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3.0 Introduction: Matrices in Action

In this chapter, we will study matrices in their own right. We have already used
matrices—in the form of augmented matrices—to record information about and to
help streamline calculations involving systems of linear equations. Now you will see
that matrices have algebraic properties of their own, which enable us to calculate
with them, subject to the rules of matrix algebra. Furthermore, you will observe that
matrices are not static objects, recording information and data; rather, they represent
certain types of functions that “act” on vectors, transforming them into other vectors.
These “matrix transformations” will begin to play a key role in our study of linear
algebra and will shed new light on what you have already learned about vectors and
systems of linear equations. Furthermore, matrices arise in many forms other than
augmented matrices; we will explore some of the many applications of matrices at the
end of this chapter.

In this section, we will consider a few simple examples to illustrate how matri-
ces can transform vectors. In the process, you will get your first glimpse of “matrix
arithmetic”

Consider the equations

N =Xt 2x,

1
n= 3x; W

. . " . X1
We can view these equations as describing a transformation of the vector x = [ }

Xy
N

) } If we denote the matrix of coefficients of the right-hand side
2

into the vectory = [

1 2
by F, then F = [0 }, and we can rewrite the transformation as

3
IR
Y 0 3]lx,
or, more succinctly, y = Fx. [Think of this expression as analogous to the functional

notation y = f(x) you are used to: x is the independent “variable” here, y is the depen-
dent “variable,” and F is the name of the “function.’]
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Thus, ifx = { J, then the Equations (1) give

nW=-2+2-1= |:0}

or y=
V= 3:1= 3
G . 0 1 2|2
We can write this expression as = .

3 0 3 1

Probiem T Compute Fx for the following vectors x:

oxell] weel] @e[] @[]

Problem 2 The heads of the four vectors x in Problem 1 locate the four corners
of a square in the x,x, plane. Draw this square and label its corners A, B, C, and D,
corresponding to parts (a), (b), (c), and (d) of Problem 1.

On separate coordinate axes (labeled y, and y,), draw the four points determined
by Fx in Problem 1. Label these points A’, B', C', and D'. Let’s make the (reasonable)
assumption that the line segment AB is transformed into the line segment A'B’, and
likewise for the other three sides of the square ABCD. What geometric figure is rep-
resented by A'B'C'D'?

0
Problem 3 The center of square ABCD is the origin 0 = [0] What is the center of
A'B'C'D’? What algebraic calculation confirms this?
Now consider the equations

Z = N ) )
Z, = =2

2

that transform a vector y = [}} 1} into the vector z = [ } We can abbreviate this
Y2

B
G =
-2 0
Problem 4 We are going to find out how G transforms the figure A'B'C'D".
Compute Gy for each of the four vectors y that you computed in Problem 1. [That
is, compute z = G(Fx). You may recognize this expression as being analogous to
the composition of functions with which you are familiar.] Call the corresponding
points A”, B, C", and D", and sketch the figure A"B"C"D" on z,z, coordinate axes.
Prohlem 5 By substituting Equations (1) into Equations (2), obtain equations for
z; and z, in terms of x; and x,. If we denote the matrix of these equations by H, then
we have z = Hx. Since we also have z = GFX, it is reasonable to write

2
transformation as z = Gy, where

H = GF

Can you see how the entries of H are related to the entries of F and G?

Problem 6 Let’s do the above process the other way around: First transform the
square ABCD, using G, to obtain figure A*B*C*D*. Then transform the resulting
figure, using F, to obtain A**B**C**D**, [Note: Don’'t worry about the “variables” x,
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y, and z here. Simply substitute the coordinates of A, B, C, and D into Equations (2)
and then substitute the resultsinto Equations (1).] Are A**B**C**D**and A"B"C"D"
the same? What does this tell you about the order in which we perform the transfor-
mations F and G?

Prohlem 7 Repeat Problem 5 with general matrices

F__:!:fll flz} Gz{gu glz} atid H:{h“ hlz}
fu fo 8 & hy hy

That is, if Equations (1) and Equations (2) have coefficients as specified by F and G,
find the entries of H in terms of the entries of F and G. The result will be a formula
for the “product” H = GF.

Prohlem 8 Repeat Problems 1-6 with the following matrices. (Your formula from
Problem 7 may help to speed up the algebraic calculations.) Note any similarities or
differences that you think are significant.

0 —-1] . [2 o0 Cfro1] L 21
(a)F—[l 0},@-[0 3} (b)F—L 2},G~L J

1 1 2 -1 1 =2 2 1
<c)F-L 2},&[_1 J (d)F—[_z 4},G—[1 J

Matrix Operations

Although numbers will usually be
chosen from the set R of real num-
bers, they may also be taken from
the set C of complex numbers or
from Z,,, where p is prime.

Technically, there is a distinction
between row/column matrices
and vectors, but we will not be-
labor this distinction. We will,
however, distinguish between
row matrices/vectors and column
matrices/vectors. This distinction
is important—at the very least—
for algebraic computations, as we
will demonstrate.

Although we have already encountered matrices, we begin by stating a formal
definition and recording some facts for future reference.

Definition A matrix is a rectangular array of numbers called the entries, or
elements, of the matrix.

The following are all examples of matrices:

2 51 12 -1
{1 2} {\/g . O} 4, 11 1 1] 69 0 44|, [7]
O 3’ 2 7T %) bl bl . . bl

17 -73 9 8.5

The size of a matrix is a description of the numbers of rows and columns it has. A
matrix is called m X n (pronounced “m by #”) if it has m rows and # columns. Thus,
the examples above are matrices of sizes 2 X 2,2 X 3,3 X 1,1 X 4,3 X 3,and 1 X 1,
respectively. A 1 X m matrix is called a row matrix (or row vector), and an n X 1
matrix is called a column matrix (or column vector).

We use double-subscript notation to refer to the entries of a matrix A. The entry of
A in row i and column j is denoted by a;;. Thus, if

[3 9 -1

A=

0 5 4

then a;; = —1 and a,, = 5. (The notation A is sometimes used interchangeably with

a;.) We can therefore compactly denote a matrix A by [a;] (or [a;],,x, if it is impor-
tant to specify the size of A, although the size will usually be clear from the context).

; S
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With this notation, a general m X n matrix A has the form

an A A1p
A= an a'zz Ao
Ay Oy """ Oy
If the columns of A are the vectors aj, a,, . . ., a,, then we may represent A as
A=[a a -+ a]
If the rows of A are A}, A,, . . ., A,,, then we may represent A as
A,
A
A=|"7
A,
The diagonal entries of A are a,), a,, s, . . ., and if m = n (that is, if A has the same

number of rows as columns), then A is called a square matrix. A square matrix whose
nondiagonal entries are all zero is called a diagonal matrix. A diagonal matrix all
of whose diagonal entries are the same is called a scalar matrix. If the scalar on the
diagonal is 1, the scalar matrix is called an identity matrix.

For example, let

2 5 0 31 3 00 1 0 O

AZ[ },B=[ }, C=|0 6 0|, and D=|0 1 0
-1 4 1 4 5

0 0 2 0 0 1

The diagonal entries of A are 2 and 4, but A is not square; B is a square matrix of size
2 X 2 with diagonal entries 3 and 5; Cis a diagonal matrix; D is a 3 X 3 identity ma-
trix. The n X n identity matrix is denoted by I, (or simply I if its size is understood).

Since we can view matrices as generalizations of vectors (and, indeed, matrices
can and should be thought of as being made up of both row and column vectors),
many of the conventions and operations for vectors carry through (in an obvious
way) to matrices.

Two matrices are equal if they have the same size and if their corresponding
entries are equal. Thus, if A = [a;],,x, and B = [b;],x, then A = B if and only if
m = rand n = sand a; = b; for all i and j.

i

Example 3.1

\

Consider the matrices
a b 2 0 2 0 x
c d 5 3 5 3 y

Neither A nor B can be equal to C (no matter what the values of x and ), since A and
Bare 2 X 2 matrices and Cis 2 X 3. However, A = Bifand onlyifa = 2,b=0,c =5,

and d = 3.
o

Example 3.2

|

Y

Consider the matrices
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|

Despite the fact that R and C have the same entries in the same order, R # C since
Ris1 X 3and Cis 3 X 1. (If we read R and C aloud, they both sound the same:
“one, four, three””) Thus, our distinction between row matrices/vectors and column
matrices/vectors is an important one. A

sl

|

Matrix Addition and Scalar Multiplication

Generalizing from vector addition, we define matrix addition componentwise. If A =
[a;] and B = [b;] are m X n matrices, their sum A + B is the m X n matrix obtained
by adding the corresponding entries. Thus,

A+B=[aﬁ+bi}.]

[We could equally well have defined A + B in terms of vector addition by specifying
that each column (or row) of A + B is the sum of the corresponding columns (or
rows) of A and B.] If A and B are not the same size, then A + B is not defined.

Example 3.3 |

|

\}

Let
1 4 0 -3 1 -1 4 3
A= },B=[ }, and C={ ]
-2 6 5 3 0 2 2 1
Then
-2 -1
A+B=[ 5 }
1 6 7
but neither A + C nor B + Cis defined. I

The componentwise definition of scalar multiplication will come as no surprise. If
Aisanm X n matrix and ¢ is a scalar, then the scalar multiple cA is the m X n matrix
obtained by multiplying each entry of A by c. More formally, we have

A=¢lal = [ca;]

[In terms of vectors, we could equivalently stipulate that each column (or row) of
cA is ¢ times the corresponding column (or row) of A.]

Example 3.4 |

Y

For matrix A in Example 3.3,

|

—_ o

2
-4 12 10 3 2 —6 -5

-~

The matrix (—1)A is written as — A and called the negative of A. As with vectors, we
can use this fact to define the difference of two matrices: If A and B are the same size,
then

2 8 0
4= | |

], and (—l)A={—1 - 0}

i O

A—B=A+ (—B)
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Example 3.9

Mathematicians are sometimes like
Lewis Carroll’s Humpty Dumpty:
“When I use a word,” Humpty
Dumpty said, “it means just what

I choose it to mean—neither more
nor less” (from Through the Look-
ing Glass).

|
|
'

\/

For matrices A and B in Example 3.3,
1 40 -3 1 -1 4 3 1
A—-B= - B
-2 6 5 3 0 2 -5 6 3 A
-

A matrix all of whose entries are zero is called a zero matrix and denoted by O (or
0, if it is important to specify its size). It should be clear that if A is any matrix and
O is the zero matrix of the same size, then

A+O0O=A=0+A

and

Matrix Multiplication

The Introduction in Section 3.0 suggested that there is a “product” of matrices that is
analogous to the composition of functions. We now make this notion more precise.
The definition we are about to give generalizes what you should have discovered in
Problems 5 and 7 in Section 3.0. Unlike the definitions of matrix addition and scalar
multiplication, the definition of the product of two matrices is nof a componentwise
definition. Of course, there is nothing to stop us from defining a product of matrices
in a componentwise fashion; unfortunately such a definition has few applications and
is not as “natural” as the one we now give.

Definition IfAisanm X n matrix and Bis an n X r matrix, then the product

C = ABis an m X r matrix. The (i, j) entry of the product is computed as
follows:
Cij = ailblj T aizsz ehes o if ai“b

nj

Remarks

¢ Notice that A and B need not be the same size. However, the number of col-
umns of A must be the same as the number of rows of B. If we write the sizes of A, B,
and AB in order, we can see at a glance whether this requirement is satisfied. More-
over, we can predict the size of the product before doing any calculations, since the
number of rows of AB is the same as the number of rows of A, while the number of
columns of AB is the same as the number of columns of B, as shown below:

A B = AB
mXn nXr mXr

Tt

{ Same

Size U|:T/f
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® The formula for the entries of the product looks like a dot product, and indeed
it is. It says that the (i, j) entry of the matrix AB is the dot product of the ith row of A
and the jth column of B:

A Gy o ay

: bl 1 blj blr
b21 sz bZr
ap ap Qi .
_— b ’ bnj by
Am (%) Amn

Notice that, in the expression ¢;; = a;,by; + a;,by; + * -+ + a;,b,;, the “outer subscripts”
on each ab term in the sum are always 7 and j whereas the “inner subscripts” always
agree and increase from 1 to n. We see this pattern clearly if we write c;; using sum-
mation notation:

n
¢ = 2 auby
k=1

Example 3.6

A\

Compute AB if

—4 0 3 -1
1 3 —1
A= and B = 5: =2 =1 1
2. =1 1
-1 2 0 6
Solution  Since A is 2 X 3 and B is 3 X 4, the product AB is defined and will be a

2 X 4 matrix. The first row of the product C = AB is computed by taking the dot
product of the first row of A with each of the columns of B in turn. Thus,

e = 1(—4) +3(5) + (=1)(-1)=12

a2 =10) +3(=2)+(-1(2) =-8
a; =103) +3(-D+(=10O) =0
cag=1(-1)+301) +(=16) =-4

The second row of C is computed by taking the dot product of the second row of A
with each of the columns of B in turn:

1= (=2)(-4 + (-1G) +D)(-1)=2
2 =(=2)0) +(=D(=2)+D(2) =4
03 =(-2)3) + (DD +DMO0) =-5
= (=2)(=D) +(=D@) +@)6) =7

Thus, the product matrix is given by

12 -8 0 —4
2 4 =5 7

AB =

(With a little practice, you should be able to do these calculations mentally without
writing out all of the details as we have done here. For more complicated examples, a
calculator with matrix capabilities or a computer algebra system is preferable.)
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Before we go further, we will consider two examples that justify our chosen
definition of matrix multiplication.

.

Example 3.7

Ann and Bert are planning to go shopping for fruit for the next week. They each want
to buy some apples, oranges, and grapefruit, but in differing amounts. Table 3.1 lists
what they intend to buy. There are two fruit markets nearby—Sam’s and Theo'’s—and
their prices are given in Table 3.2. How much will it cost Ann and Bert to do their
shopping at each of the two markets?

Table 3.3

Tahie 3.2
Grapefruit Oranges Sam’s Theo’s
10 Apple $0.10 $0.15
5 Grapefruit $0.40 $0.30
Orange $0.10 $0.20

Solution  If Ann shops at Sam’s, she will spend

6(0.10) + 3(0.40) + 10(0.10) = $2.80
If she shops at Theo’s, she will spend

6(0.15) + 3(0.30) + 10(0.20) = $3.80
Bert will spend

4(0.10) + 8(0.40) + 5(0.10) = $4.10

at Sam’s and
4(0.15) + 8(0.30) + 5(0.20) = $4.00

at Theo's. (Presumably, Ann will shop at Sam’s while Bert goes to Theo’s.)

The “dot product form” of these calculations suggests that matrix multiplication
is at work here. If we organize the given information into a demand matrix D and a
price matrix P, we have

0.10 0.15
6 3 10

D= and P =040 0.30
4 8 5

0.10 0.20

The calculations above are equivalent to computing the product

0.10 0.15
6 3 10 2.80 3.80
DP = 040 030 | =
4 8 4.10 4.00
0.10 0.20

Thus, the product matrix DP tells us how much each person’s purchases will cost at

each store (Table 3.3). I
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1

Example 3.8 ‘
|

i

\J

Consider the linear system
X, — 2%, +3x3= 5
—x, t3x,+ x=1 (1)
2x, — x, +4x; = 14

Observe that the left-hand side arises from the matrix product

1 =2 37[x]
"‘1 3 1 xz
2 —1 4]|lx3]
so the system (1) can be written as
1 -2 3][=x [ 5
-1 3 1lxl=]1
2 -1 4]lx | 14

or Ax = b, where A is the coefficient matrix, x is the (column) vector of variables, and
b is the (column) vector of constant terms. 4
o

You should have no difficulty seeing that every linear system can be written in the
form Ax = b. In fact, the notation [A | b] for the augmented matrix of a linear system
is just shorthand for the matrix equation Ax = b. This form will prove to be a tre-
mendously useful way of expressing a system of linear equations, and we will exploit
it often from here on.

Combining this insight with Theorem 2.4, we see that Ax = b has a solution if
and only if b is a linear combination of the columns of A.

There is another fact about matrix operations that will also prove to be quite use-
ful: Multiplication of a matrix by a standard unit vector can be used to “pick out” or
4 2
0 5
products Ae, and e,A, with the unit vectors e; and e, chosen so that the products
make sense. Thus,

0
4 2 1 1
Aey = 0| = —1 and e,A =
1

1
“reproduce” a column or row of a matrix. Let A = { J and consider the

|
—
(=}
—
—
[
[S2 1 N5
—
(R

05 —1 -1
=[0 5 -1]

Notice that Ae; gives us the third column of A and e,A gives us the second row of A.
We record the general result as a theorem.

Theorem 3.1

Let Abean m X nmatrix,e;a 1 X m standard unit vector,and e;an n X 1 standard
unit vector. Then

a. e; A is the ith row of A and
b. Ae;is the jth column of A.
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Proof  We prove (b) and leave proving (a) as Exercise 41. If ay, ..., a, are the columns
of A, then the product Ae; can be written

Ae; = 0a; + Oa, +- -+ la; +- - -+ 0a, = 3

We could also prove (b) by direct calculation:

0
an Ay A1y . ayj
a Ay as Ay
Ae; = ! "= "7
Am " amj Ut O 0 amj
since the 1in e; is the jthentry. & & |

Partitioned Matrices

It will often be convenient to regard a matrix as being composed of a number of
smaller submatrices. By introducing vertical and horizontal lines into a matrix, we
can partition it into blocks. There is a natural way to partition many matrices, par-
ticularly those arising in certain applications. For example, consider the matrix

1 0 0 2 -1
01 01 3
A=1|0 0 1 4 0
0 0 01 7
0 0 0 7 2
It seems natural to partition A as
1 0 0:2 -1
0101 3
00 li4 0 —{I B}
__________________ 0O C
0 0 01 7
0007 2

where I'is the 3 X 3 identity matrix, Bis 3 X 2, O is the 2 X 3 zero matrix, and Cis 2 X 2.
In this way, we can view A asa 2 X 2 matrix whose entries are themselves matrices.

When matrices are being multiplied, there is often an advantage to be gained by
viewing them as partitioned matrices. Not only does this frequently reveal underly-
ing structures, but it often speeds up computation, especially when the matrices are
large and have many blocks of zeros. It turns out that the multiplication of partitioned
matrices is just like ordinary matrix multiplication.

We begin by considering some special cases of partitioned matrices. Each gives
rise to a different way of viewing the product of two matrices.

Suppose A is m X nand Bis n X 7, so the product AB exists. If we partition B in
terms of its column vectors, as B = [b, :b,:... :b,], then

AB = A[b,:by: +--b,] = [Ab,: Ab, -+ Ab,]
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This result is an immediate consequence of the definition of matrix multiplication.
The form on the right is called the matrix-column representation of the product.

Example 3.9

|
|
‘

\

If
4 -1
1 3 2
A={ }and B=]1 2
0 -1 1
3 0
then

4
=] s e[ 2 7]
3 2 0 -1 1

13: 5
Therefore, AB = [Ab, : Ab,] = { 5 _2}. (Check by ordinary matrix multiplication.)
: A

|

P

Remark Observe that the matrix-column representation of AB allows us to
write each column of AB as a linear combination of the columns of A with entries
from B as the coefficients. For example,

4
IR TEE MR MR H
= 1| =4 |+ +3
2 0 -1 1 0 -1 1
3
(See Exercises 23 and 26.)

Suppose A is m X nand Bis n X r, so the product AB exists. If we partition A in
terms of its row vectors, as

A,
-
| N 5 il
then AB = Az B= AZB

Once again, this result is a direct consequence of the definition of matrix multiplication.
The form on the right is called the row-matrix representation of the product.

Example 3.10

.
>

Using the row-matrix representation, compute AB for the matrices in Example 3.9.
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Solution We compute

4 -1 4 —1
AB=[1 3 2]|1 2|=[13 5] and AB=[0 —1 1]|1 2
3 0 3 0
=[2 -2]
AB 13 5
Therefore, AB = {1] = [ ~~~~~~~~~~~~~ } , as before. A
g

The definition of the matrix product AB uses the natural partition of A into rows
and B into columns; this form might well be called the row-column representation of
the product. We can also partition A into columns and B into rows; this form is called
the column-row representation of the product.

In this case, we have

B,
. ) B
A= [aliazi "':an] and B = .,_:,2__
B,
¥ AB = [a;:a,: - -ia,]| | = aB, + B+ +aB, (2)

Notice that the sum resembles a dot product expansion; the difference is that the in-
dividual terms are matrices, not scalars. Let’s make sure that this makes sense. Each
term a;B, is the product of an m X 1 and a 1 X r matrix. Thus, each a;B;isan m X r
matrix—the same size as AB. The products a;B; are called outer products, and (2) is
called the outer product expansion of AB.

Example 3.11

\/

Compute the outer product expansion of AB for the matrices in Example 3.9.

Solution We have

.. 10 321 || |
A= [aaa] = 0 —1:1 and B = B2 = 12
B; 3 0

The outer products are

1 4 -1 3 6
aB, = [O} 4 —1] = {0 0}» a,B, = [_J[l 2] = {_? _2}

and a;B; = E} [3 0] = {6 0}
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(Observe that computing each outer product is exactly like filling in a multiplication
table.) Therefore, the outer product expansion of AB is

4 -1 3 6 6 0 13 5
i ol I N S e

We will make use of the outer product expansion in Chapters 5 and 7 when we
discuss the Spectral Theorem and the singular value decomposition, respectively.

Each of the foregoing partitions is a special case of partitioning in general. A ma-
trix A is said to be partitioned if horizontal and vertical lines have been introduced,
subdividing A into submatrices called blocks. Partitioning allows A to be written as a
matrix whose entries are its blocks.

For example,
1 002 -1 4 301 211
0101 3 -1 202 1141
A=]00 14 0 ad B=| 1 ~53 31
000 1 7 1 0.0 02
00 07 2 0 1:0 03

are partitioned matrices. They have the block structures

A= I:All AIZ:I and B = {BII BlZ 313}
AZ] A22 BZI BZZ BZ3

If two matrices are the same size and have been partitioned in the same way, it is clear
that they can be added and multiplied by scalars block by block. Less obvious is the
fact that, with suitable partitioning, matrices can be multiplied blockwise as well. The
next example illustrates this process.

1

.
'

Example 3.12 5 Consider the matrices A and B above. If we ignore for the moment the fact that their
i entries are matrices, then A appears to be a 2 X 2 matrix and Ba 2 X 3 matrix. Their
l product should thus be a 2 X 3 matrix given by

AB:IVAII AIZJI:BII BlZ Bl.’l

AZI A22 BZI BZZ BZ3

_ {AuBu T ApBy AuBip  ApBy ApBi A12BZ3]
AZlBll + AZZBZI AZIBI2 + A22322 AZlBl3 + A2ZBZ3

But all of the products in this calculation are actually matrix products, so we need to
make sure that they are all defined. A quick check reveals that this is indeed the case,
since the numbers of columns in the blocks of A (3 and 2) match the numbers of rows
in the blocks of B. The matrices A and B are said to be partitioned conformably for
block multiplication.

Carrying out the calculations indicated gives us the product AB in partitioned form:

4 3 2 -1 6 2
A.B, +ApBy =LB, + AL =B, +A,=|-1 2|+|1 3|={0 5
1 -5 4 0 5 —5

T e e R
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(When some of the blocks are zero matrices or identity matrices, as is the case here,
these calculations can be done quite quickly.) The calculations for the other five
blocks of AB are similar. Check that the result is

(Observe that the block in the upper-left corner is the result of our calculations above.)
Check that you obtain the same answer by multiplying A by B in the usual way.

<~—4i~—

Matrix Powers

When A and B are two 1 X n matrices, their product AB will also be an # X n matrix.
A special case occurs when A = B. It makes sense to define A> = AA and, in general,
to define A* as

AF=AA--- A

k factors

if k is a positive integer. Thus, A' = A, and it is convenient to define A’ = I,.

Before making too many assumptions, we should ask ourselves to what extent
matrix powers behave like powers of real numbers. The following properties follow
immediately from the definitions we have just given and are the matrix analogues of
the corresponding properties for powers of real numbers.

If A is a square matrix and r and s are nonnegative integers, then

1.4A24S=:Arﬁ
2. (Ar)s = A"

In Section 3.3, we will extend the definition and properties to include negative integer
powers.

Example 3.13

i
1
1
[
'

\/

1
1

el ]
1 1

and, in general,

(a) IfA = {
B R R i R

2nA1 2n—1
A" = [2”_1 2,1_1} foralln =1

The above statement can be proved by mathematical induction, since it is an
infinite collection of statements, one for each natural number n. (Appendix B gives a
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brief review of mathematical induction.) The basis step is to prove that the formula
holds for # = 1. In this case,

N e B Aol B B U U
Sl PYS PV B PYI) Bl Y Rl
as required.

The induction hypothesis is to assume that

5 2k-1 zk-‘l
A= ZkWI zk‘l

for some integer k = 1. The induction step is to prove that the formula holds for n =
k + 1. Using the definition of matrix powers and the induction hypothesis, we compute

—zk"l zk'l 1 1
k — Akp —
A ik A A= —2’(—] 2k-1 1 1

_2k~l + zk*"l 2k~l + zk—l

._ZkAl 4 2k*’1 2kw1 + 2/('1:|
[2k 2k

P 2"}

‘2(k+1)—»1 2(k+1)~1
= 2(k+1)--1 2(k+1)1:|

Thus, the formula holds for all n = 1 by the principle of mathematical induction.

0 -1 0 —1(|0 -1 e | 0
(b) If B = [ }, then B? = [ H = . Continuing,
1 0 1 0]]1 0 0 -1
we find
B = BB = [—1 ojffo =17 [ o 1}
0 —-1J{1 o] |-1 0
and
giopgp=| O L0 -1 _[t o}
-1 o1 o] [0 1

Thus, B® = B, and the sequence of powers of B repeats in a cycle of four:
{0 —1} {—1 0}{ 0 1} {1 o} {0 =1} -
1 o/l o —-1)[-1 oJ[0 1][1 o]

The Transpose of a Matrix

Thus far, all of the matrix operations we have defined are analogous to operations on
real numbers, although they may not always behave in the same way. The next opera-
tion has no such analogue.
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Definition The transpose of an m X n matrix A is the n X m matrix A"
obtained by interchanging the rows and columns of A. That is, the ith column of
AT is the ith row of A for all i.

Example 3.14 |

|

\

Let

A={1 3 2}, B={“ b}, and C=[5 -1 2]
5 0 1 c d

Then their transposes are

—

5 5

5 BT=|:Z ﬂ, and CT=1]-1
2 1 2 A

AT =

w
(=)

The transpose is sometimes used to give an alternative definition of the dot prod-
uct of two vectors in terms of matrix multiplication. If

Uy V1
U, v,
u=| and v =
un Vfl
then
uv=uwv +uv,+ - +uy,

V1
_ V)
- [ul Uy = un] .
vfl

=ulv

A useful alternative definition of the transpose is given componentwise:
(AT)U e Ajt for aH i andj

In words, the entry in row i and column j of A” is the same as the entry in row j and
column 7 of A.

The transpose is also used to define a very important type of square matrix: a
symmetric matrix.

Definition A square matrix A is symmetricif A" = A—that is, if A is equal to
its own transpose.

Example 3.15 |

\/

Let

and B=[ ! 2}
-1 3

S

Il
N W =
S U W
O
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@ «

B A
Figure 3.1
A symmetric matrix

4
|
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1 -1
Then A is symmetric, since A” = A; but B is not symmetric, since B'= {2 3} # B.

]

A symmetric matrix has the property that it is its own “mirror image” across its
main diagonal. Figure 3.1 illustrates this property for a 3 X 3 matrix. The correspond-
ing shapes represent equal entries; the diagonal entries (those on the dashed line) are
arbitrary.

A componentwise definition of a symmetric matrix is also useful. It is simply the
algebraic description of the “reflection” property.

A square matrix A is symmetric if and only if A; = Aj; for all i and j.

Exercises 3.1

Y
Let

A

53
B

D

-3
1

.

-1
}, E=1[4 2], F=[ 2]

In Exercises 1-16, compute the indicated matrices (if

\/

19. A factory manufactures three products (doohickies,
gizmos, and widgets) and ships them to two ware-
houses for storage. The number of units of each prod-
uct shipped to each warehouse is given by the matrix

1

w
L

-2 1}
, C=

2 3
5

(o)

200
150
100

75
100
125

A

(where a;; is the number of units of product i sent to

possible). warehouse j and the products are taken in alphabetical
1.A + 2D 2.3D — 24 order). The cost of shipping one unit of each product
" o by truck is $1.50 per doohickey, $1.00 per gizmo, and
3.B-C 4.C-B $2.00 per widget. The corresponding unit costs to ship
5. AB 6. BD by train are $1.75, $1.50, and $1.00. Organize these
7. D + BC 8. BBT costs into a matrix B and then use matrix multiplica-
9. E(AF) 10. F(DF) tion t? shf)w how the factory can compare the cost of
shipping its products to each of the two warehouses by
11. FE 12. EF truck and by train.
13. B'C" - (CB)" 14. DA — AD 20. Referring to Exercise 19, suppose that the unit cost
15. A3 16. (I, — D)* of distributing the products to stores is the same for
17. Give an example of a nonzero 2 X 2 matrix A such each product but varies by warehouse because of the

18.

that A% = O.

distances involved. It costs $0.75 to distribute one unit
from warehouse 1 and $1.00 to distribute one unit
from warehouse 2. Organize these costs into a matrix

2 1
Let A = [6 3}. Find 2 X 2 matrices B and C such
that AB = ACbut B # C.

C and then use matrix multiplication to compute the
total cost of distributing each product.

B e S R R N A



In Exercises 21-22, write the given system of linear equa-
tions as a matrix equation of the form Ax = b.
21. x; — 2%, +3x;= 0

2%, + x, — 5x; = 4

22, —x +2x,= 1
X — X = -2
X+ ox3=—1

In Exercises 23-28, let

1 0 —2

A=|-3 1 1

L 2 0 -—1]

[ 2 3 0]

and B = 1 -1 1
L—1 6 4]

23. Use the matrix-column representation of the product
to write each column of AB as a linear combination of
the columns of A.

24. Use the row-matrix representation of the product to
write each row of AB as a linear combination of the
rows of B.

25. Compute the outer product expansion of AB.

26. Use the matrix-column representation of the product
to write each column of BA as a linear combination of
the columns of B.

27. Use the row-matrix representation of the product to
write each row of BA as a linear combination of the
rows of A.

28. Compute the outer product expansion of BA.

In Exercises 29 and 30, assume that the product AB makes
sense.

29. Prove that if the columns of B are linearly dependent,
then so are the columns of AB.

30. Prove that if the rows of A are linearly dependent, then
so are the rows of AB.

In Exercises 31-34, compute AB by block multiplication,
using the indicated partitioning.

; 2 310

i -1 1:0

31LA=|0 110 0|, B=| -
00 1

0 0:1
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0i1 0
001
15 4
-213 2
1 00 1
0 1:1 0
B-_: .......... 3“ _____________
0 00 -1
0 0/l 0
1 2311
o1 41
00 1 1
11 1i-1
(a) Compute A% A%,..., A".
(b) What is A**">? Why?
RSN
2 2
36.Let B = \1[ \lf . Find, with justification, B**"°.
V2 V2

1 1
37.Let A = [0 1}. Find a formula for A" (n = 1) and

verify your formula using mathematical induction.

38.LetA = [C?SO —-smg}
sin@ cos6
cos20 —sin26
Show that A* = :
(a) Show tha [ sin260  cos 20}
(b) Prove, by mathematical induction, that
e {c?sne —sinn@} forn =1
sinnf cosnf

39. In each of the following, find the 4 X 4 matrix A = [a;]
that satisfies the given condition:

(@) a; = (-1 (b) ay=j—i

) a; = sin<m—j4_—~1-)1)

40. In each of the following, find the 6 X 6 matrix A = [a;]
that satisfies the given condition:

it oifis] _{1 ifli—jl=1

(a) a; {o ifi>j(b) %= Vo ifli—j>1
1
(c)aijz{

(c) aj = (i—1y

ife=i+j=8
0 otherwise
41. Prove Theorem 3.1(a).
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Matrix Algebra

In some ways, the arithmetic of matrices generalizes that of vectors. We do not expect
any surprises with respect to addition and scalar multiplication, and indeed there are
none. This will allow us to extend to matrices several concepts that we are already
familiar with from our work with vectors. In particular, linear combinations, span-
ning sets, and linear independence carry over to matrices with no difficulty.

However, matrices have other operations, such as matrix multiplication, that vec-
tors do not possess. We should not expect matrix multiplication to behave like multi-
plication of real numbers unless we can prove that it does; in fact, it does not. In this
section, we summarize and prove some of the main properties of matrix operations
and begin to develop an algebra of matrices.

Properties of Addition and Scalar Multiplication

All of the algebraic properties of addition and scalar multiplication for vectors
(Theorem 1.1) carry over to matrices. For completeness, we summarize these proper-
ties in the next theorem.

Theorem 3.2  Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B, and C be matrices of the same size and let ¢ and d be scalars. Then

a. A+B=B+A Commutativity
b.(A+B)+C=A+(B+C) Associativity
. A+0=A

d A+(-A)=0

e. c(A+B)=cA+cB Distributivity
f. (c+d)A=cA+dA Distributivity
g. c(dA) = (cd)A

h.1A=A

The proofs of these properties are direct analogues of the corresponding proofs
of the vector properties and are left as exercises. Likewise, the comments following
Theorem 1.1 are equally valid here, and you should have no difficulty using these
properties to perform algebraic manipulations with matrices. (Review Example 1.5
and see Exercises 17 and 18 at the end of this section.)

The associativity property allows us to unambiguously combine scalar multiplica-
tion and addition without parentheses. If A, B, and C are matrices of the same size, then

(2A+3B)—C=24+ (3B— Q)

and so we can simply write 2A + 3B — C. Generally, then, if A}, A,, ..., A, are matri-
ces of the same size and ¢y, ¢y, . . . , ¢ are scalars, we may form the linear combination

GA, + A+ AL

We will refer to ¢, ¢,, . . ., ¢ as the coefficients of the linear combination. We can now
ask and answer questions about linear combinations of matrices.
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Exampie 3.16

|
|
|
|
|
|
|
{
|
|
|
|

\

0 1 1 0 1 1
LetAlf—{_1 0},A2=[0 1},andA3=[1 1].

1 4
(a) IsB = {2 J a linear combination of A, A,, and A;?

1 2
(b) IsC = {3 4} a linear combination of A, A,, and A5?

Solution
(a) We want to find scalars ¢, ¢,, and ¢; such that ¢;A; + ¢;A; + ¢;A; = B. Thus,

{ 0 1} [1 0} {1 1} [1 4
¢ + + 6 =
-1 0 0 1 11 2 1

The left-hand side of this equation can be rewritten as

[ gt+e o+
=t Tt

Comparing entries and using the definition of matrix equality, we have four linear
equations:

G te=1

(o +c=4

-G +c=2

G te=1

Gauss-Jordan elimination easily gives

0 1 1|1 1 0 0 1
1 0 1|4 e 0 1 0f-2
-1 0 1|2 0 0 1| 3
0 1 1]1 0 0 0 O

(check this!), so ¢; = 1, ¢, = —2,and ¢; = 3. Thus, A| — 24, + 3A; = B, which can
be easily checked.
(b) This time we want to solve

{ 0 1 {1 0 {1 1 1 2
o + ¢ + ¢ =
-1 0 0 1 11 3 4

Proceeding as in part (a), we obtain the linear system

G te=1

o +c =2
- +c=3
6 te=4
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Row reduction gives

0 1 1|1 0 1 1)1
1 0 12| B4R 1 0 1|2
e
-1 0 1|3 -1 0 1|3
01 1|4 0 0 0]3

We need go no further: The last row implies that there is no solution. Therefore, in
this case, C is not a linear combination of A, A,, and A,.

Remark Observe that the columns of the augmented matrix contain the entries
of the matrices we are given. If we read the entries of each matrix from left to right
and top to bottom, we get the order in which the entries appear in the columns of
the augmented matrix. For example, we read A, as “0, 1, — 1, 0,” which corresponds
to the first column of the augmented matrix. It is as if we simply “straightened out”
the given matrices into column vectors. Thus, we would have ended up with exactly
the same system of linear equations as in part (a) if we had asked

0 1

1
a linear combination of 1 , and

—_ N W
— e e

0
0
0 1

We will encounter such parallels repeatedly from now on. In Chapter 6, we will
explore them in more detail.

We can define the span of a set of matrices to be the set of all linear combinations
of the matrices.

Example 3.11

\/

Describe the span of the matrices A}, A,, and A, in Example 3.16.

Solution  One way to do this is simply to write out a general linear combination of
Ay, A,, and A;. Thus,

01 1 0 1 1
C1A1+62A2+C3A3=C1[_1 0}+c2{0 1}+C3L J

_{ a+te o+
-t ¢t

(which is analogous to the parametric representation of a plane). But suppose we
WX

want to know when the matrix [ J is in span(A,, A;, A;). From the representa-
y z

tion above, we know that it is when
[ Gte oot [wox
—ctc3 ¢t y oz

for some choice of scalars ¢y, ¢,, c;. This gives rise to a system of linear equations
whose left-hand side is exactly the same as in Example 3.16 but whose right-hand side

— S ST e SN T S
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is general. The augmented matrix of this system is

0 1 1w
1 0 1|x
-1 0 1|y
01 1|z
and row reduction produces
0 1 1|w 1 00 1x— 3y
1 0 1|x 01 0]-3x—3y+w
2 21 21
-1 0 1}y 0 0 1 3x + 3y
01 1|z 0 0 O w—z

W—>  (Check this carefully.) The only restriction comes from the last row, where clearly we
must have w — z = 0 in order to have a solution. Thus, the span of A}, A, and A; con-

sists of all matrices {W ﬂ for which w = z. That is, span (A, A;, A;) = { B’ x} }
7 w

Note If we had known this before attempting Example 3.16, we would have ;en
immediately that B = [; ﬂ is a linear combination of A 1,1A2,2 and A3, since it has
the necessary form (take w = 1,x = 4,and y = 2),but C = [3 4} cannot be a linear
combination of A, A,, and A, since it does not have the proper form (1 # 4).

Linear independence also makes sense for matrices. We say that matrices

Ay, Ay, . . ., A of the same size are linearly independent if the only solution of the
equation

ClAl +C2A2 +"‘+CkAk= 0] (l)
is the trivial one: ¢, = ¢, = - - = ¢; = 0. If there are nontrivial coefficients that satisfy

(1), then Ay, A, ..., Ay are called linearly dependent.

| >

>

Example 3.18 Determine whether the matrices A;, A,, and A; in Example 3.16 are linearly
independent.

l Solution We want to solve the equation ¢;A; + ¢,A; + c3A; = O. Writing out the
matrices, we have

01}+10+11 00
C ¢ C =
1-1 0 2o 1 11 0 0

This time we get a homogeneous linear system whose left-hand side is the same as
in Examples 3.16 and 3.17. (Are you starting to spot a pattern yet?) The augmented
matrix row reduces to give

01 1|0 1 0 00
1 0 1|0 01 0|0
—

-1 0 10 0 0 10
01 1|0 0 0 0]0
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Thus, ¢, = ¢, = ¢; = 0, and we conclude that the matrices A}, A,, and A, are linearly
independent. ﬁ

s
Properties of Matrix Multiplication

Whenever we encounter a new operation, such as matrix multiplication, we must
be careful not to assume too much about it. It would be nice if matrix multiplication
behaved like multiplication of real numbers. Although in many respects it does, there
are some significant differences.

Example 3.19

Consider the matrices

Multiplying gives

R I ] R I [ ] [

Thus, AB # BA. So, in contrast to multiplication of real numbers, matrix multiplica-
tion is not commutative—the order of the factors in a product matters!

0 0
It is easy to check that A> = {0 0} (do so!). So, for matrices, the equation

A? = O does not imply that A = O (unlike the situation for real numbers, where the
equation x> = 0 has only x = 0 as a solution).
.

However gloomy things might appear after the last example, the situation is not
really bad at all—you just need to get used to working with matrices and to constantly
remind yourself that they are not numbers. The next theorem summarizes the main
properties of matrix multiplication.

Theorem 3.3

Properties of Matrix Multiplication

Let A, B, and C be matrices (whose sizes are such that the indicated operations can
be performed) and let k be a scalar. Then

a. A(BC) = (AB)C Associativity

b. A(B+ C) = AB + AC Left distributivity

¢. (A+B)C=AC+ BC Right distributivity

d. k(AB) = (kA)B = A(kB)

e. [,LA=A=AILifAismXn Multiplicative identity

Proof  We prove (b) and half of (e). We defer the proof of property (a) until
Section 3.6. The remaining properties are considered in the exercises.

— - = R
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(b) To prove A(B + C) = AB + AC, we let the rows of A be denoted by A; and the
columns of B and C by b; and ¢;. Then the jth column of B + Cis b; + ¢; (since addi-
tion is defined componentwise), and thus

I

[AB + O)]; = A;-(b; + ¢)
= Ai.bj + Ai.cj
(AB); + (AC);

= (AB + AQ);

Since this is true for all i and j, we must have A(B + C) = AB + AC.
() Toprove Al, = A, wenote that the identity matrix I, can be column-partitioned as

In = [el eZE' ) en]
where e, is a standard unit vector. Therefore,
Al, = [Ae,: Ae,: - Ae,]

= [aiayir 0 ia,]

by Theorem 3.1(b).

We can use these properties to further explore how closely matrix multiplication
resembles multiplication of real numbers.

Example 3.20

\

If A and B are square matrices of the same size, is (A + B)? = A* + 2AB + B%®

Solutien  Using properties of matrix multiplication, we compute
(A+B)?= (A+B)A+B)

(A+ BA+ (A + BB by left distributivity

= A’ + BA + AB + B by right distributivity

Therefore, (A + B)? = A* + 2AB + B’ if and only if A> + BA + AB + B> = A* +

2AB + B Subtracting A and B’ from both sides gives BA + AB = 2AB. Subtracting

AB from both sides gives BA = AB. Thus, (A + B)? = A> + 2AB + B*if and only if A

and B commute. (Can you give an example of such a pair of matrices? Can you find

two matrices that do not satisfy this property?) i
€

Properties of the Transpose

Theorem 3.4

Properties of the Transpose

Let A and B be matrices (whose sizes are such that the indicated operations can be
performed) and let k be a scalar. Then

a (A=A b. (A+BF=A"+B"
c. (kA)" = k(AT) d (4B =R 4’
e. (ANT=(AT)" for all nonnegative integers r
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Proof  Properties (a)-(c) are intuitively clear and straightforward to prove (see Exercise
30). Proving property (e) is a good exercise in mathematical induction (see Exercise 31).
We will prove (d), since it is not what you might have expected. [Would you have sus-
pected that (AB)T = ATBT might be true?]

First, if Aism X nand Bis n X r,then BTis # X nand AT is n X m. Thus, the product
BTA"is defined and is 7 X m. Since ABis m X r, (AB)Yis r X m, and so (AB)” and BTAT
have the same size. We must now prove that their corresponding entries are equal.

We denote the ith row of a matrix X by row;(X) and its jth column by col,(X).
Using these conventions, we see that

[(AB)"]; = (AB);

row;(A) - col,(B)

colj(AY) -row,(B")

row/(B") « col(A") = [B'A"];

Il

(Note that we have used the definition of matrix multiplication, the definition of the
transpose, and the fact that the dot product is commutative.) Since i and j are arbi-
trary, this result implies that (AB)T = BTAT, )
|
Remark Properties (b) and (d) of Theorem 3.4 can be generalized to sums and
products of finitely many matrices:

A+ A+ +A) " =AT+ AT+ -+ AT and (A4, - A)T
=A;(T"'A2TA1T

assuming that the sizes of the matrices are such that all of the operations can be per-
formed. You are asked to prove these facts by mathematical induction in Exercises 32
and 33,

Example 3.21

\

Let

1 2 =
A=[ } and B=[4 ! 0}
3 4 2 3 1

1 3 2 5
Then AT = L 4}, soA + AT = L 8},asymmetric matrix.

We have

4 2

Bl'=|-1 3

L 0 1

SO
4—10'42 17 5
BBT=[ -1 3| =

2 3 1) 5 14

0 1
424_10 20 2 2
and B'B=| -1 3{ =2 10 3

2 3 1
0 1 2 31

Thus, both BB” and B'B are symmetric, even though B is not even square! (Check
that AA” and A”A are also symmetric.) J:
47‘ —

_ _— S s L e
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The next theorem says that the results of Example 3.21 are true in general.

Theorem 3.5

TE)(BI‘GiSES 3.2

a. If A is a square matrix, then A + AT is a symmetric matrix.
b. For any matrix A, AA" and ATA are symmetric matrices.

Proof  We prove (a) and leave proving (b) as Exercise 34. We simply check that
A+ AT =AT+UNT=AT+A=A4+A"

(using properties of the transpose and the commutativity of matrix addition). Thus,
A + AT is equal to its own transpose and so, by definition, is symmetric.
,,,,,, e

T

v

A\

In Exercises 1-4, solve the equation for X, given that 1 -1 1

A=[; ﬂ and B = {-1 (1)]
1.LX-24A+3B=0
2.2X=A—-B

3.2(A + 2B) = 3X
4.2A—-B+X) =3X-4)

In Exercises 5-8, write B as a linear combination of the

other matrices, if possible.

2 5 1 2
5.B = , A=
0 3 -1 1

2 1 0
o5=]2 7] ae]
—4 2 01

|
|

A,=10 -1 -1
0o o0 1

In Exercises 9-12, find the general form of the span of the
indicated matrices, as in Example 3.17.

9. span(A;, A,) in Exercise 5
10. span(A,, A,, A;) in Exercise 6
11. span(A,, A,, A;) in Exercise 7
12. span(A,, Ay, Aj, A,) in Exercise 8

0 1
A, = [2 J In Exercises 13-16, determine whether the given matrices
are linearly independent.
0 -1 r
SN
13 4] (2 1
1 2 2 111 1
14. , ,
14 3 -1 0 1 1
._1 )
0/ 1 0] [-2 —-1][-1 -3
11} 15| 5 2(,|2 3},| 0 1}|| 1
00 -1 0 1 0 2 4
0 0 1 -1 012 1 0][1 2 0
1 0], 16. | 0 2 0,0 3 0(,]0 1 Of
0 1 LO 2 6 0 4 9 0 3 5
0 -1 (-1 1 0
1 01, 0 -1 0
0 -1 L O 0 —4
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17. Prove Theorem 3.2(a)-(d).
18. Prove Theorem 3.2(e) -(h).
19. Prove Theorem 3.3(c).
20. Prove Theorem 3.3(d).

21. Prove the half of Theorem 3.3(e) that was not proved
in the text.

22. Prove that, for square matrices A and B, AB = BA if
and only if (A — B)(A + B) = A* — B

a b
In Exercises 23-25, if B = [ }, find conditions on a, b,
¢

d
¢, and d such that AB = BA.

11 1 -1 1 2
23.A = 24.A=[ }25.A=[ }
0 1 -1 1 3

b
26. Find conditions on a, b, ¢, and d such that B = ¢ }

O} and [O 0}.
0 0 1

a b
27. Find conditions on a, b, ¢, and d such that B = [ d}
commutes with every 2 X 2 matrix. ¢

1
commutes with both [0

28. Prove that if AB and BA are both defined, then AB and
BA are both square matrices.

A square matrix is called upper triangular if all of the en-
tries below the main diagonal are zero. Thus, the form of an
upper triangular matrix is

0 Ed * *
0 0 :
. 3 ES
0 0 0 *

where the entries marked * are arbitrary. A more formal
definition of such a matrix A = [ay] is that a; = 0 if i > j.
29. Prove that the product of two upper triangular n X n
matrices is upper triangular.
30. Prove Theorem 3.4(a) - (c).
31. Prove Theorem 3.4(e).
32. Using induction, prove that for all n = 1,
(Aj+ A+ -+ A) =AT+ AT+ + AL
33. Using induction, prove that for all n = 1,
(A1 Ay - A)T = A7 -+ AJAT.
34. Prove Theorem 3.5(b).

35. (a) Prove that if A and B are symmetric #n X n matrices,
thensois A + B.
(b) Prove that if A is a symmetric 7 X n matrix, then
so is kA for any scalar k.

36. (a) Give an example to show that if A and B are
symmetric n X n matrices, then AB need not be
symmetric.

(b) Prove that if A and B are symmetric # X n matrices,
then AB is symmetric if and only if AB = BA.

A square matrix is called skew-symmetric if AT = —A.
37. Which of the following matrices are skew-symmetric?
1 2 0 -1
N I N
0 3 -1 01 2
©|-3 0 2| (@@]|-1 0 5
1 -2 0 2 50
38. Give a componentwise definition of a skew-symmetric
matrix.

39. Prove that the main diagonal of a skew-symmetric ma-
trix must consist entirely of zeros.

40. Prove that if A and B are skew-symmetric n X n
matrices, then so is A + B.

41. If A and B are skew-symmetric 2 X 2 matrices, under
what conditions is AB skew-symmetric?

42. Prove that if A is an n X #n matrix, then A — AT is
skew-symmetric.

43. (a) Prove that any square matrix A can be written
as the sum of a symmetric matrix and a skew-
symmetric matrix. [Hint: Consider Theorem 3.5
and Exercise 42.]

1 2 3
(b) Ilustrate part (a) for the matrix A= |4 5 6 |.
7 8 9

The trace of an n X n matrix A = [a;] is the sum of the en-
tries on its main diagonal and is denoted by tr(A). That is,

tr(A) = a,+ap + - +a,,
44. If A and B are n X n matrices, prove the following
properties of the trace:
(a) tr(A + B) = tr(A) + tr(B)
(b) tr(kA) = ktr(A), where k is a scalar
45. Prove that if A and B are n X n matrices, then
tr (AB) = tr(BA).
46. If A is any matrix, to what is tr (AAT) equal?

47. Show that there are no 2 X 2 matrices A and B such
that AB — BA = L,
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The Inverse of a Matrix

!

!

In this section, we return to the matrix description Ax = b of a system of linear equa-
tions and look for ways to use matrix algebra to solve the system. By way of analogy,
consider the equation ax = b, where a, b, and x represent real numbers and we want
to solve for x. We can quickly figure out that we want x = b/a as the solution, but we
must remind ourselves that this is true only if a # 0. Proceeding more slowly, assum-
ing that a # 0, we will reach the solution by the following sequence of steps:

ax = b=>l(ax) = l(b) = (l(a)>x = é=>1-x = é#x _b

a a a a a a
(This example shows how much we do in our head and how many properties of arith-
metic and algebra we take for granted!)

To imitate this procedure for the matrix equation Ax = b, what do we need? We
need to find a matrix A’ (analogous to 1/a) such that A’A = [, an identity matrix
(analogous to 1). If such a matrix exists (analogous to the requirement that a # 0),
then we can do the following sequence of calculations:

Ax=b=A'(Ax) = A'b=(A'A)x=A'b=Ix=Ab=>x=A'D

(Why would each of these steps be justified?)

Our goal in this section is to determine precisely when we can find such a matrix
A'. In fact, we are going to insist on a bit more: We want not only A’A = I but also
AA’ = I. This requirement forces A and A’ to be square matrices. (Why?)

Ilefinil@ll If A isan # X n matrix, an inverse of A isan n X n matrix A’ with
the property that

AA'"=T and A'A=1T

where I = I, is the n X n identity matrix. If such an A’ exists, then A is called
invertible.

Example 3.22

Y

2 5 3 =5
IfA = ,then A’ = is an inverse of A, since
1 3 -1 2

S R I F B B S R P

Example 3.23

Show that the following matrices are not invertible:

oo 12
(a)o“{o o} (b)B_[z 4}

Solution

(a) It is easy to see that the zero matrix O does not have an inverse. Ifit did, then there
would be a matrix O’ such that OO’ = I = O'O. But the product of the zero matrix
with any other matrix is the zero matrix, and so OO’ could never equal the identity




164

Chapter 3

Matrices

matrix I. (Notice that this proof makes no reference to the size of the matrices and so
is true for n X n matrices in general.)

(b) Suppose B has an inverse B’ = [W
y

B R B

from which we get the equations

}. The equation BB’ = I gives

[ TR 3

w + 2y
X + 2z =

2w + 4y =
2x + 4z

-_— o O

Il

Subtracting twice the first equation from the third yields 0 = —2, which is clearly
absurd. Thus, there is no solution. (Row reduction gives the same result but is not
really needed here.) We deduce that no such matrix B’ exists; that is, B is not invert-
ible. (In fact, it does not even have an inverse that works on one side, let alone two!)
|

H——

Remarks

¢ Even though we have seen that matrix multiplication is not, in general, com-
mutative, A’ (if it exists) must satisfy A’A = AA’.

* The examples above raise two questions, which we will answer in this section:

(1) How can we know when a matrix has an inverse?
(2) If a matrix does have an inverse, how can we find it?

* We have not ruled out the possibility that a matrix A might have more than
one inverse. The next theorem assures us that this cannot happen.

Theorem 3.6

If A is an invertible matrix, then its inverse is unique.

Proof  In mathematics, a standard way to show that there is just one of something is

to show that there cannot be more than one. So, suppose that A has two inverses—say,
A’ and A", Then

AA"=1=A'A and AA” =1=A"A
Thus, A'=A'T=A(AA") = (A'A)A" = JA" = A"

Hence, A" = A", and the inverse is unique.
— .

Thanks to this theorem, we can now refer to the inverse of an invertible matrix.
From now on, when 4 is invertible, we will denote its (unique) inverse by A™! (pro-
nounced “A inverse”).

- 1
Warning Do not be tempted to write A™" = X! There is no such operation as

“division by a matrix.” Even if there were, how on earth could we divide the scalar 1 by

T T e s
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the matrix A? If you ever feel tempted to “divide” by a matrix, what you really want to do
is multiply by its inverse.
We can now complete the analogy that we set up at the beginning of this section.

Theorem 3.7

If A is an invertible n X n matrix, then the system of linear equations given by
Ax = b has the unique solution x = A~'b for any b in R".

Proof  Theorem 3.7 essentially formalizes the observation we made at the beginning
of this section. We will go through it again, a little more carefully this time. We are
asked to prove two things: that Ax = b has a solution and that it has only one solution.
(In mathematics, such a proof is called an “existence and uniqueness” proof.)

To show that a solution exists, we need only verify thatx = A~ 'b works. We check
that

AAD) = (AA )b =Ib=D)

So A™'b satisfies the equation Ax = b, and hence there is at least this solution.

To show that this solution is unique, suppose y is another solution. Then Ay = b,
and multiplying both sides of the equation by A™" on the left, we obtain the chain of
implications

AMAY) =Ab=>(A"A)y=A"b=Iy=A"b=y=A4"D

Thus, y is the same solution as before, and therefore the solution is unique.
|

So, returning to the questions we raised in the Remarks before Theorem 3.6, how
can we tell if a matrix is invertible and how can we find its inverse when it is invert-
ible? We will give a general procedure shortly, but the situation for 2 X 2 matrices is
sufficiently simple to warrant being singled out.

Theorem 3.8

IfA = [Z Z}, then A is invertible if ad — bc # 0, in which case

1 d b
Al=
ad — bc[——c a]

If ad — bc = 0, then A is not invertible.

The expression ad — bc is called the determinant of A, denoted det A. The formula

b 1
} (when it exists) is thus Get A times the matrix obtained by

d
interchanging the entries on the main diagonal and changing the signs on the other
two entries. In addition to giving this formula, Theorem 3.8 says that a 2 X 2 matrix
A is invertible if and only if det A # 0. We will see in Chapter 4 that the determinant
can be defined for all square matrices and that this result remains true, although there
is no simple formula for the inverse of larger square matrices.

a
for the inverse of [
c

Proof  Suppose that det A = ad — bc # 0. Then

[a b“ d —b}_{ad—bc —ab+ba}_[ad—bc 0 }_th{l 0}
c dj|l—c a cd —dc —cb+ da] 0 ad —be| ¢ 0 1




166 Chapter 3 Matrices

Similarly,

[ R

Since det A # 0, we can multiply both sides of each equation by 1/det A to obtain
P v R
¢ d{\detA|-¢c a]) |0 1

4 (1{d—b>{ab__10

an detAl—c al/lc d] [0 1

[Note that we have used property (d) of Theorem 3.3.] Thus, the matrix
1 { d —b]
det A

-c al

satisfies the definition of an inverse, so A is invertible. Since the inverse of A is unique,
by Theorem 3.6, we must have

1 d —b
ATl =
det A [ —c (J
Conversely, assume that ad — bc = 0. We will consider separately the cases where
a # 0and where a = 0. If a # 0, then d = bc/a, so the matrix can be written as

A= {i Z} = Lca/a bcb/a] = {kaa kiﬂ

where k = c/a. In other words, the second row of A is a multiple of the first. Referring

to Example 3.23(b), we see that if A has an inverse {W x}, then
y z

L; kbe;v iHé ﬂ

and the corresponding system of linear equations
aw + by =
ax + bz=
kaw + kby =
kax + kbz =1

oS O =

W=>  has no solution. (Why?)
If a = 0, then ad — bc = 0 implies that bc = 0, and therefore either b or ¢ is 0.

Thus, A is of the form
[0 o] {o b}
r
c d # 0 d

0 0 0 0 1
In the first case, { HW x} = [ } #* { 0}. Similarly, [O b} cannot
c 0 1 0 d

dily =z .
W=>  have an inverse. (Verify this.)
Consequently, if ad — bc = 0, then A is not invertible. i |

e sy s e R S
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Example 3.24
|

‘

\J

12

1 2
Find the inverses of A = { and B =
3 4 4

—15
__5}, if they exist.
Solution Wehave det A = 1(4) — 2(3) = —2 # 0, so A is invertible, with
L1 4 =2 =2 " 1
AT = = 3 1
—2[—=3 1 5 —3
(Check this.)

On the other hand, det B = 12(—5) — (—15)(4) = 0, so Bis not invertible.

Example 3.25 |

v JAFA

Use the inverse of the coefficient matrix to solve the linear system
x+2y= 3
3x +4y = -2

1 2
Solution The coefficient matrix is the matrix A = [3 4}, whose inverse we com-
puted in Example 3.24. By Theorem 3.7, Ax = b has the unique solution x = A™'b.

3
Here we have b = [ 2}; thus, the solution to the given system is

-1 )= o

Remark Solving a linear system Ax = b viax = A™'b would appear to be a good
method. Unfortunately, except for 2 X 2 coefficient matrices and matrices with cer-
tain special forms, it is almost always faster to use Gaussian or Gauss-Jordan elimi-
nation to find the solution directly. (See Exercise 13.) Furthermore, the technique of
Example 3.25 works only when the coefficient matrix is square and invertible, while
elimination methods can always be applied.

Properties of Invertible Matrices

The following theorem records some of the most important properties of invertible
matrices.

Theorem 3.9

a. If Ais an invertible matrix, then A" is invertible and
@Ah't=A4

b. If A is an invertible matrix and c is a nonzero scalar, then cA is an invertible
matrix and

1
(cA) ™t ==-At
c
c. If A and B are invertible matrices of the same size, then AB is invertible and

(AB)"'=B7'A"!
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d. If A is an invertible matrix, then A’ is invertible and
@ =

e. If A is an invertible matrix, then A" is invertible for all nonnegative inte-
gers n and

(Ant=@y

Proof  We will prove properties (a), (), and (e), leaving properties (b) and (d) to be
proven in Exercises 14 and 15.

(a) To show that A™! is invertible, we must argue that there is a matrix X such that
AT X =1=XA"!

But A certainly satisfies these equations in place of X, so A™! is invertible and A is an

inverse of A™'. Since inverses are unique, this means that (A~") ™! = A,

(c) Here we must show that there is a matrix X such that
(AB)X =1 = X(AB)
The claim is that substituting B~'A™" for X works. We check that
(AB)(B'A™) = A(BBTHA™ = AIA™! = AA™! =
where we have used associativity to shift the parentheses. Similarly, (B"'A™") (AB) = I

(check!), so AB is invertible and its inverse is B"'A™",

(e) The basic idea here is easy enough. For example, when n = 2, we have
AN AT = AAATTAT = AIAT = AAT =

Similarly, (A™")?A% = I. Thus, (A™")? is the inverse of A2 It is not difficult to see that
a similar argument works for any higher integer value of n. However, mathematical
induction is the way to carry out the proof.

The basis step is when n = 0, in which case we are being asked to prove that A is
invertible and that

(A= (A7)

This is the same as showing that I is invertible and that I ™' = I, which is clearly true.
(Why? See Exercise 16.)

Now we assume that the result is true when n = k, where k is a specific nonnega-
tive integer. That is, the induction hypothesis is to assume that A* is invertible and that

(Ak)"l — (A»l)k

The induction step requires that we prove that A**! is invertible and that
(A7 = (A7H*! Now we know from (c) that A¥*! = A*A is invertible, since A
and (by hypothesis) A* are both invertible. Moreover,

(Afl)k-H = (A*l)kA-—l
= (AF)147! by the induction hypothesis

= (AAM)! by property (c)
— (Ak+1)—1
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Therefore, A" is invertible for all nonnegative integers n, and (AMt=(@AThH" by the
principle of mathematical induction. - g |

Remarks

*  While all of the properties of Theorem 3.9 are useful, (c) is the one you should
highlight. It is perhaps the most important algebraic property of matrix inverses. It
is also the one that is easiest to get wrong. In Exercise 17, you are asked to give a
counterexample to show that, contrary to what we might like, (AB)™" # A™'B™" in
general. The correct property, (AB)™' = B™'A™, is sometimes called the socks-and-
shoes rule, because, although we put our socks on before our shoes, we take them off
in the reverse order.

*  Property (c) generalizes to products of finitely many invertible matrices: If A,,
A, ..., A, are invertible matrices of the same size, then A; A, - - A, is invertible and

(AxAz' . .An)“‘l = A;l' . .A2—1A1*1

(See Exercise 18.) Thus, we can state:

The inverse of a product of invertible matrices is the product of their inverses in
the reverse order.

1 1
* Since, for real numbers, # 2 + —, we should not expect that, for

1

+b b

square matrices, (A + B)™' = A™' + B™! (and, indeed, this is not true in general; see

Exercise 19). In fact, except for special matrices, there is no formula for (A + B)~L
* Property (e) allows us to define negative integer powers of an invertible

matrix:

A—n s (A—l)n = (An)‘l

With this definition, it can be shown that the rules for exponentiation, A’A* = A"
and (A")° = A™, hold for all integers r and s, provided A is invertible.

One use of the algebraic properties of matrices is to help solve equations involving
matrices. The next example illustrates the process. Note that we must pay particular
attention to the order of the matrices in the product.

Example 3.26 |

»
P

Solve the following matrix equation for X (assuming that the matrices involved are
such that all of the indicated operations are defined):

A«I(Bx)fl — (A~1B3)2
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Solution  There are many ways to proceed here. One solution is

ATY(BX)™' = (AT'B%)? = ((BX)A) ! = (A7'B%)?
= [(BX)A) '] = [(A7'B)*]!
= (BX)A = [(A7'B*)(A7'B?)] !
= (BX)A = B3(A ) 'B3(A™)!
= BXA = BAB’A
= B !BXAA ™' = B'B3AB ’AA™!
= IXI = B *AB’I
= X = B™*AB™?

W—>  (Can you justify each step?) Note the careful use of Theorem 3.9(c) and the expansion
of (A™'B%)*. We have also made liberal use of the associativity of matrix multiplica-

tion to simplify the placement (or elimination) of parentheses.
Elementary Matrices

We are going to use matrix multiplication to take a different perspective on the row
reduction of matrices. In the process, you will discover many new and important
insights into the nature of invertible matrices.

If
1 0 0 5 7
E=10 0 1 and A=|-1 0
0 1 0 8 3
we find that

5 7

EA = 8 3

-1 0

In other words, multiplying A by E (on the left) has the same effect as interchanging
rows 2 and 3 of A. What is significant about E? It is simply the matrix we obtain by
applying the same elementary row operation, R, <> Rs, to the identity matrix I;. It
turns out that this always works.

Definition  An elementary matrix is any matrix that can be obtained by per-
forming an elementary row operation on an identity matrix.

Since there are three types of elementary row operations, there are three cor-
responding types of elementary matrices. Here are some more elementary matrices.

.
v

Example 3.27 |  Let

100 0 001 0 1 00 0
030 0 010 0 0 10 0

E, = s B . and- B=
Tloo 1 o] P l1 o000 ™ BT 001 0
00 0 1 00 0 1 0 -2 0 1
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Each of these matrices has been obtained from the identity matrix I, by applying a
single elementary row operation. The matrix E; corresponds to 3R,, E, to R; <> Rs,
and E, to R, — 2R,. Observe that when we left-multiply a 4 X n matrix by one of these
elementary matrices, the corresponding elementary row operation is performed on
the matrix. For example, if

A -4
as 4z 0433
ay Qg O43
then
a;p 4p A az asz 04s3
3a; 3ay, 3ap dy Gy A
EA = > EZA = >
;43 43 ap a4 O3
ay Qg Oy3 Ay Qg Ay
ayy ayy a3
ay ay ajs
and EA =
as; as ass

Ay — 24y Ay — 20y a5 2dy I

Example 3.27 and Exercises 24-30 should convince you that any elementary
row operation on any matrix can be accomplished by left-multiplying by a suitable
elementary matrix. We record this fact as a theorem, the proof of which is omitted.

Theorem 3.10

Let E be the elementary matrix obtained by performing an elementary row opera-
tion on I,,. If the same elementary row operation is performed on an 7 X r matrix A,
the result is the same as the matrix EA.

Remark From a computational point of view, it is not a good idea to use el-
ementary matrices to perform elementary row operations—just do them directly.
However, elementary matrices can provide some valuable insights into invertible
matrices and the solution of systems of linear equations.

We have already observed that every elementary row operation can be “undone,”
or “reversed.” This same observation applied to elementary matrices shows us that
they are invertible.

Example 3.28

\/

Let
1 00 1 00 1 00
E,=|0 0 1|,E;=|0 4 0|, and E;= 0 1 0
010 0 0 1 -2 0 1

Then E, corresponds to R, <> R, which is undone by doing R, <> R; again. Thus,
E,”! = E,. (Check by showing that E{ = E,E; = I.) The matrix E, comes from 4R,
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which is undone by performing 3R,. Thus,

1 00
E;'=10 % o
0 0 1

which can be easily checked. Finally, E; corresponds to the elementary row opera-
tion Ry — 2R,, which can be undone by the elementary row operation R; + 2R,. So,
in this case,

1 00
E;'=10 1 0
2 01

(Again, it is easy to check this by confirming that the product of this matrix and E,

in both orders, is I.) I

Notice that not only is each elementary matrix invertible, but its inverse is another
elementary matrix of the same type. We record this finding as the next theorem.

Theorem 3.11

Each elementary matrix is invertible, and its inverse is an elementary matrix of the
same type.

The Fundamental Theorem of Invertible Matrices

We are now in a position to prove one of the main results in this book—a set of
equivalent characterizations of what it means for a matrix to be invertible. In a sense,
much of linear algebra is connected to this theorem, either in the development of
these characterizations or in their application. As you might expect, given this intro-
duction, we will use this theorem a great deal. Make it your friend!

We refer to Theorem 3.12 as the first version of the Fundamental Theorem, since
we will add to it in subsequent chapters. You are reminded that, when we say that a set
of statements about a matrix A are equivalent, we mean that, for a given A, the state-
ments are either all true or all false.

Theorem 3.12

The Fundamental Theorem of Invertible Matrices: Version 1

Let A be an n X n matrix. The following statements are equivalent:

a. A isinvertible.

b. Ax = b has a unique solution for every b in R".
c. Ax = 0 has only the trivial solution.

d. The reduced row echelon form of A is I,,.

e. Aisaproduct of elementary matrices.
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Proof  We will establish the theorem by proving the circular chain of implications

@@= ®)= ()= () =(e) = ()

(a) = (b) We have already shown that if A is invertible, then Ax = b has the
unique solution x = A~'b for any b in R” (Theorem 3.7).

(b) = (c) Assume that Ax = b has a unique solution for any b in R". This implies,
in particular, that Ax = 0 has a unique solution. But a homogeneous system Ax = 0
always has x = 0 as one solution. So in this case, x = 0 must be the solution.

(c) = (d) Suppose that Ax = 0 has only the trivial solution. The corresponding
system of equations is

aypx; t apx, +-+apx, =0

aypx, + apx, +- -+ ax, =0

anx, tapx,+--+a,x, =0
and we are assuming that its solution is

X =0

In other words, Gauss-Jordan elimination applied to the augmented matrix of the
system gives

ap a4y, |0 1 0
a, a 0 o1 -+ 0]0

(Alo] = | 7F Y0l 7| — = [1,/0]
Ay Gy "t Gy | O o 0 -+ 1|0

Thus, the reduced row echelon form of A is I,.

(d) = (e) If we assume that the reduced row echelon form of A is I,,, then A can be
reduced to I, using a finite sequence of elementary row operations. By Theorem 3.10,
each one of these elementary row operations can be achieved by left-multiplying by an
appropriate elementary matrix. If the appropriate sequence of elementary matrices is
E,, E,, ..., E; (in that order), then we have

B EEA =1,
According to Theorem 3.11, these elementary matrices are all invertible. Therefore,
so is their product, and we have
A = (B E,E)7'I, = (B, *E,E)' = E['Ey ' B
Again, each E;”! is another elementary matrix, by Theorem 3.11, so we have written

A as a product of elementary matrices, as required.

(e) = (a) If A is a product of elementary matrices, then A is invertible, since
elementary matrices are invertible and products of invertible matrices are invertible.
|
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Example 3.29

i
|

“Never bring a cannon on stage in
Act I unless you intend to fire it by
the last act” ~Anton Chekhov

\/

3
If possible, express A = L 3} as a product of elementary matrices.

Solution We row reduce A as follows:

2 3| RoR, [1 3} R—2R, |1 3
A= e —
L 3} 2 3 0 —3

rR+R |10 R, |1 O}
o i =T
0 -3 0 1

Thus, the reduced row echelon form of A is the identity matrix, so the Fundamental
Theorem assures us that A is invertible and can be written as a product of elementary
matrices. We have E,E;E,E|A = I, where

E o]0 ! E_{lO}E_[l 1}15—[1 o}
YUl oo TP l=2 1) 7 loo1) Tt o =4

are the elementary matrices corresponding to the four elementary row operations
used to reduce A to I. As in the proof of the theorem, we have

A = (E,E.E.E,)"' = E['E;'E;'E;! = 0 1l oyl _IHI OJ
Y d 34t D8] 1 2 3 4 1 0 2 1 0 1 0 _3

as required. $
|

(‘T
Remark Because the sequence of elementary row operations that transforms A

into I is not unique, neither is the representation of A as a product of elementary
matrices. (Find a different way to express A as a product of elementary matrices.)

The Fundamental Theorem is surprisingly powerful. To illustrate its power, we
consider two of its consequences. The first is that, although the definition of an in-
vertible matrix states that a matrix A is invertible if there is a matrix B such that both
AB = I.and BA = I are satisfied, we need only check one of these equations. Thus, we
can cut our work in half!

Theorem 3.13

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I,
then A is invertible and B= A~ L,

Proof  Suppose BA = I. Consider the equation Ax = 0. Left-multiplying by B, we have

BAx = B0. Thisimplies thatx = Ix = 0. Thus, the system represented by Ax = 0 has the

unique solution x = 0. From the equivalence of (c) and (a) in the Fundamental Theo-

rem, we know that A is invertible. (That is, A" exists and satisfies AA™! =T = A7!A))
If we now right-multiply both sides of BA = I by A™', we obtain

BAAT'=JA"'=BI=A"'=B=A""1
(The proof in the case of AB = [ is left as Exercise 41.) _ g ]

The next consequence of the Fundamental Theorem is the basis for an efficient
method of computing the inverse of a matrix.
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Theorem 3.14

Let A be a square matrix. If a sequence of elementary row operations reduces A
to I, then the same sequence of elementary row operations transforms I into A

Proof If A is row equivalent to I, then we can achieve the reduction by left-
multiplying by a sequence Ej, E,, . . . , Ey of elementary matrices. Therefore, we have
Ei -+ E;E,A = I Setting B = E;- - - E,E, gives BA = I. By Theorem 3.13, A is invert-
ible and A™! = B. Now applying the same sequence of elementary row operations to
Iis equivalent to left-multiplying I by Ey- - * E,E; = B. The result is

EEEI=BI=B=A"

Thus, I is transformed into A™" by the same sequence of elementary row operations.

The Gauss-Jordan Method for Computing the Inverse

We can perform row operations on A and I simultaneously by constructing a “super-
augmented matrix” [A |I]. Theorem 3.14 shows that if A is row equivalent to I [which,
by the Fundamental Theorem (d) < (a), means that A is invertible], then elementary
row operations will yield

[A]I] —> [I|A™']

If A cannot be reduced to I, then the Fundamental Theorem guarantees us that A is
not invertible.

The procedure just described is simply Gauss-Jordan elimination performed on an
n X 2n, instead of an n X (n + 1), augmented matrix. Another way to view this pro-
cedure is to look at the problem of finding A ™" as solving the matrix equation AX = I,
for an n X n matrix X. (This is sufficient, by the Fundamental Theorem, since a right
inverse of A must be a two-sided inverse.) If we denote the columns of X by xy, ..., X,
then this matrix equation is equivalent to solving for the columns of X, one at a time.
Since the columns of I,, are the standard unit vectors ey, . . . , €,, we thus have n systems
of linear equations, all with coefficient matrix A:

Ax, = e, ..., AXx, = ¢,

Since the same sequence of row operations is needed to bring A to reduced row
echelon form in each case, the augmented matrices for these systems, [A | e], . . .,
[A | e,), can be combined as

[Alee,---e,] = [AlL]

We now apply row operations to try to reduce A to I,, which, if successful, will simul-
taneously solve for the columns of A ™, transforming I, into A™".
We illustrate this use of Gauss-Jordan elimination with three examples.

Example 3.30

\

Find the inverse of

if it exists.
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Solution  Gauss-Jordan elimination produces

1 2 =1|1 0 0

[AlIl=]2 2 4|0 1 0
1 3 =3[0 0 1

o |12 =1 1 0 0

Ry —R, —_ —_

0 -2 6/-2 1 0
L0 1 —2/-1 0 1

[t 2 =111 0 0]

Elo1 -3 1 1o
0 1 —=2|-1 0 1]
1 2 =1 1 0 0]

R;—R, 1

— |01 -3 1 =L o0
Lo o 1|/-2 % 1]

Rtk 1 2 0|—-1 3§ 1

R,+ 3R,

— |0 1 0|-5 1 3
L0 0 1/-2 1 1
[1 0 o] 9 -2 -5

R,—2R,

— 01 0/-5 1 3
L0 0 1]-2 § 1

Therefore,
9 -3 -

Al=|-5 1 3
-2 3 1

(You should always check that AA™! = I by direct multiplication. By Theorem 3.13,
we do not need to check that A™'A = I too.)
.

fiemark Notice that we have used the variant of Gauss-Jordan elimination that
first introduces all of the zeros below the leading 1s, from left to right and top to
bottom, and then creates zeros above the leading 1s, from right to left and bottom to
top. This approach saves on calculations, as we noted in Chapter 2, but you may find
it easier, when working by hand, to create all of the zeros in each column as you go.
The answer, of course, will be the same,

P cr—————

Example 3.31

\

Find the inverse of

2 1 —4
A=]—-4 -1 6
-2 2 -2

if it exists.




|
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solution  We proceed as in Example 3.30, adjoining the identity matrix to A and
then trying to manipulate [A | I] into [I |A™].

2 1 —4|1 0 0
AlIl]=|-4 -1 6|0 1 0
-2 2 —2]0 0 1
Rim |21 —4[1 0 0
ol 01—2210}
0 3 —6/1 0 1
(1 2 -1 1 0 0
%101 -3l 2 10
lo 0 0|-5 -3 1

At this point, we see that it is not possible to reduce A to I, since there is a row of zeros
on the left-hand side of the augmented matrix. Consequently, A is not invertible.

-«

As the next example illustrates, everything works the same way over Z,, where
pis prime.

\J

Example 3.32

Find the inverse of

if it exists, over Z.

solution 1 We use the Gauss-Jordan method, remembering that all calculations are
in Zs.
2 2|11 0
-3
2 0/0 1
2R, 1 112 0]
2 010 1
Ry+R, [1 1{2 0
e
0 1]2 1
rR+2r, |1 00 2
>
{0 12 1
-1 0 2 o -1
Thus, A™" = 5 1 , and it is easy to check that, over Z,, AA™" = L

Solution 2 Since A is a 2 X 2 matrix, we can also compute A~" using the formula
given in Theorem 3.8. The determinant of A is

detA =2(0) —2Q2)=—-1=2

inZ, (since 2 + 1 = 0). Thus, A~ " exists and is given by the formula in Theorem 3.8.
We must be careful here, though, since the formula introduces the “fraction” 1/det A
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and there are no fractions in Z;. We must use multiplicative inverses rather than
division.

Instead of 1/det A = 1/2, we use 27'; that is, we find the number x that satisfies
the equation 2x = 1in Z;. It is easy to see that x = 2 is the solution we want: In Zs,
27! = 2, since 2(2) = 1. The formula for A~ now becomes

[0 =2 0 1 0 2
AT =2 =2 =
-2 2 1 2 2 1
which agrees with our previous solution.

~

Exercises 3.3

<=,y

In Exercises 1-10, find the inverse of the given matrix (if it
exists) using Theorem 3.8.

(4 7 [4 —2}
1. 2.
1 2 2 0
(3 4J [0 1}
3. 4,
6 8 -1 0
2 g} [ 1/V2 1/\6}
5, ¢ 6.
|2 2 -1/V2  1V2
; [—1.5 —4,2} o [3.55 0.25}
L 05 24 "18.52  0.60
g [a —-b}
"o a
1 1/b
10. /e /},Where neither a, b, ¢, nor d is 0
L1/c 1/d

In Exercises 11 and 12, solve the given system using the
method of Example 3.25.

1. 2x + y= —1 12 x —x,= 1
Sx+3y= 2 2x, + x,

2 - 2
wian=[} D= L= [Toman, =[]
2 6 5 2 0

(a) Find A™! and use it to solve the three systems
Ax = by, Ax = by, and Ax = b,

(b) Solve all three systems at the same time by row re-
ducing the augmented matrix [A | b, b, bs] using
Gauss-Jordan elimination.

(¢) Carefully count the total number of individual
multiplications that you performed in (a) and in
(b). You should discover that, even for this 2 X 2
example, one method uses fewer operations.

Il

\

For larger systems, the difference is even more
pronounced, and this explains why computer
systems do not use one of these methods to solve
linear systems.
14. Prove Theorem 3.9(b).
15. Prove Theorem 3.9(d).
16. Prove that the n X # identity matrix I, is invertible and
that I, =1,
17. (a) Give a counterexample to show that (AB) ™! #
A7'B!in general.
(b) Under what conditions on A and Bis (AB) ! =
A™'B™'2 Prove your assertion.
18. By induction, prove thatif A, A,, ..., A, are invertible
matrices of the same size, then the product A;A, - -+ A,
isinvertible and (A4, -+ A,) "= A, -+ AS'ATL

19. Give a counterexample to show that (A + B) ™! #
A"+ B! in general.

In Exercises 20-23, solve the given matrix equation for X.
Simplify your answers as much as possible. (In the words of
Albert Einstein, “Everything should be made as simple as pos-
sible, but not simpler.”) Assume that all matrices are invertible.

20. XA = A7! 21. AXB = (BA)?
22.(A7'X) 1= AB?A)"' 23.ABXA'Bl=1+A

In Exercises 24-30, let

1 2 =1 1 -1 0
A=1|1 1 1|, B=|1 1 11,
1 -1 0 1 2 -1
1 2 -1 1 2 =1
C=1{11 1:], D=|-3 -1 3
2 1 -1 2 1 —1J




In each case, find an elementary matrix E that satisfies the
given equation.

24.EA =B 25.EB=A 26.EA =C

27.EC=A 28.EC=D 29.ED = C

30. Is there an elementary matrix E such that EA = D?
Why or why not?

In Exercises 31-38, find the inverse of the given elementary
matrix.

3 0 1 2
31. 32.

0 1 0 1

0 1 1 0
33. } 34, | }

11 0 =3 1

1 0 0 [0 0 1]
35.10 1 -2 36. |0 1 0

0 0 1 L1 0 0]

(1 0 0 (1 0 0]
37.10 ¢ 0),c#0 38 |0 1 c|,c#0

10 0 1 L0 0 1]

In Exercises 39 and 40, find a sequence of elementary
matrices Ey, Ey, . . . » Ey such that Ey- - - E;E; A = 1. Use this
sequence to write both A and A™" as products of elementary

matrices.
1 0 2 4

39.A = { 40. A = { }
-1 =2 1 1

41. Prove Theorem 3.13 for the case of AB = I.

42. (a) Prove that if A is invertible and AB = O, then
B=0.
(b) Give a counterexample to show that the result in
part (a) may fail if A is not invertible.

43. (a) Prove that if A is invertible and BA = CA, then
B=C_,
(b) Give a counterexample to show that the result in
part (a) may fail if A is not invertible.

44. A square matrix A is called idempotent if AT = A,
(The word idempotent comes from the Latin idem,
meaning “same,” and potere, meaning “to have power.”
Thus, something that is idempotent has the “same
power” when squared.)

(a) Find three idempotent 2 X 2 matrices.
(b) Prove that the only invertible idempotent n X n
matrix is the identity matrix.
45. Show that if A is a square matrix that satisfies the
equation A> — 24 + = O,then A™' = 2] — A,

46. Prove that if a symmetric matrix is invertible, then its
inverse is symmetric also.
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47. Prove that if A and B are square matrices and AB is
invertible, then both A and B are invertible.

In Exercises 48-63, use the Gauss-Jordan method to find the
inverse of the given matrix (if it exists).

1 5 [—2 4
48. 49.
11 4 L 3 -1
[4 ~2} (1 a]
50. 51.
12 0 l—a 1
(2 3 0 1T -1 2
5.1 -2 -1 5313 1 2
12 0 -1 12 3 -1
1 1 0 [a 0
54, 0 1 55.{1 a 0
0 1 1 0 1 a
_ 0 -1 1 0
0 0
2 1 0 2
56.|b 0 ¢ 57.
1 -1 3 0
L0 d 0
0o 1 1 -1
ToV2 0 2V2 0
—-4V2 V2 00
58.
0 0 1 0
L 0 0 31
1T 0 0 0
01 0 0 0 1
59. 60. over Z,
001 0 1 1
la b ¢ d
(2 1 0
4 2
61. [3 4} over Zs 62. |1 1 2|overZ,
10 2 1
1 50
63.|1 2 4 |overZ,
3 6 1

Partitioning large square matrices can sometimes make their
inverses easier to compute, particularly if the blocks have

a nice form. In Exercises 64-68, verify by block multiplica-
tion that the inverse of a matrix, if partitioned as shown, is
as claimed. (Assume that all inverses exist as needed.)

A Br {A'l —A"‘BD‘IJ
64. = -
O D o) D!
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‘0 B]7'_[-(®BO) (BC)™'B In Exercises 69-72, partition the given matrix so that you
65. c I|] |cBo I1-cBC) B can apply one of the formulas from Exercises 64-68, and
:I g1 (I — BO)! —(1 - BO)'B then calculate the inverse using that formula.
66. = r
c J [—C(I - BO)™ I+ c(- BC)‘IB} L4900
[0 B! 6.0 1 00
67.| ¢ D} 12310
B 1 2 01
[ -0 (BD™'C)'BD"*! -
“ D 'cBD'C)! D! — D 'C(BD'C)"'BD ! 70. The matrix in Exercise 58
A B]! P B o 0 1 1
68. { } = [ Q],whereP =(A—BD'C)7}, 0 01 0 011
¢ Db E 3 71. 72 1 3 1
Q=-PBD",R=~-D"'CP,and S = D" G =L 17 1 5 2
+ D™'CPBD™! L1 1 0 1

m o
s ‘

The LU Factorization

Just as it is natural (and illuminating) to factor a natural number into a product of
other natural numbers—for example, 30 = 2 - 3 - 5—it is also frequently helpful to fac-
tor matrices as products of other matrices. Any representation of a matrix as a product
of two or more other matrices is called a matrix factorization. For example,

[3 —1} _[1 0][3 -1
9 =5 3 1][0 =2
is a matrix factorization.

Needless to say, some factorizations are more useful than others. In this section,
we introduce a matrix factorization that arises in the solution of systems of linear
equations by Gaussian elimination and is particularly well suited to computer imple-
mentation. In subsequent chapters, we will encounter other equally useful matrix
factorizations. Indeed, the topic is a rich one, and entire books and courses have been
devoted to it.

Consider a system of linear equations of the form Ax = b, where Aisan n X n
matrix. Our goal is to show that Gaussian elimination implicitly factors A into a prod-
uct of matrices that then enable us to solve the given system (and any other system
with the same coefficient matrix) easily.

The following example illustrates the basic idea.

Example 3.33

\/

Let
2 1 3
A= 4 -1 3
-2 5 5




3
=]
E=]
=
S
=
-y
2
©
@
‘©
o- bl
=

The LU factorization was introduced
in 1948 by the great English
mathematician Alan M. Turing
(1912-1954) in a paper entitled
“Rounding-off Errors in Matrix
Processes” (Quarterly Journal of
Mechanics and Applied Mathematics,
1 (1948), pp. 287-308). During
World War 11, Turing was
instrumental in cracking the
German “Enigma” code. However,
he is best known for his work in
mathematical logic that laid the
theoretical groundwork for the
development of the digital computer
and the modern field of artificial
intelligence. The “Turing test”

that he proposed in 1950 is still
used as one of the benchmarks in
addressing the question of whether
a computer can be considered
“intelligent”
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Row reduction of A proceeds as follows:

2 1 3] e f2 1 3], 2 1 3
A=| 4 -1 3| RBRlg -3 =3 — |0 -3 =3|=U ()
-2 5 5 0 6 8 0 6 8

The three elementary matrices E;, E,, E; that accomplish this reduction of A to
echelon form U are (in order):

1 0 0 1 0 0 1 0 0
E,=|-2 1 0|, Ei=|0 1 0|, Esz=]|0 1 0
0 0 1 1 0 1 0 2 1
Hence,
E;E,E\A =U
Solving for A, we get
(1 0 0 1 00 0 0
A=ETE;'E;'U={2 1 0 01 ofl0o 1 0|U
LO 0 1 -1 0 1]JL0 -2 1
1 0 0
= 2 1 0|U=LU
L—-1 -2 1
Thus, A can be factored as
A=1LU

where U is an upper triangular matrix (see the exercises for Section 3.2), and L is unit
lower triangular. That is, L has the form

0 - 0
* 1 0

L= :
M. )

with zeros above and 1s on the main diagonal. 1

The preceding example motivates the following definition.

Definition  Let A be a square matrix. A factorization of A as A = LU, where

L is unit lower triangular and U is upper triangular, is called an LU factorization
of A.

Remarks

® Observe that the matrix A in Example 3.33 had an LU factorization because no
row interchanges were needed in the row reduction of A. Hence, all of the elementary
matrices that arose were unit lower triangular. Thus, L was guaranteed to be unit
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lower triangular because inverses and products of unit lower triangular matrices are
also unit lower triangular. (See Exercises 29 and 30.)

If a zero had appeared in a pivot position at any step, we would have had to swap
rows to get a nonzero pivot. This would have resulted in L no longer being unit lower
triangular. We will comment further on this observation below. (Can you find a ma-
trix for which row interchanges will be necessary?)

o The notion of an LU factorization can be generalized to nonsquare matrices
by simply requiring U to be a matrix in row echelon form. (See Exercises 13 and 14.)

+ Some books define an LU factorization of a square matrix A to be any factor-
ization A = LU, where L is lower triangular and U is upper triangular.

The first remark above is essentially a proof of the following theorem.

Theorem 3.19

If A is a square matrix that can be reduced to row echelon form without using any
row interchanges, then A has an LU factorization.

To see why the LU factorization is useful, consider a linear system Ax = b, where
the coefficient matrix has an LU factorization A = LU. We can rewrite the system
Ax = bas LUx = b or L(Ux) = b. If we now define y = Ux, then we can solve for x in
two stages:

1. Solve Ly = b for y by forward substitution (see Exercises 25 and 26 in Section 2.1).
2. Solve Ux = y for x by back substitution.

Each of these linear systems is straightforward to solve because the coefficient matri-
ces L and U are both triangular. The next example illustrates the method.

Example 3.34

1
|

2 1 3 1
Use an LU factorization of A = 4 —1 3 |tosolve Ax =b,whereb = | —4|.
-2 5 5 9

Solution In Example 3.33, we found that

As outlined above, to solve Ax = b (which is the same as L(Ux) = b), we first solve

N
Ly = bfory = | y, |. This is just the linear system
Y3
N =1
2y + » = —4

“n =2ty = 9
Forward substitution (that is, working from top to bottom) yields

p=ly,=—4—2y =6y, =9+y +2p="2

e R
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1 X1
Thusy = | —6 | and we now solve Ux = y for x = | x, |. This linear system is
"'2 .x3

2x1 + Xy + 3X3 e 1
—3.XZ - 3.x3 = _6
2%y = —2
and back substitution quickly produces
x; = —1,
—3x, = —6 + 3x; = —9 sothatx, = 3, and

2%, =1—x, — 3x; = 1 sothatx; =3

Therefore, the solution to the given system Ax = bisx =

— W o

An Easy Way to Find LU Factorizations

In Example 3.33, we computed the matrix L as a product of elementary matrices.
Fortunately, L can be computed directly from the row reduction process without our
needing to compute elementary matrices at all. Remember that we are assuming that
A can be reduced to row echelon form without using any row interchanges. If this is
the case, then the entire row reduction process can be done using only elementary
row operations of the form R; — kR;. (Why do we not need to use the remaining
elementary row operation, multiplying a row by a nonzero scalar?) In the operation
R; — kR, we will refer to the scalar k as the multiplier.
In Example 3.33, the elementary row operations that were used were, in order,

R, — 2R, (multiplier = 2)
Ry + Ry = R; —=(—=1)R, (multiplier = —1)
Ry + 2R, = Ry — (—2)R, (multiplier = —2)

The multipliers are precisely the entries of L that are below its diagonal! Indeed,

1 0 0
L= 2 1 0
—1. =2 -1
and Ly, = 2, L3; = —1, and L;; = —2. Notice that the elementary row operation

R; — kR; has its multiplier k placed in the (i, j) entry of L.

Example 3.35 |

\/

Find an LU factorization of

31 3 —4
6 4 8§ —10
A =
3 2 5 -1
-9 5 -2 -4
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Solution  Reducing A to row echelon form, we have

31 3 —4 31 3 -4
6 4 8 —10|%72% o 2 2 =2
A= Rs—R,
3 2 5 =1 |R~(-3Rr |0 1 2 3
-9 5 —2 —4 “lo 8 7 -16
M3 1 3 —4
R,—3R, |0 2 2 —2
R,—4R,
2710 0 1 4
|10 0 -1 -8
3 1 3 —4
R~(-DR, |0 2 2 =2
3 =U
0 0 1 4
10 0 0 —4

The first three multipliers are 2, 1, and —3, and these go into the subdiagonal entries
of the first column of L. So, thus far,

1 0 00

i 2 1 00
1 * 10

—3 ok % ]

The next two multipliers are 5 and 4, so we continue to fill out L:

1 0 00
21 00
L= .
1 510
-3 4 * 1

The final multiplier, — 1, replaces the last * in L to give

1 0 0 0
2 1 0 0
L= i
1 3 1 0
-3 4 -1 1
Thus, an LU factorization of A is
3 1 3 —4 1 0 0 093 1 3 —4
6 4 8 —10 2 1 0O 0|0 2 2 =2
A: — 1 :LU

32 5 -1 1 £ 1 0/lo o1 4
-9 5 =2 —4 -3 4 -1 1{(/l0 0 0 -4

as is easily checked.

-
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Remarks

* Inapplying this method, it is important to note that the elementary row opera-
tions R; — kR; must be performed from top to bottom within each column (using the
diagonal entry as the pivot), and column by column from left to right. To illustrate
what can go wrong if we do not obey these rules, consider the following row reduction:

1 2 2 1 2 2 1 2 2
R;— 2R, R;—R,
A=1|1 1 1|—>|1 1 1|— |0 -1 —-1|=U
2 21 0 0 -1 0 0 -1

This time the multipliers would be placed in L as follows: Ly, = 2, L,; = 1. We would
get

1 00
L=]11 0
0 2 1

but A # LU. (Check this! Find a correct LU factorization of A.)

® An alternative way to construct L is to observe that the multipliers can be
obtained directly from the matrices obtained at the intermediate steps of the row
reduction process. In Example 3.33, examine the pivots and the corresponding col-
umns of the matrices that arise in the row reduction

2 1 3 2 1 3 2 1 3
A= 4 -1 3|—>A =10 -3 -3|—->|0 -3 =3|=U
-2 5 5 0 6 8 0 0 2

The first pivot is 2, which occurs in the first column of A. Dividing the entries of
this column vector that are on or below the diagonal by the pivot produces

2 1
1
- 4| = 2
2
-2 -1

The next pivot is —3, which occurs in the second column of A,. Dividing the entries
of this column vector that are on or below the diagonal by the pivot, we obtain

-3
(-3) é -

The final pivot (which we did not need to use) is 2, in the third column of U. Divid-
ing the entries of this column vector that are on or below the diagonal by the pivot,
we obtain

|

2 1

If we place the resulting three column vectors side by side in a matrix, we have

which is exactly L once the above-diagonal entries are filled with zeros.
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In Chapter 2, we remarked that the row echelon form of a matrix is not unique.
However, if an invertible matrix A has an LU factorization A=LU, then this factoriza-
tion is unique.

Theorem 3.16  If A is an invertible matrix that has an LU factorization, then L and U are unique.

Proof Suppose A = LU and A = LU, are two LU factorizations of A. Then LU =
L,U,, where L and L, are unit lower triangular and U and U, are upper triangular. In
fact, Uand Uj are two (possibly different) row echelon forms of A.
By Exercise 30, L, is invertible. Because A is invertible, its reduced row echelon
form is an identity matrix I by the Fundamental Theorem of Invertible Matrices.
W= Hence U also row reduces to I (why?) and so U is invertible also. Therefore,

LT'AU)U~ = LIMLUYU™Y so (LT'L(UUTY = (L7'L)(WUU ™)
Hence,
(Ly'DI=1KU,U™Y so Li'L=UU"

But L;'L is unit lower triangular by Exercise 29, and U, U is upper triangular.
W—>  (Why?) It follows that L;'L = U,U " is both unit lower triangular and upper tri-
angular. The only such matrix is the identity matrix, so L;'L = Iand U,U ™' = L It
follows that L = L, and U = Uj, so the LU factorization of A is unique. 5

The P LU Factorization

We now explore the problem of adapting the LU factorization to handle cases where
row interchanges are necessary during Gaussian elimination. Consider the matrix

A straightforward row reduction produces

1 2 -1
A—>B=|0 0 5
0 3 3

which is not an upper triangular matrix. However, we can easily convert this into
upper triangular form by swapping rows 2 and 3 of B to get

1 2 -1
U=]0 3 3
0 0 5
Alternatively, we can swap rows 2 and 3 of A first. To this end, let P be the elementary
matrix
1 00
0 0 1
01 0

e A P e T e e O
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corresponding to interchanging rows 2 and 3, and let E be the product of the
elementary matrices that then reduce PA to U (so that E™' = L is unit lower triangu-
lar). Thus EPA = U,so A = (EP)"'U= P 'E"'U = P"'LU.

Now this handles only the case of a single row interchange. In general, P will be
the product P = P, - -P,P, of all the row interchange matrices P,P,, ..., P, (where
P, is performed first, and so on). Such a matrix P is called a permutation matrix. Ob-
serve that a permutation matrix arises from permuting the rows of an identity matrix
in some order. For example, the following are all permutation matrices:

01 0O
0 0 1
0 1 0 0 0 1
, {1 0 0},
1 0 1 0 0 O
01 0
00 1 0

Fortunately, the inverse of a permutation matrix is easy to compute; in fact, no calcu-
lations are needed at all!

Theorem 3.17

If P is a permutation matrix, then P! = P’,

Proof We must show that P'P = I. But the ith row of P’ is the same as the ith
column of P, and these are both equal to the same standard unit vector e, because P
is a permutation matrix. So

(P'P),; = (ith row of PT)(ith column of P) = e’e = e-e = 1

This shows that diagonal entries of PTP are all 1s. On the other hand, if j # i, then
the jth column of P is a different standard unit vector from e—say e’. Thus, a typical
off-diagonal entry of P'P is given by

(P"P); = (ith row of P)(jth column of P) = e’e’ = e-e’ =0
Hence PP is an identity matrix, as we wished to show. — .

Thus, in general, we can factor a square matrix A as A = P"'LU = P'LU.

Definition  Let A be a square matrix. A factorization of A as A = P'LU, where
P is a permutation matrix, L is unit lower triangular, and U is upper triangular, is
called a P'LU factorization of A.

Example 3.36

i
l

\

Find a PTLU factorization of A =

o o= O

0 6
2 3
1 4

Solution  First we reduce A to row echelon form. Clearly, we need at least one row
interchange.

00 6 12 3 1.
A=]12 3|"% 000 6/“S|0 0 s
21 4 2 1 4 § a3 g
1 2 3
2208 0 -3 =2
0o 0 6
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We have used two row interchanges (R, <> R, and then R, <> R;), so the required
permutation matrix is

1 0 0][0o 1 0 010
p=pPP,=|0 0 1{//1 0 0|=]|0 0 1
01 oJlo 0 1 1 00

We now find an LU factorization of PA.

0 1 0f(0 0 6 1 2 3 1 2 3
R,—2R,
PA=10 0 1}{|1 2 3|=1]2 1 4|—>|0 -3 —2|=U
1 0 0JL2 1 4 0 0 6 0 0 6

Hence L,; = 2, and so
0 0 111 0 0
A=P'LU=|1 0 0{|2 1 0|0 =3 =2
0 1 0JL0 0 1

The discussion above justifies the following theorem.

Theorem 3.18

Every square matrix has a P'LU factorization.

Remark Even for an invertible matrix, the P'LU factorization is not unique. In
Example 3.36, a single row interchange R, <> R;also would have worked, leading to
a different P. However, once P has been determined, L and U are unique.

Computational Considerations

IfAisn X n,then the total number of operations (multiplications and divisions) required
to solve a linear system Ax = b using an LU factorization of A) is T(n) = n’/3, the same
as is required for Gaussian elimination. (See the Exploration “Counting Operations,”
in Chapter 2.) This is hardly surprising since the forward elimination phase produces
the LU factorization in =~ n°/3 steps, whereas both forward and backward substitution
require =~ n?/2 steps. Therefore, for large values of n, the n*/3 term is dominant. From
this point of view, then, Gaussian elimination and the LU factorization are equivalent.
However, the LU factorization has other advantages:

° From a storage point of view, the LU factorization is very compact because
we can overwrite the entries of A with the entries of L and U as they are computed. In
Example 3.33, we found that

2 1 3 1 0 o0]f2 1 3
A=| 4 -1 3|=| 2 1 0||l0 =3 =3|=1LU
-2 55 -1 -2 1]Jlo0 o 2

This can be stored as

2 —1 3
2 =3 -3
il 2
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with the entries placed in the order (1,1), (1,2), (1,3), (2,1), (3,1), (2,2), (2,3), (3,2),
(3,3). In other words, the subdiagonal entries of A are replaced by the corresponding
multipliers. (Check that this works!)

*  Once an LU factorization of A has been computed, it can be used to solve as
many linear systems of the form Ax = b as we like. We just need to apply the method
of Example 3.34, varying the vector b each time.

¢ For matrices with certain special forms, especially those with a large number
of zeros (so-called “sparse” matrices) concentrated off the diagonal, there are methods
that will simplify the computation of an LU factorization. In these cases, this method
is faster than Gaussian elimination in solving Ax = b.

*  For an invertible matrix A, an LU factorization of A can be used to find A™,
if necessary. Moreover, this can be done in such a way that it simultaneously yields a
factorization of A™". (See Exercises 15-18.)

Remark If you have a CAS (such as MATLAB) that has the LU factorization
built in, you may notice some differences between your hand calculations and the
computer output. This is because most CAS’s will automatically try to perform partial
pivoting to reduce roundoff errors. (See the Exploration “Partial Pivoting,” in Chapter
2.) Turing’s paper is an extended discussion of such errors in the context of matrix
factorizations.

This section has served to introduce one of the most useful matrix factorizations.
In subsequent chapters, we will encounter other equally useful factorizations.

 /

v

In Exercises 1-6, solve the system Ax = b using the given

|

LU factorization of A.
La=|7? 1} =
L 2 5
2a=]t "2} =
2 3
2 1
3.A=| -2 3
L 4 -3
2 1
0 0
2 —4
4. A = 3 -1
-1 2
2 —4
X110 5
0 0

|

-2

4
0

) Nl o

2 -1 0 0 1 0 0 0
|6 -4 5 =3 |3 100
-2 1 5 "8 -4 1 o] |4 010
0 6}’ ZM 4 -1 0 7 2 -1 5 1
_2} b_{ojl 2 -1 0 0} 1
P K0 LS 3|2
0 0 1 0 2
R 0 00 4 1
5 __% (1) 1 4 3 0 1 0 0 0
3 6. A = -2 -5 -1 2 _ -2 1 0 0
3 6 —3 —4 3 =2 1 0
: -5 -8 9 9] [-5 4 -2 1
0 14 30 1
00 " 0 3 5 2 b= =3
1 0 00 -2 0 -1
0 1 0 0 0 1 0
2 In Exercises 7-12, find an LU factorization of the given matrix.
: - N
it 7. 8.
-3 -1 3 1
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12 3 2 <5 e
| 9.14 5 6 10 0 4
L8 7 9 3.4 4
| i 2 3 -1
2 6 3 0
11.
0 6 —6

2 2 2 1
-2 4 -1 2
12.
4 4 7 3
6 9 5 8

Generalize the definition of LU factorization to nonsquare
matrices by simply requiring U to be a matrix in row ech-
elon form. With this modification, find an LU factorization
of the matrices in Exercises 13 and 14.

101 -2
13./0 3 3 1
L0 00 5
12 0 -1 1
-2 -7 3 8 -2
14.
1 1 3 5 2
0 3 -3 =6 0

| For an invertible matrix with an LU factorization A = LU,
both L and U will be invertible and A~ = U™'L™". In
Exercises 15 and 16, find L', U™", and A™" for the given
matrix.

15. A in Exercise 1 16. A in Exercise 4

The inverse of a matrix can also be computed by solving sev-
eral systems of equations using the method of Example 3.34.
Foran n X n matrix A, to find its inverse we need to solve
AX =1, for the n X n matrix X. Writing this equation as
Alx, x5 °-x,] = [e, e, -e,], using the matrix-column
Sform of AX, we see that we need to solve n systems of linear
equations: AX, = e, AX; = e,, .. ., Ax, = e, Moreover, we
can use the factorization A = LU to solve each one of these

; systems.

In Exercises 17 and 18, use the approach just outlined to
find A™" for the given matrix. Compare with the method of
Exercises 15 and 16.

17. A in Exercise 1 18. A in Exercise 4

In Exercises 19-22, write the given permutation matrix as a
product of elementary (row interchange) matrices.

0 0 0 1
0 0 1

01 0
19.{1 0 O 20.

01 0 O
0 0

1 0 0 O
010 0 0 0 1 00

1 0 0 00O
0 0 0 1
21.1000 22./0 0 0 1 O

0 0 0 0 1
00 1 0

01 0 00

In Exercises 23-25, find a P'LU factorization of the given
matrix A.

- 00 1 2
01 4
-1 1 32
2,A=|-1 2 1| 24 A=
2 11
L1 3 3
1 -1 0
r o0 -1 1 3
-1 1 1 2
25.A =
0 1 -1 1
Lo 0 11

26. Prove that there are exactly n! n X n permutation
matrices.

In Exercises 27-28, solve the system Ax = b using the given
factorization A = P'LU. Because PP" = I, P'LUx = b can
be rewritten as LUx = Pb. This system can then be solved
using the method of Example 3.34.

0 1 -1 01 0][1 o0 0
27A=12 3 2|=|1 0 0|0 1 0
1 1 -1 0 0 1]l -3 1
2 3 2] 1
XOl—l—PTLU,b—}
0 0 -2 5
8 3 5] [o 1 0][1t o0 o0
28A=1]4 1 2|=]0 0 1|1 1 0
4 0 3 L1 0 0]l2 -1 1
4 2] 16
X|0 —1 1|=PILU b=|—4
0 0 2] 4
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29. Prove that a product of unit lower triangular matrices 31. A in Exercise 1 32. Ain Exercise 4
is unit lower triangular. 33. If A is symmetric and invertible and has an LDU
30. Prove that every unit lower triangular matrix is factorization, show that U = LT,
invertible and that its inverse is also unit lower 34. If A is symmetric and invertible and A = LDLT (with L
triangular. unit lower triangular and D diagonal), prove that this
o I . factorization is unique. That is, prove that if we also
An LDU factorization of a square matrix A is a factoriza- have A = L,D,LT (with L, unit lower triangular and D,
tion A = LDU, where L is a unit lower triangular matrix, diagonal), then L = L, and D = D,.

D is a diagonal matrix, and U is a unit upper triangu-
lar matrix (upper triangular with 1s on its diagonal). In
Exercises 31 and 32, find an LDU factorization of A.

o

Suhspaces, Basis, Dimension, and Rank

Figure 3.2

This section introduces perhaps the most important ideas in the entire book. We have
already seen that there is an interplay between geometry and algebra: We can often
use geometric intuition and reasoning to obtain algebraic results, and the power of
algebra will often allow us to extend our findings well beyond the geometric settings
in which they first arose.

In our study of vectors, we have already encountered all of the concepts in this
section informally. Here, we will start to become more formal by giving definitions
for the key ideas. As you'll see, the notion of a subspace is simply an algebraic
generalization of the geometric examples of lines and planes through the origin. The
fundamental concept of a basis for a subspace is then derived from the idea of direc-
tion vectors for such lines and planes. The concept of a basis will allow us to give a
precise definition of dimension that agrees with an intuitive, geometric idea of the
term, yet is flexible enough to allow generalization to other settings.

You will also begin to see that these ideas shed more light on what you already
know about matrices and the solution of systems of linear equations. In Chapter 6,
we will encounter all of these fundamental ideas again, in more detail. Consider this
section a “getting to know you” session.

A plane through the origin in R® “looks like” a copy of R?. Intuitively, we would
agree that they are both “two-dimensional” Pressed further, we might also say that
any calculation that can be done with vectors in R* can also be done in a plane through
the origin. In particular, we can add and take scalar multiples (and, more generally,
form linear combinations) of vectors in such a plane, and the results are other vec-
tors in the same plane. We say that, like R?, a plane through the origin is closed with
respect to the operations of addition and scalar multiplication. (See Figure 3.2.)

But are the vectors in this plane two- or three-dimensional objects? We might
argue that they are three-dimensional because they live in R® and therefore have three
components. On the other hand, they can be described as a linear combination of just
two vectors—direction vectors for the plane—and so are two-dimensional objects liv-
ing in a two-dimensional plane. The notion of a subspace is the key to resolving this
conundrum.
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[I_gtinilion A subspace of R” is any collection S of vectors in R” such that:

1. The zero vector 0 is in S.

2. Ifuandvarein S, thenu + visin S. (S is closed under addition.)

3. Ifuisin S and cis a scalar, then cu is in S. (S is closed under scalar
multiplication.)

We could have combined properties (2) and (3) and required, equivalently, that S be
closed under linear combinations:

Ifu,uy...,uareinSand ¢, ¢y . . ., ¢ are scalars,

then c;u; + cuy, ++ -+ g isin S.

.

Example 3.317

|
|
|
i

Every line and plane through the origin in R? is a subspace of R’. It should be clear
geometrically that properties (1) through (3) are satisfied. Here is an algebraic proof
in the case of a plane through the origin. You are asked to give the corresponding
proof for a line in Exercise 9.

Let & be a plane through the origin with direction vectors v, and v,. Hence, P =
span (vy, v,). The zero vector 0 is in &P, since 0 = Ov; + 0v,. Now let

u=cv, +¢v, and v =dv, + d,v,
be two vectors in %. Then
u+v=_(qv, + o) + (dv, + dv) = (¢, + d)v, + (c; + dY)v,

Thus, u + v is a linear combination of v, and v, and so is in .
Now let ¢ be a scalar. Then

cu = clev, + c,vy) = (ecpvy + (ccy)v,

which shows that cu is also a linear combination of v, and v, and is therefore in %. We
have shown that P satisfies properties (1) through (3) and hence is a subspace of R®. :L

<

If you look carefully at the details of Example 3.37, you will notice that the fact
that v, and v, were vectors in R” played no role at all in the verification of the prop-
erties. Thus, the algebraic method we used should generalize beyond R® and apply
in situations where we can no longer visualize the geometry. It does. Moreover, the
method of Example 3.37 can serve as a “template” in more general settings. When we
generalize Example 3.37 to the span of an arbitrary set of vectors in any R”, the result
is important enough to be called a theorem.

Theorem 3.19

Let vy, vy, .. ., Vi be vectors in R”. Then span(vy, vy, . . ., Vi) is a subspace of R".

Proof LetS = span(v},v,,...,Vy). To check property (1) of the definition, we simply
observe that the zero vector 0 is in S, since 0 = Ov, + 0v, + -+ + Ov;.
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Now let
u=cv, tov,+ gy and v=dyv, +dyv,t+ o+ divg
be two vectors in S. Then
ut+v=_(cv, + v+ +qv) + dyv, +dyv, +- -+ divy)
= (¢, +d)v, + (¢, + d)vy ++ -+ (¢ + dpvy

Thus, u + v is a linear combination of v, v,, . . ., vy and so is in S. This verifies prop-

erty (2).
To show property (3), let ¢ be a scalar. Then

cu=cleyvy + vy ++ -+ )

Il

(cev, + (cc)vy ++ o+ (cevy

which shows that cu is also a linear combination of vy, v,, . . . , v, and is therefore
in S. We have shown that S satisfies properties (1) through (3) and hence is a subspace
of R". |

We will refer to span(vy, v,, . . ., Vi) as the subspace spanned by v,, vy, . . ., Vi.
We will often be able to save a lot of work by recognizing when Theorem 3.19 can be
applied.

Example 3.38

\J

X

Show that the set of all vectors | y | that satisfy the conditions x = 3y and z = —2y
forms a subspace of R®. z

.
Solution  Substituting the two conditions into | y | yields
z
3y 3]
y =y 1
-2y =2
3
Since y is arbitrary, the given set of vectors is span 1 | | and is thus a subspace
of R, by Theorem 3.19. -9

A

P -

Geometrically, the set of vectors in Example 3.38 represents the line through the
3

origin in R® with direction vector | 1 |.
-2
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Example 3.39

\

X

Determine whether the set of all vectors | y | that satisfy the conditions x = 3y + 1
and z = —2y is a subspace of R’, P

Solution This time, we have all vectors of the form

3y +1
Y
3y +1 0
The zero vector is not of this form. (Why not? Try solving | y =0 |.) Hence,
. T2 0
property (1) does not hold, so this set cannot be a subspace of R”. 4

Example 3.40

[
’

x
Determine whether the set of all vectors { }, where y = x%, is a subspace of R?.
y

X

0
Solution  These are the vectors of the form { 2} —call this set S. This time 0 = {0}

X
belongs to S (take x = 0), so property (1) holds. Letu = {x ] andv = {xzz} bein S.
X1 X2

1
2
Then

X+ x,
utv=| , 2
x; + x3
which, in general, is not in S, since it does not have the correct form; that is,

xi + x3 # (x, + x,)* To be specific, we look for a counterexample. If

e[

3
then both u and v are in S, but their sumu + v = { } is not in S since 5 # 3°. Thus,
property (2) fails and S is not a subspace of R”. 1

femark In order for a set S to be a subspace of some R", we must prove that
properties (1) through (3) hold in general. However, for S to fail to be a subspace of R",
it is enough to show that orne of the three properties fails to hold. The easiest course is
usually to find a single, specific counterexample to illustrate the failure of the property.
Once you have done so, there is no need to consider the other properties.

Suhspaces Associated with Matrices

A great many examples of subspaces arise in the context of matrices. We have already
encountered the most important of these in Chapter 2; we now revisit them with the
notion of a subspace in mind.
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_I!eﬁnilion Let A be an m X »n matrix.

1. The row space of A is the subspace row(A) of R" spanned by the rows of A.
2. The column space of A is the subspace col(A) of R™ spanned by the columns
of A.

Remark Observe that, by Example 3.9 and the Remark that follows it, col(A)
consists precisely of all vectors of the form Ax where x is in R”.

Example 3.41

1
|
\
|

|
[

l

\

Consider the matrix

1 -1
A=10 1
3 -3
1
(a) Determine whether b = | 2 | is in the column space of A.
3

(b) Determine whetherw = [4 5] is in the row space of A.
(c) Describe row(A) and col(A).

Solution

(a) By Theorem 2.4 and the discussion preceding it, b is a linear combination of the
columns of A if and only if the linear system Ax = b is consistent. We row reduce
the augmented matrix as follows:

1 —1]1 1 03
0 12| —> |0 1]|2
3 =313 0 0/0

Thus, the system is consistent (and, in fact, has a unique solution). Therefore, b is
in col(A). (This example is just Example 2.18, phrased in the terminology of this
section.)

(b) As we also saw in Section 2.3, elementary row operations simply create linear

combinations of the rows of a matrix. That is, they produce vectors only in the row

space of the matrix. If the vector w is in row(A), then w is a linear combination of the
A

rows of A, so if we augment A by w as [W} , it will be possible to apply elementary row

!

operations to this augmented matrix to reduce it to form 'y using only elementary
row operations of the form R; + kR;, where i > j—in other words, working from top

to bottom in each column. (Why?)
In this example, we have

1 -1 1 -1 1 —1
R;— 3R,

|:é:| — 0 1 R,—4R, 0 1 R,—9R, 0 1

w 3-=3|—>10 0| 7|0 0

4 5 0 9 0 0
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W= Therefore, w is a linear combination of the rows of A (in fact, these calculations show
thatw = 4[1 —1] + 9[0 1]—how?), and thus w is in row(A).

A
(c) It is easy to check that, for any vector w = [x y], the augmented matrix {W}
reduces to

S O =
O = O

0

o

in a similar fashion. Therefore, every vector in R? is in row(A), and so row(A) = R
Finding col(A) is identical to solving Example 2.21, wherein we determined that
it coincides with the plane (through the origin) in R’ with equation 3x — z = 0. (We
will discover other ways to answer this type of question shortly.) $
-

Remark We could also have answered part (b) and the first part of part (c) by
observing that any question about the rows of A is the corresponding question about
the columns of A”. So, for example, w is in row(A) if and only if wisin col(AT). This
is true if and only if the system A"x = w' is consistent. We can now proceed as in
part (). (See Exercises 21-24.)

The observations we have made about the relationship between elementary row
operations and the row space are summarized in the following theorem.

Theorem 3.20 1<t Bbe any matrix that is row equivalent to a matrix A. Then row(B) = row(A).

Proof  The matrix A can be transformed into B by a sequence of row operations.
Consequently, the rows of B are linear combinations of the rows of A; hence, linear
combinations of the rows of B are linear combinations of the rows of A. (See Exer-
cise 21 in Section 2.3.) It follows that row(B) C row(A).

On the other hand, reversing these row operations transforms B into A. There-
fore, the above argument shows that row(A) C row(B). Combining these results, we
have row(A) = row(B). R

There is another important subspace that we have already encountered: the set
of solutions of a homogeneous system of linear equations. It is easy to prove that this
subspace satisfies the three subspace properties.

Theorem 3.21  Let A be an m X n matrix and let N be the set of solutions of the homogeneous
linear system Ax = 0. Then N is a subspace of R".

Proof [Note that x must be a (column) vector in R" in order for Ax to be defined and
that 0 = 0,, is the zero vector in R™.] Since A0, = 0,,, 0, is in N. Now let u and v be
in N. Therefore, Au = 0 and Av = 0. It follows that

Au+v)=Au+Av=0+0=0
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Hence, u + vis in N. Finally, for any scalar c,
Alcu) = c(Au) = c0 =0

and therefore cu is also in N. It follows that N is a subspace of R". — R

R" consisting of solutions of the homogeneous linear system Ax = 0. It is denoted
by null(A).

The fact that the null space of a matrix is a subspace allows us to prove what in-
tuition and examples have led us to understand about the solutions of linear systems:
They have either no solution, a unique solution, or infinitely many solutions.

Theorem 3.22

Let A be a matrix whose entries are real numbers. For any system of linear
equations Ax = b, exactly one of the following is true:

a. There is no solution.
b. There is a unique solution.
c. There are infinitely many solutions.

At first glance, it is not entirely clear how we should proceed to prove this theo-
rem. A little reflection should persuade you that what we are really being asked to
prove is that if (a) and (b) are not true, then (c) is the only other possibility. That is, if
there is more than one solution, then there cannot be just two or even finitely many,
but there must be infinitely many.

Proof  If the system Ax = b has either no solutions or exactly one solution, we are
done. Assume, then, that there are at least two distinct solutions of Ax = b—say, x,
and x,. Thus,

Ax, =b and Ax,=Db
with x; # x,. It follows that
Alx, — x,) = Ax, —Ax, =b—-b =0

Set xy = X; — X,. Then x; # 0 and Ax, = 0. Hence, the null space of A is nontrivial,
and since null(A) is closed under scalar multiplication, cx, is in null(A) for every
scalar c. Consequently, the null space of A contains infinitely many vectors (since it
contains at least every vector of the form cx, and there are infinitely many of these).

Now, consider the (infinitely many) vectors of the form x; + ¢x, as c varies through
the set of real numbers. We have

Alx; + cxy) = Ax; + cAx, =b +c0=Db

Therefore, there are infinitely many solutions of the equation Ax =b. ___ .

Basis

We can extract a bit more from the intuitive idea that subspaces are generalizations
of planes through the origin in R’. A plane is spanned by any two vectors that are
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parallel to the plane but are not parallel to each other. In algebraic parlance, two
such vectors span the plane and are linearly independent. Fewer than two vectors will
not work; more than two vectors is not necessary. This is the essence of a basis for a
subspace.

BEfill“iﬂl! A basis for a subspace S of R" is a set of vectors in § that

1. spans S and
2. is linearly independent.

-

Example 3.42

’

In Section 2.3, we saw that the standard unit vectors ej, e,, . . . e, in R" are linearly
independent and span R". Therefore, they form a basis for R, called the standard
basis. A

|

~t

Example 3.43

>
'

21 [1 2 1
In Example 2.19, we showed that R* = span({_l} LD Since [_ 1] and [3} e

also linearly independent (as they are not multiples), they form a basis for R A

g

A subspace can (and will) have more than one basis. For example, we have just

1 0 2 1
seen that R? has the standard basis { LJ, [J } and the basis { [_J, [3} } How-

ever, we will prove shortly that the number of vectors in a basis for a given subspace will
always be the same.

Example 3.44

n
'

\/

Find a basis for § = span (u, v, w), where

3 2 0
u=|—-1|,v=1|1]|, and w=| —5
5 3 1

Solution  The vectors u, v, and w already span S, so they will be a basis for § if they
are also linearly independent. It is easy to determine that they are not; indeed, w =
2u — 3v. Therefore, we can ignore w, since any linear combinations involving u, v,
and w can be rewritten to involve u and v alone. (Also see Exercise 47 in Section 2.3.)
This implies that S = span (u, v, w) = span (u, v), and since u and v are certainly
linearly independent (why?), they form a basis for S. (Geometrically, this means that
u, v, and w all lie in the same plane and u and v can serve as a set of direction vectors

for this plane.) 1
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Example 3.45

|
|
|
|
Y

\J

Find a basis for the row space of

1 1 3 1 6
2 -1 0 1 -1
A -~
-3 2 1 =2 1
4 1 6 1 3
Solution The reduced row echelon form of A is
1 01 0 -1
01 2 0 3
R —
0 0 0 1 4
0 0 0 O 0

By Theorem 3.20, row(A) = row(R), so it is enough to find a basis for the row space
of R. But row(R) is clearly spanned by its nonzero rows, and it is easy to check that
the staircase pattern forces the first three rows of R to be linearly independent. (This
is a general fact, one that you will need to establish to prove Exercise 33.) Therefore,
a basis for the row space of A is

-

{1t o1 0 —1,{0 1 2 0 3],[0 0 0 1 4]}
We can use the method of Example 3.45 to find a basis for the subspace spanned
by a given set of vectors.

Y

Example 3.46

Rework Example 3.44 using the method from Example 3.45.

Solution  We transpose u, v, and w to get row vectors and then form a matrix with
these vectors as its rows:

3 -1 5
B=]2 1 3
0 -5 1

Proceeding as in Example 3.45, we reduce B to its reduced row echelon form
0 3
1

1
0
0

S«

1
0
and use the nonzero row vectors as a basis for the row space. Since we started with
column vectors, we must transpose again. Thus, a basis for span (u, v, w) is

1

oL 1
8 1

5 5

Remarks

° Infact, we do not need to go all the way to reduced row echelon form—row ech-
elon form is far enough. If Uis a row echelon form of A, then the nonzero row vectors
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of Uwill form a basis for row(A) (see Exercise 33). This approach has the advantage of
(often) allowing us to avoid fractions. In Example 3.46, B can be reduced to

3 -1 5
U=|0 -5 1
0 00
which gives us the basis
3 0
=11, -5
5 1

for span (u, v, w).
«  Observe that the methods used in Example 3.44, Example 3.46, and the Remark
above will generally produce different bases.

We now turn to the problem of finding a basis for the column space of a matrix A.
One method is simply to transpose the matrix. The column vectors of A become the
row vectors of AT, and we can apply the method of Example 3.45 to find a basis for
row(AT). Transposing these vectors then gives us a basis for col(A). (You are asked to
do this in Exercises 21-24.) This approach, however, requires performing a new set
of row operations on AT,

Instead, we prefer to take an approach that allows us to use the row reduced form
of A that we have already computed. Recall that a product Ax of a matrix and a vec-
tor corresponds to a linear combination of the columns of A with the entries of x as
coefficients. Thus, a nontrivial solution to Ax = 0 represents a dependence relation
among the columns of A. Since elementary row operations do not affect the solution
set, if A is row equivalent to R, the columns of A have the same dependence relation-
ships as the columns of R. This important observation is the basis (no pun intended!)
for the technique we now use to find a basis for col(A).

\/

Example 3.41 ‘ Find a basis for the column space of the matrix from Example 3.45,
l 1 1 3 1 6
2 -1 0 1 -1
A =
-3 2 1 -2 1
4 1 6 1 3

solution  Let a; denote a column vector of A and let r; denote a column vector of the
reduced echelon form

1 01 0 -1
01 20

R = 3
0 0 01 4
00 00 0

We can quickly see by inspection that r; = r, + 21, andrs = —r, + 3r, + 4r . (Check
that, as predicted, the corresponding column vectors of A satisfy the same depen-
dence relations.) Thus, r; and r; contribute nothing to col(R). The remaining column

s T PR R
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vectors, 1y, Iy, and ry, are linearly independent, since they are just standard unit vec-
tors. The corresponding statements are therefore true of the column vectors of A.

Thus, among the column vectors of A, we eliminate the dependent ones (a; and as),
and the remaining ones will be linearly independent and hence form a basis for col(A).
What is the fastest way to find this basis? Use the columns of A that correspond to the
columns of R containing the leading Is. A basis for col(A) is

1 1 1
2 -1 1
{al’ a,, a4} - -3 > 2 ’ -2
4 1 A

—t
Warning  Elementary row operations change the column space! In our example,
col(A) # col(R), since every vector in col(R) has its fourth component equal to 0 but
this is certainly not true of col(A). So we must go back to the original matrix A to get
the column vectors for a basis of col(A). To be specific, in Example 3.47, r}, 1), and r,
do not form a basis for the column space of A.

Example 3.48

1
|
g
v

\/

Find a basis for the null space of matrix A from Example 3.47.

Solution There is really nothing new here except the terminology. We simply have
to find and describe the solutions of the homogeneous system Ax = 0. We have al-
ready computed the reduced row echelon form R of A, so all that remains to be done
in Gauss-Jordan elimination is to solve for the leading variables in terms of the free
variables. The final augmented matrix is

1 01 0 —-1(0
[R|O]= 1 20 310
0 0 0 1 410
0 0 0O 0|0
If
X
X2
X = | X
Xy
X5

then the leading 1s are in columns 1, 2, and 4, so we solve for x;, x,, and x, in terms of
the free variables x; and x;. We get x; = —x3 + x5, %, = —2X3 — 3x5, and x, = —4xs.
Setting x; = s and x5 = ¢, we obtain

X —s+t -1 1

X, —2s — 3t -2 -3
X=|x3|= S =3 1|+t 0] =su-+tv

X4 —4t 0 —4

X5 t 0 1

Thus, uand v span null(A), and since they are linearly independent, they form a basis
for null(A).
<«
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Following is a summary of the most effective procedure to use to find bases for
the row space, the column space, and the null space of a matrix A.

1. Find the reduced row echelon form R of A.

2. Use the nonzero row vectors of R (containing the leading 1s) to form a basis for
row(A).

3. Use the column vectors of A that correspond to the columns of R containing the
leading 1s (the pivot columns) to form a basis for col(A).

4. Solve for the leading variables of Rx = 0 in terms of the free variables, set the
free variables equal to parameters, substitute back into x, and write the result as
alinear combination of f vectors (where f is the number of free variables). These
f vectors form a basis for null(A).

If we do not need to find the null space, then it is faster to simply reduce A to row
echelon form to find bases for the row and column spaces. Steps 2 and 3 above remain
valid (with the substitution of the word “pivots” for “leading 1s”).

We have observed that although a subspace will have different bases, each basis has
the same number of vectors. This fundamental fact will be of vital importance from
here on in this book.

Theorem 3.23  The Basis Theorem

Let S be a subspace of R". Then any two bases for S have the same number of

vectors.
Proof Let B = {u,u,...,u}and C = {v;, v, ..., v} be bases for S. We need to
prove that r = 5. We do so by showing that neither of the other two possibilities, r < s
Sherlock Holmes noted, “When orr > s, can occur.
you have eliminated the impos- Suppose that » < s. We will show that this forces C to be a linearly dependent set
sible, whatever remains, however of vectors. To this end, let
improbable, must be the truth” B
(from The Sign of Four by Sir avi + v+t ey, =0 1
Arthur Conan Doyle).

Since B is a basis for S, we can write each v, as a linear combination of the
elements u;:

v, =apu +apu, +- -+ g,

v, = ayu; + au, + -+ ayu,

Vi = aguy + apuy +eot agu,
Substituting the Equations (2) into Equation (1), we obtain

alapu +- -+ au) + glayu +- -+ ayu,) +- -+ ¢lagu, +- -+ agu,) =0

- . T T
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Regrouping, we have

(c,ay, + a5+ + ca)u, + (cay, + cay, 0+ cagu,
+- o+ (qay, + cay + + ca)u, = 0

Now, since B is a basis, the u/’s are linearly independent. So each of the expressions in
parentheses must be zero:

cay toay +otcag, =0

Cay T 6y Tt can =0

€10y, + Gy teeet Cag = 0

This is a homogeneous system of r linear equations in the s variables ¢;, ¢;, .. ., ¢;. (The
fact that the variables appear to the left of the coefficients makes no difference.) Since
r <s, we know from Theorem 2.3 that there are infinitely many solutions. In particu-
lar, there is a nontrivial solution, giving a nontrivial dependence relation in Equa-
tion (1). Thus, C is a linearly dependent set of vectors. But this finding contradicts the
fact that C was given to be a basis and hence linearly independent. We conclude that
r < s is not possible. Similarly (interchanging the roles of B and C), we find that 7 > s
leads to a contradiction. Hence, we must have r = s, as desired. N

Since all bases for a given subspace must have the same number of vectors, we can
attach a name to this number.

Definition 1f Sis a subspace of R, then the number of vectors in a basis for S
is called the dimension of S, denoted dim §.

Remark The zero vector 0 by itself is always a subspace of R". (Why?) Yet any set
containing the zero vector (and, in particular, {0}) is linearly dependent, so {0} cannot
have a basis. We define dim {0} to be 0.

»

Example 3.49

’

Since the standard basis for R" has # vectors, dim R" = ». (Note that this result agrees
with our intuitive understanding of dimension for n = 3.) I

»

Example 3.50

»

In Examples 3.45 through 3.48, we found that row(A) has a basis with three vectors,
col(A) has a basis with three vectors, and null(A) has a basis with two vectors. Hence,

dim(row(A)) = 3, dim(col(A)) = 3, and dim(null(A)) = 2. 4

A single example is not enough on which to speculate, but the fact that the row
and column spaces in Example 3.50 have the same dimension is no accident. Nor is
the fact that the sum of dim(col(A)) and dim(null(A)) is 5, the number of columns of
A. We now prove that these relationships are true in general.
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Theorem 3.24

The rank of a matrix was first de-
fined in 1878 by Georg Frobenius
(1849-1917), although he defined
it using determinants and not as we
have done here. (See Chapter 4.)
Frobenius was a German
mathematician who received his
doctorate from and later taught

at the University of Berlin. Best
known for his contributions to
group theory, Frobenius used
matrices in his work on group

representations.

The row and column spaces of a matrix A have the same dimension.

Proof  Let R be the reduced row echelon form of A. By Theorem 3.20, row(A) =
row(R), so

dim(row(A))

dim(row(R))
= number of nonzero rows of R

= number of leading 1s of R

Let this number be called r.

Now col(A) # col(R), but the columns of A and R have the same dependence
relationships. Therefore, dim(col(A)) = dim(col(R)). Since there are r leading 1s, R
has r columns that are standard unit vectors, e;, e, . . ., €,. (These will be vectors in
R™ if A and R are m X n matrices.) These r vectors are linearly independent, and the
remaining columns of R are linear combinations of them. Thus, dim(col(R)) = r. It
follows that dim(row(A)) = r = dim(col(A)), as we wished to prove, W

Definition  The rank of a matrix A is the dimension of its row and column
spaces and is denoted by rank(A).

For Example 3.50, we can thus write rank(A) = 3.

Remarks

® The preceding definition agrees with the more informal definition of rank that
was introduced in Chapter 2. The advantage of our new definition is that it is much
more flexible.

® The rank of a matrix simultaneously gives us information about linear
dependence among the row vectors of the matrix and among its column vectors. In
particular, it tells us the number of rows and columns that are linearly independent
(and this number is the same in each case!).

Since the row vectors of A are the column vectors of AT, Theorem 3.24 has the
following immediate corollary.

Theorem 3.25

For any matrix A,

rank(AT) = rank(4A)

Proof We have

rank(4?) = dim (col(A7))
= dim (row(A))
rank(A)

Il

Definition  The nullity of a matrix A is the dimension of its null space and is
denoted by nullity(A).
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In other words, nullity(A) is the dimension of the solution space of Ax = 0, which
is the same as the number of free variables in the solution. We can now revisit the
Rank Theorem (Theorem 2.2), rephrasing it in terms of our new definitions.

Theorem 3.26

The Rank Theorem

If A is an m X » matrix, then

rank(A) + nullity(A) = n

Proof Let R be the reduced row echelon form of A, and suppose that rank(A) = r.
Then R has r leading 1s, so there are r leading variables and n — r free variables in the
solution to Ax = 0. Since dim(null(A4)) = n — r, we have

rank(A) + nullity(A) = r + (n — 1)
=n i

Often, when we need to know the nullity of a matrix, we do not need to know the
actual solution of Ax = 0. The Rank Theorem is extremely useful in such situations,
as the following example illustrates.

Example 3.91

\}

Find the nullity of each of the following matrices:

2 3
1 5
M= and
4 7
L3 6
2 1 -2 -1
N=|4 4 -3 1
L2 7 1 8

Solution  Since the two columns of M are clearly linearly independent, rank(M) = 2.
Thus, by the Rank Theorem, nullity(M) = 2 — rank(M) =2 — 2 = 0.

There is no obvious dependence among the rows or columns of N, so we apply
row operations to reduce it to

21 =2 -1
0 2 1 3
0 0 0 0

We have reduced the matrix far enough (we do not need reduced row echelon form
here, since we are not looking for a basis for the null space). We see that there are only
two nonzero rows, so rank(N) = 2. Hence, nullity(N) = 4 — rank(N) =4 — 2 =2,

-
The results of this section allow us to extend the Fundamental Theorem of
Invertible Matrices (Theorem 3.12).
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Theorem 3.21

The nullity of a matrix was defined
in 1884 by James Joseph Sylvester
(1814-1887), who was interested in
invariants—properties of matrices
that do not change under certain
types of transformations. Born

in England, Sylvester became the
second president of the London
Mathematical Society. In 1878,
while teaching at Johns Hopkins
University in Baltimore, he
founded the American Journal of
Mathematics, the first mathematical
journal in the United States.

The Fundamental Theorem of Invertible Matrices: Version 2

Let A be an n X n matrix. The following statements are equivalent:

A is invertible.

. Ax = b has a unique solution for every b in R".
Ax = 0 has only the trivial solution.

. 'The reduced row echelon form of A is I,,.

A is a product of elementary matrices.

rank(A) = n

nullity(A) = 0

. The column vectors of A are linearly independent.
The column vectors of A span R”,

The column vectors of A form a basis for R”.

. The row vectors of A are linearly independent.
The row vectors of A span R".

m. The row vectors of A form a basis for R".

=Tt DR R0 A0 O

Prool  We have already established the equivalence of (a) through (e). It remains to
be shown that statements (f) to (m) are equivalent to the first five statements.

(f) <= (g) Since rank(A) + nullity(A) = n when A isan n X n matrix, it follows from
the Rank Theorem that rank(A) = » if and only if nullity(A) = 0.

(f) = (d) = (¢) = (h) Ifrank(A) = n, then the reduced row echelon form of A has
n leading 1s and so is I,,. From (d) = (c) we know that Ax = 0 has only the trivial
solution, which implies that the column vectors of A are linearly independent, since
Ax is just a linear combination of the column vectors of A.

(h) = (i) If the column vectors of A are linearly independent, then Ax = 0 has only
the trivial solution. Thus, by (c) = (b), Ax = b has a unique solution for every b in
R". This means that every vector b in R" can be written as a linear combination of the
column vectors of A, establishing (i).

(i) = (j) If the column vectors of A span R", then col(A) = R” by definition,
so rank(A) = dim(col(A)) = n. This is (f), and we have already established that
(f) = (h). We conclude that the column vectors of A are linearly independent and so
form a basis for R", since, by assumption, they also span R".

(j) = (f) If the column vectors of A form a basis for R", then, in particular, they are
linearly independent. It follows that the reduced row echelon form of A contains »
leading 1s, and thus rank(A) = ».
The above discussion shows that (f) = (d) = (c)= (h)= (i) = (j) =

(f) <> (g). Now recall that, by Theorem 3.25, rank(A”) = rank(A), so what we have
just proved gives us the corresponding results about the column vectors of A, These
are then results about the row vectors of A, bringing (k), (1), and (m) into the network of
equivalences and completing the proof.

Theorems such as the Fundamental Theorem are not merely of theoretical inter-
est. They are tremendous labor-saving devices as well. The Fundamental Theorem
has already allowed us to cut in half the work needed to check that two square matri-
ces are inverses. It also simplifies the task of showing that certain sets of vectors are
bases for R". Indeed, when we have a set of 1 vectors in R", that set will be a basis for
R" if either of the necessary properties of linear independence or spanning set is true.
The next example shows how easy the calculations can be.

e S e
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Example 3.52

\

Show that the vectors
1 —1 4
2, 0f, and |9
1 7

form a basis for R°.

Solution  According to the Fundamental Theorem, the vectors will form a basis for
R* if and only if a matrix with these vectors as its columns (or rows) has rank 3. We
perform just enough row operations to determine this:

1 -1 4 1 -1 4
A=12 0 91— 1|0 2 1
3 1 7 0 0 =7

We see that A has rank 3, so the given vectors are a basis for R’ by the equivalence of

() and (j).
-

The next theorem is an application of both the Rank Theorem and the Funda-
mental Theorem. We will require this result in Chapters 5 and 7.

Theorem 3.28

Let A be an m X »n matrix. Then:

a. rank(ATA) = rank(A)
b. The n X n matrix AA is invertible if and only if rank(A) = n.

Proof
(a) Since ATA is n X n, it has the same number of columns as A. The Rank Theorem
then tells us that

rank(A) + nullity(A) = n = rank(A"A) + nullity(A"A)

Hence, to show that rank(A) = rank(ATA), it is enough to show that nullity(A) =
nullity(AA). We will do so by establishing that the null spaces of A and ATA are the
same.

To this end, let x be in null(A) so that Ax = 0. Then A"Ax = AT0 = 0, and thus
x is in null(ATA). Conversely, let x be in null(ATA). Then ATAx = 0, so x’ATAx =
x'0 = 0. But then

(Ax) - (Ax) = (Ax)7(Ax) = x"ATAx = 0
and hepce Ax = 0, by Theorem 1.2(d). Therefore, x is in null(A), so null(A) =
null(ATA), as required.

(b) By the Fundamental Theorem, the n X »n matrix ATA is invertible if and only if
rank(ATA) = n. But, by (a) this is so if and only if rank(A) = n. T

We now return to one of the questions posed at the very beginning of this section:
How should we view vectors in R® that live in a plane through the origin? Are they
two-dimensional or three-dimensional? The notions of basis and dimension will help
clarify things.
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A plane through the origin is a two-dimensional subspace of R®, with any set of
two direction vectors serving as a basis. Basis vectors locate coordinate axes in the
plane/subspace, in turn allowing us to view the plane as a “copy” of R%. Before we
illustrate this approach, we prove a theorem guaranteeing that “coordinates” that arise
in this way are unique.

Theorem 3.29

Let S be a subspace of R” and let B = {v,, V5, ..., V;} be a basis for S. For every
vector vin S, there is exactly one way to write v as a linear combination of the basis
vectors in B:

V=Vttt gV

Proof  Since B is a basis, it spans S, so v can be written in at least one way as a linear
combination of v,, V5, . . . , V. Let one of these linear combinations be

V=V, ooV, et gy

Our task is to show that this is the only way to write v as a linear combination of
Vi, Vs . . . » Vi To this end, suppose that we also have

v=dv, +dyv,+ -+ dvy
Then vy + vy +o v = dyvy + dyvy o+ divg
Rearranging (using properties of vector algebra), we obtain
(¢, = d)v, + (¢ — d)vy ++ 4 (g — dpv = 0
Since B is a basis, v, Vy, . . . , Vi are linearly independent. Therefore,
(,—d)=(,—d) = =(x—d)=0

In other words, ¢, = d}, ¢, = dy, . . . , ¢4 = dj, and the two linear combinations are
actually the same. Thus, there is exactly one way to write v as a linear combination of
the basis vectors in B. —

Definition Let Sbeasubspace of R"andlet B = {v,, v,, ..., v;} bea basis for

S. Letvbe avectorin S, and writev = ¢;v; + c;v, + -+ + v Then ¢y, 65, .. 0, Gk
are called the coordinates of v with respect to 13, and the column vector

G

s = |

Ck

is called the coordinate vector of v with respect to 3.

Example 3.53

\

Let £ = {e,, e,, e} be the standard basis for [R®. Find the coordinate vector of
2
v=17
-+
with respect to €.




Solution
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Since v = 2e, + 7e, + 4e,,

2
Vle= 17
4

A

It should be clear that the coordinate vector of every (column) vector in R" with
respect to the standard basis is just the vector itself.

Example 3.94

In Example 3.44, we saw thatu = | —1 |,v =

\

3 2 0
1|,and w = | —5 | are three vec-
5 3 1

tors in the same subspace (plane through the origin) S of R®and that B = {u,v}isa
basis for S. Since w = 2u — 3v, we have

See Figure 3.3.

X4

(Wl = [—ﬂ

Figure 3.3
The coordinates of a vector with
respect to a basis A

Iixercises 3.9

In Exercises 1-4, let S be the collection of vectors [x] in R*
y

that satisfy the given property. In each case, either prove that
S forms a subspace of R* or give a counterexample to show
that it does not.

l.x=0 2.x=0,y=0
3.y =2x 4.xy=0
x
In Exercises 5-8, let S be the collection of vectors | y | in R’
z

that satisfy the given property. In each case, either prove that
S forms a subspace of R® or give a counterexample to show
that it does not.

S5.x=y=z 6.z=2xy=0

\

7.x—y+z=1 8.’x—-y|=|y——z|
9. Prove that every line through the origin in R? is a sub-

space of R’.

10. Suppose S consists of all points in R* that are on the
x-axis or the y-axis (or both). (§ is called the union of
the two axes.) Is S a subspace of R?*? Why or why not?

In Exercises 11 and 12, determine whether b is in col(A)
and whether w is in row(A), as in Example 3.41.

11.A=[1 0 —1},b=H,w=[—1 1 1]

11 1 2
1 1 -3 1
12.A=10 2 1,b=|1|,w=[2 4 -5]

—

-1 —4 0
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13. In Exercise 11, determine whether w is in row(A),
using the method described in the Remark following
Example 3.41.

14. In Exercise 12, determine whether w is in row(A),
using the method described in the Remark following
Example 3.41.

-1
15. If A isthe matrix in Exercise 11,isv = 3
L—1]
S
16. If A isthe matrix in Exercise 12,isv = | —1

2.4

innull(A)?

innull(A)?

In Exercises 17-20, give bases for row(A), col(A), and null(A).

) 1 =g
17.a=|1 0~ 18.4=10 2 1
L 1 -1 —4
11 0o 1
19A4=|0 1 -1 1
001 -1 -1
2 -4 0 2 1
200A=|-1 21 2 3
L1 -2 1 4 4

In Exercises 21-24, find bases for row(A) and col(A) in the
given exercises using A”.

21. Exercise 17 22. Exercise 18
23. Exercise 19 24. Exercise 20
25. Explain carefully why your answers to Exercises 17

and 21 are both correct even though there appear to be
differences.

26. Explain carefully why your answers to Exercises 18
and 22 are both correct even though there appear to
be differences.

In Exercises 27-30, find a basis for the span of the given
vectors.

1 -1 0 1 1 0 2
27.| —1|, 01, Ly28. | =1, |2|,|1]

0 1 -1 1 0 1 2
29.[2 -3 1L, [1 -1 0],[4 -4 1]

30. [0 1 =2

For Exercises 31 and 32, find bases for the spans of the
vectors in the given exercises from among the vectors
themselves.

31. Exercise 29 32. Exercise 30

33. Prove that if R is a matrix in echelon form, then a basis
for row(R) consists of the nonzero rows of R.

34. Prove that if the columns of A are linearly indepen-
dent, then they must form a basis for col(A).

For Exercises 35-38, give the rank and the nullity of the
matrices in the given exercises.

35. Exercise 17
36. Exercise 18
37. Exercise 19
38. Exercise 20

39.If Aisa 3 X 5 matrix, explain why the columns of A
must be linearly dependent.

40. If A is a4 X 2 matrix, explain why the rows of A must
be linearly dependent.

41.If Ais a 3 X 5 matrix, what are the possible values of
nullity(A)?

42.If A is a4 X 2 matrix, what are the possible values of
nullity(A)?

In Exercises 43 and 44, find all possible values of rank(A) as
a varies.

1 2 a a 2 -1
43, A = | -2 4aq 2 44, A = 3 3 =2
a —2 1 -2 -1 a

Answer Exercises 45-48 by considering the matrix with the
given vectors as its columns.

(1717 o
45.Do | 1|,/ 0|, | 1| form a basis for [R*?
L0 L1 1
[ 1] -1 1
46.Do | —1 |, 51],| —3 | form a basis for R?
L 3] 1 1
17 1 1 0
1 1 0 1
47. Do , , , form a basis for R*?
1 0 1 1
o] [1] [1] |1




1 07 O -1
-1 1 0 0
48. Do S form a basis for R*?
o] L-1][ 1 0
17 ol T
49.Do | 1[,|1|,| 0| form a basis for Z3?
L0 L1 L1}
F17 Fol F1
50.Do| 1(,|11,]0 | form abasis for Z3?
L0 L1] L1

In Exercises 51 and 52, show that w is in span(BB) and find
the coordinate vector [w]g.

1] [ 1 1
5..8=¢|2|,| o|;,w=|6
Lo L-1 2
37 [5 1
52B={|1],|1|},w=13
L4] L6 4

In Exercises 53-56, compute the rank and nullity of the
given matrices over the indicated Z,,.

1 10 1 1 2
5310 1 1|overZ, 54. |2 1 2|overZ,
1 01 2 00
(1 3 1 4
55.]2 3 0 1|overZs
11 0 4 0
2 4 0 0 1
6 3 510
56. over Z,
1 0 2 25
111 1 11
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57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

If Ais m X n, prove that every vector in null(A) is
orthogonal to every vector in row(A).

If A and B are n X n matrices of rank #, prove that AB
has rank .

(a) Prove that rank(AB) =< rank(B). [Hint: Review
Exercise 29 in Section 3.1.]
(b) Give an example in which rank(AB) < rank(B).

(a) Prove that rank(AB) = rank(A). [Hint: Review
Exercise 30 in Section 3.1 or use transposes and
Exercise 59(a).]

(b) Give an example in which rank(AB) < rank(A).

(a) Prove that if Uis invertible, then rank(UA) =
rank(A). [Hint: A = U ' (UA).]

(b) Prove that if V is invertible, then rank(AV) =
rank(A).

Prove that an m X n matrix A has rank 1 if and only if

A can be written as the outer product uv’ of a vector u

in R” and vin R".

If an m X n matrix A has rank , prove that A can be

written as the sum of r matrices, each of which has

rank 1. [Hint: Find a way to use Exercise 62.]

Prove that, for m X n matrices A and B, rank (A + B) =
rank(A) + rank(B).

Let A be an n X n matrix such that A> = O. Prove that
rank(A) =< n/2. [Hint: Show that col(A) C null(A) and
use the Rank Theorem.]

Let A be a skew-symmetric n X n matrix.

(See page 162).

(a) Prove that x” Ax = 0 for all x in R".

(b) Prove that I + A is invertible. [Hint: Show that
null(I + A) = {0}.]

m‘ ef Introduction to Linear Transformations

In this section, we begin to explore one of the themes from the introduction to this
chapter. There we saw that matrices can be used to transform vectors, acting as a type
of “function” of the form w = T(v), where the independent variable v and the de-
pendent variable w are vectors. We will make this notion more precise now and look
at several examples of such matrix transformations, leading to the concept of a linear
transformation—a powerful idea that we will encounter repeatedly from here on.
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We begin by recalling some of the basic concepts associated with functions. You will
be familiar with most of these ideas from other courses in which you encountered func-
tions of the form f: R — R [such as f(x) = x*] that transform real numbers into real num-
bers. What is new here is that vectors are involved and we are interested only in functions
that are “compatible” with the vector operations of addition and scalar multiplication.

Consider an example. Let

A=1|2 —1| and v= l:_j
3 4
Then
1 0] 1 1
Av= |2 -1 { _1 = 3
3 4 : =1
This shows that A transforms vintow = 3.

We can describe this transformation more generally. The matrix equation

1 0 X
X

2 —1[]= 2x —y

3 47 L+ gy

x
gives a formula that shows how A transforms an arbitrary vector [ } in R? into the

%
vector | 2x — y | in R®. We denote this transformation by T, and write

3x + 4y
X

AD-[25

3x + 4y

(Although technically sloppy, omitting the parentheses in definitions such as this one
is a common convention that saves some writing. The description of T, becomes

X

TAI:x:| == 2x — y
3x + 4y

with this convention.)

With this example in mind, we now consider some terminology. A transformation
(or mapping or function) T from R" to R" is a rule that assigns to each vector v in R"
a unique vector T(v) in R™. The domain of T'is R", and the codomain of T is R™, We
indicate this by writing T : R" — R™. For a vector v in the domain of T, the vector T(v)
in the codomain is called the image of v under (the action of) T The set of all possible
images T'(v) (as v varies throughout the domain of T') is called the range of T.

In our example, the domain of T, is R? and its codomain is R’, so we write

1

1
Ty: R* - R®. The image of v = [_ J isw= T,(v) = | 3 |. What is the range of
-1
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T,? Tt consists of all vectors in the codomain R’ that are of the form

X 1 0
TAM= -y | =x2|+y -1
3x + 4y 3 4
1
which describes the set of all linear combinations of the column vectors | 2
0 3
and | —1 | of A. In other words, the range of T is the column space of A! (We

4
will have more to say about this later—for now we’ll simply note it as an interesting
observation.) Geometrically, this shows that the range of T, is the plane through the
origin in R* with direction vectors given by the column vectors of A. Notice that the
range of T is strictly smaller than the codomain of T).

Linear Transformations

The example T, above is a special case of a more general type of transformation called
a linear transformation. We will consider the general definition in Chapter 6, but the
essence of it is that these are the transformations that “preserve” the vector operations
of addition and scalar multiplication.

1. Tw+v)=T()+ T(v) foralluandvinR"and
2. T(cv) = cT(v) forall vin R" and all scalars c.

Example 3.95

 —

\/

Consider once again the transformation T : R* — R defined by
3 x

T x} =|2x—y
e 3x + 4y

Let’s check that T'is a linear transformation. To verify (1), we let

u= xl} and v = {xz}
L1 Y2

Then

X+ X

X X\ _ x; + sz) 3
T =T _ 1 i
<LJ i L}j) (L’l 0 200+ x) = O+ )

3(x; + xy) + 4y, + y)

T(u + v)

X+ x x T x
=| 2 +t20—p—y | =] Qx—y)+Q2x;—p)
L 3%, + 3x, + 4y, + 4y, (3x; + 4y)) + (3x, + 4y,)
[ X X
X X,
=125 =y |+ 2% =T{ }+T{ }=T(u)+T(v)
L 3x, + 4y, 3x, + 4y, h Y2
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To show (2), we letv = {x] and let ¢ be a scalar. Then
Y

x cx
e =1{{;])-1([5))
Y &y
X &k
=| 2(cx) = (c&y) | = | c2x — )
3(ex) + 4(cy) c(3x + 4y)
x
x
=c| 2x—y ch{}=CT(V)
3x + 4y 4
Thus, T'is a linear transformation. A

Remark The definition of a linear transformation can be streamlined by com-
bining (1) and (2) as shown below.

T:R" — R" is a linear transformation if

T(e,v, + ¢,vy) = ¢T(vy) + ¢,T(v;) forallv,,v,in R" and scalars ¢, ¢,

In Exercise 53, you will be asked to show that the statement above is equivalent
to the original definition. In practice, this equivalent formulation can save some
writing—try it!

Although the linear transformation T'in Example 3.55 originally arose as a matrix
transformation T, it is a simple matter to recover the matrix A from the definition of
T given in the example. We observe that

% 1 0 1 0

x x
T{}= 2x—y | =x|2 +y—1=2—-1{]
3x + 4y 3 a] |3 4JY
1 0
soT= T, where A= |2 —1|.(Notice that when the variables x and y are lined
3 4

up, the matrix A is just their coefficient matrix.)
Recognizing that a transformation is a matrix transformation is important, since,
as the next theorem shows, all matrix transformations are linear transformations.

Theorem 3.30

Let Abean m X nmatrix. Then the matrix transformation T}, : R” — R defined by
T\(x) = Ax (forxin R")

is a linear transformation.
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Proof Let uand v be vectors in R” and let ¢ be a scalar. Then

Tu+v)=Au+v) =Au+ Av = T,(w) + T,(v)

and Tulev) = Alev) = c(Av) = T, (v)

Hence, T is a linear transformation. s

[

Example 3.96

y
A
(1,2)
T T x, )
| ?
T | I
| |
} f—
| :
= : |
| ¢
Y (x, =y)
(L,—2)
Figure 3.4

v
=

Reflection in the x-axis

|

Let F : R* — R* be the transformation that sends each point to its reflection in the
x-axis. Show that F is a linear transformation.

Solution From Figure 3.4, it is clear that F sends the point (x, y) to the point (x, —y).
Thus, we may write
X x
=12
Y -y

We could proceed to check that F is linear, as in Example 3.55 (this one is even easier
to check!), but it is faster to observe that

R A I R

1 0
Therefore, F {x} = A{x}, where A = {O J, so F is a matrix transformation. It
Y y -

now follows, by Theorem 3.30, that F is a linear transformation. A
e

Example 3.57

P I S

Figure 3.5
A 90° rotation

Let R : R* — R’ be the transformation that rotates each point 90° counterclockwise
about the origin. Show that R is a linear transformation.

Solution  As Figure 3.5 shows, R sends the point (x, y) to the point (=3, x). Thus,

we have Rm ) {_xy} _ xm - y[_ﬂ 3 ﬁ —ﬂm

Hence, R is a matrix transformation and is therefore linear. 1

Observe that if we multiply a matrix by standard basis vectors, we obtain the col-
umns of the matrix. For example,

a b ) a a b " b
c d [0} =|c¢| and |c¢ d L} = |d
e f e e f f

We can use this observation to show that every linear transformation from R" to
R™ arises as a matrix transformation.
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Theorem 3.31

Let T : R" — R" be a linear transformation. Then T is a matrix transformation.
More specifically, T = T, where A is the m X n matrix

A= [T(e):T(e,) i~ : T(e,)]

Proof Letey, e, ..., e, be the standard basis vectors in R" and let x be a vector
in R". We can write x = x,e; + x,e, +* ** + x,e, (where the x;’s are the components
of x). We also know that T'(e,), T(e,), . . ., T(e,) are (column) vectors in R™. Let A =
[T(e,) :T(e,): -+ :T(e,)] be the m X n matrix with these vectors as its columns.
Then
T(x) = T(xie; + x5, ++ - + x,e,)
= x,T(e,) + x,T(e,) ++ -+ x,T(e,)
X1
’ . . Xy
= [T(e):T(ey): - T(e)]| | = Ax
xﬂ

as required. M

The matrix A in Theorem 3.31 is called the standard matrix of the linear trans-
formation T.

.

!
Example 3.58

Show that a rotation about the origin through an angle 6 defines a linear transforma-
tion from R? to R? and find its standard matrix.

Solution Let Ry be the rotation. We will give a geometric argument to establish
the fact that Ry is linear. Let u and v be vectors in R% If they are not parallel, then
Figure 3.6(a) shows the parallelogram rule that determines u + v. If we now apply Ry,
the entire parallelogram is rotated through the angle 6, as shown in Figure 3.6(b). But the
diagonal of this parallelogram must be Ry(u) + Ry(V), again by the parallelogram rule.
Hence, Ry(u + v) = Ry(u) + Ry(v). (What happens if u and v are parallel?)

y y
A A
u-+v Ry(a + v)
”’/// \\\‘\§\R9(u)
\p / \ 175
g / \
/ \
l/ \\
R,
L 9(V)
» X » X
(@) (b)

Figure 3.6

Similarly, if we apply Ry to v and cv, we obtain Ry(v) and Ry(cv), as shown
in Figure 3.7. But since the rotation does not affect lengths, we must then have

W= Ry(cv) = cRy(v), as required. (Draw diagrams for the cases 0 < ¢ <1, —1 < ¢ <0,

and c < —1.)
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y
A
(cos 6, sin 6)
1
K g |rsin®
- b > X
Ry (cv) cv cos 0 (1.0)
Ry(v) v
» X

Figure 3.7 Figure 3.8

Ry(er)

Therefore, Ry is a linear transformation. According to Theorem 3.31, we can find
its matrix by determining its effect on the standard basis vectors e, and e, of R>. Now,

. 1 cos 6
as Figure 3.8 shows, R, = .

0 sin 6
o . . s 0
We can find RGL} similarly, but it is faster to observe that R(,L] must be per-
. . 1 0 ~sinf
pendicular (counterclockwise) to Ry 0 and so, by Example 3.57, Ry 117 coso
0s

(Figure 3.9).

cos@ —sinf
Therefore, the standard matrix of Ry is { ) .
sinf cosf
y
A
(cos 6, sin 6)
V' N
€

(—sin 6, cos 6)

Figure 3.9

Ry(e,) I

The result of Example 3.58 can now be used to compute the effect of any rota-
tion. For example, suppose we wish to rotate the point (2, —1) through 60° about the
origin. (The convention is that a positive angle corresponds to a counterclockwise
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Figure 3.10
A 60° rotation

rotation, while a negative angle is clockwise.) Since cos 60° = 1/2 and sin 60° =
V/3/2, we compute

. { 2}_ {cos60° -sin60°“ 2} _{ 1/2 —\/§/2H 2}

Ol —1]  [sin60°  cos60°]|—-1] [V3/2 1/2]| -1
B [ 2+ \@)/2}
V3 -1)/2

Thus, the image of the point (2, —1) under this rotation is the point ((2 + V3) /2,
(2V/3 — 1)/2) =~ (1.87, 1.23), as shown in Figure 3.10.

.

Example 3.99

Figure 3.11
A projection

|
|
|
|
|

i

(a) Show that the transformation P : R* — R? that projects a point onto the x-axis is
a linear transformation and find its standard matrix.

(b) More generally, if ¢ is a line through the origin in R?, show that the transforma-
tion P, : R* — R? that projects a point onto ¢ is a linear transformation and find its
standard matrix.

Solution (a) As Figure 3.11 shows, P sends the point (x, y) to the point (x, 0). Thus,
1
A= Lo =) <)o ol
y 0 0 0 0 OJly
It follows that P is a matrix transformation (and hence a linear transformation) with

1 0
standard matrix { }
0 0

(b) Let the line ¢ have direction vector d and let v be an arbitrary vector. Then P, is
given by proj,(v), the projection of v onto d, which you’ll recall from Section 1.2 has
the formula

d-
projq(v) = (E—:’Jd

Thus, to show that P, is linear, we proceed as follows:

d
(u)i = Piw) + P(v)

Similarly, P,(cv) = cP,(v) for any scalar ¢ (Exercise 52). Hence, P, is a linear
transformation.
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d
To find the standard matrix of P,, we apply Theorem 3.31. If we letd = { 1}, then

d,
dve; 4, M | {df}
P = =
e (d-d)d &+ d2|d,| 47 + dildd,

o Pe(%):(d-ez)d d, (dl} 1 [dldz}

d-4)° " @+ dild,) @ +d2|

Il

Thus, the standard matrix of the projection is

1 {d% dldz}z{d%/(dﬁd%) d1d2/<d%+d§)}

AT dldd, &) ldd/@+dd)  dydP+ B

As a check, note that in part (a) we could take d = e, as a direction vector for the

1 0
x-axis. Therefore, d, = 1 and d, = 0, and we obtain A = {0 0}, as before.

New Linear Transformations from Old

IfT:R"— R"and S : R" — R? are linear transformations, then we may follow T by
S to form the composition of the two transformations, denoted S © T. Notice that, in
order for S © T to make sense, the codomain of T and the domain of S must match
(in this case, they are both R") and the resulting composite transformation S © T goes
from the domain of T'to the codomain of S (in this case, So T': R — RP). Figure 3.12
shows schematically how this composition works. The formal definition of composi-
tion of transformations is taken directly from this figure and is the same as the cor-
responding definition of composition of ordinary functions:

(So T)v) = S(T(W)

Of course, we would like S © T to be a linear transformation too, and happily we
find that it is. We can demonstrate this by showing that S o T satisfies the definition of
a linear transformation (which we will do in Chapter 6), but, since for the time being
we are assuming that linear transformations and matrix transformations are the same
thing, it is enough to show that S © T'is a matrix transformation. We will use the nota-
tion [T'] for the standard matrix of a linear transformation T.

Rm R® Rp
T S
./——\' o7
v ) S(T(y)) = ( )(V)
ST
Figure 3.12

The composition of transformations
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Theorem 3.32

Let T: R™ — R"and S : R" — R? be linear transformations. Then So T': R" — R?
is a linear transformation. Moreover, their standard matrices are related by

[S°T] = [S][T]

Proof Let [S] = Aand [T] = B. (Notice that A is p X nand Bis n X m.) If vis a vector
in R™, then we simply compute

(S T)v) = S(T(v)) = S(Bv) = A(Bv) = (AB)v

(Notice here that the dimensions of A and B guarantee that the product AB makes
sense.) Thus, we see that the effect of S © T is to multiply vectors by AB, from which

it follows immediately that S o T is a matrix (hence, linear) transformation with
[SoT]=[S][T]. e A

Isn't this a great result? Say it in words: “The matrix of the composite is the prod-
uct of the matrices” What a lovely formula!

\/

Example 3.60

*

Consider the linear transformation T': R* — R? from Example 3.55, defined by

X1
X1
T = 2% — X,
X2
3x, + 4x,

and the linear transformation S : R* — R* defined by

y 2yt ys
S ' _ 39— s
Y| = _
9, 0
ntyty

Find So T: R* — R*,

Solution  'We see that the standard matrices are

2 0 1 1 0
0 3 =
[S] = { =1 and [T]=|2 -1
3 4
1 1 1
so Theorem 3.32 gives
2 0 5 4
o 3 -1} © 3 -7
SoT] = [S][T] = 2 —1]|=
[SeT)= (81T = || | o
3 4
1 1 1 6 3
It follows that
5 4 5x; + 4x,
(s o T){xl} _| 3 -7 {xl} _ 30— 7x
Xy '“1 1 XZ —xl+X2
6 3 6x, + 3%,
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(In Exercise 29, you will be asked to check this result by setting

N X X1
Yy | = T[xl} =| 2% — X
y3 - 3x1 + 4XZ

and substituting these values into the definition of S, thereby calculating (S ° T) {xl}
directly.) %

-

»

Example 3.61

|

Find the standard matrix of the transformation that first rotates a point 90° counter-
clockwise about the origin and then reflects the result in the x-axis.

solution The rotation R and the reflection F were discussed in Examples 3.57 and

0 -1
3.56, respectively, where we found their standard matrices tobe [R] = [ 1 0} and

[F]= [1 0] It follows that the composition F © R has for its matrix
0 -1

[F0R1=[F1[R1=[(1, _ﬂ[f ﬂ%_? “(ﬂ

(Check that this result is correct by considering the effect of F ¢ R on the standard
basis vectors e, and e,. Note the importance of the order of the transformations:
R is performed before F, but we write F o R. In this case, R © F also makes sense. Is
RoF=FoR?) A

<

Inverses of Linear Transformations

Consider the effect of a 90° counterclockwise rotation about the origin followed by
a 90° clockwise rotation about the origin. Clearly this leaves every point in R? un-
changed. If we denote these transformations by Rey and R gy (remember that a nega-
tive angle measure corresponds to clockwise direction), then we may express this
as (Rgg © R_qp) (V) = v for every v in [R?. Note that, in this case, if we perform the
transformations in the other order, we get the same end result: (R_gy © Rg) (V) = Vv
for every vin R?.

Thus, Rey © R_gg (and R_g © Ry to0) is a linear transformation that leaves every
vector in R* unchanged. Such a transformation is called an identity transformation.
Generally, we have one such transformation for every R"—namely, I : R” — R" such
that I(v) = v for every vin R". (If it is important to keep track of the dimension of the
space, we might write I, for clarity.)

So, with this notation, we have Rgy° R_g9 = I = R_g © Rgy. A pair of transforma-
tions that are related to each other in this way are called inverse transformations.

!] jiill“iﬂll Let S and T be linear transformations from R" to R". Then Sand T
are inverse transformationsif Se T =T, and To S = I,.
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Remark  Since this definition is symmetric with respect to S and T, we will say
that, when this situation occurs, S is the inverse of T'and T'is the inverse of S. Further-
more, we will say that S and T are invertible.

In terms of matrices, we see immediately that if S and T are inverse transforma-
tions, then [S][T'] = [Seo T] = [I] = I, where the last I is the identity matrix. (Why
is the standard matrix of the identity transformation the identity matrix?) We
must also have [T'][S] = [T e S] = [I] = L This shows that [S] and [T'] are inverse
matrices. It shows something more: If a linear transformation T is invertible, then its
standard matrix [T'] must be invertible, and since matrix inverses are unique, this
means that the inverse of T'is also unique. Therefore, we can unambiguously use the
notation T~ to refer to the inverse of T. Thus, we can rewrite the above equations as
[T1[T~"] = 1= [T"][T], showing that the matrix of T " is the inverse matrix of [ T].
We have just proved the following theorem.

Theorem 3.33

Let T': R" — R" be an invertible linear transformation. Then its standard matrix
[T] is an invertible matrix, and

[T 1 -1

fiemark Say this one in words too: “The matrix of the inverse is the inverse of
the matrix.” Fabulous!

Example 3.62

\/

Find the standard matrix of a 60° clockwise rotation about the origin in R,

Solution  Earlier we computed the matrix of a 60° counterclockwise rotation about
the origin to be

R ]_[ 1/2 —\/5/2}
01 V32 1/2

Since a 60° clockwise rotation is the inverse of a 60° counterclockwise rotation, we can
apply Theorem 3.33 to obtain

» | v2 —vE2T 1/2 \V3/2
el = 1) ]—[\/5/2 1/2} _[—\/5/2 1/2}

(Check the calculation of the matrix inverse. The fastest way is to use the 2 X 2 short-

cut from Theorem 3.8. Also, check that the resulting matrix has the right effect on the
standard basis in R* by drawing a diagram.)
-

.

Example 3.63 ]

l

>

Determine whether projection onto the x-axis is an invertible transformation, and if
it is, find its inverse.

. 1 0
Solution  The standard matrix of this projection P is [O 0}, which is not invertible

since its determinant is 0. Hence, P is not invertible either. l




¢(a, b)
I

¢ b
|
vy (a, 0)
X

|
é(a,b')

v

Figure 3.13

Projections are not invertible

TExercises 3.6
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Remark Figure 3.13 gives some idea why P in Example 3.63 is not invertible. The
projection “collapses” R” onto the x-axis. For P to be invertible, we would have to have
a way of “undoing” it, to recover the point (a, b) we started with. However, there are
infinitely many candidates for the image of (a, 0) under such a hypothetical “inverse.”
Which one should we use? We cannot simply say that P! must send (a, 0) to (a, b),
since this cannot be a definition when we have no way of knowing what b should be.
(See Exercise 42.)

Associativity

Theorem 3.3(a) in Section 3.2 stated the associativity property for matrix multipli-
cation: A(BC) = (AB)C. (If you didn’t try to prove it then, do so now. Even with all
matrices restricted 2 X 2, you will get some feeling for the notational complexity
involved in an “elementwise” proof, which should make you appreciate the proof we
are about to give.)

Our approach to the proof is via linear transformations. We have seen that every
m X n matrix A gives rise to a linear transformation T, : R" — R™; conversely, every
linear transformation T : R" — R™ has a corresponding m X n matrix [T]. The two
correspondences are inversely related; that is, given A, [T,] = A, and given T, Tj) = T.

LetR = T,, S = Tp,and T = T(. Then, by Theorem 3.32,

A(BC) = (AB)C ifandonlyif Ro(SoT)=(RcS)eT

We now prove the latter identity. Let x be in the domain of T' [and hence in the do-
main of both Ro (So T) and (R © §) o T—why?]. To prove that Re (Se T) = (Re §)° T,
it is enough to prove that they have the same effect on x. By repeated application of the
definition of composition, we have

(Ro(SoT))(x) = R((S° T(x)
= R(S(T'(x)))
= (RoS)(TKx) = ((ReS)° Tx)

as required. (Carefully check how the definition of composition has been used four
times.)

This section has served as an introduction to linear transformations. In Chap-
ter 6, we will take a more detailed and more general look at these transformations.
The exercises that follow also contain some additional explorations of this important
concept.

A

!

\/

1. Let T, : R* - R? be the matrix transformation corre- 2. Let T, : R* — R? be the matrix transformation corre-
3 -1
2 P
spondingto A = L } Find T, (u) and T, (v), spondingto A = | 1 2 |. Find T (u) and
1 4
1 3 1 3
whereu = [2:| andv = \:__2 . TA(V)’VVhereu = {2} andv = |7—2:l'
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In Exercises 3-6, prove that the given transformation is a
linear transformation, using the definition (or the Remark
following Example 3.55).

r r -y
+
3.Tx}=[x "] 4.Tx}= x+2
w —
..y y —y 3x_4y
[x y+z [ x Xtz
.
5. Ty 2[ jl 6.T|y|=|y+z
2x +y—3
Lz wT Yo% Lz x+y

In Exercises 7-10, give a counterexample to show that the
given transformation is not a linear transformation.

oAl e[
ofJ-L7) el

In Exercises 11-14, find the standard matrix of the linear
transformation in the given exercise.

12. Exercise 4

14. Exercise 6

11. Exercise 3

13. Exercise 5

In Exercises 15-18, show that the given transforma-
tion from R to R? is linear by showing that it is a matrix
transformation.

15. F reflects a vector in the y-axis.

16. R rotates a vector 45° counterclockwise about the
origin.

17. D stretches a vector by a factor of 2 in the x-component
and a factor of 3 in the y-component.

18. P projects a vector onto the line y = x.

19. The three types of elementary matrices give rise to five
types of 2 X 2 matrices with one of the following forms:

o o &
0]
o 1]l

Each of these elementary matrices corresponds to a linear
transformation from R? to R, Draw pictures to illustrate
the effect of each one on the unit square with vertices at
(0,0),(1,0),(0,1),and (1, 1).

In Exercises 20-25, find the standard matrix of the given
linear transformation from R* to R*,

20. Counterclockwise rotation through 120° about the
origin

21. Clockwise rotation through 30° about the origin

22. Projection onto the line y = 2x

23. Projection onto the line y = —x

24. Reflection in the line y = x

25. Reflection in the line y = —x

26. Let € be a line through the origin in R%, P, the linear
transformation that projects a vector onto ¢, and F, the
transformation that reflects a vector in ¢.

(a) Draw diagrams to show that F, is linear.

(b) Figure 3.14 suggests a way to find the matrix of F,,
using the fact that the diagonals of a parallelogram
bisect each other. Prove that F,(x) = 2P,(x) — x,
and use this result to show that the standard matrix
of F, is

1 {df—d%

2d,d, }
di + d3| 2dyd,

—di + d?

d
(where the direction vector of £is d = { dl})'
2

(c) If the angle between € and the positive x-axis is 6,
show that the matrix of F, is

sin 26]
—cos26

{cos 26
sin 20

Figure 3.14

In Exercises 27 and 28, apply part (b) or (c) of Exercise 26
to find the standard matrix of the transformation.

27. Reflection in the line y = 2x




28. Reflection in the line y = V3x

29. Check the formula for S o T in Example 3.60, by
performing the suggested direct substitution.

In Exercises 30-35, verify Theorem 3.32 by finding the

matrix of S T (a) by direct substitution and (b) by matrix
multiplication of [S][T].

30. T[xJ \:xl - xz], S[}’l] — [2)’1}
X, Xt % Y2 )2

31. Tl:XI_ [ X+ 2x, }’S[J’l} = {}’1 + 3}’2}
X, | =3x; + %] )2 NN

[y, + 3y,
7 %
32. T[xl = [ . },S[yl} =2ty

—X
1 72 LY — N2

I

r~ A
X
33 T xl 5 {xl + x, = X3 | S[yl] _ [4}/1 - 2}’sz
: 2%, — X, + x3_, Y2 -ty
L X3
_xlw - n=r
34.7| x ={x1+2x2}syl}= +y
. 2 2x2 _ X3 > _yz )’1 2
L x5 ] Nt
X, x + x, -yl 1= )2
35.T X, | = x2+x3 , S Yl = Y27 )3
X5 X+ x5 Ly “nty

In Exercises 36-39, find the standard matrix of the compos-

ite transformation from R to R2.

36. Counterclockwise rotation through 60°, followed by
reflection in the line y = x

37. Reflection in the y-axis, followed by clockwise rotation

through 30°

38. Clockwise rotation through 45°, followed by projec-
tion onto the y-axis, followed by clockwise rotation
through 45°

39, Reflection in the line y = x, followed by counterclock-
wise rotation through 30°, followed by reflection in the

liney = —x
In Exercises 40-43, use matrices to prove the given state-

ments about transformations from R? to R?.

40. If R, denotes a rotation (about the origin) through the
angle 6, then R, © Rg = Ry+p.
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41. If 6 is the angle between lines ¢ and m (through the
origin), then F,, © F, = R,. (See Exercise 26.)

42, (a) If Pis a projection, then Po P = P.
(b) The matrix of a projection can never be invertible.

43. If ¢, m, and n are three lines through the origin, then
F,°F,,© F,is also a reflection in a line through the
origin.

44. Let T be a linear transformation from R? to R* (or
from R® to R?). Prove that T maps a straight line to a
straight line or a point. [Hint: Use the vector form of
the equation of a line.]

45. Let T be a linear transformation from R? to R* (or
from R® to R*). Prove that T maps parallel lines to
parallel lines, a single line, a pair of points, or a single
point.

In Exercises 46-51, let ABCD be the square with vertices
(—1,1),(1,1), (1, —1), and (— 1, —1). Use the results in
Exercises 44 and 45 to find and draw the image of ABCD
under the given transformation.

46. T in Exercise 3

47. D in Exercise 17

48. P in Exercise 18

49. The projection in Exercise 22

50. T in Exercise 31

51. The transformation in Exercise 37

52. Prove that Py(cv) = cP,(v) for any scalar ¢
[Example 3.59(b)].

53. Prove that T: R” — R™ is a linear transformation if and
only if

T(ev, + cv) = T(vy) + ¢,T(vy)

for all v;, v, in R" and scalars ¢y, c,.

54, Prove that (as noted at the beginning of this section)
the range of a linear transformation T': R" — R™ is the
column space of its matrix [T'].

55, If A is an invertible 2 X 2 matrix, what does the
Fundamental Theorem of Invertible Matrices assert
about the corresponding linear transformation T}, in
light of Exercise 197




Figure 3.15
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Vignette

Robotics

In 1981, the U.S. Space Shuttle Columbia blasted off equipped with a device called the
Shuttle Remote Manipulator System (SRMS). This robotic arm, known as Canadarm,
has proved to be a vital tool in all subsequent space shuttle missions, providing strong,
yet precise and delicate handling of its payloads (see Figure 3.15).

Canadarm has been used to place satellites into their proper orbit and to retrieve
malfunctioning ones for repair, and it has also performed critical repairs to the shut-
tle itself. Notably, the robotic arm was instrumental in the successful repair of the
Hubble Space Telescope. Since 1998, Canadarm has played an important role in the
assembly and operation of the International Space Station.

NASA
NASA

A robotic arm consists of a series of links of fixed length connected at joints where
they can rotate. Each link can therefore rotate in space, or (through the effect of the
other links) be translated parallel to itself, or move by a combination (composition) of
rotations and translations. Before we can design a mathematical model for a robotic
arm, we need to understand how rotations and translations work in composition. To
simplify matters, we will assume that our arm is in R,

.



e origin through a

angle 6 is a linear transformation with matrix ] (Figure 3.16(a)). If

inf  cosf
a . . :
v = { b]’ then a translation along v is the transformation

+
T(x) = x + v or, equivalently, T[ﬂ = B N z]

(Figure 3.16(b)).

y
A A Tx)=Xx+V
R(x) X ‘
X
[
-

> X > X

(a) Rotation (b) Translation
Figure 3.16

Unfortunately, translation is not a linear transformation, because T(0) # 0. How-
ever, there is a trick that will get us around this problem. We can represent the vector
x
X = [x] as the vector | y | in R’. This is called representing x in homogeneous coor-
! 1
dinates. Then the matrix multiplication

1 0 al|lx x+a
01 blly|l=|yt+b
0 0 1]L1 1

represents the translated vector T'(x) in homogeneous coordinates.
We can treat rotations in homogeneous coordinates too. The matrix multiplication

cosf —sinf 0 || x xcos@ — ysin
sin6 cosf O || y|=|xsinf + ycos
0 0 1]L1 1

represents the rotated vector R(x) in homogeneous coordinates. The composition T R
that gives the rotation R followed by the translation T'is now represented by the product

1 0 all|lcos® —sinf O cosf® —sinf a
0 1 b||sinf cos® 0| = | sinf cosf b
0 0 1 0 0 1 0 0 1

[Note that Re T # ToR.]

To model a robotic arm, we give each link its own coordinate system (called a
frame) and examine how one link moves in relation to those to which it is directly
connected. To be specific, we let the coordinate axes for the link A; be x; and y;, with
the x;-axis aligned with the link. The length of A, is denoted by a;, and the angle
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(0, 0) relative to A; and

e joint between A, and A,_, is at the poin
A;_,. Hence, relative to A;_,, the coordinate

enoted by 6
a;_1, 0) relative to

(
system for A; has been rotated through 6, and then translated along {QEIJ

(Figure 3.17). This transformation is represented in homogeneous coordinates by
the matrix

cosf; —sin6; a;_,
T, = | sin#, cosf; 0
0 0 1

Figure 3.17

To give a specific example, consider Figure 3.18(a). It shows an arm with three
links in which A, is in its initial position and each of the other two links has been
rotated 45° from the previous link. We will take the length of each link to be 2 units.
Figure 3.18(b) shows Aj; in its initial frame. The transformation

cos45 —sin45 2 1/V2 -1/vV2 2
Ty=|sin45 cos45 0| =|1/V2 1/V2 0
0 0 1 0 0 1

causes a rotation of 45° and then a translation by 2 units. As shown in 3.18(c), this
places A; in its appropriate position relative to A,’s frame. Next, the transformation

cos45 —sin45 2 1/V2 -1/vV2 2
T,=|sind5 cos45 0| ={1/V2 1/V2 0
0 0 1 0 0 1

is applied to the previous result. This places both A; and A, in their correct posi-
tion relative to A), as shown in Figure 3.18(d). Normally, a third transformation T
(a rotation) would be applied to the previous result, but in our case, T} is the identity
transformation because A, stays in its initial position,

Typically, we want to know the coordinates of the end (the “hand”) of the robotic
arm, given the length and angle parameters—this is known as forward kinematics.
Following the above sequence of calculations and referring to Figure 3.18, we see that




(a) A three-link chain (b) A5 in its initial frame

(c) T; puts Az in Ay’s initial frame (d) TLT; puts A3 in Ay’s initial frame
Figure 3.18

we need to determine where the point (2, 0) ends up after T; and T, are applied. Thus,
the arm’s hand is at

2 1/vV2 —1/vV2 272 0 -1 2+V2][2
T, 0|=|1/v2 1/v2 ol|o|=|1 o0 V2 |0
1 0 0 1] L1 L0 0 1 1
(2 +V2
=|2+V2
!

which represents the point (2+V/2, 2+V/2) in homogeneous coordinates. It is easily
checked from Figure 3.18(a) that this is correct.

The methods used in this example generalize to robotic arms in three dimen-
sions, although in R® there are more degrees of freedom and hence more variables.
The method of homogeneous coordinates is also useful in other applications, notably

computer graphics.
: 229
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Chapter 3 Matrices

Applications

Andrei A. Markov (1856-1922)
was a Russian mathematician who
studied and later taught at the
University of St. Petersburg. He
was interested in number theory,
analysis, and the theory of con-
tinued fractions, a recently devel-
oped field that Markov applied

to probability theory. Markov
was also interested in poetry, and
one of the uses to which he put
Markov chains was the analysis
of patterns in poems and other
literary texts.

Markov Ghains

A market research team is conducting a controlled survey to determine people’s pref-
erences in toothpaste. The sample consists of 200 people, each of whom is asked to
try two brands of toothpaste over a period of several months. Based on the responses
to the survey, the research team compiles the following statistics about toothpaste
preferences.

Of those using Brand A in any month, 70% continue to use it the following month,
while 30% switch to Brand B; of those using Brand B in any month, 80% continue to
use it the following month, while 20% switch to Brand A. These findings are summa-
rized in Figure 3.19, in which the percentages have been converted into decimals; we
will think of them as probabilities.

0.30

0.70 ‘°

Figure 3.19

e’ 0.80

0.20

Figure 3.19 is a simple example of a (finite) Markov chain. It represents an evolv-
ing process consisting of a finite number of states. At each step or point in time, the
process may be in any one of the states; at the next step, the process can remain in its
present state or switch to one of the other states. The state to which the process moves
at the next step and the probability of its doing so depend only on the present state
and not on the past history of the process. These probabilities are called transition
probabilities and are assumed to be constants (that is, the probability of moving from
state i to state j is always the same).

Example 3.64

.
>

In the toothpaste survey described above, there are just two states—using Brand
A and using Brand B—and the transition probabilities are those indicated in
Figure 3.19. Suppose that, when the survey begins, 120 people are using Brand A and
80 people are using Brand B. How many people will be using each brand 1 month
later? 2 months later?

Solution The number of Brand A users after 1 month will be 70% of those initially
using Brand A (those who remain loyal to Brand A) plus 20% of the Brand B users
(those who switch from B to A):

0.70(120) + 0.20(80) = 100

Similarly, the number of Brand B users after 1 month will be a combination of those
who switch to Brand B and those who continue to use it:

0.30(120) + 0.80(80) = 100
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We can summarize these two equations in a single matrix equation:
{0.70 0.20} 120] _ [100
0.30 0.80]| 80 100

120 100
Let’s call the matrix P and label the vectors x, = { 80} and x; = [100} (Note

that the components of each vector are the numbers of Brand A and Brand B users,

in that order, after the number of months indicated by the subscript.) Thus, we have
x; = Px,.

Extending the notation, let x; be the vector whose components record the distri-
bution of toothpaste users after k months. To determine the number of users of each
brand after 2 months have elapsed, we simply apply the same reasoning, starting with
x, instead of x,. We obtain

[0.70 0.20} 100 { 90

0.30 0.80][ 100 110

from which we see that there are now 90 Brand A users and 110 Brand B users. A
The vectors x; in Example 3.64 are called the state vectors of the Markov chain,

and the matrix Pis called its transition matrix. We have just seen that a Markov chain
satisfies the relation

Xy = Px, fork=0,1,2,...

From this result it follows that we can compute an arbitrary state vector iteratively
once we know x, and P. In other words, a Markov chain is completely determined by
its transition probabilities and its initial state.

Remarks

°  Suppose, in Example 3.64, we wanted to keep track of not the actual numbers
of toothpaste users but, rather, the relative numbers using each brand. We could con-
vert the data into percentages or fractions by dividing by 200, the total number of
users. Thus, we would start with

o[22
20 0.40
to reflect the fact that, initially, the Brand A-Brand B split is 60%-40%. Check by

0.50
direct calculation that Px, = {O 50}, which can then be taken as x; (in agreement

with the 50-50 split we computed above). Vectors such as these, with nonnegative
components that add up to 1, are called probability vectors.

* Observe how the transition probabilities are arranged within the transition
matrix P. We can think of the columns as being labeled with the present states and the
rows as being labeled with the next states:

Present

A B
A{OVO 0.20
Next
B|0.30 0.80
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Note also that the columns of P are probability vectors; any square matrix with this

The word stochastic is derived property is called a stochastic matrix.
from the Greek adjective
stokhastikos, meaning “capable of We can realize the deterministic nature of Markov chains in another way. Note

aiming” (or guessing). It has come that we can write

to be applied to anything that is

governed by the laws of probability x, = Px; = P(Px,) = P’x,
in the sense that probability makes )

predictions about the likelihood of and, in general,

things happening. In probability

theory, “stochastic processes” form x,=Px, 6L 012...
a generalization of Markov chains.

This leads us to examine the powers of a transition matrix. In Example 3.64, we
have

, {0.70 o.onoyo 0.20} _ 055 030
0.30 0.80][0.30 0.80 045 0.70

What are we to make of the entries of this matrix? The first thing to observe is that P?
is another stochastic matrix, since its columns sum to 1. (You are asked to prove this
in Exercise 14.) Could it be that P? is also a transition matrix of some kind? Consider
one of its entries—say, (P?),, = 0.45. The tree diagram in Figure 3.20 clarifies where
this entry came from.
There are four possible state changes that can occur over 2 months, and these
/ A 043 correspond to the four branches (or paths) of length 2 in the tree. Someone who
initially is using Brand A can end up using Brand B 2 months later in two different
\ ways (marked * in the figure): The person can continue to use A after 1 month and
/ B 0.21* then switch to B (with probability 0.7(0.3) = 0.21), or the person can switch to B after
1 month and then stay with B (with probability 0.3(0.8) = 0.24). The sum of these
probabilities gives an overall probability of 0.45. Observe that these calculations are
\ A 0.06 exactly what we do when we compute (P?),;.
/ It follows that (P?),, = 0.45 represents the probability of moving from state 1
\ (Brand A) to state 2 (Brand B) in two transitions. (Note that the order of the sub-
B 0.24% scripts is the reverse of what you might have guessed.) The argument can be general-

Figure 3.20 ized to show that

(Pk)ij is the probability of moving from state j to state i in k transitions.

In Example 3.64, what will happen to the distribution of toothpaste users in the
long run? Let’s work with probability vectors as state vectors. Continuing our calcula-
tions (rounding to three decimal places), we find

0.60 0.50 0.70 0.20|0.50 0.45
xo ] ’xl == ’XZ = le = —] F
0.40 0.50 0.30 0.80]10.50 0.55
0.70 0.20{| 0.45 0.425 0.412 0.406
X; = Px, = = Xy = , X5 = ,
0.30 0.80][0.55 0.575 0.588 0.594

0.403 0.402 0.401 0.400 0.400
X6 7 » Xg = » Xg = 10 =
0.597 |’ 0.598 0.599 0.600 |’ 0.600

o e e B O
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0.4
and so on. It appears that the state vectors approach (or converge to) the vector [0 6}’

implying that eventually 40% of the toothpaste users in the survey will be using
Brand A and 60% will be using Brand B. Indeed, it is easy to check that, once this
distribution is reached, it will never change. We simply compute

{0.70 0.20} [0.4} B [0.4]
030 0.80J[0.6] (0.6

A state vector x with the property that Px = x is called a steady state vector. In
Chapter 4, we will prove that every Markov chain has a unique steady state vector. For
now, let’s accept this as a fact and see how we can find such a vector without doing any
iterations at all.

We begin by rewriting the matrix equation Px = xas Px = Ix, which canin turnbe
rewritten as (I — P)x = 0. Now this is just a homogeneous system of linear equations

with coefficient matrix I — P, so the augmented matrix is [I — P|0]. In Example 3.64,
we have

1—-070 —0.20 IO _ 0.30 —0.20 10
—-030 1-—-080}0 —0.30 0.20 {0

b ol
0 0]0

X

[I—Pb01=[

which reduces to

So, if our steady state vector is x = [ }, then x, is a free variable and the parametric
X2
solution is

Wi

Xy = t, x2=t

If we require x to be a probability vector, then we must have

l=x, +x,=5t+t=5t

0.4
Therefore, x, = t = = 0.6and x, = # = 0.4,50x = {O 6]’ in agreement with our

iterative calculations above. (If we require x to contain the actual distribution, then

80
in this example we must have x; + x, = 200, from which it follows that x = [120} )

L.

Example 3.65

i
|
v

A psychologist places a rat in a cage with three compartments, as shown in Figure 3.21.
The rat has been trained to select a door at random whenever a bell is rung and to
move through it into the next compartment.

(a) If the rat is initially in compartment 1, what is the probability that it will be in
compartment 2 after the bell has rung twice? three times?

(b) Inthelong run, what proportion of its time will the rat spend in each compartment?

Solution  Let P = [p;] be the transition matrix for this Markov chain. Then

P = Pu = 3 P2 = P13 = D Pn=pn = %’ and p;; = pp = P33 =0
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Figure 3.21

B> (Why? Remember that p;; is the probability of moving from j to i.) Therefore,

0 3 3
P=|; 0 %
1 30
and the initial state vector is
; @‘
Xo= |0 :{“'
0 l
(a) After one ring of the bell, we have
0 % 1 0 0
x,=Px,=|3 0 %2llo|=]|}]|=]05 ;
& .aflp ! 0.5

Continuing (rounding to three decimal places), we find

o 3 310 H 0.333
,=Px=|3; 0 3||3]|=|5|~]|0333
A 5 0.333 b
and ‘I,
o 3 33 2 0.222
X =Px,=|3 0 3||5|=|%]|~]0389
1 2 o} & 0.389

Therefore, after two rings, the probability that the rat is in compartment 2 is 1 ~

0.333, and after three rings, the probability that the rat is in compartment 2 is

is = 0.389. [Note that these questions could also be answered by computing (P?),,

and (P3)21-]

)
i

*—M
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(b) This question is asking for the steady state vector x as a probability vector. As we
saw above, x must be in the null space of I — P, so we proceed to solve the system

1 -3 —3|0 10 —§
[I—rlo] =|-% -2lo| —> |0 1 —1]0
=35 1140 00
X
Hence, if x = | x, |, then x; = t is free and x, = 3£, x, = t. Since x must be a prob-
X3

ability vector, we need 1 = x; + x, + x; = 8¢. Thus, t = § and

e
WL 00w A |

which tells us that, in the long run, the rat spends j of its time in compartment 1 and
2 of its time in each of the other two compartments. *

-
Linear Economic Models

We now revisit the economic models that we first encountered in Section 2.4 and
recast these models in terms of matrices. Example 2.33 illustrated the Leontief closed
model. The system of equations we needed to solve was

Pt L+ T =x

px Tt Lxp+ %=X

1 1 =
2x1+%x2+4x3—x3

In matrix form, this is the equation Ex = x, where

1/4 1/3 1/2 X
E=1|1/4 1/3 1/4|and x=|x,
1/2 1/3 1/4 X3

The matrix E is called an exchange matrix and the vector x is called a price vector.
In general, if E = [e;], then e;; represents the fraction (or percentage) of industry j’s
output that is consumed by industry i and x; is the price charged by industry i for its
output.

In a closed economy, the sum of each column of E is 1. Since the entries of E are
also nonnegative, E is a stochastic matrix and the problem of finding a solution to the
equation

Ex =x (n

is precisely the same as the problem of finding the steady state vector of a Markov
chain! Thus, to find a price vector x that satisfies Ex = x, we solve the equivalent
homogeneous equation (I — E)x = 0. There will always be infinitely many solu-
tions; we seek a solution where the prices are all nonnegative and at least one price
is positive.




236 Chapter 3 Matrices

The Leontief open model is more interesting, In Example 2.34, we needed to solve the
system

x1= 0.2x; + 0.5x, + 0.1x; + 10
Xy = 0.4x1 + O.ZX2 + O.ZX3 + 10
X3= O.le + 0.3X2 + 0.3x3 + 30

In matrix form, we have

x=Cx+d or I-QCx=d (2)
where
02 05 01 x, 10
C=1|04 02 02|,x=|x,|,d=1]10
0.1 03 03 X3 30

The matrix C is called the consumption matrix, x is the production vector, and d is
the demand vector. In general, if C = [¢;], x = [x], and d = [d}], then ¢;j represents
the dollar value of industry #’s output that is needed to produce one dollar’s worth of
industry j’s output, x; is the dollar value (price) of industry s output, and d; is the dol-
lar value of the external demand for industry i’s output. Once again, we are interested
in finding a production vector x with nonnegative entries such that at least one entry
is positive. We call such a vector x a feasible solution.

| -

Example 3.66 Determine whether there is a solution to the Leontief open model determined by the
following consumption matrices:

@ C = [1/4 1/3}

12 12
1/2 1/3 (b)c”[ ]

12 2/3

Solution (a) We have

,_C:{l 0}_{1/4 1/3}_[ 3/4 —1/3}
0 1 1/2 1/3] |-1/2  2/3

so the equation (I — C)x = d becomes
{ 3/4 —1/3} [xl} 3 [dl]
In practice, we would row reduce the corresponding augmented matrix to determine

a solution. However, in this case, it is instructive to notice that the coefficient matrix
I — Cis invertible and then to apply Theorem 3.7. We compute

S ey B PN
Since d,, d,, and all entries of (I — C) ' are nonnegative, so are x, and x,. Thus, we can
find a feasible solution for any nonzero demand vector.

o w
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(b) In this case,

[ 12 -1 o [-4 -6
I—C—[_l/2 2/3] and (I- 0O *[—6 —-6}

so that

o [-4 -6
x=U-C) ld—{_6 —6](1

Since all entries of (I — C) " are negative, this will not produce a feasible solution for
any nonzero demand vector d. A

<t

Motivated by Example 3.66, we have the following definition. (For two m X n
matrices A = [a;] and B= [b;], we will write A = B ifa; = bjforalliandj. Similarly,
we may define A > B, A =< B, and so on. A matrix A is called nonnegative if A = O
and positive if A > O.)

Definition A consumption matrix C is called productive if I — Cis invertible

We now give three results that give criteria for a consumption matrix to be
productive.

Theorem 3.34

Let C be a consumption matrix. Then C is productive if and only if there exists a
production vector x = 0 such thatx > Cx.

Proof  Assume that C is productive. Then I — Cisinvertibleand (I — C)™' = O. Let

Then x = (I — C)"}j=0 and (I — O)x = j > 0. Thus, x — Cx > 0 or, equiva-
lently, x > Cx.

Conversely, assume that there exists a vector x = 0 such that x > Cx. Since
C = O and C # O, we have x > 0 by Exercise 35. Furthermore, there must exist a
real number A with 0 < A < 1 such that Cx < Ax. But then

Cx = C(Cx) = C(Ax) = AMCx) < MAx) = Ak

By induction, it can be shown that 0 = C"x < A"x for all n = 0. (Write out the de-
tails of this induction proof.) Since 0 < A < 1, A" approaches 0 as n gets large. There-
fore, as n — %, A"x — 0 and hence C"x — 0. Since x > 0, we must have C" — O as
n—> ®,

Now consider the matrix equation

g-ou+c+c¢+--+CcHY=1-C"
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Asn — o, C" — O, so we have
I-ou+c+cCc+ ...)=I-0=1

Therefore, I — C is invertible, with its inverse given by the infinite matrix series
I+ C+ C*+....Sinceall the terms in this series are nonnegative, we also have

I-0O'=I1+C+C+ ...=0

Hence, C is productive.

Remarks

* The infinite series I + C + C* + ... is the matrix analogue of the geomet-
ric series 1 + x + x* + .... You may be familiar with the fact that, for |x| < 1,
Il+x+x+ ... =1/0 - x).

° Since the vector Cx represents the amounts consumed by each industry, the in-
equality x > Cx means that there is some level of production for which each industry
is producing more than it consumes.

° For an alternative approach to the first part of the proof of Theorem 3.34, see
Exercise 42 in Section 4.6.

Corollary 3.35  Let C be a consumption matrix. If the sum of each row of C is less than 1, then

C is productive.
The word corollary comes from Proof If
the Latin word corollarium, which 1
refers to a garland given as a re- 1
ward. Thus, a corollary is a little X=1|,.
extra reward that follows from a
theorem. 1

then Cx is a vector consisting of the row sums of C. If each row sum of C is less than
1, then the condition x > Cx is satisfied. Hence, C is productive.

Corollary 3.36 Let C be a consumption matrix. If the sum of each column of C is less than 1, then
C is productive.

Proof If each column sum of Cis less than 1, then each row sum of C” is less than 1.

Hence, C" is productive, by Corollary 3.35. Therefore, by Theorems 3.9(d) and 3.4,
(-0 D)'=U-0)'=0-ch"'=u-ch"'=o0

It follows that (I — C)™' = O too and, thus, C is productive.
You are asked to give alternative proofs of Corollaries 3.35 and 3.36 in Exercise 52 of
Section 7.2.

It follows from the definition of a consumption matrix that the sum of column
j is the total dollar value of all the inputs needed to produce one dollar’s worth of
industry j’s output—that is, industry j’s income exceeds its expenditures. We say that
such an industry is profitable. Corollary 3.36 can therefore be rephrased to state that
a consumption matrix is productive if all industries are profitable.

e
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Population Growth

One of the most popular models of population growth is a matrix-based model, first
introduced by P. H. Leslie in 1945. The Leslie model describes the growth of the fe-
male portion of a population, which is assumed to have a maximum lifespan. The
females are divided into age classes, all of which span an equal number of years. Using
data about the average birthrates and survival probabilities of each class, the model is
then able to determine the growth of the population over time.

»

Example 3.67

v

A certain species of German beetle, the Vollmar-Wasserman beetle (or VW beetle,
for short), lives for at most 3 years. We divide the female VW beetles into three age
classes of 1 year each: youths (0-1 year), juveniles (1-2 years), and adults (2-3 years).
The youths do not lay eggs; each juvenile produces an average of four female beetles;
and each adult produces an average of three females.

The survival rate for youths is 50% (that is, the probability of a youth’s surviving to
become a juvenile is 0.5), and the survival rate for juveniles is 25%. Suppose we begin
with a population of 100 female VW beetles: 40 youths, 40 juveniles, and 20 adults.
Predict the beetle population for each of the next 5 years.

Solution  After 1 year, the number of youths will be the number produced during
that year:
40 X 4 + 20 X 3 = 220

The number of juveniles will simply be the number of youths that have survived:

40 X 0.5 =20
Likewise, the number of adults will be the number of juveniles that have survived:
40 X 0.25 =10

We can combine these into a single matrix equation

0 4 31| 40 220

05 0 0/40 | =] 20

0 025 0][20 10
40 220
or Lx,=x;, where x,=| 40 |isthe initial population distribution vectorandx; =| 20
20 10

is the distribution after 1 year. We see that the structure of the equation is exactly the
same as for Markov chains: x;,; = Lx; for k = 0, 1, 2, ... (although the interpretation
is quite different). It follows that we can iteratively compute successive population

distribution vectors. (It also follows that x, = L*x, for k = 0, 1,2, ..., as for Markov
chains, but we will not use this fact here.)
We compute
0 4 370[220] [110
x,=Lx=[05 0 0] 20|=]110
L0 025 0L 104 L 5
[0 4 370[110] [455
x,=Lx,=|05 0 0|/110]=] 55
L0 025 0JL 5] L 27.5
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0 4 37 455 302.5
x,=Lx;=[05 0 0| 55 |=|2275
L 025 0] 275 13.75
i 4 37[ 3025 951.2
xs=1Lx,=[05 0 01| 2275 |=|1512
L0 025 0]| 13.75 56.88

Therefore, the model predicts that after 5 years there will be approximately
951 young female VW beetles, 151 juveniles, and 57 adults. (Nofe: You could argue
that we should have rounded to the nearest integer at each step—for example, 28
adults after step 3—which would have affected the subsequent iterations. We elected
not to do this, since the calculations are only approximations anyway and it is much
easier to use a calculator or CAS if you do not round as you go.) ‘L

i

The matrix L in Example 3.67 is called a Leslie matrix. In general, if we have a
population with n age classes of equal duration, L will be an n X n matrix with the
following structure:

bl bZ b3 o bn—l bn
s 0 0 =+ 0 0
0 e
[ s, 0 0 0
0 0 s3 =+ 0 0
Lo 0 0 -+ s, 04
Here, by, b,, . . . are the birth parameters (b; = the average numbers of females pro-
duced by each female in class i) and sy, 5,, . . . are the survival probabilities (s; = the

probability that a female in class i survives into class i + 1).

What are we to make of our calculations? Overall, the beetle population appears
to be increasing, although there are some fluctuations, such as a decrease from 250 to
225 from year 1 to year 2. Figure 3.22 shows the change in the population in each of
the three age classes and clearly shows the growth, with fluctuations.

A
4000 Youths
é 3000 -+
5 Juveniles
g
& 20001
a
1000+
Adults
n /_—-.
0 f T et ; i f T — I f >
0 2 4 6 8 10

Time (in years)

Figure 3.22




Section 3.7 Applications 24

0.9+

0.7 +
Youths
0.6

0.5 1

0.3+ Juveniles

Percent of population

0.2 1

Adults

0 f f i t
0 5 10 15 20

Time (in years)

v

Figure 3.23

If, instead of plotting the actual population, we plot the relative population in
each class, a different pattern emerges. To do this, we need to compute the fraction of
the population in each age class in each year; that is, we need to divide each distribu-
tion vector by the sum of its components. For example, after 1 year, we have

i | [220 0.88
—x, =—| 20| =008
250 250

10 0.04

which tells us that 88% of the population consists of youths, 8% is juveniles, and 4% is
adults. If we plot this type of data over time, we get a graph like the one in Figure 3.23,
which shows clearly that the proportion of the population in each class is approaching
a steady state. It turns out that the steady state vector in this example is

0.72
0.24
0.04

That is, in the long run, 72% of the population will be youths, 24% juveniles, and 4%
adults. (In other words, the population is distributed among the three age classes in
the ratio 18:6:1.) We will see how to determine this ratio exactly in Chapter 4.

Graphs and Digraphs

There are many situations in which it is important to be able to model the inter-
relationships among a finite set of objects. For example, we might wish to describe
various types of networks (roads connecting towns, airline routes connecting cit-
ies, communication links connecting satellites, etc.) or relationships among groups
or individuals (friendship relationships in a society, predator-prey relationships in
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Figure 3.24

Two representations of the same
graph

The term vertex (vertices is the
plural) comes from the Latin verb
vertere, which means “to turn.” In
the context of graphs (and geom-
etry), a vertex is a corner—a point
where an edge “turns” into a dif-
ferent edge.

an ecosystem, dominance relationships in a sport, etc.). Graphs are ideally suited to
modeling such networks and relationships, and it turns out that matrices are a useful
tool in their study.

A graph consists of a finite set of points (called vertices) and a finite set of
edges, each of which connects two (not necessarily distinct) vertices. We say that
two vertices are adjacent if they are the endpoints of an edge. Figure 3.24 shows an
example of the same graph drawn in two different ways. The graphs are the “same”
in the sense that all we care about are the adjacency relationships that identify the
edges.

We can record the essential information about a graph in a matrix and use matrix
algebra to help us answer certain questions about the graph. This is particularly use-
ful if the graphs are large, since computers can handle the calculations very quickly.

Definilion 1f G is a graph with n vertices, then its adjacency matrix is the
n X n matrix A [or A(G)] defined by

_ J1 ifthereis an edge between vertices i and j
) 0 otherwise

Figure 3.25 shows a graph and its associated adjacency matrix.

Vi (]
01 1 1
1 1 1 0
A:
1 1 0 0
1 0 0 0
vy vy
Figure 3.25

A graph with adjacency matrix A

Remark  Observe that the adjacency matrix of a graph is necessarily a
symmetric matrix. (Why?) Notice also that a diagonal entry a; of A is zero un-
less there is a loop at vertex i. In some situations, a graph may have more than one
edge between a pair of vertices. In such cases, it may make sense to modify the
definition of the adjacency matrix so that a; equals the number of edges between
vertices 7 and j.

We define a path in a graph to be a sequence of edges that allows us to travel
from one vertex to another continuously. The length of a path is the number of edges
it contains, and we will refer to a path with k edges as a k-path. For example, in the
graph of Figure 3.25, v,v;,v, is a 3-path, and v,v,v,v,v,vs is a 5-path. Notice that the
first of these is closed (it begins and ends at the same vertex); such a path is called a
circuit. The second uses the edge between v, and v, twice; a path that does not include
the same edge more than once is called a simple path.

e e T
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We can use the powers of a graph’s adjacency matrix to give us information about
the paths of various lengths in the graph. Consider the square of the adjacency matrix
in Figure 3.25:

O = N W
— N W N
[ N I S I
p— = O

What do the entries of A? represent? Look at the (2, 3) entry. From the definition of
matrix multiplication, we know that

2y
(A3 = anay; + anay + ayas3 + aydg

The only way this expression can result in a nonzero number is if at least one of the
products a,;a;, that make up the sum is nonzero. But aa;; is nonzero if and only if
both a,; and a; are nonzero, which means that there is an edge between v, and vy as
well as an edge between v; and vs. Thus, there will be a 2-path between vertices 2 and
3 (via vertex k). In our example, this happens for k = 1 and for k = 2, so

(A2)23 = Ay a3 T apndy T apds; toayag
1+14+1:14+1-0+0-0
=2

I

which tells us that there are two 2-paths between vertices 2 and 3. (Check to see that
the remaining entries of A* correctly give 2-paths in the graph.) The argument we
have just given can be generalized to yield the following result, whose proof we leave
as Exercise 72.

If A is the adjacency matrix of a graph G, then the (i, j) entry of A¥ is equal to the
number of k-paths between vertices i and j.

Example 3.68

V1 V2
i ” Vs
Figure 3.26
A digraph

Y

How many 3-paths are there between v, and v, in Figure 3.25?

Solution  We need the (1, 2) entry of A%, which is the dot product of row 1 of A* and
column 2 of A. The calculation gives

(A, =31+2:1+1-1+0:0=6

so there are six 3-paths between vertices 1 and 2, which can be easily checked. T
P

In many applications that can be modeled by a graph, the vertices are ordered
by some type of relation that imposes a direction on the edges. For example,
directed edges might be used to represent one-way routes in a graph that models
a transportation network or predator-prey relationships in a graph modeling an
ecosystem. A graph with directed edges is called a digraph. Figure 3.26 shows an
example.

An easy modification to the definition of adjacency matrices allows us to use
them with digraphs.
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Definition If G is a digraph with n vertices, then its adjacency matrix is the
n X n matrix A [or A(G)] defined by

{1 if there is an edge from vertex i to vertex j
j

0 otherwise

Thus, the adjacency matrix for the digraph in Figure 3.26 is

—_— -0 O
S O =

o O O ==
L= O O O

Not surprisingly, the adjacency matrix of a digraph is not symmetric in general.
(When would it be?) You should have no difficulty seeing that A* now contains the
numbers of directed k-paths between vertices, where we insist that all edges along a
path flow in the same direction. (See Exercise 72.) The next example gives an applica-
tion of this idea.

-

Example 3.69

Figure 3.21
A tournament

Five tennis players (Djokovic, Federer, Nadal, Roddick, and Safin) compete in a
round-robin tournament in which each player plays every other player once. The
digraph in Figure 3.27 summarizes the results. A directed edge from vertex i to ver-
tex j means that player i defeated player j. (A digraph in which there is exactly one
directed edge between every pair of vertices is called a tournament.)

The adjacency matrix for the digraph in Figure 3.27 is

b
Il
O O - O O
S O O O =
_ O O = O
S O = =
O = O =

where the order of the vertices (and hence the rows and columns of A) is determined
alphabetically. Thus, Federer corresponds to row 2 and column 2, for example.
Suppose we wish to rank the five players, based on the results of their matches. One
way to do this might be to count the number of wins for each player. Observe that the
number of wins each player had is just the sum of the entries in the corresponding row;
equivalently, the vector containing all the row sums is given by the product Aj, where

-
Il
— e e
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In our case, we have

010 1 1][1 3
001 1 1|1 3
Aj=|1 0 0 1 off1]=]2
0000 1[[1 1
001 0 0f[1 1

which produces the following ranking:

First:  Djokovic, Federer (tie)
Second: Nadal
Third: Roddick, Safin (tie)

Are the players who tied in this ranking equally strong? Djokovic might argue that
since he defeated Federer, he deserves first place. Roddick would use the same type
of argument to break the tie with Safin. However, Safin could argue that he has two
“indirect” victories because he beat Nadal, who defeated two others; furthermore,
he might note that Roddick has only one indirect victory (over Safin, who then
defeated Nadal).

Since in a group of ties there may not be a player who defeated all the others in the
group, the notion of indirect wins seems more useful. Moreover, an indirect victory
corresponds to a 2-path in the digraph, so we can use the square of the adjacency ma-
trix. To compute both wins and indirect wins for each player, we need the row sums
of the matrix A + A%, which are given by

01011 0021 2 1
001 11 1 0111 1
A+A)j=||1 00 1 0[+|0 1 0 1 2 1
00001 00100 1
00100 1 0010 1

0o 1 2 2 37[1 8

1 02 2 2||1 7

={1 10 2 2[{1]|=]6

001 0 1|1 2

(1 0 1 1 0oJ[! 3

Thus, we would rank the players as follows: Djokovic, Federer, Nadal, Safin, Roddick.

IEXBI’GiSES 3.1

Markov Chains

05 0.
In Exercises 1-4, let P = { . 3}
0.5 0.7

be the transition ma-

Unfortunately, this approach is not guaranteed to break all ties. A

1. Compute x, and x,.

2. What proportion of the state 1 population will be in
state 2 after two steps?

trix for a Markov chain with two states. Let X, = [ } be 3. What proportion of the state 2 population will be in

05 state 2 after two steps?

the initial state vector for the population.

4. Find the steady state vector.
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L L1
2 3 3
In Exercises 5-8, let P = | 0} % | be the transition ma-
11
5 0 120
trix for a Markov chain with three states. Let x, = | 180 | be
90

the initial state vector for the population.
5. Compute x; and x;.

6. What proportion of the state 1 population will be in
state 1 after two steps?

7. What proportion of the state 2 population will be in
state 3 after two steps?

8. Find the steady state vector.

9. Suppose that the weather in a particular region
behaves according to a Markov chain. Specifically,
suppose that the probability that tomorrow will be
a wet day is 0.662 if today is wet and 0.250 if today
is dry. The probability that tomorrow will be a dry
day is 0.750 if today is dry and 0.338 if today is wet.
[This exercise is based on an actual study of rainfall
in Tel Aviv over a 27-year period. See K. R. Gabriel
and J. Neumann, “A Markov Chain Model for Daily
Rainfall Occurrence at Tel Aviv;” Quarterly Journal of
the Royal Meteorological Society, 88 (1962),
pp. 90-95.]

(a) Write down the transition matrix for this Markov
chain.

(b) If Monday is a dry day, what is the probability that
Wednesday will be wet?

(c) In the long run, what will the distribution of wet
and dry days be?

10. Data have been accumulated on the heights of children
relative to their parents. Suppose that the probabilities
that a tall parent will have a tall, medium-height, or
short child are 0.6, 0.2, and 0.2, respectively; the prob-
abilities that a medium-height parent will have a tall,
medium-height, or short child are 0.1, 0.7, and 0.2, re-
spectively; and the probabilities that a short parent will
have a tall, medium-height, or short child are 0.2, 0.4,
and 0.4, respectively.

(a) Write down the transition matrix for this Markov
chain.

(b) What is the probability that a short person will
have a tall grandchild?

(c) If20% of the current population is tall, 50% is of
medium height, and 30% is short, what will the
distribution be in three generations?

(d) What proportion of the population will be tall, of
medium height, and short in the long run?

11. A study of pifion (pine) nut crops in the American
southwest from 1940 to 1947 hypothesized that
nut production followed a Markov chain. [See
D. H. Thomas, “A Computer Simulation Model of
Great Basin Shoshonean Subsistence and Settlement
Patterns;” in D. L. Clarke, ed., Models in Archaeology
(London: Methuen, 1972).] The data suggested that
if one year’s crop was good, then the probabilities that
the following year’s crop would be good, fair, or poor
were 0.08, 0.07, and 0.85, respectively; if one year’s
crop was fair, then the probabilities that the follow-
ing year’s crop would be good, fair, or poor were 0.09,
0.11, and 0.80, respectively; if one year’s crop was poor,
then the probabilities that the following year’s crop
would be good, fair, or poor were 0.11, 0.05, and 0.84,
respectively.

(a) Write down the transition matrix for this Markov
chain.

(b) If the pifion nut crop was good in 1940, find the
probabilities of a good crop in the years 1941
through 1945.

(c) In the long run, what proportion of the crops will
be good, fair, and poor?

12. Robots have been programmed to traverse the maze
shown in Figure 3.28 and at each junction randomly
choose which way to go.

Figure 3.28

(a) Construct the transition matrix for the Markov
chain that models this situation.

(b) Suppose we start with 15 robots at each junc-
tion. Find the steady state distribution of robots.
(Assume that it takes each robot the same amount
of time to travel between two adjacent junctions.)

13. Let j denote a row vector consisting entirely of 1s. Prove
that a nonnegative matrix P is a stochastic matrix if
and only if jP = j.




14. (a) Show that the product of two 2 X 2 stochastic
matrices is also a stochastic matrix.
(b) Prove that the product of two 1 X  stochastic
matrices is also a stochastic matrix.
(c) Ifa2 X 2 stochastic matrix P is invertible, prove that
P lisalso a stochastic matrix.

Suppose we want to know the average (or expected) number
of steps it will take to go from state i to state j in a Markov
chain. It can be shown that the following computation
answers this question: Delete the jth row and the jth column
of the transition matrix P to get a new matrix Q. (Keep

the rows and columns of Q labeled as they were in P) The
expected number of steps from state i to state j is given by
the sum of the entries in the column of (I — Q)™ labeled i.

15. In Exercise 9, if Monday is a dry day, what is the
expected number of days until a wet day?

16. In Exercise 10, what is the expected number of genera-
tions until a short person has a tall descendant?

17. In Exercise 11, if the pifion nut crop is fair one year, what
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02 04 01 04

035 025 0
03 02 02 0.1
29.10.15 055 0.35 30.

0 04 05 03
045 0.30 0.60
05 0 02 0.2

In Exercises 31-34, a consumption matrix C and a demand
vector d are given. In each case, find a feasible production
vector X that satisfies Equation (2).

A 1/2 1/4}d= H

is the expected number of years until a good crop occurs? #°34.C =10 02 02|, d= |35

18. In Exercise 12, starting from each of the other junc-
tions, what is the expected number of moves until a
robot reaches junction 42

Linear Economic Models

In Exercises 19-26, determine which of the matrices are
exchange matrices. For those that are exchange matrices,
find a nonnegative price vector that satisfies Equation (1).

[1/2 1/4 1 2
19. / / } 20. 52y
L1/2 3/4 11/2 1/2
(04 0.7 [0.1 0.6
21. 22.
106 04 109 04
[1/3 0 0 (12 1 0
23.11/3 3/2 0 24.1 0 0 1/3
11/3 —-1/2 1 L1/2 0 2/3
03 0 0.2 [0.50 0.70 0.35
25.103 05 03 26.0.25 030 0.25
104 05 05 1025 0 0.40

In Exercises 27-30, determine whether the given consump-
tion matrix is productive.

02 03
27. { } 28.
05 0.6

020 0.10 0.10
030 0.15 045
0.15 030 0.50

11/2 1/2 3
(0.1 0.4 2
32.C = ,d =
103 02 1
(05 02 0.1] 3
33.C=|0 04 02|,d=]2
L0 0 05 | 4
01 04 0.1] (1.1
103 02 03] 1 2.0

35. Let A be an n X n matrix, A = O. Suppose that
Ax < x for some xin R”, x = 0. Prove that x > 0.

36. Let A, B, C, and D be n X n matricesand x and y
vectors in R”". Prove the following inequalities:

(a) fA=B=0and C =D = O, then
AC = BD = O.

(b) If A > Bandx = 0,x # 0, then Ax > Bx.

Population Growth

37. A population with two age classes has a Leslie matrix

5
L= {O P 0}. If the initial population vector is

10
Xy = 5| compute X;, X,, and X,.

38. A population with three age classes has a Leslie matrix

0 1 2
L=1]02 0 0 |.Iftheinitial population
0 05 0
10
vectorisx, = | 4 |, compute X, X,, and X;.
3
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39.

40.

41.

42.

43.

s 44,
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A population with three age classes has a Leslie matrix

1 1 3
L=107 0 0].If the initial population vector is
0 05 0
100
Xy = | 100 |, compute X;, X,, and X.
100

A population with four age classes has a Leslie matrix
0 1 2 5

05 0 0 0 i .
L= . If the initial population
0 07 0 0
0 0 03 0
10
10

vector is X, = ol compute X;, X,, and X;.

10

A certain species with two age classes of 1 year’s dura-
tion has a survival probability of 80% from class 1 to
class 2. Empirical evidence shows that, on average,
each female gives birth to five females per year. Thus,
two possible Leslie matrices are

0 5 4 1
R
08 0 08 0

(a) Starting with x, = {10}, compute Xy, . . ., X; in
each case. i
(b) For each case, plot the relative size of each age
class over time (as in Figure 3.23). What do your
graphs suggest?
Suppose the Leslie matrix for the VW beetle is L =
0 0 20
01 0 0 |. Starting with an arbitrary x, deter-
0 05 0
mine the behavior of this population.
Suppose the Leslie matrix for the VW beetle is
0 0 20
L=]s 0 0 |. Investigate the effect of varying
0 05 0
the survival probability s of the young beetles.
Woodland caribou are found primarily in the western
provinces of Canada and the American northwest.
The average lifespan of a female is about 14 years.
The birth and survival rates for each age bracket are

given in Table 3.4, which shows that caribou cows do
not give birth at all during their first 2 years and give

birth to about one calf per year during their middle
years. The mortality rate for young calves is very high.

© Howard Sandler/Shutterstock.com

Tahle 3.4
Age Birth Survival
(years) Rate Rate
0-2 0.0 0.3
2-4 0.4 0.7
4-6 1.8 0.9
6-8 1.8 0.9
8-10 1.8 0.9
10-12 1.6 0.6
12-14 0.6 0.0

The numbers of woodland caribou reported in
Jasper National Park in Alberta in 1990 are shown in
Table 3.5. Using a CAS, predict the caribou population
for 1992 and 1994. Then project the population for the
years 2010 and 2020. What do you conclude? (What
assumptions does this model make, and how could it
be improved?)

Tahle 3.5 Woodland Caribou
Population in Jasper
National Park, 1990
Age
(years) Number
0-2 10
2-4 2
4-6 8
6-8 5
8-10 12
10-12 0
12-14 1

Source: World Wildlife Fund Canada
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Graphs and Digraphs

In Exercises 45-48, determine the adjacency matrix of the
given graph.

45 V1 Vo

V4 V3

46.
@ G

V4 V3
47, Vi
< ‘ . \e
Vo V3 V4 Vs
48. v, V2 V3
V4 Vs

In Exercises 49-52, draw a graph that has the given adja-
cency matrix.

001 1 1 01 0 1
o |1 000 s |11 LT
1 000 0101
1.0 0 0 1 11 0
000 1 1 0 000 0 1 1
000 1 1 000 1 1
5./|1 0 0 0 1| 52|00 0 1 1
1 100 0 11100
01 1 00 1 1100
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In Exercises 53-56, determine the adjacency matrix of the
given digraph.

53.v; N V2
A A
V4 h V3
54, Vi
V4 V2
S — ,/
V3
55. V1
V2
V4
56.v 1 _ Vo
Y A
Vs
V4 h V3

In Exercises 57-60, draw a digraph that has the given adja-
cency matrix.

01 0 0 01 0 0

1 0 0 1 0 0 0 1
57. 58.

01 0 O 1 0 0 0

1 01 1 0 0 1 0
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00 1 0 1 0100 1 adjacency matrix A for this digraph and use it to an-
100 1 0 000 1 0 swer the following questions.
59. {0 0 0 0 1 60. |1 0 0 1 1 Rodent
1 01 00 1 01 0 O
01 010 11 0 0 O

In Exercises 61-68, use powers of adjacency matrices to
determine the number of paths of the specified length
between the given vertices.

61. Exercise 50, length 2, v, and v, Fox
62. Exercise 52, length 2, v, and v,
63. Exercise 50, length 3, v, and v,

Insect

64. Exercise 52, length 4, v, and v, Fish Bird

65. Exercise 57, length 2, v, to v i
. B LA Figure 3.30
66. Exercise 57, length 3, v, to v,

67. Exercise 60, length 3, v, to v, (a) Which species has the most direct sources of food?
How does A show this?

(b) Which species is a direct source of food for the
most other species? How does A show this?

68. Exercise 60, length 4, v, to v,
69. Let A be the adjacency matrix of a graph G.

(a) If row i of A is all zeros, what does this imply (c) If a eats band b eats ¢, we say that a has c as an
about G? indirect source of food. How can we use A to de-
(b) If column j of A is all zeros, what does this imply termine which species has the most indirect food
about G? sources? Which species has the most direct and
70. Let A be the adjacency matrix of a digraph D. indirect food sources combined? e
(a) If row i of A% is all zeros, what does this imply (d) Suppose.that pollutants lall t_he Rldnts i1 th1§ food
about D? web, and we want to determine the effect this

(b) If column j of A? is all zeros, what does this imply change.will haveon .the icosystem. Const¥uct a
about D? new adjacency matrix A* from A by deleting the

row and column corresponding to plants. Repeat
parts (a) to (c) and determine which species are
the most and least affected by the change.

What will the long-term effect of the pollution be?
What matrix calculations will show this?

71. Figure 3.29 is the digraph of a tournament with six
players, P, to Ps. Using adjacency matrices, rank the
players first by determining wins only and then by (e)
using the notion of combined wins and indirect wins,

in E le 3.69.
as in Example 3.6 73. Five people are all connected by e-mail. Whenever

P, P one of them hears a juicy piece of gossip, he or she

> passes it along by e-mailing it to someone else in the
group according to Table 3.6.
(a) Draw the digraph that models this “gossip
P Py network” and find its adjacency matrix A.
Table 3.6
Y Y
P Sender Recipients
Ps Ps Ann Carla, Ehaz
Figure 3.29 Bert Carla, Dana
Carla Ehaz
72. Figure 3.30 is a digraph representing a food web in Dana Ann, Carla
a small ecosystem. A directed edge from a to b indi- Ehaz Bert

cates that a has b as a source of food. Construct the

— o w “
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(b) Define a step as the time it takes a person to e-mail A graph is called bipartite if its vertices can be subdi-

everyone on his or her list. (Thus, in one step, vided into two sets U and V such that every edge has one
gossip gets from Ann to both Carla and Ehaz.) If endpoint in U and the other endpoint in V. For example,
Bert hears a rumor, how many steps will it take the graph in Exercise 48 is bipartite with U = {v,, v,, v;}
for everyone else to hear the rumor? What matrix and V = {v,, vs}. In Exercises 76-79, determine whether a
calculation reveals this? graph with the given adjacency matrix is bipartite.

(c) If Ann hears a rumor, how many steps will it take
for everyone else to hear the rumor? What matrix
calculation reveals this?

76. The adjacency matrix in Exercise 49
77. The adjacency matrix in Exercise 52

(d) In general, if A is the adjacency matrix of a 78. The adjacency matrix in Exercise 51
digraph, how can we tell if vertex 7 is connected to 0 0 1 0 1 17
vertex j by a path (of some length)? 0010 1 1
[The gossip network in this exercise is reminiscent
; . A ) 1101 00
of the notion of “six degrees of separation” (found in the 79. G B 1 2
play and film by that name), which suggests that any
two people are connected by a path of acquaintances 110100
whose length is at most 6. The game “Six Degrees of L1 1 0 1 0 0d

Kevin Bacon” more frivolously asserts that all actors are

connected to the actor Kevin Bacon in such a way.] 80. (a) Prove thata graph is bipartite if and only if its

vertices can be labeled so that its adjacency matrix

74. Let A be the adjacency matrix of a graph G. can be partitioned as

(a) By induction, prove that for all n = 1, the (i, j) 0B
entry of A" is equal to the number of n-paths A= {}
between vertices i and j.

(b) How do the statement and proof in part (a) have

tob dified if G s a dieraph? (b) Using the result in part (a), prove that a bipartite
o be modified if G is a digraph?

graph has no circuits of odd length.
75. If A is the adjacency matrix of a digraph G, what does
the (i, j) entry of AA” represent if i # j?

Chapter Review . |

Key Definitions and Concepts

basis, 198 Fundamental Theorem of Invertible matrix, 138
Basis Theorem, 202 Matrices, 172,206 matrix addition, 140
column matrix (vector), 138 identity matrix, 139 matrix factorization, 180
column space of a inverse of a square matrix multiplication, 141
matrix, 195 matrix, 163 matrix powers, 149
composition of linear inverse of a linear negative of a matrix, 140
transformations, 219 transformation, 221 null space of a matrix, 197
coordinate vector with respect to a linear combination of matrices, 154 nullity of a matrix, 204
basis, 208 linear dependence/independence outer product, 147
diagonal matrix, 139 of matrices, 157 partitioned matrices (block
dimension, 203 linear transformation, 213 multiplication), 145, 148
elementary matrix, 170 LU factorization, 181 permutation matrix, 187
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properties of matrix algebra, 154, row matrix (vector), 138 standard matrix of a linear
158, 159, 167 row space of a matrix, 195 transformation, 216
rank of a matrix, 204 scalar matrix, 139 subspace, 192
Rank Theorem, 205 scalar multiple of a matrix, 140 symmetric matrix, 151
representations of matrix span of a set of matrices, 156 transpose of a matrix, 151
products, 146-148 square matrix, 139 zero matrix, 141
Review Questions i
1. Mark each of the following statements true or false: 10. If possible, express the matrix A = L 6} as a prod-
(a) For any matrix A, both AAT and ATA are defined. uct of elementary matrices.
(R 26wl g witchs Suchy SRt A S Glgnd 11. If A is a square matrix such that A> = O, show that
A # O,then B = O. I— A =I+A+ A%
(¢) If A, B, and X are invertible matrices such that
XA = B,then X = A™'B. 111
(d) The inverse of an elementary matrix is an elemen- 12. Find an LU factorization of A = | 3 e
tary matrix. 2 -1 1
(e) The transpose of an elementary matrix is an 13. Find bases for the row space, column space, and null
elementary matrix. 2 —4 5 8 5
(f) The product of two elementary matrices is an spaccof A= |1 —2 2 3 1]
elementary matrix. 4 -8 3 2 6
(g) If Aisan m X n matrix, then the null space of A is
a subspace of R". 14. Suppose matrices A and B are row equivalent. Do they
(h) Every plane in R® is a two-dimensional subspace have the same row space? Why or why not? Do A and
of R3. B have the same column space? Why or why not?
s ¥ ¥ i y T
(i) The transformation T': R* — R? defined by 15. If A is an invertible matrix, explain why A and A° must
T(x) = —xis a linear transformation. have the same null space. Is this true if A is a nonin-
. i .
() If T:R*— R’ is a linear transformation, then vertible square matrix? Explain.
there is a 4 X 5 matrix A such that T(x) = Ax for 16. If A is a square matrix whose rows add up to the zero
all x in the domain of T. vector, explain why A cannot be invertible.
1 2 T 17. Let A be an m X n matrix with linearly independent
In Exercises 2-7, let A = {3 5} and B = L’ 5 4]. columns. Explain why A”A must be an invertible
3 ix. Must AA” invertible? in,
Compute the indicated matrices, if possible. s 8o G IS ELACE Rapialu
5. AB 3. A2B 4 BTA-'B 18. Find a linear transformation T': R* — R? such that
Ty-1 Tpy-1 1 2 1 0
5. (BB") 6. (8'B) TH:HandT{ }:H
7. The outer product expansion of AA” 1 3 =1 5
12 -1 19. Find the standard matrix of the linear transformation
8. If A is a matrix such that A™" = [_3 /2 4}, find A. T': R* — R that corresponds to a counterclockwise
L o0 -1 rotation of 45° about the origin followed by a projec-
tion onto the line y = —2x.
9.IfA= |2 3 -1 |and Xisa matrix such that i
01 1 20. Suppose that T': R" — R" is a linear transformation
= P oa and suppose that v is a vector such that T'(v) # 0 but
B . T*(v) = 0 (where T? = T o T). Prove that v and T(v)
Ax=\| 5 0/|findX. are linearly independent.
L 3 -2




