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In this chapter, we will study matrices in their own right. We have already used

matrices-in the form of augmented matrice -to record information about and to
help streamline calculaťons involving systems of linear equations. Now you will see

that matrices have algebraic properties of their own, which enable us to calculate
with them, subject to the rules of matrix algebra. Furthermore, you will observe that
matrices are not static objects, recording information and data; rather, they represent

certain types of functions tltat "act" on vectors, transforming them into other vectors.

These "matrix transformations" will begin to play a key role in our study of linear
algebra and will shed new light on what you have already learned about vectors and
systems of linear equations. Furthermore, matrices arise in many forms ot}rer than
augmented matrices; we will explore some of the many applications of matrices at t}re

end ofthis chapter.
In this section, we will consider a few simple examples to illustrate how matri-

ces can transform vectors. In the process, you will get your first glimpse of "matrix
arithmetic]'

Consider the equations

yl *ff, *2x2

!z: 3xz

We can view these equation a describing a transformation of the vector x

into the vecto, , = |'''l . If we denote the matrix of coefficients of the right-hand side' LyzJ

byF, then a = [; 3], 
*Uwe can rewrite the transformation as

oí, more succinctly, y = Fx. lThink of this expression as analogous to the funcťonal
notationy - f(x) yoa are used to: x is the independent "variablď'here, y is the depen-
dent "variablei' and Fis the name of the "functioni']

[;;] 
= [; i]L;;]
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|-_rl
Thus, if x : l : |, then the Equations (1) giveL 1]

Frnhlgm I Compute Fx for the ťnllowing vector x:

[-,l
L r]

pruit0m 2 The heads of the four vectors x in problem 1 locate the four corner
of a square in t}e xlr2 plane. Draw this square and label its corners A, B, C, and D,
corresponding to parts (a), (b), (c), and (d) ofProblem 1.

On separate coordinate axes (labeled h md y), draw the four points determined
byFxin Problem 1. Labelthese pojntls Á', B', C', andD'. Let's make the (reasonable)

assumption that the line segment ÁE is transformed into the line segment a?i and
likewise for the other three sides of the quar ABCD. What geometric figure is rep,
resented by Á'B'C'D'?,

Frmhlrum S The center of squaťe ÁBCD is the origin S ,t

A'Bl Cl nl ? What algebraic calculation confirms this?

Now consider the equation

Z1 : |t'* |z

Z2 : *2Y,

that transform a vector y :

transťormation a z Ť, Gy, w

c=|' -'-|
L-2 0j

PíODbn I We are going to find out how G transforms the figure A'B'C'D',
Compute Gy for each of the four vectors y that you computed in Problem 1. lThat
is, compute z = G(Fx). You may recognize this expression as being analogous to
tlre composition of functions with which you are familiar.] Call the corresponding
points Á", B", C", and D", and sketch the figure A' B' C' D' on z zcoordinate axes.

PlOilOn i By substituting Equations (1) into Equations (2), obtain equations for
z1 and z2 in terms oí xl and xx,If we denote the matrix of these equations by H, then
we have z = Hx, Since we also have z = GFx, it is reasonable to write

H=GF

Can you see how the entries ofH are rďated to the entries ofF and G?
Pruil0m Let's do the above process the other way around: First transform the

quare ABCD, using G, to obtain figure Á*B*C*D*. Then transform the resulting
figure, using B to obtain Á**B,í*Cd,*D*dl, [Nofe; Dont worry about the "variable " x,

nl (a) x-T ti] {b) x - t_i] (c) x: [:l] (d) x:

['' l into the
l,yz )

here

lol. what is the center of
LOJ

(z)

vector u ffi [''l. We can abbreviate this
|.zz )



Chapter 3 Matrices

y, and z here. Simply substitute the coordinates of Á, B, G and D into Equations (2)

andthen substitutethe resultsinto Equaťons (1).] AreÁ**B**C't{'D** arrdA'B'C'D'
the same? What does thís tell you about the order in which we perform the transfor-
mations F and G?

P ODl8m l Repeat Problem 5 with general matrices

f r í l
T- lJti Jlzl .-r: l-_ i, LJ *

LJ^ Jrz)

That is, ifEquations (1) and Equations (2) have coefficients as specified by F and G,

find the entries of H in terms of the entries of F and G. The result will be a formula
for the "product" H : GF.

Pt0[l0m 8 Repeat Problems 1-6 with the following matrices. (Your formula from
Problem 7 may help to speed up the algebraic calculations.) Note any similarities or
differences that you think are significant,

[g,, s,rl fh, hrr1

fi ;;;], 
and fl =: 

li,', i,^,)

(a) F.

(c} P_

ll ll
i-ll
Ll 1j

G- [z 1l

Ll 1]

[o -1l lz 0ll_ :l,G:l- "l (b)PLt 0J'* Lo 3]

[t 1l :t 2 *1l

L; ;l,*= L_r 1] (d)F-=

[t llll,:Ll 2{

l t -2lL-, 4]'

Although we have already encountered matrices, we begin by stating a forma]
definition and recording some facts for future reference.

elemenís, of the matrix.
rectansular array of numbers callec1 the entries,

Althrrugh nurnbers rvill usually lre
chosen from the set R of real num*
bers, they may also be taken ťrom
the set C of complex numbers or
frorn Z, where p is prirne .

Tcchnically, there is a distirrction
between row/column matrices
arrtl vectors, but we will not be-
labor this distinction" We will,
however, clistinguish between
row nratrices/vectors and column
matrices/vectors. This distinction
is irnportant-at the very least-
for algebraie computations, a we
will demonstrate.

-lz1 [s.t:r2 -1 l
ti 1], l: : !l, l 1l, tl 1 1 1], l ;:; ;'" io |, 17]iJ L,r.] l,-r.z s s.s.]

The fallowíng are all examples oť matrices:

The sige of a matrix is a description of the numbers of rows and columns it has. A
matrix is called m X n (pronounced "mby n") if it has í4 rows and n columns. Thus,
theexamplesabovearematricesoťsizes2X2,2 X 3,3 X 1, 1X 4,3 X 3,andl X 1,

respectively. A I X m matrix is called a tow mattix (or row vectar), and an rr X 1

matrix is called a column tnaffix (or column vector),
We use áouble-subscrlpf notation to refer to the entries of a matrix Á. The entry of

Á in row l and column j is denoted by a;i. Thus, if

o:|r r -,'l
L05 4)

then a13 = -I artd azz = 5, (The notation Á,; is sometirnes used interchangeably with
aii)'We can therefore compactly denote a matrix Á by loli| (ot |aij^7nif it is impor-
tant to speciff the size of Á, although the size will usually be clear from the context).
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With this notatioíl, á general rn X n matrix Á has the form

]

frn

Gzz

&mt frmz

Iťthe column oťÁ are the vectors &1r íl2r l &nt then }ťe ma}r ťepr ent Á as

"' anlA Ť [n, il2

If the rows of Á &f A1, A2, , h*, then we may repr ent Á as

ti;]Á:|:"I
Il
LA--]

The diagonal entries of Á are a11l a22t orr, , . . , Ádif m : n (thatis, if Á has the same

number of rows as columns), then Á is called a squ are tnatrix. A square matrix whose
nondiagonal entries are all zero is called a d.iagonal matrix. A diagonal matrix all
of whose diagonal entries are the same is called a scalar mattix. If the scalar on the

diagonal is 1, the scalar matrix is called anidentity mattix,
For example, let

Á*
&tt

frzt

. arnT
, fl?.n l

I:lt,l
' d*nJ

l- 2 5 0l [s 1lA:l - l. B ,. l l C-lL 
L-t 4 lJ' 'J L+ 5]'

[l 0 0l
lo 6 0l, and D_ll,L0 0 zJ

[t 0 0l
l0 1 0l
Lo 0 

'J
The diagonal entries of A are 2 and 4, but Á is not square; B is a square matrix of size

2 X 2 with diagonal entries 3 and 5; Cis a diagonal matrix; D is a 3 X 3 identity ma-
trix, The n X n identity matrix is denoted by l, (or simply l if its size is understood).

Since we can view matrices as generďizations of vectors (and, indeed, matrices
can and should be thought of as being made up of both row and column vectors),

many of the conventions and operaťons for yectors carry tlrrough (in an obvious
way) to matrices.

Two matrices are equal if they have the same size and if their corresponding
entries are equal. Thus, if Á : |r,jf*rnand B = íb;jl,x,tlren Á = B if and only if
m : r artdn : s and aij = bijfor all i andj,

consider the matrices

la
Lc

lzB- l

L5

lz 0and C-- l

L53
Jcl

y)

I.{either Á nor B can be equal to C (no matter what the valučs CIf "rí and /), since A
Bare 2X 2matricesand Cis 2X 3. Howeveť}d - Bif andonly iťa:2,,b: 0, c

andd:3.

consider the matrices

R* [1 4 3] and f,*

and
:5,

t+-+

Li]



Chapter 3 Matrices

Despite the fact that R and C have the same entries in the same order, R * C since

Ris 1X 3andCi 3 X 1.(If wereadRandCaloud"theybothsoundtlresame:
"one, four, threei) Thus, our distinction between row matrices/veďors and column
matriceslvector i an important oíle"

fflt]lr lddltlon 0Bil csl0í nunlilkatl0n
Generalizing from veďor addition, we define matrix addition componentwise,If A :
|ai| and g = lb li1 are m X r matrices, tbek sumÁ -l B is +he m X n matkobtained
by adding the corresponding entries. Thus,

[We could equallywell have defined A + B in terms of vector addiťon by speci ling

that each column (or row) of Á * B is the sum of the corresponding columns (or

rows) of Á and B.] If Á and B are not the same size, t}en Á * B is not defined.

Then
|-z 5 -1lA + B* l lL 1 6 7J

butneitherÁ + Cnor.B + Cisdefined,

The componentwise definition of scalar multiplication will come a no surprise. If
Á is an m X n matrixand c is a scalar, then tlre scalar multiple cA is tbe rn X n matrk
obtained by multiplying each errtry of Aby c. More formally, we have

[In terms of vectors, we could equivalently stipulrate that each column (or row) of
cÁ is c times the corrcsponding column (or row) of Á.]

For matrix Á in Example 3.3,

r2 8 0l2A: l l,
L- 4 L2 10J,

rl
lÁ_| 2, L-l : :l, and (-t)e - [-t 

*4 
:l3 žJ 

J \ rl'Ír-L 2 -6 *5] 
4

.--+

The matrix (- 1)Á is written as *Á and called the negatlve of A. As with vectors, we

can use this fact to define the ilffirenceof two matrices: ťÁ and B are the same size,

then

A

t



Section 3.1 Matrix Operations

For matríces Á end B in Example 3.3,

A matrix all of whose entries are zero is c alled a aero matrix anď denoted by O (or

O,,,x,, if it i important to speci{r its size). It should be clear that ifÁ is any matrix and

O is the zero matrix of the same size, tlten

and

A + Q- a+A

*A + ÁA A,:, o

Mathernaticians arť ometimes like
Lewis Carroli's Humpty Dumpťy:
"\ďhen í use e word;' Humpfy
Dumpťy eid, "it means just what
I choose it to ínean*neither more
nor le " (frorn Througlt tLte Logk-

tttlilí ítulfinucili0n
The Introduction in Section 3,0 suggested that there is a "producť' of matrices that is
analogous to the composition of functions. \Me now make this notion more precise.

The definition we írre about to give generďizes what you should have discovered in
problems 5 ard 7 in section 3.0. unlike the definitions of matrix addiťon and scalar

multiplication, the definition of the product of two matrices is noí a componentwise

definition. Of course, there is nothing to stop us from defining a product of matrices

in a componentwise fashion; unfortunately such a definition has few applications and

is not as "naturať as the one we now give.ing Glass}.

Č-; Án is afl m x r matrix. The (i, l) entry of the product is computed as

follows:

cij ff uilblj + aizbzj+" , * a;nb,4

nlnríls
r Notice that X and B need not be the same size, However, the number of col,

umns of. A must be the same as the number of rows of B, If we write the sizes of A, B,

and ÁB in orden we can see at a glance whether t}is requirement is satisfied. More-
over, we can predict the size ofthe product before doing any calculaťons, since the

number of rows of Á8 is the same as the number of rows of Á, while the number of
columns ofáB is the same as t}e number of columns of B, as shown below:

A
mx

=AB
mNr

ize af AB

[t 4A B: lL-2 6



Chapter 3 ]!{atrices

o The formula for the entries ofthe product looks 1ike a dot product, and indeed
it is. It says that the (i, j) entry of the matrix ÁB is the dot product of the ith row of Á
and thejth column of B:

Iort flv ", ah1
l:::l
Io^ arz:],,, ai, 

l|:::l

Lo'^, im. ", i*r,)

Notice that, in the expression c;i: ailb11 * a2b21+ , , , + a;rbrythe 'buter subscripts"
on each ab term in the sum are always i and j whereas the "inner subscriptď' always
agree and increase from 1 to r. We see this pattern clearly if we write c4 using sum-
mation notation:

n

Ci : Xo,obui
1,*tÁ-l

Compute ÁB if

Á=
[-+ 0 3 -1l
l s *2 -1 1l
L*, 2 0 6..|

Ĵ

-*1

*1l
1] and B

0lutI0n SinceÁ is 2 X 3 andB is 3 X 4,the productÁB is defined and willbe a
2 X 4 matrix. The first row of the product C : AB is computed by taking the dot
product of the first row of Á with each of the columns of B in furn. Thus,

c11:1(-4) +3(5) + (-1)(-t):12
c12 - 1(0) + 3(-2) + (- 1X2) = -$
C13 = 1(3) + 3('1) + (*1X0) - Q

Cla: 1(-1) + 3(1) + (-1X6) - -4
The second row of C is computed by taking the dot product ofthe second row ofÁ
with each of the columns of B in turn:

Cr.L: {2)(*4) + (*1X5) + (1X-1) : )
C22: (.--2X0) + (-lX*e) + (1X2) : Q

23: (-2X3) + (* lX- 1) + {1X0) * -5
C?4: (*2)( 1) + (-1X1) + (1X6) -- 7

Thus, the product matrix is given by

ltzÁB: ll,)
LH

(With a little pracťce, you should be able to do these calculations mentally without
writing out a]l of t}re details as we have done here. For more complicated exarlrples, a
calculator with matrix capabilities or a computer algebra system is preferable.) 

+*+

*B 0 -4l
4 *5 7j

l42



Apples Grapeťruit C)ranges

ection 3.1 Matrix Operations

Before we go further, we will consider two orarnples that justify our chosen
definiťon of matrix mrrltiplication.

Ann and Bert are planning to go shopping for fruit for the next week. They each want
to buy some apples, oranges, and grapefruit, but in differing amounts. Table 3.1 lists

what they intend to buy. There are two fruit markets nearby_Sams and Theo's-and
their prices are given in Table 3.2. How much will it cost Ann and Bert to do their
shopping at each of the two markets?

Sam's Theo's

Ann
Bert

3

8

6

4

10

s
Appl*
Grapeťruit
0range

s0.10
$0.40
$0.10

s0,1 5

$0,30
$0"2ů

arťs Theo's

$olutl0n If Ann shops at Sam's, she will spend

o(o.to) + a(o.ao) + to(o,to) = $2.80

If she shops at Theo's, she will spend

6(0.15) + 3(0.30) + to(o.zo) = $3.80

Bert will spend

4(0.10) + s(0.40) + 5(0.10) : M.10

at Sam's and

+(o.ts) + 8(0.30) + 5(0.20) - $4.00

at Theo's. (Presumably, Ann will shop at Sams while Bert goes to Theo's.)

The tot product forrď of these calculaťons suggests that matrix multiplication
is at work here. If we organlze the given information into a demand matrix D and a

price matrixP, we have

D-[0 3'ol and p
L4 B 5]

The calculations above are equivalent to computing the product

[03
-DP: I

L48

Thus, the product matrix DP tells us how much each persons purchases will cost at

each store (Table 3.3). {

.4**:- -

I 
o. to 0.15 l-Ť l 0.40 0.30 l

L o.,o 0.20 l

-[0,10 0.15l r a
10 ll l l2.80 3.80 lll0.40 0.30|-=l l5]l l L4.10 4.00l-1_0,10 CI"20J L

Ann
Bert

$2.8ů

$4,10

s3-80
$4.OCI
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Consider the linear y tem

2x, x2*44 m L4

Observe thx the left-hand side arises from the matrix product

so the system (1) can be written as

t-1
| 
*t

L2
or Áx = b, where Á is thQ coefficient matrix, x is tlre (column) vector ofvariables, and

b is the {eclumn) véctar of constant term .

You should have no diffrculty s eeingthat everylinex ystem can be written in the

form Áx = b. In fact, the notation [Á | b] for the augmented matrix oťa linear system

is just shorthturd for the matrix equation Áx : b. This form will prove to be a tre_

mendously useful way of expressing a system of linear equations, and we will exploit

it often from here on.
Combining this insight with Theorem 2.4, we see that Áx = b has a solution if

and only if b is a linear combination of the columns of Á.
There is another fact about matrix operations that will also prove to be quite use-

fuL Multiplication of a matrix by a standard unit vector can be used to "pick ouť' or

oreproducď,acolumnorrowof amatrix.L tÁ = |: : il andconsiderthe
L0 5 -1]

products Áe3 and e2Á, with the unit vector e3 and i, chor.n só that the products

make sense. Thus,

L i 11]LI',,1

:11]L;l]Lj]

la 2
Ae*: l" L05 l][l] : 

L_l] and ezA: t0 ,,Lí i _l]

= [0 5 -1]

Notice that Áe3 gives us the third column of Á and erÁ gives us the second row of Á.

We record the general result as a theorem.

TlpqtPU l,_! ktÁbeanmxnmatrix,e;al X l,lrstandardunitvector,ande;ann X 1standard

unit vector. Then

a, ei Ais the lth row of Á and
b. Áe; is the jth column of Á.

Xt 2x, + 3x, ::-

*XL + 3xz + x3:
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P s* We prove (b) and leave proving (a) as Exercise 4l. If a1, . . . , a, are the columns

of Á, then the product Ae; can be written

Áe; : 0a1 * 0a2 *, , ,* lai +, , ,+ 0a,: a1

We could also prove (b) by direct calculation:

A"j :

since the 1 in e7 is the jth *ntry, _ ,,. i]3.

PaítifiOnGil lilatíiGG

It will often be convenient to regard a matrix as being composed of a number of
smaller submatrices. By introducing verťcal and horizontai lines into a matrix, we

can partition it into bloclcs. There is a natural way to partiťon many matrice , par-

ticularly those arising in certain applications. For example, consider the matrix

It seem natural to partition Á as

IorJ ".. a.j ... a'nli :l
l az, ... azj t t. o-r',nl l ; l : |i';1

|-:^, t, 'j-, , t ' 
':--.)L ;] 

: 
|'i-)

[r 0 0 2 -1l
|o 1 0 1 3l

A:Io 0 1 4 0l

|o 0 0 1 7l
L0 0 0 7 2)

2 -1l1 3t
4 0|-
1 7l
7 2)

000
000

100
010
001 tI Bl

Lo C]

where / is the 3 X 3 idenťty matrix, 8 is 3 X 2, O is the 2 X 3 zerc maftix, and C is 2 X 2.

ln this way, we can view Á as a 2 X 2 matrix whose entries are themselves matrices.

when matrices are being multiplied, there is often an advantage to be gained by

viewing them as partitioned matrices. Not only does this frequently reveal underly-

ing truďures, but it often speeds up computation, especially when the matrices are

large and have many blocks of zeros. It turns out that the multiplication of partitioned

matrices is just like ordinary matrix multiplication.
we begin by considering some special cases of partitioned matrices. Each gives

rise to a different way of viewing the product of two matrices.

Suppose A is m X rr and 8 is n X r, so the productÁB exists. If we partition B in
terms ofits columnvector, asB = lbr ibz i . . . i b.], then
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This result is an immediate consequence of the definition of matrix multiplication.
The form on the right is called the matrix-column rEtresentation of tlte product.

i 5l
:l l

l *r l

L ali]Li]
- [+l

i]Ll]
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:f the
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Once again, this result is a direct consequence of the definition of matrix multiplication.
Ťhe form on the rig}rt is called the row-matrix reltresentation of the product.

Using the row-matrix representation, compute ÁB for the matrices in Example 3.9.
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Slllufiún lAre compute

A,:[1

ílrBr

and

5] and Ar : [ů

l+
*1 ,]l1

Ls

[+ -tl3 2]l1 2l_[l3
L: 0j

-tl
2l
0l

|2 *2]

[A,gl I tl sl
Therefore, AB := 

Loru] 
: 

L 2 _ r)' 
as before.

The definition of the matrix product ÁB uses the natural partition of Á into rows

and B into columns; this form might well be called the row-colunln repťesentation af
the product. We can also partition Á into columns and B into rows; this form is called
the calumn-row rEtesentatlon oíthe product.

In this case, we have

Compute the outer product expansion of Á.& for the matrices in F,xample 3.9.

sm rnq mrn we have

A tr [a,iaziar]

The outer products are

[. r.l

-Lr]

[t 3 21
-i- | and

L0 *1 1]

--l
-t l

i. flrB, :
0] 

, L L

Irl
|"lrl 0l _
L1_] 

, )

: 
[i] 

,- -1] : [+

Lo [-l] ,, 2}
1-3 6l_ 
L- r -2J'

íLlBl :
[e 0l
Lu 0J
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(observe that computing each outer product is exactly like filling in a multiplication
table.) Therefore, the outer product expansion of ÁB is

a,B, t az'z*",u, = [; 
-;] - [_i _:] - [: :] = [T _If = o, 

^
I

We will make use of the outer produď expansion in Chapters 5 and7wn.#
discuss the Spectral Theorem and the singular value decomposition, respectively.,

Eac.h of the foregoing partitions is a special case of partiťoning in general. A ma-

trix Á is said to be partitioned ifhorizontal and vertical lines have been introduced,

subdividing Á into submatrices called blocta, Partitioning allows Á to be written as a

matrix whose entries are its blocla.
For example,

A: and B*
00
00

4 3i*1 ž 
i

1* i
-----l-1 0i

0 li

er partiti*n*d matrices. Thcy hav* the block structures

. [Á,, Á,rl 1 ň [B,, Bn
A :- 

L;;; A',',) 
and B - Lr;; B,,z

If two matrices are the same size and have been partitioned in t}re ame way, it is clear

that they can be added and multiplied by scalars block by block. Less obvious is the

fact that, with suitable partitioning, matrices can be multiplied blockwise as well. The

next example illustrates this process.

Consider the matrices Á and B above. If we ignore for the moment the fact that their
entries are matrices, then Á appeaťs to be a 2 X 2 matrix an d B a 2 X 3 matrix. Their
produď should thus be a2 X 3 matrix given by

fil3l
Bru )

Z
n
J

*1l
3l_
0]

[Á,,AB_ l "
LÁr,

Arz"l 
[u,,

ArrJ LB*

B, Br:l
B, Br,]

Á,n8r, + An&zz Á,,Br,
Arr&r, + A22B?2 ArrFru

+ ALPB1n1

+ A22B23J

ArzBu,

AzrBz,

But all of the products in this calculation are actually matrixproduct , o we need to

make sure that they are all defined. A quick check reveals that this is indeed the case,

since the numbers of calumns in the blocks of A (3 and 2) match the numbers oí rows

in the blocks of B, The matrices Á and B are said tobe paftitioned. contormably for
block multiplication.

Carrying out the calculaíions indicated gives us the productÁB in partitioned form:

r4
,{,'B,, + Á n1zt: i:B,, + AnIz : Bn+ Á 12 

: 
| 
* t

L1 Lll]l]+Ll

1 2 it
l
l21i1

3 3lt
----------_*---

fiů
10
ů1
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(When some of the bloclrs aťe z ro matrices or identity matrices, as is the case here,

t}rese calculation can be done quite quickly.) The calculations for the otlrer fwe

blocks of ÁB are similar. chec.k that the result is

(Observe that the block in the upperJeft corner is the result ofour calculations above.)

Check that you obtain the same answer by multiplpog Á by B in the usual way.
.i

** ť ,q ff*-uv*yn

When Á and 8 are two n X n matrices, their product ÁB will also be an n X n matrix,
A special case occurs when Á : B. It makes sense to define A2 = AA and, in general,

to define Á& as

Ao:4!.",.,:"^!

if k is a positive integer. Thus, Ál : Á, and it is convenient to define ,Aa : l,,
Before making too many assumpťons, we should ask ourselves to what extent

matrix power behave like powers of real numbers. The following properties follow
immediately from the definitions we have just given and are the matrix analogues of
the corresponding properties for powers of real numbers.

A'A' :: 1\r+s

(Á')' : Á'*

In ection 3.3, we will extend the definiťon and properties to include negative integer
po\4rer .

[o 2i1 2 i ,l
|0 5i7 1ilz 

lls *5is 3igI
It ,1- 0iill
L7 2 i0 0izaJ

fi* A2A_ |z
Lž

and, in general,

f .lr-I .lr- l lo': l;,-, ;, ,) foralln > 1

The above statement can be proved by mathematical induction, since it is an
infnite collection of statements, one for each natural number r. (Appendix B gives a

..) [t tl[t 1l |zA' : L, ,JLl 1] 
* 

|,
zl It

'J 
Lr

1l |a, 41
l:lllJ L+ 4J

nr.Ň
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brief review of mathematical induction.) The basis step is to prove that the formula
holds for rr : 1. In this case,

, [2I-I 2I Il [u0 ?.0l [t 1,1Al-: i;,-, ;,-,] 
: 

L;, ;,] 
: 

L; ;] 
::- A

as required.
The induction hypothesis is to assume that

or:|}I-', 
::-',1

for some integer t > 1. The inducťon step is to prove tlrat the formula holds fol n =
k * 1 . Using tňe definition of matrix poweis and the induction hlpothesis, we compute

llk-t 1*-1lr_ _1

Ak+l_rk1_1L ' llr 1|
- ,í1,.a - Lzx-, ,r-'.l[r r]

|2r-t + 2rl zk-L + 2h-11 '

Lzt-t + 2k-' 2x-t a 2*-t)

:lro 2o1
- lzo 2o)

_ [2tt+t)-t 2(t+,)-1l
- |2tt+il-t 2G+i)*1]

Thus, the formula holds for all n > 1 by the principle of mathematical induction.

íb) If B: [0 -''l. *"r, r, = l.0 
*'llo -'l - [*' ol.

Ll 0.] Ll 0lL1 0l 
: 

L 0 -1], 
Continuing,

we find

6l: B2B - [-tL0
0l [0

-r]Lr

r 0 tllo -1l [t 0lB4:B3B:l rl l:l lL*l 0lL1 0J L0 lJ

Thus, 85 : B, andthe sequence of power of Brepeats in a cycle of four:

[o *1l [-r 0l t 0 1l [r 0l [o -1lLr 0j'L 0 -1J'L*r o]'Lo r]'Lr 0]'"'

-1l t 0 1l1_1l0] L*r 0]

and

TnG Tlan Dosc oí 0 tttílt
Thus far, all of the matrix operations we have defined are analogous to operations on
real numbers, although they may not always behave in the same way. The next opera-
tion has no such analogue.



Then their transposes

Á:

&re

ti
L,

ection 3.1 Matrix Operations

l] BT:[; ;],and cT:L 
;]

and B *-
r]

;j

The transpose is sometimes used to give an alternative definition of the dot prod-
uct of two vectors in terms of matrix multiplication. ť

f ur1 [ v,l

o:l1, l *o "=l?ll,|l,|Lr,) Lr,J
then

u,v = up1 * u2v2*", * llrvn

Inl
= lu, il2 ... "r|':l

l.r^)

=ut
A useful alternative definition of the transpose is given componentwise;

In words, the entry in row i and column j af ,4r isthe same as the entry in rowj and
column i of Á.

The transpose is also used to define a very important type of square matrix a

symmetric matrix.

A: [t 3 2l
|3 5 0l
Lz 0 4)
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nl\J l ll

nA 
]

ílruro t,l
A symmetric rnatrix

Then Á is symmetric, since ÁT : Á; but B is not syrnmetric, .'rr.. U' = [l 
- 
l] - '

A symmetric matrix has the property that it i its own "mirror imagď' across its

main diagonal, Figure 3.1 illustrates this property for a 3 X 3 matrix. The correspond-

ing shapes represent equal entries; the diagonal entries (those on the dashed line) are

arbitrary.
A cómponentwise definition of a syrrmetric matrix is also useful. It is simPlY the

algebraic description of the "refl ectioď' property.

:::":: 
*_T* 

1 :,_:T-1 
o*":l,a: 

" 

4:*] 
"] :::!,

In Exercises 1*16, compute the indicated matrices (if
p o ssible) .

1. Á + 2D

3.B C

5. Á"B

7,D + C

9.. (ÁF)

ll. Ff;

l3. BTCT * (cn)?"

l5. Á3

17. fiive an ťJ(alnple of a nonusrů 2 X 2 matrix Á such

that Ax * O,

18. Let Á *

tlrat ÁB

2 matrices B and C such

19. A factory ínanufmf,ture thrce pr ducts (doohickies,

gizmos, anď widgets) and ships thnrn to two waťe-

hnuses ťor storase. The number *f unit oť eaeh prod*

uct shipped to each war hnu is given by the matrix

A*

(where uiii* the number aťunit *ťproduet f sent to

wsreh uáe j a*d the produets nr teken in alphabetieal
order). The cnst of shippins 0n* unit of each produ*t

by truck is $1.50 per do*hick*y, $1.00 per gizmo, and

$2.00 per wiďget. The rťespondíng unít co t to ship

by train flre s1.7 , s1.50, end $1.00_ organixe these

t into s metrix B end th*n uss matrfu( multiplica-
tion to show how the ťact*ry cen ťOínpare the cast oť

shíppins it products to eaf;h nť th* trryn werehouse by
truck and by train.

?0. Reťerríns ta Exercise l9u *uppo e thnt the unit cost

oť ďistributing the products to stores is the same ťor

eef,h product but varíe by warehnus* because of the

distances involved. It costs $0,7 to dístribute on unit
from warehou e 1 and $1.00 to dí*tribute one unit
from warehou e 2. Organize th*s eo ts into a matrix
C and then u e matrix multiplicntion to compute the

total co t of distributing eaťh proďuct,

A:[ l ol, B-
L*1 5]

l- 0 -3lD* |*, lj' E - |4 2], p 
I l]

Ll [l1]
*2

2 i], f, -

I eoo 75l

| ,uo 100 
l

L roo 125 J

2. 3"D * 2A

4.C* Br

s. B,D

8. B#

l0. F,(nF)

t2, EF

14. -DÁ * An
16. (Jt * n)2

lz 1l|- i. Find 2 X
L6 3j
:ACbutB+C,

-, |E'

xg§iG



In Exercíses 21*22, write the giverc system of linear equa-

tions as a matrix equation of the form Áx : b.

2l, xI Zxz + 3x, : 0

2x, + x2 5xr:4
22.*x, +Lxr: 1

Xl 
:'r+ xq: -i

In Exercises 2j-2B, let

and B

23. [Jse the matrix-column ťepťe entation of the product
to write each co}umn oťÁB a a linear combination of
the column of Á.

24. lJse the row-matrix repre ntation of the product to

write each row of ÁB e a linear combination of the

rows of B.

25. Compute the outer product expansion of ÁB.

26. [Jse the matrix-column repre entation of the product
to write each column of ^BÁ & a linear combination of
the columns of B.

27. IJse the row-matrix repre entation of the proďuct to
write each row of .BÁ as a linear combination of the

row ofÁ.
28. Compute the outer product expansion of BÁ.

In xercises 29 and 3ú, assume that the product AB makes

sense,

29- Prove that if the columns of ,B are linearly dependent,

then só are the column oť A .

30. Prove that if the rour of Á are linearly dependent, then
so are the rows of AB.

In Exercises 31*34, compute AB blt block muttiplication,
using the indicated partitioning.

3I"" Á

Section 3.1 Mntrix ůperations

0l
1], B:lz

32, A: l

L4

33.A*

35, Let A *

(a)
(b)

38. Let Á :

3it
5i0

r10 *21
:|-: 1 1l

L 2 0 -1]
|- 2 3 0l:l r -1 1l
L*, 6 4]

0 1l
1 0l
0 *1 

l

1 0]

1l
,I
1|

-1J

1, 82

and

on.

,d

1]")tio

: 1,

uct

1)

;ti

ca

,|-

rdrJu

ustifi

A" (n

cal iE

\n

in

ju

A

ici

ith

for

na]

W

Ia

eI

&I(

em

rul

thr

(a) 6:{,:' ',',',i',6) 6,:{l 
li i; :1| ;i

41. Prove Theorem 3.1(a).

m

.Fi

for

sn
-l

I

]

36. Let B :

37. Let Á *

veriSr yo

al

n

0'
0

d,

}rín

ma

(a) show that Á2 : [-:- 11 
*sin 

:'"1
L sin 20 cos 20 J

(b) Prove, by mathematicaI inductían, that

An : [cos 
rr0 *sin 

"01 far n}, 1

L sin nd cos n0 j

39. In each oťthe fallowíng, find the 4 X 4 matrix S x lolil
thet satisfies the given conditicnl

(e) gli * (* 1)ť+j ft) elj * j i

/(i + i * 1)rr\
(c} 6l,i* (,i * lY (d} oui * -'"(Ť/

40. In each oťthe followíng, find the 6 X S matrix fr r \a,i]

that satisfies the given condition:

[t -1 0 0l
l0 1 0 0l,B*
Lo 0 2 3]
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In some ways, the arithmetic of matrices generalizes that of vectors. We do not expect
any surprises witlr respect to addition and scalar multiplication, and indeed there are

none. This will allow us to extend to matrices several concepts that we are already
familiar with from our work with vectors. In particular, linear combinations, span-
ning sets, and linear independence caíry over to matrices with no difficulťy.

However, matrices have other operaťons, such as matrix multiplication, that vec-
tors do not posse . We should not expect matrix multiplication to behave like multi-
plication of reď numbers unless we can prove tJrat it does; in fact, it does not, In this
section, we summarize and prove some of the main properties of matrix operations
and begin to develop an algebra of matrices.

PíO[síti8$ 0í EdilifiOn tnil $ctl01 ltíluItinIiGOtIOn

All of the algebraic properties of addition and scalar multiplication for vectors
(Theorem 1.1) carry over to matrices. For completene , we summarize these ploper-
ties in the next theorem.

lssh &

Theo Bm t.2 Algebraic Properties of Matrix Addition and ScalarMult|plicatioň,',,..,

Let Á, B, and C be matrices of the same size and,,let.c arrd d,be calar;s. Then 
". 

.';l,

b. (Á+fi)+ Q-=Á+(B+C)
c" á + O * Á" 

]' ,'] ,l 
]l 

i].l];:,.|],:i...ii]:l,

d.]Á,+ (-Á) * d , , l r'!'i"
:. :(o + B} * cÁ # cB'" rnl' ,

f, (c + 6;4,*i'sá 
'i 

ďA, 1,,,; ,;,].,,,,i],,u.

s.c(dÁ]1.;.1cd.}.Á...,

Commutativiťy
AssoiiatiÝity

Distributivity
Distributivit}r

The proofs of these properties are direct analogues of the corresponding proofs
of the vector properties and are left as exercises. Likewise, the comments following
Theorem 1.1 are equally valid here, and you should have no difficulty using these
properties to peďorm algebraic manipulations with matrices. (Review Example 1.5

and see Exercises 17 and 18 at the end ofthis section.)
The associativitypropertyallows us to unambiguously combine scalar multiplica-

tion and addition without parentheses. IfÁ, B and C are matrices ofthe same size, then

(2A+38)- Q- 2A+(3B- C)

and so we can simplywrite2A * 38 - C,Generally, then, if Ár,Á 2,,..,Alrarematri-
ces of the same size and c1, c2l , . , l cfr are calars, we may form the linear combinatian

c,Á, + crA, *. , ,* cét
We will refer to c1, c2,. . . , c1 as the coefficients of the linear combination. We can now
ask and answer quesťons about linear combinations of matrices.
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Let Á1 :

(a) Is .B

(b) Is C

oIutlm
(a} }\re want to find scalars c1l c2l and ca uch that ťtÁi

,,L_? l] +,,[l l] +-Li l]

[t tl
[3 : L, 

'].
of Á u Az, and Ál?

of A1, A2,and As?

ďA

)n(

o1l ,

and

atio:tlo

tic

j, *,

inat

ina

0l
,]

rb,i:

rbim

co

cC

It
I

Lo

ear c(

ítť ťr

A|11

1in

t 0 tl
l l, z

L - 1 0]

[t 41_ l la
L2 lj
[t 21

- l la
L3 4)

)m

on]

The left-hand side of this equation can be rewritten as

I c.*c, c,ic.l
L-., * ., ,^, + ,r)

Comparing entries and using the definition of matrix equality, we have four linear
equations:

c2*Q:l
q * cr:4

-c1 *cu:2
crlcr:I

Gauss-]ordan elimination easily gives

* c2A2 * caA3: B. Thus,

[t 41
:i l

!r l lLL rJ

lii]
* 2A2+

r011
Ir01
I -t 0 1

L011

1] 11 0

4l l0 1

2l *|o 
0

1l Lo 0

M
ŘE# (check this!), so c1 : L, 2 : *2, and c3 : 3. Thu , Át

be easily checked.
(b) This time we want to solve

$ + q*1
CL + C_3 

, 2

-cI + ca : 3

Cl + C3:4

3Al: , which can

l- 0 1l [t 0l [t 1l [t 21.,L-, 
0.J 

+ ',Lo 1] 
+ ',L, 1] 

: 
Lu 4J

Proceeding as in part (a), we obtain the linear sy tem
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Row reduction gives

t-0

Il
L0

rlcz
I

L 
*cr

{which is anďosou to the paťaínetric

t011Rn-R,l t 0 1

-+l 1-1 0 I

L000

+ c3 c, + c3

+ (3 c2 + c3

r pre entation of a plane}, But $nppss we

We need so nCI further: The last r§w implies that there ís na
thís ca e, C is not a linear combínaticn oťÁ y A7, and Á3.

solution. Therefore, in

ninill Observe that the columns of the augmented matrix contain tlre entries
of the matrices we aí given. If we read the entries of each matrix from left to right
and top to bottom, we get the order in whích the entries appear in the columns of
the augmented matrix. For example, we read á1 a "0, 1, - 1, 0," which corresponds
to the first column of the augmented matrix It is as if we sirhply "straightened out"
the given matrices into column vectors. Thue, we would have ended up with exactly
the same system of linear equaťons as in part (a) if we had asked

, and

We will encounter such parallels repeatedly from now on. In Chapter 6, we will
explore them in more detail.

We can define t}re Ean of aset of matrices to be t}re set of all linear combinations
of the matrices.

Describe the span of the matrices Ap A2, and Á3 in Example 3.16.

{ii;iillli]ii one way to do this is simply to write out a general linear combination of
A1, A2, and Á3. Thus,

CtAt+ czAz+ clAl= .,[_l ;] +.,[i l] + ,,[l l]

1l
)l
Ltl

3l
3j

1 1l11

:l|ll
1 ,lnj

,- 

Li] 

-Hnear combination 
", 

L l] Li] Ll],

want to know when the *"t.i* [' "'l O 
'r, 

span(Á1, Az, A).From the representa-Ly zJ
tion above, we know that it is when

I c2*c, cr*cr] |w xl
|-c, + c, ,, + ,,): |y ,)

for some choice of scalars c1l c21 c3, This gives rise to a ystem of linear equations
whose left-hand side is exactly the same as in Example 3.16 but whose right-hand side
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is general, The augmented matrix of this system is

,)

*]
1

1X
1

-1X
1

1X

w

:1 ti
y l 

----* 
| o

r ) Lo

r0l1
|,01l*t 0 1

L011
and rs}ť reduction praduces

r011
It01
| 
*r 0 1

L011

00
1ů
01
00

* lo,
1yL./

1,
1yŤ
l 1",t z,f

7

1l.p (Check this carefutly.) The only restricťon comes from tlre last row, where clearly we

must have w - z = 0 in order to have a solution. Thus, the sp an of. A1, A2, and Á3 con-

sists ofall matrn., [; 
*] 

ro.*r,i.t, w = z. That is, span(Ál,Á2, ou = {l*, ;] }
t.+

tl9t3 If we had known thisbefore attempting Example 3.16, we would have seen

immediately ** u.=, [l i],, ",T.1;::r:"l]- ..'jiť,,1*;T:;:;the necessaryform (take w = !,x = 4,andy: 2), but a = L, 4J
combination of Á1, Á2, and Á3, since it does not have the proper form (L + 4).

Linear independence also make en e for matrices. We say tlrat ma8ices
A1, A2, , , . , Akof the same size are linearly ind.epend,ent if the only solution of t}re

equation

cs,At + czAz +" "* ct&n,: O

is the trivial oí18l ci = ,u = . . - c1, = 0. Iftlrere are nontrivial coefficients that satisfr
(1), thenÁr, Az, . , . ,Apdíe calledlinearly ilependent,

Determine whether the matrices A1, A2, and Á3 in Example 3.16 are linearly
independent.

s0|tt|or We want to solve the equation clA, * czAz * cÁz = o. Writing out the

matrices, we have

i o rl, |r ol, |r 1l:l0 o]

',L-, o.] 
* 

"Lo r.] 
*',[, r] 

: 
Lo o]

This time we get a homogeneous linear y tem whose left-hand side is the same as

in Examples 3.1ó and 3,I7. (Areyou starting to spot a pattern yet?) The augmented

matrix row reduces to give

{1)

r011
I

|101
I *1 0 1

L011

0l r 1

0l l0
0l=*lo
0 ] Lo

00
10
01
00
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Thus, Ct : C2

independent.

: c3: 0, and w conclude that the matrices Ay A2, and Á3 are linearly

ptoporties ot illatfix ililtlillcati0n
Whenever we encounter a new operation, such as matrix multiplication, we must

be careful not to as ume too much about it. It would be nice if matrix multiplication
behaved like multiplication of real numbers. Although in manyrespects it does, there

are ome significant differences.

consider the matrices

4l and B: [t-2) Ll

0l
1j

Multiplyrrrg gives

t-2AB- l

L-1
[t 0l |. 2

Lr r]L-r
[e 41

L, 2)

-;]Ll
0l 16 41"l_ l " 'l and BÁ_1l L-3 -2)

4l

-2)

Thus, ÁB * BÁ. So, in contrast to mulťplication of real numbers, matrix multiplica-
ttonis not commutative-the order of the factors in a product matters!

It is easy to check *, o' : [3 3] ,* so!). So, for matrices, the equation

l..> A2 = O does not imply that Á : O (unlike the situation for real numbers, where the
equatiCIn .x? ;: fi has only x x 0 as a solution).

However gloomy things might appear after the last example, the situation is not
really bad at all*you just need to get used to working with matrices and to constantly
remind yourself that they are not numbers, The next theorem summarizes the main
properties of matrix multiplication.

"§

&.

b.

c.

d.

e.

":,::::':; We prove (b) and half of (e), We defer the proof of property (a) until
Section 3.6, The remaining properties are considered in the exercises,
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(b) To pro,ve Á(B + C) : AB* AC, we let the rows of Á be denoted by A; and the

columns of B and C by b; and c;. Then the jth column of B * C is \ * c1 (since addi.
tion is defined componentwise), and thus

[Á(B+C)Jry= A;,6r+cr)
= A,,bJ * A,,c,
: (AB)u + (AC)ti

= (AB + AC)i1

Since this is true for all i and j, we must have Á(B + C) : AB * AC.
(e) To prove ÁIn : Á, we note that the identity matrix /n can be column-partitioned as

I,: leri e, i",i e"]

where e; is a standard unit vector. Therefore,

, ,iÁen]

ar, ]

by Theoťern 3-1(b}.

\Me can use these properties to furt}rer explore how closely matrix multiplication
resembles mulťplication of real numbers.

IťÁ and § are quare matrice of the samť ize, is (Á + }' * A2 + 2AB + 82?

{ n í{l ! Using properties of matrix multiplication, \{e compute

(a+B)?* (,q+BXÁ+B)
(e + B)Á + (e + B)B by xeft distributil,itv

ryA2 + Á+ÁB+82 by right distributivity

Therefore,(Á +B)2: A2 +2AB+ ďifandonlyifÁ2 +BÁ + en+ : A2 +
2AB + 82. Subtracting Á2 and 82 from both sides gives BÁ + AB : 2ÁB. Subtracting
ÁB from both sides gives 8Á = ÁB. Thus, (Á + B) 2 

= A2 + 2AB + 82 if and only if Á
and B commute. (Can you give an example of such a pair of matrices? Can you find
two matrices that do not satis this property?) t*+
PrORn tiss 0í lll8 TransRO G

ffi@
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Ploot Properties (a) :(c) are intuitively dear and straightforward to prove (see Exercise
30). Provirrg property (e) is a good exercise in mathematical induction (see Exercise 31).
We will prove (d), since it is not what you might have expected. [Would you have sus-
pected that (ÁB)' = ÁT^aT might be true?]

First, ifÁ is m X n and B is r X r, then BTis r X n and,4r is n X zr. Thus, the product
B7ÁT is defined and is r X m. Since AB is tn X r, (ÁB)r is r X tl, and so (ÁB)T an d BrAr
have the same size. We must now prove that their corresponding entries are equal

We denote the ith row of a matrix X by rowl(X) and it jth column by coly(X).
Using these conventions, we see tiat

KAB' J a :':: :ar. coll(B)

= co}(Á?). rowi(Bl
= ro*,(Bl). co}Gl = íBrAT]a

(Note that we have used the definition of matrix multiplicaťon, the definition of the
tran pose, and the fact that the dot product is commutative.) Since i and j are arbi-
trary, this result implies thet {AB}T *, BT AT ,

nomrll Properties (b) and (d) of Theorem 3.4 can be generalized to sums and
produďs of finitely many matrices:

(Ar + Ar+...+ Ay)T = e| + e[ +... + AI and (Á,Áz,..A'

- Atr...ATAT
assuming that the sizes of the matrices are such that all of the operations can be per-
formed. You are asked to prove these facts by mat}rematical induction in Exercises 32
and 33.

L3 4J L2 3 lj

ThenA,f *[t 3l 12 5l
L; n],ro 

O + AT - L; ;]," symmetric matrix.

}Ve have

BT:[ i i]
L 0 lJ

l+
BB' : l,

r4
BrB- l -r

L0
*1 0l

l-
l_3 1_]

21

;l :[" 5l
.l L5 L4J
1] b

2

10

3

*1

21 -ll43ll
,JL'

l][i

1]

[,o
|2
L2

$ň***- Thus, both B37 and BrB are syrnmetric, even though B is not even square!
that AAT and ATA ure also slnnmetric.)

{Check

s0



In Exercises 1*4, sCIlve the equatianfor X, given tLtat

t-r 21 [-t 0lA*i' "IandB= l l.
L3 4) L 1 lj

l.X * 2A + 3"B * a
2,2X : { -B

3, 2(Á + 2B) 3X

1,2(A .B + X) ffi 3(X * Á)

Section 3.2 Matrix Algebra

The next theorem say that the results of Example 3.21 are true in general.

In xercíses -12, rtnd th* gen*ral form af thr span of the

indicated matricgs, as in Hxample 3.17,

9. spnn(Ái, Ar) in Exgrcise 5

l0. span(Ár, Az, Al)in Exercise 6

l l. span(Ár, Á2, Án} in Exercise 7

12. span(Ár,Á2, Á3, Án) in Exercise 8

In Hxercíses J3-J 6, determine whether the given matrices

-1l

;],

*ť** We prove (a) and leave proving (b) as Exercise 34. We simply check that

(e +,q\T = Ar + (A\T : AT + A : A * AT

(using properties of the tran po e and the commutativity of matrix addition), Thus,

a + ,qŤ i, equal to its own transpo e and so, by definition, is sl,rnmetric.

[t *1 1l
A4=|o -1 -1 l

Lo 0 lJ

Lli]
20l
1 0 l,
3 5l

It

L;

are linearly independerut,

[t 21 [+ 3l
13' L; n j' L, lj

,n[1i],[-il],Lll]

t 0 1l [t 0l [-z15L-l;]Lii],L:

[t *1 0l lz 1 0l
16,|0 ? 0l,|0 3 0l,

Lo 2 6JLo 4 9l
[-r 1 0l
l o -1 0l
L 0 0 *4]

In Exercises 5*B, writg, as a linear cambination of the

other matrices, if pussible.

|z 5l 
^ _r 1 21 [o tl5.B:L; ;],Át:L-; ;.|, A2:L, 

1]

6.8=_ i ? 3l [r 0l t-o -ll
L-"; ;| A1: L; ,], A2: Li 0],
|-1 1l

A1* Lo lj
t-l 1 1l [t 0 -1l

Az*L0 1 0]' A3:Lo 0 0]

|z -2 3l [t 0 0l
8.B_|0 0 *2 l,A,_|0 1 0l,

Lo 0 2) Lo 0 lJ
[o 1 rl [*t 0 -tl

A)*|o 0 1l, A7*l 0 1 0l,
Lo 0 0j L 0 0 -1]
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17. Prove Theor ín 3.2(a) -{d},

l, . Prove Theorem 3,2(e) *{h).

19. Prove The*ťcm 3.3(c).

20. Prove Theorem 3.3(d).

21. Prove the half of Ttreorem 3.3(e) that was not proved
in the text.

22, Prove that, for quare matrices Á and B, AB: BÁ if
and only if (Á * }(á + B) : A2 * B2,

35. {a} Prove that if Á and ^ are ymmetric n X n matrices,
thensoisÁ + .

{b} Prove that if Á is a ymmetric n X ru matrix, then
so is kA for any scalar k.

36" (n} Give an example to show that iť Aand. are
ylnmetric n X n matrices, then Á.B neeď not be

)rmmetric.
(b} Prove that iťÁ and B are qrmmetric n X ru matriccs,

then Á"8 is s}rmmetric if and only if ÁB * BA.

A square matrix is called skew-symmetric if Ar * *Á.

37. }Vhich of the following matric aťe skew-symmetric?

(b) [l 
-i](a) [-l ;]

|a b1 í1In Exercíses 23*25, ť B : 
|*, 6), n*a canditiCIn

c, and á such that ÁB * .Bá.

AA [r 1l t- 1 *1l
23,A* l l 24.A: l - -| 25.A:

L0 lj L*l 1l

d d such that :t

*a [0 *l.
L0 lJ

,#n§rb,

[t 21

Lu 4]

|- b1

Lc dl

A sqware matrix is caltred upper triangulnr if all oí the an-
tries be\ow the main diagonal are zerl. Thus, the form af an
upper triangular matrix is

[r. * ... {< xl
l o {< ... * * 

l

io 0 : :l
|: : * }i(l

L; ; ..l 0 -J

where the entries rnarked * are arbitrary. A more formal
definitianaf suchamaírix{- Io,i] isthat &ú* aťi> j.
29. Prove that the product of two upper triangular n X n

(d)(c}

26. Fínd conditions oí1 #} b, c, &n

cornmutes with both 
[ 1 0l
Lo 0]

27. Find conditions Qrt a, b, t, and d such that. x
commutes with every 2 X 2 matrix.

28. Prove that if AB and fiÁ are both defined, then Á and
BÁ are both quffre matrices.

matrices is pper triangular.

30. Prove TheCIrem 3.4(a) * (c),

3l. Prove Theorem 3.4(e).

32. Using induction, prove that for all n * L,

(Á,+ A2*...*A rŤ.eI+ etr*...+ÁÍ.
33. lJsing induction, prove that for all n 2 L,

(ár Áz. " . Ar}T * AI, ", AtrAT.

34. Frove Theorem 3.5(b).

38. Give a componentwise definition oť a skew-symmetric
matrix.

39. Prove that the rnain diagonal af a skew-s}rmmetric r,n&-

trix nrust consist errtirely oť zeros"

40. Prove that if Á and fi are skew-symrnetric n X n
matrices, then so j,s Á + B.

4l. If Á and B are skew-symmetric} x }matrices, under
what condition is ÁB skew-symmetric?

42. Prove that iťÁ is an n X ru matrix, then á * Ár is
skew-syrnmetric.

43- (a} Prove that any quare matrix Á can be written
as the um of a ymmetric matrix and a skew-
yínrnetric matrix, |Hint; Consider Theorem 3.5

and Exercis e 42j

{b} Illustrate part (a) ťor the matrix Á *

The trace of an n X n matrix A : |uni} is the surn af the en-
tries on its main diagonal and is den*ted by tr{Á} . That is,

tr(Á} : #it * Řzz + . . . -1. frnn

M,Iť Aand B are n X n mattlic s, prove the following
properties oť the trace :

(a) tr(Á + B) : tr(Á) + tr(B)
(b} tr (kÁ) * &tr (Á), where k is a scalar

45. Frove that if Á and B are n X n matrices, then
tr(Á ) : tr( Á},

46, If Á is any matrix, to what is tr (AAr) equal?

47. how that there are no 2 X 2 matrices Á and .B such
that AB - BA : 12.

|a b1

L, dj

ti :;l
Lr89J

2

0
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Thn ulngr G 0í * ffifrtr x

In this secťon, we teturn to the matrix description Áx : b of a system of linear equa-

tions and look for ways to use matrix algebra to solve the system. By way of analogy,

consider the equation ax : b,where a, b, artd x represent real numbers and we want

to solve for x. We can quickly figure out that we want.r : b/a asthe solution, but we

must remind ourselves that this is true only if a * O.Proceeding more slowly, a um-

ing that a * 0, we will reach the solution by the following sequence of steps:

11
fr,x=b*:{ax} Ť *(b)=+

&&
(This example shows how much we do in our head and how mlrny properties of arith-

metic and algebra we take for granted!)

To imitate this procedure for the matrix equation Áx = b, what do we need? We

need to find a matrix Á' (analogous to I/a) such that A'A = /, an identity matrix
(analogous to 1). f such a matrix exists (analogous to the requirement that a * 0),

then we can do the following equence of calculations:

Áx = b+Á'(Áx) : A'b+ (Á'Á)x = Á'b=+Ix = Á'b,+x = Á'b

(Whywould each of these stepsbe justified?)

Óur goal in this section is to determine precisely when we can find such a matrix

A' , In faď, we are going to insist on a bit more; We want not only Á'Á = I but also

AA' : l This requLement forces Á and Á' to be square matrices. (Why?)

{t."\ b b b
l :(a) lx : *=*} t, K ==}x Ť:- *
\a' / a & a

ffiF*"e.

W@"

llufiini§ *! l ] lťá is M,fi
@ ,i .i',

the property that,',,i,, l,,.,,

,,'

where f = J, is the rr X] ]rt

iffilertib,le,,' "," ""]"",,,,,

X nmatrix, áfl inverse of Ais an n X n rnatrix Á' with

ÁÁ' : I and A'A -= I

identity matrix. If such an Á' exists, then Á is called

n

lzIfÁ- 
L,

F

AA' : |2
L1

then Á' x is an inverse of Á, since

*sl [z
z] Lr

5ll- 3

l]L-r
[t 0l: l- land A'A:
L0 1l

5l
3]

[t 0l

Lo 1]

Ť

how that the following

[o 0l(a)O:Lo 
0.J

matrice are not invertible:

[t 21
(b) B: l, 4]

s0luilOn
(a) It is easy to see that the zero matrix O does not have an inverse. If it did, then there

would be a matrix O' such that OO' : I : O'O, But the product of the zero matrix

with any other matrix is the zero matrix, and so OO' could never equal the identity
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matrix 1, (Notice that this proof makes no reference to the size of the matrices and so
is true for n X n matrices in general.)

{h)

fre,

Suppose B has an inver e ' : i* "-]Ly Z )

[t ,1l* xl
Lz q)Ly zl

m which we get the equations

, The equatio n BB' : I gives

[t 0l
Lo lj

2w

+2y

+ay
+ }ry

+4z

1
I

:0
0

:12x

ubtracting twice the first equation from t}re third yields 0 = -2, which is clearly
absurd. Thus, there is no solution. (Row reduction gives the sarne result but is not
really needed here.) We deduce that no such matrix B' exists; that is, B is not invert-
ible. (In fact, it does not even have an inverse that works on one side, let alone two!)

narillt
r Even though we have seen ťhat matrix multiplication is not, in general, com-

mutative, Á' (if it exists) must satisfyÁ'Á : AA'.
o The examples above raise two questions, which we will answer in this section:

(1) How can we know when a matrix has an inverse?
(2) If a matrix does have an inverse, how can we find it?

o We have not ruled out the possibility that a matrix Á might have more than
one inverse, The next theorem a sure us that this cannot happen.

Thsrrsm t.S If A is an invertible nratťix, then its inverse is unique.

í ís{:? In mathematics, a standard way to show that there is just one of something is
to show that there cannot be more than one. So, uppose that Á has two inverses-say,
Á'andÁ". Then

AA, : I: A,A and AA,, : I : A,,A

Thus, A' : A'I: A'(AA") : (A'A)A'' : IA'' : A''

Hence, A' : A", and the inverse is unique.
, ,...,. _.. _,,.,,: ffi

Thanks to this theorem, we can now refer to /fte inverse oť an invertible matrix.
From now on, when Á is invertible, we will denote its (unique) inverse by Á-1 (pro-
nounced "Á inversď').

itrí ť*lii1* Do not be tempted to write e-' : llThere is no such operation asA
"division by a matrix." Even if there were, hort, on earth could we divide the scalar I by
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the matrix A? If you wer feď tempted to "divide" by a matri:r, what you really want to do

is multiply by its inverse.

We can now complete the analogy tlrat we set up at the beginning of tlris section.

TfitOrGm ff.l then the system of linear
Á - ]b for any b in Rn.

equations given byIf A is an invertible n X n matťix}

Áx : b has the unique solution x :

P1O0t Theorem 3.7 essentially formalizes the observation we made at the beginning
of this section. We will go through it again, a little more carefully this time. We are

asked to prove two things: that Áx : b has a solution and that it has only one solution,
(In mathematics, such a proof is called an "existence and uniqueness" proof.)

To showthat a solution eťsts, we need onlyverifythatx : Á-lb works. We check
that

Á(Á*lb)=(ÁÁ-')b=lb=b
So Á- lb saťsfies the equation Áx : b, and hence tliere is at least this solution.

To show that this solution is unique, srrppose y is another solution, Then Áy = b,

and muttiplying both sides of the equaťon byÁ-1 on tlre left, we obtain the chain of
implications

1-1{Ay) : Á-lb =+ (e-lÁ)y = Á-lb + Iy : Á-lb ,+ y = Á-ib

Thus, y is the same solution as before, and t}erefore the soluťon', *n1_r*

So, returning to the questions we raised in the Remarks before Theorem 3.6, how
can we tell if a matrix is invertible and how can we find its inverse when it is invert-
ible? Víe will give a general procedure shortly, but the situation fot 2 X 2 matrices is
sufficiently simple to warrant being sing}ed out.

ThgOrsm S.S IfA

If ad * bc : 0, then Á is not ínrrertible.

The expressionad - bcis calledthedďerrinanf ofÁ, denoteddetÁ. The formula
la b1 l

for the inverse of | 

* 
"" 

| 1when it exists) is thus j- times the matrix obtained by-------- -- [c d)' detÁ
interchanging the entries on the main diagonal and changing the signs on the otlrer
two entries. In addition to givingthis formula Theorem 3.8 says thata2 X 2 matrix
Á is invertible if and only if det Á * 0. We will see in Chapter 4 that the determinant
can be defined for all square matrices and that this result remains true, although there

is no simple formula for the inverse of larger quaťe maúices.

P100' Suppose that detÁ = ad - bc * 0, Then

b1

, |, 
then Á is irrvertible if ad * bc + 0, in which caseul 

l I d ..b1
A-I: l laa acL-C frJ

la
I

l

Lc

|ad 
* bc

l_rd * dc

la blr d

L, dj L-,

*b1
l-

a)
-ab
-Cb

+ b[|

+ do)

lad-bc 0 l
ll

L 0 ad-bc)
It

o" 
^Lo

0l
1]
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Similarly,

I d -'1l' 
'.] = uooll ol

|-c a)Lc d) L0 1]

Since det Á * 0, we can multiply both sides of each equation by L / det A to obtain

|, ,1(_l_| a -ul) _ |r o]

Lc a_|\aetel-, o)) - |o r,]

and (-}-| ' -ol)l, 'l : |' 0lillu \a.tel-, o))|,, a)- lo r]

lNote that we have used property (d) of Theorem 3.3.] Thus, the matrix

rId-b1
det.4 l 'c oldetÁ|-c o)

satisfies the definition of an inverse, so.4 is invertible. Since the invérse ofÁ is unique,
by Theorem 3.6, we must have

. lla-bl
A-I = **L-; ,)

Conversely, a sume that ad - bc :0. We will consider separately the cases where
a * 0 and wfrere a - 0. íf 

: 
+ O,tne1 a * bc f a,s1 ttre 

1atrix 
can be wntten as

la b1 l a b1 la b1A:| l=l l=l l

L c dJ |ac/a bc/a) L*o kb)

where /c : c/a,lnother words, the second row ofÁ is a multiple of the first. Referring

to Example 3.23(b), we see that if Á ha, * ir,rr".r. [' ;],**

la bllw xl
|no w)ly ,):

and the corresponding y t m of linear equation

aw

kaul

+by

+ kby

[t 0l
Lo 1]

1t

+ br:0
:0

+ kbz: 1kax

has no solution. ryhy?)
If a = O,then ad - bc : 0 implies that bc : 0, and therefore either b or c is 0.

Thus, Á is of the form
[o 0l
L. d) or

xl [0 0l
z)- L- '., j

[o b1

Lo d)

[t 0l+ 
Lo i-] 

Similarly,
[o b1

Lo d) 
cannot

. ,ii]iť[W

Inthefirstca [o 0l[wi' L. a)ly
1,1i,: 

,,,,t,l:,:, have an inver e. (Veri z this.)
Consequenth,,, if ad - bc : 0, then Á is not invertible.

ls
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Find the inver es of Á - [t 
2l *a n :

L3 4)

l tz * 15l
| 
-. -: 

l, iftheyexist"
L 4 --5J,

olutl n WehavedetÁ* 1{4) *U3) * *2* 0,soÁisirwertib}e,with

A*l :
._rl"I

1]

M*' (Checkthis.)
On the other hand, det B : I2(-5) - (- 15) (4) : 0, so B is not invertible.

Use the inverse of the coeffrcient matrix to solve the linear system

x*2y: 3

3x*4y- -)

SOIuilOn The coefficient matrix is the matrix 
^ 

: 
[l 1], 

*n*. inverse we com-

puted in Example 3.24.ByTheorem 3,7, Ax = b has-the orriq,r" solution x : Á-lb.r ^l
Here we have b : I i |; tno., the solution to the given system is

L-2I

[omatt Solving alinear system Áx : b viax : Á-lb would appear to be a good
method. Unfortunately, except íor 2 X 2 coefficient matrices and matrices with cer-

tain special forms, it is almost always faster to use Gaussiarr or Gauss-Jordan elimi-
nation to find the soluťon directly. (See Exercise 13.) Furthermore, the technique of
Example 3,25 works only when the coefficient matrix is square and invertible, while
elimination methods can always be applied.

Ptonenies 0í lnuGíliblG íilflt]iGGs

The following theorem records some of the most important properties of invertible
matrices.

s.s

c" If A and B are invertible matrices of the san

| -z 1llll i- _r|L 2 2J

1Í- 4
--l*zL*:

i*z 1i[ 3l [*slx L* -i.] L-, l:L+]



Chapter 3 Matrices

d. If Á is an invertible matrix, then ÁT is invertíble and

(Á1*, _ (Á-,)r

e" If Á is an invertible matrix, then Á" is invertible for all nonnegative inte-
gers n and

(Á,)-' * (Á-1),

P]O0í We will prove properties (a), (c), and (e), leaving properties (b) and (d) to be
proven in Exercises 14 and 15.

(a) To show that Á - 1 is invertible, we must argue that there is a matrix X suclr that

Á*lx=/=lQ{-t
But Á certainly satisfies these equations in place of X so Á-1 is invertible and A is an
inverse ofÁ-l. Since inverses are unique, this means that (Á-t;-t - O.

(c) Here we must show that there is a matrix X suc.h that

(AB)X=I=X(AB)

The claim is that substituting 8-14-r for Xworks. We check that

(AB)(B-|A-L)*Á(BB-l)Á*1 = AIA-1 =AA,1 =I

where we have used associativityto shift the parentheses. Simitarly, (3-1Á-1) (ar) = l
(ďreck!), so Á3 is irrvertible and its inverse is B'lÁ* l.

(e) The basic idea here is easy enough. For example, when n = 2,wehave

A2(A-l)2 = AAqL-1A-| : AIA-1 = AA-l = I

Similarly, (A-tlzOz: r, Thus, (e-r;z is the inverse ofÁ2. It is not difficult to see that
a similar argument works for any higher integer value of n. However, mathematical
induction is the way to carry out the proof.

The basis step is when n = 0, in which case we are being asked to prove that Á0 is
invertible and that

(Á0)*l = (Á-,)0

This is the same as showing that I is invertible and that í-1 = í, which is clearly true.
(\ťhy? See Exercise 16.)

Now we a ume that the result is true when rr = k, where ft is a specific nonnega-
ťve integer. That is, the induction hypothesis is to assume that Ák is invertible and that

(Áft)-1 = (Á-l)t

The inducťon step requires that we prove that ÁÉ+1 i invertible and that
1nr+t;-t = (Á-l)t+l. N'ow we know from (c) that 4lt+1 = Áeá is invertible, since Á
and (byhpothesis) Áfr are both irrvertible. Moreove6

(e*l}fr+1 .,: (a.-t)fr4*t

Ť1 (Ák)*1Á*1 by the induction hypothesis

;lfi;, 
byproperty(c)

10fr



Section 3.3 The Inverse elf a Matrix

Therefore, Án is invertible for all nonnegative integers n, and (A|n)-l : 1Á-1) 
n by the

principle of mathematical induction. ',l,:ffi

nOntrlt
. While all of the properties of Theorem 3.9 are useful, (c) is the one you should

highlight. It is perhaps t}re most important algebraic property of matrix inverses, It

is also the one tlrat is easiest to get wTong. In Exercise L7,you are asked to. giv.e a

counterexample to show that, contrary to what we might like, (ÁB)-1 + A-IB-I in
general. The iorrect property, (ÁB) - ' - 3-1 n-l , is sometimes called the socks-and-

shoes rule, because, although we put our socks on before our shoes, we take them off
in t}re reverse order.

. Property (c) generalizes to produďs of finitely many invertible matrices: If Á1,

A2, " " A,are inYe 
ffi : .". ;;:T;':, ::" :,::,,, 

Án is invertible and

(See Exercise 18,) Thus, we can state:

The inverse of a product of invertible matrices
the reverse order.

is the product of their ínverses

' Since, for real numbers, _ + + | * |, we should not expect that, for'a*b a b'

square matrices, (Á + B)-1 = A*1 + B-1 1and, indeed, this is not true in general; see

Exercise 19). In fact, except for special matrices, tlrere is no formula for (Á * B)-1.
. properťy (e) allows us to define negative integer powers of an invertible

matrix:

l!0 iilililllt It Á is an invertible matrix and

d-fi*d by
n is a pO itive integer, then Á-n is

ffiaammffi e S-Éffi

With this definition, it can be shown that the rules for exponenťation, A',4' = 71r*s

and (Á')' = Áo, hold foť all integers r and s, provided Á is invertible.

One use of the algebraic properties of matrices is to help solve equations involving
matrices. The next example illustrates the process. Note that we mu t pay particular
attention to the order of the matrices in t}re product.

Solve the following matrix equation for X (assuming that the matrices involved are

such that alt ofthe indicated operations are defined):

A*l (,ax)-, - (a- 1fi3)2
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S*iá! ;d}it There are many ways to proceed here. One solution is

A*I(BX)'' : (A-lB3)2 + ((Bx)Á)-, : (Á-lB3)2

=+ [((rx)Á)-']*' : [(Á ,B3)2],l

=+ (Bx)Á : [(Á-'r3)(a-lB3)] 1

=+ (rx)Á : B-3(Á-1) t3-:(4-1)-t

+ BXA - 3-sn3,str
+ B-IBXAA-I : B-lB 3AB-3AA-1

+ IXI : 3-en3-z1

=*X: B-4AB,3

&l"-**. (Can youjustify each step?) Note the careful use of Theorem 3.9(c) and the expansion
of (1-1B3)2, We have also made liberal use of the associativity of matri* *,rltipli.u-
tion to simplify the placement (or elimination) of parentheses.

Inmgnltrll Miltri s
We are going to use matrix multiplication to take a difťerent perspective on the row
reduction of matrices. In the pr<rcess, you will discover many new and important
insights into the nature of invertible matrices.

If

It
^E:Io

L0
we find that

Since there are three types of elementary row operations, there are tfuee cor-
responding types of elementary matrices. Here are ome more elementary matrices.

00l t5?1
1 0J L B 3l

Is z1,o:|; ;l
L-r o.]

ln other words, multiplying Á by E (on the left) has the same e fect as interchanging
rows 2 and 3 of Á. \{hat is significant about E? It is simply the matrix we obtain by
applylng the same elementary row operatiofl, R2 R3, to the identity matrix 1,. It
turns gut that this always works.

EI 1-

00
30
01
00

u)L2

01
10
00
00

0l
0l
0l
1J

[1

Io
l0
Lo

0l
0l
0l
1]

r0

|?
Lo

0]
0l
0l
1]

r1
lo

l,
L0

, and .3:*Ť

00
1ů
01

_.20
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, ErA:

frzz

frzz

aru

an.,
"Ťfu

Each of these matrices has been obtained from the identity matrix /a by applying a

single elementary row operation. The matrix E1 corresponds to 3R2, E, to R1 ++ R3,

and E to Ra - 2R2. Observe that when we left-rnultiply a 4 X n matrix by one of these

elementary matrices, the corresponding elementary row operation is performed on

the matrix, For example, if

f art dn
l

A- | 
o" dzz

I 
ou, alz

Lan &+z

then

o"1
frzs 

l
ilzl 

l

onu l

,Áx

fltz

3azz

&n

Q*z

iltt

3a,,21

fret

fiat

I
I

I

L

an\
3azn 

lflnl
onu )

o"1
frzl 

l

án 
l'

aal l
{]rc

frzz

frzs

2azs

fo,
Io"

Io"
La+t

&*s

and ErA

att &n

azt {lzz

ast ász

2a^ daz Zarz

Example 3,27 and, Exercises 24-30 should convince you that any elementary

row operaťon on any matrix can be accomplis}red by left-multiplying by a suitable

elementary matrix. Wb record this faď as a theorem, the proof of which is omitted.

fr*t

ThOOr§m S,líI

Bontrl From a computational point of view, it is not a good idea to use el-

ementary matrices to perform elementary row operations-just do them directly.

However, elementary matrices can provide some valuable insights into invertible
matrices and the solution of systems of linear equations,

We have ulr.udy observed that every elementary row operation can be "undonej'

or "reversed] This same observation applied to elementary matrices shows us that
they are invertible.

t1
Io
L-z

[t 0 0l

|o 0 1l,
L0 1 0]

[t 0 0l
E2: 

L: ; ?], 
and ,E3 :

0 0l
1 0l
0 1l

Then E, corresponds to R, ++ R3, u,hich is undone by doing R2 ++ R, again. Thus,

-..*e:,. Er-' : E,, (Check by showing that Ei : ErEr: 1,) The matrix E, comes from 4R2,
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wlrich is undone by performing iR , Thus,

It
E;l_ lo

Lo

0
L
4

0

0l
0l
1l

0l
0l
1l

which can be easily checked. Finally, E3 corresponds to the elementary row opera-
ťon R3 * 2Rr, which can be undone by the elementary row operation R3 * 2R1. So,
in this case,

[t 0

E;' = |o 1

Lz0
| |l, '"' (Ag"in, it is easy to check this by confirming that the produď of this matrix and E3,

in both orders, is J.)

Notice that not onlyis each elementarymatrix invertible, but its inverse is another
elementary matrix of the same type. We record this finding as the next theorem.

TheOtem 0,1l Each elementary matrix is invertible, and its inverse is an elementary matrix of the
ame type.

T[n íunilamGntfll T[GOísm 0í lnuGrtiblG MatíiGG

We are now in a position to prove one of the main results in this book*a set of
equivalent characteriz,ations of what it means for a matrix to be invertible. In a ense,
muďr of linear algebra is connected to this theorem, either in the development of
these characterizations or in their application. As you might expect, glven this intro-
duction, we will use this theorem a gťeat deal. Make it your friend!

We refer to Theorem 3.12 as the first version of the Fundamental Theorem, since "

we will add to it in subsequent chapters. You are reminded that, when we say that a set
of statements about a matrix Á are equivalent, we mean tlrat, for a given Á, the state-
ments are either all true or all false.

T[eOtem 3.12 The Fundamental Theorem of Invertible Matrices: Version 1

LetÁbeann}r(

a. Á is invertible.
b. Áx : b has a unique olution for everyb in R'.
c" Áx * 0 has only the triviď solution.
d. The reduced row echelon form of Á is /,,,
e. Á is a product of elementary matrices.
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P1OOí \AIe will establish the theorem by proving the circular chain of implicaťons

(a) + (b) + (c) =+ (d) + (e),+ (a)

(a) + (b) We have already shown that if Á is invertible, then Áx : b has the

unique solutionx = Á-lb for anyb in R'(Theorem3.7),

(b) ,+ (c) Assume that Áx = b has a unique solution for anyb in Rn, This implies,

in particular, that.t{x = 0 has a unique solution. But a homogeneous system Áx = 0

alwayshasx * a as onesolution, o ihthis ca e, x = 0mustbe fie solution.

(c) "+ (d) Suppose that Áx = 0 has only the trivial solution. The corresponding

sy tem ofequations is

arrx, * alfrz *,.,, * arp, : 0

aztXt * a22lí2*.,, * azr#, = O

:

dnllfi t ar z*,,, * anp,n = g

and we are assuming that its solution is

Xn

In other wsrds, Gauss-}ordan elimination *pplied
y tem gives

eugmenteď matrix oť the

tÁ l0]
_ ií,ls]

Thus, the reduced row echelon form of Á is.ín.

(d) .+ (e) If we assume that the reduced row echelon form of Á is /n, then á can be

reduced to /, using a finite equence of elementary row operations. By Theorem 3,10, "

eaclr one of these elementary row operations can be achieved by left-multiplying by an

appropriate elementary matrix If the appropriate sequence of elementary matrices is

EyE2, .. . , Ek (in that order), then we have

Ep"'ElElA = ín

According to Theorem 3.11, these elementary matrices are all invertible. Therefore,

so is their product, and we have

A : (Ex. . .E2EL)-lh = (Et,. .,E2E1)-1 = Et |E;l ", Ek'

Again, each E,-1 is another elementary matrix, by Theorem 3.11, so we have written

á as a product of elementary matrices, as required.

(e) =+ (a) If Á is a product of elementary matrices, then Á is invertible, since

elemerrtary matrices are invertible and products of invertible matrices are invertible.
,lil

H0

0X2

X1

0

to the

0l
0l.l
,_]

0l 11 0 .., 0

0l l0 1", 0.l---+l: l l : : ,. 
:

0j Lo 0 ." 1

m

fr2,

O'rn

I 
ort arz

|':, 
o?.,

Lon, an:
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§"2s
Iť possible, express Á

olutign \^Ie ro\,f reduce Á
alJI
.l

-1l

rt2

It
Lo

0l
1]

1 3l R2*2Rll+2 3l

_+& [t#l
L0

as foll

lz
' 

L,
A

Thus, the reduced row eóelon form of Á is the identity matrix, so the Fundamerrtal
Theorem assures us that Á is invertible and can be written as a product of elementary
matrices. We have E4E3E2EíA = /, where

1-o tl l r ol lt tl l-r ol

', 
: 

L, o.], 'r: |_, ,.l, '': Lo ,]' un = Lo _+.]

are the elementary matrices corresponcling to the four elementary row operations
used to reduce Á to J. As in the proof of the theorem, we have

t-o rl l-r ol í-r -r'll-r o'lA: (E4E3E2E1)-1 : El|r,llnl|r.;, : L; ;]L; ;]L; ;]L; _;]

a required.

n0nril Because the sequence of elementary row operations that transforms Á
into I is not unique, neither is the representation of Á as a product of elementary
matrices. (Find a different way to express Á as a product of elementary matrices.)

The Fundamental Theorem is surprisingly powerfi.tl. To illustrate its power, we
consider two of its con equences. The fust is that, although the definition of an in-
vertible matrix states that a matrix Á is invertible if there is a matrix 8 such that boíi
AB : I and BA - /are satisfied, we need only check ore of these equations. Thus, we
can crrt our work in half!

TnGOrsm S.íS Let Á be a squarť matrix, If B is a square matrix such thx either ÁB
then Á is invertible and B - A-I,

PíOOí Suppose BÁ = r. Consider the equation áx = 0. Left-multiplying by B, we have
BÁx : B0, This implies that x : Ix : 0. Thus, the system represented by Áx : 0 has the
unique solution x : 0. From the equivalence of (c) and (a) in the Fundamental Theo-
rem,weknowthatÁisinvertible.(Thatis,Á-lexistsandsatisfies,4Á-l=l= A-LA.)

ťwe now right-multiplyboth sides of BA :1byÁ-1, we obtain

BA"A*I : IA-l T+ BI : j-t =+. : Á-1

(The proof in the ca e of ÁB : |is left as Exercise 41.)

The next con equence ofthe Fundamental Theorem is the basis for an efficient
method of computing the inverse of a matrix.

,l r l
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Tlt§ítrsm E.14 LetÁbea quare
to /, then the same

matrix. Iť a equ nce of element ary fow operation reduces Á
sequence of elementary row operation transforms J into A*I _

itl*{,'i If Á is row equivalent to 1, then we can achieve the reduction by left-

multiplying by a sequenc e E1, E2, , . , , Ekof elementary matrices. Therefore, we have

Ek., . E2EIA: l. Setting B : Ěť " EzElgives Bá : I ByTheorem 3.13, A is invert-

ible and Á*1 : .B, Now applyrng the same equence of elementary row operations to

l is equivalent to left-multiplying / by E1, , , EzEt : B. The result is

Ek",E2EJ:BI:B=A-I
Thus, .I is transformed into Á- l by the same sequence of elementary row operations.

. _.,:

í*c* &*á*rĚ";ťěp**e} ,i* ť$í}# x*,s**;tlt*?'tíÉ# lť. * e !ll,*iťss

We can perform row operations on A and 1simultaneously by constructing a "super-

augmented matrix" [Á | 
I ], Theorem 3,14 shows that if Á is row equivalerrt to / [which,

bythe Fundamental Theorem (d) ++ (a), means thatÁ is invertible], then elementary

row operations will yield

taIr] --+ tllÁ-']
IfA cannot be reduced to /, then the Fundamental Theorem guarantees us that Á is
not invertible,

The procedure just described is simply Gauss-Jordan elimination performed on an

n X 2n, instead of an n x (rr * 1), augmented matrix. Another Way to view this pro-

cedure is to look at the problem of finding Á*1 as solving the matrix equation ÁX : .In

for an n X n matrix X. (This is sufificient, by the Fundamental Theorem, since a right

inverseofÁmustbeatwo-sidedinverse.)IfwedenotethecolumnsofXbvx1,.,.,xri,
then this matrix equation is equivalent to solving for the columns of X, one at a time,

Since the columns oÍInare the standard unit vectors 1l . . . l e, we thus have it systems

of linear equations, all with coefficient matrix Á:

Áx1 : elr.,.rAxn: e,

Since the same equence ofrow operations is needed to bring Á to reduced row

echelon form in each case, the augmented matrices for these systems, [Á l er] , , . . ,

[Á l e,], can be combined as

[Á|ele2",e"] : [A|l"]

We now apply row operations to tryto reduce Á to 1,, which, if successful, will simul-

taneously solve for the columns of Á-1, transforming I, into Á-1.
We illustrate this use of Gauss-}ordan elimination with three examples.

Find the invcr e sf

if it cxists.

1l
4l
3]

[t 2

l, J

L; ;
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SOlutlun Gauss-}ordaneliminationproduces

[t 2 -1|l
lAiI] _|z 2 +loL||l

Ll 3 *3lo

[t 2 *1
I

|0 
*2 6

L0 1 -2)

0 0l
l

1 0l
0 r]

10
*2 

1

- } 0

0 0l
*+ 0l
ó IJ

0 0l
** 0l
á r]

2, *1

1 *3

1*2

It
Io
Lo

It
Io
Lo

;]
r]

(*i)n,

-Ťž

Rl*&

-+

1

1

*1

2 *1| 
1

1 *ll 
1

I0 1l*z

2 0l*1 +

l ol-s 1
I0 tl-z *

Rl+R3 [ t
R2+3R3 I

----+ | 0

Lo

tl
3l
,]
*sl
3l
tJ

Therefore,

(lbu should always check that AA*L(You should always check that AA-' : /by direct multiplication. By Theorem 3.13,
we do not need to check thatÁ-lÁ = /too.)J too-)

n0mail Notice that we have used tlre variant of Gauss_}ordan eliminaťon t}at
first introduces all of the zeros below the leading ls, from left to right and top to
bottom, and then creates zeros above the leading 1s, from right to left and bottom to
top. This approach save on calculations, as we noted in chapter 2, but you may find
it_easier, when working by hand, to create all of rhe zeros in each column a you go.
The answer, of course, will be the same.

Finď the inrrerse of

A:
1

-1
2

if it exísts,

[t 0 0| g -}
Io 1 0l*5 1

Lo 0 tl-z 
'

-4l

_:]

r2
|*+
L*z
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in Example 3.30, adjoining the identity matrix to Á and

tÁ l í] into iJ lÁ*'].

r 2 1 -4l l 0 0l

L_-z 2 -2|o 0 1]

Iz 1 *4 ll 0 0l
Io 1 -r|, 1 0l
L; 3 *6 l1 0 ,]

l-r 2 -tl I 0 ol

|, 1 -,l 2 t 0l
Lo 0 ol*5 *3 tl

§ ť ffi We proceed as

then trying to manipulate

[Á

At this point, we see that it is not po sible to reduce Á to J, since there is a row of zeros

on the Íeft-hand side of the augmented matrix. Consequently, Á is not invertible. l

As the next example illustrates, everything works the silne way ovet Zr; where

p is prime.

Find the inverse of

if it exists, ovet Z3,

s{** ! }*il tr We use the Gauss-lordan method, remembering that all calculations are

in23.

6tl:|j 3l; ?]

,, l, |l2 o]

|z olo t]

It I12 ol
Lo ,l, ,]
lt olo z]

Lo ,l, ,]

. [oz1
rn"r, O-' : 

|l Í_], 
*Uit is easyto checkthat, oyerZ3, AA-I : I,

Sc} x l*;l: :i, Since Á is a 2 X 2 matrix, we can also compute Á-l using the formula

given in Theorem 3,8. The determinant of Á is

detÁ:2(0)-z(z):*L=2
in 23 (since 2 * 1 :0). Thus, Á- l exists and is given by the formu|a in Theorem 3.8.

We must be careful here, though, since the formula introduces the "fractioď' I/ďet A

lzA=ll)
LLl

21

0]
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and there are no fraďions ln Z3. We must use multiplicative inverses rather than
division.

Instead of L/d,et A : I/z,we use 2-1; that is, we find the number r that satisfies
the equation 2x = I inZr,k is easy to see that r = 2 is the solution we want: In 23,
2-1 : 2, since 2(2) : 1. The formula for Á-1 now becomes

*")loI
)luJ

1l [o 2i
2J |z 1]

Io
2l

L1

,i- 0::- ?-rl
L. ll _?

Lu

4*t

which esree \ťíth our prťviotts solution.

In Exercises 11 and 12, solve the given syst m usingthe
met?tod of Example 3.25.

For }arger y tems, the differen e is even more
pronounced, and this explains why colxputer
y tems do not use one of these methods to solve

linear ystems.

14. Prove Theorem 3.9(b).

15. Prove Thearem 3"9(d).

16. Prove that the rr X rr identity mat ňx lris invertible and
that Ir' : In.

17. {a) Give fr cffunt rexample to show that (Á8} 
*I *

Á*1.8*' in general.
(b} tJnder what conditions on Á and B is (Á ) 

*1 
:T

Á*l"B*1? Prove yonr a sertiůn.
I

18" By induction, prcye that if Á 1t A2l. i . , Anareinvertible
matrices of the same size, then the product AIA2. . , An
isinvertibleand {AtAz.,. A*)*1 ,]- A;'...Ár rÁ;r"

19. Give a counterexample to show that (Á + B}-' +
Á*1 + B*1 in general.

In xercises 20 *23, sulve the given matrix equation for X.
implify your answers as mu Lt as possible. $n the wards af

A\bert Einsteifl, "Everything should be made as simple as pas-
sible, but not simPlen') Ássu me that alt matrices are invertible.

20. XÁ3 : Á*1 21. ÁXB * (re)2

22, (A*'X)*' * Á{B*'Á)*' 23. ABru*lB*l T= I + A

3a, let

2

1

-1
2

1

1-

-1l [t -1 0l
1l, B: |, 1 1l,
0j L, 2 -lJ

1l l- 1 2 -1l1l,D:|-s -1 3l
lJ L 2 1 -lJ

In Exercises 24*

It
I

A fi 
|1
Lr

It
c--|r

Lz

In Exereťses 1*1a, find the inverse af the given matrix (ií it
exists) using Theorem 3.8.

1. ti :j l+ *2l

Ll 2) ''',,, 0J

3.[: 41 4.l- 0 1l

L6 s] -'L*1 
0_]

5.ij il 6.[ ,/Ý ,/Ý1
L ;J L-l lYz llVzJ

7 [-;; 
-:1] s [i ,l 3:fi]

9. r- *b]

Lb a)

lt/a L/b]l0. 
'Lt' l, Ildl, u,,here neither tl, b, c, nor d is 0

11.2x* y* *1 1,2, x1 *x2 
1

5x*3y- 2 lxr*xz:2

l3.LetÁ_[r 21 " [sl l--1l b":lrl
(a} Finď Á*1 and u e it to solve the three system

Áx : b1, Áx : b2, and Áx : b3.
(b} Solve all three systems at the same time by row re-

ducing the augmented matrix [Á l b, b, br] using
Gauss-}ordan elímination.

{c) Careťully count the total number oť individual
multíplications that you performed in (a) and in
(b). You should discover that, even for this 2 x 2
exampl*, cne method uses fewer operations.

1t8
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47, Prove that if Á and B are quare matrices and Á. is

invertible, then both Á and B are invertible.

In Exercises 48*63, use the Gauss-/o rdan met\lod to nd the

inverse af the given matrix (if it exťsfs).

In each & e, rtnd an e},emerctary matrix E that satisfies the

given equation.

24.EA: B 25,EB:A ?6,EA: C

Z?,EC*fr 28.-C:n }g.ED:C
30. Is there an elementary matrix _ such that EA * D?

Why or why not?

In Hxercťses 3.1*38, rtnd *te inv r af the given elementary

matrix"

,, r, 0l á+rl I r 21

L0 1] 32' L; lj
1-o 1l I" 1 0l

33.1: :l 34. l , ,lLl 0j L-i Il

[r 0 0l [o 0 1l
' *}, l 36. lo 10l35.|0 1 -Ál l l

Lo 0 lJ Lt 0 0]

[r 0 0l [t 0 0l
37.|0 c 0l,r* 0 38. |0 1 c |,c+ 0

Lo 0 1l Lo 0 lJ
In Exertises 39 and 40,, find á, sequgnce of elementary

matrircsE7,E2,t. r, E1,sucht1rtatfk,,, E,E.A: f. Usethis

equeťlce to write battt A and Á- 1 
as products af elementary

matrices.

|-t 5l l-z 4l48'Li 4j 49' L 3 -1]

uo. [1 -il 51. t 1 
:1\'l"Lz 0J L-a 1l

|z 3 0l [r -1 21

52.|1 -2 -1 l ur.Iu 1 2l
Lz 0 -1] Lz 3 *lJ

[r 1 0l |a 0 0l
54.| ,01l uu.|1 a 0l

Lo 1 1l L0 1 aJ

[o a ol _t: li :]
,u. l?icl ,r. li _; ;0lLod 0] L;;;-;]

r \/ž 0 2\n 0l
l-+\/1 \/1 0 0l58'l o 0 1 0l
L 0 0 3 1]

11 0 0 0l

59. l0 1 0 0l uo.[o !1 orrrz,"'J Io 0 1 0l *"'Lt 
tJ

|a b c dl

l+ 21 fz 1 0l
61. l: iloverLs 62.| 

' 
1 2| or,*rZ,

L3 4l Lo ? 1l

[r 5 0l
Ur.|1 2 4|or*rZ,

Ll 6 1l

Partitioning large square matrices cafl sometimes make their

inverses roíiu to ,i*pttte, particuloňy if the blocks haue

a nice foť??t. In Exercťses 64*68, verify by block multiplica-
tian that the inversg aÍ a matrix, if partitianed as shown, is

as claimed. (Assume that all inver . exist as naedsd.)

l e Bl-, [Á-, _Á*,BD-,l
un'Lo D] :Lo D-l .J

t- 1 0l |z 4l
39.Á=-L_; _;] 40.A:L,,.|
41. Prove Theorem 3.13 fnr the case of AB : L

42. (a) Prove that iťÁ is invertible and Á- * O, then
. :O,

{b} Give a counterexample to show that the resu}t in
part (a) mry ťai} if Á is not invertible.

43. (n) Prove that if Á is invertible and BÁ : CA, then
B: C.

(b} Give a counterexnmp}e to show that the result in
part (a) may ťeiI iťÁ is not invertible.

44, A quare matrix Á is called idempatent if A2 : ,{.

(The word idempoter csm from the Latin idem,

meaning " amei and potere, meaning'to have poweri'
Thus, something that is idempotent has the "same

power" when squared.}

{a) Find threc idernpotent 2 X 2 matrices.
(b) Prove that the only invertible ídempotent n X n

matrix ís the identiťy matrix.

45. how that if Á ís a square matrix that satisfies the

equation,42 * 2A + J : O, then A*t : 2I - A.

46. Prove that if a syrnmetric matrix is invertible, then its
inverse is symmetric al o.
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Iru Exercises 69*72, partition the given matrix so that you
can aPply one af the formuÍas from Exercises 64-68, and
then calculate the inverse using that forrnula.

[1 0 0 0l
l0 1 0 0l

69. l ll2 3 1 0lll
Ll 2 0 t]

70. The matrix in Exercise 58

[o Bl -' [ 
* (.BC) - j (ec) -'^B l

Lc I] 
_[c(rc)-' I- c(Bc}-'B]

[, Bl ' i U- Bc)-' __(l-Bc)-tB l
Lc IJ L*ctr*Bc)' I+c(I*Bc;)-'BJ
Io sl-,
Lc D"j

65.

66.

67,

l]
2l

r0 0 1 1ll;;;;l t01
7t. ll0 *1 i ;l "' | 1 3

L, 1 0 ,J L*' 5

( BD*1C)*1. D- , l-1 -1 * ;7*rc{nn*xc}*,rr: ,]

nl
: l,where P ,* (Á * BI}*'C}*',
ť l,tJl

-D* 'CP, and x fi*l

C)*'
-1C)

p

fi
ft ,:---

1C)

l*1(

Ir
Lx

,o'

;3* t

.xn
r
I

I

l

l
,
L

)*',
l.D*]

(n

'Ct

|*1

l

Il
pč

B,

:{

l

,J

t
I
I

Ln'
[e Bl68.1 l

LC Dl
Q* *p"

+ n*lc,

Ju t a it is natural (and illuminating) to factor a natural nurnber into a product of
other natural numbers*for example, 30 = 2 . 3 .S*it is also frequently helpful to fac-
tor matrices as products of other matrices. Any repre entation of a matrix as a product
of two or more other matrices is called a matrixfactoňzation.For example,.

-1l
*2)

[t olts: 
L, r]Lo

[: * 1l

Ln *5]

is a matrix factorization,
Needless to ay, ome factorizations are more useful than others. In this section,

we introduce a matrix factorization that arises in the solution of systems of linear
equations by Gaussian elimination and is particularly well suited to computer imple-
mentation, ln subsequent chapters, we will encounter other equally useful matrix
factorizations. indeeó the topic is a rich one, and entire books and courses have been
devoted to it.

consider a system of linear eguations of t}re form Áx = b, where Á is an n x n
matrix. Our goal is to show that Gaussian elimination implicitly factors Á into a prod-
uct of mafices that then enable us to solve the given system (and any other system
with the same coefficient matrix) easily.

The following example illustrates the basic idea.

AŤ1
r 2 1 3l

l 4 -1 3l
L-z 5 5]
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Row red ction af A proce

2 1 3l
4 -1 3l

*2 5 5j

lz 1 3l

L:-;i]

fullaws:

fz t :l
lo -3 *3 

l

Lo 6 *]

eds as

R2 * 2"R1

R3 +R,
*-__.+

R3 + 3R2*_*+ ffiU {l)

The three elementary matrices
echelon ťarm U are (in order):

tl0
E' : |*ž 1

L00
Hence,

A*

olving ťnr A, we get

A * E;'E;'r;'{.í :

Thus, Á can be factored as

t, z, X$ that a ťůmplish thís rcduction tf Á to

ol [t 0 ol [t 0 ollll|l0l,E2: |0 1 0l,E3*|0 1 0l
tl Lt 0 lJ t0 2 1_1

E3E1Ey{ x U

exercises for Section 3,2), anc] l is tlttit

1 0 0lr 1 0 ollt 0 CIl

21 0ll 0 1 0ll0 1 0|r,
0 0 ,JL*, 0 rJLo *2 rJ

1 0 ol
2 10|u:L{J

*1 *2 tlč
*J

s.:
.t,.
íů
L,

O
al*

(

,j::

fi3
7.

{t LU

where tt is an apper triangular matrix {see the
lower triangular. That is, I has the form

[, 
CI |

l* 1 ,,
L.' l, : '

I* * .,
L

with u ros above and ls on the main diagoftal.

The ltl ťactorizati*n wa introduced
in 1948 by the great nglish
mathematician Alan M. Turing
(1912*L954} in a paper entitled
"Rounding-cťf rrars in Matrix
Processes" {Qu arteňy f*urnal af
Mechanics aná Applied Mathematics,
í (194S), pF. 2B7*3#8). During

'v\Iorld l,Var II, T$rins was
instrumental in cracking the
German "Bnigmď' code. However,
he is best known for his work in
mathematical logic that laid the
theoretical groundwork ťor the
development of the digital computer
and the rnodern field of artificial
intelligeílce. The "Turing tesť'
that he proposed in 1950 is still
used a onť of the benchmarks in
addressing the qu*stion of whetlrer
a computer can be considered
"intelligent]'

The preceding example rnotivates the fallowíng definitisít.

.t 0

.. 0

n'. 

].

r ii unit iower triangular and U is upper triarrgular, is called an LU factorization
of Á.

Srlme::l:.
* Observe that the matrix Á in Example 3,33had an lUfactorization because no

row interchange.s were needed in the row reduction of Á. Hence, all of the elementary
matrices that arose were unit lower triangular. Thus, I was guaranteed to be unit
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ffififfi&*
&w$

lower triangular because inverses and produďs of unit lower triangular matrices are

also unit lower triangular. (See Exercises 29 and 30.)

íí a zero had appiared in a pivot position at any step, we would have had to swap

row to get a nonzeio pivot. This would have resulted in l no longer being unit lower

trianguŘ We wilt comment further on this observation below. (Can you find a ma_

trix for which row interchanges will be necessary?)
. The notion of an Iu factorization can be generďized to nonsquare matrices

by simply requiring Uto be a matrix in row echelon form. (See Exercises 13 and 14.)
' . "sá*. 

uookš d"íio" an lU factorization of a square matrix A to be any faďor-

ization A = lU, where I is lower triangular and U is upper triangular.

The first remark above is essentially a proof of the following theorem.

ThgOrGm S.1 If Á is a squaíe matrix that can be reduced to row echelon form without using any

row interchanges, then A has an LU factorization,

To see why th e LU íactoizalion is useful, consider a linear sy tem Áx = b, where

the coefficieni matrix has an LU faďaňzation Á = IU. We can rewrite the system

Ax = b as lUx = b or l( Ux) = b. If we now define y = (}5, then we can solve for x in

two stagesl

1, Solve t} : b for yby.fu rward substitution (seeExercises 25 ald26 in Section 2.1).

2. Solve Ux : y for xby back substitution.

Each of these linear systems is straighďorward to solve because the coefficient matri-

ces l and Uare both triangular. Thá next example illustrates the method.

LJse an l,t/factorization 0f Á *

{l|ntt$n In Example 3.33, we found that

A tt/

L-i]
t i _1 il
L-, 5 5]

Lill]Lli1]
As outlined abo

Ly:btory:

ve} to

Ll]

solve Áx : b (which is the same & r(Ux) * b), we ťirst solve

, This ís just the linear y tem

lt _= l

2y, + |z _ -4
-!t Zyr*yr- 9

Forrvard substitution (that is, working from top to bottom) Yields

)',.: I, )'2: -4 * 2y, - -6, }'3:9 +.Ir * Zyr: *2



Thus y * and lve now solve L/x : y for x T

2x, + X2 + 3xu ::

*3xz 3xl :

and back substitution quickly produces 
2x' :

X3 : * 1,

*3xz: *6 + 3x, * *9

lxr* 1 X2 3xr:

Section 3.4 The l[/ Factorization

so that x2 = 3, and

1 so that x, *

L-i]
[;;]. ,n,, linear system is

L", l
1

*6
*2

Thereťore, the solution to the given system Áx * b is x

[n ltsl Ullay to ]lnd lll íactorilili0ns
In Example 3.33, we computed the matrix I as a product of elementary matrices.
Fortunately, I can be computed directly from the row reduction process without our
needing to compute elementary matrices at all. Remember that we are assuming that
Á can be reduced to row echelon form without using any row interchanges, If this is
the case, then the entire row reduction process can be done using only elementary

n .px row operations of the form R; - rry. (Whr do we not need to use the remaining
elementary row operation, multiplying a row by a nonzero scalar?) In the operation
Ri * kRj, we will refer to the scalar ft as the multiplier.

In Example 3.33, the elementary row operations that were used lvere, in order,

R2 - 2R1 (multiplier:2)

R3 + R1 = Rs -(-1)R1 (multiplier = *t)

R3 + 2R2 - R3 * ?z)Rz (multiplier: *2)

The multipliers are precisely the entries of l that are below its diagonal! Indeed,

Ii]

I t o ol
L:| 2 I0l

L-, -2 ,_l

and L21 = 2, L3t - * 1, and L32 - -2, Notice that the elementary row operation

& - k& has its multiplier k placed in the (l, j) entry of l.

Find en l,u factcrization af

31
64
3)

-9 5

3 -4l
8 *10 

l5 -1 l

2 -4)
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m XX mx* Reducing Á to row echelon form, we have

A:

Rr-íR,
R4*4R?
*---+

R4- (- 1)R3
a*}

The first three multipliers are2,I, and -3, and these go into the subdiagonal entries

of the first column of tr. so, thus far,

L

The continue to fill out J,:

The final multiplier, * 1, replaces the last

-4l
_2l

3l
- 16]

3 *4]
) *) l;;l
1 *8]

*4l
*2 

l|-U4l
*4]

3

7
H

1

ů

[3 1

Io 2

|o 1

L0 s

t"l 1

|o ?

|o 0

Lo 0

13 1

|; 2

l0 0

Lo 0

3 1 3 -4l
6 4 8 _10|n,*en,

3 2 5 -1 lí;-,,*,l --+-9 5 -2 -4l

1

ž

1

3

We

1

2

1

3

nJ

2

2

7

0 0 0]
1 0 0l
* 1 0l
* d{ ,]

0 0 0l
1 0 0l
+ 1 0l
4 * r]

* in I to siÝe

0 0 0l
1 0 0l
* 1 0l
4 -1 r]

1 0 0 0lr3 1

2 1 0 0ll0 ?

1 i 1 0ll0 0
*3 4 -1 1lL0 ff

3 *4l
8 -10 ll-5 -1 l

-2 -+)

next two multiplíers ere * and 4, so

t
L = l

I

IL*

1

2

1

4
-J

L:

Thus, an LU factorization of Á is

3 *4l
2 -2 l|*LU1 4l
CI -4]

A:

31
64
32

*9 5

as is easily checked.



nOmlrlt
. In applying this method, it is important to note that the elementary row opera-

tions R; * /cjl must be peďormed from top to bottom within each column (using the
diagonal entry as the pivot), and column by column from left to right. To illustrate
what can go wrong ifwe do not obeythese rules, consider the following row reduction:

l-r 2 21 l-r 2 21 l-r 2 21

o:|, r rIt3|r 1 1lglo _1 _,|:u
Lz 2IJ Lo 0 -1l Lo 0 -1]

The first pivot is 2, which occurs in the first colurnn of Á. Dividing the entries of
this column vector that are on or below the diagonal by the pivot produces

|- zl l- tl!| ;l:| ;l
'|-r) L-,.]

Section 3.4 Thg lll Faeta zatinn ],,

This time the multipliers would be placed in I as follows: Lgz = 2, kt = L We would
get

t!+ but Á * lU. (Check this! Find a correct LU factarization of Á.)
. An alternative way to con truct l is to observe that the multipliers can be

obtained directly from the matrices obtained at the intermediate steps of the row
reduction proce s. In Example 3.33, examine the pivots and the corresponding col-
umns of the matrices that arise in,the row reduďion

The next pivot is *3, which occur in the second column oťÁ1, Dividing the entries
of this column vector that are on or below the diagonal by the pivot, we obtain

The final pivot (which we did not need to use) is 2, in the third column of U. Divid-
ing the entries of this column vectoí that are on or below the diagonal by the pivot,
we obtain

If we place the resultins three column yector side by siď* in a matrix, wť have

[t 0 0l
L-L; :l]

r 2 1 3l lz 1 3l fz 1 3l
A:I n -1 3l *o,=Io *3 *3|*Io *3 -3 l:u|,*, 5 5l Lo 6 8] Lo 0 2)

e[ ;] [l]

iL,] x 
[,]

L i _:,]
which is exact|y L once the above-diagonal entries are ťilled wíth zeros.



Matrices

In Chapter 2, we remarked that the row echelon form of a matrix is not unique.
However, if an invertible matrix Á has an lU factorization Á : lU, then this íaďoriza,
ťon is unique.

Chapter 3

í}ťitĚ; Suppose A : LU and Á : LlU1 are two lU factorizations of Á. Then LU :
11U1, where L anó L, are unit lower triangular and Uand U1 are upper triangular. ln
fact, U and Q are two (possibly different) row echelon forms of Á.

By Exercise 30, 11 is invertible. Because Á is invertible, its reduced row echelon
form is an identity matrix I by the Fundamental Theorem of Invertible Matrices,

il**}",, Hence U also row reduces to I (why?) and so U is invertible also, Therefore,

Lll(LU)U*\ : Lr|(trU)t]-| so (t1'L)(vu-') = (li'r,)(u,u-')

Hence,

(tr't)t : I(UJ]-|) o LllL : {JJ,J-|

But lilt is unit lower triangular by Exercise 29, and U,U-1 is upper triangular.
&*ť, (Why?) It follows that Ll|L : (J -| is both unit lower triangular and upper tri-

angular. The only such matrix is the identity matrix, so I1 'L : 1 and t}r[J-l = L It
followsthatI: I, and U - U1, sothelUfactorizationofÁisunique. . , -_--,,,]:|i#

Ť** Fí É , ftť}g* i, ?}ť *ffi

We now explore the problem of adapting the IU factorization to handle cases where
row interchanges aťe nece saíy during Gaussian elimination. Consider the matrix

^ t : : -ilíL-| 3 6 2l
L*r 1 4j

A straightforward row reduction průduce

which is not an upper triangular matrix, However, we can easily convert this into
upper triangular form by swapping rows 2 and 3 of B to get

Alternatively,wecanswaprow 2artd3ofÁfirst.Tothisend, letPbetheelementary
matrix

[t 2 -1l
Á-+B:lo 0 5l

Lo 3 3l

[t 2 *1l
tJ-- |o 3 3l

Lo 0 5l

[t 0 0l

|o 0 1|

Lo 1 0_]

l86
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corresponding to interáanging rows 2 and, 3, and let ,E be the product of the
elementary matrices that then reduce PÁ to U (so that.E-1 = l is unit lower triangu-
lar). ThusEPÁ : U, soÁ : (EP)*!U - P-Lg-Ig = P-|LU.

Now this handles only the case of a single row interchange. ln general, P will be
the product P - P*, . .P2P, of all the row interchange matrices Pl,Pzl ,. . , P1 (where

P1 is performed first, and so on). Such a matrix P is called a permutation matrix, Ob-
serve that a permutation matrix arises from permuting the rows of an identity matrix
in some order. For example, the following are all permutaťon matrices:

[ll][iIi]
0l
1l
0l
0j

[0
Io
l,
Lo

1ů
00
00
01

Fortunately, the inverse of a permutation matrix is easy to compute; in fact, no calcu*
lations are needed at all!

ThOOrgm §.1l If p is a pťrínutation etít&'théfi "-" il'tiix$Iliíffi

P1o0í We must show that PTP = l But the ith row of PT is the same as the ith
column of R and these are both equal to the same standard unit vector e, because P
is a permutation matrix. So

(PTP)a = (lthrowof PTX;thcolumnofP) * eT = e,e : 1

This shows that d.iagonal entries of PrP are all ls. On the other hand, í j * i, then
the jth column of P is a dffirent standard unit vector from e-say e'. Thus, a typical
off-diagonal entry ofPrP is given by

{PrP),, * {itrr ro,w of Pl(jth column of P} : eTe' : e, e/ : 0

Hence PrP is an identity metrix, as we Ývi hed to show. ..il

Thus,ingeneral,we canfactorasquarematrixÁa Á - P*LLIJ - PTL\J.

olutlott First we reduce Á to row echelon form. Clearly, we need at least one row
interchange.

[o 0

A: I t 2

Lz1

ffiffi $ě e . LetÁ be a square matrix. A factorization of Á asÁ : PrlU, where
P is a permutation matrix, i is unit lower triangular, and U is upper triangular, is
cďled a PTLLIfactorizationoí A.

[0 0

Find a?rLtJfactorizationofÁ- l ' 
2

l,L2 1

6l

;]

3l
6l
2J

Ii
L0

3l
*2 

l

6J

3l
6l
4l

2

0

1

2

*3

0

6l I t

3lk* |o4l Lz

R3 * 2R1

--}
2

0
*3

It
&:š 

L:
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We have used two row irrterchanges (R1 ++ R2 and then R2 <+ &), so the required
permutation matrix is

It 0 ol[o

L;?l]L;
tion af PA.Ure noln| ťind an LU ť*ctgríruu

P -.- PzP, x

Hence Lm * 2, and so

Io
A : P,L(J =- 

L;

The discussíon above justifies the follawing theorem.

t ol [o t ol
0 0l:lo 0 ,l
0 ,] L, 0 o]

[t 2

|, 
*3

Lo 0

al
*zI

aJ
PA: 

L| i :][l |;] 
:- 

Li !i]
ll

*2l
el

0 tlIt 0 0lIt

?;jL3;?]L;

: {,}

2
*3

0

#fffi ThgOtgm il.l8 Every quare matrix has a PrLrJ factori zatian.

n0mtrl Even for an invertible matrix, the PTLU íactorization is not unigue. In
Example 3.36, a single row interďtange R, <+ R, also would have worked, leading to
a different P. However, once P has been determined, I and Uare unique.

connutttlonrl Gonslderations

lf Ais n X n, tlren the total number of operations (mulťplications and divisions) required
to solve a linear system ,4x = b using an IíJ faďoňzattonofÁ) is T(n) * n3 f 3,the sarne

as is required for Gaussian elimination. (See the Exploraťon "Counting Operaťonsi
in Chaper 2.) Thi is hardly surprising since the forward elimina ion phase produces

the tu faclorization ln = n3 /3 steps, whereas both forward and bac,kward substifution
require * n2 /2 steps. Therefore, for large values of r, the n3 f 3 term is dominant. From
this point ofview, therr, Gaussian eliminaiion and the IUfactorization are equivalerrt.

However, the lUfactorization has other advantages:

. From a torage point of view, the LU íactarizaían is very compaď because
we can overwritethe entries of A with the entries of I and U as they are computed,Tn
Example 3.33, we found that

This c*nbe stored as

l- 2 1 3l t : : :li; 3lA:L: -l 
;] 
:Ll 

-: r]Lo ; 1] 
-:Lu

*1 3l
-3 -3 

l

-2 2j
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with the entries placed in the order (1,1), (1,2), (1,3), (2,1), (3,1), (2,2), {2,3), (3,2),

(3,3). In other words, the subdiagonal entries of Á are replaced by the corresponding
multipliers. (Check that this works! ). once an lu factorization of A has been computed, it can be used to solve as

many linear sy t m of the form Áx : b as we like. Wb just need to apply the method
of Example 3.34, varying the vector b each time.

. For matrices with certain special forms, especially those with a large number
of zeros (so-called "spatse" matrices) concentrated offthe diagonal, there are methods
that will simpliffthe computation of an IUfactorization. In these cases, this method
is faster than Gaussian elimination in solvingÁx = b.

. For an invertible matrix Á, an LI] factorization of A can be used to find Á-1,
if necessary. Moreover, this can be done in suc.h a way that it simultaneously yields a
faďorization ofÁ-1. (See Exercises 15-18.)

nont]l If you have a CAS (such as MATLAB) that has rhe LU íactorizatlon
built in, you may notice some differences between your hand calculations and the
computer output. This is because most CA 's will automatically try to perform partial
pivoting to reduce roundoff rror . (See the Exploration "Partial Pivotingi in Chapter
2.) Tbring' paper is an extended discussion of such errors in the context of matrix
factorizations.

This seďion has served to introduce one of the most usefirl matrix factorizations.
ln subsequent chapters, we will encounter other equally useful factorizations.

:,,' ,,, ] ,,,

0 0 0l
1 0 0l
0 1 0l

-1 5 1_]

l-,ll2l: 
l r l

L,]

Il
|+
Iz

0l
0l
0l
1l

r1
|-z
ls
L-,
r1
| *,: 
| 
*r

L0

r2 -1 0 0l
I6 *4 5 *3 

l

|* *4 1 0l
[+ *1 0 7)

r2 -1 0 0

lo -1 5 *3Xlo 0 1 0

Lo 0 0 4

0l
", l

; 
l,1l

rL 4

|*z *5

lg 6

L*, *8

11 4

lo 3Xl
|0 0

[0 0

5,Affi

6,Ax

In xercises I *6, solve the system Ax * fu using the givrn
L{J factoriratiCIru af A,

|*z 1l l- 1 0l[-2 
'l,b:|-rll' A: L ; ;.| 

: 
L-; ;.|L 

*o 6J, L;.|

2 A= |: 
-i] : [i :] [í 

-i],o = 
L;]

00
1s

*2 1

4*2

0l

I
il

r 1 0 0l

L-; j lJ

Li]

t2 1*21
-|*z 3 *4|*

L 4 -3 0J

|z 1 *27

xlo 4 *6 l,b
Lu 0 -I)

:] :Ii ?

2) L-l 0

;]b:[;]
2 ) L -rJ

r,,
Io

ffi| l

L*1

Iz
xIo

Lo

3-A

4,A

3

*1
*3

9

3

5

*2

0

0l
0l
1J

In Exercises 7-12, find an LU factoriration af the given matrix.

r 1 2l7.1 l

L-3 -1j
lz *4l

8. l lL3 1l

-4
*1

2

*4

5

0



fl
|*

10.|4
L3

[t z 3l
9. l+ 5 6l

L* 7 ,]

Chapter 3 N{atrices

2 *tl
0 4l
4 4)

12
?6
06

- 1 *2,

12.

22 ž
*2 4 *1

44 7

69 5

Generalire the definitign *f LU factorization to nonsquaťe
matrices by simply requiriť U ta be a mgtrix in row ech-
eíon form.. With this mnďiIicatian, find an LLI factorizatian
af the matrices in xerclses 13 and 14.

In Exercises 19*22, write the given permutation matrix as e
product aí elementary (row interc?tange} matrices.

1l
0l

:]11"

20,3 *1l
3 0l

-6 7I-
*9 0J 0 0l

0 0l
1 0l
0 1l
0 0J

[0 1 0 0l
lo 0 0 ll

2l. l l ?2.
l1 0 0 0l
Lo 0 1 0l

0 -1 1 3l*1 1 1 2l
0 1 -1 1l
0 0 1 1]

In Exerctses 27-28, solve the system Ax -= fo using the given

factorization A - PrLtJ. Because PPr - I, PrLLIx - b can
be rewritten as LUx: Pb. This system can then be solved
using the method of Example 3.34.

[o 1 -1l [o 1 ollr 0 0l
27.A:I, 3 2l :|, 0 0ll0 1 ;l

L, 1 -lJ Lo 0 lll} *L 1]

L{]

L;ll]:Lli:][i
l+ 1 21

x|, -1 1l:prLu,b_
Lo 0 2l

[o 0 1l
19.|, 0 0l

Lo 1 0J

r0
Io
l0
It

Il
I0

Io
L0

00
01
10
00
01
00
00
00
10

1l
2l
3l
sl

In Exercises 23*25, rtnd a Pr Lt} fuctorization af the given
matrix A.

[t 0 1

13.10 3 3

Lo 0 0

14t

1

-2
1

0

2

*7

1

5

-21
1l
5]

ů
{J

3
4*J

*1

B

5

*6

For an invertible matrix with an LU factarizationl .: LU
botít L and tt will be invertib\e andÁ*t : U*1I*t. In
Exercises J 5 and 16,findL*l, [/*1, and A*l ío, the given
matrix.

15. Á in xercise 1 16" Á in Exercise 4

The ircverse of a matrix c&n atsa be cornputed by sotving sev-
eral systems af equations using the method of Example 3,34.
For eft n X n matrix A, ta find its iruvers we need to salve
ÁX * Iníor the n X n matrix X. Writing this equation ils
Á [x, x2,,, xn] : [e, 2. . . n], usingthe matrix-column

f*rm af AX, we see that we need to solve rc systems aí linenr
equatio,,rus; Áx, _ 

1, ÁX2 * &2r , , , r AX, er. Moreoverr we
ca.n use the factariration d x LU to solve each one of these
systems.

ín Exercises 17 and 18, use the approach 1ust outlined to

find A*L fo, the given matrix. Campare with the method af
Exercises 15 and 16.

t7, A in Exercise 1 1S" Á in xercise 4

,--!1001l 0 1 4l ll l 1-1 1 323.A:1-1 2 1l 24.A:I
l l l02 1L 1 3 3J lb L 1 1 *1

2.A:

26. Prove that there are exactly n| n X ,? perrnutation
matrices.

21

-1 l * ITLLJ,
sl*1J

28.Á =

0 0l
1 0l

-1 1l

21

?I

;]

1l
*2 

l

2l
0l

bLi]|z 3

xIo 1

L0 0
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29. Prove that e product of unit lower triangular matrices
is unit lower triangular"

30. Prove that every unit lower triangular matrix is
imertible and that its inverse is also unit lower
trianguIar.

An LDLI factnrieation af a quare matrixÁ ls a factariza-
tian * Lnu, wítere I ťs a unit lower trinngular matrix,
D ťs a diagonal matrix, and t/ ís a uruit upper triangu-
lar matrix (upper triangular with ls on its diagonaí). In

xercises 31 arud 32, find an LDIJ factorigatiun úí A.

l urc S,2

3 tr. Á in Exercise 1 32. Á in xercise 4

33. If Á is symmetric and invertible and has an LD\J
factorizaticn, show that tJ * LT.

34. IťÁ is symmetric and invertibtre and d x LnLr (with r
unit lower triangular and diagonal)r pfov that this
ťactoriration is unique. That is, prove that if we also
have Á ,,-, LLfrLL{ (with 11 unit lower triangular and D1

diagonatr), then I : 11 and í) : D,.

This section introduces perhaps the most important ideas in the entire book. We have
already seen that there is an interplay between geometry and algebra: We can often
use geometric intuition and reasoning to obtain algebraic results, and the power of
algebra will often allow us to extend our findings well beyond the geometric settings
in which theyfirst arose,

In our sfudy of vectors, we have .lr*"dy encountered all of the concepts in this
section informally. Here, we will start to become more formal by giving definitions
for the key ideas. As yoťll see, the notion of. a subspace is simply an algebraic
generaližation of the geometric examples of lines and planes through the origin. The
fundamental concept of, abasis for a subspace is then derived from the idea of direc-
tion vectors for such lines and planes. The concept of a basis will allow us to give a
precise definition of dimension that agrees with an intuitive, geometric idea of the
term, yet is ílexible enough to a]low generalization to other settings.

You will also begin to see that these ideas shed more light on what you ulr."dy
know about matrices and the soluťon of systems of linear equations. In Chapter 6,

we will encounter all of these fundamental ideas again, in more detail. Consider this
section a "getting to know you" session,

A plane through the origin in R3 "loolts likď' a copy of R2, Intuitively, we would
agree t}rat they are both "two-dimensiona1]' Pressed further, we might also say that
anycalculation that canbe done withvectors in R2 can ďsobe done in aplane tfuough
the origin, Irr particular, we ca.n add and take sca]ar multiples (and, more generally,
form linear combinations) of vectors in such a plane, and the results are other vec-
tors ir the same plane. We say that, like R2, a plane through the origin is closed with
respect to the operations of addition and scalar multiplication, (See Figure 3.2.)

But are the vectors in this plane two- or three-dimensionď objects? We might
argue that they are three-dimensional because they live in R3 and therefore have three
components. On the other hand, they can be described as a linear combination ofjust
two vectors-direcťon vectors for the plane-arrd so are two-dimensional objects liv-
ing in a two-dimensional plane, The notion of a subspace is the key to resolving tíris
conundrum.



Chapter 3 h4atrices

1 . The zeta vector 0 is in S.

2, Ifu andvare in,, then u + vis in .

3. If u is in and c is a scalar, then cu
multiplication.}

(S is closed under addition,)
is in , . (S is close d under scalar

ryry qryryqiqry A subspace of Rn is antcollection of vectors in Rn such that:
':,'

We could have combined properties (2) and (3) and required, equivalently, that be

closed under linear combinations:

IťU1, ltpr,. . ,llk eťe in and Cy C2l. r r } Clreft SCalarS,

then CtUt + Cz|tz+ , , , * ctru1 is in ,S.

Every line and plane through the origin in R3 is a subspace of R3. It should be clear
geometťically that properties (1) through (3) are saťsfied, Here is an algebraic proof
in the case of a piane through the origin. You are asked to give the corresponding
prooffor a line in Exercise 9.

Let 9 be a plane through the origin with direďion vector v1 and v2. Hence, 9 =
span(v1, vl. The zero vector 0 is in 9, since 0 = Ovt * 0v2. Nowlet

: clvl + c2v2 and v = d.lv1 * drv,

be two vectors in 9. Then

u * v = (clv' + czyz) + (drv, + drv) = (c, + dl)v1 + k2 * dr)v,

Thus, u * v is a linear combination of v1 and v2 and so is in 9,
Now let c be a scalar. Then

cu - c(clv1 * r;rr) = (cc,)v1 + kc)vz

which shows that cu is also a linear combination of v1 and v2 and is therefore in 9. We
have slrown that 9 satisfies properties (1) through (3) and hence is a subspace of R3. 

iťr
If you look carefully at the details of Example 3.37, you will notice that the fact

that v1 and v2 were vector in R3 played no role at all in the verification of the prop-
erties. Thus, the algebraic method we used should generalize beyond R3 and apply
in situations where we can no longer rrisualize the geometry. It does. Moreoyer, the
method of Example 3.37 can erve a a template" in more general settings. \,Vhen we
generalize Example 3,37 to the span of an arbitrary set of vectors in any R', the result
is important enough to be called a theorem,

ThnOíGm t-IS Letvi,y2,...,v1 bevectorsinR'.Thenspan(vily2:...,vl)isasubspaceofRt1.

ffrmg Let , * pan (vr, y2, . ,

observe that the zero vector 0
, vr). To check property ( 1)

isin,since0-0v1 *0v2
of the definition, we simply
+,",*0V;r.
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Now let

u*ctyl+czyz+, ,*clrvp and v:d t+dzvz+"*d.pYp

be two vectors in S. Then

u * v : (c,v, * c2!2*", + ceve) + (d,v, * drvz+", + dp)
(c, l- dl)v1 + k, + d)v2* ",+ (ct * dr)vt

Thus, u * vis alinearcombination ofv1, Ý2,.,, ty*and so is in S. Thisverifiesprop-
erry Q),

To show property (3), let c be a scalar, Then

cu = c(clv1 l c2v2* ",* clv1)

= (ccl)v1 + Qc.r)v2+,,, + (cct)vt

which shows that cu is also a linear combination'of v1, yz, , , ,, v1 ánd is therefore

in S. We have shown that S satisfies properties (1) through (3) and hence is a subspace

of RÍ'.

We will refer to span(v1, y2, . . . , v&) as the subsPaca spannedbyvpy2,. . . , y&.

We will often be able to save a lot of work by recognizing when Theorem 3.19 can be

applied.

how that the set of all ve tůr
ťorms a subspace of K3,

that satis$r the conditions x, * 3y and z x *žy

and is thus a ubspa e

L;]

ince / is
frť ffi3, by

ubstituting the two onditions into [;] yields

L', )l
r ?n,-l l

[ 
,í] :,[ i]

' 
.*r, ) L -z]L

arbitrary, the given et of vector i -*{/ [ i]]
Theorem3.lg. \L-})l

Geometrically, the set of vectors in Example 3.38 represents the line through the

|- sl
origin in R3 with direction u.ao, | ' |.

L -,_]
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Ixl
Determine whether the set of all ,r*.ror, I i I

and z ffi *}yis a subspace oťR3. L"l

This time, we haye all vectors of the form

r-

[r, 
* 1l

|yl
L -zy ]

t}rď satisfy the conditions jť 3y + 1

|"+
:7:;1;7.,,:,,,,.:, The zerCI vector is not of this form. (Why not? Try solving I l

L_ -2y
prcpťrty (1) does nothrld, so this set cannotbe a subspace of ffi3

'] : 
LI] 

)Hence,

[;]

fi,.

Determinc whether the set of all vectcrs ,ť, is a subspace oť R2
[;], 

where y :

'ilulrli,,.,l, These are the vectors of the form [".l-call this set,' . This time 0 :-T

l-x' ) 
[x, l [x. l

belongs to (take Jť :: 0), so průperty (1)holcls. Let u - l^i l andv * 
i _i l be i

Lxí ) L*z s
Then

u*v:[-:*"il
Lxi + xil

which, in general, is not in S, since it does not have the correct form; that is,
x! + x| * (q * x)z.To be specific, we look for a counterexample. If

o: [.'l and ": ['l* Lt] L+.]

then both u andv are in S, but their sum u * 
" 
: [:l is not in. since 5 + 3'. Thus,

property (2) fails and is not a subspace ofR2. L5]

t*+
R0mtír In order for a set S to be a subspace of some R', we must prove that

properties (1) through (3) hold in general. However, for Stofailtobe a subspace of Rn,
it is enough to show that one af,the three properties fails to hold. The easiest course is
usually to find a single, specific counterexample to illustrate the faílure of the property,
Once you have done so, there is no need to consider the other properties.

$ubsmces [$$0ciatGil WItn Iuat]icGs

A great many examples of subspaces arise in the context of matrices, \,V'e have already
encountered t}re most important of these in Chapter 2; we now revisit them with the
notion of a subspace in mind.
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Bamllt Observe that, by Example 3,9 and the Remark that follows it, col(Á)
consists precisely of all vectors of the form Áx where x is in R'.

consider the matrix

It -1lA:L:i]
|-tl

(a) Determinewhetherb : |' I 
isinthecolumnspaceofÁ,

Ll]
:_ rL _ ,_^-,- -^^^^ ^í 

^(b) Determinewhetherw - [4 5] isintherowspaceofÁ.
(c) Describe row(Á) and col(Á).

solUtlOn

i"i-ňy irr** m2,4 andthe d"iscussion preceding it, b is a linear combination of the
columns of Á if and only if the linear system Áx : b is consistent. We row reduce
the augmented matrix as follows:

[t -tltl [t otsllo ,lrl--lo,lrI
L; _; l;] L; ; l;l

Thus, the ystem is consistent (and, in fact, has a unique solution). Therefore, b is
in col(Á). (This example is just Example 2.18, phrased in the terminology of this
section.)

(b) As we also saw in Section 2.3, elementary row operations simply create linear
combinaťons of tlre rows of a matrix. That is, they produce vectors only in the row
space of the matrix. If the vector w is inrow(Á), then w is a linear combination of the

rows of Á, so if we augment Á by w as I i | , it wiU Ue possible to apply elementary rowo l Lwl'

operations to this augmented matrix to reduce it to 
".* l#-] 

using only elementary

row operations of the form R; * kR;, where i > j_,inotti. *iord., wo*ingfro,m top

t..} to bottom in each column. (\,Vhy?)

In this example, we have

l4l : i; 
-il 

t_il [; 
-1l 

__,_ l; llL*l lu-r|-,In ol--+lo ol
L4 5] L. ,] L, .l
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X..4p" Therefore, w is a Lnear combination of the rows of Á (in fact, these calculations show
thatw = 4[1 -1] + 9[0 1]-how?),andthuswisinrow(Á).

(c) It is ea y to check t}rat, for any vector w = [.í ./], the augmented -^r** l41
reduces to 

14 / ]s gtv 4gďlr ul g "'o"* L*-l

in a rimilar fashion, Thereťore, f;v ry yector in ffiZ is in row{Á), and o row{á) :
indins o1(Á) is identicnl to solving xample 2.21, wherein we determined

it coincides vťith the plane {thrffush the origin) in R3 }yith fquatio n 3x * z : ff.

will discov*r other wffy t* answer thís Wpe of question shortly,)

n0 !1l We could also have answered part (b) and the first part of part (c) by
observing that any guestion about the rows of A is the corresponding question about
the colurnns of Ár. So, for example, w is in row(Á) if and only if wr is in col(ÁT), This
is true ť and only if the system át = w7 is consistent, We can now proceed as in
part (a). (See Exercises2I-24.)

The observations we have made about the relationship between elementary row
operations and the rol,y pace are summarized in the following theorem.

till
lo 0l
L- ,]

m2,

that
(\^re

Tngrr$ffi .2ll Let be any matrix that is row equíyalent to a matrix Á.

PíOoí The matrix Á can be transformed into B by a equence of row operations,
Consequently, the rows of B are linear combinations of tlte rows oťÁ; hence, linear
combinations of the rows of 8 are linear combinations of the rows of á. (See Exer-
cise 21 in ecťon 2.3.)Itfollows that row(8) C row(Á).

On the other hand, reversing these row operations transforms B into Á, There-
fore, the above argument shows that row(Á) e row(B). Combining these results, we
have row(Á) = row(B). "n

There is another important subspace that we have already encountered: the set
of soluťons of a homogeneou y tem of linear equations. It is easy to prove that this
subspace satisfies the three subspace properties.

W(Á).Then row(.B) ro

lfirOrsm t"21 Let Á be an m X ,? matrix and
linear systern Áx : 0. Then } is

let N be the set of solutions of the homogeneou
a subspace of R'x.

i$;l,'lilii+i:iiliíliii,i ,1l

PíOOí [Note that x must be a (column) vector in Rn in order for Áx to be defined and
that 0 = 0r, is the zero vector in R'.] Since ÁOn : 0*, O,is in N. Now let u and v be
in N. Therefore, Ág = 0 and Áv = 0. It follows t}rat

Á{u+v)*Áu*Áv:0+$:*0
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Hence, u * v is in N. Finally, for any scalar c,

Á(ru}ffc{Áu}*r11*s
and therefore cu is also in N. It ťollcw* that.}ť is a subspace *f ffi'

ffiffiÍ ire t{tla: Let Á be aíl m x rr matrix. The null space of Ais the subspace of
Ň ČÓniisiing of solutions of the homogeneous linear y tem Áx : 0, It is denoted
bynull(Á).

The fact that the null space of a matrix is a subspace allows us to prove what in-
tuiťon and examples have led us to understand about the solutions of linear systems:
They have eit}rer no soluťon, a unique solution, or infinitely many solutions.

ThrOrsm 8,22 Let A be a matrix whose entries are real numbers.
equation Áx : b, exactly one oť the following is true:

There is no solution.
There is a unique solution.
There are infinitely many solutions.

a,

b-

L.

At first glance, it is not entirely clear how we should proceed to prove this theo-
rem. A little reflection should persuade you that what we are really being asked to
prove is that if (a) and (b) aíe not true, then (c) is the only other possibility. That is, if
tlrere is more than one solution, t}ren there cannot be just two or even finitely many,
but there must be infinitely many.

P1O0í If the system Áx = b has either no soluťons or exactly one solution, we aíe
done. Assume, then, that there are at least two di tinct solutions of Áx = b-say, x1

and x2. Thus,

Áxr=b and Axr=b
with x1 * x2.1t follows that

Á(xr - x2) = Áx1 * Ax2= b * b = 0

Set xo = xt - xz. Then:rn * 0 and Áx9 = 0. Hence, the null space of Á is nontrivial,
and since null(Á) is closed under scalar multiplicaťon, cxg is in null(Á) for every
scalar c. Consequenily, the null space of Á contains infinitely many vectors (since it
contains at least every vector of the form cx9 and tlrere are infinitely many of these).

NoW consider the (infinitely many) veďors of the form x1 * cq, as c varies through
the set of real numbers. \^/e haye

Á(x, * cx6) = Áxl + cAxr= b * c0 = b

Therefore, there are infinitely many soluťons of the equation Áx = b. lil

ffi*,* g

We can extract a bit more from the intuitive idea that subspaces are generalizations
of planes througb the origin in R3. A plane is spanned by any t\-ťo vector that are
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parallel to the plane but are not parallel to each other. In algebraic parlance, two

such vectors span the plane and are linearly independent. Fewer than two vectors will
not work; more than two vectors is not necessary. This is the essence of a basis Íot a

subspace.

§l*É8*t$$f {a#-H hbasi- for a subspace S of R" is a set of vectors

1. spans S and
2" is linearly independent.

In Section 2.3, we aw th*t
independent and pan mn.

bRsts.

the standard unit vector 11 82l

Therefore, they form a basis for
eu, in Rn are linearly
called the sf*ndard,

In xample 2.L9,}ťe howed that R2

also linearly independent (as they ar

:,n*,,([ _l], Li]) 
since 

L 
_i] and 

[l]
l fiot multiples), they form a basis for R2.

are

A subspace can (and will) have more than one basis. For exampt, we,have just

seen that R2has the standardb"* 
{[;], [:]} 

*. the basis 
{[_i], [l]} 

*--
ever, we will prove ihortlythatth e number ofvectors in abasis for agiven subspace will
always be the same.

Find a basis for S : pan (u, v, w), where

and Wtr

ghtl0n The vectors u, v, and w already span S, so they will be a basis for S if they

are ďso linearly independent. It is easy to determine that they aťe noti indeed, w =
2tt _ 3v, Therefore, we can ignore w, since any linear combinations involving u, v,

and w can be rewritten to involve u and v alone. (Also see Exercise 47 in Section 2.3.)

This implies that S = span (u, v, w) : span (u, v), and since u and v are certainly

linearly independent (why?), they form a basis for S. (Geometrically, this means that

u, v, and w all lie in the same plane and u and v can serve as a set of direction vectors

ťor this plane.)

Ll]
Izl

Ll],L1]
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the row space
to check that

rcnd,ent. (Thís
3.) Therefore,

t]} l

Find a basis for the ro\ť space of

l- 1 1 3 1 6l
l 2 *1 0 1 *1 

lA- l l

1-3 21 -2 1l
L 4 1 6 1 3j

solution The reduced row echelon form of Á is

|-1 0 1 0 -1l
lt---l0 1 2 0 3 

i

L;;;líJ
By Theorem 3.20, row(Á) : row{R), so it is enough to find a basis for 1

of R. But row(R) is clearly spanned by its nonzero row , and it is easy
the stairca e pattern forces the first thre e row of R to be linearly indep
is a general fact, one that you wilt need to establish to prove Exercise i:
a basis for the ro\ť space of Á is

{tr 0 1 0 -1],[0 1 2 0 3),t0 0 0 1 4

We can use the method of Example 3.45 to find a basis for the subspace spanned
by a given set ofvectors.

Rework Example 3.44 using the method ťrom Example 3.45.

$0lilll0n We transpose u, v, and w to get row vectors and then form a matrix with
these vectors as its rows;

[a -1 slu:l, , ,l
Lo -5 ,]

Proceeding as in Example 3,45, we reduce B to its reduced row echelon form

[r o il
lo r -ll
|, 

, 5|

L00 0l
and use the nonzero íow vectors as a basis for the row pace. Since we started with
column vectors, we must transpose again. Thus, a basis for span (u, v, w) is

{Li]LT]}

E8{}.,: ",i.,
* In fact, we do not need to go ď1 the rvay to reducedrow echelon form-row ech-

elon form is far enough. If Uis a row echelon form ofÁ, then the nonzero row vectors

T:]T]T''''
: , 

, ]: :]] ]]i]:::,::,!| i,,]l

. ': ll ] i] .l:]i]l i]]]ii, 
,:ll

l 

",, 

].]i.']]iiir,]:|i']]lllii1|jl
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of Uwilt form abasis for row(Á) (see Exercise 33), This approach has the advantage of

(often) allowing us to avoid fractions. In Example 3.46, B can be reduced to

which gives us the basis

for span(u, v, w).
. observe that the methods used in Errample 3.44, Example 3.46, and the Remark

above will generally produce different bases,

we now turn to the problem of finding a basis for the column space of a matrix Á,

one method is simp tó tran pose the iriatrix. The column vector of A become the

;;;;;;, 
"f 

;i;ild we call apply the method of Example 3,45 to find a basis for.,]|ď 
i. Ť;sposing these vectós then gives us a basis for col(Á). (you are asked to

ao this in Exercises 21_24,) This approach, however, requires performing a new set

of row operations on ÁT.

Instead, we prefer to take an approac.h that ďlows us to use the row reduced form

of Á that we have already.o*puá, Recall that a product Áx ofa matrix and a vec_

ioi".*rp"rds to a tin"., .o*tination of the columns of Á with_the entries of x as

coefficients. Thus, a nontrivial solution to Áx = 0 represents a dependence relation

;;6th. ."lumns of Á. Since elementaíy roy operations do not affect the solution

set, if"Á is row equivalent to R, the columns of A have the same dependence relation,

,iipi o, the cofuÁnsolR. This important obsirvaťon is the basis (no pun intended!)

ro. tt e technique Ýve now use to find a basis for col(Á),

Find a basis for the column $pece of the matrix frnm xarnPle

1 1 3 1 6l
2 -1 0 1 *1 

l*3 2 1 *2 1l
4 1 6 1 3l

s0luu0n Let a; denote a column vector of Á and let 11 denote a column vector of the

reduced echelon form

[: --l 5l
u-L:-;;]

{L-l]Ll]}

A

R

*1]
r-l

0]

[1
|0
Io
Lo

010
1ž 0

00 t

000

We can quickly see by inspection that í3 = q * Zt2and t5 = -r1 { 3r2 * 4ra, (Chec-k

that, as pr.aiJt a th" .orr.uponding column_vectorg of Á satisfy the same depen_

dence rjations.) Thus, 13 andi5 .orriibot" not}ring to col(R), The remaining column
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vectors, t1, ť21 illd 14, are linearly independent, since they are just standard unit vec-

tors. The corresponding statements are therefore true of the column vectors of Á.
Thus, amongtiecolumnvectors ofÁ, we eliminatethe dependentones (a3 and a5),

andthe rernaining oneswillbe linearlyindependent andhence form abasis forcol(Á).
What i the fastest way to find this basis? Use the columns ofÁ that correspond to the

columns ofR containingthe leading ls. A basis for col(Á) is

{*,, a.2, ila.J'

ufinln3 Elementaryrow operations change the column space! In our example,

col(A) * col(R), since every veďor in col(R) has its ťourth component equal to 0 but
this is certainly not true of col(Á). So we must go back to the original matrix Á to get

the columnvectors for abasis of col(Á). To be specific, in Example 3.47,ry\,andt4
do not farm a basis for the column space of Á.

Find a basis for the null space of matrix Á from Example 3.47.

SOlUtl0! There is really nothing new here except the terminology. We simply have

to find and describe the solutions of the homogeneou ystem Áx = 0. lMe have al-

ready computed the reduced row echelon form R of Á, so all that remains to be done
in Gauss-}ordan elimination is to solve for the leading variables in terms of the free

variables. The final augmented matrix is

l]}

1l
*1 

l

2l,
1l

l]
*3 

l,
4]{

tR l0]

01
1ž
00
0ff

0l
0l

;]

0 *1

03
11
00

r1
lo
l

lo
Lo

Iť

then the leading ls are in columns I,2, and 4, so we solve for !t11 lQl drrd x4in terms of
the free variables x3 and x5. We get x1 = -x3 * xs, h = *Zxl- 3r5, and xa' - 4*u.

Setting x3 = s and 15 = f, w obtain

*1]
2l
1l+
0l
0J

xLii]

[r, l t' *s + t l

xŤl*, l:| , l

L;;] L 
-y 

]
Thus, n flnd v pan null(Á), anď since th
for nulh(A),

ey are linearly rm & basi*

r 1]
| *u 

l

fl 0|="lt+ N

Lr]
independent, they fo
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Following is a summary of the most effective procedure to use to find bases for
therow space, the column space, and the null space of a matrix Á.

1.

2,

,J"

4,

If we do not need to find the null space, then it is faster to simply reduce Á to row
echelon form to find bases for the row and column spaces. Steps 2 and 3 above remain
valid (with the substitution of the word "pivots" for "leading 1s").

0ImOnslon nnd RanIt

We have observed that although a subspace will have difíerent bases, each basis has
the same number of vectors. This fundamental fact will be of vital importance from
here on in this book.

The Basis Theorem

a ub pace of rtr'.

PlO0í LetB - iul,u2,,.:,ur} andC = {vl,y2,,..,y.}bebasesforS. Weneedto
prove that r = s. We do so by showing that neither of the other two possibilities, r { s
or r ) ., can occur.

Suppose that r { s. We will show that this forces C to be a linearly dependent set
of vectors. To this end, Iet

crv, * c2v2 +. . .+ c.y, : 0 (1)

Since 6 is a basis for , we can write each v; as a linear combination of the
elements u;:

vi Ť:: &nl t + fttzlJz .* #r.lt,

V2 * ňz,Wt + Qzzltz+...*a2r1tt,"

:

Yr::'a #stUt + &sz z +",* #rru,.

Substituting the Eqllations (2) into Equation (1), lve obtain

cr(drtllt *, . .+ a\;t1,) + C2{0.21Wt, *. . "+ tlirl|,.) +. . ,* cu{a;slul +.

Let be
Y ctors.,

(2)

,+ rl.,.ur) * 0

ding 1s) to f
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Regrouping, we have

(cpr, + c2a2, *, , ,* crarl)u1 + (c n * cra22 +, , ,+ crar2)u2

+ . . .+ (crar, * C2ít21 l. . .* c.A.r)u, : 0

Now, since B is a basis, the u.l's are linearly independent. So each of the expressions in
parentheses must be zero:

crar, * cra, l, , ,* crar, : 9

crap l C2a22 l, , ,* crar, = g

i

Crar, * C2a27 *, " * crao = g

Thisisahomogeneou systemof ílinearequationsinthesvariabl c1l c2l ..., c" (The

fact that the variables appear to the left of the coefficients makes no difference.) Since
r { ,s, lve know from Theorem 2.3 that there are infinitelymany solutions. In particu-
lar, there is a nontrivial solution, giving a nontrivial dependence relation in Equa-
tion (1), Thus, C is alinearlydependent set of vectors. Butthis finding contradicts the
fact that C was given to be a basis and hence hnearly independent, We conclude that
r { s is not possible, Similarly (interchanging the roles of B and C), we find that r ) s

leads to a contradiction. Hence, we mu t have ť : , as desircd.

Since all bases for a given subspace must have the same number ofvectors, we can
attach a name to this number,

ffi * fi effi If S is a subspace of R', then the number of vectors in a basis for S
ia áiiéd iňé dimension of s, denoted dim s.

ffiF*@.' nCmOil The zero vector 0 by itself is always a subspace of Rn. (Whyi) Yet any set

containing the zero vector (and, in particular, {0}) is linear.ly dependent, so {0} cannot
- have a basis. We define dim {0} to be 0,

Since the standard basis ťor Rn has n vectors, dim Rn :
}vith our intuitive understanding of dimension for rr S

n. {Note that thís re sult asre
3.)

In Examples 3.45 through 3.48, we found that row(Á) has a basis with three vectoís,
col(Á) has abasis with three vectors, and null(Á) has a basis with two vectors. Hence,
dimGow(Á)) = 3, dim(col(Á)) = 3,anddim(null(A)) = Z, 

J*9-

A single example is not enough on whiďr to speculate, but the fact that the row
and column spaces in Example 3.50 have the same dimension is no accident. Nor is
the fact that the sum of dim(col(Á)) and dim(nu]l(Á)) is 5, the number of columns of
Á, We now prove that these relationships are true in general.
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ThrOrgm 3.2il The row and column pace of a matrix Á have the same dimension.

P]O0í Let R be tlre reduced row echelon form of Á. By Theorem 3.20, row(Á) :
row(R), so

dim(row(Á)) = dim(row(R))

= number of nonzero rows of R

= number of leading ls of R

Let this number be called r.

Now col(Á) * col(R), but the columns of Á and R have the same dependence
relationships. Therefore, dim(col(Á)) = dim(col(R)), Since there are r leading 1s, R
has r columns t}rat are standard unit vectors, éy E2l .. . , er. (These will be vectors in
Rm if Á and R are m X n matrices.) These r vectors are linearly independent, and the
remaining columns of R are linear combinations of tlrem. Thus, dim(col(R)) = 1, 11

follows that {im(row(Á)) = r = dim(col(á)), as we wished to prove. jil

The rank oť a ínatrix was first de-
fined irr 1878 by',,.,,, : ] ; l

it using cleterminants and not as \tle

have done lrere. (See Chapter 4.)

Frobenius was a German
mathematician who received. his
doctorate from and later taught
at the lJniversiťy of Berlin" Best
known for his contributions tcl

group theory Frobenius u ed
matrices in his woťk on group
represťntations.

ffie ! * The rankof a matrix Á is the dimension of its row and column
, rank(Á).

For Example 3.50, we can thus write rank(Á) = 3.

n0m0l]t
o The preceding definition agrees with the more informal definition oírank that

was introduced in Chapter 2.The advantage of our new definiťon is that it is much
more flexible

. The rank of a matrix simultaneou ly gives us information about linear
dependence among the row vectors of the matrix and amongits column veďors. In
particularl it tells us the number of rows and columns t}at are linearly independent
(and this number is the same in each case!).

iace the row veďor of Á are the column vector of Á1 Theorem 3.24 has the
following immediate corollary.

ThnOrBm S.2S For arrymatrix Á,

rank{Ár) * rank(Á)

F lt í &re have

rank{Ár):ffi 
firl

ffi XXfrf;t E The nutlity'oť a matrix Á is the dimension of its null pace and is
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ln other words, nullity(Á) is the dimension of the solution space ofÁx = 0, which
is the same as the number of free variables in the solution. we can now revisit the

Rank Theorem (Theorem 2.2), rephrasing it in terms of our new definitions.

Gm E.zs The Rank Theorem

P1O0t Let R be the reduced row echelon form of Á, and suppose that rank(Á; = ,,.

Then R has r leading 1 s, so there are r leading variables and n - r free vxiables in the

solution to Áx = 0. Since dim(null(Á)) : fl - Ttwe have

rank(Á) + nullity(Á) = r * (n - r)

-Often, when we need to know the nullity of a matrix, we do not need to know the

actual solution of Áx = 0. The Rank Theorem is extremely usefirl in such sifuations,

as the following example illustrates.

inď the nullity of each of the ť*llowins matricesl

futx

}1I r
1 *2 *1l

I4 *3 1l
7 1 s]

$0lutl0n Since the two columns of M are clearly linearly independent, rank(M) = 2.

Thus, bythe Rank Theorem, nullity(M) : 2 * rank(M) : 2 - 2 = 0,

There is no obyious dependence among the rows or columns of N, so we apply

row operaťons to reduce it to

We have reduced the matrix far enough (we do not need reduced row echelon form
here, since we are not looking for a basis for the null space). We see that there are only
thrononzerorows, orank(N) - 2.Hence,nullity(N) = 4 - rank(N)* 4- 2=2.

^I

--T
The results of this section allow us to extend the Fundamental Theorem of

Invertible Matrices (Theorem 3. 12).

3l
5l 

**a7l
6]

r2
Ir
|+
L3

Iz
|+
L2

|z 1 -2 *1l

l0 2 1 3l
Lo 0 0 0J
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TltGOrBm 3.2T

The rrullity oť a rnatrix was rlefineeŤ

irr l884 by

inv ari atrís - properties of matrices
that c1o not change uncler certain
t},-pes of transfornraiions. Born
irr England, Sylr,ester became the
secotrd presiderrt of tlre London
Mathenratical Society" In 1878,

while teaching at }clhns {opkirrs
University in Baltirnore, he
fi*unded the American faurnatr af
M atltern ati cs,, the fi rst nrathematical
iournal in the Llnited tatcs.

The Fundamental Theorem of Invertible Matrice ! Versio n 2

Let Á be an n X n matrix. The follor,ving statements are equivalent:

a. Á is invertible.
b. Áx : b has a unique solution for every b in R".
c" Áx : 0 has only the trivial solution"
d- The reduced row echelon form of Á i ín.
e. Á is a product of elementary matrices"
f. rank(Á) : n

g. nullity(Á) : 0

h. The column vectors of Á are linearly inclependent.
i" The column vectors of Á span R*.

i- The column vectors of Á form a basis for R".
k. The row vectors of Á are linearly independent"
l. The row vectors of Á span R''.
m, The roÝv vectors af A fonm a basis fbr Rn.

Pr00l We have 
"lr."dy 

established the equivalence of (a) through (e). It remains to
be shown that statements (f) to (m) are equivalent to the first five statements,

(fl <+ (g) Since rank(Á) + nullity(Á) : n whenÁ is an n X n matrix, itfollowsfrom
the Rank Theo:em that rank(Á) : ri if and onlyif nutlity(Á) = o.

(0 + (d) + (c) =+ (h) If rank(Á) : n, then the reduced row echelon form ofÁ has
n|eading ls and so is lr. From (d) .+ (c) we know that Áx = 0 has only the trivial
solution, which implies that the column vectors of Á are linearly independent, since
Áx is just a linear combination of the column vectors of Á.
(h) i+ (i) If the column vectors of Á are linearly independent, then Áx : 0 has only
the triviď solution. Thus, by (c) + (b), Áx : b has a unique solution for every b in
R'. This means that every vector b in Rn can be written as a linear combination of the
column vectors of Á, establishing (i).

(i) .+ (j) If the column vector of Á span R', then col(Á; : Rn by definition,
so rank(Á) = dim(col(Á)) : n.This is (f), and we have already established that
(f) =+ (h). We conclude that the column vectors of Á are linearly independent and so
form a basis for R,', since, by assumption, they also span R'.

0) + (0 If the column vectors of Á form a basis for Rn, then, in particular, they are
linearly independent. It follows that the reduced row echelon form of Á contains n
leading ls, and thus rank(Á) : 2.

The above discussion shows that (f) =+ (Q + (c) =+ (h) + (i) * (l) o
(0 ++ (s). Now recall that, by Theorem 3.25,rcrtk(Ar) : rank(Á), so what *. h*.
just proved gives us the corresponding results about the column vectors of Ár. These
are tlren results outtherowvectors ofÁ, bringing (k), (l), and (m) into the networkof
equivalence and completing the proaf.

Theorems such as the Fundamental Theorem are not merely of theoretical inter-
est. They are tremendous labor-saving devices as well. The Fundamental Theorem
has already allowed us to cut in half the work needed to check that two square matri-
ce aíe inverses. It also simplifies the task of showing that certain sets of vectors are
bases for Rn, Indeed, when we have a set of n vectors in Rn, that set will be a basis for
W" f either of,the necessary properties of linear independence or spanning set is true.
The next example shows how easy the calculations can be,
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how that the vectors

and

form a basis for R3,

Solutlon According to the Fundamental Theorem, the vectors will form a basis for

R3 if and only if a matrix with these vectors as its columns (or rows) has rank 3. We
perform just enough row operations to determine this:

;]
We see that Á has rank 3, so the given vector aťe a basis for R3 by the equivalence of
(ť) and (j}"

The next theorem is an application of both the Rank Theorem and the Funda-
mental Theorem. We will require this result in Chapters 5 and7.

ťi* j}!

(a) Since ÁTÁ is n X n, it has the same number of columns as Á. The Rank Theorem
then tells us that

rank(Á) + nullity(Á) : n- rank(Á%) + nullity(ÁTA)

Hence, to show that rank(Á) : rank(Á1A), it is enough to show that nullity(Á) :
nullity(Á%). We will do so by establishing that the null spaces of Á and ÁrÁ are the

ame,
To this end, let x be in null(Á) so that Áx : 0. Then ÁTÁx : ÁT0 = 0, and thus

x is in null(ÁlÁ), Conversely, let x be in null(ÁTÁ). Then ATAx:0, so xTÁTÁx :
xTo: 0. Butthen

(Áx),(Áx) : (Áx)r(Áx) : xTÁ%x: 0

and hence Áx : 0, by Theorem 1.2(d). Therefore, x is in null(Á), so null(Á) :
null (Á7Á), as required.

(b) By the Fundamental Theorem, the rr X n matrixÁrÁ is invertible if and only if
rank(Á?Á) : r, But, by (a) this is so if and only if rank(Á) : n. -,,.,.., ,,-,,,,_.:iíS

ffi*#tr Ěl.;,l ..:;

We now return to one of the questions posed at the very beginning of this section:

How should we view vector in R3 that live in a plane through the origin? Are they
two-dimensional or three-dimensional? The notions of basis and dimension will help
clari lthings.

Inl

L;jLi][-i]

[t *1 4l [t -1
A"Ť|z 0 gl-----+|o 2

Ls 1 7) L0 0
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A plane through the origin is a two-dimensional subspace of R3, with any set of
two direction vectors serving as a basis. Basis vectors locate coordinate axes in the

plane/subspace, in turn aflŇng u to vie\,v the plane as a 'topy" of R2. Before we

illustrate this approac_h, we prove a theorem guaranteeing that 'toordinateď' that arise

in this way are unique.

Plooí Since 6 is a basis, it spans S, so v can be written in at least ane way as a linear

combination of v1, v2, . . . , v6. Let one of these linear combinaťons be

Y : ClV1 * crvr*, , ,* clv1

Our task is to show that this is the only way to write v as a linear combination of

vlr y2l . . . , vp. To this end, ,rrppor:*":*,. also have

V = d,lYl * d2V2*"'* dpV1,

Then Ctyt + C:ivz+ ", * Clry1* : d, + d r+ ", * d.1ryp

Rearranging (using properties ofvector algebra), we obtain

(cr- dr)vl+kz- d)vr+",+(ct - d1,)v1=0

Since 6 is a basis, yl;y2t ,. . , y1 áí linearly independent. Therefore,

(ct - d) : (cz - d) =", : (ct - dy) : 0

Inotherwords, c1 = d1, h: dz,,,,,ck: ily,dndthetwolinear combinations are

".*"UY 
,t . ,"*.. rnorl Ur.re is ácily Óne way to write v as a linear combination of

tne DaslsvecTor rn p. 
-

ilgl
ry

. Lel
&re cí

subspace
nd write r
I aÍ v witl

:1úll
)e fiV
1the

the c

lls ini ifin
ffi
are called the

1

ni
Yb
llec

ed

Fln
ffiťi
ť cal]

calle

Letá = {*,, ez, e:} be the standard basis for R3

[, l
v - 

L;]

. Find the coordinate vector oť

with re pect ta .
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sluBtsn incev-Zer*7e2{* 4 3,

[v]g :Ll]

It should be clear that the coordinate vector of every (column) vector in R" with

re pect to the standard basis is just the veďor itself.

In Example 3 ,44, wť a\ť that u are three vec-

{o,o} is a

ee Figure 3,3.

l urg 3.S
The coordinates of a vector
respect to a basis

],,:L1],il*w:Ll]i
, the origin) of R3 and that fr

:t-?1
L*s]

ti;L

thror
,e har

Iw

et]
We

tors in the &me subspace (plan

basi* for, Sínce w : 2u * 3v,

with

^--+

9. Prnve that every line through the origin in R3 is a sub-

peťe of K3.

10. uppo e , cnnsists of all points in R2 that are on the

x-axís or the y-axis (or both). (S ís calleď the uniarl ať

the two nxes.) Is n subspace of R2? Wt y or why not?

In Hxereises 11 and 12, determine whatherb ís in cal(A)

and whetherv{ is in row(A), fl in xample 3,47.

11.Á:[t l -l],o:[;],W:t*l 1 1]
Ll 1 lj

[r 1 *3l [,lL1,A-lo 2 1|,u*lrl,w-1.2 4 *5]

L, -1 *4J LoJ

In Exercises 7-4, Iet S be the collection of vrrrrrr|*]irr R2
Ly)

that satisfy the given prnperty. In each case, either prove that

S forms á subspaec af ffi3 or givu a couytterexample to shaw

tílat it áoes nct.

l..x * 0

3,y:2x
2,xHO,y '0

4,xy;"0

[,l
In Exercises 5-8,1eť be the collection of vectors 

| | | 
in m'

L.l
that satisfy the given pruperty. In each cuse, either provg that

S forms a subspace af R3 or give a counterexample to show

that it does rtlt,
5..tr:y:Z 6,Z:ZXr!:0

.l' !
'-' 

""r*: r''*

'-_,:l"":;"__*"

,,","''o" 

{]' 
^ '*" .*,,

",ť-i":-#
*l

**-*..**ť
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13. In Exercise 11, determine whether w is in row(Á),
using the method described in the Remark follort ing
,xample 3.41.

l4. In xercis e Ll,determine whether w is in row(Á},
usíng the method described in the Remark following
Example 3,4L,

l5. IfÁ is the matrixin Exercise 1 1, isy *

16. IfÁ is the matrix in ,xercise 12, is rl Ť;

In Exercíses í 7*20, #ve bases for row(A}, cuI(A), and nall(A),

[t 1 *3l

Ll -; i]

19. Á

In Exercťses žl*á4, oď bases for row(A) and coI{A} in the
given exercises using AT 

"

2l . Exercise 17

23. Exercise 19

30.[0 1 *2 1],[3 1 *1 0],i2

Far ,xercises j] and 32, find bases for the spans of the
vectors in the given exercises frorn among ťhe vectors
t?lemse|ves.

31. Exercise 29 32. Exercise 30

33. Frove that if .e is a matrix in echelon form, then a basis
for row(R) consists of the nonzero rows of R.

34. Prove that if the columns of Á are linearly indepen-
dent, then they must form a basis for col(Á).

For Exercises 35-38, give the rank and t|te nultity of the
matrices in the given exercises.

35. Exercise 17

36. Exercíse 18

37. Exercise 19

3S. xercise 20

39. If Á is a 3 X 5 matrix, explain why the column of Á
must be linearly dependent.

40. If Á is a 4 X 2 matrix, explain why the rows of Á must
be linearly dependent.

4l. IfÁ is a 3 X 5 matrix, what are the possible values of
nullity(áX

42. If Á is a 4 X 2 matrix, what are the possible values of
nutlity(ÁX

In Exercťses 43 and 44, nd all possible values af rank(A) as
A vAries.

tl 2

43.A- |*Z 4a

L a-2
2 -1l
3 *2 

l*1 a)

47. Do form a basis for Ra?

1]

i--tl

L ;],"null(Á)?

[-l],"nu'l(Á)?
L 2J

!3. A: [l l -l] 18. Á :

1 1 0 1l
I0 1 *1 1l
l0 1 *1 -IJ

2 *4 0 2 1l
-1 2 1 2 3l
1 *2 1 4 4)

22, xercise 1S

2{. xercise ?ů

al ra
2| ++.e:| :
lJ L-2

25. Explain careťully why your í[n w ťs to xercises 17
and 21 are both correct even though there appeať to be
differences.

26. Explain carefully why your an wers to xercises 18
and 22 are bnth correct even though there appear to
be differences.

In Exercises 27*30, nd a basis for ttte sp§n uf thte given
vectors.

Answ*r Exercisgs 45*4B by considering t|te matrix with the
given vectors as its columns.

45 Do 

[i] [i] [l] 
*- a basis for R3?

46, Do I l] [ i], [-i] 
u..- abasisfor R3?

L3
27.[ 

i] [ i] [ l] 
2s 

L l] [i] Ll] [;]
[il [i] Li] Ll]29.12 *3 1],[t *1 0],|4 *4 1]
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0l
0l

_1 
l,

1]

0l
1l
0 

l,
-1J

48DoLl]

Ll]Ll][i]

Ll]L;]Li]

form a basis for Z)z.

57,Iť A is m X r,! prov that eyery vector in nu}l(Á) is
orthogonal to every vector in row(Á).

58. If Á and B are n X n matrices of rank ru} prove that ÁB
has rank fi"

5 . (e} Prove that rank(Á8) rank(B). |Hinf; Review
Exercise 29 in ection 3.1.]

(b) Give an ex&mple in which rank(Á ) { rank(- ).

60_ (a} Prove thet rank(Á ) rnnk(Á), [}írrrf; Review
Exercise 30 in ectinn 3.1 or u e transposes ffnd

Exercise 59(a)"]
form a basis ťor Z]? Give en example in which rank(Á ) < rank{Á).

61, {a} Prove thnt iť Uis inrrertible, then ranlc(tlA) :

that w fs in span(B) and nd
rank(Á} " |Hint: A : U--l (uA).]

(b) Prove that if Y is invertible, then rank(ÁV) :
rank(Á).

62. Prove that an m X ru matrix Á has rank 1 if and on}y iť
Á can be written & the outer product uvT of n vector u
in K* and v in Rn.

63. If an rn X n matrix Á has rank r, prove that Á can be

written as the um of r matrices, each of which has

rank L. |Hinf; Find a \,vay to use Exercise 62.]

64. Prove that, ťar rru X n matrices Á and.8, rank (Á + ) š
rank(Á) * rank(B).

65. Let Á be an n X ru matrix such that A2 : O. Frove that

rank(Á) "s n12.{Hint: Show that col{Á} f null{Á} and

u e the Rank Theorem.]

66. Let Á be a skew- ymmetric n X tl matrix.
(See page 162).

(a) Prove that xr Áx x $ for all x in Rn.

(b) Prove that J + á is invertible. fHinf; Show that
null(J+Á)*{0}.]

In this section, we begin to explore one of the themes from the introduction to this

chapter, There we saw that matrices can be used to transform vectors, acting a a type

of "functioď of the form w : T(v), where the independent variable v and the de-

pendent variable w are vectors. We will make this notion more precise now and look
at several examples of such matrix transformations, leading to the concept of a linear

transformatior_a powerful idea that we will encounter repeatedly from here on.

;] 
form abasis for Ra?

1l
0l

49. Do

50. f)o )

)

b

a

(

{

In Exercises 51 and 52, sh*w

the coardinate vectoť [w]r,

51s={Li]Li]},-

5žffi={Ll]Ll]},.f*

Itl:Iol
LzJ

Li]
In xercises 53_56, campute the rank and nullity of tht
given matrices ovťr tlle indicated Z-r.

[r 1 0l [t 1 21

uu.[0 1 1|nu*rZ, 54.Iz 1 2[o,r*rZu

Lt 0 1l L2 0 0l

[r 3 1 4l
55.|2 3 0 1|averZ5

Lr 0 4 0]

1l
0l

ij

[-2l6
56. Il1

L,

4 0 0

351
0 ž2
111

wer X-,
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We begin byrecalling some of the basic concepts associated with furrctions. \íou will
be famitiar with most of these ideas from other courses in which you encountered func-

tionsoftheforml R-+R lsuóas/(x) = x']thattransformrealnumbersintorealnum-
ber,Wbati newhereist}atveďorsareinvolvedandweareinterestedorrlyinfunctions
that are "compatiblď wíth the vector operations of addiťon and scalar multiplication.

Consider an example. Let

t 1l

L*t_]

I t 0lllA-|z -1 | and v:
L3 4)

[t olr rl [ 'lÁv=l2 -LlI ]l:l el
L, e_]L-tl L-,l

I tl
This showsthatÁ transformsvintow : I U 

IllL-t]
\,v'e can describe this transformation more generally, The matrix eguation

[t olr"t l - l
lx l]L,r 

: 
lI;,r]

Ixl
gives a formula that shows how Á transforms an arbitrary veďor | 

* 
l i1 m' into the

f x l LY)
|--|

vector | 2x - y l in m'. We denote this transformation by 7,1 and write

Lg, * ly)L '' J 
"(;]) 

:l::r,")

Then

(Although technically sloppy, omitting the parentheses in definitions such as this one

is a common convention that saves some writing. The description of 7a becomes

f x l
,ol'|=|r--rlLYJ Lu + +y)

with this convention,)
With this oranrple in mind, we now consider some terminólogy, A transformation

(or malryingot function) T from R' to R' is a rule that assigns to eaó vector v in Rn

auniqueveďor T(v) in R'. The damain of Tis Rn, andthe codomain of Tis R'. We

indicite this by writing T : Rn -+ R'. For a vector v in the domain of T, the vector T(v)
in the codomain is called the funage oťv vnder (the aďion o0 T. The set of all possible

images T(v) (as v varies throughout t}re domain of 7) is called the range of T.

to o* example, the domain of 16 is R2 and its codomain is R3, so we write

T^, R'--+ R3. The image oťv :



T,+? It consists of all vectors in

ection 3.6 Introduction to Linear Transformations

which describes the set oť all linear combínations ať the colurnn vectnrs

t- 0l
and | * I. I of a. In other words, thc range of T is the cnlumn spac of ÁI

L 4]
will have more to say about this later-for now wďll simply note it as an interesting
observation.) Geometrically, this shows that the range of T1 is the plane through the
origin in R3 with direction vectors given by the column vector of Á. Notice that the
range of 7a is strictly smaller than the codomain of Ta.

í": Ta,í ť;,l;';;;1 l}i:i ;+tl1

The example Ta above is a special case of a more general type oftransformation called
alinear transformation, We will consider the general definition in Chapter 6, but the
essence of it is that these are the transformations that "preservď'the vector operations
of addition and scalar multiplication.

the cadomain R3 that áre of the ťgrm

r x l [,l t- 0l
Ir* *y 

l

Ls* + +y ): 
Jrlij + YL -i]Ixl

'^|r) 
-:

Ii]
(We

1. T(u * v) * r(u} + T{v) for all u end v in Rn and
2" T(cv) : cT(v) fior all v in lffi" and all scalars c.

asain

Tíst

er Once,fl

)

"t

Co id the tr

check that line

,an

.ť tr;a

XI * xr,

2x,, + Zxr* ?t
3x, + 3x, + 4y,

X| l i-

2x,*ft|+l
3x, + 4y,l L

fur eti

rl
yJ

lťí1

,tr1

?t"

l1li

"[,
L;

lťo

|tr
Ly

br"

Ix
Ly

_ r(l*, * xz

\Ly, * y,

;';,,]: [,
xll

3x, * ;;,)

iŤ],]

]

-1\ l- ffl

l)-:-|X*,+x7}J '/ 
L l(x, + x2)

XI*xt
(2\*?l) +{Lxz
3xr*4yr)+{3x,

*+

-4

Yf

+
1o1

: lR?-

X

2x*
3x*
}" To

T:

t

L,
sn

* ffi3 defined by

lyl
ayJ

erify {1), we let

_ [*,l
Lyr)

r

ansí

:,fi;] + 
t;;])

and y

Then

T(rr + v)

*x:
(Y,

+ 4(Y,

* 
?z)

+ 4yr}

7(u) + T(v){;] + ,|;,,1:
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l-"l *d let c be a scalar. ThenTo show (2), rve let v - 
|,y ) 

l be a scalar. l -^Ý^l

T(cv)

Thus, T is a linear transfo

nsDilt The definition of a linear transformaťon can be streamlined by com-
bining (1) and (2) as shownbelow.

In Exercise 53, you will be asked to show that the statement above is equivalent
to the original definition. In practice, t}ris equivalent formulation can ílve some

wriťng-try it!

Although the linear transformation ť in Example 3.55 originally urose as a rnattix
transformation T1, it is a simple matter to recover the matrixÁ from the definition of
Tgiven in the example. We observe that

[t ol
so T = T4, where,C : l Z -t |. 1Noti."trrat when thevariables x and yare lined

L: n)
up, the matrix Á is just their coefficient matrix.)

Recognizing that a transformation is a matrix transformation is important, since,

as the next theorem shows, all matrix transformations are linear transformations.

: r(,[;] 
) 
:,(L;])

l-cxlt-cxl
_|z(r*) {cy) l:Irtz**,v) l

L:(cx) + +G ) Lc(:x + a1,))

r X l I

rmation.

,r] Lr};] 
gli] + jl ;] Ll l] rl

21{

T: Rn --+ R*' is a linear transforme

T(c,v, + cryr) : c, T(v,) +
'lLu
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i|",,,i,;,.,. Let u and v be vectors in R*' and let c be a scalar, Then

end

Hence, Ta is a linear transformation.

Let F : R2 + R2 be the transformation that sends each point to its reflection in the
r-axis. Show that F is a linear transformation.

$0llltl0n From Figure 3.4, it is clear that F sends the point (x,7) to the point (x, *y).

Thus, we may write

_[xl IxlFl l:l l

Ly ) L-y)

We could proceed to check that F is linear, as in Example 3.55 (this one is even easier
to check!), but it is faster to observe that

[:,] 
: 

"[i] + yl -l] 
: 

[l

]isure S.4
Reflection in the r-axis

Therefore, FL;] =, A[],where Á :
no\,ť fnllows, by Theorem 3.30, that F i

0l lxl
- ,J Lyl

[t 0l
L; _ 1-], 

o F is ft matrix transťormatian. It

s a linear transformation"

we have

R["l :[-rl _*[ol r-tl [0 -;] 
L;]LyJ'L xJ 

:"L,j *'L 
0-| 

: 
L,

Hence, R is a matrix transformation and is therefore linear.

by st

ancl

that

Observe that if we multiply u matrix
umn of the matrix. For example,

|:;][l] - 
L;] 

;

|,, í
we can u e this observation to show

R* arise a a matrix transformation.

andard basis vectors, w obtain the col-

l: íl pi : t:l
L; ;j L1_1 L;l

every.linear transformation from R* to

Let R : R2 -+ R2 be the transformation that rotates each point 90o counterclockwise
about the origin. Show that R is a linear transformation.

$0lutI0n As Figure 3.5 shows, R sends the point (x, y) to t}e point (-7, x), Thus,
(-y, x)

* * *,*"t

*y

]lguto 8.S
A 90o rotation
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Chapter 3 Matrices

PíOOí Let 1, ez, , , ,, en be the standard basis vectors in Rn and let x be a vector
in Rí. lMe can write x = í191 l x7e2 +, , , + xnen (where the xi's are the component
ofx). We also knowthat T(er), T(ez), . . . , T(eJ are (column) vectors in Rtr. LetÁ *
[T(er) i T(e/ i,,, : r(e")] be the m X nmatrix with these vector as its columns.
Then

r(x) ffi (xle1 * x2e2*",+xnen)

: ff'7(e,)

* [T(er)

en)* xrT(e2) +. . .* 
1

L-,, ]

*Áx

a required.

The matrix Á in Theorem 3.31 is called the standatil matrix af the llnear trans-

ftrmationT,

Show that a rotation about the origin through an angle d defines a linear transforma-
tion from R2 to R2 and find its standard matrix.

$o|utlon Let fu be the rotation. We will give a geometric argument to establish
the faa that ft is linear. Let u and v be vectors in R2. If they are not parallel then
Figure 3.6(a) shows the parallelogram rule that deternrines u "l v If we now apply RB,

the entire parallelogram is rotated through the angle 0, a shown in Figure 3"6(b), But the
diagonal of this parallelograín must be fu(u) + &(v), again by the parallelogram rule"

ffi'-e Hence, Rn(u * v) : &(u) + &(v). {l'Vlrat happens if u end y frť parallel?)

i#! ť* ;i.i:

Similarly, if we apply R6 to v and cv, we obtain fu(v) and &(cv), as shown
in Figure 3.7,But since the rotaťon does not affect lengths, we must then have

&(cv) : c&(v), as required. (Drawdiagrams forthe cases 0 { c d 1, -1 { c d 0,

andc< *1.)

ftp(u + v)

,:'

(a)

}
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y

{c*s #, sin ď)h
u lL*"}N Jí--".\(

'*---\ť--Jcosď l

//
,/,/

l
..

sf

(1, 0)

Therefore, R6 is a linear transformation. According to Theorem 3.31, we can find
its matrix by deternnining its effect on the standard basis veďors e1 and e2 of R2. Now,

_ |-t'l _ [cosdlas Figure 3.8 shows, *rlo.] = 
Lr*, .]

We can fi"d &[l] similarly, but it is faster to observe,n" *r[i] must be per-

pendicular.(counterclockwi.ut tn n"l1'l and so. by Example 
'.rr, 

*,[l] = [;:#]irigurer.l). "L0]

fi llB .I ílsuro t.8
RB(e,}

Therefore, the standard matrix of R6 is [X;

(* sin 0, co

),,

(cos 8, sin 0)

*1

íl uro t.0
&B(cz}

The result of Example 3.58 can now be used to compute the effect of any rota-
ťon. For example, uppo e we wish to rotate the point (2, - 1) through 60o about the
origin. (The corrvention is that a positive angle corresponds to a counterclockwise

- sin 6l.
CoSo ]

rtB (cv)
ftp (v)
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íigure 8.t0
A 60" rotation

(x, 0)

]igure t.lt
A projection

ÝS /Z,trv,e compute

T 21 lcos60o -sin60"l[ 21 r L/2 -\,5izlr 21ou'L*,j =-[sinoo, 
cos60o.]L-,] - l*p Llr]L-,_j

t- Q + Ýíll21
:l l

ltz* - I)lzj

rotation, while a negative angle is clockwise.) Since cos 60" : L/2 and sin 60o :

Thus, the image of the point (2, -1) under this rotation is the point 11Z + Ýtrl|Z,
(z l - I)/2) * (1.87,I.23), as shown in Figure 3.10.

(a) Show that the transformation P : R2 -+ R2 that projects a point onto the x-axis is
a linear transformation and find its standard matrix.
(b) More generally, if 4 is aline through the origin in R2, show that the transforma-
tion P4 : R2 --l R2 that proJects a point onto ť is a linear transformation and find its
standard matrix.

$olutlon (a) As Figure 3.11 shows, P sends the point (x, y) to the point (x, 0). Thus,

"[;] 
= 

[;] 
= ,[i] - ,[;] : [; :][;]

it follows that P is a matrix transformation (and hence a linear transformation) with

standard*uti"l1 Ol.
'^'-*"' Lo o.]'

(b) Let the line ť have direction vector d and let v be an arbitrary vector. Then Pg is
given byproj6(v), the projection ofv onto d, which you'll recall from Section 1.2 has
the formula

projl(v)=(#).

Thus, to show that Pa is linear, we proceed as follows:

pa(u*",= (t*9)u
:(*#-).
= (i*-*;).
: rg:r\, * /a,v\: (u./u * (u./u: Pr(u) + p,(v)

Similarly, Pa@v) : c&(v) for any scalar c (Exercise 52), Hence, Pa is a linear
transformation.

(x, y)
?

I

l
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To find the standard matríx af Pg,we apply Theorem 3.31. If we let d = 
Lí;], 

then

and

pe'}: (fr?)d #aW,1: #a|:1,1

r,,{e ) - ( ffi) u : #aW,) 
* 

W*&|r ťr'1

Thus, the standard matrix of the projection is

1 i d? d,dr1 t d?lÁ? + all drdrl(dť + dil1
^l"*-|l^A : 

d? + d'rLara, di ] - la,arlto? + di} dil td? + a\l J

As a check, note that in part (a) we could take d :

.rc-axi . Therefo re,, d1 : 1 and dz * ů, and we obtain Á

tr*l* Ltg**g*ť ť#ffils * ffi{g effi § ťs*s ffi

If T : R' -+ R' and S : Rn --+ RP are linear transformations, then we may follow 7 by
to form the compositiorr of the two transformations, denoted S o 7. Notice that, in

order for s o T to make sense, the codomain of T and the domain of s must match
(in this case, they are both R') and the resulting composite transformation S o T goes

from the domain of 7to the codomain of S (in this case, S o 7: R"'+ RP).Figure 3.12

shows schematically how this composition works, The formal definition of composi-

tion of transformations is taken directly from this figure and is the same as the cor-

responding definition of composition of ordinary functions:

(S"rXv)=S(T(v))

Of course, we would like . T to be a linear transformation too, and happily we

find that it is. We can demonstrate this by showing that S o 7 satisfies the definition of
a linear transformation (which we will do in Chapter 6), but, since for the time being

we are a suming that linear transformations and matrix transformations are the same

thing, it is enough to show that S o T is a matrix transformation, \4/e will use the nota-

tion [T] for the standard matrix of a linear transformation 7.

= (^ .Tj(v)

,oTL)

HUu]G S.12
The composition of transformations

s1 &.$ a direction yecto

[t 0l* 
L; o], "* 

before,

r for the
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PíOOí Let [ ] = Á and [T] = B. (Noticethatáisp X r andBis n X m) Ifvis aveďor
in Rm, thenwe simplycompute

(s. rxv) = (T(v)) = (Bv) = á(.av) = (Átr)v

}t (Notice here tlrat tlre dimensions of Á and B guarantee that the produď ÁB makes
sense.) Thus, we see that the effect of S o T is to multiply vectors by ÁB, from which
it follows immediately that o Ť is a matrix (hence, linear) transformation with
[, * TJ * [, J[r].

Isrťt this a great result? ay it in words: "The matrix of the composite is the prod-
uď of the matricesl what a lovelv formula!

Find - o ?: R2 *-+ R4.

so Theorťm 3.32 gives

Example 3.55, defined by

l
I

l

]

we see that the standard matric ar

r2 0 1]|- v :l [, 0lt]:ll _i -i l -"o tr] :|; -; l

Li 
-i l] L, 4J

rrsln

",]
4x, )

dby

h
h
?z
*Y,

X2

4x,

db:

h
h

ťrn

'X2

4x

:dt

-?s
-ll

!z

ffi3 l

X1

1

+

+

?z

pa*

l-

=|i
L3

m4d

|,

lr,

-i]r: ?l :[ : _:1

?]L;-i]:L;r]
r2

=|0
It
Lr

5 41 [ 5x, + 4xr1
3 *7 

| [r, l l ,*, 7x,l

6 3_J LU*,+3Jť:J

0

3

*1

1

[ -r] ff t ]tr]

It follows that

?Pa



(In ,xercise 29,yau will be asked to check this result by setting

Lll] 
:,L;;] : 

[;-|t,)

Section 3.6 trntroduction to Linear Transformations

and *ubstitutinf; these values into the ďefinitian of $, thereby calculatin$ ( *

directly.}

Find the standard matrix of the transformation that first rotate a point 90o counter-

clocl 
^rise 

about the origin and then reflects the result in the x-axis.

soluťOn The rotation R and the reflection. *.*_:::::: 
::-5.- 1i1 ::3.56, respectively, where we found their standard matrices to be [R J : [, 0.]

ta] = |' 0l, t follo*, that the composition F o R has for its matrix
L0 -1l

- 
L;;]

It
[F, RJ tr] tR] = 

Lo -?]L:
*1l r 0 *tl
0] L-r 0]

ffi--e- (Check that this result is correct by considering the efFect of F o R on the standard

basis vectors e1 and e2. Note the importance of the order of the transformationsl

R is performed before F, but we write F o R. ln this case, R o F also makes sense. Is

RnFxP'*.R?)

lnUO]sG$ oí llncar Tlan íO]m0tl0ns

Consider the effect of a 90o counterclockwise rotation about the origin followed by

a 90o clockwise rotation about the origin, Clearly this leaves every poirrt in R2 un-

changed. If we denote these transformations by R9g and R_9g (remember that a nega-

tive angle mea ure corresponds to cloclovise direction), then we may express t}is

as (Rro-o R-so) (v) = v for every y in R2. Note that, in this case, if we perform the

transformations in the other order, we get the same end resulí (R-so o R9g)(v) = v
for everyv in R2.

Thus, R9g o R_9g (and R-so o Rso too) is a linear transformation that leaves every

vector in R2 unchanged. Such a transformation is called antilentity transformatian,
Generally, we have one suó transformation for every R'_name$ .I: R'+ R'such
that í(v) = v for everyv in R'. (rit is importarrt to keep track of the dimension of the

space, we might write In for clarity.)
So, with this notation, we have Rso o R-so = r = R-go o R96. A pair of transforma-

tions t}rat are related to each other in this way are called inverse transtormatlons.

ffi& agi:i: l:, LetSand Tbelineartransformationsfrom Rnto R'. Then Sand T
aré iiierse transformations if S o T : I, and To S : I,.



Chapter 3 Matrices

nCmrll Since this definition is qzrnmetric with respeď to and T, we will say
that,whenthissituationoccur,sistheinverseofTandTistheinverseofs.Further_
more, we will say that ,S and Tare inyertible.

In terms of rnatrices, we ee immediately that if and T are inverse transforma-
tions, then [S][ ] : [S. T] : [I] : 1, where thelast/is the identity matrix. (Why
is the standard matrix of the identity transformation the identrty matrix?) we
must also have [T][S] = [f " S] : [1] : 1, This shows that [S] and [T] are inverse
matrices. It shows something more: If a linear transformation Tis invertible, then its
standard matrix [T] must be invertible, and since matrix inverses are unique, t}ris
means that the inverse of T is also unique. Therefore, we can unambiguousl| use the
notation ?-1 to refer to theinverse of T. Thus, we can rewrite the above equations as
[r][T-']:7: [f-1][T],showingthatthematrixof7-Iistheinversemairixof [7],
We have just proved the following theorem.

, 
' }' ,]'; ' , 1'.- ,,, ,j ,]" :i- \ ,' :

TfigOr$m ff.St Let T: R' -+ Rn be an invertible linear transformation.
IT ] is an invertible matrix, and

IT-'] * [T] -,

BGmallí Say this one in words too: "The matrix of the inverse is the inverse of
the matrixj'Fabulous!

Find the standard matrix of a 60o clockwise rotation about the origin in R2

SOlUtIm Earlier we computed the matrix of a 60o counterclockwise rotation about
the origin to be

since a 60o clod<vrise rotation is the inverse of a 60o counterclockwise rotation, we can
applyTheorem 3.33 to obtain

[R*oo] * [(R60)*1]

(Check the calculation of tlre matrix inverse. The fastest way is to use the 2 X 2 short-
cut from Theorem 3.8. Also, check that the resulting matrix has the right effect on the
standard basis in ffi'by drawing a diagram.}

Determine whether projection onto the r-axis is an invertible transformation, and if
it is, find its inverse.

Síllllíl{t!| The standard matrix of this projection P is which is not invertible

since its determinant is 0- Hence,

t I/2 - \/5 l21
[Ruo] * L*n L/;l

: t" l /2 * \/5 /2l -, _ t t /2 \/1/21

LÝstz I/2) L* ltz L/2)

Il
ther.p is not invertible ei



íiguíG 8.ls
Projection ar not invertible

Section 3.6 Introduction to tinear Transformations . ,'

Rontít Figure 3.13 gives sorne idea whyP in Example 3.63 is not invertible. The

projection 'tollapses" R2 onto the x-axis. For P to be invertible, we would have to have

a way of "undoinď it, to recover the point (a, b) we started with. However, there are

infinitely many candidates for the irnage of (a, 0) under such a hypothetical "inverse]'

'Whic}i one should we use? We cannot simply say that P-l must send (o, 0) to (a, b),

since this cannot be a definition when we have no way of knowing what b should be.

(See Exercise 42.)

lssoclrtiuily
Theorem 3.3(a) in Section 3,2 stated the associaťvity property for matrix multipli-

cationl A(BC) = (ÁB)c. (If you didn't try to prove it then, do so now. Even with all

matrices restricted 2 X 2, you will get ome feeling for the notational complexity
involved in an "elementwise" proof, which should make you appreciate the proof we

are about to give.)
Our approaó to the proof is via linear transformations. We have seen that every

m X n matrix Á gives rise to a linear transformaťon T,a : R'_+ R'; converse$ every

linear transformation T l R' + R' has a correspondtng m X n matrix [T], The two

correspondences are inversely related; that is, given á, [Te] : Á, and given T, T..i,1: T,

Lď R = ?i, S = T5, and T : Tc, Then, by Theorem 3.32,

whcre u

ffiw{"Ň,

! 3l
andy- | "l"

|,-ž )

Á(BC) = (ÁB)C ifandonlyif ft o( o T) = (R,S) o ť

;-;> We now prove the latter idenťty. Let x be in the domain of T [and hence in the do-

mainofbothft o ( o T) and (R"S). -why?]. Toprovethatft o ( o 7) = (RoS) o T,

. it is enough to prove that they have the sarne effect on x. By repeated application of the

definition of composiťon, we have

(R 
" 
(s. T)Xx) : R((S " TXx))

: R(S(T(x)))
: (R " sXT(x)) = ((R " S) , TXx)

1-.1' as required. (Carefutly check how the definition of composition has been used four
times.)

This section has served as an introduction to linear transformations. In Chap-

ter 6, we will take a more detailed and more general look at these transformaťons.
The exercises that follow also contain some additional explorations of this important

concept.

1. Let Ta: lR2 -+ ffi2 be the matrix transfbrmation corre-

L3 4)

2. Let Ta: R2 --+ R3

sponding to Á :

Te (v), l\,here ll ::":

be the matrix transformation

[: -1l
I r 2 |. rina Ta(u} and

L, 4 j

['l *dv: t ul.

L2] L-2]

corre-

Itl
Lr]

1@, b)
l

| @, b,)
I



Chapt*r 3 Matricen

In xercťses 3*6, pťalte that the given transformation is a
linaar transformatiun, using the definit{an (nr the Remark
fullowing Example 3,5 ),

at the

1l
1]

In xertťsss 11*14, fi,nď the standard matrix af the linear
transforrnation in th* given *xarcise,

In Exercjses 2a-25, nd tLle standard matrtx of the given
linear transformation from ffiz ťo R2.

20- Counterclockwise rotation through 120o about the
origin

2l. Clockwise rotation through 30" about the *risin
22. Frojection onto the lín e y * ?x
23.Projection onto the lin e y : -x
24. Reflection in the line y : x
2 . Reflection in the line y : * x
2S. Let ď be a line through the origin in R2, Fa the línear

transformation that projects a vector onto t, anďFa the
transťormatian that reflects a vector in ť.

(a} Draw diagrams to show that Fa ís linear.
(b} Figure 3.L4 suggest a way to find the matrix of Fa,

using the fact that the diagonals of a parallelogram
bisect each other" Prove that Fr(x) * LPe(x) * x,
and use this result to show tlrat the standard matrix
of F; is

In Exercises 7*1a, ive a cpunterexample ta shaw t\t

given transformatian is not a linear transfnrmation.

, ,[;] # [*] -, ,L;] 
[l;l]

9. r[;] : 
|_-l ,] l0.,[;] : [;:

0l [tlorllj L0

[li]
k1 [t
I-l 

o, 
Lk

1l. Exercise 3

13. xercise 5

1 rd? di 2di2 l

In xercťses Js*J 8, shaw that tlte given transfarmfr*
tiBn from ffi2 ťo R? ls linear by showing that it is a matrix
transfarmation,

l . F reílects a vector in th* y-axis.

16. -R rotatcs a vectcr 45n counterclnckwise about the
origin.

17- J) stretch & vcctor by u factor of 2 in the Jť*cornponent
and a factor of 3 in the y-component.

l8. P projects a vector onto the lin e y : x.

19. The three t}apes of elementary matrices give rise to five
t}pes oí2 x 2 matrices with one of the following forms:

(where the direction vector of t is d :

!:]],._,,.,.

1,'.;,'.1 l ,, ,: ,

In Exercises 27 and 28, apply part (b) or (c) of Exercise 26
to find the stqndard tnatrix af the transformation.

27. Reflection in the line y * 2x

12, xercíse 4

14. xercise 6

ol
k]

0l
rj

|';,1,
tive x-axis ís S,(c) If the angle between ť anď the posí

show that the matrix of Fa is

l cos20 sin 20l

I sin 20 - co 20l

rk
Lo

It
L*

ach of these elem*ntary matrice corresponds to a Iinear
transformation from ffi'tc ffiŽ, Draw píctur s to íllustrate
the effect of each ne on ťhe unit quere wíth vertices at
(0, 0), (1, 0), (0, 1), anď (1, 1).

Fdx)



28. Reťlection in the line y _ r6x
29, Check the formula for " T in Example 3.60, by

perťorming the susse ted clirect substitution.

In Exercises 30*35, verify Theorem j,32 by rtnding the

matrix aí S - T (a) by direet substitution and (b) by matrix

multiplication ď t, ] [T].

30 TL;;] : 
L;l ;;;],,Lí;] 

: 
|?;,]

31 T[;:] : Ljf i,i,],,Lí;] 
: 

|,;,--'l:1

32.TL*,l *tx2l ,r[ 
-l lY'+'Y'1

33,

34,

35"

In Exercťses 36*39, nd thg st*,n arď matrix af the corťlpos-

ite transfarmation írum R} ťo R?.

6. Counterclockwige rotatinn thraugh 60o, foIlowed by

reflection in the lin e y : x

s7. Reílection in the y-axis, followed by clockwise rotation

through 30"

8. CloclH,vise rotation thr*ugh 45u, fcllowed by projec-

through 45o

39. Reflection in the line y : x, followed by counterclock-

wise rotation throush 30o, followed by reflection in the

line y: *x

In Exercťses 40*43, u g rn&trices ta prave the given state-

mants about transformatians frorn R? ťo ffi?.

40. If fu denotes a rotation (about the orisin) through the

angle B, then Ro o RB = Ra*F.

Section 3.6 Introduction to Linear Transformations

41- If 8 is the angle between línes ť and rrt (through the

nrigin), then F*o Fr: R+20. ( ee Exercise 26,)

4?. (*} If P is a projectíon, then P o F x P.

(b) The matrix of a projection c&n nev r be invertible.

4 . If (, ťťt, and n at:e three lines through the origin, then

fin o * o Fa ís also a reílection in a line through the

origin.

{4. Let T be a linear transformation fram ffi2 to R2 (or

from R3 to ffi3). Prove that ť maps a strnight line to a

straight line or ff point. |Hint: tJse the vector ťorm of
th* equation of a líne.]

45. Let T be a linear transformation from R2 to R2 (or

from K3 to m'). Frove that T maps parallel lines to

parallel lines, a single line, a pair of point } or a single

point.

In Exercises 46-51, let ABCD be the square with ve:rtices

(*1, 1),(1, 1), (1, *I), and (*1, *l). lfre theresults in

Exercises 44 and 45 ta rtnd and draw the image af A CD
under the given transformAtion.

46, T in Exercise 3

47 , n ín Exercíse 17

48. P in Exercise 18

49. The projection in xercise 22

0. r in xercise 31

1. The tran fnrmation in Hxercise 37

52. Prove that Pa(cv) : cPt(v) for any scalar c

[Example 3.59(b)],

3. prove thet T : ffin *.r R* is a linear transformation iť and

only if

T(clvi + c2y2): c,T(v1) + crT(v2)

for all y1, v2 in Rn and scalars clt c2,

54. Prove that (as noted at the beginning of this section)

the range of a linear transťormatinn T l Rn **r K* is the

column spa e oťits mntrix [r].

. If Á is an invertiblg 2 >< |matrix, what does the

Fundamentat Theor m of Invertible Matrices assert

about the corre ponding linear transťormation Ta in
light of Exercíse 19?

,L;l] : 
[#, 

*::,;T,],,[:] : 
|T,,-*";)

, 
L ;l ] 

: 
|;, -: :;i ],, Lí; ] 

: 
|!,,; ! ;,1

,L;l] :Ll 
lll],,Lll] 

:|I:!,,)
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Robotics
In 1981, the U.S. Space Shuttle Columbiablasted offequipped with a device called the

Shuttle Remote Manipulator System (SRMS). This robotic arm, known as Canadarm,
has proved to be a vital tool in all subsequent space shuttle missions, providing trong,
yet precise and delicate handling ofits payloads (see Figure 3.15).

Canadarm has been used to place satellites into their proper orbit and to retrieve

malfunctioning ones for repair, and it has also performed critical repairs to the shut-
tle itself, Notably, the roboťc afm wa instrumental in the successful repair of the
Hubble Space Telescope. Since 1998, Canadarm has played an important role in the
assembly and operation of the International Space Station.

A robotic arm consists of a series of linlcs oífixed length connected at joints,where
they can rotate. Each link can therefore rotate in space, or (through the effect ofthe
other lin}s) be translated parďlel to itselí or move by a combination (composition) of
rotations and translations. Before we can design a mathematical model for a robotic
arm, we need to understand how rotations and translations work in composition. To
simpii$rmatters, we will as um that our arm is in R2.

,ffi

"{Cn{
7"

ílsure t.tS
Canadarm

226

i]l,' l,
ill ], l

i,i, l
i.ji:i ]:

r|l ]]]l ]

*r,

lrirl:
];]]],



r(x)

(Figure 3.16(b)).

:x*v orlequivalently, ,[] [x+ a1
:l l

|,y + b)

(a) Rotation (b)'ltan tatlon

]l3uí! 8.10

Unfortunately, translation is not a linear transformaťon, because r(0) + 0. How-

ever, there is á trick that will get us around this problem. We can represent the vector

T -,] [*l
*: |'Iurtrr.ve.torl y Iirrmr.Thisiscalledrepresenťngx inhomogeneouscoor--- |,yJ Li]
dinates. Then the matrix multiplication

[r o allxl fx+a1

L: l l]Ll]:L,i,]
represents the translated veďor T(x) in homogeneous coord,inates.

We can treat rotations in homogeneous coordinates too, The matrix multiplication

fcoso -sin0 0l [*l fxcoso - ysinol

L,T, 
,;" 

:-lLl] 
= 

[xsin, 1,*" ]

repres nts the rotated veďor R(x) in homogeneous coordinates. The composiťon T o R

that gives the rotation R followed by the tranďation Tis now represented by the produď

[r 0 al [cos0 -sin0 ol fcosá -sin0 al
lo t bllsinO cos0 0l:lsin0 cos0 b|

Lo o ,.lL. 0 ,] L o 0 1.]

[NotethatR "T * T"R]
To modeI a robotic arm, we give each link its own coordinate system (called a

frame) and examine how one link moves in relation to those to which it is diiectly
connected. To be specific, we let the coordinate axes for the link Á; be x; and 7;, with

the r;axis aigneďwitt, the link. The length of Á; is denoted by a;, and the angle

22l

(b) Trenslation



I cos 0;

I sin 0;

L0

:

..

]

i

l

I

I

I

I

I
I
I

I

I

f.*
* sin 0; ou_, lcos0, 0 

l0 lJ

íl!lí! 8.tl

To give a specific e:rample, consider Figure 3.18(a). It shows an ann with three
links in which Á1 is in its initial position and each of the other two linlts has been
rotated 45o from the previous link. \ťe will take the length of each link to be 2 units.
Figure 3.18(b) shows Á, in it initial frame, The transfoimation

cau e & rotation of 45o and then a translation by 2 units. As shown in 3.18(c), this
places Á3 in its appropriate position relaťve to Á2's frame. Next, tÍre transformation

Icosa5 
*sín45 21 ltt\n *L/\n 2l

T3:Isinas co45 0l:|rt\/ž L/Ýž 0l
L 0 0 lJ L 0 0 1]

I rtÝž *L/\n 2l:lrt 1 I/\/ž 0l
L 0 0 lJ

I cos 45 * sin 45 21
T2:Isinas co45 0l

L 0 0 lj
is applied to the previous result, This places both Á3 and A2 in their correct posi-
tion relative to Á1, a shor{n in Figure 3.18(d). Normally, a third transformatión T1
(a rotation) would be applied to the previous result, but in our case, T1 is the identit
transformation because Á1 stays in its initial position.

T}rpically, we want to know the coordinates of the end (the "hand") of the roboťc
arm, given the length and angle parameters-this is known as forward kinematics,
Following the above sequence of calculations and referring to Figure 3.18, we see that

!t*t

through $ i translated



(a) A thr*e-línk *hain {b} Ál in it* initial ťrame

we n* d to determíne where the poirrt {ž, 0) ends up
the arrďs hand is at

l z1 l t/\/I *I/\1Í 2l,[z l
r,r,l ol:|rt\/i U\ň 0ll0|'2*3L;l :L"; 

0 
& 

;JL; ]

{c) rl puts A3ínAďs initial ťrame

Flsll s ff.Nff

[0 -t 2

:lr 0

Lo 0

:|xl*]

which represents t}re point(Z+Ýi,Z+ 1) in homogeneous coordinates. It is easily

checked from Figure 3.18(a) that this is correct.
The methods used in this example generalizn to robotic arms in three dimen-

sions, although in R3 there are more degrees of freedom and hence more variables,

The method Óf homogeneous coordinates is also useful in other ap,plications, notably

computeť graphics. 
22s

after 3 anď T2 are ffpplied. Thus,

* 1[rl,: 
JLIJ

td) T,2ry puts A7 ttl Al's initial frame
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A market research team is conducting a controlled surveyto determine people's pref-

erences in toothpaste. The sample consists of 200 people, each of whom is asked to
try two brands of toothpaste over a period of several months. Based on the responses

to the survey, the research team compiles the following statistics about toothpaste
preferences.

Of those using Brand A in any month, 707o continue to use it the following month,
while 307o switch to Brand B; of those using Brand B in any month, 80% continue to
use it the following month, while 207o switch to Brand A. These findings are umma-
rized in Figure 3.19, in which the percentages have been converted into decimals; we
will think of them as probabilities.

0.30 _.-.{

ffi

\- -/
0.20

llJllí. s.rs

Figure 3.19 is a simple example of a (finite) Markot, chailr. It represents an evolv-
ing process consisting of a finite number oí stata. At each tep or point in time, the
proce may be in any one of the states; at the next step, the process can remain in its
present state or switch to one of the other states. The state to which the process move
at the next step and the probability of its doing so depend only on the present state

and not on the past history of the process. These probabilities are called transi,tion

probabilities *d 
".. 

assumed to be constants (that is, the probability of moving from
state i to statef is always the same).

ln the toothpaste survey described above, there are just two states-using Brand
A and using Brand B-and the transition probabiliťes are those indicated in
Figure 3.19. Suppose that, when the surveybegins, 120 people are using Brand A and
80 people are using Brand B. How many people will be using each brand 1 month
later? 2 months later?

Solutlon The ntimber of Brand A users after 1 month will be 70% of those initially
using Brand A (those who remain loyal to Brand A) plus 20% of the Brand B users
(those who switch from B to A):

0.70(120) + 0.20{s0} _ 100

Similarly, the number of Brand B users after 1 month will be a combination of those
who switch to Brand B and those who continue to use it:

0.7s 0.80Andrei A. Markov (1S56*1922}

was a Russian mathematician who
studied and later taught at the
tJniversiťy of St. Petersburg. He
wa interested in number theory,
analysis, end the theory oť con*

tinued fractions, a recently devel-
op d field that Markov applied
to probability theory. Markov
wa also interested in psetry, and
one of the u gs to which he put
Markov chains }va the analysis
oť patteťn in poems end other
literary texts.

0.30(120) + 0.BO(go) : 100



We can summarize these two equations in a single matrix equation:

[o.zo 0.20l li20l Itool
Ló.ro o.ro]L so] 

: 
Lroo]

Let's call the matrix p arrd label the vectors o : ["ol *d *, = ['ool

thatthe components of eachvector are the "-,";;lr:il*T;;kť"§r"
in that order, after the number of months indicated by the subscript.) Thus, we have

x1 : Pxp,
Extending the notation, let x1 be the vector whose components record the distri-

bution of toothpaste users after k months. To determine the number of users of each

brand after 2 months have elapsed, we simply appty the same reasoning, starting with
x, instead of xp, We obtain

Sectign 3,7 Ápplications

split is s0ťo*4ff%. Chcck by

be takefi * x1 (in agreement

X2:PXrH

from which we ee that therc are BrandBu cr.

The vectors x7, in Exampl e 3.64 are called the state vectors of the Markov chain,

and the matrix P is called its transition matrix.YÝehavejust seen that a Markov chain

satisfies the relation

X111 : PX1 fork : 0,I,2,,,.

From this result it follows that we can compute an arbitrary tate vector iteratively

once we know xq and P. In other words, a Markov chain is complete|, determinedby
its transition probabilities and its initial state,

*ffi ť&s
n Suppose, in Example 3.64,we wanted to keep track of not the actual numbers

of toot}rpaste users but, rather, the relative numbers using each brand. We could con-

vert the data into percentages or fractions by dividing by 200, the total number oí
users. Thus, we would start with

r120T

X6: lffilL2O0J

to reflect the fact that, initially, the Brand

[o.zo 0.20l [t0ol : i 90l

[o.1o 0.B0] LtOOj Lttoj

now 90 Brand A u er and 110

Io.eolll

Lo.+o]

A-Brand B

direct cďculation that px* 
Lli|], 

*hi.h can then

with the 50-50 split we computed above). Vectors such as these, with nonnegative
components that add up to 1, are calledprobability vectors,

. observe how the transition probabilities are arranged within the transition
matrix P. We can think of the columns as being labeled with the present states and the

rows as being labeled with the next statesi 
present

AB
Next 

e |o,zo o,zol
B L0.30 0.80l



The word .:;!t{}. ,j,,;5i jL is deriVed
fronr tlre Greek adjective
stokllastiko s, meaning'tapable of
aiming" (,:r guessins). It has come
to be applied to anything that is
governťd by the laws of probability
in the ense that probability makes
predictions about the likelihood of
things happerring. In probability
theory, "stochastic processes" form
a generalizatiorr of Markov chains.

Chapter 3 Matrices

A 0.06

B a.24*

ít u]B ff.U0

x2 _ Px, : P(Pxn) P'*n

X1 : Pn*o for k : 0, 1 ,2, , .

Note also that the columns of P are probability vectors; any square matrix with this
property is called a stochastic matrix,

We can realize the deterministic nature of Markov chains in another way. Note
that we can write

and., in general,

This leads us to examine the powers of a transition matrix. In Example 3,64,we
have

^ [ 0,70 0.20l [o.zoP': l ll
L0.30 0.80] L0.30

0.20l [ 0.55 0.30l

o.so.] 
: 

[o,nu 0.70J

What are we to make of the entries of this maťix? The first thing to ob erve is that P2
is another stochasťc matrix, since its columns um to 1, (You are asked to prove this
in Exercise 14.) Could it be that P2 is also a transition matrix of some kind? Consider
one of its entries-say, (Pz)u:0.45. The tree diagram in Figure 3,20 clarifies where
this entry came from.

There are four possible state changes tlrat can occur over 2 montis, and these
correspond to the four branches (or paths) of length 2 in the tree. omeone who
initially is using Brand A can end up using Brand B 2 months later in two different
ways (marked * in the figure)l The person can continue to use A after 1 month and
thenswitótoB(withprobability0,7(0.3)= 0.21),orthe per oncanswitďrtoBafter
1 month and then stay with B ($rith probability 0.3(0.8) = 0,24). The sum of these
probabiliťes gives an overall probability of 0.45. Observe that these calculations are
exactlywhatwe do when we compute (P2)21.

It follows that (P2)r, = 0.45 repre ents the probability of moving from state 1

(Brand A) to state 2 (Brand B) in two transitions, (Note that the order of the sub-
scripts is the reyerse of what you might have guessed.) The argument can be general-
ized to show that

Q\; is the probability of moving from state jto state i in k transitions.

In Example 3.64, what will happen to the distribution of toothpaste users in the
long run? Let's work with probability vectors a state vectors, Continuing our calcula-
tions (rounding to three decimal places), we find

X6:

Xj TŤ

X6 1":Ť

lO.sol [0.70 0.20l [o.soll l.xn:Px,:l ll l:
L0.50 j, l, , 

L0.30 O.BOJ L0.50 j
Io.6ol

Lo.no],*, 
:

[0.70Pxn:l* 
L0.30

[0.41ž l
:l l!: 

fo.staj'*u

Io.+ool

Lo.unu.], 
*'u

0.20l Io.+sl l o.+zs1

0.80] Lo.55] - Lo.rrr]' 
**

[0.+ozl [o.+ot-l

Lo.rn*], 
*u - 

Lo.rnn], 
*o :Io.+o: ll l.X..:

L 0.597 _] 

, /

I o.+s l
Lo.ss j '

I o.+oo l
:l I

Lo.sg+ j'

I o.+oo l
ll

L o.ooo J

-
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and so on, It appears that the state veďor approach (or convergerr) 
'h" 

*"* 
[;::],

implying t}rat eventuďly 40% oí the toothpaste users in the survey will be using

Brand A and 60% will be using Brand B. Indeed, it is easy to check that, once this

distribution is reached, it will never change. We simply compute

A state v ctor x with the pťoperry that Px = x is called a steaily state vecton In

Clrapter 4, we will prove that every Markov chain has a unique steady state vector. For
now, leťs accept this as a fact and see how we can find such a vector without doing any

iterations at all.
We begin by rewriťng the matrix equation Px = x as Px = Jx, which can in turn be

rewritten as (í - P)x : 0. Now this is just a homogeneous sy tem of linear equations

with coefficient matrix l * P, so t}e augmented matrix i [í * P |0]. In Example 3,64,

we have

which reduces to

Io.zo 0.20l Io.+l Io.+l
Io.1o 0.80] Lo,a] Lo.o]

I t 0.7a *0.20 l ol l- 0.30 *0.20 l0ltí-plo] - L';;" ,l;.;, l;] = L*o.un o;l;]

L;-íl;]
So, if our steady state vector is x = i:''], then x2 is a free variable and the parametric

Lxr)
solution is

\: it, xz: t

If we require x to be a probability vector, then we must have

Thereťore, xz= t= i = 0.6andx, o ?= a.+, ox = 
[1.1],_agreementwithour

iterative calculations above. (If we require x to contain'th eácíual distribution, tlren

in this example we musthave x1 * x2 = Z[L,from which itfollows thatx : ['o-1",
L120] 

,

1 : ff' * x, * tt + f :-: |t

A psychologist places a rat in a cage with three compartments, as shown in Figure 3.21.

The rat has been trained to select a door at random whenever a bell is rung and to

move through it into the next compartment.

(a) If the rat is initially in compartment 1, what is the probability that it will be in
compaítment 2 after the bell has rung twice? three times?

(b) In the long run, what proportion of its time will the rat pend in eac"h compartment?

totutI0il Let P = Lp;]be the transition matrix for this Markov chain. Then

: *, ?n : Prc: i, P:: : Pzl: i,Fn: Py



Chapter 3 Matrices

ffiW@.

strm ffi"p

(Why? Remember that ?l1isthe probability oťmoving from j to ť.) Thereťore,

and the initial state vector is

(a) Áfter one ring oťthe bell, we have

xl : Pxo

Continuing (roundi*s to three decimal places), we finď

X2 : PXt

and

xj:PXr:

Therefore, after two rings, the probability that the rat is in compaítment 2 is } =
0.333, and after tluee rings, tlre probability that the rat is in compartment 2 is
* : 0.gSS. [Note that these quesťLns could also be answered by computing (P2)r,
and (p3)21.]

[o i }lp:Ii 0 il
Li 3 0j

X6:[i]

[lií][i][l]:[l;]

Llii]Ll]:Li][l,iii]

[o i tl[il tíll 0 *l
L* i,jLi] L;j 

=: 

[1.1ii]



(b) This question is asking for the steady state vector x as a probability vcctor. As we

saw above, x must be in the null space of r - R so we proceed to solve the system

I r -i -itol [r 0 -3l0l
u-pI ot :l-i t -!|o|----|o r -r|oI

L-l -? rlol Lo o o|o.]

Section 3,7 Ápplications

Hence, if x : f is free and x1 : *t, K2 * f. ince x must be a prob-

$ and

which tells us that, in the long ruí}, the rat spends i of its time in compartment 1

$ of its tíme in each oť the other two compartrnents"

linert lconomic lllodGls
lvve now revisit the economic models that we first encountered in section 2.4 arrd,

recast these models in terms of matrices. Example 2.33 illustrated the Leontief closed

model. The system of equaťons we needed to solve was

In matrix form, this is the equatiCIn . x : x, where

ubilrty vector,

[", l

L;: ] 

, *r,*" x3 :

r,te need 1 : J[t * xz * x3 : }r. Thu , f :

x-Li]

I*,+\xz+ifr.}:ítt'-3.

i*,+rx:*i*r:x2T,3

L*r+ r xz* i*-3: x3uL3-

Ll21 [*, l
I/4 | *rd x : l *r lL/4l L*,J

and

+

-*|-

l t/+ I13
E- |rtn L/3

l-rn L/3

The matrix E is called an exchange mafiix and the vector x is called apňce vector,

In general, if E = íeiz then e;i represent the fraction (or percentage) of industryjš
ouput that is consumed by industry l and x; is the price charged by industry i for its

output.
In a closed economy, the sum oťeach column of E is 1. Since the entries of _E are

also nonnegative, E is a stochastic matrix and the problem of Íinding a solution to the

equation

Ex:x {1)

is precisely the same as the problem of finding the steady tate vector of a Markov
chain! Thus, to find a price vector x that satisfies Ek = x, we solve the equivalent
homogeneous equation (r - r)x : 0. There will always be infinitely many solu-
tions; we seek a solution where the prices are all nonnegative and at least one price

is positive,
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The Leontief open model is more interesting. In Example 2.34,1"-e needed to solve the
system

Jť1 : a.2x1 * a.5x2 + a.Lx, * 10

x2: 0,4x1 * 0.2x2 * a.Lxz * 10

x3: 0.lx1 * 0.3x2 * a3x? + 30

x:Cx*d or {t*C)x:d

In matrix forrn, wť have

where

{2}

C = [li i:: lj ], X * [;;], d - [l3]
L0.1 0.3 0,3J LrrJ LloJ

The matrix C is called the consumptlon matrlr, x is the production vectoť, and d is
the demanil vector,In general, if C = íc;|, a = [x;i, and d = [d/, then cť íepresents
the dollar value of industry i's output that is needed to produce one dollar's worth of
industryj's output, x; is the dollarvalue (price) of industry i's output, and dlis t}re dol-
lar value of the external demand for industry í's output. Once again, we are interested
in finding a produďion vector x with nonnegaťve entries such that at least one entry
is positive.lMe call suďt avector xaleaslble solutlan.

Determine whetlrer there is a solution to the Leontief open model determined by the
following consumption matrices:

(a) C ,- (b) fl:

slN|tl0n (a) \^k have

so the ťquation (J * C)x * d becoťílc

In praďice, we would row reduce the corresponding augmented matrix to determine
a solution, However, in tlris case, it i in truďive to notice that the coefficient matrix
í - C is inverťble and then to apply Theorem 3.7 . We compute

Sincedpd2,andallentriesof(/- C)-1 arenonnegative, oareJíJ andx2.Thus,wecan
find a feasible solution for any non?rltó demand vector.

Irt, I/21

LL /2 2/3 )

lt/+ Ift1j/z L/3)

I _ C _ [t 0l l tl+ I/31: t 3/4 *Lft1
L0 lj Lrp Lftj =- l,-r/z lftl

t3/4 *I/31[r,l :[d,l
|"- t /z z ll J L"rJ Lar)

L;;] 
: 

|_Y,: 
-)',',1 '|'^,,1: 

|,',, }, n] [í;]
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{b} In this ca e,

and U*C)-l-[-4 -6l
L-6 -6j

so that

x = (/ - c)-id :|-: -!lu- L-6 -6]

Since all entries of (/ - C;-1 are negative, this will not produce a feasible solution for

anynonaetodemandvectord. 
_ *í*Ť

Motivated by Example 3.66, we have the following definition. (For two m X n

matricesÁ =|ai]and&=[b4],wewillwrtteA> Bif,a,,> bijťoralliandj,Similarly,
we may define Á > B, A = B,and so on. A matrix Á is called nonnegative if A > O
andposiťve ifÁ > O.)

We now give three results that give criteria for a consumption matrix to be

productive.

t.s{

C)-l >, O. Let

Then x = (/- C)-l > 0 and (I* C)x = i > 0. Thus, x - Cx> 0 or, equiva-

lently,x > Ck.
Conversely, a sume that there arists a vector x ž 0 such that x } Ck, Since

C > Oand C * O, we have x > 0 by Exercise 35. Furthermore, there must exist a

realnumber^withO < i < 1suchthatCk < ,[x. Butthen

C2x = C(Ck) < C(,\x) :,\(Ck) <,\(,\x) :,\k

t..> By induction, it can be shown that 0 < C\ < inx for all n > 0. (Write out the de-

tailsofthisinductionproof,) ince0<^< 1,z\napproac.:hes0asrgetslarge.There-
fore, as n 1 6, rYx -+ 0 and hence Ck --+ 0, Since x ) 0, we must have Cn -> a as

n+ e,
Now consider the matrix equation

(r-CXr+ C + C) +,..+ C"-L)* I-C'

|.-Ll2 u3)

Assume that C is productive. Then I * C is invertible and (l -

[,li: l l l

Li]
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The word
the Latin

As n -+ Q, C' -) o, so we have

(I- O(r+ C+ ď + ...) =í _ o: I

Therefore, 1- C is invertible, with its inverse given by the infinite matrix eries
I + C + ď + . .. . Sinceallthetermsinthis series are nonnegative, we alsohave

(/-C)-1 :IlC+ď+... >o

Hence, C is productive,

íOEilt$
. The iníinite series -I + C + ď + .. . is the matrix analogue of the geomet-

ricseries 1*r* i + ..,.Youmaybefamiliarwiththefactthat,for |x| < t,
l*r*x2+...:t/(t-r).. Since the vector ix represents the amounts con umed by each industry, the in-
equalityx )o Cx means that there is some level of production for which each industry
is producing more than it consumes.

. For an alternative approach to the fi.rst part of the proof of Theorem 3.34, see
Exercise 42 in Section 4.6.

ffiwwm If

x:

then Cx is a vector consisting of the row sums of C. If each row um of C is less than
1, then the condition x } Ck is satisíied. Hence, C is productive.

Ll]

orollt s t,Sfi

P OOí If each column sum of C is less than 1, then each row sum of CT is less than 1.

Hence, CT is productive, by Corollary 3.35. Therefore, by Theorems 3.9(d) and 3.4,

((r- c)-')T: ((l- C)T)-' : (Ir- c)-' : (I- c)-l > o

It follows that (1 - C)-' = O too and, thus, C is productive.
You are asked to give alternative proofs ofCorollaries 3.35 and 3.36 in Exercise 52 of
Section 7.2.

It follows from the definition of a consumption matrix that the sum of column
j is the total dollar value of all the inputs needed to produce one dollar's worth of
industryj's output-that is, industryj's income exceeds its expenditures. We say that
such an industry isprof table. Corollary 3.36 can therefore be rephrased to state that
a consumption matrix is productive if all industries are profitable.
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Sectinn3.7 Applications

PO[uIatlOn Gtowffi

One of the most popular models of population growth is a matrix-based model, first

introduced by P. H. Leslie in 1945. The Leslie mod.el describes the growth of the fe-

male portion of a population, which is assumed to have a maximum lifespan. The

females are divided into age classes, all of which span an equal number ofyears, Using
data about the average birthrates and survival probabilities of each class, the model is

then able to determine the growh of the population over time.

A certain species of German beetle, the Vollmar-\ťhsserman beetle (or VW beetle,

for ďrort), lives for at most 3 years, We divide the female VW beetles into tlrree age

classes of 1 year each: youths (0-1 year), juveniles (1-2 years), and adults (e-: years),

The youths do not lay egg* each juvenile produces an average offour female beetles;

and each adult produces an average ofthree females.

The survival rate for youths is 507o (that is, the probability of a yout}ťs surviving to

become a juvenile is 0.5), and the survival rate for juveniles is25Yo. Suppose we begin

with a population of 100 female VW beetles: 40 youths, 40 juveniles, and 20 adults.

Prediď the beetle population for each ofthe neŇ 5 years.

$oluilOn After 1 year, the number of youths will be the number produced during
that year:

40>í-4+20X3=22a
The number of juveniles will simply be the number of youths that have survived:

40X0,5:20
Likewise, the number of adults will be the number of juveniles that have survived:

40X0.25=10
We can combine these into a single matrix equation

[l,i,,i]Lll]:L,ll]
or lxg : x1, where xb = 

[ ;:] 
i, * -- population distribution veďor and x1 : 

['il ]
is the distribution after 1 year. We see that the strucfure of the equation is exactly the

same as for Markov c.hain i xtr11 = Ixl for ft = 0, 1, 2, . , . (although the interpretation
is quite different). It follows that we can iteratively compute successive population

dtsiributionvectors, (Italso followsthatx;,: Ifuxo fo: ft: 0,I,2,.. ,, á for Markov
chains, but we will not use this fact here.)

We compute

X2 J,X,

X3 * lXz

i]L,ll]:Llll]
Io*lo,,
L0

i]Llll] 
: 

L-il,]

Io

-lo.,
Lo

4

0

0"25

Á+

0

0.25
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Xa : LXr*

x5 : Lxn:

[0
l0
Lo

Io
|0
L0

.5

.5

4

0

a.25

4

0

a.25

bz

0

i]L^:|,1: |1|1,;,]

i]L:|1,|,): L:ij,l-]

Therefore, the model predicts that after 5 years there will be approximately

951 young female VW beetles, 151 juveniles, and 57 adults. (Nofe; You could argue

that we should have rounded to the nearest integer at eaó step-fo, example, 28

adults after step 3-wL'ch would have affected the subsequent iterations. We elected

not to do this, since the calculations are only approximation anyway and it is much
easierto use a calculator or CAS ifyou do not round as you go.) 

tfi-
The matrix t in Example 3.67 iscalled a Leslie matrix. In general, if we have a

population with n age classes of equal duration, .L will be an n X n matrix with the

following struďure:

bn

0

0

0

;

b r*t
0

0

0

:

S3

;

2

0

;

bL

1

0

0

;

b3

0

0T-
lJ

Here, b1, b2, , , , 1re the birth parameters (b; = the average numbers of females pro-

duced by each female in class i) and s1, s21 , . , e the survival probabilities (s; : the

probability that a female in class j survives into class 
' 
+ 1).

What are we to make of our calculations? Overall, the beetle population appear

to be increasing, although there are some ílucfuaťons, such as a decrease from 250 to

225 fromyear 1 to yeau. 2. Figure 3.22 shows the change in the population in each of
the three age classes and clearly shows the grotth, with fluctuations.

4000
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Ií instead of plotting the actual population, we plot the relative population in

each class, a different pattern emerge . To do this, we need to compute the fraction of

the population in each age class in each year; that is, we need to divide each distribu-

tion vector by the sum of its components. For example, ďter 1 year, we have

1

-Xr250 l

whiďr tells us that 88% of the population consists of youths, 87o is juveniles, and 4% is

adults. If we plot this type of data over time, we get a graph like the one in Figure 3.23,

which show$clearly that the proportion of the population in each class is approaching

a steady state. It turns out that the steady state veďor in this example is

l o,1z1
l o.rnl
Lo.on.]

That is, in the long run,72Vo of the populaťon will be youths, 24% juveŇes, and 4%

adults, (tn other words, the population is distributed among the three age classes in

the ratio 18:6: 1 .) We will see how to determine this ratio exactly in Chapter 4.

Gn!n$ ilil nbmnns
There are many situations in which it is important to be able to model the inter-

relationships ,áong a finite set of objects. For example, we might wish to describe

various types of networks (roads connecting towns, airline routes connecting cit_

ies, communication links connecting satellites, etc.) or relationships among groups

or individuals (friendship relationships in a society, predator-prey relationshiPs in

0,1

:*L'll] :L1.1i]
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B an ecosystem, dominance relationships in a sport, etc.). Graphs are ideally suited to
modeling suďr networks and relaťonships, and it turns out that matrices are a usefirl
tool in their study.

A graph consists of a finite set of points (called vertices) and a finite set of
edges, each of which connects two (not necessarily distinct) vertices. We say that
two vertices are adjacent if they are the endpoints of an edge, Figure 3.24 shows an
example of the same graph drawn in two different ways. The graphs are the "samď'
in the sense that all w care about are the adjacency relationships that identify the
edges.

We can record the essential information about a graph in a matrix and use matrix
algebra to help us answer certain questions about the graph. This is particulariy use-
ful if the graphs are large, since computer can handle the calculations very quickly,

ffimffi ffiffi B

íx-x ru mairix a
]lgurn S.24
Two rfrpre entation Of the same
graph

Figure 3,2,5 shows e sreph and its associated adjacenc} matrix.

11
11
10
00

V4

tllul0 $.2

n0ml]l observe that the adjacency matrix of a graph is necessarily a
t... qrmmetric matrix. (Why?) Notice also that a diagonal entry aii of Á is z.ro ,.rrr-

less there is a loop at vert x i. ln some situations, a graph may have more than one
edge between a pair of vertices. In suó cases, it ma| make sense to modify the
definition of the adjacency matrix so t}rat a;i equals tbe number of edges between
vertices iandj.

We define a Path in a graph to be a sequence of edges that allows us to travel
from one vertex to another continuously. The length of a path is tlre number of edges
it contains, and we will refer to a path *itl, k 

"ag'", 
u, a k-path. For example, in he

graph of Figure 3.25, v1|3|291is a 3-path, and vrirv2y2v, v, i3 a S-path. Notiie that the
first of these is clos (it begins and ends at the same vertex); such a path is called a
círcuit, The second uses the edge between ť1 and v2 twice; a path that does n oí include
the same edge more than once is called a simple path.

i]
0J

[0
|1
Ir
Ir

V3
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We can use the powers of a graphs adjacency matrix to give us information about

the paths of various lengths in the graph. Consider the square of the adjacency matrix
in Figure 3.25:

A2 -.-:_

What do the entries of Á2 represent? Look at the (2, 3) entry. From t}e definition of
matrix multiplication, we know that

(A')zr: a2la3* a22ft4* ayay* d2aa43

The only way t}is expression can result in a nonzero number is if at least one of the

products a*lralr3tJlatmake up the sum is nonzero. But a2lralrg is nonzero if and only if
both a2land al,are nonzeró, which means that there is an edge between v2 and v1 as

well as an edge between ?1 and v3. Thus, there will be a 2-path between vertices 2 and

3 (via vertex-/c). In our example, this happens for k = 1 and for ft : 2, so

(,A')rr: ilzldys + azz&zs + frzlasn + Gzqň+s

A]
,Ll

which tells us that there are two 2-paths between vertices 2 and 3. (Check to see that

the remaining entries of Á2 correctly give 2-paths in the graph.) The argument we

have just given can be generalized to yield the following result, rvhose proof we leave

as Exercise 72.

r3
Iz

L;

21
32
22
11

ffip-*e"

If Á is the adjacency matrix of a graph G, then the (l, j) entry of Ák is equal to the

number of k-paths between vertices i and j.

V4

lstl B §.2
A digraph

How many 3-paths are there between vl and v2 in Figure 3,25?

0IuTOn We need the (1, 2) entry of Á3, which is the dot produď of row 1 of Á2 and

column 2 of A. The calculation gives

(Á3)12 * 3"1 + 2,1+ 1,1 + 0,0 * 6

so there &rc síx 3-paths between vertice 1 and 2, which can be easily checked.

In many applications that can be modeled by a graph, the vertices are ordered

by some type of relation that imposes a direction on the edges, For example,

directed edges might be used to repre ent one-way routes in a graph that models

a transportation network or predator-prey relationships in a graph modeling an

ecosystem. A graph with directed edges is called a iligraph. Figure 3.26 shows an

example.
An easy modification to the definition of adjacency matrices allows us to use

them with digraphs.
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]igure 8,2l
Á tournament

Thng, the adjacency rnatrix for the ďigraph in Fígure 3,26 is

Not surprisingly, the adjacency matrix of a digraph is not slmrrnetric in general.
(When would it be?) You should have no dťficulty seeing that Á* now contains tlre
numbers of directed k-paths between vertices, where we insist that all edges along a
path flow in the same direction. (See Exercis e72.) The next example gives an applica-
tion of this idea.

Five tennis players (Djokovic, Federer, Nadal, Roddick, and Safin) compete in a
round-robin tournament in which each player plays every other player once. The
digaph in Figure 3.27 summarizes t}e results, A directed edge from vertex i to ver-
tor j means that player i dďeated player j. (A digraph in which there is exactly one
directed edge between every pair of vertices is caíled a tournament.)

The adjacenry matrix for the digraph in Figure 3.27 is

A

where the order of the vertices (and hence the rows and columns ofÁ) is determined
alphabetically. Thus, Federer corresponds to row 2 and column 2, for example,

uppose we wish to rank the five players, based on the results of their matches. One
wayto do this might be to count the number of wins for each player. Observe that the
number of wins eaďr player had is just the sum of the entries in the corresponding row;
equivalently, the veďor containing all the row sums is given by the product Ái, where

r0 1 0 1l

A:Io 0 0 1l
I1 0 0 0I

L, 0 1 0]

[o 1 0 1 1l
lo 0 1 1 1l
|, 0 0 1 0l
lo 0 0 0 1l
[o 0 1 0 0J

:Ll]

R
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In our case, we have

ii]Ll]|i]

Io
lo

Aj*|r
Io
Lo

1s
s1
ůil
fi0
01

01
11
0t
0s
ls

?,ž
?, ?,

ffž
1s
11

which produces the following ranking;

First Djokovic, Federer (tie)

Second: Nadal

Third: Roddick, Safin (tie)

Are the players who tied in this ranking equally strong? Djokovic might argue that
since he defeated Federer, he deseryes first place. Roddick would use the same type
of argument to break the tie v,rith Safin. However, Safin could argue that he has two
"indirecť' victories because he beat Nadal, who defeated twa otheta: furthermore,
he might note that Roddick has only one inditeď victory (over afin, who then
defeated Nadal).

Since in a group of ties ttrere may not be a player who defeated all the others in the
group, the notion of indireď wins seems more useful. Moreover, an indirect victory
corresponds to a 2-path in the digraph, 0 w can u e the square of the adjacency ma-
trix. Tio compute both wins and indireď wins for each player, we need the row sums

of the matrix A + ,q2,which are given by

(a + A}}i

Thus, we would rankthe players as follows: Djokovic, Federer, Nadal, Safin, Roddick.
Unfortunately, this apprůach is nst $aťfinte d to break a}l ties-

1- Compute x1 and x2.

2. What pr portion of the state 1 populatinn $i}l be in
state 2 after tw* nteps?

3. What proportion af the st*te 2 papulation will be in
state 2 after two steps?

4. Find the ste-dy stat* y ctor.

i] +[: l :l 1] ][l]1l l0 0 1 0 0ll1,1
0J Li 0 0 1 0] l L,]{Lli

[o 1

|1 ff

-|r 1

|* 0

|t 0

illnrkna íinnm

In xercises 7*4, let F :

trix for a Markov chaift w

Io'' o'u l be fue transition wra-
L0.5 0.7 ) I-o.sl
ith two states. Let xo: 

Lo ,_] 
be

the initial state vector for the popul,atiort.
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In Exercťses 5-& let P * be the transition ma-

trixfor a Markov chain with three states, Ltt xb :

the initial state vectar for the populatian"

5. Compute x1 &írd x2.

6. What proportion oťthe state 1 population will be in
state 1 after two steps?

7. What proportion oť the state 2 population will be in
state 3 aťter two steps?

8. Find the steady state ve tsr.

9. uppose that the weather in a particular region
behave a ording to a Markov chain. pecifically,
tlppo e that the probability that tomorrow will be

a wet duy is ů.662 iťtoday is wet and 0.250 if today
is dry The probability that tomorrow wil} be a dry
d*y ís 0"750 if today is dry and 0.33B if today is wet.

[Ttris exercise is based on an actual study of rainfall
in Tel Aviv oyer a27 -year period. ee K. R. Gabriel
and }. Neumann, 'i{. Markov Chain Mnďel ťor Daily
Rainfall Occuťrence fft Tel Avlv,' Quarterly Iournal af
the Rayal Meteorologicaí oc iety, SS ( 1962},

pp. 90*95.]

(a} Write down the transition matrix for this Markov
chain.

{b} If Mond*y is a dry duy, what is the probability that
Wednesday will be wet?

{c} In the long run} what will the distribution of wet

and dry days be?

10. Data have been accumulated on the heights of children
relative to their parents. uppose that the probabilities
that a tall parent will have a taIl, medium-height, oť

short child are ů.6, 0.2, and 0.2, respectively; the prob-
abilities that a medium-height parent will have a tall,
medium-height, or short child aťe 0.1, 0.7, and 0.2, re-

spectively; uňa the probabilities that a short parent will
have a t*11, medium_height, 0ť short child are 0.2, 0.4,

and 0.4, respectively.

{a} Write down the transition matrix for this NÍarkov
chain.

(b} What is the probability that a short per on wilI
have a tall grandchild?

(c) Iť30% of the curr nt population is taIl, 50ťo is of
medium height, &fid 30ťo is short, what will the

distribution be in t rree generations?

{d} What proportion of the population will be tall, of
medium height, áírd short in the lcng run?

11. A study of piňon {pine) nut crop in the American
sout rwest from 1940 to 194? hypothesized that

nut production followed a Mark* chain. I ee

D. H. Thoma , "A Computer Simulation Model of
Great Basin shoshonean subsistence and settlemerrt

Fatternsi' in D. L. Clarke, d,, Modeís in Archaealogy
(London: Methuen, 1972).] The data ugse ted that

if one year's crop wa go*d, then the probabilities that

the following year's crop would be good, fair, or poor
\,v re 0.08, 0.07, and 0.B5, respectively; if one year's

crop was fair, then the probabilities that the follow-
ing year's crop would be good, fair, or poor wťre 0.09,

0.11, ilírd 0.B0, respectively; if ane year's crop w ts poor,

then the probabilities that the following year's crop
would be good, fair, or pCIor wer ů.11, 0.05, and 0.84,

respectively.

(a) Write down the transition matrix for this Markov
chain"

{b) If the piňon nut rop wa gaod in 1940, find the

probabilities of a good crop in the year 1941

through 1945,

tc) In the long run} what proportion of the crops wilI
be good, faír, and poor?

12. Robots have been prosramrned to trav r e the rnare

shown in Figure 3.28 and at each junction randomly
choose which \^ray to go.

íiguto il.28

(a) Construct the transition matrix for the Markov
chain that models this situation.

(b} Suppose we start with 15 robotg at each junc-

tion, Find the steady state distributíon of robots.
(Assume that it takes each robct tlre same amount
of time to travel betwecn twn adjacent junctions.)

13. Let j denote a row vector consistin$ entirely of 1 . Prove
that a nonnegative matrix F is a stochastic matrix if
and only if iF : }.

11 1 1-1lz T íl
Io } lt
Ll } 0l

I tzol
l rso lu,
L 90]



14. {a} haw that the product of two ? X,2 stochastic
matriccs is also a stachastic matrix-

(b) Prove that the produď of tr,va n Y n stochasťc
matrices is also a stochastic matrix.

(c) If a2 X 2 stochastic matrix P is invertible, prove that
P- 1 is also a stochastic matrix.

uppcs e wa want to know the aver&§e (or expected} namber
uf steps it wiíI take to go fram state i to state j in a Markov
chain. It can be shown títať the foílowing corftputetion
n wer this question: Delete the jth row and the jth calumn

of the transition matrix P to get a new m*trix Q. (Keep

the rows and column o/Q labeled as they were in P,) The
expeďed number o! steps from state i to state j is given by

t?te sum af the enťries in the column oí (I - QJ*' tabeted i.

1 . In Exercis 9, if Monduy is a dry duy, what is the
expected number oť days until a wet day?

16. In Exercise 10, what is the expected number of senera-
tions untíl a short per on has a tall descendant?

17. In Excrcise 11, if the pinon nut crop is fair one Fefif, what
is the e4pected number ofyears until a good crop occurs?

l8. In xercis e L2, starting from each oťthe other junc-
tionsn what is the expected number of moye untiI a
robot reaches junction 4?

linoar ltonomit MOilOlt

In Exercises 2,7*30, determine whether t?le giv&n cznsump-
tion matrix is produlctive.

ecticn 3,7 Applications

In Exercťses 31*34, , on umption rnatrix C anď g demand
vector á are given. In eac?t casc, find a feasible production
vector x tLtat saťisfies Equation (2)"

CA$ 34. C *

35" Let A be an y, X rt matrix, Á =. ů. Suppo e t}rat

Áx { x for ome x in Kn, x }ry 0. Prove that x } 0.

36" Let A, B, G and D be n X n mattices and x and y
v*ctors in R*. Prove the tbllowing inequalities:

(a} IfÁ ry, t o and C a .D * o, then
ÁChfinto.

(b} IťÁ > 
^B 

and x * 0, x * 0, then Áx } .Bx.

wmanm § ffirwwtt

37. A po

r_
lJ

X0:

vector is xo

l- _r r 0.2 0.4 0.1 0.4l10.35 0.25 0 l l ll l l 0.3 a.2 a.2 0.1 l

29,1 0.15 0.55 0.35 l 30. l ll l l0 0.4 0.5 0.3 I

L 0.45 0.30 0.60l l ^ lá 
L 0.5 0 0.2 0.2l

31.c: |Y,: Y,,a,d: [l]

32.c: Lll li],d: Li]

In Exerctses 19*26, determine which af the matrices are
exchange matricgs. FCIť tLtose that &re exchange ynatrices,

find a nůnnegative price vector that satisties Equation {1).

19. lrt, t/a1 20.1rt, 2/31
L7: jlz 3/4l LVl jlz L/2)

[ 0.4 0.7l [ 0. 1 0.6 l21.1 l 22.i l

L0.6 0.4l L0.9 0.4l

ltls 0 0l ft/z 1 0l
?3.1rt, 312 0l ,n.| o 0 L/3l

Lt/s --I/2 1 J Lt/z 0 2/3 )
[ 0.3 0 0.2l [ 0.50 aJa 0.35l

25.1 o., 0.5 0.3 l ,u. I o.r, 0.30 0.25 
l

L o.+ 0.5 0.5 ] L o.zs 0 0.40 J

[0.5 a.2 0.1l [:l
33.C:lo 0.4 0.2 l,d-lrl

Lu 0 0.5l Ln]

[o.t 0.4 0.1l It.tl
l, 0.2 a.2 I,a:lr., l

L 0.3 a.2 0.3 l L 2.0l

pulation with two age cla §s has a Leslie matrix

l ^: 1l. Othe initial population vector is
L0.6 0 j

|- rol
L';J, 

.o*pute x1l x2, and x3.

3 . A populatian with three age clas e has a,l.eslie matrix

t0 121
L : l 0.2 0 0 

I. 
Irthe initial population

L 0 0.5 0l
I tol

L 3j

[ CI.2 0.3l
27. l l 28.

L 0.5 0"6l

I o.zo 0. 10 0. 10 l
I o.ro 0.15 0.45 

l

L o. r s 0.30 0.50l



birth to about one calf per year during their middle
years. The mortaliťy rate for young calves is very high.

ťi

Ase Birth urvivnl
(years) Rate Rnte
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39. A population with three age class* has a Leslie matrix

[t 1 3l
L Ť": 

I o.z 0 0 l. lf the initial population vector is

Lo 0.5 0l 
I I

I 
tool

x0 : I rOO 
|, 

*o*pute x,, x2, and x3.

L roo ]

40. A population with four age cla e has a Leslie matrix

r0 1 2 5]ll
L: l :,' 0 0 

: |. rrrn* initial population

|0 a.7 0 0l
L0 0 0.3 0J

l t0 l

vectnr ís xg I il], *o*oute x1o x2, flí}d x3.V 
Lil]

41" A certain species with two ás clnsses of 1 year's dura-
tian has a survival probability oť S0% from class 1 to
class 2. mpiricnl evidence shown that, n avťrfrse,

each female gives birth to five fernale peť ye&r. Thus,
two possible Leslie matrice are

[o 5l [+ 1l
LI : 

Lo.* 0] and L2: 
Lo.* 0]

(a) tarting with xg tr 
[il], 

.o*pute xl, . . . , x16 ill
each ca e. t

(b) Fnr each frasc, plot the relative sire of each ff.se
class over tíme (as in igure 3,23). What dn your
graphs suggest?

Suppose the Leslie matrix for the VW beetle is I :
[o 0 20l
I O.' 0 0 

| 
. Sr**in§ with an arbitrffry xp, deter-IlLo 0.5 0J

mine the behavior of this population.

uppose the Leslie matrix for the VW beetle is

[o 0 ,ol
L ffi l - 0 0 |. Investígate the effect of varying

Lo 0.5 0]
the survival probability s of the young beetlcs.

Vfrnodlanď caribou are found primarily in the western
prnvinces of Canada and the American northwest.
The everase lifespan oť a female is about 14 y ffť .
The birth and survivď rates for each age bracket are
given in Table 3.4, which shows that caribou cows do
not give bírth at all during their first 2 years and give
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42,

43.

C^ 44,

0.0
0.4
1.8

1-s

1,8

1.6

0,s

0,3

0.7
0,p

fi.p

0-p

ff,6

0.a

0*ž
2*4
4^6

6*s
fi* 1ú

l0.- 12

L2*L4

The numbers of wo*dlanď caríbnu r ported in
Jasper }r{ational Park in Alberta in 1P90 are shown in
Thble 3.5. tJsing a CA , preďict the caríbou population
ťor 1992 and L994, Then projcct t}re population for the

)iear 2010 and Z020r \ťhat do you cnnclude? (What
a umptions does this mnd*l make, and how could it
be improved?)

Ěffi
Age

(years}

lilOOilltnil ílnrl Ou
PoRltlttlon ln lailer
llttlonnl pnrH, Iss0

Number

10
)
fi

5

1?

0

1

0*2
2*4
4*6
6*s
8*10

10* 12

12* 14

Source: World Wildlife Fund Canaela



firnpilt nnfi lllgrntrht

In Ex*rcises 45*4B, ďetermine the adiacency matrix af the

given §rftph,

4v1v2

lIl1lr

ectíon 3.7 Applications

In xercťses 53*56, ďeterrnine the adjncency mutrix af t?le

given digraph.

54,

55.

56. v1

V4

46. /\q
l

l

1
Ť4

V3

o
l

l

1
V3

47,

V2

4S. v1

V4 V5

draw a graph that has

50.

52,

v4 v?

In Exercises 57*60, draw a digraph
cency matrix.

l-0 1 0 0l 
[011 0 0 1l l0

57. l l 58. l

l0 1 0 0l l1
L, 0 1 1] Ln

thať has the given adjn-

0]
1l
0l
0]

the given

1l
1l

;]
1 1l
1 1l
1 1l
0 0l
0 0J

r0 1 0

|t 1 1

|0 1 0

Lr 1 1

[o 0 0

l0 0 0

Io 0 0

|1 1 1

[t 1 1

0l
1l

In Exercises 49-52,
cency matrix,

r0 1 1 1]
l, 0 0 0l

49. l ll1 0 0 0l
L, 0 0 0]

[o 0 1 1

Io 0 0 1

51.Ir 0 0 0
l

11 1 0 0

[o 1 1 0

adja-

10
00
00
01
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1l
0l
1l

:j

1l
0l
1l
0l
0l

Io
Ir

59.Io

Ir
L0

In xercises 61*68, use powers of adjacency matrices to

determine the number af patíts aí the speci ed lmgth
between the given vertices.

61. Exercise 50, lensth 2, vtand u2

62. xercise 52, lensth 2, vt and v2

63- f,xercise 50, lensth 3, t aná v3

64" Exercise 52, length 4, vz and v2

65. Exercise 57, lensth 2, vtta v3

66. Exercise 57,length 3, vqto u1

67. xercise 60, lensth 3, vato u1

68. Exercise 60, lensth 4, tta v4

69. Let Á be the adjacency matrix of a graph G.

(a} If raw i of Á is all zeros, what does this imply
about G?

(b) If column j of Á is all zeros, what does this imply
about G?

70. Let Á be the adjacency matrix of a digraph l).
(a} If row i of Á2 is all zeros, what daes this imply

about D?
(b} If column j of Á2 is all zeros, what does this imply

about D?

7l. Figuť 3.29 is the digraph of a tournament witnL six
players, P, to Pu. tJsíng adjaccncy matrice , rank the
players first by determining wins only and then by
using the notion of combined wins and indirect wins,
as in Example 3.69.

P2

P6

ílgute t.29

72, igure 3"30 ís a digraph repre enting a food web in
a small ecosystem. A directed edge ťrom a ta b indi-
cates that a has b as a source of foad. canstruct the

adjacency matrix Á for this digraph and use it to an-
wer the following questions.

P]ant

Fr:x Insect

Fish Bird

ílsuro 0.00

(a) Which species has the most ďirtct sources of food?
How does Á show this?

(b} Which species is a direct ource of food for the
most other species? How does Á show this?

(c} If a eats b and b eats c, we say that a has ť as an
indirect source of food. How an we u * Á to de -

termine which species has the most indirect ťaod
ources? T$ťhich species has the most direct and

indircet fooď sources combin*d?
(d} Suppos* that pollutants kill the plants in thís food

web, and w want to determine the eff*ct this
change will have on the ecosyst m. Construct a
new adjacency matrix Ás ťrom Á by delgting the
row unď column corre ponding to plants. Repeat
parts (a) to (c} and determine which species are
the most and }east afťected by the chanfie"

(e) What will the long-term efťect of the pollution be?
What matrix calculations will show this?

73. Five p Op}e are all connected by e-rneil. \,Vhen ver
one oť th*m hears a juicy piece nť gossip, he or she
pa e it along by e-mailing it to omeone else in the

sroup according to Table 3.6.

(a} Draw the digraph that models this "gossip
network" and find its adjacsn y matrix Á.

Sender Recipients

Carla, ,har

Car}a, Dana
haz

Ann, Carla
Bert

010
001
000
01CI
101

[o 1 0 0

Io 0 0 1

60"lr 0 0 1
I

l1 0 1 0

[t 1 0 0

P3

Ann
Bert
Carla
Dana
haz

Roclenť



(b) Define a step as the time it takes a per on to e-mail
ey ryone 0n his or her list. (Thus, in one step,
gossip gets from Ann to both Carla and haz.) If
Bert hears a ťumor, how many steps will it take
for everyone else to hear the rumar? What matrix
calculatio, reveals this?

(c) If Ann hears a rumor, how many steps will it take
for everyone else to hear the rumor? What matrix
calculation reveals this?

(d) In general, if Á is the adjacency matrix of a
digraph, how can we tell if vertex i is connected to
vertex j by u path (of some length)?

[The gossip network in this exercise is reminiscent
of the notion of "six degrees of separatioď' (found in the
play and film by that name), which suggests that any
two people are connected by * path oť acquaintances
whose trength is at most 6- The same " tK Degrees of
Kevin Bacorť' more frivolously asserts that all actor are

connected to the actor Kevin Bacon in such e way.]

74. LetÁ be the adjacency matrix of a graph G.

(a) By induction, proye that for all n > 1, the (i, j)
entry oť A" is equal to the nurnber of rr-paths
between vertices í and j.

{b) How do the statement and praof in part (a) have
to be modified if G is a digraph?

75.If Ais the adjacency matrix of a digraph G, what does
the (i, j) entry of AAr ťepre ent if i * j?

fis gfinitlíttl and sOnepnt

basis, 198

Basis Theorem, 2a2
cnlumn matrix (vector), 13B

column space of a
matrix, 195

composition of linear
transformations, 2L9

cnordinate vector with respect to a
basis, 208

diagonal matrix, L39
dimension, 203
elementary matrix, t7O

Chapter Review

A graph is called bipartite if its tlertices c .n be subdi-
vided into twa sets U and V sut?t that every edge has CIna

enápoint in t] and the other endpoint in V. For xamp\e,
the graph in Exercise 48 is bipartit* with [/ * {",, v2, \}
and d x. {u*, vu}. In Exercises 76*?9, determine wLtether a
gťaph with the given adjacency n*atrix is bipartite.

76. The adjacency matrix in ,xercise 49

77, The adjacency matrix in Exercise 52

78" The adjacency matrix in xercise 51

79,

CIO1011
001011
110100
001011
110100
110100

S0. {n) Prove that a graph is bipartite iť and only if its
vertices can be laleled so that its adjacency matrix
can be partitioned as

|-o iBlA: 
L;r i aJ

(b) tJsing the result in part (a), prove that a bipartite
graph has no circuits ať odd length.

ffi
Fundamental Theorem of Invertible matrix, 138

Matrices, I72,2a6 matrix adďition, 14CI

identity matrix, 139 matrix factcrization, 1B0

inverse of a quar matrix multiplication, ].41

matrix, 163 matrix power , L49
inverse of a linear negative of a matrix, 140

transformation, 22I null space oť a matrix, L97
linear combination of matrices, L54 nullity of a rnatrix, 204
linear dependencelindependence outer product, L47

oť matrices, I57
linear transformation, ZL3
LU factarization, 18 1

partitioned matrices (block
multiplication), L45, L48

permutation matrix, t87



Chapter 3 Matrices

pťopťrties of matrix algebra, I54,
158, 15s, 167

rank of a matrix , 2a4
Rank Theorem, 2a5
represťntations of matrix
products, L46*148

,IfAŤ

row matrix (vector), 138

row pace af a matrix, 195

scalar matrix, 139

scalar multiple oť a matrix, 14S
pan of a set of matrices, 156
quar matrix, 13P

standard matrix of a linear
transťormation, ?L6

subspace, L92
yínrnetric matrix, 151

transpase of a matrix, 151

u rs matrix, L4L

13- ind bases for the row pace} column pffee,

Beuiew 0uestiOns
I. Mark each of the fo}lowing statements true or ť*lse :

(a} For any matrix Á, both AAr and Arl-are deftned,

(b) If Á and 8 are matrices such that AB x S and
A t O, then.B * O.

(c) If Á, B, and X are invertible matricgs such that
XA: fi, then fi x Á*l-B,

{d) The inverse of an elementary matrix is an elemen-
tary matrix.

(*) The transpose of an elementary matrjx is an
elementary matrix"

(f) The product of two elemen tarymatrices is an
elementary matrix.

{$ If Á is an m X n matrix, then the null space of Á is
a subspace of Rn.

{h) ,very plane in ffi3 is a two-dimensional sub pace
of R3.

(i) The transformation T: R2 *+ R2 defined by
T(x) * *x is a Iinear transformation.

(r) If T: Ra *+ R5 in a linear transformation, then
there is a 4 X 5 matrix Á such that T(x} : Áx for
.a11 x in the domaín oť T.

*1l
l.

4)

[t 21
tff. Iťpossible,eqpr the rnatrixÁ: l- -{asaprod-

uct of elemeni aťymatrices. L4 6J

lt. If Á is a quare matrix such that A3 : O, show that
(í*Á)*1 *í+A+Á2,

[t 1

12- Find an It/ factCIri zatíanof Á * 
| l 1

L, *1

1l
1 

I.

1]

and null

lz *4 8

pfrcpťÁffi|' *2 ? 3

L+ -8 3 2

5l
1 

l.
6l

In Exercťses 2*7, tet e il 11 onan: t: 0

L3 5l L3 *3
Compute the indicated mitrices, if possible.

2, A2B 3, A2B2 4, BrA*lB

5. (BB\-I 6. (BrB)*1

1 0 -1l
2 3 -1 

l0 1 lJ
-1 *3l
5 0 |,.
3 -2)

14. uppo e matriceg Á end ^B are row equival nt, Do they
have the same ťow space? lťhy or why nat? o Á and
,B have the same column pace? Wh}r or why not?

1 . If Á is an irwertible matrix, explain why Á and Ár must
have the snme null p&ce. Is this true íťÁ is a nonin-
vertible squere m*trix? ,xplain.

1S" If Á is a quare matrix whose roÝvs add up to the zero
vector, explain why Á cannot be invertible.

ealumns. xplain wlry Á?Á must be an invertible
matrix. Must AAr also be invertible? ,xplain,

1S. Find a linear transformation T: ffi2 *+ R2 such that

19. Fin,ď the standaťd matrix of the linear transforrnation
T: K2 *+ R2 that ťorre ponds to a counterclockr,yise
rotation oť45o abaut the orisin ťollowed by a projec-
tíon onťo the lin e y : *2x,

20. uppo that T: Rn *r ffin is a linear transformation
and uppo e that v is a vector such that T(v) * 0 but
r'(v) r {} (where T2 * T o T). Prove that v and T(v)
are linearly independent.

{l] x 
[:] 

and,[-1] 
[;]7. Thc outer product cxpansion oť AAr

8. If Á is a matrix such that A-1 : 
|-Y,: 

-i], find Á.

ÁX:

and x is a matrix suc}r that

find X.


