5au
Exercises 4.29. Construct a triangle $A B C$ if given:
a) $a+b, \gamma, v_{a}$
b) $a-b, \gamma, c$
c) $a+b+c, \alpha, \beta$
d) $a, b, \alpha-\beta$
e) $a+b+c, \alpha, v_{c}$

Exercises 4.30. The line $A B$ is given.
a) Construct the set of all vertices of the convex angle $\Varangle A C B=$ gamma, whose arms pass through the endpoints of the line segment $A B$.
b) Construct $\triangle A B C$ if $|A B|=6, \gamma=60^{\circ}, v_{C}=4$.

Exercises 4.31. Construct a triangle $A B C$ if given: t_{a}, t_{b}, t_{c}.

Example 4.32. Prove the sentence about the centroids of the triangle: The centroids of each triangle intersect at one point, called the centroid of the triangle. the center of gravity divides each center of gravity into two lines, the one containing the vertex of the triangle is twice the other.

Proof: The triangle $A B C$ is given, the points A_{1}, B_{1}, C_{1} are the center of its sides $B C, A C$ and $A B$, the lines $A A_{1}, B B_{1}$ and $C C_{1}$ is his center of gravity. In this triangle, we consider the $A A_{1}$ and $B B_{1}$ mines that intersect at T. We prove that $C C_{1}$ goes through T.

Let's construct a line $C T$ and a point U on it so that the point T is the center of the line $C U$, ie $C T \cong T U$. In the $A U C$ triangle, the line $B_{1} T$ is the middle bar and therefore $B_{1} T \| A U$. Since the points B_{1}, T, B lie on one straight line, it is i $B T \| A U$. Analogously in the $B U C$ triangle, the line $A_{1} T$ is the middle rung and therefore $A_{1} T \| B U$, and hence $A T \| B U$. Hence the quadrilateral $A T B U$ has two parallel sides parallel, ie it is a parallelogram and its diagonals $A B$ and $T U$ are bisected. Hence, the center of the AB side, C_{1}, lies on the line $C T$. This proves that $C C_{1}$ goes through T. Therefore, the centroids of the triangle $A B C$ intersect at one point. This point always belongs to the inside of the given triangle.

The properties of the middle rungs $B_{1} T$ and $A_{1} T$ of the triangles $A U C$ and $B U C$ and the properties of the parallelogram $A U B T$ further imply:
for triangle $A U C: B_{1} T=\frac{1}{2} A U, A U \cong B T$, e.i. $B_{1} T=\frac{1}{2} B T$,
for triangle $B U C: A_{1} T=\frac{1}{2} B U, B U \cong A T$, e.i. $A_{1} T=\frac{1}{2} A T$.
This proves that the center of gravity T divides each of the $A A_{1}, B B_{1}$ mines into two parts, the one containing the vertex of the triangle is twice the other. By repeating the considerations in choosing another pair of mines, we obtain further relationships, which imply the truthfulness of the statement of the second part of the sentence.

Exercises 4.33. Prove that two triangles are identical when they match in two sides and in the center of gravity to one of them.

Instruction: Proof the identity of triangles by using triangles, which are created by dividing a given triangle by the centroid.

Exercises 4.34. Above the sides of the acute triangle $A B C$ are equilateral triangles $A B H$ and $A C K$. Prove line segments $C H$ and $B K$.

Instructions: The assertion follows from the equality of triangles $A C H$ and $A K B$.

Exercises 4.35. The triangle $A B C$ is given. Its peaks are guided parallel to the opposite sides. Prove that the intersections of these lines determine the triangle, which is a union of four triangles identical to the triangle $A B C$.

Instructions: Use the theorems of triangles identity and properties of pairs of angles between parallel lines.

Exercises 4.36. The largest side of the convex quadrilateral $A B C D$ is $A B$, the smallest $C D$. Prove that $\varangle A B C<\varangle A D C$.

Instructions: The $B D$ diagonal divides the $A B C D$ quadrilateral into two triangles. The assumption results in inequalities, the sum of which gives us the assertion.

Exercises 4.37. On the diagonal $A C$ of the square $A B C D$ is given the point E so that $A E \cong A B$. The perpendicular to the $A C$ line through the E point crosses the $B C$ side at the F point. Prove that $B F \cong E F$.

Instructions: Prove that triangle $E C F$ is isosceles and triangle $A F E$ is identical to triangle $A F B$.

Example 4.38. The illustration shows seven different quadrilaterals. Assign them to their names and then add their properties (some properties may belong to more than one quadrilateral):
square, rectangle, rhombus, (generic) parallelogram, non-convex quadrilateral, deltoid, trapezoid.
a) The opposite sides are always the same.
b) At least two internal angles are always right.
c) The diagonals are halved.
d) The diagonals are identical.
e) You can circle it.
f) You can write a circle.
g) Just one pair of sides are parallel lines.

Solution:

- square $E F G H, \mathrm{a}), \mathrm{b}), \mathrm{c}), \mathrm{d}), \mathrm{e}), \mathrm{f})$,
- rectangle $O P Q R, \mathrm{a}), \mathrm{b}), \mathrm{c}), \mathrm{d}), \mathrm{e}$,
- rhombus $A_{1} B_{1} C_{1} D_{1}$, a), c), f),
- (general) parallelogram $S T U V, \mathrm{a}), \mathrm{c}$),
- non-convex quadrilateral $A B C D$,
- deltoid $X Z Y W$, b), e), f),
- trapezoid $K L M N, \mathrm{~g})$.

Example 4.39. Construct a parallelogram $A B C D$, given the a side, the $D A C$ angle, $|\varangle D A C|=\alpha$, and the diagonal size $e=|A C|$.

Solution: Select the line $A B,|A B|=$ and. The point C lies at a distance of e from the point A, ie on the circle $k(A, e)$. In addition, the $B C$ ray also forms an α angle with the $A B$ side. For $D, C D \| A B$ and $A D \| B C$ apply.

The construction step by step:

1. $A B,|A B|=a$
2. $k, k(A, e)$
3. $X, X \in \mapsto A B$
4. $\varangle X B Y,|\varangle X B Y|=\alpha$
5. $C, C \in k \cap \mapsto B Y$
6. $D, C D\|A B \wedge A D\| B C$
7. parallelogram $A B C D$

Conclusion: The problem has one solution in the given half-plane.
Exercises 4.40. Construct a parallelogram $A B C D$, given the size of its diagonals e, f and the size of the height v_{a}.

Exercises 4.41. Construct a parallelogram $P Q R S$, given its diagonal $P R$, the angle angle $R P Q$ and the distance of the parallel sides $P Q$ and $R S$.

Exercises 4.42. Construct a rhombus $A B C D$ if $e=|A C|$ is given and the angle $D A B$ is α.

Exercises 4.43. Construct a rectangle $K L M N$ if given $|K L|=6$ and the angle $K S L$ is 120°, where S is the intersection of the diagonals.

Exercises 4.44. Construct a trapezoid $A B C D$ if all sides of a, b, c, d are given.

Exercises 4.45. Construct a trapezoid $A B C D, A B \| C D$ if the diagonal sizes are e, f, the angle size $D A B=\alpha$, and the angle size $A E B=\omega$, where E is intersection of diagonals.

Exercises 4.46. Construct trapezoid $A B C D$ if given: side size $A B$, side size $B C$, size of both diagonals $A C, B D$ and angle size $A E B=\omega$, where E is the intersection of diagonals .

Exercises 4.47. A quadrilateral which can be described and inscribed by a circle, ie a quadrilateral which is both chord and tangent two-centered. Can you identify at least one non-square two-centered quadrilateral?

Exercises 4.48. Construct a circle k if its tangent t is given with a touch point T and another tangent q.

Exercises 4.49. Construct the k circle that touches the m circle at that point T a
a) is centered on the given line p,
b) goes through M,
c) it touches a given line q.

Exercises 4.50. A circle k is given and two different points K, L outside. Construct the rhombus $K L M N$ so that one of its vertices lies on a circle k.

Exercises 4.51. Construct a circle that passes through the A point and directly touches the t line at T.

Exercises 4.52. Construct a circle that is centered on the m circle and touches the two

- parallel lines a, b,
- non-parallel lines c, d.

Example 4.53. Construct a circle with a radius of $r=2 \mathrm{~cm}$ that touches the outside of the circle $m(0.3 \mathrm{~cm})$ and goes through that point $M,|S M|=6$ cm .

Solution: We construct a circle $m, m(0,3 \mathrm{~cm})$ and a point $M,|S M|=6$ cm . The center S of the searched circle k is at a distance of 2 cm from the point M, ie on the circle $n(M, 2 \mathrm{~cm})$. Also, the distance of the center S from the touch points, eg A, of the searched circle k with the given circle m is 2 cm . The set of all such points will be on a circle with a radius 2 cm larger than the radius of the given circle m, eg on the circle $l(0,5 \mathrm{~cm})$. The searched center S lies at the intersection of the circle n and l.

The construction step by step:

1. $m, m(O, 3 \mathrm{~cm}) ; M,|S M|=6 \mathrm{~cm}$
2. $n, n(M, 2 \mathrm{~cm})$
3. $l, l(O, 5 \mathrm{~cm})$
4. $S, S \in n \cap l$
5. $k, k(S, 2 \mathrm{~cm})$

Conclusion: The problem has two solutions in the plane.
Exercises 4.54. Construct a circle that touches the two concentric circles k_{1}, k_{2} and goes through the point P, which is the inner point of the annulus specified by the circles k_{1}, k_{2}.

Exercises 4.55. There are two concentric circles $k_{1}\left(S, r_{1}\right), k_{2}\left(S, r_{2}\right)$. Investigate the set of centers of all circles that touch k_{1}, k_{2}.

Exercises 4.56. Investigate the set of centers of all circles that
a) have a given radius of r and go through two different points A, B;
b) have a given radius r and touch a given line p;
c) touch two given parallels a, b;
d) touch two given divergences a, b;
e) touch a given line p at a given point A;
f) touch a given circle k at the given point A;
g) have a given radius of r and have $k\left(S, r_{1}\right)$ external touch.

Model these tasks in GeoGebra.
Exercises 4.57. A circle $k(S, r)$ is given, followed by a point A. Investigate the set of centers of all chords of the k circle that pass through A. Model the task in GeoGebra.

Exercises 4.58. A circle $k(S, r)$ is given, and on it a point N that belongs to the outer region of that circle. Investigate the set of centers of all the chords of the k circle that lie on the cuts passing through N.
Model the task in GeoGebra.

Exercises 4.59. Construct a regular a) octagon, b) dvanáctiúhelník, c) šestnáctiúhelník.

Example 4.60. Construct a grid of curves that was used to create a Gothic window.

Attachments

Pictures to exercise 1.1

$\mathbf{4}$	9	$\mathbf{2}$
3	5	7
8	9	6

Solving puzzles from the example 3.13
A)

B)

C)

D)

References

[1] Francová, M., Lvovská, L., Texty k základům elementární geometrie pro studium učitelství 1. stupně základní školy, skriptum PedF MU, Brno 2014.
[2] Francová, M., Matoušková, K., Vaňurová, M. Texty k základům elementární geometrie pro studium učitelství 1. stupně základní školy, skriptum UJEP, Brno 1985.
[3] Francová, M., Matoušková, K., Vaňurová, M. Sbírka úloh z elementární geometrie, skriptum MU, Brno 1996.
[4] Lomtatidze, L. Historický vývoj pojmu křivka, Scintilla Svazek 3, Brno 2007
[5] Vopěnka, P. Rozpravy s geometrí́, Academia, Praha 1989
[6] Struik, D. J. Dějiny matematiky, Praha 1963. (z angl. originálu A concise History of Mathematics, G. Bell and Sons Ltd., London 1956, přeložili Nový, L. - Folta, J.)
[7] Katz, V. J. A history of mathematics: an introduction, Addison-Wesley Educational Publishers, Inc., 2. vydání, 1998.
[8] Servít, F. Eukleidovy Základy (Elementa). Nákladem Jednoty českých matematiků a fyziků, Praha, 1907.
[9] Bečvářová M., Eukleidovy Základy, jejich vydání a překlady Dějiny matematiky, svazek 20. Prometheus, Praha, 2001.
[10] Citáty na téma geometrie, https://citaty.net/temata/geometrie/

Contents

| 1 Historical development of geometry | 6 |
| :--- | :--- | :--- |

2 Basic geometric formations	$\mathbf{9}$
and their properties	

3 Convex and non-convex set, convex and non-convex angle 14
4 Circle, round, triangle, quadrilateral, regular polygon 20
Attachments 44
References 48

